Sample records for depolarization-induced calcium influx

  1. CB1 Cannabinoid Receptor-Dependent and -Independent Inhibition of Depolarization-Induced Calcium Influx in Oiigodendrocytes

    Institute of Scientific and Technical Information of China (English)



    Regulation of Ca2+ homeostasis plays a critical role in oligodendrocyte function and survival. Canna-binoid CB2 and CB2 receptors have been shown to regulate Ca2+ levels and/or K+ currents in a variety of cell types. In this study we investigated the effect of cannabinoid compounds on the Ca2+ influx elicited in cultured oligodendro-cytes by transient membrane depolarization with an elevated extracellular K+ concentration (50 mM). The CB2 re-ceptor agonist arachidonoyl-chloro-ethanolamide (ACEA) elicited a concentration-dependent inhibition of depolariza-tion-evoked Ca2+ transients in oligodendroglial somata with a maximal effect (94 ± 3)% and an EC50 of 1.3 ±0.03 μM. This activity was mimicked by the CB2/CB2 agonist CP55,940, as well as by the endocannabinoids N-arachidonoyl-ethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), whereas the CB2 receptor se-lective agonist JWH133 was ineffective. The CB2 receptor antagonist AM251 (1 μM) also reduced the Ca2+ response evoked by high extracellular K+ and did not prevent the inhibition elicited by ACEA (3 μM). Nevertheless, the a-bility of ACEA and AEA to reduce depolarization-evoked Ca2+ transients was significantly reduced in oligodendro-cytes from CB2 receptor knockout mice, as well as by pretreatment with pertussis toxin. Bath application of the in-wardly rectifying K+ channels (Kir channels) blockers BaCl2 (300 μM) and CsCl2 (1 mM) reduced the size of volt-age-induced Ca2+ influx and partially prevented the inhibitory effect of ACEA. Our results indicate that eannabinoids inhibit depolarization-evoked Ca2+ transients in oligodendrocytes via CB2 receptor-independent and -dependent mech-anisms that involve the activation of PTX-sensitive Gi/o proteins and the blockade of Kir channels. C 2008 Wiley-Liss, Inc.%Ca2+稳态平衡的调节在少突胶质细胞功能和存活中起重要作用.大麻素CB1和CB2受体在许多细胞中调节Ca2+水平和/或K+电流.本文利用培养的少突胶质细

  2. Effects of extracellular calcium and sodium on depolarization-induced automaticity in guinea pig papillary muscle. (United States)

    Katzung, B G


    Regenerative discharge of action potentials is induced in mammalian papillary muscles by passage of small depolarizing currents. In this paper, the effects of various extracellular calcium and sodium concentrations and of tetrodotoxin on this phenomenon were studied in guinea pig papillary muscles in a sucrose gap chamber. Phase 4 diastolic depolarization was found to be associated with an increase in membrane resistance. The slope of phase 4 depolarization was decreased by reductions in extracellular calcium or sodium concentration. The range of maximum diastolic potentials and the thresholds from which regenerative potentials arose were reduced, especially at the positive limit of potentials, by a reduction in either ion. It was concluded that both calcium and sodium influence diastolic depolarization and participate in the regenerative action potentials of depolarization-induced ventricular automaticity.

  3. Calcium influx pathways in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Hug, M J; Pahl, C; Novak, I


    A number of agonists increase intracellular Ca2+ activity, [Ca2+]i, in pancreatic ducts, but the influx/efflux pathways and intracellular Ca2+ stores in this epithelium are unknown. The aim of the present study was to characterise the Ca2+ influx pathways, especially their pH sensitivity, in nati...


    Ju, Weina; Wu, Jiang; Pritz, Michael B.; Khanna, Rajesh


    Vertebrate brains share many features in common. Early in development, both the hindbrain and diencephalon are built similarly. Only later in time do differences in morphology occur. Factors that could potentially influence such changes include certain physiological properties of neurons. As an initial step to investigate this problem, embryonic Alligator brain neurons were cultured and calcium responses were characterized. The present report is the first to document culture of Alligator brain neurons in artificial cerebrospinal fluid (ACSF) as well as in standard mammalian tissue culture medium supplemented with growth factors. Alligator brain neuron cultures were viable for at least 1 week with unipolar neurites emerging by 24 hours. Employing Fura-2 AM, robust depolarization-induced calcium influx, was observed in these neurons. Using selective blockers of the voltage-gated calcium channels, the contributions of N-, P/Q-, R-, T-, and L-type channels in these neurons were assessed and their presence documented. Lastly, Alligator brain neurons were challenged with an excitotoxic stimulus (glutamate + glycine) where delayed calcium deregulation could be prevented by a classical NMDA receptor antagonist. PMID:24260711

  5. Calcium influx determines the muscular response to electrotransfer

    DEFF Research Database (Denmark)

    Møller, Pernille Højman; Brolin, Camilla; Gissel, Hanne


    Cell membrane permeabilization by electric pulses (electropermeabilization), results in free exchange of ions across the cell membrane. The role of electrotransfer-mediated Ca(2+)-influx on muscle signaling pathways involved in degeneration (β-actin and MurF), inflammation (IL-6 and TNF-α), and r......Cell membrane permeabilization by electric pulses (electropermeabilization), results in free exchange of ions across the cell membrane. The role of electrotransfer-mediated Ca(2+)-influx on muscle signaling pathways involved in degeneration (β-actin and MurF), inflammation (IL-6 and TNF...... low-voltage pulse (HVLV), either alone or in combination with injection of DNA. Mice and rats were anesthetized before pulsing. At the times given, animals were killed, and intact tibialis cranialis muscles were excised for analysis. Uptake of Ca(2+) was assessed using (45)Ca as a tracer. Using gene...... expression analyses and histology, we showed a clear association between Ca(2+) influx and muscular response. Moderate Ca(2+) influx induced by HVLV pulses results in activation of pathways involved in immediate repair and hypertrophy. This response could be attenuated by intramuscular injection of EGTA...

  6. Nerve Growth Factor Inhibits Gd3+-sensitive Calcium Influx and Reduces Chemical Anoxic Neuronal Death

    Institute of Scientific and Technical Information of China (English)

    Hui JIANG; Shunlian TIAN; Yan ZENG; Jing SHI


    To investigate whether glutamate and voltage-gated calcium channels-independent calcium influx exists during acute anoxic neuronal damage and its possible relationship to neuronal protective function of NGF. In in vitro model of acute anoxia, hippocampal cultures from newborn rats were exposed to 3 mmol/L KCN. Changes of intracellular Ca2+ concentration ([Ca2+]i) were monitored by con-focal imaging and cell viability was assayed by PI and cFDA staining. The results showed that after treatment with primary hippocampal cultures with 3 mmol/L KCN for 15 min,[Ca2+]i was significantly increased 6.27-fold compared to pre-anoxia level and 73.3% of the cells died.When combination of 20 μmol/L MK-801 (glutamate receptor antagonist), 40 μmol/L CNQX (AMPA receptor antagonist) and 5 μmol/L nimodipine (voltage-gated calcium channel antagonist) (hereafter denoted as MCN) were administrated to hippocampal cultures, levels of [Ca2+]i and cell death rate induced by KCN were partially reduced by 35.9% and 47.5% respectively. However, Gd3+ (10μmol/L) almost completely blocked KCN-mediated [Ca2+]i elevation by 81.9% and reduced neuronal death by 88.8% in the presence of MCN. It is noteworthy that NGF, used in combination with MCN,inhibited KCN-induced [Ca2+]i increase by 77.4% and reduced cell death by 87.1%. Only PLC inhibitor U73122 (10 μmol/L) abolished NGF effects. It is concluded that Gd3+-sensitive calcium influx,which is NMDA (glutamate receptor) and voltage-gated calcium channels-independent, is responsible for acute anoxic neuronal death. NGF can inhibit Gd3+-sensitive calcium influx and reduce anoxic neuronal death through activating PLC pathway.

  7. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  8. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  9. Aristoyunnolin H attenuates extracellular matrix secretion in cardiac fibroblasts by inhibiting calcium influx. (United States)

    Chen, Shao-Rui; Zhang, Wen-Ping; Bao, Jing-Mei; Cheng, Zhong-Bin; Yin, Sheng


    Aristoyunnolin H is a novel aristophyllene sesquiterpenoid isolated from the traditional Chinese medicine Aristolochia yunnanensis Franch. The present research was designed to explore the anti-fibrotic effects of aristoyunnolin H in adult rat cardiac fibroblasts (CFs) stimulated with angiotensin II (Ang II). Western blot analysis data showed that aristoyunnolin H reduced the upregulation of fibronectin (FN), connective tissue growth factor and collagen I(Col I) production induced by Ang II in CFs. By studying the dynamic intracellular changes of Ca(2+), we further found that while aristoyunnolin H relieved the calcium influx, it has no effect on intracellular calcium store release. Meanwhile, aristoyunnolin H also inhibited the Ang II-stimulated phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II. In conclusion, aristoyunnolin H may attenuate extracellular matrix secretion in vitro by inhibiting Ang II-induced calcium signaling.

  10. Involvement of phospholipase D in store-operated calcium influx in vascular smooth muscle cells. (United States)

    Walter, M; Tepel, M; Nofer, J R; Neusser, M; Assmann, G; Zidek, W


    In non-excitable cells, sustained intracellular Ca2+ increase critically depends on influx of extracellular Ca2+. Such Ca2+ influx is thought to occur by a 'store-operated' mechanism, i.e. the signal for Ca2+ entry is believed to result from the initial release of Ca2+ from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Here we show that the depletion of cellular Ca2+ stores by thapsigargin or bradykinin is functionally linked to a phosphoinositide-specific phospholipase D (PLD) activity in cultured vascular smooth muscle cells (VSMC), and that phosphatidic acid formed via PLD enhances sustained calcium entry in this cell type. These results suggest a regulatory role for PLD in store-operated Ca2+ entry in VSMC.

  11. Human milk effects on neutrophil calcium metabolism: blockade of calcium influx after agonist stimulation. (United States)

    Chacon-Cruz, E; Oelberg, D G; Buescher, E S


    Neutrophils are the predominant cellular mediators of acute inflammation, and human milk suppresses multiple neutrophil functions. We sought to determine whether these effects were mediated through disruption of normal intracellular Ca2+ homeostasis. Exposure of human neutrophils to human milk, followed by washing, resulted in altered Ca2+ transient responses to formyl-peptide stimulation in which the peak cytosolic free Ca2+ concentration ([free Ca]) was the same as in unexposed cells, but the postpeak decline in [free Ca] was more rapid. This effect was observed after human milk exposures as brief as 10 s, persisted for up to 4 h after human milk removal, and was concentration dependent. On the basis of experiments examining Ca2+-free conditions followed by Ca2+ supplementation, and experiments examining spontaneous and stimulated manganese and barium influx into neutrophils, the human milk effect was due to blockade of Ca2+ influx. Decreased Ca2+ transient responses to other physiologic stimuli (IL-8, opsonized Staphylococcus aureus, and immune complexes) were observed after human milk exposures. Rat intestinal epithelial cells and HL-60 cells failed to show these effects, suggesting a selective effect on mature inflammatory cells. Characterization of the Ca2+-blocking activity showed it was heat and acid stable in human milk with a molecular mass between 30-100 kD. Commercial human milk lactoferrin exhibited Ca2+ influx blockade activity, but recombinant human lactoferrin showed none. Separation of the activity by heparin affinity chromatography showed that it was distinct from lactoferrin. Human milk-induced blockade of Ca2+ influx provides a potential mechanism for broad suppression of neutrophil functions that may contribute to the antiinflammatory properties of human milk.

  12. Calcium influx factor (CIF) as a diffusible messenger for the activation of capacitative calcium entry in Xenopus oocytes. (United States)

    Kim, H Y; Hanley, M R


    Acid extracts of thapsigargin-treated Xenopus oocytes revealed Ca2(+)-dependent Cl- currents by microinjection into Xenopus oocytes. These currents were detected in highly purified fractions by carrying out a sequence of purification steps including gel filtration chromatography and high performance thin layer chromatography. The nature of the membrane currents evoked by the highly purified fractions were carried by chloride ions as blockade by the selective chloride channel blocker 1 mM niflumic acid. Injection of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) eradicated the current activities, indicating that the current responses are completely Ca2(+)-dependent. Moreover, the currents were sensitive to the removal of extracellular calcium, indicating the dependence on calcium entry through plasma membrane calcium entry channels. These results elucidate that the highly purified fractions aquired by thapsigargin-stimulated oocytes is an authentic calcium influx factor (CIF). Thus, the detection of increased CIF production from thapsigargin treatment in Xenopus oocytes would give strong support for the existence of CIF as a diffusible messenger for the activation of capacitative calcium entry pathways in Xenopus oocytes.

  13. Phosphatidylinositol 3-Kinase Couples Localised Calcium Influx to Activation of Akt in Central Nerve Terminals. (United States)

    Nicholson-Fish, Jessica C; Cousin, Michael A; Smillie, Karen J


    The efficient retrieval of synaptic vesicle membrane and cargo in central nerve terminals is dependent on the efficient recruitment of a series of endocytosis modes by different patterns of neuronal activity. During intense neuronal activity the dominant endocytosis mode is activity-dependent endocytosis (ADBE). Triggering of ADBE is linked to calcineurin-mediated dynamin I dephosphorylation since the same stimulation intensities trigger both. Dynamin I dephosphorylation is maximised by a simultaneous inhibition of its kinase glycogen synthase kinase 3 (GSK3) by the protein kinase Akt, however it is unknown how increased neuronal activity is transduced into Akt activation. To address this question we determined how the activity-dependent increases in intracellular free calcium ([Ca(2+)]i) control activation of Akt. This was achieved using either trains of high frequency action potentials to evoke localised [Ca(2+)]i increases at active zones, or a calcium ionophore to raise [Ca(2+)]i uniformly across the nerve terminal. Through the use of either non-specific calcium channel antagonists or intracellular calcium chelators we found that Akt phosphorylation (and subsequent GSK3 phosphorylation) was dependent on localised [Ca(2+)]i increases at the active zone. In an attempt to determine mechanism, we antagonised either phosphatidylinositol 3-kinase (PI3K) or calmodulin. Activity-dependent phosphorylation of both Akt and GSK3 was arrested on inhibition of PI3K, but not calmodulin. Thus localised calcium influx in central nerve terminals activates PI3K via an unknown calcium sensor to trigger the activity-dependent phosphorylation of Akt and GSK3.

  14. Mepivacaine-induced intracellular calcium increase appears to be mediated primarily by calcium influx in rat aorta without endothelium. (United States)

    Ok, Seong-Ho; Kwon, Seong-Chun; Kang, Sebin; Choi, Mun-Jeoung; Sohn, Ju-Tae


    Mepivacaine induces contraction or decreased blood flow both in vivo and in vitro. Vasoconstriction is associated with an increase in the intracellular calcium concentration ([Ca(2+)]i). However, the mechanism responsible for the mepivacaine-evoked [Ca(2+)]i increase remains to be determined. Therefore, the objective of this in vitro study was to examine the mechanism responsible for the mepivacaine-evoked [Ca(2+)]i increment in isolated rat aorta. Isometric tension was measured in isolated rat aorta without endothelium. In addition, fura-2 loaded aortic muscle strips were illuminated alternately (48 Hz) at two excitation wavelengths (340 and 380 nm). The ratio of F340 to F380 (F340/F380) was regarded as an amount of [Ca(2+)]i. We investigated the effects of nifedipine, 2-aminoethoxydiphenylborate (2-APB), gadolinium chloride hexahydrate (Gd(3+)), low calcium level and Krebs solution without calcium on the mepivacaine-evoked contraction in isolated rat aorta and on the mepivacaine-evoked [Ca(2+)]i increment in fura-2 loaded aortic strips. We assessed the effect of verapamil on the mepivacaine-evoked [Ca(2+)]i increment. Mepivacaine produced vasoconstriction and increased [Ca(2+)]i. Nifedipine, 2-APB and low calcium attenuated vasoconstriction and the [Ca(2+)]i increase evoked by mepivacaine. Verapamil attenuated the mepivacaine-induced [Ca(2+)]i increment. Calcium-free solution almost abolished mepivacaine-induced contraction and strongly attenuated the mepivacaineinduced [Ca(2+)]i increase. Gd(3+) had no effect on either vasoconstriction or the [Ca(2+)]i increment evoked by mepivacaine. The mepivacaine-evoked [Ca(2+)]i increment, which contributes to mepivacaine-evoked contraction, appears to be mediated mainly by calcium influx and partially by calcium released from the sarcoplasmic reticulum.

  15. High Glucose Enhances Isoflurane-Induced Neurotoxicity by Regulating TRPC-Dependent Calcium Influx. (United States)

    Liu, ZhongJie; Ma, ChangQing; Zhao, Wei; Zhang, QingGuo; Xu, Rui; Zhang, HongFei; Lei, HongYi; Xu, ShiYuan


    Isoflurane is a commonly used inhalational anesthetic that can induce neurotoxicity via elevating cytosolic calcium (Ca(2+)). High glucose regulates the expression of a family of non-selective cation channels termed transient receptor potential canonical (TRPC) channels that may contribute to Ca(2+) influx. In the present study, we investigated whether high glucose enhances isoflurane-induced neurotoxicity by regulating TRPC-dependent Ca(2+) influx. First, we evaluated toxic damage in mice primary cultured hippocampal neurons and human neuroblastoma cells (SH-SY5Y cells) after hyperglycemia and isoflurane exposure. Next, we investigated cytosolic Ca(2+) concentrations, TRPC mRNA expression levels and tested the effect of the TRPC channel blocker SKF96365 on cytosolic Ca(2+) levels in cells treated with high glucose or/and isoflurane. Finally, we employed knocked down TRPC6 to demonstrate the role of TRPC in high glucose-mediated enhancement of isoflurane-induced neurotoxicity. The results showed that high glucose could enhance isoflurane-induecd toxic damage in primary hippocampal neurons and SH-SY5Y cells. High glucose enhanced the isoflurane-induced increase of cytosolic Ca(2+) in SH-SY5Y cells. High glucose elevated TRPC mRNA expression, especially that of TRPC6. SKF96365 and knock down of TRPC6 were able to inhibit the high glucose-induced increase of cytosolic Ca(2+) and decrease isoflurane-induced neurotoxicity in SH-SY5Y cells cultured with high glucose. Our findings indicate that high glucose could elevate TRPC expression, thus increasing Ca(2+) influx and enhancing isoflurane-induced neurotoxicity.

  16. Quantitative study on La3+ influx mediated by sodium-calcium exchanger in human lymphocytes

    Institute of Scientific and Technical Information of China (English)

    魏春英; 杨频


    Whether La3+ can enter human peripheral blood lymphocytes by the Na+/Ca2+ exchanger or not and the effect of La3+ on the Na+/Ca2+ exchanger activity are examined by fura-2 technique. And that whether La3+ is sequestered by intracellular organelles (mainly endoplasmic reticulum and mitochondria) is studied by this method. La3+ uptake is obviously stimulated by pretreating the cells with ouabain and by removing extracellular Na+, and intracellular La3+ concentration ([La3+]i) is directly proportional to its extracellular concentration ([La3+]o). But when [La3+]o exceeds 0.4 mmol/L, the 340/380 nm ratio of fluorescence is no longer varied and the maximum [La3+]i is 1.5×10-12 mol@L-1. The higher concentration of La3+ (0.1 mmol/L) increases Na+/Ca2+ exchange-mediated calcium influx, but lower concentration (10 mmol/L) appears to block calcium influx. The results also suggest that cytosolic La3+ is transported by the ATP-dependent Ca2+ pump. Intracellular Ca2+ stores are depleted by ionomycin, and then ionomycin is added again during the period of La3+ uptake, the 340/380 nm ratio of fluorescence is also increased, these results indicate that La3+ is sequestered by intracellular organelles. A characterization of fura-2-La3+ interaction in solution simulating intracellular ionic composition (pH 7.05) shows that La3+ forms a 1:1 fura-2-La3+complex, and the apparent dissociation constant of La3+ for fura-2 (Kd) is 1.7×10-12 mol@L-1. In addition, the limit of detection of fura-2 for La3+ and Ca2+ is 10?12 and 10?8 mol@L-1 respectively.

  17. Discrete-State Stochastic Models of Calcium-Regulated Calcium Influx and Subspace Dynamics Are Not Well-Approximated by ODEs That Neglect Concentration Fluctuations

    Directory of Open Access Journals (Sweden)

    Seth H. Weinberg


    Full Text Available Cardiac myocyte calcium signaling is often modeled using deterministic ordinary differential equations (ODEs and mass-action kinetics. However, spatially restricted “domains” associated with calcium influx are small enough (e.g., 10−17 liters that local signaling may involve 1–100 calcium ions. Is it appropriate to model the dynamics of subspace calcium using deterministic ODEs or, alternatively, do we require stochastic descriptions that account for the fundamentally discrete nature of these local calcium signals? To address this question, we constructed a minimal Markov model of a calcium-regulated calcium channel and associated subspace. We compared the expected value of fluctuating subspace calcium concentration (a result that accounts for the small subspace volume with the corresponding deterministic model (an approximation that assumes large system size. When subspace calcium did not regulate calcium influx, the deterministic and stochastic descriptions agreed. However, when calcium binding altered channel activity in the model, the continuous deterministic description often deviated significantly from the discrete stochastic model, unless the subspace volume is unrealistically large and/or the kinetics of the calcium binding are sufficiently fast. This principle was also demonstrated using a physiologically realistic model of calmodulin regulation of L-type calcium channels introduced by Yue and coworkers.

  18. Simultaneous measurements of magnesium, calcium and sodium influxes in perfused squid giant axons under membrane potential control. (United States)

    Rojas, E; Taylor, R E


    1. Giant axons from the squids Dosidicus gigas, Loligo forbesi and Loligo vulgaris were internally perfused with 550 or 275 mM KF plus sucrose and bathed in artificial sea water containing 45Ca, 28Mg or mixtures of 45Ca-28Mg or 45Ca-22Na. Resting influxes and extra influxes during voltage-clamp pulses were measured by collecting and counting the internal perfusate. 2. For Dosidicus axons in 10 mM-CaCl2 the resting influx of calcium was 0-016 +/- 0-007 p-mole/cm2 sec and a linear function of external concentration. For two experiments in 10 and 84-7 mM-CaCl2, 100 nM tetrodotoxin had no effect. Resting calcium influx in 10 mM-CaCl2 was 0-017 +/- 0-013 p-mole/cm2 sec for Loligo axons. 3. With 55 mM-MgCl2 outside the average resting magnesium influx was 0-124 +/- 0-080 p-mole/cm2 sec for Loligo axons. Discarding one aberrant point the value is 0-105 +/- 0-046 which is not significantly different from the resting calcium influx for Dosidicus fibres in 55 mM-CaCl2, given as 0-094 p-mole/cm2 sec by the regression line shown in Fig. 1. In two experiments 150 nM tetrodotoxin had no effect. 4. With 430 mM-NaCl outside 100 nM tetrodotoxin reduced the average resting influx of sodium in Dosidicus axon from 27-7 +/- 4-5 to 25-1 +/- 6-2 p-mole/cm2 sec and for Loligo fibres in 460 mM-NaCl from 50-5 +/- 4 to 20 +/- 8 p-mole/cm2 sec. 5. Using depolarizing pulses of various durations, the extra calcium influx occurred in two phases. The early phase was eliminated by external application of tetrodotoxin. The results of analysis are consistent with, but do not rigorously demonstrate, the conclusion that the tetrodotoxin sensitive calcium entry is flowing through the normal sodium channels (cf. Baker, Hodgkin & Ridgway, 1971). 6. Measurements of extra influxes using 22Na and 45Ca simultaneously indicate that the time courses of tetrodotoxin sensitive calcium and sodium entry are similar but not necessarily identical. It is very doubtful that any significant calcium entry occurs before

  19. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. (United States)

    Yuste, R; Majewska, A; Cash, S S; Denk, W


    Dendritic spines receive most excitatory inputs in the vertebrate brain, but their function is still poorly understood. Using two-photon calcium imaging of CA1 pyramidal neurons in rat hippocampal slices, we investigated the mechanisms by which calcium enters into individual spines in the stratum radiatum. We find three different pathways for calcium influx: high-threshold voltage-sensitive calcium channels, NMDA receptors, and an APV-resistant influx consistent with calcium-permeable AMPA or kainate receptors. These pathways vary among different populations of spines and are engaged under different stimulation conditions, with peak calcium concentrations reaching >10 microM. Furthermore, as a result of the biophysical properties of the NMDA receptor, the calcium dynamics of spines are exquisitely sensitive to the temporal coincidence of the input and output of the neuron. Our results confirm that individual spines are chemical compartments that can perform coincidence detection. Finally, we demonstrate that functional studies and optical quantal analysis of single, identified synapses is feasible in mammalian CNS neurons in brain slices.

  20. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases. (United States)

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira


    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses.

  1. Inhibition of Calcium Influx Reduces Dysfunction and Apoptosis in Lipotoxic Pancreatic β-Cells via Regulation of Endoplasmic Reticulum Stress.

    Directory of Open Access Journals (Sweden)

    Yuren Zhou

    Full Text Available Lipotoxicity plays an important role in pancreatic β-cell failure during the development of type 2 diabetes. Prolonged exposure of β-cells to elevated free fatty acids level could cause deterioration of β-cell function and induce cell apoptosis. Therefore, inhibition of fatty acids-induced β-cell dysfunction and apoptosis might provide benefit for the therapy of type 2 diabetes. The present study examined whether regulation of fatty acids-triggered calcium influx could protect pancreatic β-cells from lipotoxicity. Two small molecule compounds, L-type calcium channel blocker nifedipine and potassium channel activator diazoxide were used to inhibit palmitic acid-induced calcium influx. And whether the compounds could reduce palmitic acid-induced β-cell failure and the underlying mechanism were also investigated. It was found that both nifedipine and diazoxide protected MIN6 pancreatic β-cells and primary cultured murine islets from palmitic acid-induced apoptosis. Meanwhile, the impaired insulin secretion was also recovered to varying degrees by these two compounds. Our results verified that nifedipine and diazoxide could reduce palmitic acid-induced endoplasmic reticulum stress to generate protective effects on pancreatic β-cells. More importantly, it suggested that regulation of calcium influx by small molecule compounds might provide benefits for the prevention and therapy of type 2 diabetes.

  2. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores.

    Directory of Open Access Journals (Sweden)

    Radovan Fiser

    Full Text Available Bordetella adenylate cyclase toxin-hemolysin (CyaA penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC⁻ toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P toxoid, unable to conduct Ca²⁺ into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca²⁺ influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca²⁺ influx promoted by molecules locked in a Ca²⁺-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux.

  3. Abnormal mitochondrial function impairs calcium influx in diabetic mouse pancreatic beta cells

    Institute of Scientific and Technical Information of China (English)

    LI Fei; D. Marshall Porterfield; ZHENG Xi-yan; WANG Wen-jun; XU Yue; ZHANG Zong-ming


    Background Abnormal insulin secretion of pancreatic beta cells is now regarded as the more primary defect than the insulin function in the etiology of type 2 diabetes.Previous studies found impaired mitochondrial function and impaired Ca2+ influx in beta cells in diabetic patients and animal models,suggesting a role for these processes in proper insulin secretion.The aim of this study was to investigate the detailed relationship of mitochondrial function,Ca2+ influx,and defective insulin secretion.Methods We investigated mitochondrial function and morphology in pancreatic beta cell of diabetic KK-Ay mice and C57BL/6J mice.Two types of Ca2+ channel activities,L-type and store-operated Ca2+ (SOC),were evaluated using whole-cell patch-clamp recording.The glucose induced Ca2+ influx was measured by a non-invasive micro-test technique (NMT).Results Mitochondria in KK-Ay mice pancreatic beta cells were swollen with disordered cristae,and mitochondrial function decreased compared with C57BL/6J mice.Ca2+ channel activity was increased and glucose induced Ca2+ influx was impaired,but could be recovered by genipin.Conclusion Defective mitochondrial function in diabetic mice pancreatic beta cells is a key cause of abnormal insulin secretion by altering Ca2+ influx,but not via Ca2+ channel activity.

  4. High K+-induced contraction requires depolarization-induced Ca2+ release from internal stores in rat gut smooth muscle

    Institute of Scientific and Technical Information of China (English)

    Timo KIRSCHSTEIN; Mirko REHBERG; Rika BAJORAT; Tursonjan TOKAY; Katrin PORATH; Rudiger KOHLING


    Aim: Depolarization-induced contraction of smooth muscle is thought to be mediated by Ca2+influx through voltage-gated L-type Ca2+channels. We describe a novel contraction mechanism that is independent of Ca2+ entry.Methods: Pharmacological experiments were carried out on isolated rat gut longitudinal smooth muscle preparations, measuring iso-metric contraction strength upon high K+-induced depolarization.Results: Treatment with verapamil, which presumably leads to a conformational change in the channel, completely abolished K+-induced contraction, while residual contraction still occurred when Ca2+ entry was blocked with Cd2+. These results were further con-firmed by measuring intracellular Ca2+ transients using Fura-2. Co-application of Cd2+ and the ryanodine receptor blocker DHBP further reduced contraction, albeit incompletely. Additional blockage of either phospholipase C (U 73122) or inositol 1,4,5-trisphophate (IP3)receptors (2-APB) abolished most contractions, while sole application of these blockers and Cd2+ (without parallel ryanodine receptor manipulation) also resulted in incomplete contraction block.Conclusion: We conclude that there are parallel mechanisms of depolarization-induced smooth muscle contraction via (a) Ca2+ entry and (b) Ca2+ entry-independent, depolarization-induced Ca2+-release through ryanodine receptors and IP3, with the latter being depen-dent on phospholipase C activation.

  5. GABAergic synaptic transmission regulates calcium influx during spike-timing dependent plasticity

    Directory of Open Access Journals (Sweden)

    Trevor Balena


    Full Text Available Coincident pre- and postsynaptic activity of hippocampal neurons alters the strength of gamma-aminobutyric acid (GABAA-mediated inhibition through a Ca2+-dependent regulation of cation-chloride cotransporters. This long-term synaptic modulation is termed GABAergic spike-timing dependent plasticity (STDP. In the present study, we examined whether the properties of the GABAergic synapses themselves modulate the required postsynaptic Ca2+ influx during GABAergic STDP induction. To do this we first identified GABAergic synapses between cultured hippocampal neurons based on their relatively long decay time constants and their reversal potentials which lay close to the resting membrane potential. GABAergic STDP was then induced by coincidentally (± 1 ms firing the pre- and postsynaptic neurons at 5 Hz for 30 seconds, while postsynaptic Ca2+ was imaged with the Ca2+-sensitive fluorescent dye Fluo4-AM. In all cases, the induction of GABAergic STDP increased postsynaptic Ca2+ above resting levels. We further found that the magnitude of this increase correlated with the amplitude and polarity of the GABAergic postsynaptic current (GPSC; hyperpolarizing GPSCs reduced the Ca2+ influx in comparison to both depolarizing GPSCs, and postsynaptic neurons spiked alone. This relationship was influenced by both the driving force for Cl- and GABAA conductance (which had positive correlations with the Ca2+ influx. The spike-timing order during STDP induction did not influence the correlation between GPSC amplitude and Ca2+ influx, which is likely accounted for by the symmetrical GABAergic STDP window.

  6. Inhibition of ATP-induced calcium influx in HT4 cells by glucocorticoids: involvement of protein kinase A

    Institute of Scientific and Technical Information of China (English)

    Jian-zhong HAN; Wen LIN; Yi-zhang CHEN


    Aim: In our previous observations, adenosine triphosphate (ATP) was found to evoke immediate elevations in intracellular free calcium concentration ([Ca2+]i) in HT4 neuroblastoma cells of mice. We tried to see if a brief pretreatment of glucocorticoids could inhibit the Ca2+ response and reveal the underlying signal ing mechanism. Methods: Measurement of [Ca2+]i was carried out using the dual-wavelength fluorescence method with Fura-2 as the indicator. Results: Pre incubation of HT4 cells for 5 min with corticosterone (B) or bovine serum albumin conjugated corticosterone (B-BSA) inhibited the peak [Ca2+]i increments in a concentration-dependent manner. Cortisol and dexamethasone had a similar action, while deoxycorticosterone and cholesterol were ineffective. Both extracellular Ca2+ influx and internal Ca2+ release contributed to ATP-induced [Ca2+]i elevation. The brief treatment with only B attenuated Ca2+ influx. Furthermore, the [Ca2+]i elevation induced by the P2X receptor agonist adenosine 5'-(β,γ-methylene) triphosphate (β,γ-meATP) was also suppressed. The rapid inhibitory effect of B can be reproduced by forskolin 1 mmol/L and blocked by H89 20 mmol/L. Neither nuclear glucocorticoid receptor antagonist mifepristone nor protein kinase C in hibitors influenced the rapid action of B. Conclusion: Our results suggest that glucocorticoids modulate P2X receptor-medicated Ca2+ influx through a membrane-initiated, non-genomic and PKA-dependent pathway in HT4 cells.

  7. Accumulation of Palmitoylcarnitine and Its Effect on Pro‐Inflammatory Pathways and Calcium Influx in Prostate Cancer (United States)

    Al‐Bakheit, Ala'a; Traka, Maria; Saha, Shikha; Mithen, Richard


    BACKGROUND Acylcarnitines are intermediates of fatty acid oxidation and accumulate as a consequence of the metabolic dysfunction resulting from the insufficient integration between β‐oxidation and the tricarboxylic acid (TCA) cycle. The aim of this study was to investigate whether acylcarnitines accumulate in prostate cancer tissue, and whether their biological actions could be similar to those of dihydrotestosterone (DHT), a structurally related compound associated with cancer development. METHODS Levels of palmitoylcarnitine (palcar), a C16:00 acylcarnitine, were measured in prostate tissue using LC‐MS/MS. The effect of palcar on inflammatory cytokines and calcium (Ca2+) influx was investigated in in vitro models of prostate cancer. RESULTS We observed a significantly higher level of palcar in prostate cancerous tissue compared to benign tissue. High levels of palcar have been associated with increased gene expression and secretion of the pro‐inflammatory cytokine IL‐6 in cancerous PC3 cells, compared to normal PNT1A cells. Furthermore, we found that high levels of palcar induced a rapid Ca2+ influx in PC3 cells, but not in DU145, BPH‐1, or PNT1A cells. This pattern of Ca2+ influx was also observed in response to DHT. Through the use of whole genome arrays we demonstrated that PNT1A cells exposed to palcar or DHT have a similar biological response. CONCLUSIONS This study suggests that palcar might act as a potential mediator for prostate cancer progression through its effect on (i) pro‐inflammatory pathways, (ii) Ca2+ influx, and (iii) DHT‐like effects. Further studies need to be undertaken to explore whether this class of compounds has different biological functions at physiological and pathological levels. Prostate 76:1326–1337, 2016. © 2016 The Authors. The Prostate published by Wiley Periodicals, Inc. PMID:27403764

  8. Heterogeneous abnormalities of in-vivo left ventricular calcium influx and function in mouse models of muscular dystrophy cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Greally Elizabeth


    Full Text Available Abstract Background Manganese-enhanced cardiovascular magnetic resonance (MECMR can non-invasively assess myocardial calcium influx, and calcium levels are known to be elevated in muscular dystrophy cardiomyopathy based on cellular studies. Methods Left ventricular functional studies and MECMR were performed in mdx mice (model of Duchenne Muscular Dystrophy, 24 and 40 weeks and Sgcd−/− mice (Limb Girdle Muscular Dystrophy 2 F, 16 and 32 weeks, compared to wild type controls (C57Bl/10, WT. Results Both models had left ventricular hypertrophy at the later age compared to WT, though the mdx mice had reduced stroke volumes and the Sgcd−/− mice increased heart rate and cardiac index. Especially at the younger ages, MECMR was significantly elevated in both models (both Pmdx mice (PSgcd−/− mice (PSgcd−/− mice had increased heart rates, to determine the role of heart rate in MECMR we studied the hyperpolarization-activated cyclic nucleotide-gated channel inhibitor ZD 7288 which selectively reduces heart rate. This reduced heart rate and MECMR in all mouse groups. However, when looking at the time course of reduction of MECMR in the Sgcd−/− mice at up to 5 minutes of the manganese infusion when heart rates were matched to the WT mice, MECMR was still significantly elevated in the Sgcd−/− mice (P Conclusions Despite both mouse models exhibiting increased in-vivo calcium influx at an early stage in the development of the cardiomyopathy before left ventricular hypertrophy, there are distinct phenotypical differences between the 2 models in terms of heart rates, hemodynamics and responses to calcium channel inhibitors.

  9. Calmodulin modulates the delay period between release of calcium from internal stores and activation of calcium influx via endogenous TRP1 channels. (United States)

    Vaca, Luis; Sampieri, Alicia


    In the present study we have explored the role of calmodulin (CaM) and inositol 1,4,5-trisphosphate receptor (IP(3)R) in the communication process activated after the release of calcium from the endoplasmic reticulum (ER) and the activation of calcium influx via endogenous TRP1 channels from Chinese hamster ovary cells. Experiments using combined rapid confocal calcium and electrophysiology measurements uncovered a consistent delay of around 900 ms between the first detectable calcium released from the ER and the activation of the calcium current. This delay was evident with two different methods used to release calcium from the ER: either the blockade of the microsomal calcium ATPase with thapsigargin or activation of bradykinin receptors linked to the IP(3) cascade. Direct application of IP(3) or a peptide from the NH(2)-terminal region of the IP(3)R activated store operated calcium, reducing the delay period. Introduction of CaM into the cell via the patch pipette increased the delay period from 900 +/- 100 ms to 10 +/- 2.1 s (n = 18). Furthermore, the use of selective CaM antagonists W7 and trifluoperazine maleate resulted in a substantial reduction of the delay period to 200 +/- 100 ms with 5 microm trifluoperazine maleate (n = 16) and 150 +/- 50 ms with 500 nm W7 (n = 22). CaM reduced also the current density activated by thapsigargin or brandykinin to about 60% from control. The CaM antagonists did not affect significantly the current density. The results presented here are consistent with an antagonistic effect of IP(3)R and CaM for the activation of store operated calcium after depletion of the ER. The functional competition between the activating effect of IP(3)R and the inhibiting effect of CaM may modulate the delay period between the release of calcium from the ER and the activation of calcium influx observed in different cells, as well as the amount of current activated after depletion of the ER.

  10. Fas mRNA expression and calcium influx change in H2O2-induced apoptotic hepatocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    Qi-Ping Lu; Lei Tian


    AIM: To investigate the relationship between Fas gene expression and calcium influx change in peroxide-induced apoptotic hepatocytes and the possible molecular mechanism of Rxa in protecting hepatocytes.METHODS: Single-cell Fas mRNA expression in H2O2-exposed L02 hepatocytes with or without treatment of Rxa,an extract from an anti-peroxidant, Radix Salviae Miltiorrhizae,was determined by all-cell patch clamp and single-cell reverse transcriptase polymerase chain reaction (RT-PCR). Transient calcium influx change ([Ca2+]i) in the cells was evaluated with all-cell patch clamp micro-fluorescence single-cytosolic free Ca2+ concentration technique. Fas protein expression, early apoptotic index (annexin-V+) and cell membrane change inthe cells were evaluated by immunohistochemistry, flow cytometry (FCM) and scan electron microscopy respectively.RESULTS: In cells exposed to H2O2 for 2 h, the specific lane for Fas mRNA was vivid on electrophoresis, with increased Fas protein expression, [Ca2+]i (from 143.66±34.21 to 1115.28±227.16), annexin-V+ index (from 4.00±0.79 to 16.18±0.72) and membrane vesicle formation. However, in cells exposed to H2O2 but pre-treated with Rxa, there was no increase in Fas mRNA or protein expression and [Ca2+]i (103.56±28.92). Annexin-V+ index (8.92±1.44) was lower than the controls (P<0.01), and the cell membrane was intact.CONCLUSION: H2O2 induces apoptosis of L02 cells by increasing cytosolic [Ca2+]i, and inducing Fas mRNA and protein expression. Rxa protects the L02 cells from apoptosis through anti-peroxidation, inhibition of calcium overloading and prevention of the activation of cytosolic Fas signal pathway.

  11. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure. (United States)

    Thompson, Gary Lee; Roth, Caleb C; Dalzell, Danielle R; Kuipers, Marjorie; Ibey, Bennett L


    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (2  nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2  kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  12. Regulatory volume decrease in cardiomyocytes is modulated by calcium influx and reactive oxygen species. (United States)

    Rojas-Rivera, Diego; Díaz-Elizondo, Jessica; Parra, Valentina; Salas, Daniela; Contreras, Ariel; Toro, Barbra; Chiong, Mario; Olea-Azar, Claudio; Lavandero, Sergio


    We investigated the role of Ca(2+) in generating reactive oxygen species (ROS) induced by hyposmotic stress (Hypo) and its relationship to regulatory volume decrease (RVD) in cardiomyocytes. Hypo-induced increases in cytoplasmic and mitochondrial Ca(2+). Nifedipine (Nife) inhibited both Hypo-induced Ca(2+) and ROS increases. Overexpression of catalase (CAT) induced RVD and a decrease in Hypo-induced blebs. Nife prevented CAT-dependent RVD activation. These results show a dual role of Hypo-induced Ca(2+) influx in the control of cardiomyocyte viability. Hypo-induced an intracellular Ca(2+) increase which activated RVD and inhibited necrotic blebbing thus favoring cell survival, while simultaneously increasing ROS generation, which in turn inhibited RVD and induced necrosis.

  13. A cell model study of calcium influx mechanism regulated by calcium-dependent potassium channels in Purkinje cell dendrites. (United States)

    Chono, Koji; Takagi, Hiroshi; Koyama, Shozo; Suzuki, Hideo; Ito, Etsuro


    The present study was designed to elucidate the roles of dendritic voltage-gated K+ channels in Ca2+ influx mechanism of a rat Purkinje cell using a computer simulation program. First, we improved the channel descriptions and the maximum conductance in the Purkinje cell model to mimic both the kinetics of ion channels and the Ca2+ spikes, which had failed in previous studies. Our cell model is, therefore, much more authentic than those in previous studies. Second, synaptic inputs that mimic stimulation of parallel fibers and induce sub-threshold excitability were simultaneously applied to the spiny dendrites. As a result, transient Ca2+ responses were observed in the stimulation points and they decreased with the faster decay rate in the cell model including high-threshold Ca2+-dependent K+ channels than in those excluding these channels. Third, when a single synaptic input was applied into a spiny dendrite, Ca2+-dependent K+ channels suppressed Ca2+ increases at stimulation and recording points. Finally, Ca2+-dependent K+ channels were also found to suppress the time to peak Ca2+ values in the recording points. These results suggest that the opening of Ca2+-dependent K+ channels by Ca2+ influx through voltage-gated Ca2+ channels hyperpolarizes the membrane potentials and deactivates these Ca2+ channels in a negative feedback manner, resulting in local, weak Ca2+ responses in spiny dendrites of Purkinje cells.

  14. Mechanisms of pyrethroid insecticide-induced stimulation of calcium influx in neocortical neurons (United States)

    Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated Ca2+ calcium chann...

  15. Calcium influx and calpain activation mediate preclinical retinal neurodegeneration in autoimmune optic neuritis. (United States)

    Hoffmann, Dorit B; Williams, Sarah K; Bojcevski, Jovana; Müller, Andreas; Stadelmann, Christine; Naidoo, Vinogran; Bahr, Ben A; Diem, Ricarda; Fairless, Richard


    Optic neuritis is a common manifestation of multiple sclerosis, an inflammatory demyelinating disease of the CNS. Recently, the neurodegenerative component of multiple sclerosis has come under focus particularly because permanent disability in patients correlates well with neurodegeneration; and observations in both humans and multiple sclerosis animal models highlight neurodegeneration of retinal ganglion cells as an early event. After myelin oligodendrocyte glycoprotein immunization of Brown Norway rats, significant retinal ganglion cell loss precedes the onset of pathologically defined autoimmune optic neuritis. To study the role calcium and calpain activation may play in mediating early degeneration, manganese-enhanced magnetic resonance imaging was used to monitor preclinical calcium elevations in the retina and optic nerve of myelin oligodendrocyte glycoprotein-immunized Brown Norway rats. Calcium elevation correlated with an increase in calpain activation during the induction phase of optic neuritis, as revealed by increased calpain-specific cleavage of spectrin. The relevance of early calpain activation to neurodegeneration during disease induction was addressed by performing treatment studies with the calpain inhibitor calpeptin. Treatment not only reduced calpain activity but also protected retinal ganglion cells from preclinical degeneration. These data indicate that elevation of retinal calcium levels and calpain activation are early events in autoimmune optic neuritis, providing a potential therapeutic target for neuroprotection.

  16. Crambescidin 816 induces calcium influx though glutamate receptors in primary cultures of cortical neurons

    Directory of Open Access Journals (Sweden)

    Víctor Martín Vázquez


    In summary, our data suggest that the cytotoxic effect of 10 μM Cramb816 in cortical neurons may be related to an increase in the cytosolic calcium concentration elicited by the toxin, which is shown to be mediated by glutamate receptor activation. Further studies analyzing the effect of glutamate receptor blockers on the cytotoxic effect of Cramb816 are needed to confirm this hypothesis.

  17. A lipochito-oligosaccharide, Nod factor, induces transient calcium influx in soybean suspension-cultured cells. (United States)

    Yokoyama, T; Kobayashi, N; Kouchi, H; Minamisawa, K; Kaku, H; Tsuchiya, K


    Lipochito-oligosaccharides (Nod factors) produced by Rhizobium or Bradyrhizobium are the key signal molecules for eliciting nodulation in their corresponding host legumes. To elucidate the signal transduction events mediated by Nod factors, we investigated the effects of Nod factors on the cytosolic [Ca2+] of protoplasts prepared from roots and suspension-cultured cells of soybean (Glycine max and G. soja) using a fluorescent Ca2+ indicator, Fura-PE3. NodBj-V (C18:1, MeFuc), which is a major component of Nod factors produced by Bradyrhizobium japonicum, induces transient elevation of cytosolic [Ca2+] in the cells of soybean within a few minutes. This effect is specific to soybean cells and was not observed in the tobacco BY-2 cells. Furthermore, NodBj-V without MeFuc did not induce any cytosolic [Ca2+] elevation in soybean cells. Exclusion of Ca2+ from the medium, as well as pre-treatment of the cells with an external Ca2+ chelator or with a plasma membrane voltage-dependent Ca2+ channel inhibitor, suppressed the Nod factor-dependent cytosolic [Ca2+] elevation. These results indicate that transient Ca2+ influx from extracellular fluid is one of the earliest responses of soybean cells to NodBj-V (C18:1, MeFuc) in a host-specific manner.

  18. In vivo two-photon imaging of axonal dieback, blood flow, and calcium influx with methylprednisolone therapy after spinal cord injury. (United States)

    Tang, Peifu; Zhang, Yiling; Chen, Chao; Ji, Xinran; Ju, Furong; Liu, Xingyu; Gan, Wen-Biao; He, Zhigang; Zhang, Shengxiang; Li, Wei; Zhang, Lihai


    Severe spinal cord injury (SCI) can cause neurological dysfunction and paralysis. However, the early dynamic changes of neurons and their surrounding environment after SCI are poorly understood. Although methylprednisolone (MP) is currently the standard therapeutic agent for treating SCI, its efficacy remains controversial. The purpose of this project was to investigate the early dynamic changes and MP's efficacy on axonal damage, blood flow, and calcium influx into axons in a mouse SCI model. YFP H-line and Thy1-GCaMP transgenic mice were used in this study. Two-photon microscopy was used for imaging of axonal dieback, blood flow, and calcium influx post-injury. We found that MP treatment attenuated progressive damage of axons, increased blood flow, and reduced calcium influx post-injury. Furthermore, microglia/macrophages accumulated in the lesion site after SCI and expressed the proinflammatory mediators iNOS, MCP-1 and IL-1β. MP treatment markedly inhibited the accumulation of microglia/macrophages and reduced the expression of the proinflammatory mediators. MP treatment also improved the recovery of behavioral function post-injury. These findings suggest that MP exerts a neuroprotective effect on SCI treatment by attenuating progressive damage of axons, increasing blood flow, reducing calcium influx, and inhibiting the accumulation of microglia/macrophages after SCI.

  19. Mepivacaine-induced intracellular calcium increase appears to be mediated primarily by calcium influx in rat aorta without endothelium


    Ok, Seong-Ho; Kwon, Seong-Chun; Kang, Sebin; Choi, Mun-Jeoung; Sohn, Ju-Tae


    Background Mepivacaine induces contraction or decreased blood flow both in vivo and in vitro. Vasoconstriction is associated with an increase in the intracellular calcium concentration ([Ca2+]i). However, the mechanism responsible for the mepivacaine-evoked [Ca2+]i increase remains to be determined. Therefore, the objective of this in vitro study was to examine the mechanism responsible for the mepivacaine-evoked [Ca2+]i increment in isolated rat aorta. Methods Isometric tension was measured ...

  20. Nelfinavir inhibits intra-mitochondrial calcium influx and protects brain against hypoxic-ischemic injury in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Irina V Utkina-Sosunova

    Full Text Available Nelfinavir (NLF, an antiretroviral agent, preserves mitochondrial membranes integrity and protects mature brain against ischemic injury in rodents. Our study demonstrates that in neonatal mice NLF significantly limits mitochondrial calcium influx, the event associated with protection of the brain against hypoxic-ischemic insult (HI. Compared to the vehicle-treated mice, cerebral mitochondria from NLF-treated mice exhibited a significantly greater tolerance to the Ca(2+-induced membrane permeabilization, greater ADP-phosphorylating activity and reduced cytochrome C release during reperfusion. Pre-treatment with NLF or Ruthenium red (RuR significantly improved viability of murine hippocampal HT-22 cells, reduced Ca(2+ content and preserved membrane potential (Ψm in mitochondria following oxygen-glucose deprivation (OGD. Following histamine-stimulated Ca(2+ release from endoplasmic reticulum, in contrast to the vehicle-treated cells, the cells treated with NLF or RuR also demonstrated reduced Ca(2+ content in their mitochondria, the event associated with preserved Ψm. Because RuR inhibits mitochondrial Ca(2+ uniporter, we tested whether the NLF acts via the mechanism similar to the RuR. However, in contrast to the RuR, in the experiment with direct interaction of these agents with mitochondria isolated from naïve mice, the NLF did not alter mitochondrial Ca(2+ influx, and did not prevent Ca(2+ induced collapse of the Ψm. These data strongly argues against interaction of NLF and mitochondrial Ca(2+ uniporter. Although the exact mechanism remains unclear, our study is the first to show that NLF inhibits intramitochondrial Ca(2+ flux and protects developing brain against HI-reperfusion injury. This novel action of NLF has important clinical implication, because it targets a fundamental mechanism of post-ischemic cell death: intramitochondrial Ca(2+ overload → mitochondrial membrane permeabilization → secondary energy failure.

  1. Calcium Influx Inhibition is Involved in the Hypotensive and Vasorelaxant Effects Induced by Yangambin

    Directory of Open Access Journals (Sweden)

    Islania Giselia Albuquerque Araújo


    Full Text Available The pharmacological effects on the cardiovascular system of yangambin, a lignan isolated from Ocotea duckei Vattimo (Lauraceae, were studied in rats using combined functional and biochemical approaches. In non-anaesthetized rats, yangambin (1, 5, 10, 20, 30 mg/kg, i.v. induced hypotension (−3.5 ± 0.2; −7.1 ± 0.8; −8.9 ± 1.3; −14 ± 2.3, −25.5% ± 2.6%, respectively accompanied by tachycardia (5.9 ± 0.5; 5.9 ± 1.6; 8.8 ± 1.4; 11.6, 18.8% ± 3.4%, respectively. In isolated rat atria, yangambin (0.1 µM–1 mM had very slight negative inotropic (Emax = 35.6% ± 6.4% and chronotropic effects (Emax = 10.2% ± 2.9%. In endothelium-intact rat mesenteric artery, yangambin (0.1 µM–1 mM induced concentration-dependent relaxation (pD2 = 4.5 ± 0.06 of contractions induced by phenylephrine and this effect was not affected by removal of the endothelium. Interestingly, like nifedipine, the relaxant effect induced by yangambin was more potent on the contractile response induced by KCl 80 mM (pD2 = 4.8 ± 0.05 when compared to that induced by phenylephrine. Furthermore, yangambin inhibited CaCl2-induced contractions in a concentration-dependent manner. This lignan also induced relaxation (pD2 = 4.0 ± 0.04 of isolated arteries pre-contracted with S(−-Bay K 8644. In fura-2/AM-loaded myocytes of rat mesenteric arteries, yangambin inhibited the Ca2+ signal evoked by KCl 60 mM. In conclusion, these results suggest that the hypotensive effect of yangambin is probably due to a peripheral vasodilatation that involves, at least, the inhibition the Ca2+ influx through voltage-gated Ca2+ channels.

  2. Flow cytometric measurement of calcium influx in murine T cell hybrids using Fluo-3 and an organic-anion transport inhibitor. (United States)

    Baus, E; Urbain, J; Leo, O; Andris, F


    A method is described to facilitate flow cytometric analysis of calcium mobilization upon stimulation of murine T cell hybrids. In these transformed cell lines, the accuracy of cytometric measurement of free cytoplasmic calcium with Fluo-3 is compromised by the rapid loss of the intracellular dye. We have found that the addition of sulfinpyrazone, a known organic-anion transporter inhibitor in epithelial cells and in macrophages, severely impairs the leakage of the Fluo-3 probe from the cytoplasmic matrix. Under appropriate conditions, sulfinpyrazone has little effect on the cell physiology and permits the detection of calcium influx in a variety of murine T cell hybrids.

  3. Comparative analysis of MAMP-induced calcium influx in Arabidopsis seedlings and protoplasts. (United States)

    Maintz, Jens; Cavdar, Meltem; Tamborski, Janina; Kwaaitaal, Mark; Huisman, Rik; Meesters, Christian; Kombrink, Erich; Panstruga, Ralph


    Rapid transient elevation of cytoplasmic calcium (Ca(2+)) levels in plant cells is an early signaling event triggered by many environmental cues including abiotic and biotic stresses. Cellular Ca(2+) levels and their alterations can be monitored by genetically encoded reporter systems such as the bioluminescent protein, aequorin. Employment of proteinaceous Ca(2+) sensors is usually performed in transgenic lines that constitutively express the reporter construct. Such settings limit the usage of these Ca(2+) biosensors to particular reporter variants and plant genetic backgrounds, which can be a severe constraint in genetic pathway analysis. Here we systematically explored the potential of Arabidopsis thaliana leaf mesophyll protoplasts, either derived from a transgenic apoaequorin-expressing line or transfected with apoaequorin reporter constructs, as a complementary biological resource to monitor cytoplasmic changes of Ca(2+) levels in response to various biotic stress elicitors. We tested a range of endogenous and pathogen-derived elicitors in seedlings and protoplasts of the corresponding apoaequorin-expressing reporter line. We found that the protoplast system largely reflects the Ca(2+) signatures seen in intact transgenic seedlings. Results of inhibitor experiments including the calculation of IC50 values indicated that the protoplast system is also suitable for pharmacological studies. Moreover, analyses of Ca(2+)signatures in mutant backgrounds, genetic complementation of the mutant phenotypes and expression of sensor variants targeted to different subcellular localizations can be readily performed. Thus, in addition to the prevalent use of seedlings, the leaf mesophyll protoplast setup represents a versatile and convenient tool for the analysis of Ca(2+) signaling pathways in plant cells.

  4. A comparative study of two clerodane diterpenes from Baccharis trimera (Less.) DC. on the influx and mobilization of intracellular calcium in rat cardiomyocytes. (United States)

    Garcia, Francisca Adilfa de Oliveira; Tanae, Mirtes Midori; Torres, Luce Maria Brandão; Lapa, Antônio José; de Lima-Landman, Maria Teresa Riggio; Souccar, Caden


    Baccharis trimera (Less.) D.C. (Asteraceae) is a medicinal species native to South America and used in Brazilian folk medicine to treat gastrointestinal and liver diseases, kidney disorders and diabetes. The aqueous extract (AE) of the aerial parts of this species presented two mainly constituents: the ent-clerodane diterpene (Fig. 1) and the neo-clerodane diterpene (Fig. 2). The objective of this work was to study their activities on the blockade of Ca(2+)-induced contractions in KCL-depolarized rat portal vein preparations, and on the influx and mobilization of cytosolic calcium in rat cardiomyocytes by fluorescence measurements. The results showed that both the neo- and the ent-clerodane diterpenes reduced the maximal contractions induced by CaCl2, in KCl depolarized rat portal vein preparations, without modifying the EC50. The data on the concentration of cytosolic calcium ([Ca(2+)]c) showed that, while the neo-clerodane diterpene stimulates the mobilization of [Ca(2+)]c in rat cardiomyocytes, this effect was not observed with the ent-clerodane diterpene. On the other hand, the influx of calcium was not altered by the neo-clerodane diterpene, but was reduced in the presence of the ent-clerodane diterpene, indicating that this compound induces a blockade of the voltage-dependent calcium channels.

  5. Raisanberine protected pulmonary arterial rings and cardiac myocytes of rats against hypoxia injury by suppressing NADPH oxidase and calcium influx

    Institute of Scientific and Technical Information of China (English)

    Jie GAO; Yi-qun TANG; De-zai DAI; Yu-si CHENG; Guo-lin ZHANG; Can ZHANG; Yin DAI


    pulmonary artery and cardiac myocytes of rats by suppressing activated NADPH oxidase and increased calcium influx.

  6. Ionomycin-induced calcium influx induces neurite degeneration in mouse neuroblastoma cells: analysis of a time-lapse live cell imaging system. (United States)

    Nakamura, Saki; Nakanishi, Ayumi; Takazawa, Minami; Okihiro, Shunsuke; Urano, Shiro; Fukui, Koji


    Reactive oxygen species induce neuronal cell death. However, the detailed mechanisms of cell death have not yet been elucidated. Previously, we reported neurite degeneration before the induction of cell death. Here, we attempted to elucidate the mechanisms of neurite degeneration before the induction of cell death using the neuroblastoma N1E-115 cell line and a time-lapse live cell imaging system. Treatment with the calcium ionophore ionomycin induced cell death and neurite degeneration in a concentration- and time-dependent manner. Treatment with a low concentration of ionomycin immediately produced a significant calcium influx into the intracellular region in N1E-115 cells. After 1-h incubation with ionomycin, the fluorescence emission of MitoSOX(TM) increased significantly compared to the control. Finally, analysis using a new mitochondrial specific fluorescence dye, MitoPeDPP, indicated that treatment with ionomycin significantly increased the mitochondrial lipid hydroperoxide production in N1E-115 cells. The fluorescence emissions of Fluo-4 AM and MitoPeDPP were detected in the cell soma and neurite regions in ionomycin-treated N1E-115 cells. However, the emissions of neurites were much lower than those of the cell soma. TBARS values of ionomycin-treated cells significantly increased compared to the control. These results indicate that ionomycin induces calcium influx into the intracellular region and reactive oxygen species production in N1E-115 cells. Lipid hydroperoxide production was induced in ionomycin-treated N1E-115 cells. Calcium influx into the intracellular region is a possible activator of neurite degeneration.

  7. Prevention of copper-induced calcium influx and cell death by prion-derived peptide in suspension-cultured tobacco cells. (United States)

    Kagenishi, Tomoko; Yokawa, Ken; Kuse, Masaki; Isobe, Minoru; Bouteau, François; Kawano, Tomonori


    Impact of copper on the oxidative and calcium signal transductions leading to cell death in plant cells and the effects of the copper-binding peptide derived from the human prion protein (PrP) as a novel plant-protecting agent were assessed using a cell suspension culture of transgenic tobacco (Nicotiana tabacum L., cell line BY-2) expressing the aequorin gene. Copper induces a series of biological and chemical reactions in plant cells including the oxidative burst reflecting the production of reactive oxygen species (ROS), such as hydroxyl radicals, and stimulation of calcium channel opening, allowing a transient increase in cytosolic calcium concentrations. The former was proven by the action of specific ROS scavengers blocking the calcium responses and the latter was proven by an increase in aequorin luminescence and its inhibition by specific channel blockers. Following these early events completed within 10 min, the development of copper-induced cell death was observed during additional 1 h in a dose-dependent manner. Addition of a synthetic peptide (KTNMKHMA) corresponding to the neurotoxic sequence in human PrP, prior to the addition of copper, effectively blocked both calcium influx and cell death induced by copper. Lastly, a possible mechanism of peptide action and future applications of this peptide in the protection of plant roots from metal toxicity or in favour of phytoremediation processes are discussed.

  8. Suilysin-induced Platelet-Neutrophil Complexes Formation is Triggered by Pore Formation-dependent Calcium Influx (United States)

    Zhang, Shengwei; Zheng, Yuling; Chen, Shaolong; Huang, Shujing; Liu, Keke; Lv, Qingyu; Jiang, Yongqiang; Yuan, Yuan


    Platelet activation and platelet–neutrophil interactions have been found to be involved in inflammation, organ failure and soft-tissue necrosis in bacterial infections. Streptococcus suis, an emerging human pathogen, can cause streptococcal toxic-shock syndrome (STSS) similarly to Streptococcus pyogenes. Currently, S. suis–platelet interactions are poorly understood. Here, we found that suilysin (SLY), the S. suis cholesterol-dependent cytolysin (CDC), was the sole stimulus of S. suis that induced platelet-neutrophil complexes (PNC) formation. Furthermore, P-selectin released in α-granules mediated PNC formation. This process was triggered by the SLY-induced pore forming-dependent Ca2+ influx. Moreover, we demonstrated that the Ca2+ influx triggered an MLCK-dependent pathway playing critical roles in P-selectin activation and PNC formation, however, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signalling were not involved. Additionally, the “outside-in” signalling had a smaller effect on the SLY-induced P-selectin release and PNC formation. Interestingly, other CDCs including pneumolysin and streptolysin O have also been found to induce PNC formation in a pore forming-dependent Ca2+ influx manner. It is possible that the bacterial CDC-mediated PNC formation is a similar response mechanism used by a wide range of bacteria. These findings may provide useful insight for discovering potential therapeutic targets for S. suis-associated STSS. PMID:27830834

  9. TRPM8 and Nav1.8 sodium channels are required for transthyretin-induced calcium influx in growth cones of small-diameter TrkA-positive sensory neurons

    Directory of Open Access Journals (Sweden)

    Vincent Adele J


    Full Text Available Abstract Background Familial amyloidotic polyneuropathy (FAP is a peripheral neuropathy caused by the extracellular accumulation and deposition of insoluble transthyretin (TTR aggregates. However the molecular mechanism that underlies TTR toxicity in peripheral nerves is unclear. Previous studies have suggested that amyloidogenic proteins can aggregate into oligomers which disrupt intracellular calcium homeostasis by increasing the permeability of the plasma membrane to extracellular calcium. The aim of the present study was to examine the effect of TTR on calcium influx in dorsal root ganglion neurons. Results Levels of intracellular cytosolic calcium were monitored in dorsal root ganglion (DRG neurons isolated from embryonic rats using the calcium-sensitive fluorescent indicator Fluo4. An amyloidogenic mutant form of TTR, L55P, induced calcium influx into the growth cones of DRG neurons, whereas wild-type TTR had no significant effect. Atomic force microscopy and dynamic light scattering studies confirmed that the L55P TTR contained oligomeric species of TTR. The effect of L55P TTR was decreased by blockers of voltage-gated calcium channels (VGCC, as well as by blockers of Nav1.8 voltage-gated sodium channels and transient receptor potential M8 (TRPM8 channels. siRNA knockdown of TRPM8 channels using three different TRPM8 siRNAs strongly inhibited calcium influx in DRG growth cones. Conclusions These data suggest that activation of TRPM8 channels triggers the activation of Nav1.8 channels which leads to calcium influx through VGCC. We suggest that TTR-induced calcium influx into DRG neurons may contribute to the pathophysiology of FAP. Furthermore, we speculate that similar mechanisms may mediate the toxic effects of other amyloidogenic proteins such as the β-amyloid protein of Alzheimer's disease.

  10. Calcium influx through TRP channels induced by short-lived reactive species in plasma-irradiated solution. (United States)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro


    Non-equilibrium helium atmospheric-pressure plasma (He-APP), which allows for a strong non-equilibrium chemical reaction of O2 and N2 in ambient air, uniquely produces multiple extremely reactive products, such as reactive oxygen species (ROS), in plasma-irradiated solution. We herein show that relatively short-lived unclassified reactive species (i.e., deactivated within approximately 10 min) generated by the He-APP irradiation can trigger physiologically relevant Ca(2+) influx through ruthenium red- and SKF 96365-sensitive Ca(2+)-permeable channel(s), possibly transient receptor potential channel family member(s). Our results provide novel insight into understanding of the interactions between cells and plasmas and the mechanism by which cells detect plasma-induced chemically reactive species, in addition to facilitating development of plasma applications in medicine.

  11. Calcium Influx of Mast Cells Is Inhibited by Aptamers Targeting the First Extracellular Domain of Orai1.

    Directory of Open Access Journals (Sweden)

    Renshan Sun

    Full Text Available Using the systematic evolution of ligands by exponential enrichment (SELEX method, we identified oligonucleotides that bind to the first extracellular domain of the Orai1 protein with high affinities and high specificities. These ligands were isolated from a random single-strand DNA (ssDNA library with 40 randomized sequence positions, using synthesized peptides with amino acid sequences identical to the first extracellular domain of the Orai1 protein as the targets for SELEX selection. Seven aptamers were obtained after 12 rounds of SELEX. An enzyme-linked oligonucleotide assay (ELONA was performed to determine the affinities of the aptamers. Aptamer Y1 had the highest affinity (Kd = 1.72×10-8 mol/L and was selected for functional experiments in mast cells. Using LAD2 cells with the human high-affinity IgE receptor and Ca2+ release activation channel (CRAC, we demonstrated that Aptamer Y1 blocked IgE-mediated β-hexosaminidase release from cells triggered by biotin-IgE and streptavidin. A specific binding assay showed that Aptamer Y1 not only bound the Orai1 peptide specifically but also that the Orai1 peptide did not bind significantly to other random oligonucleotide molecules. Furthermore, Aptamer Y1 regulation of intracellular Ca2+ mobilization was investigated by probing intracellular Ca2+ with a Fluo-4-AM fluorescent probe. We found that Aptamer Y1 inhibits Ca2+ influx into antigen-activated mast cells. These results indicate that the target of Aptamer Y1 in the degranulation pathway is upstream of Ca2+ influx. Therefore, these oligonucleotide agents represent a novel class of CRAC inhibitors that may be useful in the fight against allergic diseases.

  12. Glatiramer acetate (copaxone modulates platelet activation and inhibits thrombin-induced calcium influx: possible role of copaxone in targeting platelets during autoimmune neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Sarah C Starossom

    Full Text Available BACKGROUND: Glatiramer acetate (GA, Copaxone, Copolymer-1 is an FDA approved drug for the treatment of MS and it is very effective in suppressing neuroinflammation in experimental autoimmune encephalitis (EAE, an animal model of MS. Although this drug was designed to inhibit pathogenic T cells, the exact mechanism of EAE/MS suppression by GA is still not well understood. Previously we presented evidence that platelets become activated and promote neuroinflammation in EAE, suggesting a possible pathogenic role of platelets in MS and EAE. We hypothesized that GA could inhibit neuroinflammation by affecting not only immune cells but also platelets. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effect of GA on the activation of human platelets in vitro: calcium influx, platelet aggregation and expression of activation markers. Our results in human platelets were confirmed by in-vitro and in-vivo studies of modulation of functions of platelets in mouse model. We found that GA inhibited thrombin-induced calcium influx in human and mouse platelets. GA also decreased thrombin-induced CD31, CD62P, CD63, and active form of αIIbβ3 integrin surface expression and formation of platelet aggregates for both mouse and human platelets, and prolonged the bleeding time in mice by 2.7-fold. In addition, we found that GA decreased the extent of macrophage activation induced by co-culture of macrophages with platelets. CONCLUSIONS: GA inhibited the activation of platelets, which suggests a new mechanism of GA action in suppression of EAE/MS by targeting platelets and possibly preventing their interaction with immune cells such as macrophages. Furthermore, the reduction in platelet activation by GA may have additional cardiovascular benefits to prevent thrombosis.

  13. A role for CaV1 and calcineurin signaling in depolarization-induced changes in neuronal DNA methylation

    Directory of Open Access Journals (Sweden)

    Eilis Hannon


    Full Text Available Direct manipulations of neuronal activity have been shown to induce changes in DNA methylation (DNAm, although little is known about the cellular signaling pathways involved. Using reduced representation bisulfite sequencing, we identify DNAm changes associated with moderate chronic depolarization in dissociated rat hippocampal cultures. Consistent with previous findings, these changes occurred primarily in the vicinity of loci implicated in neuronal function, being enriched in intergenic regions and underrepresented in CpG-rich promoter regulatory regions. We subsequently used 2 pharmacological interventions (nifedipine and FK-506 to test whether the identified changes depended on 2 interrelated signaling pathways known to mediate multiple forms of neuronal plasticity. Both pharmacological manipulations had notable effects on the extent and magnitude of depolarization-induced DNAm changes indicating that a high proportion of activity-induced changes are likely to be mediated by calcium entry through L-type CaV1 channels and/or downstream signaling via the calcium-dependent phosphatase calcineurin.

  14. The spreading process of Ehrlichia canis in macrophages is dependent on actin cytoskeleton, calcium and iron influx and lysosomal evasion. (United States)

    Alves, R N; Levenhagen, M A; Levenhagen, M M M D; Rieck, S E; Labruna, M B; Beletti, M E


    Ehrlichia canis is an obligate intracellular microorganism and the etiologic agent of canine monocytic ehrlichiosis. The invasion process has already been described for some bacteria in this genus, such as E. muris and E. chaffeensis, and consists of four stages: adhesion, internalisation, intracellular proliferation and intercellular spreading. However, little is known about the spreading process of E. canis. The aim of this study was to analyse the role of the actin cytoskeleton, calcium, iron and lysosomes from the host cell in the spreading of E. canis in dog macrophages in vitro. Different inhibitory drugs were used: cytochalasin D (actin polymerisation inhibitor), verapamil (calcium channel blocker) and deferoxamine (iron chelator). Our results showed a decrease in the number of bacteria in infected cells treated with all drugs when compared to controls. Lysosomes in infected cells were cytochemically labelled with acid phosphatase to allow the visualisation of phagosome-lysosome fusion and were further analysed by transmission electron microscopy. Phagosome-lysosome fusion was rarely observed in vacuoles containing viable E. canis. These data suggest that the spreading process of E. canis in vitro is dependent on cellular components analysed and lysosomal evasion.

  15. Biphasic contractions induced by milrinone at low temperature in ferret ventricular muscle: role of the sarcoplasmic reticulum and transmembrane calcium influx. (United States)

    Malecot, C O; Bers, D M; Katzung, B G


    The effects of milrinone were studied in ferret papillary muscle stimulated at various rates and temperatures from 23 degrees to 36 degrees C. In voltage-clamp experiments, 50 micrograms/ml (0.237 mM) milrinone induced a 2.1-fold increase in calcium current at 28 degrees or 36 degrees C. At 50 micrograms/ml, milrinone transiently increased contractility in all muscles at 28 degrees C, but its steady-state effect was either increased (+50%) or decreased (-24.7%) steady-state twitch amplitude. A negative inotropic effect always occurred below 27 degrees C. Milrinone decreased the total twitch duration and split the twitch into two components (P1 and P2) in the absence of any evidence of aberrant conduction. Increasing milrinone concentration from 50 to 300 micrograms/ml decreased P1 and increased P2. Ryanodine (100 mM) or caffeine (10 mM) suppressed P1. Contractions elicited after 30 seconds of rest were also biphasic in the presence of milrinone, but not in its absence. P2 of post-rest contraction was increased by caffeine or calcium (10 mM) and decreased by cobalt (2 mM) when drugs were applied at the beginning of the rest. Ryanodine and caffeine also suppressed P1 of post-rest contraction. The evidence suggests that P1 may be caused by Ca release from the sarcoplasmic reticulum and P2 by increased Ca influx during the action potential via the calcium channel. It is also suggested that P2 may be present under control conditions, but to a lesser extent, and masked by a large P1.

  16. Potentiation of Calcium Influx and Insulin Secretion in Pancreatic Beta Cell by the Specific TREK-1 Blocker Spadin

    Directory of Open Access Journals (Sweden)

    Céline Hivelin


    Full Text Available Inhibition of the potassium channels TREK-1 by spadin (SPA is currently thought to be a promising therapeutic target for the treatment of depression. Since these channels are expressed in pancreatic β-cells, we investigated their role in the control of insulin secretion and glucose homeostasis. In this study, we confirmed the expression of TREK-1 channels in the insulin secreting MIN6-B1 β-cell line and in mouse islets. We found that their blockade by SPA potentiated insulin secretion induced by potassium chloride dependent membrane depolarization. Inhibition of TREK-1 by SPA induced a decrease of the resting membrane potential (ΔVm~12 mV and increased the cytosolic calcium concentration. In mice, administration of SPA enhanced the plasma insulin level stimulated by glucose, confirming its secretagogue effect observed in vitro. Taken together, this work identifies SPA as a novel potential pharmacological agent able to control insulin secretion and glucose homeostasis.

  17. Amrinone effects on electromechanical coupling and depolarization-induced automaticity in ventricular muscle of guinea pigs and ferrets. (United States)

    Malécot, C O; Arlock, P; Katzung, B G


    The effects of the cardiotonic agent, amrinone (0.05-4 mM), on electrical and mechanical activities of ferret and guinea-pig papillary muscles were studied using current and voltage clamp (single sucrose gap) techniques. In current clamp studies, amrinone increased, in a dose-dependent manner, contractile force elicited by action potential in both species. Depolarization-induced automaticity was facilitated in ferret muscles at all maximum diastolic potentials between -70 and -15 mV. Facilitation of automaticity in guinea-pig muscles occurred only at potentials more negative than -35 mV and was suppressed at more positive potentials. Cimetidine (10 microM) partially reversed the effects of amrinone on automaticity in both species. In voltage clamp studies, amrinone increased the slow inward current. Steady-state outward current was increased in guinea-pig but not in ferret muscles. A dual effect of amrinone on tension was observed. Amrinone was found to increase phasic tension of ferret papillary muscles only for depolarizations lasting less than 250 to 300 msec. For longer depolarizations, amrinone decreased the phasic tension (in a dose-dependent manner), whereas the tonic tension was not modified. The decrease as well as the increase in tension was associated with an increase of the slow inward current. The results suggest that amrinone may be arrhythmogenic and may have an intracellular action at the sarcoplasmic reticulum level (partial inhibition) in addition to its action on the calcium current.

  18. Effect of nifedipine on depolarization-induced force responses in skinned skeletal muscle fibres of rat and toad. (United States)

    Posterino, G S; Lamb, G D


    The effect of the dihydropyridine, nifedipine, on excitation-contraction coupling was compared in toad and rat skeletal muscle, using the mechanically skinned fibre technique, in order to understand better the apparently disparate results of previous studies and to examine recent proposals on the importance of certain intracellular factors in determining the efficacy of dihydropyridines. In twitch fibres from the iliofibularis muscle of the toad, 10 microM nifedipine completely inhibited depolarization-induced force responses within 30 s, without interfering with direct activation of the Ca(2+)-release channels by caffeine application or reduction of myoplasmic [Mg2+]. At low concentrations of nifedipine, inhibition was considerably augmented by repeated depolarizations, with half-maximal inhibition occurring at < 0.1 microM nifedipine. In contrast, in rat extensor digitorum longus (EDL) fibres 1 microM nifedipine had virtually no effect on depolarization-induced force responses, and 10 microM nifedipine caused only approximately 25% reduction in the responses, even upon repeated depolarizations. In rat fibres, 10 microM nifedipine shifted the steady-state force inactivation curve to more negative potentials by < 11 mV, whereas in toad fibres the potent inhibitory effect of nifedipine indicated a much larger shift. The inhibitory effect of nifedipine in rat fibres was little, if at all, increased by the absence of Ca2+ in the transverse tubular (t-) system, provided that the Ca2+ was replaced with sufficient Mg2+. The presence of the reducing agents dithiothreitol (10 mM) or glutathione (10 mM) in the solution bathing a toad skinned fibre did not reduce the inhibitory effect of nifedipine, suggesting that the potency of nifedipine in toad skinned fibres was not due to the washout of intracellular reducing agents. The results are considered in terms of a model that can account for the markedly different effects of nifedipine on the two putative functions of the

  19. Nicotine stimulates adhesion molecular expression via calcium influx and mitogen-activated protein kinases in human endothelial cells. (United States)

    Wang, Yajing; Wang, Zhaoxia; Zhou, Ying; Liu, Liming; Zhao, Yangxing; Yao, Chenjiang; Wang, Lianyun; Qiao, Zhongdong


    To evaluate the effect of nicotine on endothelium dysfunction and development of vascular diseases, we investigated the influence on adhesion molecular expression mediated by nicotine and the mechanism of this effect in human umbilical vein endothelial cells (HUVECs). The result showed that nicotine could induce surface/soluble vascular cell adhesion molecule (VCAM-1) and endothelial selectin (E-selectin) expression in a time-response decline manner and the peak appeared at 15 min. This action could be mediated by mitogen-activated protein kinase/extracellular signal regulated kinase 1/2 (MAPK/ERK1/2) and MAPK/p38 because their activation could be distinctly blocked by MAPK inhibitors, PD098059 or SB203580. Mecamylamine (non-selective nicotinic receptor inhibitor), alpha-bungarotoxin (alpha7 nicotinic receptor inhibitor) could block Ca2+ accumulation, and then, prevented the phosphorylation on ERK1/2 and p38. They also inhibited the surface/soluble VCAM-1, E-selectin production of HUVECs modulated by nicotine. Therefore, we concluded that: (i) nicotine obviously up-regulates VCAM-1 and E-selectin expression at 15 min in HUVECs, (ii) nicotine activates HUVECs triggered by the ERK1/2 and p38 phosphorylation with an involvement of intracellular calcium mobilization chiefly mediated by alpha7 nicotinic receptor, (iii) intracellular Ca2+ activates a sequential pathway from alpha7 nicotinic receptor to the phosphorylation of ERK1/2, p38. These elucidate that nicotine activates HUVECs through fast signal transduction pathway and arguments their capacity of adhesion molecular production. Further more nicotine may contribute its influence to the progression of vascular disease such as atherosclerotic lesion.

  20. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2, leading to cell depolarization and calcium influx. (United States)

    Kuhre, Rune Ehrenreich; Bechmann, Louise Ellegaard; Wewer Albrechtsen, Nicolai Jacob; Hartmann, Bolette; Holst, Jens Juul


    Neurotensin (NT) is a neurohormone produced in the central nervous system and in the gut epithelium by the enteroendocrine N cell. NT may play a role in appetite regulation and may have potential in obesity treatment. Glucose ingestion stimulates NT secretion in healthy young humans, but the mechanisms involved are not well understood. Here, we show that rats express NT in the gut and that glucose gavage stimulates secretion similarly to oral glucose in humans. Therefore, we conducted experiments on isolated perfused rat small intestine with a view to characterize the cellular pathways of secretion. Luminal glucose (20% wt/vol) stimulated secretion but vascular glucose (5, 10, or 15 mmol/l) was without effect. The underlying mechanisms depend on membrane depolarization and calcium influx, since the voltage-gated calcium channel inhibitor nifedipine and the KATP channel opener diazoxide, which causes hyperpolarization, eliminated the response. Luminal inhibition of the sodium-glucose cotransporter 1 (SGLT1) (by phloridzin) eliminated glucose-stimulated release as well as secretion stimulated by luminal methyl-α-D-glucopyranoside (20% wt/vol), a metabolically inactive SGLT1 substrate, suggesting that glucose stimulates secretion by initial uptake by this transporter. However, secretion was also sensitive to GLUT2 inhibition (by phloretin) and blockage of oxidative phosphorylation (2-4-dinitrophenol). Direct KATP channel closure by sulfonylureas stimulated secretion. Therefore, glucose stimulates NT secretion by uptake through SGLT1 and GLUT2, both causing depolarization either as a consequence of sodium-coupled uptake (SGLT1) or by closure of KATP channels (GLUT2 and SGLT1) secondary to the ATP-generating metabolism of glucose.

  1. Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. (United States)

    Gualandris, A; Jones, T E; Strickland, S; Tsirka, S E


    Tissue plasminogen activator (tPA), a serine protease that converts inactive plasminogen to active plasmin, is produced in the rat and mouse hippocampus and participates in neuronal plasticity. To help define the role of tPA in the nervous system, we have analyzed the regulation of its expression in the neuronal cell line PC12. In control cultures, tPA activity is exclusively cell-associated, and no activity is measurable in the culture medium. When the cells are treated with depolarizing agents, such as KCI, tPA activity becomes detectable in the medium. The increased secreted tPA activity is not accompanied by an increase in tPA mRNA levels, and it is not blocked by protein synthesis inhibitors. In contrast, tPA release is abolished by Ca2+ channel blockers, suggesting that chemically induced membrane depolarization stimulates the secretion of preformed enzyme. Moreover, KCI has a similar effect in vivo when administered to the murine brain via an osmotic pump: tPA activity increases along the CA2-CA3 regions and dentate gyrus of the hippocampal formation. These results demonstrate a neuronal activity-dependent secretory mechanism that can rapidly increase the amount of tPA in neuronal tissue.

  2. Depolarization Induced Suppression of Excitation and the Emergence of Ultraslow Rhythms in Neural Networks (United States)

    Hlinka, J.; Coombes, S.


    Ultraslow fluctuations (0.01-0.1 Hz) are a feature of intrinsic brain activity of as yet unclear origin. We propose a candidate mechanism based on retrograde endocannabinoid signaling in a synaptically coupled network of excitatory neurons. This is known to cause depolarization-induced suppression of excitation (DISE), which we model phenomenologically. We construct emergent network oscillations in a globally coupled network and show that for strong synaptic coupling DISE can lead to a synchronized population burst at the frequencies of resting brain rhythms.

  3. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia. (United States)

    Makarenko, Vladislav V; Ahmmed, Gias U; Peng, Ying-Jie; Khan, Shakil A; Nanduri, Jayasri; Kumar, Ganesh K; Fox, Aaron P; Prabhakar, Nanduri R


    Chronic intermittent hypoxia (CIH) is a hallmark manifestation of sleep apnea. A heightened carotid body activity and the resulting chemosensory reflex mediate increased sympathetic nerve activity by CIH. However, the mechanisms underlying heightened carotid body activity by CIH are not known. An elevation of intracellular calcium ion concentration ([Ca(2+)]i) in glomus cells, the primary oxygen-sensing cells, is an essential step for carotid body activation by hypoxia. In the present study, we examined the effects of CIH on the glomus cell [Ca(2+)]i response to hypoxia and assessed the underlying mechanisms. Glomus cells were harvested from adult rats or wild-type mice treated with 10 days of either room air (control) or CIH (alternating cycles of 15 s of hypoxia and 5 min of room air; 9 episodes/h; 8 h/day). CIH-treated glomus cells exhibited an enhanced [Ca(2+)]i response to hypoxia, and this effect was absent in the presence of 2-(4-cyclopropylphenyl)-N-((1R)-1-[5-[(2,2,2-trifluoroethyl)oxo]-pyridin-2-yl]ethyl)acetamide (TTA-A2), a specific inhibitor of T-type Ca(2+) channels, and in voltage-gated calcium channel, type 3.2 (CaV3.2), null glomus cells. CaV3.2 knockout mice exhibited an absence of CIH-induced hypersensitivity of the carotid body. CIH increased reactive oxygen species (ROS) levels in glomus cells. A ROS scavenger prevented the exaggerated TTA-A2-sensitive [Ca(2+)]i response to hypoxia. CIH had no effect on CaV3.2 mRNA levels. CIH augmented Ca(2+) currents and increased CaV3.2 protein in plasma membrane fractions of human embryonic kidney-293 cells stably expressing CaV3.2, and either a ROS scavenger or brefeldin-A, an inhibitor of protein trafficking, prevented these effects. These findings suggest that CIH leads to an augmented Ca(2+) influx via ROS-dependent facilitation of CaV3.2 protein trafficking to the plasma membrane.

  4. NF-κB-Dependent Upregulation of NCX1 Induced by Angiotensin II Contributes to Calcium Influx in Rat Aortic Smooth Muscle Cells. (United States)

    Liu, Bei; Yang, Lixia; Zhang, Bin; Kuang, Chenwei; Huang, Shiliang; Guo, Ruiwei


    The reverse mode of Na(+)/Ca(2+) exchanger (NCX) 1 can transport Ca(2+) into cells and is involved in the contractile regulation of vascular smooth muscle cells (VSMCs) and the development of hypertension. We hypothesized that upregulation of NCX1 expression induced by angiotensin II (Ang II) could be dependent on activation of nuclear factor-kappa B (NF-κB) and contributes to Ca(2+) influx in VSMCs. An osmotic minipump was implanted for administration of Ang II in Sprague-Dawley rats, and blood pressure, as well as NCX1 expression, in the aorta was measured. VSMCs were cultured to verify that Ang II-upregulated NCX1 expression is dependent on activation of NF-κB and contributes to Ca(2+) influx. Ang II-upregulated NCX1 expression in rat aortas (2.1-fold at day 6) and VSMCs (1.7-fold at 24 hours) and NF-κB knockdown and p38 mitogen-activated protein kinase (MAPK) inhibitor resulted in 2.1- and 2.0-fold decreases in Ang II-upregulated NCX1 expression in VSMCs. KB-R7943 (an inhibitor of NCX1 reversal) and NCX1 knockdown decreased Ang II-induced Ca(2+) influx 1.4- and 1.3- fold, respectively. KB-R7943 and removal of extracellular Na(+) decreased Ang II-initiated store depletion-mediated Ca(2+) entry by 1.5- and 1.3-fold, respectively. Moreover, NF-κB knockdown and use of a p38 MAPK inhibitor resulted in about 1.3-fold decreases in Ang II-induced Ca(2+) influx through activation of reverse-mode NCX1. Ang II upregulates NCX1 expression through p38 MAPK and NF-κB pathways, and reverse-mode NCX1 plays an important part in Ang II-induced Ca(2+) influx in VSMCs, which may be associated with Ang II-initiated store-operated channel entry. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  5. Involvement of striatal lipid peroxidation and inhibition of calcium influx into brain slices in neurobehavioral alterations in a rat model of short-term oral exposure to manganese. (United States)

    Avila, Daiana Silva; Gubert, Priscila; Fachinetto, Roselei; Wagner, Caroline; Aschner, Michael; Rocha, João Batista Teixeira; Soares, Félix Alexandre Antunes


    Manganese is an essential element for biological systems, nevertheless occupational exposure to high levels of Mn can lead to neurodegenerative disorder, characterized by excessive Mn accumulation, especially in astrocytes of basal ganglia and symptoms closely resembling idiopathic Parkinson's disease (PD). The purpose of this study was to evaluate behavioral and biochemical alterations in adult rats exposed for 30 days to 10 and 25mg/mL of MnCl(2) in their drinking water. MnCl(2) intoxicated rats showed impaired locomotor activity in comparison to control animals. Furthermore, lipid peroxidation were increased, delta-aminolevulinate dehydratase (delta-ALA-D, an enzyme sensitive to pro-oxidant situations) activity was inhibited and (45)Ca(2+) influx into striatal slices was decreased in rats exposed to 25mg/mL of Mn, indicating that this brain region was markedly affected by short-term Mn exposure. In contrast, Mn exposure was not associated with characteristic extrapyramidal effects and did not modify protein oxidation, suggesting that the striatal damage represents early stages of Mn-induced damage. In addition, treatment with Mn was associated with reduced body weight gain, but there were no discernible alterations in liver and kidney function. In conclusion, Mn caused increased oxidative stress and decreased (45)Ca(2+) influx into the striatum, which are likely linked to impaired locomotor activity, but not with the occurrence of orofacial dyskinesia.

  6. Involvement of TRPV2 and SOCE in calcium influx disorder in DMD primary human myotubes with a specific contribution of α1-syntrophin and PLC/PKC in SOCE regulation. (United States)

    Harisseh, Rania; Chatelier, Aurélien; Magaud, Christophe; Déliot, Nadine; Constantin, Bruno


    Calcium homeostasis is critical for several vital functions in excitable and nonexcitable cells and has been shown to be impaired in many pathologies including Duchenne muscular dystrophy (DMD). Various studies using murine models showed the implication of calcium entry in the dystrophic phenotype. However, alteration of store-operated calcium entry (SOCE) and transient receptor potential vanilloid 2 (TRPV2)-dependant cation entry has not been investigated yet in human skeletal muscle cells. We pharmacologically characterized basal and store-operated cation entries in primary cultures of myotubes prepared from muscle of normal and DMD patients and found, for the first time, an increased SOCE in DMD myotubes. Moreover, this increase cannot be explained by an over expression of the well-known SOCE actors: TRPC1/4, Orai1, and stromal interaction molecule 1 (STIM1) mRNA and proteins. Thus we investigated the modes of regulation of this cation entry. We firstly demonstrated the important role of the scaffolding protein α1-syntrophin, which regulates SOCE in primary human myotubes through its PDZ domain. We also studied the implication of phospholipase C (PLC) and protein kinase C (PKC) in SOCE and showed that their inhibition restores normal levels of SOCE in DMD human myotubes. In addition, the involvement of TRPV2 in calcium deregulation in DMD human myotubes was explored. We showed an abnormal elevation of TRPV2-dependant cation entry in dystrophic primary human myotubes compared with normal ones. These findings show that calcium homeostasis mishandling in DMD myotubes depends on SOCE under the influence of Ca(2+)/PLC/PKC pathway and α1-syntrophin regulation as well as on TRPV2-dependant cation influx.

  7. High glucose enhances transient receptor potential channel canonical type 6-dependent calcium influx in human platelets via phosphatidylinositol 3-kinase-dependent pathway

    DEFF Research Database (Denmark)

    Liu, Daoyan; Maier, Alexandra; Scholze, Alexandra;


    Transient receptor potential canonical type 6 (TRPC6) channels mediating 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced calcium entry have been identified on human platelets. In the present study we tested the hypothesis that hyperglycemia increases the expression of TRPC6 channels....

  8. The role of P2X7 receptor in ATP-mediated human leukemia cell death:calcium influx-independent

    Institute of Scientific and Technical Information of China (English)

    Xiujun Zhang; Lijun Meng; Baoling He; Jing Chen; Peng Liu; Jie Zhao; Yufen Zhang; Ming Li; Dong An


    Activation of the P2X7 receptor leads to a rapid,bidirectional flux of cations, causing broad range of hiological responses including cytotoxicity.However,the mechanism of P2X7-mediated cytotoxicity remains largely unexplored.In our previous study,the lack of P2X7-mediated calcium response under normal conditions was found in P2X7+ hematopoietic cell lines.In this study, the P2X7-mediated cytotoxicity in different type of cells(P2X7-,P2X7+ with calcium response,and P2X7+ without calcium response)was investigated.Our results showed that P2X7 agonists, adenosine 5'-triphosphate(ATP)or 2'+3'-O-(4 benzoylbenzoyl)ATP,dose-dependently reduced the cell viability in all P2X7+ cells tested,including J6-1,LCL,and Namalva cells which are negative for P2X7-mediated calcium response, although these effects were lower than those observed in KG1a cells which has normal P2X7 functions.The cytotoxic effect could be blocked by P2X7antagonists, oxidized ATP and 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine.In addition,externalization of phosphatidylserine could be detected in a time-dependent manner and apoptotic morphological changes Could be observed after the activation of P2X7 receptor in J6-1 cells.Furthermore,P2X7-mediated pore formation could be detected in KG1a and J6-1 cells under low-ionic conditions,but not under low-divalent conditions.These effects could not be observed in P2X7-Ramos cells.These results suggested that P2X7 receptor-mediated cytotoxic effects may occur independent of calcium response.

  9. Pseudomonas aeruginosa ExlA and Serratia marcescens ShlA trigger cadherin cleavage by promoting calcium influx and ADAM10 activation. (United States)

    Reboud, Emeline; Bouillot, Stéphanie; Patot, Sabine; Béganton, Benoît; Attrée, Ina; Huber, Philippe


    Pore-forming toxins are potent virulence factors secreted by a large array of bacteria. Here, we deciphered the action of ExlA from Pseudomonas aeruginosa and ShlA from Serratia marcescens on host cell-cell junctions. ExlA and ShlA are two members of a unique family of pore-forming toxins secreted by a two-component secretion system. Bacteria secreting either toxin induced an ExlA- or ShlA-dependent rapid cleavage of E-cadherin and VE-cadherin in epithelial and endothelial cells, respectively. Cadherin proteolysis was executed by ADAM10, a host cell transmembrane metalloprotease. ADAM10 activation is controlled in the host cell by cytosolic Ca2+ concentration. We show that Ca2+ influx, induced by ExlA or ShlA pore formation in the plasma membrane, triggered ADAM10 activation, thereby leading to cadherin cleavage. Our data suggest that ADAM10 is not a cellular receptor for ExlA and ShlA, further confirming that ADAM10 activation occurred via Ca2+ signalling. In conclusion, ExlA- and ShlA-secreting bacteria subvert a regulation mechanism of ADAM10 to activate cadherin shedding, inducing intercellular junction rupture, cell rounding and loss of tissue barrier integrity.

  10. Conantokins inhibit NMDAR-dependent calcium influx in developing rat hippocampal neurons in primary culture with resulting effects on CREB phosphorylation. (United States)

    Huang, Luoxiu; Balsara, Rashna D; Sheng, Zhenyu; Castellino, Francis J


    The effects of conantokin (con)-G, con-R[1-17], and con-T on ion flow through N-methyl-D-aspartate receptor (NMDAR) ion channels were determined in cultured primary rat hippocampal neurons. The potency of con-G diminished, whereas inhibition by con-R[1-17] and con-T did not change, as the neurons matured. Con-G, con-R[1-17], and con-T effectively diminished NMDA-induced Ca(2+) influx into the cells. A similar age-dependent decrease in con-G-mediated inhibition of the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) was observed, compared to con-R[1-17] and con-T. The effects of the conantokins on NMDA-induced cAMP response element-binding protein (CREB) phosphorylation in immature (DIV 9) and mature (DIV 16) neurons showed that, at DIV 9, con-G, con-R[1-17], and con-T inhibited NMDA-mediated P-CREB levels, whereas in DIV 16 neurons the conantokins did not inhibit overall levels of NMDA-induced P-CREB. In contrast, P-CREB levels were enhanced through inhibition of the protein phosphatases, PP1 and PP2B (calcineurin). This ability of conantokins to sustain CREB phosphorylation can thus enhance neuronal survival and plasticity.

  11. Microdomain Ca2+ Activation during Exocytosis in Paramecium Cells. Superposition of Local Subplasmalemmal Calcium Store Activation by Local Ca2+ Influx (United States)

    Erxleben, Christian; Klauke, Norbert; Flötenmeyer, Matthias; Blanchard, Marie-Pierre; Braun, Claudia; Plattner, Helmut


    In Paramecium tetraurelia, polyamine-triggered exocytosis is accompanied by the activation of Ca2+-activated currents across the cell membrane (Erxleben, C., and H. Plattner. 1994. J. Cell Biol. 127:935– 945). We now show by voltage clamp and extracellular recordings that the product of current × time (As) closely parallels the number of exocytotic events. We suggest that Ca2+ mobilization from subplasmalemmal storage compartments, covering almost the entire cell surface, is a key event. In fact, after local stimulation, Ca2+ imaging with high time resolution reveals rapid, transient, local signals even when extracellular Ca2+ is quenched to or below resting intracellular Ca2+ concentration ([Ca2+]e ⩽ [Ca2+]i). Under these conditions, quenched-flow/freeze-fracture analysis shows that membrane fusion is only partially inhibited. Increasing [Ca2+]e alone, i.e., without secretagogue, causes rapid, strong cortical increase of [Ca2+]i but no exocytosis. In various cells, the ratio of maximal vs. minimal currents registered during maximal stimulation or single exocytotic events, respectively, correlate nicely with the number of Ca stores available. Since no quantal current steps could be observed, this is again compatible with the combined occurrence of Ca2+ mobilization from stores (providing close to threshold Ca2+ levels) and Ca2+ influx from the medium (which per se does not cause exocytosis). This implies that only the combination of Ca2+ flushes, primarily from internal and secondarily from external sources, can produce a signal triggering rapid, local exocytotic responses, as requested for Paramecium defense. PMID:9024690

  12. Selective inhibitory action of Biginelli-type dihydropyrimidines on depolarization-induced arterial smooth muscle contraction

    NARCIS (Netherlands)

    Cernecka, Hana; Veizerova, Lucia; Mensikova, Lucia; Svetlik, Jan; Krenek, Peter


    OBJECTIVES: Dihydropyridine calcium channel blockers have some disadvantages such as light sensitivity and relatively short plasma half-lives. Stability of dihydropyrimidines analogues could be of advantage, yet they remain less well characterized. We aimed to test four newly synthesized Biginelli-t

  13. Hexabromocyclododecane inhibits depolarization-induced increase in intracellular calcium levels and neurotransmitter release in PC12 cells.

    NARCIS (Netherlands)

    Dingemans, M.M.L.; Heusinkveld, H.J.; de Groot, A.; Bergman, A.; van den Berg, M.; Westerink, R.H.S.


    Environmental levels of the brominated flame retardant (BFR) hexabromocyclododecane (HBCD) have been increasing. HBCD has been shown to cause adverse effects on learning and behavior in mice, as well as on dopamine uptake in rat synaptosomes and synaptic vesicles. For other BFRs, alterations in the

  14. Hexabromocyclododecane inhibits depolarization-induced increase in intracellular calcium levels and neurotransmitter release in PC12 cells. (United States)

    Dingemans, Milou M L; Heusinkveld, Harm J; de Groot, Aart; Bergman, Ake; van den Berg, Martin; Westerink, Remco H S


    Environmental levels of the brominated flame retardant (BFR) hexabromocyclododecane (HBCD) have been increasing. HBCD has been shown to cause adverse effects on learning and behavior in mice, as well as on dopamine uptake in rat synaptosomes and synaptic vesicles. For other BFRs, alterations in the intracellular Ca(2+) homeostasis have been observed. Therefore, the aim of this study was to investigate whether the technical HBCD mixture and individual stereoisomers affect the intracellular Ca(2+) concentration ([Ca(2+)](i)) in a neuroendocrine in vitro model (PC12 cells). [Ca(2+)](i) and vesicular catecholamine release were measured using respectively single-cell Fura-2 imaging and amperometry. Exposure of PC12 cells to the technical HBCD mixture or individual stereoisomers did neither affect basal [Ca(2+)](i), nor the frequency of basal neurotransmitter release. However, exposure to HBCD (0-20 microM) did cause a dose-dependent reduction of a subsequent depolarization-evoked increase in [Ca(2+)](i). This effect was apparent only when HBCD was applied at least 5 min before depolarization (maximum effect after 20 min exposure). The effects of alpha- and beta-HBCD were comparable to that of the technical mixture, whereas the inhibitory effect of gamma-HBCD was larger. Using specific blockers of L-, N- or P/Q-type voltage-gated Ca(2+) channels (VGCCs) it was shown that the inhibitory effect of HBCD is not VGCC-specific. Additionally, the number of cells showing depolarization-evoked neurotransmitter release was markedly reduced following HBCD exposure. Summarizing, HBCD inhibits depolarization-evoked [Ca(2+)](i) and neurotransmitter release. As increasing HBCD levels should be anticipated, these findings justify additional efforts to establish an adequate exposure, hazard and risk assessment.

  15. Effect of curcumin on AMPA and kainate receptor-mediated calcium influx in cultured rat hippocampal neurons%姜黄素对AMPA/KA受体介导大鼠海马神经元钙内流的影响

    Institute of Scientific and Technical Information of China (English)

    杜鹏; 彭伟锋; 刘剑英; 林豪杰; 马昱; 汪昕; 范薇


    目的 探讨姜黄素对α-氨基-3-羧基-5-甲基异恶唑-4-丙酸(AMPA)/海人酸(KA)受体介导大鼠海马神经元钙内流的影响.方法 选用胚胎17dSD鼠分离海马,离体培养海马神经元,借助活体钙荧光染色和激光共聚焦钙成像技术观察100μmol/LKA刺激海马神经元内钙的变化,不同浓度(5、10、15、30、50 μmol/L)姜黄素预孵育海马神经元30min对100μmol/L KA刺激下细胞内钙变化的影响,15 μmol/L姜黄素对不同浓度(10、30、50、100、200、300 μmol/L)KA刺激海马神经元内钙变化的影响.应用钴染色技术观察(30、100 μmol/L KA)刺激后海马神经元钴阳性染色细胞变化.姜黄素预孵育30min对KA刺激导致钴阳性染色细胞变化的影响.结果 不同浓度姜黄素预孵育30 min均可以明显缓解100 μmol/L或30 μmol/L KA导致的细胞内钙升高程度.差异均有统计学意义(P<0.05),其中15 μmol/L姜黄素作用最为明显.30μmol/L或100 μmol/LKA刺激均可以引起海马神经元钴染色阳性细胞增加,15 μmol/L姜黄素预处理30 min后明显减少钴染色阳性细胞,差异有统计学意义(P<0.05),而其他浓度(5 μmol/L或30 μmol/L)姜黄素未见明显影响.结论 一定浓度的姜黄素可以影响AMPA/KA受体介导大鼠海马神经元钙内流.这可能是姜黄素抗癫痫作用的一个机制.%Objective To investigate the effect of curcumin on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate (KA) receptor-mediated calcium influx in cultured rat hippocampal neurons. Methods The hippocampal neurons from SD rat embryos (17 days old) were cultured for 9 days, and fluorescent calcium chelator and confocal microscopy calcium imaging were used to observe the changes in intracellular free calcium in the neurons following stimulation with 100 μmol/L KA. The effect of curcumin pretreatment at different concentrations (10, 30, 50, 100, 200 and 300 μmol/L) for 30 min on 100 μmol/L KA

  16. Modulation of membrane phospholipids, the cytosolic calcium influx and cell proliferation following treatment of B16-F10 cells with recombinant phospholipase-D from Loxosceles intermedia (brown spider) venom. (United States)

    Wille, Ana Carolina Martins; Chaves-Moreira, Daniele; Trevisan-Silva, Dilza; Magnoni, Mariana Gabriel; Boia-Ferreira, Marianna; Gremski, Luiza Helena; Gremski, Waldemiro; Chaim, Olga Meiri; Senff-Ribeiro, Andrea; Veiga, Silvio Sanches


    time- and concentration-dependent manner, especially in the presence of synthetic sphingomyelin in the medium. The results described herein indicate the ability of brown spider phospholipase-D to induce the generation of bioactive phospholipids, calcium influx into the cytoplasm and cell proliferation, suggesting that this molecule can be used as a bioactive tool for experimental protocols in cell biology.

  17. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.


    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture, exhausti

  18. Calcium (United States)

    ... in luck if you like sardines and canned salmon with bones. Almond milk. previous continue Working Calcium ... drinks, and cereals. Other Considerations for Building Bones Vitamin D is essential for calcium absorption, so it's ...

  19. Effects of antibiotics on uptake of calcium into isolated nerve terminals

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, W.D.; Adgate, L.; Beaman, C.M.


    The goal of the present study was to determine whether several antibiotics which are known to block neuromuscular transmission would impair depolarization-dependent and/or -independent uptake of calcium into isolated nerve terminals prepared from forebrain synaptosomes of rats by conventional methods. Antibiotics tested for potential block of Ca++ uptake included the aminoglycosides neomycin and streptomycin, the lincosamide clindamycin, oxytetracycline and polymyxin B. Drugs were applied in concentrations ranging from 1 to 1000 microM. Uptake of 45Ca was determined during depolarization induced by an elevated K+ concentration (77.5 mM). Influxes of 45Ca during 1 and 10 sec of depolarization were used to assess Ca++ uptake via a fast, inactivating path and total uptake, respectively. Uptake of 45Ca during 10 sec of depolarization into synaptosomes which were previously depolarized for 10 sec in the presence of 77.5 mM K+ but in the absence of external Ca++ was used to measure uptake during a slow, noninactivating path. Total depolarization-dependent uptake of 45Ca was depressed significantly by all antibiotics tested except oxytetracycline; however, the various agents differed with respect to their efficacy and potency as blockers of Ca influx. The fast component of uptake, which is thought to be associated with neurotransmitter release, was decreased significantly by all antibiotics. Neomycin and polymyxin were the most potent and most effective at lowering fast phase 45Ca influx; streptomycin, was intermediate in effectiveness whereas clindamycin and oxytetracycline were only effective at concentrations greater than or equal to 100 microM. Only clindamycin, streptomycin and polymyxin B caused significant reductions in the slow phase of 45Ca uptake.

  20. Expression of mRNA Encoding Mcu and Other Mitochondrial Calcium Regulatory Genes Depends on Cell Type, Neuronal Subtype, and Ca2+ Signaling. (United States)

    Márkus, Nóra M; Hasel, Philip; Qiu, Jing; Bell, Karen F S; Heron, Samuel; Kind, Peter C; Dando, Owen; Simpson, T Ian; Hardingham, Giles E


    Uptake of Ca2+ into the mitochondrial matrix controls cellular metabolism and survival-death pathways. Several genes are implicated in controlling mitochondrial Ca2+ uptake (mitochondrial calcium regulatory genes, MCRGs), however, less is known about the factors which influence their expression level. Here we have compared MCRG mRNA expression, in neural cells of differing type (cortical neurons vs. astrocytes), differing neuronal subtype (CA3 vs. CA1 hippocampus) and in response to Ca2+ influx, using a combination of qPCR and RNA-seq analysis. Of note, we find that the Mcu-regulating Micu gene family profile differs substantially between neurons and astrocytes, while expression of Mcu itself is markedly different between CA3 and CA1 regions in the adult hippocampus. Moreover, dynamic control of MCRG mRNA expression in response to membrane depolarization-induced Ca2+ influx is also apparent, resulting in repression of Letm1, as well as Mcu. Thus, the mRNA expression profile of MCRGs is not fixed, which may cause differences in the coupling between cytoplasmic and mitochondrial Ca2+, as well as diversity of mitochondrial Ca2+ uptake mechanisms.

  1. Expression of mRNA Encoding Mcu and Other Mitochondrial Calcium Regulatory Genes Depends on Cell Type, Neuronal Subtype, and Ca2+ Signaling.

    Directory of Open Access Journals (Sweden)

    Nóra M Márkus

    Full Text Available Uptake of Ca2+ into the mitochondrial matrix controls cellular metabolism and survival-death pathways. Several genes are implicated in controlling mitochondrial Ca2+ uptake (mitochondrial calcium regulatory genes, MCRGs, however, less is known about the factors which influence their expression level. Here we have compared MCRG mRNA expression, in neural cells of differing type (cortical neurons vs. astrocytes, differing neuronal subtype (CA3 vs. CA1 hippocampus and in response to Ca2+ influx, using a combination of qPCR and RNA-seq analysis. Of note, we find that the Mcu-regulating Micu gene family profile differs substantially between neurons and astrocytes, while expression of Mcu itself is markedly different between CA3 and CA1 regions in the adult hippocampus. Moreover, dynamic control of MCRG mRNA expression in response to membrane depolarization-induced Ca2+ influx is also apparent, resulting in repression of Letm1, as well as Mcu. Thus, the mRNA expression profile of MCRGs is not fixed, which may cause differences in the coupling between cytoplasmic and mitochondrial Ca2+, as well as diversity of mitochondrial Ca2+ uptake mechanisms.

  2. Correlations between locked modes and impurity influxes

    Energy Technology Data Exchange (ETDEWEB)

    Fishpool, G.M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Lawson, K.D. [UKAEA Culham Lab., Abingdon (United Kingdom)


    An analysis of pulses that were disturbed by medium Z impurity influxes (Cl, Cr, Fe and Ni) recorded during the 91/92 JET operations, has demonstrated that such influxes can result in MHD modes which subsequently ``lock``. A correlation is found between the power radiated by the influx and the time difference between the start of the influx and the beginning of the locked mode. The growth in the amplitude of the locked mode itself can lead to further impurity influxes. A correlation is noted between intense influxes (superior to 10 MW) and the mode ``unlocking``. (authors). 4 refs., 4 figs.

  3. Effects of droperidol on depolarization-induced automaticity, maximum upstroke velocity (Vmax) and the kinetics of recovery of Vmax in guinea-pig ventricular myocardium. (United States)

    Grant, A O; Hondeghem, L M; Katzung, B G


    The neuroleptic drug droperidol has been shown to have clinically useful antiarrhythmic activity. Prior reports have resulted in conflicting conclusions regarding actions on ventricular myocardial fibers. The present study was carried out to determine whether droperidol did in fact affect the electrophysiological properties of guinea-pig papillary muscle fibers. By means of microelectrode recordings from preparations mounted in a single sucrose gap, the effects of concentrations from 10(-6) to 4 X 10(-5) M were studied on depolarization-induced automaticity, and on Vmax and its recovery time under several conditions of membrane potential, stimulation rate and external ion concentration. The results showed that at clinically relevant concentrations, droperidol significantly slows ventricular pacemaker activity, a depression reversible by epinephrine. Furthermore, Vmax was decreased and the time constant for Vmax recovery was significantly prolonged under several conditions which pertain to clinical arrhythmias, i.e., reduced membrane potential, elevated extracellular potassium concentrations and increased stimulation rate.

  4. Vitamin D and Intestinal Calcium Absorption


    Christakos, Sylvia; Dhawan, Puneet; Porta, Angela; Mady, Leila J.; Seth, Tanya


    The principal function of vitamin D in calcium homeostasis is to increase calcium absorption from the intestine. Calcium is absorbed by both an active transcellular pathway, which is energy dependent, and by a passive paracellular pathway through tight junctions. 1,25Dihydroxyvitamin D3 (1,25(OH)2D3) the hormonally active form of vitamin D, through its genomic actions, is the major stimulator of active intestinal calcium absorption which involves calcium influx, translocation of calcium throu...

  5. Calcium signaling and epilepsy. (United States)

    Steinlein, Ortrud K


    Calcium signaling is involved in a multitude of physiological and pathophysiological mechanisms. Over the last decade, it has been increasingly recognized as an important factor in epileptogenesis, and it is becoming obvious that the excess synchronization of neurons that is characteristic for seizures can be linked to various calcium signaling pathways. These include immediate effects on membrane excitability by calcium influx through ion channels as well as delayed mechanisms that act through G-protein coupled pathways. Calcium signaling is able to cause hyperexcitability either by direct modulation of neuronal activity or indirectly through calcium-dependent gliotransmission. Furthermore, feedback mechanisms between mitochondrial calcium signaling and reactive oxygen species are able to cause neuronal cell death and seizures. Unravelling the complexity of calcium signaling in epileptogenesis is a daunting task, but it includes the promise to uncover formerly unknown targets for the development of new antiepileptic drugs.

  6. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar


    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  7. Calcium and dairy acceleration of weight and fat loss during energy restriction in obese adults

    National Research Council Canada - National Science Library

    Zemel, Michael B; Thompson, Warren; Milstead, Anita; Morris, Kristin; Campbell, Peter


    ...+ influx and, as a consequence, stimulates lipogenesis, suppresses lipolysis, and increases lipid accumulation, whereas increasing dietary calcium inhibits these effects and markedly accelerates fat...

  8. Gas-influx detection with MWD technology

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, T.M.; Grosso, D.S.; Wallace, S.N. (Teleco Oilfield Services (US))


    This paper describes a new gas-influx detection technique that monitors the acoustic responses of annular measurement-while-drilling (MWD) pulses to provide a rapid, early warning of the development of potential gas-kick situations. The technique has been evaluated in both water- and oil-based muds during about 40 gas-kick simulations at two full-scale testing facilities. Free gas is identified by amplitude attenuation and phase delay of MWD fundamentals and their harmonic frequencies. Detection is independent of influx location because the entire length of the annulus between the bit nozzles and a surface-pressure transducer is sampled. Detection of potential gas-kick situations generally occurred within minutes of influx initiation, before any significant gas expansion. Some tests also evaluated a downhole MWD mud-resistivity sensor. Results indicated that both these techniques, and particularly the pulse acoustics, can provide unequivocal confirmation of gas and an earlier warning of gas-kick situations than conventional kick- detection techniques.

  9. Calcium signaling in taste cells. (United States)

    Medler, Kathryn F


    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  10. A Ca sup 2+ influx associated with exocytosis is specifically abolished in a Paramecium exocytotic mutant

    Energy Technology Data Exchange (ETDEWEB)

    Kerboeuf, D.; Cohen, J. (Centre National de la Recherche Scientifique, Gif-sur-Yvette (France))


    A Paramecium possesses secretory organelles called trichocysts which are docked beneath the plasma membrane awaiting an external stimulus that triggers their exocytosis. Membrane fusion is the sole event provoked by the stimulation and can therefore be studied per se. Using 3 microM aminoethyl dextran as a vital secretagogue, we analyzed the movements of calcium (Ca{sup 2+}) during the discharge of trichocysts. We showed that (a) external Ca{sup 2+}, at least at 3 X 10(-7) M, is necessary for AED to induce exocytosis; (b) a dramatic and transient influx of Ca{sup 2+} as measured from {sup 45}Ca uptake is induced by AED; (c) this influx is independent of the well-characterized voltage-operated Ca{sup 2+} channels of the ciliary membranes since it persists in a mutant devoid of these channels; and (d) this influx is specifically abolished in one of the mutants unable to undergo exocytosis, nd12. We propose that the Ca{sup 2+} influx induced by AED reflects an increase in membrane permeability through the opening of novel Ca{sup 2+} channel or the activation of other Ca{sup 2+} transport mechanism in the plasma membrane. The resulting rise in cytosolic Ca{sup 2+} concentration would in turn induce membrane fusion. The mutation nd12 would affect a gene product involved in the control of plasma membrane permeability to Ca{sup 2+}, specifically related to membrane fusion.

  11. Neuronal processing of noxious thermal stimuli mediated by dendritic Ca(2+) influx in Drosophila somatosensory neurons. (United States)

    Terada, Shin-Ichiro; Matsubara, Daisuke; Onodera, Koun; Matsuzaki, Masanori; Uemura, Tadashi; Usui, Tadao


    Adequate responses to noxious stimuli causing tissue damages are essential for organismal survival. Class IV neurons in Drosophila larvae are polymodal nociceptors responsible for thermal, mechanical, and light sensation. Importantly, activation of Class IV provoked distinct avoidance behaviors, depending on the inputs. We found that noxious thermal stimuli, but not blue light stimulation, caused a unique pattern of Class IV, which were composed of pauses after high-frequency spike trains and a large Ca(2+) rise in the dendrite (the Ca(2+) transient). Both these responses depended on two TRPA channels and the L-type voltage-gated calcium channel (L-VGCC), showing that the thermosensation provokes Ca(2+) influx. The precipitous fluctuation of firing rate in Class IV neurons enhanced the robust heat avoidance. We hypothesize that the Ca(2+) influx can be a key signal encoding a specific modality.

  12. Direct In Vivo Manipulation and Imaging of Calcium Transients in Neutrophils Identify a Critical Role for Leading-Edge Calcium Flux. (United States)

    Beerman, Rebecca W; Matty, Molly A; Au, Gina G; Looger, Loren L; Choudhury, Kingshuk Roy; Keller, Philipp J; Tobin, David M


    Calcium signaling has long been associated with key events of immunity, including chemotaxis, phagocytosis, and activation. However, imaging and manipulation of calcium flux in motile immune cells in live animals remain challenging. Using light-sheet microscopy for in vivo calcium imaging in zebrafish, we observe characteristic patterns of calcium flux triggered by distinct events, including phagocytosis of pathogenic bacteria and migration of neutrophils toward inflammatory stimuli. In contrast to findings from ex vivo studies, we observe enriched calcium influx at the leading edge of migrating neutrophils. To directly manipulate calcium dynamics in vivo, we have developed transgenic lines with cell-specific expression of the mammalian TRPV1 channel, enabling ligand-gated, reversible, and spatiotemporal control of calcium influx. We find that controlled calcium influx can function to help define the neutrophil's leading edge. Cell-specific TRPV1 expression may have broad utility for precise control of calcium dynamics in other immune cell types and organisms.

  13. Calcium imaging demonstrates colocalization of calcium influx and extrusion in fly photoreceptors

    NARCIS (Netherlands)

    Oberwinkler, J; Stavenga, DG; Stevens, Charles F.


    During illumination. Ca2+ enters fly photoreceptor cells through light-activated channels that are located in the rhabdomere, the compartment specialized for phototransduction. From the rhabdomere. Ca2+ diffuses into the cell body. We visualize this process by rapidly imaging the fluorescence in a c

  14. Calcium imaging demonstrates colocalization of calcium influx and extrusion in fly photoreceptors

    NARCIS (Netherlands)

    Oberwinkler, J; Stavenga, DG; Stevens, Charles F.


    During illumination. Ca2+ enters fly photoreceptor cells through light-activated channels that are located in the rhabdomere, the compartment specialized for phototransduction. From the rhabdomere. Ca2+ diffuses into the cell body. We visualize this process by rapidly imaging the fluorescence in a

  15. PTHrP regulation and calcium balance in sea bream (Sparus auratus L.) under calcium constraint

    NARCIS (Netherlands)

    Abbink, W.; Bevelander, G.S.; Hang, X.; Lu, W.; Guerreiro, P.M.; Spanings, T.; Canario, A.V.; Flik, G.


    Juvenile gilthead sea bream were exposed to diluted seawater (2.5 per thousand salinity; DSW) for 3 h or, in a second experiment, acclimated to DSW and fed a control or calcium-deficient diet for 30 days. Branchial Ca(2+) influx, drinking rate and plasma calcium levels were assessed. Sea bream

  16. T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles

    DEFF Research Database (Denmark)

    Poulsen, Christian B; Al-Mashhadi, Rozh H; Cribbs, Leanne L;


    Voltage-gated calcium channels are important for the regulation of renal blood flow and the glomerular filtration rate. Excitation-contraction coupling in afferent arterioles is known to require activation of these channels and we studied their role in the regulation of cortical efferent arteriolar...... tone. We used microdissected perfused mouse efferent arterioles and found a transient vasoconstriction in response to depolarization with potassium; an effect abolished by removal of extracellular calcium. The T-type voltage-gated calcium channel antagonists mibefradil and nickel blocked this potassium....... Low concentrations of nickel, an agent that blocks Ca(v)3.2, had a similar effect. Thus, T-type voltage-gated calcium channels are functionally important for depolarization-induced vasoconstriction and subsequent dilatation in mouse cortical efferent arterioles.Kidney International advance online...

  17. Do calcium-dependent ionic currents mediate ischemic ventricular fibrillation? (United States)

    Clusin, W T; Bristow, M R; Karagueuzian, H S; Katzung, B G; Schroeder, J S


    Calcium ions mediate the adverse effects of myocardial ischemia and have been implicated in the genesis of arrhythmias. Calcium influx blocking drugs protect against early ventricular arrhythmias during experimental coronary occlusion, and recent studies suggest that this effect is at least partly due to inhibition of myocardial cell calcium influx. Most of the pharmacologic maneuvers used to simulate acute ischemic arrhythmias in vivo also produce intracellular calcium overload. Production of calcium overload in small myocardial cell clusters causes fibrillatory electrical and mechanical activity similar to that recorded from fibrillating hearts. Fibrillation in these cell clusters is mediated not by reentrant conduction, but by the same subcellular processes that give rise to depolarizing afterpotentials and abnormal automaticity. Agents favoring calcium influx, such as beta adrenergic agonists, accentuate these processes, while agents that depress calcium influx inhibit them. Although the relation of these experimental models to clinical ischemic arrhythmias has not been fully delineated, calcium influx blocking drugs may prove useful in reducing the incidence of sudden cardiac death.

  18. Optical control of calcium-regulated exocytosis. (United States)

    Izquierdo-Serra, Mercè; Trauner, Dirk; Llobet, Artur; Gorostiza, Pau


    Neurons signal to each other and to non-neuronal cells as those in muscle or glands, by means of the secretion of neurotransmitters at chemical synapses. In order to dissect the molecular mechanisms of neurotransmission, new methods for directly and reversibly triggering neurosecretion at the presynaptic terminal are necessary. Here we exploit the calcium permeability of the light-gated channel LiGluR in order to reversibly manipulate cytosolic calcium concentration, thus controlling calcium-regulated exocytosis. Bovine chromaffin cells expressing LiGluR were stimulated with light. Exocytic events were detected by amperometry or by whole-cell patch-clamp to quantify membrane capacitance and calcium influx. Amperometry reveals that optical stimulation consistently triggers exocytosis in chromaffin cells. Secretion of catecholamines can be adjusted between zero and several Hz by changing the wavelength of illumination. Differences in secretion efficacy are found between the activation of LiGluR and native voltage-gated calcium channels (VGCCs). Our results show that the distance between sites of calcium influx and vesicles ready to be released is longer when calcium influx is triggered by LiGluR instead of native VGCCs. LiGluR activation directly and reversibly increases the intracellular calcium concentration. Light-gated calcium influx allows for the first time to control calcium-regulated exocytosis without the need of applying depolarizing solutions or voltage clamping in chromaffin cells. LiGluR is a useful tool to study the secretory mechanisms and their spatiotemporal patterns in neurotransmission, and opens a window to study other calcium-dependent processes such as muscular contraction or cell migration.

  19. Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines.

    Directory of Open Access Journals (Sweden)

    Brenda L Bloodgood


    Full Text Available Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx.

  20. Mechanism of store-operated calcium entry

    Indian Academy of Sciences (India)

    Devkanya Dutta


    Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.

  1. Cryptococcal capsular glucuronoxylomannan reduces ischaemia-related neutrophil influx

    NARCIS (Netherlands)

    Ellerbroek, PM; Schoemaker, RG; van Veghel, R; Hoepelman, AIM; Coenjaerts, FEJ


    Background The capsular polysaccharide glucuronoxylomannan (GXM) of Cryptococcus neoformans interferes with the chemotaxis and transendothelial migration of neutrophils. Intravenous administration of purified GXM has been shown to reduce the influx of inflammatory cells in an animal model of bacteri

  2. Normal and Malignant Cells Exhibit Differential Responses to Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine K; Krüger, Mie B; Mangalanathan, Uma M


    tissue after calcium electroporation but decreased in skin tissue 4 hours after treatment to levels comparable with untreated controls, whereas calcium content endured at high levels in tumor tissue. Mechanistic experiments in vitro indicated that calcium influx was similar in fibroblasts and cancer...... necrosis, with a range of sensitivities observed (36%-88%) 2 days after treatment. Necrosis was induced using calcium concentrations of 100-500 mmol/L and injection volumes 20%-80% of tumor volume. Notably, only limited effects were seen in normal tissue. Calcium content increased >7-fold in tumor and skin......Calcium electroporation may offer a simple general tool for anticancer therapy. Transient permeabilization of cancer cell membranes created by applying short, high-voltage pulses in tumors enables high calcium influxes that trigger cell death. In this study, we compared the relative sensitivity...

  3. Functional Importance of L- and P/Q-Type Voltage-Gated Calcium Channels in Human Renal Vasculature

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Poulsen, Christian B; Walter, Steen


    in kidney function. It was hypothesized that human renal vascular excitation-contraction coupling involves different subtypes of channels. In human renal artery and dissected intrarenal blood vessels from nephrectomies, PCR analysis showed expression of L-type (Ca(v) 1.2), P/Q-type (Ca(v) 2.1), and T-type......, and L- and P/Q-type channels are of functional importance for the depolarization-induced vasoconstriction. The contribution of P/Q-type channels to contraction in the human vasculature is a novel mechanism for the regulation of renal blood flow and suggests that clinical treatment with calcium blockers......Calcium channel blockers are widely used for treatment of hypertension, because they decrease peripheral vascular resistance through inhibition of voltage-gated calcium channels. Animal studies of renal vasculature have shown expression of several types of calcium channels that are involved...

  4. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells. (United States)

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S


    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.

  5. Store-operated calcium signaling in neutrophils. (United States)

    Clemens, Regina A; Lowell, Clifford A


    Calcium signals in neutrophils are initiated by a variety of cell-surface receptors, including formyl peptide and other GPCRs, FcRs, and integrins. The predominant pathway by which calcium enters immune cells is termed SOCE, whereby plasma membrane CRAC channels allow influx of extracellular calcium into the cytoplasm when intracellular ER stores are depleted. The identification of 2 key families of SOCE regulators, STIM calcium "sensors" and ORAI calcium channels, has allowed for genetic manipulation of SOCE pathways and provided valuable insight into the molecular mechanism of calcium signaling in immune cells, including neutrophils. This review focuses on our current knowledge of the molecules involved in neutrophil SOCE and how study of these molecules has further informed our understanding of the role of calcium signaling in neutrophil activation.

  6. The rapid immunosuppression in phytohemagglutinin-activated human T cells is inhibited by the proliferative Ca(2+) influx induced by progesterone and analogs. (United States)

    Lin, Veronica Hui-Chen; Chen, Jiann-Jong; Liao, Chen-Chung; Lee, Shinn-Shing; Chien, Eileen Jea


    Progesterone, an endogenous immunomodulator, suppresses human T-cell activation during pregnancy. A sustained Ca(2 +) influx is an important signal for T-cell proliferation after crosslinking of T-cell receptor/CD3 complexes by anti-CD3 antibodies or phytohemagglutinin (PHA). Progesterone targets cell membrane sites inducing rapid responses including elevated intracellular free calcium concentration ([Ca(2+)]i) and suppressed T-cell PHA-activated proliferation. Interestingly, both PHA and progesterone induce [Ca(2+)]i elevation, but it remains unclear whether the PHA-induced Ca(2+) influx is affected by progesterone leading to T-cell immunosuppression. Primary T-cells were isolated from human peripheral blood and the quench effect on intracellular fura-2 fluorescence of Mn(2+) was used to explore the responses to Ca(2+) influx with cell proliferation being determined by MTT assay. PHA-stimulated Ca(2+) influx was dose-dependently suppressed by progesterone and its agonist R5020, which correlated with PHA-activated T-cell proliferation inhibition. A similar dose-dependent suppression effect on cellular Ca(2+) influx and proliferation occurred with the TRPC channel inhibitor BTP2 and selective TRPC3 channel inhibitor Pyr3. In addition, two progesterone analogs, Org OD 02-0 and 20α-hydroxyprogesterone (20α-OHP), also produced dose-dependent suppression of Ca(2+) influx, but had no effect on proliferation. Finally, inhibition of PHA-activated T-cell proliferation by progesterone is further suppressed by 20α-OHP, but not by Org OD 02-0. Overall, progesterone and R5020 are able to rapidly decrease PHA-stimulated sustained Ca(2+) influx, probably via blockade of TRPC3 channels, which suppresses T-cell proliferation. Taken together, the roles of progesterone and its analogs regarding the rapid response Ca(2+) influx need to be further explored in relation to cytokine secretion and proliferation in activated T-cells.

  7. Asteropsin A: an unusual cystine-crosslinked peptide from porifera enhances neuronal Ca2+ influx. (United States)

    Li, Huayue; Bowling, John J; Fronczek, Frank R; Hong, Jongki; Jabba, Sairam V; Murray, Thomas F; Ha, Nam-Chul; Hamann, Mark T; Jung, Jee H


    Herein we report the discovery of a cystine-crosslinked peptide from Porifera along with high-quality spatial details accompanied by the description of its unique effect on neuronal calcium influx. Asteropsin A (ASPA) was isolated from the marine sponge Asteropus sp., and its structure was independently determined using X-ray crystallography (0.87 angstroms) and solution NMR spectroscopy. An N-terminal pyroglutamate modification, uncommon cis proline conformations, and absence of basic residues helped distinguish ASPA from other cystine-crosslinked knot peptides. ASPA enhanced Ca2+ influx in murine cerebrocortical neuron cells following the addition of the Na+ channel activator veratridine but did not modify the oscillation frequency or amplitude of neuronal Ca2+ currents alone. Allosterism at neurotoxin site 2 was not observed, suggesting an alternative to the known Na+ channel interaction. Together with a distinct biological activity, the origin of ASPA suggests a new subclass of cystine-rich knot peptides associated with Porifera. The discovery of ASPA represents a distinctive addition to an emerging subclass of cystine-crosslinked knot peptides from Porifera.

  8. Vitamin D and intestinal calcium absorption. (United States)

    Christakos, Sylvia; Dhawan, Puneet; Porta, Angela; Mady, Leila J; Seth, Tanya


    The principal function of vitamin D in calcium homeostasis is to increase calcium absorption from the intestine. Calcium is absorbed by both an active transcellular pathway, which is energy dependent, and by a passive paracellular pathway through tight junctions. 1,25Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) the hormonally active form of vitamin D, through its genomic actions, is the major stimulator of active intestinal calcium absorption which involves calcium influx, translocation of calcium through the interior of the enterocyte and basolateral extrusion of calcium by the intestinal plasma membrane pump. This article reviews recent studies that have challenged the traditional model of vitamin D mediated transcellular calcium absorption and the crucial role of specific calcium transport proteins in intestinal calcium absorption. There is also increasing evidence that 1,25(OH)(2)D(3) can enhance paracellular calcium diffusion. The influence of estrogen, prolactin, glucocorticoids and aging on intestinal calcium absorption and the role of the distal intestine in vitamin D mediated intestinal calcium absorption are also discussed.

  9. Expanding the neuron's calcium signaling repertoire: intracellular calcium release via voltage-induced PLC and IP3R activation.

    Directory of Open Access Journals (Sweden)

    Stefanie Ryglewski


    Full Text Available Neuronal calcium acts as a charge carrier during information processing and as a ubiquitous intracellular messenger. Calcium signals are fundamental to numerous aspects of neuronal development and plasticity. Specific and independent regulation of these vital cellular processes is achieved by a rich bouquet of different calcium signaling mechanisms within the neuron, which either can operate independently or may act in concert. This study demonstrates the existence of a novel calcium signaling mechanism by simultaneous patch clamping and calcium imaging from acutely isolated central neurons. These neurons possess a membrane voltage sensor that, independent of calcium influx, causes G-protein activation, which subsequently leads to calcium release from intracellular stores via phospholipase C and inositol 1,4,5-trisphosphate receptor activation. This allows neurons to monitor activity by intracellular calcium release without relying on calcium as the input signal and opens up new insights into intracellular signaling, developmental regulation, and information processing in neuronal compartments lacking calcium channels.

  10. Relating a calcium indicator signal to the unperturbed calcium concentration time-course

    Directory of Open Access Journals (Sweden)

    Abarbanel Henry DI


    Full Text Available Abstract Background Optical indicators of cytosolic calcium levels have become important experimental tools in systems and cellular neuroscience. Indicators are known to interfere with intracellular calcium levels by acting as additional buffers, and this may strongly alter the time-course of various dynamical variables to be measured. Results By investigating the underlying reaction kinetics, we show that in some ranges of kinetic parameters one can explicitly link the time dependent indicator signal to the time-course of the calcium influx, and thus, to the unperturbed calcium level had there been no indicator in the cell.

  11. The interactive roles of zinc and calcium in mitochondrial dysfunction and neurodegeneration. (United States)

    Pivovarova, Natalia B; Stanika, Ruslan I; Kazanina, Galina; Villanueva, Idalis; Andrews, S Brian


    Zinc has been implicated in neurodegeneration following ischemia. In analogy with calcium, zinc has been proposed to induce toxicity via mitochondrial dysfunction, but the relative role of each cation in mitochondrial damage remains unclear. Here, we report that under conditions mimicking ischemia in hippocampal neurons - normal (2 mM) calcium plus elevated (> 100 μM) exogenous zinc - mitochondrial dysfunction evoked by glutamate, kainate or direct depolarization is, despite significant zinc uptake, primarily governed by calcium. Thus, robust mitochondrial ion accumulation, swelling, depolarization, and reactive oxygen species generation were only observed after toxic stimulation in calcium-containing media. This contrasts with the lack of any mitochondrial response in zinc-containing but calcium-free medium, even though zinc uptake and toxicity were strong under these conditions. Indeed, abnormally high, ionophore-induced zinc uptake was necessary to elicit any mitochondrial depolarization. In calcium- and zinc-containing media, depolarization-induced zinc uptake facilitated cell death and enhanced accumulation of mitochondrial calcium, which localized to characteristic matrix precipitates. Some of these contained detectable amounts of zinc. Together these data indicate that zinc uptake is generally insufficient to trigger mitochondrial dysfunction, so that mechanism(s) of zinc toxicity must be different from that of calcium. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  12. Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry. (United States)

    Doll, Caleb A; Broadie, Kendal


    Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early

  13. Influx mechanisms in the embryonic and adult rat choroid plexus

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld


    The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq was performed at embryonic day (E) 15 and a...

  14. Zinc modulation of calcium activity at the photoreceptor terminal: a calcium imaging study. (United States)

    Anastassov, Ivan; Shen, Wen; Ripps, Harris; Chappell, Richard L


    There is abundant experimental evidence that zinc ions (Zn(2+)) are present in the synaptic vesicles of vertebrate photoreceptors, and that they are co-released with glutamate. Here we show that increasing the concentration of extracellular zinc (2 μM-2 mM) suppresses the entry of calcium into the synaptic terminals of isolated salamander double cones. The resultant dose-dependent curve was fit by an inverse Hill equation having an IC50 of 38 μM, and Hill coefficient of 1.1. Because there is currently no reliable way to measure the concentration of extracellular zinc, it is not known whether the zinc released under normal circumstances is of physiological significance. In an attempt to circumvent this problem we used zinc chelators to reduce the available pool of endogenous zinc. This enabled us to determine how the absence of zinc affected calcium entry. We found that when intra- or extra-cellular zinc was chelated by 250 μM of membrane-permeable TPEN or 500 μM of membrane-impermeable histidine, there was a significant rise in the depolarization-induced intracellular calcium level within photoreceptor terminals. This increase in internal [Ca(2+)] will undoubtedly lead to a concomitant increase in glutamate release. In addition, we found that blocking the L-type calcium channels that are expressed on the synaptic terminals of photoreceptors with 50 μM nicardipine or 100 μM verapamil abolished the effects of zinc chelation. These findings are a good indication that, when released in vivo, the zinc concentration is sufficient to suppress voltage-gated calcium channels, and reduce the rate of glutamate release from photoreceptor terminals.

  15. Role of the JP45-Calsequestrin Complex on Calcium Entry in Slow Twitch Skeletal Muscles. (United States)

    Mosca, Barbara; Eckhardt, Jan; Bergamelli, Leda; Treves, Susan; Bongianino, Rossana; De Negri, Marco; Priori, Silvia G; Protasi, Feliciano; Zorzato, Francesco


    We exploited a variety of mouse models to assess the roles of JP45-CASQ1 (CASQ, calsequestrin) and JP45-CASQ2 on calcium entry in slow twitch muscles. In flexor digitorum brevis (FDB) fibers isolated from JP45-CASQ1-CASQ2 triple KO mice, calcium transients induced by tetanic stimulation rely on calcium entry via La(3+)- and nifedipine-sensitive calcium channels. The comparison of excitation-coupled calcium entry (ECCE) between FDB fibers from WT, JP45KO, CASQ1KO, CASQ2KO, JP45-CASQ1 double KO, JP45-CASQ2 double KO, and JP45-CASQ1-CASQ2 triple KO shows that ECCE enhancement requires ablation of both CASQs and JP45. Calcium entry activated by ablation of both JP45-CASQ1 and JP45-CASQ2 complexes supports tetanic force development in slow twitch soleus muscles. In addition, we show that CASQs interact with JP45 at Ca(2+) concentrations similar to those present in the lumen of the sarcoplasmic reticulum at rest, whereas Ca(2+) concentrations similar to those present in the SR lumen after depolarization-induced calcium release cause the dissociation of JP45 from CASQs. Our results show that the complex JP45-CASQs is a negative regulator of ECCE and that tetanic force development in slow twitch muscles is supported by the dynamic interaction between JP45 and CASQs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Role of the JP45-Calsequestrin Complex on Calcium Entry in Slow Twitch Skeletal Muscles* (United States)

    Mosca, Barbara; Eckhardt, Jan; Bergamelli, Leda; Treves, Susan; Bongianino, Rossana; De Negri, Marco; Priori, Silvia G.; Protasi, Feliciano; Zorzato, Francesco


    We exploited a variety of mouse models to assess the roles of JP45-CASQ1 (CASQ, calsequestrin) and JP45-CASQ2 on calcium entry in slow twitch muscles. In flexor digitorum brevis (FDB) fibers isolated from JP45-CASQ1-CASQ2 triple KO mice, calcium transients induced by tetanic stimulation rely on calcium entry via La3+- and nifedipine-sensitive calcium channels. The comparison of excitation-coupled calcium entry (ECCE) between FDB fibers from WT, JP45KO, CASQ1KO, CASQ2KO, JP45-CASQ1 double KO, JP45-CASQ2 double KO, and JP45-CASQ1-CASQ2 triple KO shows that ECCE enhancement requires ablation of both CASQs and JP45. Calcium entry activated by ablation of both JP45-CASQ1 and JP45-CASQ2 complexes supports tetanic force development in slow twitch soleus muscles. In addition, we show that CASQs interact with JP45 at Ca2+ concentrations similar to those present in the lumen of the sarcoplasmic reticulum at rest, whereas Ca2+ concentrations similar to those present in the SR lumen after depolarization-induced calcium release cause the dissociation of JP45 from CASQs. Our results show that the complex JP45-CASQs is a negative regulator of ECCE and that tetanic force development in slow twitch muscles is supported by the dynamic interaction between JP45 and CASQs. PMID:27189940

  17. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels. (United States)

    Jiang, Shaojuan Amy; Campusano, Jorge M; Su, Hailing; O'Dowd, Diane K


    Spontaneous calcium oscillations in mushroom bodies of late stage pupal and adult Drosophila brains have been implicated in memory consolidation during olfactory associative learning. This study explores the cellular mechanisms regulating calcium dynamics in Kenyon cells, principal neurons in mushroom bodies. Fura-2 imaging shows that Kenyon cells cultured from late stage Drosophila pupae generate spontaneous calcium transients in a cell autonomous fashion, at a frequency similar to calcium oscillations in vivo (10-20/h). The expression of calcium transients is up regulated during pupal development. Although the ability to generate transients is a property intrinsic to Kenyon cells, transients can be modulated by bath application of nicotine and GABA. Calcium transients are blocked, and baseline calcium levels reduced, by removal of external calcium, addition of cobalt, or addition of Plectreurys toxin (PLTX), an insect-specific calcium channel antagonist. Transients do not require calcium release from intracellular stores. Whole cell recordings reveal that the majority of voltage-gated calcium channels in Kenyon cells are PLTX-sensitive. Together these data show that influx of calcium through PLTX-sensitive voltage-gated calcium channels mediates spontaneous calcium transients and regulates basal calcium levels in cultured Kenyon cells. The data also suggest that these calcium transients represent cellular events underlying calcium oscillations in the intact mushroom bodies. However, spontaneous calcium transients are not unique to Kenyon cells as they are present in approximately 60% of all cultured central brain neurons. This suggests the calcium transients play a more general role in maturation or function of adult brain neurons.

  18. Method and apparatus for borehole fluid influx detection

    Energy Technology Data Exchange (ETDEWEB)

    Grosso, D.S.


    This patent describes an apparatus for detection of fluid influx in a borehole in which a drill string is positioned, the drill string cooperating with the wall of the borehole to define an annulus, and in which drilling fluid is circulated from the surface through the interior of the drill string and into the annulus back to the surface, including: means for generating a coherent energy signal at a downhole location and propagation the signal as a primary signal in the drilling fluid in the drill string and as a secondary signal in the drilling fluid in the annulus; means for detecting the primary signal; means for detecting the secondary signal; means for measuring the difference between at least one selected parameter of the primary signal with the same selected parameter of the secondary signal, and means for determining changes in the measured difference between the selected parameter of the primary and secondary signals wherein fluid influx into the annulus is determined.

  19. T-type calcium channel: a privileged gate for calcium entry and control of adrenal steroidogenesis

    Directory of Open Access Journals (Sweden)

    Michel Florian Rossier


    Full Text Available Intracellular calcium plays a crucial role in modulating a variety of functions such as muscle contraction, hormone secretion, gene expression or cell growth. Calcium signaling has been however shown to be more complex than initially thought. Indeed, it is confined within cell microdomains and different calcium channels are associated with different functions, as shown by various channelopathies.Sporadic mutations on voltage-operated L-type calcium channels in adrenal glomerulosa cells have been shown recently to be the second most prevalent genetic abnormalities present in human aldosterone-producing adenoma. The observed modification of the threshold of activation of the mutated channels not only provides an explanation for this gain of function but reminds us on the importance of maintaining adequate electrophysiological characteristics to make channels able to exert specific cellular functions. Indeed, the contribution to steroid production of the various calcium channels expressed in adrenocortical cells is not equal and the reason has been investigated for a long time. Given the very negative resting potential of these cells, and the small membrane depolarization induced by their physiological agonists, low threshold T-type calcium channels are particularly well suited for responding under these conditions and conveying calcium into the cell, at the right place for controlling steroidogenesis. In contrast, high threshold L-type channels are normally activated by much stronger cell depolarizations. The fact that dihydropyridine calcium antagonists, specific for L-type channels, are poorly efficient for reducing aldosterone secretion either in vivo or in vitro, strongly supports the view that these two types of channels differently affect steroid biosynthesis.Whether a similar analysis is transposable to fasciculata cells and cortisol secretion is one of the questions addressed in the present review. No similar mutations on L-type or T

  20. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity

    Directory of Open Access Journals (Sweden)

    Masako Isokawa


    Full Text Available GABAergic inhibition plays a critical role in the regulation of neuron excitability; thus, it is subject to modulations by many factors. Recent evidence suggests the elevation of intracellular calcium ([Ca2+]i and calcium-dependent signaling molecules underlie the modulations. Caffeine induces a release of calcium from intracellular stores. We tested whether caffeine modulated GABAergic transmission by increasing [Ca2+]i. A brief local puff-application of caffeine to hippocampal CA1 pyramidal cells transiently suppressed GABAergic inhibitory postsynaptic currents (IPSCs by 73.2 ± 6.98%. Time course of suppression and the subsequent recovery of IPSCs resembled DSI (depolarization-induced suppression of inhibition, mediated by endogenous cannabinoids that require a [Ca2+]i rise. However, unlike DSI, caffeine-induced suppression of IPSCs (CSI persisted in the absence of a [Ca2+]i rise. Intracellular applications of BAPTA and ryanodine (which blocks caffeine-induced calcium release from intracellular stores failed to prevent the generation of CSI. Surprisingly, ruthenium red, an inhibitor of multiple calcium permeable/release channels including those of stores, induced metaplasticity by amplifying the magnitude of CSI independently of calcium. This metaplasticity was accompanied with the generation of a large inward current. Although ionic basis of this inward current is undetermined, the present result demonstrates that caffeine has a robust Ca2+-independent inhibitory action on GABAergic inhibition and causes metaplasticity by opening plasma membrane channels.

  1. Influence of Pyrethroid Insecticides on Sodium and Calcium Influx in Neocortical Neurons (United States)

    Pyrethroid insecticides bind to voltage-gated sodium channels and modify their gating kinetics, thereby disrupting neuronal function. Using murine neocortical neurons in primary culture, we have compared the ability of 11 structurally diverse pyrethroid insecticides to evoke Na+ ...

  2. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne


    of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx......43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium....

  3. Polish Perceptions on the Immigration Influx: a Critical Analysis

    Directory of Open Access Journals (Sweden)

    Kinga Hódor


    Full Text Available The article addresses the issue of Poles’ attitude to the problem of the influx of migrants to Poland in the context of the migration crisis, which Europe has to face today. The issues discussed in the present paper are aimed to illustrate the characteristic features specific to Poles’ attitudes in favor of or against the process of influx of migrants to the E.U. Member States or Poland. The analysis covers both positive and negative aspects of migration to Poland, which have been most often indicated by Poles with respects to migrants. On the one hand, they include fears with regard to national security, potential conflicts of cultural and religious background, fear of the alleged loss of jobs to migrants and their preying on the country’s social security system. All of the above result in anti-migration demonstrations and the language of hatred. On the other hand, positive aspects of the migration influx are believed to consist in cultural enrichment, benefits for the labor market resulting from the inflow of both qualified professionals and laborers with lower pay expectations in comparison to Polish workers and believing that migrants might be the chance of minimize the negative effects of the demographic crisis. The supporters of helping migrants also point out the issue of solidarity and sympathy for the victims and the fact that in the past it was the Poles who received support from other countries in Poland’s difficult moments. Thus, extending such help to others may prove to be beneficial in the future. The present paper is based on academic articles, internet sources and statistical data, which all reveal a division into two camps: supporters and opponents of receiving migrants in Poland, which prevents determining Poland’s definitive stance on this issue. All the aspects of the problem discussed in the paper are undoubtedly a basis for further analysis.

  4. Altered calcium signaling following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    John Thomas Weber


    Full Text Available Cell death and dysfunction after traumatic brain injury (TBI is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.

  5. The mechanism of hetero-synaptic interaction based on spatiotemporal intracellular calcium dynamics.

    Directory of Open Access Journals (Sweden)

    Daiki Futagi


    Full Text Available In recent physiological experiments focusing on synaptic plasticity, it is shown that synaptic modifications induced at one synapse are accompanied by hetero-synaptic changes at neighbor sites (Bi, 2002. These evidences imply that the hetero-synaptic interaction plays an important role in reconfiguration of synaptic connections to form and maintain functional neural circuits (Takahashi et al., 2012. Although the mechanism of the interaction is still unclear, some physiological studies suggest that the hetero-synaptic interaction could be caused by propagation of intracellular calcium signals (Nishiyama et al., 2000. Concretely, a spike-triggered calcium increase initiates calcium ion propagation along a dendrite through activation of molecular processes at neighboring sites. Here we hypothesized that the mechanism of the hetero-synaptic interaction was based on the intracellular calcium signaling, which is regulated by interactions between NMDA receptors (NMDARs, voltage-dependent calcium channels (VDCCs and Ryanodine receptors (RyRs on endoplasmic reticulum (ER. To assess realizability of the hypothesized interaction mechanism, we simulated intracellular calcium dynamics at a cellular level, using the computational model that integrated the model of intracellular calcium dynamics (Keizer and Levine, 1996 and the multi-compartment neuron model (Poirazi et al., 2003. Using the proposed computational model, we induced calcium influxes at a local site in postsynaptic dendrite by controlling the spike timings of pre- and postsynaptic neurons. As a result, synchronized calcium influxes through NMDARs and VDCCs caused calcium release from ER. According to the phase plane analysis, RyR-mediated calcium release occurred when the calcium concentration in cytoplasm sufficiently increased under the condition of a high calcium concentration in ER. An NMDAR-mediated calcium influx was slow and persistent, consequently responsible for maintaining a high

  6. Direct In Vivo Manipulation and Imaging of Calcium Transients in Neutrophils Identify a Critical Role for Leading-Edge Calcium Flux

    Directory of Open Access Journals (Sweden)

    Rebecca W. Beerman


    Full Text Available Calcium signaling has long been associated with key events of immunity, including chemotaxis, phagocytosis, and activation. However, imaging and manipulation of calcium flux in motile immune cells in live animals remain challenging. Using light-sheet microscopy for in vivo calcium imaging in zebrafish, we observe characteristic patterns of calcium flux triggered by distinct events, including phagocytosis of pathogenic bacteria and migration of neutrophils toward inflammatory stimuli. In contrast to findings from ex vivo studies, we observe enriched calcium influx at the leading edge of migrating neutrophils. To directly manipulate calcium dynamics in vivo, we have developed transgenic lines with cell-specific expression of the mammalian TRPV1 channel, enabling ligand-gated, reversible, and spatiotemporal control of calcium influx. We find that controlled calcium influx can function to help define the neutrophil’s leading edge. Cell-specific TRPV1 expression may have broad utility for precise control of calcium dynamics in other immune cell types and organisms.

  7. Functional and fluorochrome analysis of an exocytotic mutant yields evidence of store-operated Ca2+ influx in Paramecium. (United States)

    Mohamed, I; Klauke, N; Hentschel, J; Cohen, J; Plattner, H


    A non-discharge mutant of Paramecium tetraurelia (nd12-35 degrees C, lacking exocytotic response upon stimulation with the nonpermeable polycationic secretagogue aminoethyldextran, AED), in the pawnA genetic context (d4-500r, lacking ciliary voltage-dependent Ca2+ influx), was shown to lack (45)Ca2+ entry from outside upon AED stimulation. In contrast, cells grown at 25 degrees C behave like the wildtype. To check the functional properties in more detail, fluorochrome-loaded 35 degrees C cells were stimulated, not only with AED (EC(100) = 10(-6) M in wildtype cells), but also with 4-chloro-meta-cresol, (4CmC, 0.5 mM), a permeable activator of ryanodine receptor-type Ca2+ release channels, usually at extracellular [Ca2+] of 50 microM, and eventually with a Ca2+ chelator added. We confirm that pwA-nd12(35 degrees C) cells lack any Ca2+ influx and any exocytosis of trichocysts in response to any stimulus. As we determined by x-ray microanalysis, total calcium content in alveolar sacs (subplasmalemmal stores) known to be mobilized upon exocytosis stimulation in wild-type cells, contain about the same total calcium in 35 degrees C as in 25 degrees C cells, and Ca2+ mobilization from alveoli by AED or 4CmC is also nearly the same. Due to the absence of any AED-induced Ca2+ influx in 35 degrees C cells and normal Ca2+ release from stores found by x-ray microanalysis one can exclude a "CICR"-type mechanism (Ca2+-induced Ca2+ release) and imply that normally a store-operated Ca2+ ("SOC") influx would occur (as in 25 degrees C cells). Furthermore, 35 degrees C cells display a significantly lower basal intracellular [Ca2+], so that any increase upon stimulation may be less expressed or even remain undetected. Under these conditions, any mobilization of Ca2+ from stores cannot compensate for the lack of Ca2+ influx, particularly since normally both components have to cooperate to achieve full exocytotic response. Also striking is our finding that 35 degrees C cells are unable

  8. Relationship Between Accumulation and Influx of Pollutants in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    The paper discusses the long term mass balance of pollutants in highway ponds. The accumulations of five polycyclic aromatic hydrocarbons (PAHs) and six heavy metals have been measured in eight Danish detention ponds, which receive runoff from highways only. For each pollutant the accumulation has...... been compared to the long-term influx, estimated from short-term measurements of concentrations in highway runoff. The results show that a large proportion of the incoming heavy metals in short-term runoff events has accumulated in the ponds. This is not the case for the toxic organic compounds....... The results also show that the accumulation rates for the heavy metals depend significantly on the relative pond area (pond area divided by catchment area). The conclusion is that the mass balances of heavy metals and PAHs in highway ponds can be estimated with acceptable accuracy from a combination of short...

  9. Salvia miltiorrhiza Induces Tonic Contraction of the Lower Esophageal Sphincter in Rats via Activation of Extracellular Ca2+ Influx

    Directory of Open Access Journals (Sweden)

    Ching-Chung Tsai


    Full Text Available Up to 40% of patients with gastroesophageal reflux disease (GERD suffer from proton pump inhibitor refractory GERD but clinically the medications to strengthen the lower esophageal sphincter (LES to avoid irritating reflux are few in number. This study aimed to examine whether Salvia miltiorrhiza (SM extracts induce tonic contraction of rat LES ex vivo and elucidate the underlying mechanisms. To investigate the mechanism underlying the SM extract-induced contractile effects, rats were pretreated with atropine (a muscarinic receptor antagonist, tetrodotoxin (a sodium channel blocker, nifedipine (a calcium channel blocker, and Ca2+-free Krebs-Henseleit solution with ethylene glycol tetraacetic acid (EGTA, followed by administration of cumulative dosages of SM extracts. SM extracts induced dose-related tonic contraction of the LES, which was unaffected by tetrodotoxin, atropine, or nifedipine. However, the SM extract-induced LES contraction was significantly inhibited by Ca2+-free Krebs-Henseleit solution with EGTA. Next, SM extracts significantly induce extracellular Ca2+ entry into primary LES cells in addition to intracellular Ca2+ release and in a dose-response manner. Confocal fluorescence microscopy showed that the SM extracts consistently induced significant extracellular Ca2+ influx into primary LES cells in a time-dependent manner. In conclusion, SM extracts could induce tonic contraction of LES mainly through the extracellular Ca2+ influx pathway.

  10. Automatic detection of reservoir influx in conventional drilling, managed pressure drilling and dual gradient drilling


    Pettersen, Sigmund


    Reservoir influxes, or kicks, are well control incidents with the potential of severe consequences to health, safety and the environment, as well as economics. Although the main focus will always be to prevent such incidents from happening, drilling crew will also need to be able to spot reservoir influx as quickly as possible. This thesis presents a method for automated detection of reservoir influx or losses based on simulations of the surface circulation system. Theoretical background...

  11. Auxin Influx Carriers Control Vascular Patterning and Xylem Differentiation in Arabidopsis thaliana: e1005183

    National Research Council Canada - National Science Library

    Norma Fàbregas; Pau Formosa-Jordan; Ana Confraria; Riccardo Siligato; Jose M Alonso; Ranjan Swarup; Malcolm J Bennett; Ari Pekka Mähönen; Ana I Caño-Delgado; Marta Ibañes


    .... Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem...

  12. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana

    National Research Council Canada - National Science Library

    Fàbregas, Norma; Formosa-Jordan, Pau; Confraria, Ana; Siligato, Riccardo; Alonso, Jose M; Swarup, Ranjan; Bennett, Malcolm J; Mähönen, Ari Pekka; Caño-Delgado, Ana I; Ibañes, Marta


    .... Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem...

  13. Role of intracellular calcium in contraction of internal anal sphincter

    Institute of Scientific and Technical Information of China (English)


    @@ INTRODUCTION Internal anal sphincter (IAS) is a continuation of the smooth circular muscle layer thickened at the rectum, innervated by vegetative nerve. IAS is a special smooth muscle, which is different from colonic smooth muscle in physiology and pharmaology[1]. It was found that contraction of gastric smooth muscle depends on the influx of extracellular calcium and release of intracellular calcium[2]. In present study, we observed and compared the effects of extra- and intracellular calcium on the contraction of IAS and colonic smooth muscle.

  14. Responding to a Refugee Influx: Lessons from Lebanon

    Directory of Open Access Journals (Sweden)

    Ninette Kelley


    Full Text Available Between 2011 and 2015, Lebanon received over one million Syrian refugees. There is no country in the world that has taken in as many refugees in proportion to its size: by 2015, one in four of its residents was a refugee from Syria. Already beset, prior to the Syrian crisis, by political divisions, insecure borders, severely strained infrastructure, and over-stretched public services, the mass influx of refugees further taxed the country. That Lebanon withstood what is often characterized as an existential threat is primarily due to the remarkable resilience of the Lebanese people. It is also due to the unprecedented levels of humanitarian funding that the international community provided to support refugees and the communities that hosted them. UN, international, and national partners scaled up more than a hundred-fold to meet ever-burgeoning needs and creatively endeavored to meet challenges on the ground. And while the refugee response was not perfect, and funding fell well below needs, thousands of lives were saved, protection was extended, essential services were provided, and efforts were made to improve through education the future prospects of the close to half-a-million refugee children residing in Lebanon. This paper examines what worked well and where the refugee response stumbled, focusing on areas where improved efforts in planning, delivery, coordination, innovation, funding, and partnerships can enhance future emergency responses.

  15. Calcium in diet (United States)

    ... D is needed to help your body use calcium. Milk is fortified with vitamin D for this reason. ... of calcium dietary supplements include calcium citrate and calcium carbonate. Calcium citrate is the more expensive form of ...

  16. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system

    Institute of Scientific and Technical Information of China (English)

    Jian-xin SHEN; Jerrel L YAKEL


    Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they are grouped into either heteromeric (comprising both α and β subunits) or homomeric (comprising only α subunits) recep-tors. The nAChRs are known to be differentially permeable to calcium ions, with the α7 nAChR subtype having one of the highest permeabilities to calcium. Calcium influx through nAChRs, particularly through the α-bungarotoxin-sensitive α7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels. The activation of nAChRs can mediate three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP3Rs). Downstream signaling events mediated by nAChR-mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular signaling cascades), and long-term effects (such as neuroprotection via gene expression). In addition, nAChR activity can be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship. Further advances in imaging techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understand-ing the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments.

  17. CREB modulates calcium signaling in cAMP-induced bone marrow stromal cells (BMSCs). (United States)

    Zhang, Linxia; Liu, Li; Thompson, Ryan; Chan, Christina


    Calcium signaling has a versatile role in many important cellular functions. Despite its importance, regulation of calcium signaling in bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) has not been explored extensively. Our previous study revealed that cyclic adenosine monophosphate (cAMP) enabled BMSCs to generate calcium signal upon stimulation by dopamine, KCl and glutamate. Concurrently, cAMP transiently activated the transcription factor cAMP response element binding protein (CREB) in BMSCs. Activity of CREB can be modulated by the calcium/calmodulin-dependent kinase signaling pathway, however, whether the calcium signaling observed in cAMP-induced BMSCs requires CREB has not been investigated. In an effort to uncover the role of CREB in the generation of calcium signaling in response to modulators such as dopamine and KCl, we knocked down CREB activity in BMSCs. Our study indicated that BMSCs, but not its close relative fibroblasts, are responsive to dopamine and KCl after cAMP treatment. Calcium signal elicited by dopamine depends, in part, on calcium influx whereas that elicited by KCl depends completely on calcium influx. Knock-down of CREB activity significantly reduced or abolished the cAMP-induced calcium response, and reintroducing a constitutively active CREB partially restored the calcium response.

  18. Effects of Exterior Abscisic Acid on Calcium Distribution of Mesophyll Cells and Calcium Concentration of Guard Cells in Maize Seedlings

    Institute of Scientific and Technical Information of China (English)

    GUO Xiu-lin; MA Yuan-yuan; LIU Zi-hui; LIU Bin-hui


    In this study, the direct effects of exterior abscisic acid (ABA) on both calcium distribution of mesophyll cells and cytosolic calcium concentration of guard cells were examined. The distribution of Ca2+ localization were observed with calcium antimonate precipitate-electromicroscopic-cyto-chemical methods after treated with ABA and pretreated with ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), verapamil (Vp), and trifluoperazine (TFP). The laser scanning confocal microscopy was used to measure the cytosolic calcium concentrations of guard cells under different treatments. The results showed that the cytosolic Ca2+ concentration of mesophyll cells was induced to increase by ABA, but to decrease in both outside cell and the vacuoles within 10 min after treatments. The cytosolic calcium concentration of guard cells was increased gradually with the lag in treatment time. However, both EGTA and TFP could inverse those effects, indicating that the increase of cytosolic calcium induced by exterior ABA was mainly caused by calcium influx. The results also showed that calmodulin could influence both the calcium distribution of mesophyll cells and calcium concentration of guard cells. It shows that calmodulin participates in the process of ABA signal transduction, but the mechanism is not known as yet. The changes both calcium distribution of mesophyll cells and calcium concentration of guard cells further proved that the variations of cytosolic Ca2+ concentration induced by ABA were involved in the stomatal movements of maize seedlings.

  19. Marine influx hits Caspian Sea at the Pleistocene transition (United States)

    Vasiliev, Iuliana; Van Baak, Christiaan; Reichart, Gert-Jan; Hoyle, Thomas; Krijgsman, Wout; Mulch, Andreas


    Landlocked basins like the Caspian Sea are highly sensitive to changes in their hydrological budget, especially at times of disconnection from the global oceans. Modifications to the balance of river runoff, evaporation and precipitation are hence transferred quickly to changes in water lever while subsequent reconnection to open marine conditions may result in complete environmental turnover. Here we reconstruct hydrological and environmental changes in the Caspian Sea basin, using compound-specific hydrogen isotope (δD) data on excellently preserved long chain n-alkanes and alkenones. These biomarkers were extracted from Pliocene to Pleistocene successions, including the Productive Series, Akchagylian and Apsheronian (as in the regional Caspian Basin nomenclature). Terrestrial plant wax long chain n-alkanes δDvalues reflect continental hydrological changes in the region surrounding the Caspian Sea. δDvalues of long chain alkenones, in contrast, are derived from haptophyte algae within the basinal water column and typically reflect changes in δD of Caspian Sea water. The δD valuesof the terrestrial long chain n-alkanes show a variation of 55‰ from as high as -120 ‰ at the base of the sampled section (at ˜ 3.55 Ma) to as low as -175 ‰ in the youngest part (at ˜ 2.2 Ma). The change towards constant δDn-alkane values around -175 ‰ appears to be correlated with the occurrence of alkenones in the sampled section suggesting a newly installed connection of the Caspian Sea with a marine basin at that time. This observation is supported by δDalkenone values of around -190 ‰ being similar to age-equivalent δDalkenone values recorded in the marine realm. Based on the appearance of alkenones in the Caspian Basin sections and on their δD values we conclude that during Akchagylian, at ˜2.5 Ma, the Caspian Sea became connected to the open ocean, permitting the influx of marine biota into the basin.

  20. R-matrix calculations in support of impurity influx measurements (United States)

    Ballance, C. P.


    The RMPS (R-Matrix with Pseudo-States) method has been used with great success in the calculation of the collisional data for light fusion-related elements such as helium, beryllium or neon, both in terms of electron-impact excitation and also ground, metastable, and excited state ionisation. However, more complex atomic species such as Molybdenum and Tungsten have been choosen as plasma-facing elements in several tokamak experiments such as NSTX-U. During plasma operation there is an inevitable degree of wall erosion and therefore the determination of this impurity-influx rate from vessel walls needs to be characterized. In terms of atomic physics, this erosion rate can be determined from an SXB ratio and spectroscopic measurements of emitted line radiation. The SXB ratio is generated using a combination of electron-impact ionisation, excitation and the underlying atomic structure transition probabilities. The groundstate of Mo I and Mo II being half-open d shell systems quickly give rise to 100s of levels, and therefore the resulting spectral lines from the neutral and singly ionised species provides a convoluted picture. Therefore, subject to the constraints of spectrometer used, theoretically we are able to survey our structure and collisional calculations and pro-actively suggest particular diagnostic lines. There have been previous R-matrix calculations in LS coupling used for modelling of Mo, with mixed results, however it is hoped that this project shall resolve those differences. A method shall be presented that we use to determine which lines are most beneficial for analysis. I will present current electron-impact excitation and ionisation results for both neutral and singly ionised molybdenum.

  1. Calcium supplements (United States)

    ... Related Bone Diseases National Resource Center. Calcium and vitamin D: Important at every age. website. . Updated May 2015. Accessed March ...

  2. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha;


    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  3. Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes

    Directory of Open Access Journals (Sweden)

    Kunal Pathak


    Full Text Available The calcium signaling plays a crucial role in expansion and contraction of cardiac myocytes. This calcium signaling is achieved by calcium diffusion, buffering mechanisms and influx in cardiac myocytes. The various calcium distribution patterns required for achieving calcium signaling in myocytes are still not well understood. In this paper an attempt has been made to develop a model of calcium distribution in myocytes incorporating diffusion of calcium, point source and excess buffer approximation. The model has been developed for a two dimensional unsteady state case. Appropriate boundary conditions and initial condition have been framed. The finite element method has been employed to obtain the solution. The numerical results have been used to study the effect of buffers and source amplitude on calcium distribution in myocytes.

  4. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Norma Fàbregas


    Full Text Available Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants.

  5. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Norma Fàbregas


    Full Text Available Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants.

  6. The α2δ-1 subunit remodels CaV1.2 voltage sensors and allows Ca2+ influx at physiological membrane potentials (United States)

    Pantazis, Antonios; Sigg, Daniel; Weiss, James N.; Neely, Alan


    Excitation-evoked calcium influx across cellular membranes is strictly controlled by voltage-gated calcium channels (CaV), which possess four distinct voltage-sensing domains (VSDs) that direct the opening of a central pore. The energetic interactions between the VSDs and the pore are critical for tuning the channel’s voltage dependence. The accessory α2δ-1 subunit is known to facilitate CaV1.2 voltage-dependent activation, but the underlying mechanism is unknown. In this study, using voltage clamp fluorometry, we track the activation of the four individual VSDs in a human L-type CaV1.2 channel consisting of α1C and β3 subunits. We find that, without α2δ-1, the channel complex displays a right-shifted voltage dependence such that currents mainly develop at nonphysiological membrane potentials because of very weak VSD–pore interactions. The presence of α2δ-1 facilitates channel activation by increasing the voltage sensitivity (i.e., the effective charge) of VSDs I–III. Moreover, the α2δ-1 subunit also makes VSDs I–III more efficient at opening the channel by increasing the coupling energy between VSDs II and III and the pore, thus allowing Ca influx within the range of physiological membrane potentials. PMID:27481713

  7. Effects of several Chinese crude drugs on 45Ca transmembrane influx in vascular smooth muscles

    Institute of Scientific and Technical Information of China (English)

    ChenHeng-Liu; MoShang-Wu; 等


    The effects of several Chinese crude druge including Crocus sativus,Carthamus tinctorius and Ginkgo biloba on Ca2+ transmembrane influx in rat aorta rings were studied.Resting 45Ca uptake was not markedly altered by these drugs,whereas the 45 Ca influxes evoked by norepinephrine(1.2umol/L)and KCl(100mmol/L) in rat aorta rings were significantly inhibited by Crocus and Carthamus in a concentration-dependent manner,not by Ginkgo.The results indicate that extracellular Ca2+ tansmembrane influx through receptor-operated Ca2+ channels and potential-dependent Ca2+ channels can be blocked by crocus and Carthamus.

  8. Use of fluid injection of Krylamin D for control of water influx to underground workings

    Energy Technology Data Exchange (ETDEWEB)

    Postawa, J.; Stryczek, S.; Rakoczy, W.


    Water influx to a 270 m deep mine roadway in the Jaworzno black coal mine is associated with a tectonic fault. Injection of Krylamin D urea-formaldehyde resin was used to control water influx. Injection boreholes, 42 mm in diameter, were drilled perpendicular to the roadway axis. Resin consumption rate ranged from 50-150 dm/sup 3/ in coal to 30-80 dm/sup 3/ in shales. About 5 t of resin were used for water influx control in a 5.0 m long roadway section. Resin injection equipment and distribution of injection boreholes are discussed.

  9. Nicotine alpha 4 beta 2 receptor-mediated free calcium in an animal model of facial nucleus injury

    Institute of Scientific and Technical Information of China (English)

    Dawei Sun; Wenhai Sun; Yanqing Wang; Fugao Zhu; Rui Zhou; Yanjun Wang; Banghua Liu; Xiuming Wan; Huamin Liu


    Previous studies have demonstrated that the cholinergic system,via nicotinic receptors,regulates intracellular free calcium levels in the facial nucleus under normal physiological conditions.However,the regulation of nicotinic receptors on free calcium levels following facial nerve injury remains unclear.In the present study,an animal model of facial nerve injury was established,and changes in nicotinic receptor expression following facial nerve injury in rats were detected using reverse transcription polymerase chain reaction.Nicotinic receptor-mediated changes of free calcium levels following facial nucleus injury were determined by laser confocal microscopy.Results showed no significant difference in nicotinic receptor expression between the normal group and the affected facial nerve nucleus.The nicotinic receptor α4β2 subtype increased free calcium levels following facial nerve injury by promoting calcium transmembrane influx,and L-type voltage-gated calcium channel-mediated influx of calcium ions played an important role in promoting calcium transmembrane influx.The nicotinic receptor-mediated increase of free calcium levels following facial nerve injury provides an important mechanism for the repair of facial nerve injury.

  10. Roscovitine increases intracellular calcium release and capacitative calcium entry in PC12 cells. (United States)

    Choi, Ho Sook; Chung, Sul-Hee


    Cyclin-dependent kinase 5 (Cdk5), which is activated by the non-cyclin regulator p35 or p39, is a proline-directed serine/threonine kinase that is implicated in many physiological and pathological processes. Here, we studied calcium signaling using the fluorescent cytosolic calcium indicator, Fura-4, in NGF-differentiated PC12 cells treated with roscovitine, a Cdk5 inhibitor. As compared to the control cells, the roscovitine-treated cells significantly potentiated intracellular calcium release by membrane depolarization (high K(+)) or through thapsigargin. In addition, roscovitine increased the magnitude of capacitative calcium entry (CCE), i.e., a calcium influx mechanism triggered by the depletion of intracellular calcium stores. Notably, roscovitine markedly slowed the rate of Ca(2+) removal from the plasma membrane. These results suggest that Cdk5 regulates intracellular calcium homeostasis and that the dysregulation of Cdk5 may contribute to disease pathogenesis by perturbing cellular Ca(2+) signaling. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  11. Ryanodine Receptors Selectively Interact with L Type Calcium Channels in Mouse Taste Cells.

    Directory of Open Access Journals (Sweden)

    Michelle R Rebello

    Full Text Available WE REPORTED THAT RYANODINE RECEPTORS ARE EXPRESSED IN TWO DIFFERENT TYPES OF MAMMALIAN PERIPHERAL TASTE RECEPTOR CELLS: Type II and Type III cells. Type II cells lack voltage-gated calcium channels (VGCCs and chemical synapses. In these cells, ryanodine receptors contribute to the taste-evoked calcium signals that are initiated by opening inositol trisphosphate receptors located on internal calcium stores. In Type III cells that do have VGCCs and chemical synapses, ryanodine receptors contribute to the depolarization-dependent calcium influx.The goal of this study was to establish if there was selectivity in the type of VGCC that is associated with the ryanodine receptor in the Type III taste cells or if the ryanodine receptor opens irrespective of the calcium channels involved. We also wished to determine if the ryanodine receptors and VGCCs require a physical linkage to interact or are simply functionally associated with each other. Using calcium imaging and pharmacological inhibitors, we found that ryanodine receptors are selectively associated with L type VGCCs but likely not through a physical linkage.Taste cells are able to undergo calcium induced calcium release through ryanodine receptors to increase the initial calcium influx signal and provide a larger calcium response than would otherwise occur when L type channels are activated in Type III taste cells.

  12. Osmotic induction of calcium accumulation in human embryonic kidney cells detected with a high sensitivity FRET calcium sensor. (United States)

    Hou, Bi-Huei; Takanaga, Hitomi; Griesbeck, Oliver; Frommer, Wolf B


    Calcium serves as a second messenger in glucose-triggered insulin secretion of pancreatic cells. Less is known about sugar signaling in non-excitable cells. Here, the high sensitivity FRET calcium sensor TN-XXL was used to characterize glucose-induced calcium responses in non-excitable human embryonic kidney HEK293T cells. HEK293T cells responded to perfusion with glucose with a sustained and concentration-dependent increase in cytosolic calcium levels. Sucrose and mannitol triggered comparable calcium responses, suggesting that the increase of the calcium concentration was caused by osmotic effects. HEK293T cells are characterized by low endogenous glucose uptake capacity as shown with a high sensitivity glucose sensor. Consistently, when glucose influx was artificially increased by co-expression of GLUT glucose transporters, the glucose-induced calcium increase was significantly reduced. Neither calcium depletion, nor gadolinium or thapsigargin were able to inhibit the calcium accumulation. Taken together, membrane impermeable osmolytes such as sucrose and mannitol lead to an increase in calcium levels, while the effect of glucose depends on the cell's glucose uptake capacity and will thus vary between cell types in the body that differ in their glucose uptake capacity.

  13. Physiology and Regulation of Calcium Channels in Stomatal Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Julian I.


    Stomatal pores in the epidermis of leaves regulate the diffusion of CO2 into leaves for photosynthetic carbon fixation and control water loss of plants during drought periods. Guard cells sense CO2, water status, light and other environmental conditions to regulate stomatal apertures for optimization of CO2 intake and plant growth under drought stress. The cytosolic second messenger calcium contributes to stomatal movements by transducing signals and regulating ion channels in guard cells. Studies suggest that both plasma membrane Ca2+ influx channels and vacuolar/organellar Ca2+ release channels contribute to ABA-induced Ca2+ elevations in guard cells. Recent research in the P.I.'s laboratory has led to identification of a novel major cation-selective Ca2+-permeable influx channel (Ica) in the plasma membrane of Arabidopsis guard cells. These advances will allow detailed characterization of Ica plasma membrane Ca2+ influx channels in guard cells. The long term goal of this research project is to gain a first detailed characterization of these novel plasma membrane Ca2+-permeable channel currents in Arabidopsis guard cells. The proposed research will investigate the hypothesis that Ica represents an important Ca2+ influx pathway for ABA and CO2 signal transduction in Arabidopsis guard cells. These studies will lead to elucidation of key signal transduction mechanisms by which plants balance CO2 influx into leaves and transpirational water loss and may contribute to future strategies for manipulating gas exchange for improved growth of crop plants and for biomass production.

  14. Auxin influx inhibitors 1-NOA, 2-NOA, and CHPAA interfere with membrane dynamics in tobacco cells. (United States)

    Lanková, Martina; Smith, Richard S; Pesek, Bedrich; Kubes, Martin; Zazímalová, Eva; Petrásek, Jan; Hoyerová, Klára


    The phytohormone auxin is transported through the plant body either via vascular pathways or from cell to cell by specialized polar transport machinery. This machinery consists of a balanced system of passive diffusion combined with the activities of auxin influx and efflux carriers. Synthetic auxins that differ in the mechanisms of their transport across the plasma membrane together with polar auxin transport inhibitors have been used in many studies on particular auxin carriers and their role in plant development. However, the exact mechanism of action of auxin efflux and influx inhibitors has not been fully elucidated. In this report, the mechanism of action of the auxin influx inhibitors (1-naphthoxyacetic acid (1-NOA), 2-naphthoxyacetic acid (2-NOA), and 3-chloro-4-hydroxyphenylacetic acid (CHPAA)) is examined by direct measurements of auxin accumulation, cellular phenotypic analysis, as well as by localization studies of Arabidopsis thaliana L. auxin carriers heterologously expressed in Nicotiana tabacum L., cv. Bright Yellow cell suspensions. The mode of action of 1-NOA, 2-NOA, and CHPAA has been shown to be linked with the dynamics of the plasma membrane. The most potent inhibitor, 1-NOA, blocked the activities of both auxin influx and efflux carriers, whereas 2-NOA and CHPAA at the same concentration preferentially inhibited auxin influx. The results suggest that these, previously unknown, activities of putative auxin influx inhibitors regulate overall auxin transport across the plasma membrane depending on the dynamics of particular membrane vesicles.

  15. How voltage-gated calcium channels gate forms of homeostatic synaptic plasticity

    Directory of Open Access Journals (Sweden)

    C. Andrew eFrank


    Full Text Available Throughout life, animals face a variety of challenges such as developmental growth, the presence of toxins, or changes in temperature. Neuronal circuits and synapses respond to challenges by executing an array of neuroplasticity paradigms. Some paradigms allow neurons to up- or downregulate activity outputs, while countervailing ones ensure that outputs remain within appropriate physiological ranges. A growing body of evidence suggests that homeostatic synaptic plasticity (HSP is critical in the latter case. Voltage-gated calcium channels gate forms of HSP. Presynaptically, the aggregate data show that when synapse activity is weakened, homeostatic signaling systems can act to correct impairments, in part by increasing calcium influx through presynaptic CaV2-type channels. Increased calcium influx is often accompanied by parallel increases in the size of active zones and the size of the readily releasable pool of presynaptic vesicles. These changes coincide with homeostatic enhancements of neurotransmitter release. Postsynaptically, there is a great deal of evidence that reduced network activity and loss of calcium influx through CaV1-type calcium channels also results in adaptive homeostatic signaling. Some adaptations drive presynaptic enhancements of vesicle pool size and turnover rate via retrograde signaling, as well as de novo insertion of postsynaptic neurotransmitter receptors. Enhanced calcium influx through CaV1 after network activation or single cell stimulation can elicit the opposite response – homeostatic depression via removal of excitatory receptors.There exist intriguing links between HSP and calcium channelopathies – such as forms of epilepsy, migraine, ataxia, and myasthenia. The episodic nature of some of these disorders suggests alternating periods of stable and unstable function. Uncovering information about how calcium channels are regulated in the context of HSP could be relevant toward understanding these and other

  16. Calcium and bones (United States)

    Bone strength and calcium ... calcium (as well as phosphorus) to make healthy bones. Bones are the main storage site of calcium in ... your body does not absorb enough calcium, your bones can get weak or will not grow properly. ...

  17. Calcium Imaging of Sonoporation of Mammalian Cells (United States)

    Sabens, David; Aehle, Matthew; Steyer, Grant; Kourennyi, Dmitri; Deng, Cheri X.


    Ultrasound mediated delivery of compounds is a relatively recent development in drug delivery and gene transfection techniques. Due to the lack of methods for real-time monitoring of sonoporation at the cellular level, the efficiency of drug/gene delivery and sonoporation associated side effects, such as the loss of cell viability and enhanced apoptosis, have been studied only through post US exposure analyses, requiring days for cell incubation. Furthermore, because microporation appears to be transient in nature, it was not possible to correlate transfection with microporation on an individual cellular basis. By studying the role of calcium in the cell and using fluorescent calcium imaging to study sonoporation it is possible to quantify both cell porosity and sonoporation side effects. Since both post sonoporation cell survival and delivery efficiency are related to the dynamic process of the cell membrane poration, calcium imaging of sonoporation will provide important knowledge to obtain improved understanding of sonoporation mechanism. Our experimental results demonstrated the feasibility of calcium imaging of sonoporation in Chinese Hamster Ovary (CHO) cells. We have measured the changes in the intracellular calcium concentration using Fura-2, a fluorescent probe, which indicate influx or flow of Calcium across the cell membrane. Analysis of data identified key aspects in the dynamic sonoporation process including the formation of pores in the cell membrane, and the relative temporal duration of the pores and their resealing. These observations are obtained through the analysis of the rate the calcium concentration changes within the cells, making it possible to visualize membrane opening and repair in real-time through such changes in the intracellular calcium concentration.

  18. Calcium Carbonate (United States)

    ... doctor if you have or have ever had kidney disease or stomach conditions.tell your doctor if you are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while taking calcium carbonate, call your doctor.

  19. Calcium Test (United States)

    ... if a person has symptoms of a parathyroid disorder , malabsorption , or an overactive thyroid. A total calcium level is often measured as part of a routine health screening. It is included in the comprehensive metabolic panel (CMP) and the basic metabolic panel (BMP) , ...

  20. G protein-induced trafficking of voltage-dependent calcium channels. (United States)

    Tombler, Eugene; Cabanilla, Nory Jun; Carman, Paul; Permaul, Natasha; Hall, John J; Richman, Ryan W; Lee, Jessica; Rodriguez, Jennifer; Felsenfeld, Dan P; Hennigan, Robert F; Diversé-Pierluissi, María A


    Calcium channels are well known targets for inhibition by G protein-coupled receptors, and multiple forms of inhibition have been described. Here we report a novel mechanism for G protein-mediated modulation of neuronal voltage-dependent calcium channels that involves the destabilization and subsequent removal of calcium channels from the plasma membrane. Imaging experiments in living sensory neurons show that, within seconds of receptor activation, calcium channels are cleared from the membrane and sequestered in clathrin-coated vesicles. Disruption of the L1-CAM-ankyrin B complex with the calcium channel mimics transmitter-induced trafficking of the channels, reduces calcium influx, and decreases exocytosis. Our results suggest that G protein-induced removal of plasma membrane calcium channels is a consequence of disrupting channel-cytoskeleton interactions and might represent a novel mechanism of presynaptic inhibition.

  1. Dystrophin/α1-syntrophin scaffold regulated PLC/PKC-dependent store-operated calcium entry in myotubes. (United States)

    Sabourin, Jessica; Harisseh, Rania; Harnois, Thomas; Magaud, Christophe; Bourmeyster, Nicolas; Déliot, Nadine; Constantin, Bruno


    In skeletal muscles from patient suffering of Duchenne Muscular Dystrophy and from mdx mice, the absence of the cytoskeleton protein dystrophin has been shown to be essential for maintaining a normal calcium influx. We showed that a TRPC store-dependent cation influx is increased by loss of dystrophin or a scaffolding protein α1-syntrophin, however the mechanisms of this calcium mishandling are incompletely understood. First of all, we confirmed that TRPC1 but also STIM1 and Orai1 are supporting the store-operated cation entry which is enhanced in dystrophin-deficient myotubes. Next, we demonstrated that inhibition of PLC or PKC in dystrophin-deficient myotubes restores elevated cation entry to normal levels similarly to enforced minidystrophin expression. In addition, silencing α1-syntrophin also increased cation influx in a PLC/PKC dependent pathway. We also showed that α1-syntrophin and PLCβ are part of a same protein complex reinforcing the idea of their inter-relation in calcium influx regulation. This elevated cation entry was decreased to normal levels by chelating intracellular free calcium with BAPTA-AM. Double treatments with BAPTA-AM and PLC or PKC inhibitors suggested that the elevation of cation influx by PLC/PKC pathway is dependent on cytosolic calcium. All these results demonstrate an involvement in dystrophin-deficient myotubes of a specific calcium/PKC/PLC pathway in elevation of store-operated cation influx supported by the STIM1/Orai1/TRPC1 proteins, which is normally regulated by the α1-syntrophin/dystrophin scaffold.

  2. Types of voltage—dependent calcium channels involved in high potassium depolarization—induced amylase secretion in the exocrine pancreatic tumour cell line AR4—2J

    Institute of Scientific and Technical Information of China (English)



    In the perifused fura-2 loaded exocrine pancreatic acinar cell line AR4-2J pulses of high potassium induced repetitive increases in intracellular calcium,Attached cells when stimulated with high potassium secreted large amount of amylase.High potassium-induced secretion was dependent both on the concentration of potassium and duration of stimulation.High potassium induced increases in intracellular calcium were inhibited by voltage-dependent calcium channel anatagonists with an order of potency as follows:nifedipine>ω-agatoxin IVA>ω-conotoxin GVIA.In contrast,the L-type calcium channel anatagonist nifedipine almost completely inhibited potassium-induced amylase secretion,whereas the N-type channel antagonist ω-conotoxin GVIA was without effect.The P-type channel antagonist ω-agatoxin IVA had a small inhibitory effect,but this inhibition was not significant at the level of amylase secretion.In conclusion,the AR4-2J cell line posesses different voltage-dependent calcium channels(L,P,N)with the L-type predominantly involved in depolarization induced amylase secretion.

  3. 5-Hydroxytryptamino-induced calcium sparks in cultured rat stomach fundus smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiaoling; (张小玲); YAN; Hongtao; (阎宏涛); YAN; Yang; (闫炀)


    With a new fluorescence probe of Ca2+, STDIn-AM, 5-hydroxytryptamino (5-HT)-induced spontaneous calcium release events (calcium sparks) in cultured rat stomach fundus smooth muscle cells (SFSMC) are investigated by laser scanning confocal microscope. The mechanisms of initiation of Ca2+ sparks, propagating Ca2+ waves and their relation to E-C coupling are discussed. After the extracellular [Ca2+] is increased to 10 mmol/L, addition of 5-HT causes hot spots throughout the cytoplasm, which is brighter near the plasmalemma. The amplitude of the event is at least two times greater than the standard deviation of fluorescence intensity fluctuations measured in the neighboring region and the duration of the Ca2+ signal is over 100 ms. The results suggest that 5-HT acts by the way of 5-HT2 receptors on SFSMC, then through 5-HT2 receptors couples IP3/Ca2+ and DG/PKC double signal transduction pathways to cause Ca2+ release from intracellular Ca2+ stores and followed Ca2+ influx possibly through calcium release-activated calcium influx. The acceptor of activated 5-HT2 can also cause membrane depolarization, which then stimulates the L-type Ca2+ channels leading to Ca2+ influx. Thenthe local Ca2+ entry mentioned above activates ryanodine-sensitive Ca2+ releasechannels (RyR) on sarcoplasmic reticulum (SR) to cause local Ca2+ release events (Ca2+ sparks) through calcium-induced calcium release (CICR).

  4. A novel Toxoplasma gondii calcium-dependent protein kinase

    Directory of Open Access Journals (Sweden)

    Tzen M.


    Full Text Available Toxoplasma gondii is an obligate intracellular parasite that infects all types of cells in humans. A family of calcium-dependent protein kinases (CDPKs, previously identified as important in the development of plants and protists, was recently shown to play a role in the infectivity of apicomplexans, and in motility and host cell invasion in particular. We report here the isolation of a new calcium-dependent protein kinase gene from the human toxoplasmosis parasite, Toxoplasma gondii. The gene consists of 12 exons. The encoded protein, TgCDPK4, consists of the four characteristic domains of members of the CDPK family and is most similar to PfCDPK2 from Plasmodium falciparum. We measured TgCDPK4 activity, induced by calcium influx, using a kinase assay. A calcium chelator (EGTA inhibited this activity. These findings provide evidence of signal transduction involving members of the CDPK family in T. gondii.

  5. Antimuscarinic, calcium channel blocker and tachykinin NK2 receptor antagonist actions of otilonium bromide in the circular muscle of guinea-pig colon. (United States)

    Santicioli, P; Zagorodnyuk, V; Renzetti, A R; Maggi, C A


    We have analyzed, by the sucrose gap method, the action of otilonium bromide, a quaternary ammonium derivative in use for the symptomatic therapy of irritable bowel syndrome, on the electrical and mechanical responses initiated by different stimuli in the circular muscle of the guinea-pig proximal colon. Otilonium bromide produced a concentration-dependent inhibition of membrane depolarization (IC50 4.1 microM), action potentials (APs) and contraction (IC50 3.7 microM) produced by the muscarinic receptor agonist, methacholine. It also produced a concentration-dependent inhibition of APs and accompanying contraction (IC50 31 microM) produced by KCl (30 mM), and had a biphasic effect on the cholinergic excitatory junction potential (e.j.p.) produced by single pulse electrical field stimulation: at low concentrations (0.1-0.3 microM) otilonium bromide enhanced the e.j.p. and, at higher concentrations (IC50 22 microM and 16 microM toward depolarization and contraction), produced a concentration-dependent inhibition. Otilonium bromide eliminated the APs superimposed on the depolarization induced by the tachykinin NK1 receptor agonist, [Sar9]substance P-sulphone and suppressed the corresponding contraction (IC50 43 microM) but had little effect on the sustained membrane depolarization induced by this agonist. On the other hand, otilonium bromide produced a similar inhibitory effect on both membrane depolarization and contraction (IC50 38 microM and 45 microM, respectively) induced by the tachykinin NK2 receptor agonist [betaAla8]neurokinin A (4-10). When tested in the presence of nifedipine (1 microM), otilonium bromide had no effect on the membrane depolarization induced by [Sar9]substance P-sulphone but inhibited in a concentration-dependent manner the depolarization induced by [betaAla8]neurokinin A (4-10) (IC50 41 microM). In contrast, the blocker of receptor-operated cation channels, SKF 96365, inhibited with similar potency the depolarization induced by both [Sar9

  6. Mitochondrial calcium uptake. (United States)

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J


    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  7. Nonequilibrium calcium dynamics regulate the autonomous firing pattern of rat striatal cholinergic interneurons. (United States)

    Goldberg, Joshua A; Teagarden, Mark A; Foehring, Robert C; Wilson, Charles J


    Striatal cholinergic interneurons discharge rhythmically in two patterns associated with different afterhyperpolarization timescales, each dictated by a different calcium-dependent potassium current. Single spiking depends on a medium-duration afterhyperpolarization (mAHP) generated by rapid SK currents that are associated with N-type calcium channels. Periodic bursting is driven by a delayed and slowly decaying afterhyperpolarization (sAHP) current associated with L-type channels. Using calcium imaging we show that the calcium transients underlying these currents exhibit two corresponding timescales throughout the somatodendritic tree. This result is not consistent with spatial compartmentalization of calcium entering through the two calcium channels and acting on the two potassium currents, or with differences in channel gating kinetics of the calcium dependent potassium currents. Instead, we show that nonequilibrium dynamics of calcium redistribution among cytoplasmic binding sites with different calcium binding kinetics can give rise to multiple timescales within the same cytoplasmic volume. The resulting independence of mAHP and sAHP currents allows cytoplasmic calcium to control two different and incompatible firing patterns (single spiking or bursting and pausing), depending on whether calcium influx is pulsatile or sustained. During irregular firing, calcium entry at both timescales can be detected, suggesting that an interaction between the medium and slow calcium-dependent afterhyperpolarizations may underlie this firing pattern.

  8. Energy influx measurements with an active thermal probe in plasma-technological processes

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Ruben; Kersten, Holger [Institut fuer Experimentelle und Angewandte Physik, Kiel (Germany); Wiese, Georg; Bartsch, Rene [Formerly Institut fuer Plasmaforschung und Technologie, Greifswald (Germany)


    Many plasma-technological applications are based on plasma wall interaction, which can be characterised by calorimetric probes to measure the energy influx from the plasma to the substrate surface. Passive probes are based on the principle of recording the temperature course during heating and cooling of the probe for calculating the energy influx. The disadvantages of these probes are that the energy influx has to be interrupted by switching off the energy source or by using suitable apertures and by the necessity of knowing the exact heat capacity of the probe. A continuously operating active probe is, therefore, developed which does not need to be calibrated and which compensates the environmental effects as well as the heat conduction by the probe holder. By means of controlled electrical heating the probe is set to a given working temperature and then the energy supply supporting the fixed operating temperature is measured. The energy influx by the plasma is compensated by decreasing the heating power and is directly displayed in J/cm{sup 2}s. Some practical measurements are presented. Even, if the probe is designed as double probe the directionality of the energy influx can be determined. (orig.)

  9. Cch1p mediates Ca2+ influx to protect Saccharomyces cerevisiae against eugenol toxicity. (United States)

    Roberts, Stephen K; McAinsh, Martin; Widdicks, Lisa


    Eugenol has antifungal activity and is recognised as having therapeutic potential. However, little is known of the cellular basis of its antifungal activity and a better understanding of eugenol tolerance should lead to better exploitation of eugenol in antifungal therapies. The model yeast, Saccharomyces cerevisiae, expressing apoaequorin was used to show that eugenol induces cytosolic Ca(2+) elevations. We investigated the eugenol Ca(2+) signature in further detail and show that exponentially growing cells exhibit Ca(2+) elevation resulting exclusively from the influx of Ca(2+) across the plasma membrane whereas in stationary growth phase cells Ca(2+) influx from intracellular and extracellular sources contribute to the eugenol-induced Ca(2+) elevation. Ca(2+) channel deletion yeast mutants were used to identify the pathways mediating Ca(2+) influx; intracellular Ca(2+) release was mediated by the vacuolar Ca(2+) channel, Yvc1p, whereas the Ca(2+) influx across the plasma membrane could be resolved into Cch1p-dependent and Cch1p-independent pathways. We show that the growth of yeast devoid the plasma membrane Ca(2+) channel, Cch1p, was hypersensitive to eugenol and that this correlated with reduced Ca(2+) elevations. Taken together, these results indicate that a cch1p-mediated Ca(2+) influx is part of an intracellular signal which protects against eugenol toxicity. This study provides fresh insight into the mechanisms employed by fungi to tolerate eugenol toxicity which should lead to better exploitation of eugenol in antifungal therapies.

  10. Cch1p mediates Ca2+ influx to protect Saccharomyces cerevisiae against eugenol toxicity.

    Directory of Open Access Journals (Sweden)

    Stephen K Roberts

    Full Text Available Eugenol has antifungal activity and is recognised as having therapeutic potential. However, little is known of the cellular basis of its antifungal activity and a better understanding of eugenol tolerance should lead to better exploitation of eugenol in antifungal therapies. The model yeast, Saccharomyces cerevisiae, expressing apoaequorin was used to show that eugenol induces cytosolic Ca(2+ elevations. We investigated the eugenol Ca(2+ signature in further detail and show that exponentially growing cells exhibit Ca(2+ elevation resulting exclusively from the influx of Ca(2+ across the plasma membrane whereas in stationary growth phase cells Ca(2+ influx from intracellular and extracellular sources contribute to the eugenol-induced Ca(2+ elevation. Ca(2+ channel deletion yeast mutants were used to identify the pathways mediating Ca(2+ influx; intracellular Ca(2+ release was mediated by the vacuolar Ca(2+ channel, Yvc1p, whereas the Ca(2+ influx across the plasma membrane could be resolved into Cch1p-dependent and Cch1p-independent pathways. We show that the growth of yeast devoid the plasma membrane Ca(2+ channel, Cch1p, was hypersensitive to eugenol and that this correlated with reduced Ca(2+ elevations. Taken together, these results indicate that a cch1p-mediated Ca(2+ influx is part of an intracellular signal which protects against eugenol toxicity. This study provides fresh insight into the mechanisms employed by fungi to tolerate eugenol toxicity which should lead to better exploitation of eugenol in antifungal therapies.

  11. Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. (United States)

    Parry, G; Delbarre, A; Marchant, A; Swarup, R; Napier, R; Perrot-Rechenmann, C; Bennett, M J


    The hormone auxin is transported in plants through the combined actions of diffusion and specific auxin influx and efflux carriers. In contrast to auxin efflux, for which there are well documented inhibitors, understanding the developmental roles of carrier-mediated auxin influx has been hampered by the absence of specific competitive inhibitors. However, several molecules that inhibit auxin influx in cultured cells have been described recently. The physiological effects of two of these novel influx carrier inhibitors, 1-naphthoxyacetic acid (1-NOA) and 3-chloro-4-hydroxyphenylacetic acid (CHPAA), have been investigated in intact seedlings and tissue segments using classical and new auxin transport bioassays. Both molecules do disrupt root gravitropism, which is a developmental process requiring rapid auxin redistribution. Furthermore, the auxin-insensitive and agravitropic root-growth characteristics of aux1 plants were phenocopied by 1-NOA and CHPAA. Similarly, the agravitropic phenotype of inhibitor-treated seedlings was rescued by the auxin 1-naphthaleneacetic acid, but not by 2,4-dichlorophenoxyacetic acid, again resembling the relative abilities of these two auxins to rescue the phenotype of aux1. Further investigations have shown that none of these compounds block polar auxin transport, and that CHPAA exhibits some auxin-like activity at high concentrations. Whilst results indicate that 1-NOA and CHPAA represent useful tools for physiological studies addressing the role of auxin influx in planta, 1-NOA is likely to prove the more useful of the two compounds.

  12. Vertical and horizontal transport of mesospheric Na: Implications for the mass influx of cosmic dust (United States)

    Gardner, Chester S.; Liu, Alan Z.; Guo, Yafang


    The mesospheric metal layers are formed by the vaporization of high-speed cosmic dust particles as they enter the Earth's upper atmosphere. We show that the downward fluxes of these metal atoms, induced locally by waves and turbulence, are related in a straightforward way to the meteoric influxes of the metals, their chemical losses and their advective transport by the large-scale vertical and horizontal motions associated with the meridional circulation system. Above the peak of the metal layers where chemical losses and large-scale vertical motions are small, the wave-induced flux is insensitive to changes in local wave activity. If the downward transport velocity increases, because wave activity increases, then in response, the metal densities will decrease to maintain a constant vertical flux. By fitting the theoretical Na flux profile to the annual mean vertical flux profile measured during the night at the Starfire Optical Range, NM, we derive improved estimates for the global influxes of both Na and cosmic dust. The mean Na influx is 22,500±1050 atoms/cm2/s, which equals 389±18 kg/d for the global input of Na vapor. If the Na composition of the dust particles is identical to CI chondritic meteorites (4990 ppm by mass), then the global influx of cosmic dust is 176±38 t/d. If the composition is identical to ordinary chondrites (7680 ppm), the global dust influx is 107±22 t/d.

  13. Integumentary L-histidine transport in a euryhaline polychaete worm: regulatory roles of calcium and cadmium in the transport event. (United States)

    Ahearn, H R; Ahearn, G A; Gomme, J


    Integumentary uptake of L-[(3)H]histidine by polychaete worms (Nereis succinea) from estuarine waters of Oahu, Hawaii was measured in the presence and absence of calcium and cadmium using a physiological saline that approximated the ion composition of 60 % sea water. In this medium 1 micromol L(-1) cadmium significantly increased (P<0.01) the uptake of 10 micromol L(-1)L-[(3)H]histidine, while 1 micromol L(-1) cadmium plus 25 micromol L(-1)L-leucine significantly decreased (P<0.01) amino acid uptake. L-[(3)H]histidine influx was a sigmoidal function (n=2. 21+/-0.16, mean +/- s.e.m.) of [L-histidine] (1?50 micromol L(-1)) in the absence of cadmium, but became a hyperbolic function with the addition of 1 micromol L(-1) cadmium. A decrease of calcium concentration from 6 to 0 mmol L(-1) (lithium substitution) significantly increased (P<0.01) amino acid influx in the presence and absence of cadmium. Calcium significantly reduced (P<0.01), and cadmium significantly increased (P<0.01), L-[(3)H]histidine influx J(max), without either divalent cation affecting amino acid influx K(t). Variation in external sodium concentration (0?250 mmol L(-1)) had no effect on 10 micromol L(-1)L-[(3)H]histidine influx, but amino acid entry was a sigmoidal function of both [cadmium] (n=2.34+/-0.44) and [lithium] (n=1.91+/-0.39) in the absence of calcium. A model is proposed for transapical L-[(3)H]histidine influx by a transporter that resembles the classical sodium-independent L-system carrier protein that is regulated by the external divalent cations calcium and cadmium.

  14. Mitochondrial response and calcium ion change in apoptotic insect cells induced by SfaMNPV

    Institute of Scientific and Technical Information of China (English)

    XIU Meihong; PENG Jianxin; HONG Huazhu


    Mitochondrial responses and changes of calcium ions in apoptotic insect SL-1 cells induced by Syngrapha falcifera multiple nuclear polyhedrosis virus (SfaMNPV) are reported in this paper. By using Rhodamine 123 as a fluorescent labeling probe, flow cytometry analysis and confocal laser scanning microscope observation we observed that the mitochondrial transmembrane potential (△Ψm) began to decrease in SL-1 cells at 4 h post infection and △Ψm reduced continuously with the extension of virus infection. Western blotting indicated that the Bcl-2 level in the mitochondria gradually declined and was down- regulated. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria, which indicated that cytochrome c was released from mitochondria into cytosol. These results suggest that mitochondrion-mediated apoptotic signal transduction pathway exists in apoptotic insect cell induced by SfaMNPV. Cytosolic free calcium ([Ca2+]i) concentration rapidly increased after SfaMNPV infection and the elevated calcium was tested to come partly from extracelllular calcium ion influx. Flow cytometry analysis indicated that the apoptosis in SL-1 cells was not influenced by established cytosolic calcium clamped conditions and the EGTA inhibiting calcium influx. Therefore, neither the elevation of cytosolic calcium ion nor extracellular calcium entry was the inducing factor of apoptosis, which hinted that the depletion of ER Ca2+ store contributed to SL-1 cell apoptosis induced by SfaMNPV.

  15. Tryptophan hydroxylase is modulated by L-type calcium channels in the rat pineal gland. (United States)

    Barbosa, Roseli; Scialfa, Julieta Helena; Terra, Ilza Mingarini; Cipolla-Neto, José; Simonneaux, Valérie; Afeche, Solange Castro


    Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP(3)-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of serotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland.

  16. Voltage gated calcium channels negatively regulate protective immunity to Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shashank Gupta

    Full Text Available Mycobacterium tuberculosis modulates levels and activity of key intracellular second messengers to evade protective immune responses. Calcium release from voltage gated calcium channels (VGCC regulates immune responses to pathogens. In this study, we investigated the roles of VGCC in regulating protective immunity to mycobacteria in vitro and in vivo. Inhibiting L-type or R-type VGCC in dendritic cells (DCs either using antibodies or by siRNA increased calcium influx in an inositol 1,4,5-phosphate and calcium release calcium activated channel dependent mechanism that resulted in increased expression of genes favoring pro-inflammatory responses. Further, VGCC-blocked DCs activated T cells that in turn mediated killing of M. tuberculosis inside macrophages. Likewise, inhibiting VGCC in infected macrophages and PBMCs induced calcium influx, upregulated the expression of pro-inflammatory genes and resulted in enhanced killing of intracellular M. tuberculosis. Importantly, compared to healthy controls, PBMCs of tuberculosis patients expressed higher levels of both VGCC, which were significantly reduced following chemotherapy. Finally, blocking VGCC in vivo in M. tuberculosis infected mice using specific antibodies increased intracellular calcium and significantly reduced bacterial loads. These results indicate that L-type and R-type VGCC play a negative role in M. tuberculosis infection by regulating calcium mobilization in cells that determine protective immunity.

  17. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca{sup 2+} influx

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Dong-Oh [Department of Biology Education, Daegu University, Gyungsan, Gyeongbuk 712–714 (Korea, Republic of); Kang, Chang-Hee; Kang, Sang-Hyuck [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of); Choi, Yung-Hyun [Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614–054 (Korea, Republic of); Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree [School of Medicine, Jeju National University, Jeju-si 690–756 (Korea, Republic of); Kim, Gi-Young, E-mail: [Department of Marine Life Sciences, Jeju National University, Jeju 690–756 (Korea, Republic of)


    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  18. Involvement of inositol 1,4,5-trisphosphate in nicotinic calcium responses in dystrophic myotubes assessed by near-plasma membrane calcium measurement. (United States)

    Basset, Olivier; Boittin, François-Xavier; Dorchies, Olivier M; Chatton, Jean-Yves; van Breemen, Cornelis; Ruegg, Urs T


    In skeletal muscle cells, plasma membrane depolarization causes a rapid calcium release from the sarcoplasmic reticulum through ryanodine receptors triggering contraction. In Duchenne muscular dystrophy (DMD), a lethal disease that is caused by the lack of the cytoskeletal protein dystrophin, the cytosolic calcium concentration is known to be increased, and this increase may lead to cell necrosis. Here, we used myotubes derived from control and mdx mice, the murine model of DMD, to study the calcium responses induced by nicotinic acetylcholine receptor stimulation. The photoprotein aequorin was expressed in the cytosol or targeted to the plasma membrane as a fusion protein with the synaptosome-associated protein SNAP-25, thus allowing calcium measurements in a restricted area localized just below the plasma membrane. The carbachol-induced calcium responses were 4.5 times bigger in dystrophic myotubes than in control myotubes. Moreover, in dystrophic myotubes the carbachol-mediated calcium responses measured in the subsarcolemmal area were at least 10 times bigger than in the bulk cytosol. The initial calcium responses were due to calcium influx into the cells followed by a fast refilling/release phase from the sarcoplasmic reticulum. In addition and unexpectedly, the inositol 1,4,5-trisphosphate receptor pathway was involved in these calcium signals only in the dystrophic myotubes. This surprising involvement of this calcium release channel in the excitation-contraction coupling could open new ways for understanding exercise-induced calcium increases and downstream muscle degeneration in mdx mice and, therefore, in DMD.

  19. Effect of Copper on l-Cysteine/l-Cystine Influx in Normal Human Erythrocytes and Erythrocytes of Wilson's Disease. (United States)

    Mandal, Nabarun; Bhattacharjee, Debojyoti; Rout, Jayanta Kumar; Dasgupta, Anindya; Bhattacharya, Gorachand; Sarkar, Chandan; Gangopadhyaya, Prasanta Kumar


    Wilson's disease is a disease of abnormal copper metabolism in which free serum copper level is raised. The objective of the study was to determine, whether in Wilson disease, l-cysteine/l-cystine influx into RBC was decreased or not and the specific amino acid transporter affected by copper in normal human RBC. For l-cysteine/l-cystine influx, ten untreated cases, ten treated cases and ten age and sex matched healthy controls were recruited. To study the effect of copper on l-cysteine/l-cystine influx in RBC, 15 healthy subjects were selected. RBC GSH and l-cysteine/l-cystine influx were estimated by Beautler's and Yildiz's method respectively. In untreated cases, l-cysteine/l-cystine influx and erythrocyte GSH level were decreased showing that elevated level of free copper in serum or media decreased l-cysteine/l-cystine influx in human RBC. Copper treatment inhibited L amino acid transporter in normal RBC specifically.

  20. Control of insulin secretion by cytochrome C and calcium signaling in islets with impaired metabolism. (United States)

    Rountree, Austin M; Neal, Adam S; Lisowski, Mark; Rizzo, Norma; Radtke, Jared; White, Sarah; Luciani, Dan S; Kim, Francis; Hampe, Christiane S; Sweet, Ian R


    The aim of the study was to assess the relative control of insulin secretion rate (ISR) by calcium influx and signaling from cytochrome c in islets where, as in diabetes, the metabolic pathways are impaired. This was achieved either by culturing isolated islets at low (3 mm) glucose or by fasting rats prior to the isolation of the islets. Culture in low glucose greatly reduced the glucose response of cytochrome c reduction and translocation and ISR, but did not affect the response to the mitochondrial fuel α-ketoisocaproate. Unexpectedly, glucose-stimulated calcium influx was only slightly reduced in low glucose-cultured islets and was not responsible for the impairment in glucose-stimulated ISR. A glucokinase activator acutely restored cytochrome c reduction and translocation and ISR, independent of effects on calcium influx. Islets from fasted rats had reduced ISR and cytochrome c reduction in response to both glucose and α-ketoisocaproate despite normal responses of calcium. Our data are consistent with the scenario where cytochrome c reduction and translocation are essential signals in the stimulation of ISR, the loss of which can result in impaired ISR even when calcium response is normal.

  1. Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR

    Directory of Open Access Journals (Sweden)

    Mercè eIzquierdo-Serra


    Full Text Available A wide range of light-activated molecules (photoswitches and phototriggers have been used to the study of computational properties of an isolated neuron by acting pre and postsynaptically. However, new tools are being pursued to elicit a presynaptic calcium influx that triggers the release of neurotransmitters, most of them based in calcium-permeable Channelrhodopsin-2 mutants. Here we describe a method to control exocytosis of synaptic vesicles through the use of a light-gated glutamate receptor (LiGluR, which has recently been demonstrated that supports secretion by means of calcium influx in chromaffin cells. Expression of LiGluR in hippocampal neurons enables reversible control of neurotransmission with light, and allows modulating the firing rate of the postsynaptic neuron with the wavelength of illumination. This method may be useful for the determination of the complex transfer function of individual synapses.

  2. Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR. (United States)

    Izquierdo-Serra, Mercè; Trauner, Dirk; Llobet, Artur; Gorostiza, Pau


    A wide range of light-activated molecules (photoswitches and phototriggers) have been used to the study of computational properties of an isolated neuron by acting pre and postsynaptically. However, new tools are being pursued to elicit a presynaptic calcium influx that triggers the release of neurotransmitters, most of them based in calcium-permeable Channelrhodopsin-2 mutants. Here we describe a method to control exocytosis of synaptic vesicles through the use of a light-gated glutamate receptor (LiGluR), which has recently been demonstrated that supports secretion by means of calcium influx in chromaffin cells. Expression of LiGluR in hippocampal neurons enables reversible control of neurotransmission with light, and allows modulating the firing rate of the postsynaptic neuron with the wavelength of illumination. This method may be useful for the determination of the complex transfer function of individual synapses.

  3. Induces vasodilatation of rat mesenteric artery in vitro mainly by inhibiting receptor-mediated Ca(2+)-influx and Ca(2+)-release

    DEFF Research Database (Denmark)

    Cao, Yong-Xiao; Zheng, Jian-Pu; He, Jian-Yu;


    The purpose of this study was to investigate the effect of atropine on peripheral vasodilation and the mechanisms involved. The isometric tension of rat mesenteric artery rings was recorded in vitro on a myograph. The results showed that atropine, at concentrations greater than 1 microM, relaxed...... the contraction derived from NA and CaCI2 in Ca(2+)-free medium, in a concentration dependent manner, indicating the vasodilatation was related to the inhibition of extracellular Ca2+ influx through the receptor-operated calcium channels and intracellular Ca2+ release from the Ca2+ store. Atropine had no effect...... on the caffeine-induced contraction in the artery segments, indicating the inhibition of intracellular Ca2+ release as a result of atropine most likely occurs via the IP3 pathway rather than the ryanodine receptors. Our results suggest that atropine-induced vasodilatation is mainly from artery smooth muscle cells...

  4. Evidence for a distinct light-induced calcium-dependent potassium current in Hermissenda crassicornis. (United States)

    Blackwell, K T


    A model of phototransduction is developed as a first step toward a model for investigating the critical interaction of light and turbulence stimuli within the type B photoreceptor of Hermissenda crassicronis. The model includes equations describing phototransduction, release of calcium from intracellular stores, and other calcium regulatory mechanisms, as well as equations describing ligand-gating of a rhabdomeric sodium current. The model is used to determine the sources of calcium in the soma, whether calcium or IP3 is a plausible ligand of the light-induced sodium current, and whether the light-induced potassium current is equivalent to the calcium-dependent potassium current activated by light-induced calcium release. Simulations show that the early light-induced calcium elevation is due to influx through voltage-dependent channels, whereas the later calcium elevation is due to release from intracellular stores. Simulations suggest that the ligand of the fast, light-induced sodium current is IP3 but that there is a smaller, prolonged component of the light-induced sodium current that is activated by calcium. In the model, the calcium-dependent potassium current, located in the soma, is activated only slightly by light-induced calcium elevation, leading to the prediction that a calcium-dependent potassium current, active at resting potential, is located in the rhabdomere and is responsible for the light-induced potassium current.

  5. Spatial wavelet analysis of calcium oscillations in developing neurons.

    Directory of Open Access Journals (Sweden)

    Federico Alessandro Ruffinatti

    Full Text Available Calcium signals play a major role in the control of all key stages of neuronal development, and in particular in the growth and orientation of neuritic processes. These signals are characterized by high spatial compartmentalization, a property which has a strong relevance in the different roles of specific neuronal regions in information coding. In this context it is therefore important to understand the structural and functional basis of this spatial compartmentalization, and in particular whether the behavior at each compartment is merely a consequence of its specific geometry or the result of the spatial segregation of specific calcium influx/efflux mechanisms. Here we have developed a novel approach to separate geometrical from functional differences, regardless on the assumptions on the actual mechanisms involved in the generation of calcium signals. First, spatial indices are derived with a wavelet-theoretic approach which define a measure of the oscillations of cytosolic calcium concentration in specific regions of interests (ROIs along a cell, in our case developing chick ciliary ganglion neurons. The resulting spatial profile demonstrates clearly that different ROIs along the neuron are characterized by specific patterns of calcium oscillations. Next we have investigated whether this inhomogeneity is due just to geometrical factors, namely the surface to volume ratio in the different subcompartments (e.g. soma vs. growth cone or it depends on their specific biophysical properties. To this aim correlation functions are computed between the activity indices and the surface/volume ratio along the cell: the data thus obtained are validated by a statistical analysis on a dataset of [Formula: see text] different cells. This analysis shows that whereas in the soma calcium dynamics is highly correlated to the surface/volume ratio, correlations drop in the growth cone-neurite region, suggesting that in this latter case the key factor is the

  6. Role of calcium in growth inhibition induced by a novel cell surface sialoglycopeptide (United States)

    Betz, N. A.; Westhoff, B. A.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)


    Our laboratory has purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) from intact bovine cerebral cortex cells. Evidence presented here demonstrates that sensitivity to CeReS-18-induced growth inhibition in BALB-c 3T3 cells is influenced by calcium, such that a decrease in the calcium concentration in the growth medium results in an increase in sensitivity to CeReS-18. Calcium did not alter CeReS-18 binding to its cell surface receptor and CeReS-18 does not bind calcium directly. Addition of calcium, but not magnesium, to CeReS-18-inhibited 3T3 cells results in reentry into the cell cycle. A greater than 3-hour exposure to increased calcium is required for escape from CeReS-18-induced growth inhibition. The calcium ionophore ionomycin could partially mimic the effect of increasing extracellular calcium, but thapsigargin was ineffective in inducing escape from growth inhibition. Increasing extracellular calcium 10-fold resulted in an approximately 7-fold increase in total cell-associated 45Ca+2, while free intracellular calcium only increased approximately 30%. However, addition of CeReS-18 did not affect total cell-associated calcium or the increase in total cell-associated calcium observed with an increase in extracellular calcium. Serum addition induced mobilization of intracellular calcium and influx across the plasma membrane in 3T3 cells, and pretreatment of 3T3 cells with CeReS-18 appeared to inhibit these calcium mobilization events. These results suggest that a calcium-sensitive step exists in the recovery from CeReS-18-induced growth inhibition. CeReS-18 may inhibit cell proliferation through a novel mechanism involving altering the intracellular calcium mobilization/regulation necessary for cell cycle progression.

  7. Hypericum caprifoliatum and Hypericum connatum affect human trophoblast-like cells differentiation and Ca2+ influx

    Directory of Open Access Journals (Sweden)

    Aline O. da Conceição


    Conclusions: The results indicated that these two Hypericum species extracts can interfere on trophoblast differentiation and Ca2+ influx, according to their molecular diversity. Although in vivo experiments are necessary to establish their action on placental formation and function, this study suggests that attention must be paid to the potential toxic effect of these plants.

  8. STIM1 and Orai1 mediate thrombin-induced Ca(2+) influx in rat cortical astrocytes. (United States)

    Moreno, Claudia; Sampieri, Alicia; Vivas, Oscar; Peña-Segura, Claudia; Vaca, Luis


    In astrocytes, thrombin leads to cytoplasmic Ca(2+) elevations modulating a variety of cytoprotective and cytotoxic responses. Astrocytes respond to thrombin stimulation with a biphasic Ca(2+) increase generated by an interplay between ER-Ca(2+) release and store-operated Ca(2+) entry (SOCE). In many cell types, STIM1 and Orai1 have been demonstrated to be central components of SOCE. STIM1 senses the ER-Ca(2+) depletion and binds Orai1 to activate Ca(2+) influx. Here we used immunocytochemistry, overexpression and siRNA assays to investigate the role of STIM1 and Orai1 in the thrombin-induced Ca(2+) response in primary cultures of rat cortical astrocytes. We found that STIM1 and Orai1 are endogenously expressed in cortical astrocytes and distribute accordingly with other mammalian cells. Importantly, native and overexpressed STIM1 reorganized in puncta under thrombin stimulation and this reorganization was reversible. In addition, the overexpression of STIM1 and Orai1 increased by twofold the Ca(2+) influx evoked by thrombin, while knockdown of endogenous STIM1 and Orai1 significantly decreased this Ca(2+) influx. These results indicate that STIM1 and Orai1 underlie an important fraction of the Ca(2+) response that astrocytes exhibit in the presence of thrombin. Thrombin stimulation in astrocytes leads to ER-Ca(2+) release which causes STIM1 reorganization allowing the activation of Orai1 and the subsequent Ca(2+) influx. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Impact of forest disturbance on the pollen influx in lake sediments during the last century. (United States)

    Koff; Punning; Kangur


    The pollen accumulation rates of four lakes in different regions of Estonia were estimated in order to study the relationship between pollen influx and the character and intensity of disturbances in the pollen catchment area. The pollen influx data obtained are in accordance with model calculations on the size of the pollen source areas. The influx of arboreal pollen and that of the dominant taxa (mainly Pinus) in the lakes investigated shows that, in the case of small lakes (area 3-6ha) in a forested landscapes, the bulk of the pollen originates from an area within 100-200m around the lake. The distribution patterns of influx from two lakes situated close to each other but at different distances from forest fires show that past disturbances can be reliably detected when the disturbance occurred in the immediate vicinity of the lake and at least 25% of the local pollen source area was involved. In the case of a large lake (137ha) only fires embracing thousands of hectares can be detected in the pollen diagrams.

  10. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt


    K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d......-saccharate becomes spontaneously supersaturated with both d-gluconate and d-saccharate calcium salts, from which only calcium d-saccharate slowly precipitates. Calcium d-saccharate is suggested to act as a stabilizer of supersaturated solutions of other calcium hydroxycarboxylates with endothermic complex formation...

  11. Characterization of postsynaptic calcium signals in the pyramidal neurons of anterior cingulate cortex. (United States)

    Li, Xu-Hui; Song, Qian; Chen, Tao; Zhuo, Min


    Calcium signaling is critical for synaptic transmission and plasticity. N-methyl-D-aspartic acid (NMDA) receptors play a key role in synaptic potentiation in the anterior cingulate cortex. Most previous studies of calcium signaling focus on hippocampal neurons, little is known about the activity-induced calcium signals in the anterior cingulate cortex. In the present study, we show that NMDA receptor-mediated postsynaptic calcium signals induced by different synaptic stimulation in anterior cingulate cortex pyramidal neurons. Single and multi-action potentials evoked significant suprathreshold Ca(2+) increases in somas and spines. Both NMDA receptors and voltage-gated calcium channels contributed to this increase. Postsynaptic Ca(2+)signals were induced by puff-application of glutamate, and a NMDA receptor antagonist AP5 blocked these signals in both somas and spines. Finally, long-term potentiation inducing protocols triggered postsynaptic Ca(2+) influx, and these influx were NMDA receptor dependent. Our results provide the first study of calcium signals in the anterior cingulate cortex and demonstrate that NMDA receptors play important roles in postsynaptic calcium signals in anterior cingulate cortex pyramidal neurons.

  12. Physiological responses of osteoblasts to cyclic stretching and the change of intracellular calcium concentration

    Institute of Scientific and Technical Information of China (English)


    The development of bone tissues is regulated by mechanical stimulation. Cyclic stretching was applied to the osteoblasts that were delivered from rat calvarie. The results showed that stretching at 500 με increased the cell proliferation while loading at 1000 με and 1500 με inhabited cell growth. Loading alsoincreased the adhesive force between cells and substrate as well as spreading areas of osteobalsts. Furthermore, the fluorescence probe Fluo-3/AM was used to investigate the effect of stretching stimulation on the intracellular calcium concentration of osteoblasts. The intracellular calcium concentration of osteoblasts that were stretched at 500 με for 5 min was 92.9% higher than the control. After being treated with the panax ontoginseng saponins, the stretched osteoblasts still expressed 28.6% higher intracellular calcium concentration than that of the control, which proved that both the influx of extracellular calcium and the release of intracellular calcium store were involved in the increase of intracellular calcium concentration when osteoblasts responded to the cyclic stretching. And the influx of extracellular calcium through transmembrance channel played a main role.

  13. Differences in GABA-induced chloride ion influx in brain of inbred mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Yu, O.; Chiu, T.H.; Rosenberg, H.C.


    Audiogenic seizure-susceptible (AS) mice (DBA2J) are a widely used model of epilepsy. The precise pathophysiology of this mouse strain is not fully understood. One of the proposed mechanisms was a difference in GABA/BZ receptor affinity and population from that of audiogenic seizure resistant (ASR) mice. This study attempted to determine the difference in function of GABA/BZ receptor between DBA2J (AS) and C57BL6J (ASR) mice by directly measuring the GABA-induced chloride ion (/sup 36/Cl/sup -/) influx in twice washed crude brain homogenates. /sup 36/Cl/sup -/ influx was terminated by ice-cold buffer and collected by filtration. A concentration range of 2-1000 GABA and two age-matched groups (20-22 days and 40-42 days) were used. GABA-induced /sup 36/Cl/sup -/ influx was dose-dependent, and brain homogenates from DBA2J mice (20-22 days) were less sensitive to GABA-induced Cl/sup -/ ion influx than C57BL6J mice at both age groups. However, in older DBA2J mice (40-42 days), the sensitivity to GABA was intermediate between that of the younger AS mice and the control ASR mice. No significant difference in basal influx of Cl/sup -/ was observed between age groups and mouse strains, nor was there any significant difference between 20-22 days old and 40-42 days old C57BL6J mice. In conclusion, this study had demonstrated a malfunction may recover with age.

  14. Mefloquine-Induced Disruption of Calcium Homeostasis in Mammalian Cells Is Similar to That Induced by Ionomycin▿ (United States)

    Caridha, D.; Yourick, D.; Cabezas, M.; Wolf, L.; Hudson, T. H.; Dow, G. S.


    In previous studies, we have shown that mefloquine disrupts calcium homeostasis in neurons by depletion of endoplasmic reticulum (ER) stores, followed by an influx of external calcium across the plasma membrane. In this study, we explore two hypotheses concerning the mechanism(s) of action of mefloquine. First, we investigated the possibility that mefloquine activates non-N-methyl-d-aspartic acid receptors and the inositol phosphate 3 (IP3) signaling cascade leading to ER calcium release. Second, we compared the disruptive effects of mefloquine on calcium homeostasis to those of ionomycin in neuronal and nonneuronal cells. Ionomycin is known to discharge the ER calcium store (through an undefined mechanism), which induces capacitative calcium entry (CCE). In radioligand binding assays, mefloquine showed no affinity for the known binding sites of several glutamate receptor subtypes. The pattern of neuroprotection induced by a panel of glutamate receptor antagonists was dissimilar to that of mefloquine. Both mefloquine and ionomycin exhibited dose-related and qualitatively similar disruptions of calcium homeostasis in both neurons and macrophages. The influx of external calcium was blocked by the inhibitors of CCE in a dose-related fashion. Both mefloquine and ionomycin upregulated the IP3 pathway in a manner that we interpret to be secondary to CCE. Collectively, these data suggest that mefloquine does not activate glutamate receptors and that it disrupts calcium homeostasis in mammalian cells in a manner similar to that of ionomycin. PMID:17999964

  15. Calcium homeostasis and cone signaling are regulated by interactions between calcium stores and plasma membrane ion channels.

    Directory of Open Access Journals (Sweden)

    Tamas Szikra

    Full Text Available Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca(2+ entry (SOCE to Ca(2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn(2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca(2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca(2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca(2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca(2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca(2+ channels. Exposure to MRS 1845 resulted in approximately 40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca(2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca(2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse.

  16. The yin and yang of calcium effects on synaptic vesicle endocytosis. (United States)

    Wu, Xin-Sheng; Wu, Ling-Gang


    A large number of studies suggest that calcium triggers and accelerates vesicle endocytosis at many synapses and non-neuronal secretory cells. However, many studies show that prolonging the duration of the stimulation train, which induces more calcium influx, slows down endocytosis; and several studies suggest that instead of triggering endocytosis, calcium actually inhibits endocytosis. Here we addressed this apparent conflict at a large nerve terminal, the calyx of Held in rat brainstem, in which recent studies suggest that transient calcium increase up to tens of micromolar concentration at the micro/nano domain triggers endocytosis. By dialyzing 0-1 μM calcium into the calyx via a whole-cell pipette, we found that slow endocytosis was inhibited by calcium dialysis in a concentration-dependent manner. Thus, prolonged, small, and global calcium increase inhibits endocytosis, whereas transient and large calcium increase at the micro/nano domain triggers endocytosis and facilitates endocytosis. This yin and yang effect of calcium may reconcile apparent conflicts regarding whether calcium accelerates or inhibits endocytosis. Whether endocytosis is fast or slow depends on the net outcome between the yin and yang effect of calcium.

  17. Calcium signalling in human neutrophil cell lines is not affected by low-frequency electromagnetic fields. (United States)

    Golbach, Lieke A; Philippi, John G M; Cuppen, Jan J M; Savelkoul, Huub F J; Verburg-van Kemenade, B M Lidy


    We are increasingly exposed to low-frequency electromagnetic fields (LF EMFs) by electrical devices and power lines, but if and how these fields interact with living cells remains a matter of debate. This study aimed to investigate the potential effect of LF EMF exposure on calcium signalling in neutrophils. In neutrophilic granulocytes, activation of G-protein coupled receptors leads to efflux of calcium from calcium stores and influx of extracellular calcium via specialised calcium channels. The cytoplasmic rise of calcium induces cytoskeleton rearrangements, modified gene expression patterns, and cell migration. If LF EMF modulates intracellular calcium signalling, this will influence cellular behaviour and may eventually lead to health problems. We found that calcium mobilisation upon chemotactic stimulation was not altered after a short 30 min or long-term LF EMF exposure in human neutrophil-like cell lines HL-60 or PLB-985. Neither of the two investigated wave forms (Immunent and 50 Hz sine wave) at three magnetic flux densities (5 μT, 300 μT, and 500 μT) altered calcium signalling in vitro. Gene-expression patterns of calcium-signalling related genes also did not show any significant changes after exposure. Furthermore, analysis of the phenotypical appearance of microvilli by scanning electron microscopy revealed no alterations induced by LF EMF exposure. The findings above indicate that exposure to 50 Hz sinusoidal or Immunent LF EMF will not affect calcium signalling in neutrophils in vitro.

  18. Gravimetric monitoring of water influx into a gas reservoir: A numerical study based on the ensemble kalman filter

    NARCIS (Netherlands)

    Glegola, M.; Ditmar, P.; Hanea, R.G.; Vossepoel, F.C.; Arts, R.; Klees, R.


    Water influx into gas fields can reduce recovery factors by 10-40%. Therefore, information about the magnitude and spatial distribution of water influx is essential for efficient management of waterdrive gas reservoirs. Modern geophysical techniques such as gravimetry may provide a direct measure of

  19. CatSper and the relationship of hyperactivated motility to intracellular calcium and pH kinetics in equine sperm. (United States)

    Loux, Shavahn C; Crawford, Kristin R; Ing, Nancy H; González-Fernández, Lauro; Macías-García, Beatriz; Love, Charles C; Varner, Dickson D; Velez, Isabel C; Choi, Young Ho; Hinrichs, Katrin


    In vitro fertilization does not occur readily in the horse. This may be related to failure of equine sperm to initiate hyperactivated motility, as treating with procaine to induce hyperactivation increases fertilization rates. In mice, hyperactivated motility requires a sperm-specific pH-gated calcium channel (CatSper); therefore, we investigated this channel in equine sperm. Motility was assessed by computer-assisted sperm motility analysis and changes in intracellular pH and calcium were assessed using fluorescent probes. Increasing intracellular pH induced a rise in intracellular calcium, which was inhibited by the known CatSper blocker mibefradil, supporting the presence of a pH-gated calcium channel, presumably CatSper. Hyperactivation was associated with moderately increased intracellular pH, but appeared inversely related to increases in intracellular calcium. In calcium-deficient medium, high-pH treatment induced motility loss, consistent with influx of sodium through open CatSper channels in the absence of environmental calcium. However, sperm treated with procaine in calcium-deficient medium both maintained motility and underwent hyperactivation, suggesting that procaine did not act via opening of the CatSper channel. CATSPER1 mRNA was identified in equine sperm by PCR, and CATSPER1 protein was localized to the principal piece on immunocytochemistry. Analysis of the predicted equine CATSPER1 protein revealed species-specific differences in structure in the pH-sensor region. We conclude that the CatSper channel is present in equine sperm but that the relationship of hyperactivated motility to calcium influx is weak. Procaine does not appear to act via CatSper in equine sperm, and its initial hyperactivating action is not dependent upon external calcium influx.

  20. Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. (United States)

    Zou, Ying-Ning; Huang, Yong-Ming; Wu, Qiang-Sheng; He, Xin-Hua


    Mechanisms of arbuscular mycorrhiza (AM)-induced lower oxidative burst of host plants under drought stress (DS) are not elucidated. A noninvasive microtest technology (NMT) was used to investigate the effects of Funneliformis mosseae on net fluxes of root hydrogen peroxide (H2O2) and calcium ions (Ca2+) in 5-month-old Poncirus trifoliata, in combination with catalase (CAT) and superoxide dismutase (SOD) activities as well as tissue superoxide radical (O2•-) and H2O2 concentrations under DS and well-watered (WW) conditions. A 2-month DS (55% maximum water holding capacity of growth substrates) significantly inhibited AM fungal root colonization, while AM symbiosis significantly increased plant biomass production, irrespective of water status. F. mosseae inoculation generally increased SOD and CAT activity but decreased O2•- and H2O2 concentrations in leaves and roots under WW and DS. Compared with non-AM seedlings, roots of AM seedlings had significantly higher net H2O2 effluxes and net Ca2+ influxes, especially in the meristem zone, but lower net H2O2 efflux in the elongation zone. Net Ca2+ influxes into roots were significantly positively correlated with root net H2O2 effluxes but negatively with root H2O2 concentrations. Results from this study suggest that AM-induced lower oxidative burst is related with higher antioxidant enzyme activities, root net H2O2 effluxes, and Ca2+ influxes under WW and DS.

  1. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping


    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  2. Calcium-dependent phospholipid catabolism and arachidonic acid mobilization in cerebral minces

    Energy Technology Data Exchange (ETDEWEB)

    Damron, D.S.; Dorman, R.V. (Kent State Univ., OH (USA))


    Cerebral minces were used to investigate the role of calcium influx on trauma-induced alterations of brain lipid metabolism. Cerebral phospholipids, nonpolar lipids, and free fatty acids were radiolabeled in vivo with ({sup 3}H)arachidonic acid. Tissue incubation stimulated the time-dependent catabolism of choline and inositol glycerophospholipids, and resulted in the accumulation of ({sup 3}H)free fatty acids. These effects were attenuated in Ca{sup 2}{sup +}-free incubations, and when EGTA or verapamil were present. The inhibition of calcium influx also reduced the labeling of diglycerides, whereas ethanolamine and serine glycerophospholipids were not affected by incubation or treatments. Replacing Ca{sup 2}{sup +} with other cations also attenuated the incubation-dependent alterations in lipid metabolism. However, only cadmium was able to compete with calcium and reduce the accumulation of ({sup 3}H)free fatty acids. It appeared that about half of the observed phospholipid catabolism was dependent on Ca{sup 2}{sup +} influx and that at least 80% of the ({sup 3}H)free fatty acid accumulation required calcium.

  3. High influx of carbon in walls of agglutinated foraminifers during the Permian-Triassic transition in global oceans (United States)

    Nestell, Galina P.; Nestell, Merlynd K.; Ellwood, Brooks B.; Wardlaw, Bruce R.; Basu, Asish R.; Ghosh, Nilotpal; Phuong Lan, Luu Thi; Rowe, Harry D.; Hunt, Andrew G.; Tomkin, Jonathan H.; Ratcliffe, Kenneth T.


    The Permian–Triassic mass extinction is postulated to be related to the rapid volcanism that produced the Siberian flood basalt (Traps). Unrelated volcanic eruptions producing several episodes of ash falls synchronous with the Siberian Traps are found in South China and Australia. Such regional eruptions could have caused wildfires, burning of coal deposits, and the dispersion of coal fly ash. These eruptions introduced a major influx of carbon into the atmosphere and oceans that can be recognized in the wallstructure of foraminiferal tests present in survival populations in the boundary interval strata. Analysis of free specimens of foraminifers recovered from residues of conodont samples taken at aPermian–Triassic boundary section at Lung Cam in northern Vietnam has revealed the presence of a significant amount of elemental carbon, along with oxygen and silica, in their test wall structure, but an absence of calcium carbonate. These foraminifers, identified as Rectocornuspira kalhori, Cornuspira mahajeri, and Earlandia spp. and whose tests previously were considered to be calcareous, are confirmed to be agglutinated, and are now referred to as Ammodiscus kalhori and Hyperammina deformis. Measurement of the 207Pb/204Pb ratios in pyrite clusters attached to the foraminiferal tests confirmed that these tests inherited the Pb in their outer layer from carbon-contaminated seawater. We conclude that the source of the carbon could have been either global coal fly ash or forest fire-dispersed carbon, or a combination of both, that was dispersed into the Palaeo-Tethys Ocean immediately after the end-Permian extinction event.

  4. Ca2+ Influx via the Na+/Ca2+ Exchanger Is Enhanced in Malignant Hyperthermia Skeletal Muscle* (United States)

    Altamirano, Francisco; Eltit, José M.; Robin, Gaëlle; Linares, Nancy; Ding, Xudong; Pessah, Isaac N.; Allen, Paul D.; López, José R.


    Malignant hyperthermia (MH) is potentially fatal pharmacogenetic disorder of skeletal muscle caused by intracellular Ca2+ dysregulation. NCX is a bidirectional transporter that effluxes (forward mode) or influxes (reverse mode) Ca2+ depending on cellular activity. Resting intracellular calcium ([Ca2+]r) and sodium ([Na+]r) concentrations are elevated in MH susceptible (MHS) swine and murine muscles compared with their normal (MHN) counterparts, although the contribution of NCX is unclear. Lowering [Na+]e elevates [Ca2+]r in both MHN and MHS swine muscle fibers and it is prevented by removal of extracellular Ca2+ or reduced by t-tubule disruption, in both genotypes. KB-R7943, a nonselective NCX3 blocker, reduced [Ca2+]r in both swine and murine MHN and MHS muscle fibers at rest and decreased the magnitude of the elevation of [Ca2+]r observed in MHS fibers after exposure to halothane. YM-244769, a high affinity reverse mode NCX3 blocker, reduces [Ca2+]r in MHS muscle fibers and decreases the amplitude of [Ca2+]r rise triggered by halothane, but had no effect on [Ca2+]r in MHN muscle. In addition, YM-244769 reduced the peak and area under the curve of the Ca2+ transient elicited by high [K+]e and increased its rate of decay in MHS muscle fibers. siRNA knockdown of NCX3 in MHS myotubes reduced [Ca2+]r and the Ca2+ transient area induced by high [K+]e. These results demonstrate a functional NCX3 in skeletal muscle whose activity is enhanced in MHS. Moreover reverse mode NCX3 contributes to the Ca2+ transients associated with K+-induced depolarization and the halothane-triggered MH episode in MHS muscle fibers. PMID:24847052

  5. Ca2+ influx via the Na+/Ca2+ exchanger is enhanced in malignant hyperthermia skeletal muscle. (United States)

    Altamirano, Francisco; Eltit, José M; Robin, Gaëlle; Linares, Nancy; Ding, Xudong; Pessah, Isaac N; Allen, Paul D; López, José R


    Malignant hyperthermia (MH) is potentially fatal pharmacogenetic disorder of skeletal muscle caused by intracellular Ca(2+) dysregulation. NCX is a bidirectional transporter that effluxes (forward mode) or influxes (reverse mode) Ca(2+) depending on cellular activity. Resting intracellular calcium ([Ca(2+)]r) and sodium ([Na(+)]r) concentrations are elevated in MH susceptible (MHS) swine and murine muscles compared with their normal (MHN) counterparts, although the contribution of NCX is unclear. Lowering [Na(+)]e elevates [Ca(2+)]r in both MHN and MHS swine muscle fibers and it is prevented by removal of extracellular Ca(2+) or reduced by t-tubule disruption, in both genotypes. KB-R7943, a nonselective NCX3 blocker, reduced [Ca(2+)]r in both swine and murine MHN and MHS muscle fibers at rest and decreased the magnitude of the elevation of [Ca(2+)]r observed in MHS fibers after exposure to halothane. YM-244769, a high affinity reverse mode NCX3 blocker, reduces [Ca(2+)]r in MHS muscle fibers and decreases the amplitude of [Ca(2+)]r rise triggered by halothane, but had no effect on [Ca(2+)]r in MHN muscle. In addition, YM-244769 reduced the peak and area under the curve of the Ca(2+) transient elicited by high [K(+)]e and increased its rate of decay in MHS muscle fibers. siRNA knockdown of NCX3 in MHS myotubes reduced [Ca(2+)]r and the Ca(2+) transient area induced by high [K(+)]e. These results demonstrate a functional NCX3 in skeletal muscle whose activity is enhanced in MHS. Moreover reverse mode NCX3 contributes to the Ca(2+) transients associated with K(+)-induced depolarization and the halothane-triggered MH episode in MHS muscle fibers.

  6. Comparative impact of voltage-gated calcium channels and NMDA receptors on mitochondria-mediated neuronal injury. (United States)

    Stanika, Ruslan I; Villanueva, Idalis; Kazanina, Galina; Andrews, S Brian; Pivovarova, Natalia B


    Glutamate excitotoxicity, a major component of many neurodegenerative disorders, is characterized by excessive calcium influx selectively through NMDARs. However, there is a substantial uncertainty concerning why other known routes of significant calcium entry, in particular, VGCCs, are not similarly toxic. Here, we report that in the majority of neurons in rat hippocampal and cortical cultures, maximal L-type VGCC activation induces much lower calcium loading than toxic NMDAR activation. Consequently, few depolarization-activated neurons exhibit calcium deregulation and cell death. Activation of alternative routes of calcium entry induced neuronal death in proportion to the degree of calcium loading. In a small subset of neurons, depolarization evoked stronger calcium elevations, approaching those induced by toxic NMDA. These neurons were characterized by elevated expression of VGCCs and enhanced voltage-gated calcium currents, mitochondrial dysfunction and cell death. Preventing VGCC-dependent mitochondrial calcium loading resulted in stronger cytoplasmic calcium elevations, whereas inhibiting mitochondrial calcium clearance accelerated mitochondrial depolarization. Both observations further implicate mitochondrial dysfunction in VGCC-mediated cell death. Results indicate that neuronal vulnerability tracks the extent of calcium loading but does not appear to depend explicitly on the route of calcium entry.

  7. Imaging calcium in neurons. (United States)

    Grienberger, Christine; Konnerth, Arthur


    Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.

  8. Calcium Nutrition and Extracellular Calcium Sensing: Relevance for the Pathogenesis of Osteoporosis, Cancer and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Meinrad Peterlik


    Full Text Available Through a systematic search in Pubmed for literature, on links between calcium malnutrition and risk of chronic diseases, we found the highest degree of evidence for osteoporosis, colorectal and breast cancer, as well as for hypertension, as the only major cardiovascular risk factor. Low calcium intake apparently has some impact also on cardiovascular events and disease outcome. Calcium malnutrition can causally be related to low activity of the extracellular calcium-sensing receptor (CaSR. This member of the family of 7-TM G-protein coupled receptors allows extracellular Ca2+ to function as a “first messenger” for various intracellular signaling cascades. Evidence demonstrates that Ca2+/CaSR signaling in functional linkage with vitamin D receptor (VDR-activated pathways (i promotes osteoblast differentiation and formation of mineralized bone; (ii targets downstream effectors of the canonical and non-canonical Wnt pathway to inhibit proliferation and induce differentiation of colorectal cancer cells; (iii evokes Ca2+ influx into breast cancer cells, thereby activating pro-apoptotic intracellular signaling. Furthermore, Ca2+/CaSR signaling opens Ca2+-sensitive K+ conductance channels in vascular endothelial cells, and also participates in IP3-dependent regulation of cytoplasmic Ca2+, the key intermediate of cardiomyocyte functions. Consequently, impairment of Ca2+/CaSR signaling may contribute to inadequate bone formation, tumor progression, hypertension, vascular calcification and, probably, cardiovascular disease.

  9. NCI-H295R, a human adrenal cortex-derived cell line, expresses purinergic receptors linked to Ca²⁺-mobilization/influx and cortisol secretion.

    Directory of Open Access Journals (Sweden)

    Haruhisa Nishi

    Full Text Available Purinergic receptor expression and involvement in steroidogenesis were examined in NCI-H295R (H295R, a human adrenal cortex cell line which expresses all the key enzymes necessary for steroidogenesis. mRNA/protein for multiple P1 (A(2A and A(2B, P2X (P2X₅ and P2X₇, and P2Y (P2Y₁, P2Y₂, P2Y₆, P2Y₁₂, P2Y₁₃, and P2Y₁₄ purinergic receptors were detected in H295R. 2MeS-ATP (10-1000 µM, a P2Y₁ agonist, induced glucocorticoid (GC secretion in a dose-dependent manner, while other extracellular purine/pyrimidine agonists (1-1000 µM had no distinct effect on GC secretion. Extracellular purines, even non-steroidogenic ones, induced Ca²⁺-mobilization in the cells, independently of the extracellular Ca²⁺ concentration. Increases in intracellular Ca²⁺ concentration induced by extracellular purine agonists were transient, except when induced by ATP or 2MeS-ATP. Angiotensin II (AngII: 100 nM and dibutyryl-cyclic AMP (db-cAMP: 500 µM induced both GC secretion and Ca²⁺-mobilization in the presence of extracellular Ca²⁺ (1.2 mM. GC secretion by AngII was reduced by nifedipine (10-100 µM; whereas the Ca²⁺ channel blocker did not inhibit GC secretion by 2MeS-ATP. Thapsigargin followed by extracellular Ca²⁺ exposure induced Ca²⁺-influx in H295R, and the cells expressed mRNA/protein of the component molecules for store-operated calcium entry (SOCE: transient receptor C (TRPC channels, calcium release-activated calcium channel protein 1 (Orai-1, and the stromal interaction molecule 1 (STIM1. In P2Y₁-knockdown, 2MeS-ATP-induced GC secretion was significantly inhibited. These results suggest that H295R expresses a functional P2Y₁ purinergic receptor for intracellular Ca²⁺-mobilization, and that P2Y₁ is linked to SOCE-activation, leading to Ca²⁺-influx which might be necessary for glucocorticoid secretion.

  10. Calcium Transport by Corn Mitochondria 1 (United States)

    Silva, Marco Aurelio P.; Carnieri, Eva G. S.; Vercesi, Anibal E.


    Mitochondria from some plant tissues possess the ability to take up Ca2+ by a phosphate-dependent mechanism associated with a decrease in membrane potential, H+ extrusion, and increase in the rate of respiration (AE Vercesi, L Pereira da Silva, IS Martins, CF Bernardes, EGS Carnieri, MM Fagian [1989] In G Fiskum, ed, Cell Calcium Metabolism. Plenum Press, New York, pp 103-111). The present study reexamined the nature of the phosphate requirement in this process. The main observations are: (a) Respiration-coupled Ca2+ uptake by isolated corn (Zea mays var Maya Normal) mitochondria or carbonyl cyanide p-trifluoromethoxyphenylhydrazone-induced efflux of the cation from such mitochondria are sensitive to mersalyl and cannot be dissociated from the silmultaneous movement of phosphate in the same direction. (b) Ruthenium red-induced efflux is not affected by mersalyl and can occur in the absence of phosphate movement. (c) In Ca2+-loaded corn mitochondria, mersalyl causes net Ca2+ release unrelated to a decrease in membrane potential, probably due to an inhibition of Ca2+ cycling at the level of the influx pathway. It is concluded that corn mitochondria (and probably other plant mitochondria) do possess an electrophoretic influx pathway that appears to be a mersalyl-sensitive Ca2+/inorganic phosphate-symporter and a phosphate-independent efflux pathway possibly similar to the Na2+-independent Ca2+ efflux mechanism of vertebrate mitochondria, because it is not stimulated by Na+. PMID:16668661

  11. Lipid body accumulation alters calcium signaling dynamics in immune cells. (United States)

    Greineisen, William E; Speck, Mark; Shimoda, Lori M N; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J; Turner, Helen


    There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.

  12. Regulation of BMP2-induced intracellular calcium increases in osteoblasts. (United States)

    Xu, Wenfeng; Liu, Bo; Liu, Xue; Chiang, Martin Y M; Li, Bo; Xu, Zichen; Liao, Xiaoling


    Although bone morphogenetic protein-2 (BMP2) is a well-characterized regulator that stimulates osteoblast differentiation, little is known about how it regulates intracellular Ca(2+) signaling. In this study, intracellular Ca(2+) concentration ([Ca(2+) ]i ) upon BMP2 application, focal adhesion kinase (FAK) and Src activities were measured in the MC3T3-E1 osteoblast cell line using fluorescence resonance energy transfer-based biosensors. Increase in [Ca(2+) ]i , FAK, and Src activities were observed during BMP2 stimulation. The removal of extracellular calcium, the application of membrane channel inhibitors streptomycin or nifedipine, the FAK inhibitor PF-573228 (PF228), and the alkaline phosphatase (ALP) siRNA all blocked the BMP2-stimulated [Ca(2+) ]i increase, while the Src inhibitor PP1 did not. In contrast, a gentle decrease of endoplasmic reticulum calcium concentration was found after BMP2 stimulation, which could be blocked by both streptomycin and PP1. Further experiments revealed that BMP2-induced FAK activation could not be inhibited by PP1, ALP siRNA or the calcium channel inhibitor nifedipine. PF228, but not PP1 or calcium channel inhibitors, suppressed ALP elevation resulting from BMP2 stimulation. Therefore, our results suggest that BMP2 can increase [Ca(2+) ]i through extracellular calcium influx regulated by FAK and ALP and can deplete ER calcium through Src signaling simultaneously. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1725-1733, 2016.

  13. Role of calcium in the constriction of isolated cerebral arteries

    Energy Technology Data Exchange (ETDEWEB)

    Wendling, W.W.


    Calcium entry blockers (CEB) have been used in the experimental treatment or prevention of many cerebrovascular disorders including stroke, post-ischemic hypoperfusion after cardiac arrest, cerebral vasospasm after subarachnoid hemorrhage, and migraine headache. However, the mechanism of action of these drugs on the cerebral circulation is poorly understood. This study examined the effects of calcium antagonists, Ca/sup 2 +/-deficient solutions, and vasocostrictors on cerebrovascular tone and /sup 45/Ca fluxes, to determine the role of calcium in cerebral arterial constriction. A Scatchard plot of /sup 45/Ca binding to BMCA showed that Ca/sup 2 +/ was bound at either low or high affinity binding sties. The four vasoconstrictors (potassium, serotonin, PGF/sub 2 ..cap alpha../, or SQ-26,655) each increased low affinity /sup 45/Ca uptake into BMCA. The results demonstrate that: (1) Potassium and serotonin constrict BMCA mainly by promoting Ca/sup 2 +/ influx through CEB-sensitive channels; (2) PGF/sub 2 ..cap alpha../ and SQ-26,655 constrict BMCA in part by promoting Ca/sup 2 +/ influx through CEB-sensitive channels, and in part by releasing Ca/sup 2 +/ from depletable internal stores; (3) The major action of CEB on BMCA is to block vasoconstrictor-induced Ca/sup 2 +/ uptake through both potential-operated (K/sup +/-stimulated) and receptor-operated channels.

  14. Influx of CO2 from Soil Incubated Organic Residues at Constant Temperature

    Directory of Open Access Journals (Sweden)

    Shoukat Ali Abro


    Full Text Available Temperature induced CO2 from genotypic residue substances is still less understood. Two types of organic residues (wheat- maize were incubated at a constant temperature (25°C to determine the rate and cumulative influx of CO2 in laboratory experiment for 40 days. Further, the effect of surface and incorporated crop residues with and without phosphorus addition was also studied. Results revealed that mixing of crop residues increased CO2-C evolution significantly & emission rare was 37% higher than that of control. At constant temperature, soil mixed residues, had higher emission rates CO2-C than the residues superimposed. There was linear correlation of CO2-C influxed for phosphorus levels and residue application ways with entire incubation at constant temperature. The mixing of organic residues to soil enhanced SOC levels and biomass of microbially bound N; however to little degree ammonium (NH4-N and nitrate NO3-N nitrogen were decreased.

  15. Modulation of Intracellular Calcium Levels by Calcium Lactate Affects Colon Cancer Cell Motility through Calcium-Dependent Calpain (United States)

    Sundaramoorthy, Pasupathi; Sim, Jae Jun; Jang, Yeong-Su; Mishra, Siddhartha Kumar; Jeong, Keun-Yeong; Mander, Poonam; Chul, Oh Byung; Shim, Won-Sik; Oh, Seung Hyun; Nam, Ky-Youb; Kim, Hwan Mook


    Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer. PMID:25629974

  16. Modulation of intracellular calcium levels by calcium lactate affects colon cancer cell motility through calcium-dependent calpain.

    Directory of Open Access Journals (Sweden)

    Pasupathi Sundaramoorthy

    Full Text Available Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+ supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa, its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+ levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain in a dose-dependent manner. Phosphorylated FAK (p-FAK was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.

  17. The BSA-induced Ca(2+ influx during sperm capacitation is CATSPER channel-dependent

    Directory of Open Access Journals (Sweden)

    Ren Dejian


    Full Text Available Abstract Background Serum albumin is a key component in mammalian sperm capacitation, a functional maturation process by which sperm become competent to fertilize oocytes. Capacitation is accompanied by several cellular and molecular changes including an increased tyrosine phosphorylation of sperm proteins and a development of hyperactivated sperm motility. Both of these processes require extracellular calcium, but how calcium enters sperm during capacitation is not well understood. Methods BSA-induced changes in intracellular calcium concentration were studied using Fluo-4 and Fura-2 calcium imaging with wild-type and Catsper1 knockout mouse sperm. Results We found that the fast phase of the BSA-induced rises in intracellular calcium concentration was absent in the Catsper1 knockout sperm and could be restored by an EGFP-CATSPER1 fusion protein. The calcium concentration increases were independent of G-proteins and phospholipase C but could be partially inhibited when intracellular pH was clamped. The changes started in the principal piece and propagated toward the sperm head. Conclusion We conclude that the initial phase of the increases in intracellular calcium concentration induced by BSA requires the CATSPER channel, but not the voltage-gated calcium channel. Our findings identify the molecular conduit responsible for the calcium entry required for the sperm motility changes that occur during capacitation.

  18. Evaluation of radioprotectors by the Na/sup +/ influx study in RBC of lethally irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.N.; Basu, S.K.; Ghose, A.


    Sodium homeostasis in adult male albino Sprague Dawley rats has been examined 24 hours after exposure to 11 Gy whole-body gamma irradiation. Rate of influx of /sup 22/Na in red blood corpuscles (in vitro) of irradiated rats significantly increased and was modified by the administration of some radioprotective drugs prior to irradiation. Solcoseryl and AET (200 mg/kg) gave excellent protection and the combinations of 5-HTP with AET or MPG rendered better protection than when used alone.

  19. Absence of correlation between ACh-induced Ca influx and phosphatidic acid labeling in rat uterus. (United States)

    Ichida, S; Moriyama, M; Hirooka, Y; Okazaki, Y; Yoshioka, K


    Rat uterine smooth muscle was preincubated in Ca-depleted modified Locke-Ringer solution to investigate the correlation between the 32Pi incorporation into phosphatidic acid induced by acetylcholine and the contractile response to acetylcholine induced by the addition of CaCl2 (Ca influx). The results showed that in rat uterine smooth muscle under these conditions phosphatidic acid does not act as a Ca ionophore or as a trigger for opening the Ca channel.

  20. The role of uncoupling protein 3 regulating calcium ion uptake into mitochondria during sarcopenia (United States)

    Nikawa, Takeshi; Choi, Inho; Haruna, Marie; Hirasaka, Katsuya; Maita Ohno, Ayako; Kondo Teshima, Shigetada

    Overloaded mitochondrial calcium concentration contributes to progression of mitochondrial dysfunction in aged muscle, leading to sarcopenia. Uncoupling protein 3 (UCP3) is primarily expressed in the inner membrane of skeletal muscle mitochondria. Recently, it has been reported that UCP3 is associated with calcium uptake into mitochondria. However, the mechanisms by which UCP3 regulates mitochondrial calcium uptake are not well understood. Here we report that UCP3 interacts with HS-1 associated protein X-1 (Hax-1), an anti-apoptotic protein that is localized in mitochondria, which is involved in cellular responses to calcium ion. The hydrophilic sequences within the loop 2, matrix-localized hydrophilic domain of mouse UCP3 are necessary for binding to Hax-1 of the C-terminal domain in adjacent to mitochondrial innermembrane. Interestingly, these proteins interaction occur the calcium-dependent manner. Indeed, overexpression of UCP3 significantly enhanced calcium uptake into mitochondria on Hax-1 endogenously expressing C2C12 myoblasts. In addition, Hax-1 knock-down enhanced calcium uptake into mitochondria on both UCP3 and Hax-1 endogenously expressing C2C12 myotubes, but not myoblasts. Finally, the dissociation of UCP3 and Hax-1 enhances calcium uptake into mitochondria in aged muscle. These studies identify a novel UCP3-Hax-1 complex regulates the influx of calcium ion into mitochondria in muscle. Thus, the efficacy of UCP3-Hax-1 in mitochondrial calcium regulation may provide a novel therapeutic approach against mitochondrial dysfunction-related disease containing sarcopenia.

  1. Mitochondrial Calcium Uptake Modulates Synaptic Vesicle Endocytosis in Central Nerve Terminals. (United States)

    Marland, Jamie Roslin Keynes; Hasel, Philip; Bonnycastle, Katherine; Cousin, Michael Alan


    Presynaptic calcium influx triggers synaptic vesicle (SV) exocytosis and modulates subsequent SV endocytosis. A number of calcium clearance mechanisms are present in central nerve terminals that regulate intracellular free calcium levels both during and after stimulation. During action potential stimulation, mitochondria rapidly accumulate presynaptic calcium via the mitochondrial calcium uniporter (MCU). The role of mitochondrial calcium uptake in modulating SV recycling has been debated extensively, but a definitive conclusion has not been achieved. To directly address this question, we manipulated the expression of the MCU channel subunit in primary cultures of neurons expressing a genetically encoded reporter of SV turnover. Knockdown of MCU resulted in ablation of activity-dependent mitochondrial calcium uptake but had no effect on the rate or extent of SV exocytosis. In contrast, the rate of SV endocytosis was increased in the absence of mitochondrial calcium uptake and slowed when MCU was overexpressed. MCU knockdown did not perturb activity-dependent increases in presynaptic free calcium, suggesting that SV endocytosis may be controlled by calcium accumulation and efflux from mitochondria in their immediate vicinity.

  2. [The role of mitochondrial uniporter in calcium-homeostasis of the exorbital lacrimal gland secretory cells]. (United States)

    Kotliarova, A B; Merlavs'kyĭ, V M; Dorosh, O M; Man'ko, V V


    The role of mitochondrial calcium-uniporter in calcium-homeostasis maintenance and correlations of calcium-uniporter with other calcium-transport systems of the rat exorbital lacrimal gland secretory cells were studied. The experiments were performed on intact and digitonin-permeabilized cells. The interdependence of calcium-uniporter and other calcium-transporting systems functioning was estimated on the basis of additivity of their inhibitors/agonists effects, which was accompanied with a decrease in the Ca2+ content in the gland cells. It was found that in conditions of simultaneously inhibition of sarco endoplasmic reticulum Ca2+-ATPase (SERCA) and mitochondrial calcium-uniporter Ca2+ passively released from different calcium stores, because the effects of these calcium-transport systems inhibitors (thapsigargin and ruthenium red, respectively) were additive. Similarly, the processes of inositol-1,4,5-trisphosphate receptors (IP3Rs) activation and calcium-uniporter inhibition were additive. In contrast, the effects of ryanodine and ruthenium red on the Ca2+ content in cells were significantly non-additive. In addition, ryanodine at concentrations 1-3 μM reduced respiration rate of studied cells in dose-dependent manner, and this effect was persisted at cells preincubation with ruthenium red or tapsigargin. Thus, besides the activation of ryanodine receptors (RyRs) in endoplasmic reticulum, ryanodine inhibits Ca2+ influx to the mitochondrial matrix, that was insensitive to ruthenium red.

  3. Visualizing presynaptic calcium dynamics and vesicle fusion with a single genetically encoded reporter at individual synapses

    Directory of Open Access Journals (Sweden)

    Rachel E Jackson


    Full Text Available Synaptic transmission depends on the influx of calcium into the presynaptic compartment, which drives neurotransmitter release. Genetically encoded reporters are widely used tools to understand these processes, particularly pHluorin-based reporters that report vesicle exocytosis and endocytosis through pH dependent changes in fluorescence, and genetically encoded calcium indicators (GECIs that exhibit changes in fluorescence upon binding to calcium. The recent expansion of the color palette of available indicators has made it possible to image multiple probes simultaneously within a cell. We have constructed a single molecule reporter capable of concurrent imaging of both presynaptic calcium influx and exocytosis, by fusion of sypHy, the vesicle associated protein synaptophysin containing a GFP-based pHluorin sensor, with the red-shifted GECI R-GECO1. Due to the fixed stoichiometry of the two probes, the ratio of the two responses can also be measured, providing an all optical correlate of the calcium dependence of release. Here, we have characterized stimulus-evoked sypHy-RGECO responses of hippocampal synapses in vitro, exploring the effects of different stimulus strengths and frequencies as well as variations in external calcium concentrations. By combining live sypHy-RGECO imaging with post-hoc fixation and immunofluorescence, we have also investigated correlations between structural and functional properties of synapses.

  4. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells (United States)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.


    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  5. AUX/LAX family of auxin influx carriers-an overview

    Directory of Open Access Journals (Sweden)

    Ranjan eSwarup


    Full Text Available Auxin regulates several aspects of plant growth and development. Auxin is unique among plant hormones for exhibiting polar transport. Indole-3-acetic acid, the major form of auxin in higher plants, is a weak acid and its intercellular movement is facilitated by auxin influx and efflux carriers.. Polarity of auxin movement is provided by asymmetric localisation of auxin carriers (mainly PIN efflux carriers. PIN-FORMED (PIN and P-GLYCOPROTEIN (PGP family of proteins are major auxin efflux carriers whereas AUXIN1/LIKE-AUX1 (AUX/LAX are major auxin influx carriers.. Genetic and biochemical evidence show that each member of the AUX/LAX family is a functional auxin influx carrier and mediate auxin related developmental programmes in different organs and tissues. Of the four AUX/LAX genes, AUX1 regulates root gravitropism, root hair development and leaf phyllotaxy whereas LAX2 regulates vascular development in cotyledons. Both AUX1 and LAX3 have been implicated in lateral root development as well as apical hook formation whereas both AUX1 and LAX1 and possibly LAX2 are required for leaf phyllotactic patterning.

  6. Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea. (United States)

    Sukhov, Vladimir; Sherstneva, Oksana; Surova, Lyubov; Katicheva, Lyubov; Vodeneev, Vladimir


    Electrical signals (action potential and variation potential, VP) caused by environmental stimuli are known to induce various physiological responses in plants, including changes in photosynthesis; however, their functional mechanisms remain unclear. In this study, the influence of VP on photosynthesis in pea (Pisum sativum L.) was investigated and the proton participation in this process analysed. VP, induced by local heating, inactivated photosynthesis and activated respiration, with the initiation of the photosynthetic response connected with inactivation of the photosynthetic dark stage; however, direct VP influence on the light stage was also probable. VP generation was accompanied with pH increases in apoplasts (0.17-0.30 pH unit) and decreases in cytoplasm (0.18-0.60 pH unit), which probably reflected H(+) -ATPase inactivation and H(+) influx during this electrical event. Imitation of H(+) influx using the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) induced a photosynthetic response that was similar with a VP-induced response. Experiments on chloroplast suspensions showed that decreased external pH also induced an analogous response and that its magnitude depended on the magnitude of pH change. Thus, the present results showed that proton cellular influx was the probable mechanism of VP's influence on photosynthesis in pea. Potential means of action for this influence are discussed.

  7. Heat and hyposmotic stimulation increase in [Ca2+]i by Ca2+ influx in rat synoviocytes

    Institute of Scientific and Technical Information of China (English)

    SUN WenWu; HU Fen; YANG WenXiu


    Rheumatoid arthritis (RA), which is marked by inflammatory synovitis, is a common, chronic autoimmune-disease, whose pathogenesis is complex and still unclear. In order to explore the effects of heat and hyposmotic stimuli on synoviocytes in rheumatoid arthritis, the changes of [Ca2+]i induced by heat, hyposmotic and 4α-PDD stimuli were observed in synoviocytes. [Ca2+]i elevation induced by heat ≥ 28℃, hyposmotic and 4α-PDD stimuli is found to be positively relative to increasing temperature, decreasing osmolality and rising concentration of 4α-PDD. Results show that there is reciprocity among these stimuli and desensitization, and that [Ca2+]i elevation depends on Ca2+ influx, but not necessarily links to Ca2+ release from intracellular stores and voltage-dependent Ca2+ channel in synoviocytes. The above characteristics of Ca2+ influx are similar to those of TRPV4. A probable mechanism has been suggested that heat and hyposmotic stimulation might increase the level of [Ca2+]i by activating the TRPV4-like channel and Ca2+ influx in the synoviocytes.

  8. Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines.

    Directory of Open Access Journals (Sweden)

    Thom Griffith


    Full Text Available The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR and voltage-gated Ca2+ -channel (VGCC activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively regulated by Ca2+ -activated K+ channels (SK-channels which are in turn inhibited by neuromodulators such as acetylcholine. However, the precise mechanisms by which SK-channels control the induction of synaptic plasticity remain unclear. Using a 3-dimensional model of Ca2+ and calmodulin dynamics within an idealised, but biophysically-plausible, dendritic spine, we show that SK-channels regulate calmodulin activation specifically during neuron-firing patterns associated with induction of spike timing-dependent plasticity. SK-channel activation and the subsequent reduction in Ca2+ influx through NMDARs and L-type VGCCs results in an order of magnitude decrease in calmodulin (CaM activation, providing a mechanism for the effective gating of synaptic plasticity induction. This provides a common mechanism for the regulation of synaptic plasticity by neuromodulators.

  9. Effects of glycoprotein Ⅱb/Ⅲa antagonists and chloride channel blockers on platelet cytoplasmic free calcium

    Institute of Scientific and Technical Information of China (English)

    YIN Song-mei; XIE Shuang-feng; NIE Da-nian; LI Yi-qing; LI Hai-ming; MA Li-ping; WANG Xiu-ju; WU Yu-dan; FENG Jian-hong


    @@ Platelet activation plays an important role in thrombosis. Platelet glycoprotein Ⅱb/Ⅲa (GP Ⅱb/Ⅲa) is the receptor of fibrinogen. Platelet cross-linking with fibrinogen through GPⅡb/Ⅲa is the process of thrombosis. Ca2+ is an important intracellular second messenger in platelet activation. It has been reported that GPⅡb/Ⅲa receptors were involved in the calcium influx of activated platelet, and GPⅡb/Ⅲa receptor had characteristics of calcium channel or an adjacent calcium channel.

  10. Integumentary loss of calcium. (United States)

    Chu, J Y; Margen, S; Calloway, D H; Costa, F M


    Integumentary calcium loss was studied in 16 healthy young men. The daily loss by the 16 ambulatory but relatively sedentary young men in 52 determinations of 6-day periods each was 8.7 +/- 1.9 mg/m2 per day (average 15.8 mg/man per day). The amount lost was not influenced by calcium intake (0.1 to 2.3 g/day). In contrast to urinary calcium excretion, which is directly related to protein intake, there was no significant change in integumentary calcium loss with varying protein intakes (1 to 96 g nitrogen per day). No compensatory relationship between urinary and integumentary calcium excretion was noted. During strenuous exercise calcium loss increased to an average of 25 mg in 40 min. There was no compensatory decrease in urinary excretion on the day of strenuous exercise. It was also noted that integumentary calcium loss was not affected by general calcium balance.

  11. Calcium and Mitosis (United States)

    Hepler, P.


    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  12. Calcium and Mitosis (United States)

    Hepler, P.


    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  13. The minimal requirements to use calcium imaging to analyze ICRAC. (United States)

    Alansary, Dalia; Kilch, Tatiana; Holzmann, Christian; Peinelt, Christine; Hoth, Markus; Lis, Annette


    Endogenous calcium release-activated channel (CRAC) currents are usually quite small and not always easy to measure using the patch-clamp technique. While we have, for instance, successfully recorded very small CRAC currents in primary human effector T cells, we have not yet managed to record CRAC in naïve primary human T cells. Many groups, including ours, therefore use Ca(2+) imaging technologies to analyze CRAC-dependent Ca(2+) influx. However, Ca(2+) signals are quite complex and depend on many different transporter activities; thus, it is not trivial to make quantitative statements about one single transporter, in this case CRAC channels. Therefore, a detailed patch-clamp analysis of ICRAC is always preferred. Since many laboratories use Ca(2+) imaging for ICRAC analysis, we detail here the minimal requirements for reliable measurements. Ca(2+) signals not only depend on the net Ca(2+) influx through CRAC channels but also depend on other Ca(2+) influx mechanisms, K(+) channels or Cl(-) channels (which determine the membrane potential), Ca(2+) export mechanisms like plasma membrane Ca(2+) ATPase (PMCA), sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) or Na(+)-Ca(2+) exchangers, and (local) Ca(2+) buffering often by mitochondria. In this protocol, we summarize a set of experiments that allow (quantitative) statements about CRAC channel activity using Ca(2+) imaging experiments, including the ability to rule out Ca(2+) signals from other sources.

  14. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Stephen K Roberts

    Full Text Available Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  15. Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae. (United States)

    Roberts, Stephen K; McAinsh, Martin; Cantopher, Hanna; Sandison, Sean


    Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.

  16. Use of geochemical tracers for estimating groundwater influxes to the Big Sioux River, eastern South Dakota, USA (United States)

    Neupane, Ram P.; Mehan, Sushant; Kumar, Sandeep


    Understanding the spatial distribution and variability of geochemical tracers is crucial for estimating groundwater influxes into a river and can contribute to better future water management strategies. Because of the much higher radon (222Rn) activities in groundwater compared to river water, 222Rn was used as the main tracer to estimate groundwater influxes to river discharge over a 323-km distance of the Big Sioux River, eastern South Dakota, USA; these influx estimates were compared to the estimates using Cl- concentrations. In the reaches overall, groundwater influxes using the 222Rn activity approach ranged between 0.3 and 6.4 m3/m/day (mean 1.8 m3/m/day) and the cumulative groundwater influx estimated during the study period was 3,982-146,594 m3/day (mean 40,568 m3/day), accounting for 0.2-41.9% (mean 12.5%) of the total river flow rate. The mean groundwater influx derived using the 222Rn activity approach was lower than that calculated based on Cl- concentration (35.6 m3/m/day) for most of the reaches. Based on the Cl- approach, groundwater accounted for 37.3% of the total river flow rate. The difference between the method estimates may be associated with minimal differences between groundwater and river Cl- concentrations. These assessments will provide a better understanding of estimates used for the allocation of water resources to sustain agricultural productivity in the basin. However, a more detailed sampling program is necessary for accurate influx estimation, and also to understand the influence of seasonal variation on groundwater influxes into the basin.

  17. The coupling of acetylcholine-induced BK channel and calcium channel in guinea pig saccular type II vestibular hair cells. (United States)

    Kong, Wei-Jia; Guo, Chang-Kai; Zhang, Xiao-Wen; Chen, Xiong; Zhang, Song; Li, Guan-Qiao; Li, Zhi-Wang; Van Cauwenberge, Paul


    Molecular biological studies and electrophysiological data have demonstrated that acetylcholine (ACh) is the principal cochlear and vestibular efferent neurotransmitter among mammalians. However, the functional roles of ACh in type II vestibular hair cells (VHCs II) among mammalians are still unclear, with the exception of the well-known alpha9-containing nicotinic ACh receptor (alpha9-containing nAChR)-activated small conductance, calcium-dependent potassium current (SK) in cochlear hair cells and frog saccular hair cells. The activation of SK current was necessary for the calcium influx through the alpha9-containing nAChR. Recently, we have demonstrated that ACh-induced big conductance, calcium-dependent potassium current (BK) was present in VHCs II of the vestibular end-organ of guinea pig. In this study, the nature of calcium influx for the activation of ACh-induced BK current in saccular VHCs II of guinea pig was investigated. Following extracellular perfusion of ACh, saccular VHCs II displayed a sustained outward current, which was sensitive to iberiotoxin (IBTX). High concentration of apamin failed to inhibit the current amplitude of ACh-induced outward current. Intracellular application of Cs(+) completely abolished the current evoked by ACh. ACh-induced current was potently inhibited by nifedipine, nimodipine, Cd(2+) and Ni(2+), respectively. The inhibition potency of these four calcium channel antagonists was nimodipine>nifedipine>cadmium>nickel. The L-type Ca(2+) channels agonist, (-)-Bay-K 8644 mimicked the effect of ACh and activated an IBTX-sensitive current. In addition, partial VHCs II displayed a biphasic waveform. In conclusion, the present data showed that in the guinea pig saccular VHCs II, ACh-induced BK channel was coupled with the calcium channel, but not the receptor. The perfusion of ACh will drive the opening of calcium channels; the influx of calcium ions will then activate the BK current.

  18. Calcium - Function and effects

    NARCIS (Netherlands)

    Liang, Jianfen; He, Yifan; Gao, Qian; Wang, Xuan; Nout, M.J.R.


    Rice is the primary food source for more than half of the world population. Levels of calcium contents and inhibitor - phytic acid are summarized in this chapter. Phytic acid has a very strong chelating ability and it is the main inhibit factor for calcium in rice products. Calcium contents in br

  19. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.


    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of cardiop

  20. Molecular imaging of in vivo calcium ion expression in area postrema of total sleep deprived rats: Implications for cardiovascular regulation by TOF-SIMS analysis (United States)

    Mai, Fu-Der; Chen, Li-You; Ling, Yong-Chien; Chen, Bo-Jung; Wu, Un-In; Chang, Hung-Ming


    Excessive calcium influx in chemosensitive neurons of area postrema (AP) is detrimental for sympathetic activation and participates in the disruption of cardiovascular activities. Since total sleep deprivation (TSD) is a stressful condition known to harm the cardiovascular function, the present study is aimed to determine whether the in vivo calcium expression in AP would significantly alter following TSD by the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and calretinin (a specific calcium sensor protein in AP neurons) immunohistochemistry. The results indicated that in normal rats, the calcium intensity was estimated to be 0.5 × 10 5 at m/ z 40.08. However, following TSD, the intensity for calcium ions was greatly increased to 1.2 × 10 5. Molecular imaging revealed that after TSD, various strongly expressed calcium signals were distributed throughout AP with clear identified profiles instead of randomly scattered within this region in normal rats. Immunohistochemical staining corresponded well with ionic image in which a majority of calcium-enriched gathering co-localized with calretinin positive neurons. The functional significance of TSD-induced calcium augmentation was demonstrated by increased heart rate and mean arterial pressure, clinical markers for cardiovascular dysfunction. Considering AP-mediated sympathetic activation is important for cardiovascular regulation, exaggerated calcium influx in AP would render this neurocircuitry more vulnerable to over-excitation, which might serve as the underlying mechanism for the development of TSD-relevant cardiovascular deficiency.

  1. The Indianapolis Flux Experiment (INFLUX: A test-bed for developing urban greenhouse gas emission measurements

    Directory of Open Access Journals (Sweden)

    Kenneth J. Davis


    Full Text Available The objective of the Indianapolis Flux Experiment (INFLUX is to develop, evaluate and improve methods for measuring greenhouse gas (GHG emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

  2. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)


    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  3. Hypericum caprifoliatum and Hypericum connatum affect human trophoblast-like cells differentiation and Ca2+influx

    Institute of Scientific and Technical Information of China (English)

    Aline O da Conceio; Gilsane Lino von Poser; Benoit Barbeau; Julie Lafond


    Objective:To study the effect of crude methanol and n-hexane extracts of Hypericum connatum (H. connatum) and Hypericum caprifoliatum on trophoblast-like cells. Methods: BeWo and JEG-3 trophoblast-like cells were submitted to different extract concentrations (1, 5, 10 and 15 µg/mL) and evaluated in relation to cell viability and in vitro trophoblast differentiation and function. Cell viability was evaluated using WST-1 reagent. Differentiation was measured by luciferase production, hCG production/release, and mitogen-activated protein kinase signaling pathway activation. The function of the trophoblast-like cells was measured by 45Ca2+influx evaluation. Results:The results showed a decrease in cell viability/proliferation. Both plants and different extracts induced a significant decrease in hCG production/release and luciferase production. H. connatum did not cause mitogen-activated protein kinase signaling pathway disturbance;however, Hypericum caprifoliatum n-hexane extract at 15 µg/mL inhibited extracellular signal-regulated kinase 1/2 activation. The significant increase in Ca2+influx by JEG-3 cells was seen after short and long incubation times with H. connatum methanolic extract at 15 µg/mL. Conclusions: The results indicated that these two Hypericum species extracts can interfere on trophoblast differentiation and Ca2+influx, according to their molecular diversity. Although in vivo experiments are necessary to establish their action on placental formation and function, this study suggests that attention must be paid to the potential toxic effect of these plants.

  4. Emanuel Strehler’s work on calcium pumps and calcium signaling

    Institute of Scientific and Technical Information of China (English)

    Emanuel; E; Strehler


    Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca 2+ ). Inappropriate Ca 2+ signaling and abnormal Ca 2+ levels are involved in many clinical disorders including heart disease, Alzheimer’s disease and stroke. Ca 2+ also plays a major role in cell growth, differentiation and motility; disturbances in these processes underlie cell transformation and the progression of cancer. Accordingly, research in the Strehler laboratory is focused on a better understanding of the molecular "toolkit" needed to ensure proper Ca 2+ homeostasis in the cell, as well as on the mechanisms of localized Ca 2+ signaling. A longterm focus has been on the plasma membrane calcium pumps (PMCAs), which are linked to multiple disorders including hearing loss, neurodegeneration, and heart disease. Our work over the past 20 years or more has revealed a surprising complexity of PMCA isoforms with different functional characteristics, regulation, and cellular localization. Emerging evidence shows how specific PMCAs contribute not only to setting basal intracellular Ca 2+ levels, but also to local Ca 2+ signaling and vectorial Ca 2+ transport. A second major research arearevolves around the calcium sensor protein calmodulin and an enigmatic calmodulin-like protein (CALML3) that is linked to epithelial differentiation. One of the cellular targets of CALML3 is the unconventional motor protein myosin-10, which raises new questions about the role of CALML3 and myosin-10 in cell adhesion and migration in normal cell differentiation and cancer.

  5. Urbanization and apartheid in South Africa: influx controls and their abolition. (United States)

    Ogura, M


    "This study will take up the particular aspects and characteristics of urbanization [in South Africa] from the standpoint of the effects exerted by the apartheid system. It will then examine the trends which have taken place since abolition of the pass laws and restrictions on the influx of blacks into urban areas....[The author considers] the relationship between restrictions on the movement of blacks into urban areas on the one hand and the maintenance of low-wage migrant labor and retention of farmland in home districts on the other."

  6. Curcumin protects against interleukin-6-induced rapid Ca2+ influx in rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Qinying Deng; Tao Huang; Hongmei Tang; Xingming Zhong; Sujian Xia; Xiangcai Wei; Jun Dong


    The current study sought to investigate the potential protective action of curcumin against interleukin-6-induced injury in rat hippocampal neurons. The results revealed that interleukin-6 induced typical cellular injury, such as the swelling of cell bodies and increased Ca2+ concentration. After administration of curcumin, interleukin-6-induced neurons recovered to a normal state, and the fluorescence intensity of Ca2+ gradually returned to normal. These findings suggest that curcumin exerts a protective effect on hippocampal neurons of rats. In addition, our results suggest that the protective effect of curcumin involves prevention of the rapid Ca2+ influx induced by interleukin-6, which maintains Ca2+ homeostasis.

  7. The Lebanese–Syrian crisis: impact of influx of Syrian refugees to an already weak state

    Directory of Open Access Journals (Sweden)

    Cherri Z


    Full Text Available Zeinab Cherri, Pedro Arcos González, Rafael Castro Delgado Unit for Research in Emergency and Disaster, Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain Background: Lebanon, a small Middle Eastern country facing constant political and national unity challenges with a population of approximately 300,000 Palestinian and Iraqi refugees, has welcomed more than 1.2 million Office of the United Nations Commissioner for Refugees (UNHCR-registered Syrian refugees since 2012. The Government of Lebanon considers individuals who crossed Lebanese–Syrian borders since 2011 as “displaced”, emphasizing its long-standing position that Lebanon is not a state for refugees, refusing to establish camps, and adopting a policy paper to reduce their numbers in October 2014. Humanitarian response to the Syrian influx to Lebanon has been constantly assembling with the UNHCR as the main acting body and the Lebanon Crisis Response Plan as the latest plan for 2016. Methods: Review of secondary data from gray literature and reports focusing on the influx of Syrian refugees to Lebanon by visiting databases covering humanitarian response in complex emergencies. Limitations include obtaining majority of the data from gray literature and changing statistics due to the instability of the situation. Results: The influx of Syrian refugees to Lebanon, an already weak and vulnerable state, has negatively impacted life in Lebanon on different levels including increasing demographics, regressing economy, exhausting social services, complicating politics, and decreasing security as well as worsened the life of displaced Syrians themselves. Conclusion: Displaced Syrians and Lebanese people share aggravating hardships of a mutual and precarious crisis resulting from the Syrian influx to Lebanon. Although a lot of response has been initiated, both populations still lack much of their basic needs due to lack of funding and nonsustainable program initiatives

  8. Synthesis, QSAR and calcium channel modulator activity of new hexahydroquinoline derivatives containing nitroimidazole. (United States)

    Miri, Ramin; Javidnia, Katayoun; Mirkhani, Hossein; Hemmateenejad, Bahram; Sepeher, Zahra; Zalpour, Masomeh; Behzad, Taherh; Khoshneviszadeh, Mehdi; Edraki, Najmeh; Mehdipour, Ahmad R


    The discovery that 1,4-dihydropyridine class of calcium channel antagonists inhibit Ca2+ influx represented a major therapeutic advance in the treatment of cardiovascular disease. In contrast to the effects of known calcium channel blockers of the Nifedipine-type, the so-called calcium channel agonists, such as Bay K8644 and CGP 28392, increase calcium influx by binding at the same receptor regions. Our goal was to discover a dual cardioselective Ca2+-channel agonist/vascular selective smooth muscle Ca2+ channel antagonist third-generation 1,4-dihydropyridine drug which would have a suitable therapeutic profile for treating congestive heart failure (CHF) patients. A series of unsymmetrical alkyl, cycloalkyl and aryl ester analogues of 2-methyl-4-(1-methyl)-5-nitro-2-imidazolyl-5-oxo-1,4,5,6,7, 8-hexahydroquinolin-3-arboxylate were synthesized using modified Hantzsch reaction. All compounds show calcium antagonist activity on guinea-pig ileum longitudinal smooth muscle and some of them show agonist effect activity on guinea-pig auricle. Effect of structural parameters on the Ca2+ channel agonist/antagonist was evaluated by quantitative structure-activity relationship analysis. These compounds could be considered as a synthon for developing a suitable drug for treating CHF patients.

  9. Sensory-Driven Enhancement of Calcium Signals in Individual Purkinje Cell Dendrites of Awake Mice

    Directory of Open Access Journals (Sweden)

    Farzaneh Najafi


    Full Text Available Climbing fibers (CFs are thought to contribute to cerebellar plasticity and learning by triggering a large influx of dendritic calcium in the postsynaptic Purkinje cell (PC to signal the occurrence of an unexpected sensory event. However, CFs fire about once per second whether or not an event occurs, raising the question of how sensory-driven signals might be distinguished from a background of ongoing spontaneous activity. Here, we report that in PC dendrites of awake mice, CF-triggered calcium signals are enhanced when the trigger is a sensory event. In addition, we show that a large fraction of the total enhancement in each PC dendrite can be accounted for by an additional boost of calcium provided by sensory activation of a non-CF input. We suggest that sensory stimulation may modulate dendritic voltage and calcium concentration in PCs to increase the strength of plasticity signals during cerebellar learning.

  10. Modulation of heparan sulfate in the glomerular endothelial glycocalyx decreases leukocyte influx during experimental glomerulonephritis. (United States)

    Rops, Angelique L W M M; Loeven, Markus A; van Gemst, Jasper J; Eversen, Iris; Van Wijk, Xander M; Dijkman, Henry B; van Kuppevelt, Toin H; Berden, Jo H M; Rabelink, Ton J; Esko, Jeffrey D; van der Vlag, Johan


    The glomerular endothelial glycocalyx is postulated to be an important modulator of permeability and inflammation. The glycocalyx consists of complex polysaccharides, the main functional constituent of which, heparan sulfate (HS), is synthesized and modified by multiple enzymes. The N-deacetylase-N-sulfotransferase (Ndst) enzymes initiate and dictate the modification process. Here we evaluated the effects of modulation of HS in the endothelial glycocalyx on albuminuria and glomerular leukocyte influx using mice deficient in endothelial and leukocyte Ndst1 (TEKCre+/Ndst1flox/flox). In these mice, glomerular expression of a specific HS domain was significantly decreased, whereas the expression of other HS domains was normal. In the endothelial glycocalyx, this specific HS structure was not associated with albuminuria or with changes in renal function. However, glomerular leukocyte influx was significantly reduced during antiglomerular basement membrane nephritis, which was associated with less glomerular injury and better renal function. In vitro decreased adhesion of wild-type and Ndst1-deficient granulocytes to Ndst1-silenced glomerular endothelial cells was found, accompanied by a decreased binding of chemokines and L-selectin. Thus, modulation of HS in the glomerular endothelial glycocalyx significantly reduced the inflammatory response in antiglomerular basement membrane nephritis.

  11. TRPM2 contributes to LPC-induced intracellular Ca(2+) influx and microglial activation. (United States)

    Jeong, Heejin; Kim, Yong Ho; Lee, Yunsin; Jung, Sung Jun; Oh, Seog Bae


    Microglia are the resident immune cells which become activated in some pathological conditions in central nervous system (CNS). Lysophosphatidylcholine (LPC), an endogenous inflammatory phospholipid, is implicated in immunomodulatory function of glial cells in the CNS. Although several studies uncovered that LPC induces intracellular Ca(2+) influx and morphologic change in microglia, there is still no direct evidence showing change of phosphorylation of mitogen-activated protein kinase (MAPK) p38 (p-p38), a widely used microglia activation marker, by LPC. Furthermore, the cellular mechanism of LPC-induced microglia activation remains unknown. In this study, we found that LPC induced intracellular Ca(2+) increase in primary cultured microglia, which was blocked in the presence of Gd(3+), non-selective transient receptor potential (TRP) channel blocker. RT-PCR and whole cell patch clamp recordings revealed molecular and functional expression of TRP melastatin 2 (TRPM2) in microglia. Using western blotting, we also observed that LPC increased phosphorylation of p38 MAPK, and the increase of p-p38 expression is also reversed in TRPM2-knockout (KO) microglia. Moreover, LPC induced membrane trafficking of TRPM2 and intrathecal injection of LPC increased Iba-1 immunoreactivity in the spinal cord, which were significantly reduced in KO mice. In addition, LPC-induced intracellular Ca(2+) increase and inward currents were abolished in TRPM2-KO microglia. Taken together, our results suggest that LPC induces intracellular Ca(2+) influx and increases phosphorylation of p38 MAPK via TRPM2, which in turn activates microglia.

  12. Passive transport pathways for Ca(2+) and Co(2+) in human red blood cells. (57)Co(2+) as a tracer for Ca(2+) influx. (United States)

    Simonsen, Lars Ole; Harbak, Henrik; Bennekou, Poul


    The passive transport of calcium and cobalt and their interference were studied in human red cells using (45)Ca and (57)Co as tracers. In ATP-depleted cells, with the ATP concentration reduced to about 1μM, the progress curve for (45)Ca uptake at 1mM rapidly levels off with time, consistent with a residual Ca-pump activity building up at increasing [Ca(T)](c) to reach at [Ca(T)](c) about 5μmol(lcells)(-1) a maximal pump rate that nearly countermands the passive Ca influx, resulting in a linear net uptake at a low level. In ATP-depleted cells treated with vanadate, supposed to cause Ca-pump arrest, a residual pump activity is still present at high [Ca(T)](c). Moreover, vanadate markedly increases the passive Ca(2+) influx. The residual Ca-pump activity in ATP-depleted cells is fuelled by breakdown of the large 2,3-DPG pool, rate-limited by the sustainable ATP-turnover at about 40-50μmol(lcells)(-1)h(-1). The apparent Ca(2+) affinity of the Ca-pump appears to be markedly reduced compared to fed cells. The 2,3-DPG breakdown can be prevented by inhibition of the 2,3-DPG phosphatase by tetrathionate, and under these conditions the (45)Ca uptake is markedly increased and linear with time, with the unidirectional Ca influx at 1mM Ca(2+) estimated at 50-60μmol(lcells)(-1)h(-1). The Ca influx increases with the extracellular Ca(2+) concentration with a saturating component, with K(½(Ca)) about 0.3mM, plus a non-saturating component. From (45)Ca-loaded, ATP-depleted cells the residual Ca-pump can also be detected as a vanadate- and tetrathionate-sensitive efflux. The (45)Ca efflux is markedly accelerated by external Ca(2+), both in control cells and in the presence of vanadate or tetrathionate, suggesting efflux by carrier-mediated Ca/Ca exchange. The (57)Co uptake is similar in fed cells and in ATP-depleted cells (exposed to iodoacetamide), consistent with the notion that Co(2+) is not transported by the Ca-pump. The transporter is thus neither SH-group nor ATP or

  13. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption (United States)

    Miyauchi, A.; Hruska, K. A.; Greenfield, E. M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S. L.; Teti, A.


    The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.

  14. Variations in onset of action potential broadening: effects on calcium current studied in chick ciliary ganglion neurones. (United States)

    Pattillo, J M; Artim, D E; Simples, J E; Meriney, S D


    1. The voltage dependence and kinetic properties of stage 40 ciliary ganglion calcium currents were determined using short (10 ms) voltage steps. These properties aided the interpretation of the action potential-evoked calcium current described below, and the comparison of our data with those observed in other preparations. 2. Three different natural action potential waveforms were modelled by a series of ramps to generate voltage clamp commands. Calcium currents evoked by these model action potentials were compared before and after alterations in the repolarization phase of each action potential. 3. Abrupt step repolarizations from various time points were used to estimate the time course of calcium current activation during each action potential. Calcium current evoked by fast action potentials (duration at half-amplitude, 0.5 or 1.0 ms) did not reach maximal activation until the action potential had repolarized by 40-50 %. In contrast, calcium current evoked by a slow action potential (duration at half-amplitude, 2.2 ms) was maximally activated near the peak of the action potential. 4. Slowing the rate of repolarization of the action potential (broadening) from different times was used to examine effects on peak and total calcium influx. With all three waveforms tested, broadening consistently increased total calcium influx (integral). However, peak calcium current was either increased or decreased depending on the duration of the control action potential tested and the specific timing of the initiation of broadening the repolarization phase. 5. The opposite effects on peak calcium current observed with action potential broadening beginning at different time points in repolarization may provide a mechanism for the variable effects of potassium channel blockers on transmitter release magnitude.

  15. Force-dependent calcium signaling and its pathway of human neutrophils on P-selectin in flow. (United States)

    Huang, Bing; Ling, Yingchen; Lin, Jiangguo; Du, Xin; Fang, Ying; Wu, Jianhua


    P-selectin engagement of P-selectin glycoprotein ligand-1 (PSGL-1) causes circulating leukocytes to roll on and adhere to the vascular surface, and mediates intracellular calcium flux, a key but unclear event for subsequent arresting firmly at and migrating into the infection or injured tissue. Using a parallel plate flow chamber technique and intracellular calcium ion detector (Fluo-4 AM), the intracellular calcium flux of firmly adhered neutrophils on immobilized P-selectin in the absence of chemokines at various wall shear stresses was investigated here in real time by fluorescence microscopy. The results demonstrated that P-selectin engagement of PSGL-1 induced the intracellular calcium flux of firmly adhered neutrophils in flow, increasing P-selectin concentration enhanced cellular calcium signaling, and, force triggered, enhanced and quickened the cytoplasmic calcium bursting of neutrophils on immobilized P-selectin. This P-selectin-induced calcium signaling should come from intracellular calcium release rather than extracellular calcium influx, and be along the mechano-chemical signal pathway involving the cytoskeleton, moesin and Spleen tyrosine kinase (Syk). These results provide a novel insight into the mechano-chemical regulation mechanism for P-selectin-induced calcium signaling of neutrophils in flow.

  16. The effects of thermal stimuli on intracellular calcium change and histamine releases in rat basophilic leukemia mast cells (United States)

    Wu, Zu-Hui; Zhu, Dan; Chen, Ji-Yao; Zhou, Lu-Wei


    The effects of thermal stimuli on rat basophilic leukemia mast cells were studied. The cells in calcium-contained or calcium-free buffers were thermally stimulated in the temperature range of 25-60 °C. The corresponding calcium ion concentration in cells [Ca2+]i as well as the released histamine from cells was measured with fluorescence staining methods. The ruthenium red (RR), a block of membrane calcium channels (transient receptor potential family V (TRPV)), was used in experiments. Under the stimulus of 25-50 °C, no significant difference on [Ca2+]i was found between these three groups of the cells in calcium-contained buffer without or with RR and cells in calcium-free saline, indicating that the increased calcium in cytosol did not result from the extracellular buffer but came from the intracellular calcium stores. The [Ca2+]i continuously increased under the temperature of 50-60 °C, but the RR and calcium-free saline can obviously diminish the [Ca2+]i increase at these high temperatures, reflecting that the opening of the TRPV2 channels leads to a calcium influx resulting in the [Ca2+]i increment. The histamine release also became significant in these cases. Since the released histamine is a well-known mediator for the microcirculation promotion, the histamine release from mast cells could be one of the mechanisms of thermal therapy.

  17. Characteristic of Extracellular Zn(2+) Influx in the Middle-Aged Dentate Gyrus and Its Involvement in Attenuation of LTP. (United States)

    Takeda, Atsushi; Koike, Yuta; Osaw, Misa; Tamano, Haruna


    An increased influx of extracellular Zn(2+) into neurons is a cause of cognitive decline. The influx of extracellular Zn(2+) into dentate granule cells was compared between young and middle-aged rats because of vulnerability of the dentate gyrus to aging. The influx of extracellular Zn(2+) into dentate granule cells was increased in middle-aged rats after injection of AMPA and high K(+) into the dentate gyrus, but not in young rats. Simultaneously, high K(+)-induced attenuation of LTP was observed in middle-aged rats, but not in young rats. The attenuation was rescued by co-injection of CaEDTA, an extracellular Zn(2+) chelator. Intracellular Zn(2+) in dentate granule cells was also increased in middle-aged slices with high K(+), in which the increase in extracellular Zn(2+) was the same as young slices with high K(+), suggesting that ability of extracellular Zn(2+) influx into dentate granule cells is greater in middle-aged rats. Furthermore, extracellular zinc concentration in the hippocampus was increased age-dependently. The present study suggests that the influx of extracellular Zn(2+) into dentate granule cells is more readily increased in middle-aged rats and that its increase is a cause of age-related attenuation of LTP in the dentate gyrus.

  18. Imaging and analysis of evoked excitatory-postsynaptic-calcium-transients by individual presynaptic-boutons of cultured Aplysia sensorimotor synapse. (United States)

    Malkinson, Guy; Spira, Micha E


    The use of the sensory-motor (SN-MN) synapse of the Aplysia gill withdrawal reflex has contributed immensely to the understanding of synaptic transmission, learning and memory acquisition processes. Whereas the majority of the studies focused on analysis of the presynaptic mechanisms, recent studies indicated that as in mammalian synapses, long term potentiation (LTP) formed by Aplysia SN-MN synapse depends on elevation of the postsynaptic free intracellular calcium concentration ([Ca2+](i)). Consistently, injection of the fast calcium chelator BAPTA to the MN prevents the formation of serotonin-induced LTP. Nevertheless, currently there are no published reports that directly examine and document whether evoked synaptic transmission is associated with transient increase in the postsynaptic [Ca2+](i). In the present study we imaged, for the first time, alterations in the postsynaptic [Ca2+](i) in response to presynaptic stimulation and analyzed the underlying mechanisms. Using live imaging of the postsynaptic [Ca2+](i) while monitoring the EPSP, we found that evoked transmitter release generates excitatory postsynaptic calcium concentration transients (EPSCaTs) by two mechanisms: (a) activation of DNQX-sensitive postsynaptic receptors-gated calcium influx and (b) calcium influx through nitrendipine-sensitive voltage-gated calcium channels (VGCCs). Concomitant confocal imaging of presynaptic boutons and EPSCaTs revealed that approximately 86% of the presynaptic boutons are associated with functional synapses.

  19. Calcium is important forus.

    Institute of Scientific and Technical Information of China (English)



    Calcium is important for our health.We must have it in our diet to stay well.A good place to get it is from dairy products like milk, cheese and ice cream.One pound of cheese has fifty times the calcium we should have every day.Other foods have less.For example,a pound of beans also has calcium.But it has only three times the amount we ought to have daily.

  20. Both barium and calcium activate neuronal potassium currents

    Energy Technology Data Exchange (ETDEWEB)

    Ribera, A.B.; Spitzer, N.C.


    Amphibian spinal neurons in culture possess both rapidly inactivating and sustained calcium-dependent potassium current components, similar to those described for other cells. Divalent cation-dependent whole-cell outward currents were isolated by subtracting the voltage-dependent potassium currents recorded from Xenopus laevis neurons in the presence of impermeant cadmium from the currents produced without cadmium but in the presence of permeant divalent cations. These concentrations of permeant ions were low enough to avoid contamination by macroscopic inward currents through calcium channels. Calcium-dependent potassium currents were reduced by 1 tetraethylammonium. These currents can also be activated by barium or strontium. Barium as well as calcium activated outward currents in young neurons (6-8 hr) and in relatively mature neurons (19-26 hr in vitro). However, barium influx appeared to suppress the sustained voltage-dependent potassium current in most cells. Barium also activated at least one class of potassium channels observed in excised membrane patches, whole blocking others. The blocking action may have masked and hindered detection of the stimulatory action of barium in other systems.

  1. Breeding season influxes and the behaviour of adult male samango monkeys (Cercopithecus mitis albogularis). (United States)

    Henzi, S P; Lawes, M


    Troops comprising a high density population of samango monkeys (Cercopithecus mitis) in Natal province, South Africa, experienced an influx of adult males during the breeding season. Observation of one troop revealed that these males competed with one another and with two resident males for access to receptive females. Although both sexes initiated copulation, attempts to do so were more often successful if female-initiated. Males did not interact with non-receptive females and there were no recorded attempts at infanticide. Male-male interactions were agonistic in the presence of receptive females and neutral at other times. No ritualized displays of dominance and subordinance were seen. The significance of these observations for male reproductive strategies is discussed.

  2. Disruptions in AUX1-Dependent Auxin Influx Alter Hypocotyl Phototropism in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Bethany B.Stone; Emily L.Stowe-Evans; Reneé M.Harper; R.Brandon Celaya; Karin Ljung; G(o)ran Sandberg; Emmanuel Liscum


    Phototropism represents a differential growth response by which plant organs can respond adaptively to changes in the direction of incident light to optimize leaf/stem positioning for photosynthetic light capture and root growth orientation for water/nutrient acquisition. Studies over the past few years have identified a number of components in the signaling pathway(s) leading to development of phototropic curvatures in hypocotyls. These include the phototropin photoreceptors (phot1 and phot2) that perceive directional blue-light (BL) cues and then stimulate signaling,leading to relocalization of the plant hormone auxin, as well as the auxin response factor NPH4/ARF7 that responds to changes in local auxin concentrations to directly mediate expression of genes likely encoding proteins necessary for development of phototropic curvatures. While null mutations in NPH4/ARF7 condition an aphototropic response to unidirectional BL, seedlings carrying the same mutations recover BL-dependent phototropic responsiveness if coirradiated with red light (RL) or pre-treated with either ethylene. In the present study, we identify second-site enhancer mutations in the nph4 background that abrogate these recovery responses. One of these mutations-map1 ((m)odifier of (a)rf7 (p)henotypes (1))-was found to represent a missense allele of AUX1-a gene encoding a high-affinity auxin influx carrier previously associated with a number of root responses. Pharmocological studies and analyses of additional aux1 mutants confirmed that AUX1 functions as a modulator of hypocotyl phototropism. Moreover, we have found that the strength of dependence of hypocotyl phototropism on AUX1-mediated auxin influx is directly related to the auxin responsiveness of the seedling in question.

  3. Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study

    Directory of Open Access Journals (Sweden)

    Norman Ruthven Saunders


    Full Text Available The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analysed by functional groups of influx transporters, particularly solute carrier (SLC transporters. RNA-Seq was performed at embryonic day (E 15 and adult with additional data obtained at intermediate ages from microarray analysis. The largest represented functional group in the embryo was amino acid transporters (twelve with expression levels 2-98 times greater than in the adult. In contrast, in the adult only six amino acid transporters were up-regulated compared to the embryo and at more modest enrichment levels (<5-fold enrichment above E15. In E15 plexus five glucose transporters, in particular Glut-1, and only one monocarboxylate transporter were enriched compared to the adult, whereas only two glucose transporters but six monocarboxylate transporters in the adult plexus were expressed at higher levels than in embryos. These results are compared with earlier published physiological studies of amino acid and monocarboxylate transport in developing rodents. This comparison shows correlation of high expression of some transporters in the developing brain with higher amino acid transport activity reported previously. Data for divalent metal transporters are also considered. Immunohistochemistry of several transporters (e.g. Slc16a10, a thyroid hormone transporter gene products was carried out to confirm translational activity and to define cellular distribution of the proteins. Overall the results show that there is substantial expression of numerous influx transporters in the embryonic choroid plexus, many at higher levels than in the adult. This, together with immunohistochemical evidence and data from published physiological transport studies suggests that the choroid plexus in embryonic brain plays a major role in supplying the developing brain with essential nutrients.

  4. Initiation of DNA synthesis by human thrombin: relationships between receptor binding, enzymic activity, and stimulation of 86Rb+ influx. (United States)

    Stiernberg, J; Carney, D H; Fenton, J W; LaBelle, E F


    Stimulation of amiloride-sensitive sodium (Na+) influx and the subsequent activation of NA+, K+-ATPase by serum or growth factors have been implicated as early events leading to initiation of cell proliferation. We recently demonstrated that amiloride inhibits thrombin-initiated DNA synthesis not by inhibiting an early event occurring during the first 8 hr, but rather by inhibiting some later event 8 to 12 hr after thrombin addition. To further probe the relationship between stimulation of ion influx and initiation of cell proliferation, human alpha-thrombin was converted to gamma-thrombin, nitro-alpha-thrombin, and diisopropylphospho (DIP)-alpha-thrombin. These derivatives retain either the capacity to bind cell surface alpha-thrombin receptors or thrombin esterase activity, but they do not initiate DNA synthesis. At low concentrations of alpha-thrombin or the various thrombin derivatives, only alpha-thrombin stimulates 86Rb+ influx, suggesting a correlation between stimulation of influx and the ability of these derivatives to initiate DNA synthesis. Concentrations of a DIP-alpha-thrombin that saturate the alpha-thrombin receptors (up to 2 micrograms/ml) do not stimulate either the early or late influx of 86Rb+, indicating that DIP-alpha-thrombin binding alone is not sufficient to stimulate ion fluxes. High concentrations of either gamma-thrombin or nitro-alpha-thrombin, however, stimulate both early and late 86RB+ uptake but do not initiate DNA synthesis. These results demonstrate that events leading to both the early and late stimulation of 86Rb+ influx by themselves are not sufficient to initiate cell proliferation. Thus, initiation may require a combination of events that can be independently regulated by different transmembrane signals.

  5. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine


    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibi...

  6. Calcium signaling in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dreses-Werringloer Ute


    Full Text Available Abstract Calcium is a key signaling ion involved in many different intracellular and extracellular processes ranging from synaptic activity to cell-cell communication and adhesion. The exact definition at the molecular level of the versatility of this ion has made overwhelming progress in the past several years and has been extensively reviewed. In the brain, calcium is fundamental in the control of synaptic activity and memory formation, a process that leads to the activation of specific calcium-dependent signal transduction pathways and implicates key protein effectors, such as CaMKs, MAPK/ERKs, and CREB. Properly controlled homeostasis of calcium signaling not only supports normal brain physiology but also maintains neuronal integrity and long-term cell survival. Emerging knowledge indicates that calcium homeostasis is not only critical for cell physiology and health, but also, when deregulated, can lead to neurodegeneration via complex and diverse mechanisms involved in selective neuronal impairments and death. The identification of several modulators of calcium homeostasis, such as presenilins and CALHM1, as potential factors involved in the pathogenesis of Alzheimer's disease, provides strong support for a role of calcium in neurodegeneration. These observations represent an important step towards understanding the molecular mechanisms of calcium signaling disturbances observed in different brain diseases such as Alzheimer's, Parkinson's, and Huntington's diseases.

  7. Role of low voltage activated calcium channels in neuritogenesis and active migration of embryonic neural progenitor cells. (United States)

    Louhivuori, Lauri M; Louhivuori, Verna; Wigren, Henna-Kaisa; Hakala, Elina; Jansson, Linda C; Nordström, Tommy; Castrén, Maija L; Akerman, Karl E


    The central role of calcium influx and electrical activity in embryonic development raises important questions about the role and regulation of voltage-dependent calcium influx. Using cultured neural progenitor cell (NPC) preparations, we recorded barium currents through voltage-activated channels using the whole-cell configuration of the patch-clamp technique and monitored intracellular free calcium concentrations with Fura-2 digital imaging. We found that NPCs as well as expressing high-voltage-activated (HVA) calcium channels express functional low-threshold voltage-dependent calcium channels in the very early stages of differentiation (5 h to 1 day). The size of the currents recorded at -50 versus -20 mV after 1 day in differentiation was dependent on the nature of the charge carrier. Peak currents measured at -20 mV in the presence 10 mM Ca2+ instead of 10 mM Ba2+ had a tendency to be smaller, whereas the nature of the divalent species did not influence the amplitude measured at -50 mV. The T-type channel blockers mibefradil and NNC 55-0396 significantly reduced the calcium responses elicited by depolarizing with extracellular potassium, while the overall effect of the HVA calcium channel blockers was small at differentiation day 1. At differentiation day 20, the calcium responses were effectively blocked by nifedipine. Time-lapse imaging of differentiating neurospheres cultured in the presence of low-voltage-activated (LVA) blockers showed a significant decrease in the number of active migrating neuron-like cells and neurite extensions. Together, these data provide evidence that LVA calcium channels are involved in the physiology of differentiating and migrating NPCs.

  8. Synaptic vesicle exocytosis and increased cytosolic calcium are both necessary but not sufficient for activity-dependent bulk endocytosis. (United States)

    Morton, Andrew; Marland, Jamie R K; Cousin, Michael A


    Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. By definition this mode is triggered by neuronal activity; however, key questions regarding its mechanism of activation remain unaddressed. To determine the basic requirements for ADBE triggering in central nerve terminals, we decoupled SV fusion events from activity-dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. ADBE was monitored both optically and morphologically by observing uptake of the fluid phase markers tetramethylrhodamine-dextran and horse radish peroxidase respectively. Ablation of SV fusion with tetanus toxin resulted in the arrest of ADBE, but had no effect on other calcium-dependent events such as activity-dependent dynamin I dephosphorylation, indicating that SV exocytosis is necessary for triggering. Furthermore, the calcium chelator EGTA abolished ADBE while leaving SV exocytosis intact, demonstrating that ADBE is triggered by intracellular free calcium increases outside the active zone. Activity-dependent dynamin I dephosphorylation was also arrested in EGTA-treated neurons, consistent with its proposed role in triggering ADBE. Thus, SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient individually to trigger ADBE. Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. To determine the minimal requirements for ADBE triggering, we decoupled SV fusion events from activity-dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. We found that SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient to trigger ADBE.

  9. Estrone-1-sulphate (E1S) has impact on the kinetics parameters of transporter mediated taurine and glutamate influx in Caco-2 cells

    DEFF Research Database (Denmark)

    Steffansen, Bente; El-Sayed, F

    of membrane transporters. The aim was therefore to investigate if addition of E1S to the growth medium of Caco-2 cells before but not during the influx study, change the kinetic parameters of transporter-mediated influx of taurine and glutamate by respective TAUT and EAAT transporters. The results show that 4...... days pretreatment with E1S change the concentration dependent influx curves and Km for transporter mediated taurine and Km and Jmax for glutamate influx although the effects on Km and Jmax are not significant....

  10. Inhibitory action of oestrogen on calcium-induced mitosis in rat bone marrow and thymus. (United States)

    Smith, G R; Gurson, M L; Riddell, A J; Perris, A D


    In the male rat injections of CaCl-2 and MgCl-2 stimulated mitosis in bone marrow and thymus tissue. The magnesium salt was also mitogenic in the normal female, but calcium only exerted its mitogenic effect after ovariectomy. Oestradiol, but not progesterone replacement therpy abolished calcium-induced mitosis in the ovariectomized rat. The inability of calcium to stimulate cell division was also apparent in the thyroparathyroidectomized female rat, suggesting the oestradiol blockage did not operate via some indirect action on the calcium homeostatic hormones calcitonin or parathyroid hormone. When thymic lymphocytes derived from male or female rats were isolated and maintained in suspension, increased calcium or magnesium concentrations in the culture medium stimulated the entry of cells into mitosis. Addition of oestradiol to the culture medium abolished the mitogenic effect of increased calcium levels, but had no effect on magnesium-induced proliferation. These experiments suggested that oestradiol might act at the cell surface to prevent the influx of calcium but not magnesium ions into the interior of the cell and thus to block the sequence of biochemical events which led to the initiation of DNA synthesis and culminate in mitosis.

  11. Calcium Signaling throughout the Toxoplasma gondii Lytic Cycle: A STUDY USING GENETICALLY ENCODED CALCIUM INDICATORS. (United States)

    Borges-Pereira, Lucas; Budu, Alexandre; McKnight, Ciara A; Moore, Christina A; Vella, Stephen A; Hortua Triana, Miryam A; Liu, Jing; Garcia, Celia R S; Pace, Douglas A; Moreno, Silvia N J


    Toxoplasma gondii is an obligate intracellular parasite that invades host cells, creating a parasitophorous vacuole where it communicates with the host cell cytosol through the parasitophorous vacuole membrane. The lytic cycle of the parasite starts with its exit from the host cell followed by gliding motility, conoid extrusion, attachment, and invasion of another host cell. Here, we report that Ca(2+) oscillations occur in the cytosol of the parasite during egress, gliding, and invasion, which are critical steps of the lytic cycle. Extracellular Ca(2+) enhances each one of these processes. We used tachyzoite clonal lines expressing genetically encoded calcium indicators combined with host cells expressing transiently expressed calcium indicators of different colors, and we measured Ca(2+) changes in both parasites and host simultaneously during egress. We demonstrated a link between cytosolic Ca(2+) oscillations in the host and in the parasite. Our approach also allowed us to measure two new features of motile parasites, which were enhanced by Ca(2+) influx. This is the first study showing, in real time, Ca(2+) signals preceding egress and their direct link with motility, an essential virulence trait.

  12. A Calcium-Dependent Plasticity Rule for HCN Channels Maintains Activity Homeostasis and Stable Synaptic Learning (United States)

    Honnuraiah, Suraj; Narayanan, Rishikesh


    Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles

  13. Rare variants in calcium homeostasis modulator 1 (CALHM1 found in early onset Alzheimer's disease patients alter calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Fanny Rubio-Moscardo

    Full Text Available Calcium signaling in the brain is fundamental to the learning and memory process and there is evidence to suggest that its dysfunction is involved in the pathological pathways underlying Alzheimer's disease (AD. Recently, the calcium hypothesis of AD has received support with the identification of the non-selective Ca(2+-permeable channel CALHM1. A genetic polymorphism (p. P86L in CALHM1 reduces plasma membrane Ca(2+ permeability and is associated with an earlier age-at-onset of AD. To investigate the role of CALHM1 variants in early-onset AD (EOAD, we sequenced all CALHM1 coding regions in three independent series comprising 284 EOAD patients and 326 controls. Two missense mutations in patients (p.G330D and p.R154H and one (p.A213T in a control individual were identified. Calcium imaging analyses revealed that while the mutation found in a control (p.A213T behaved as wild-type CALHM1 (CALHM1-WT, a complete abolishment of the Ca(2+ influx was associated with the mutations found in EOAD patients (p.G330D and p.R154H. Notably, the previously reported p. P86L mutation was associated with an intermediate Ca(2+ influx between the CALHM1-WT and the p.G330D and p.R154H mutations. Since neither expression of wild-type nor mutant CALHM1 affected amyloid ß-peptide (Aß production or Aß-mediated cellular toxicity, we conclude that rare genetic variants in CALHM1 lead to Ca(2+ dysregulation and may contribute to the risk of EOAD through a mechanism independent from the classical Aß cascade.

  14. Polyamine triggering of exocytosis in Paramecium involves an extracellular Ca(2+)/(polyvalent cation)-sensing receptor, subplasmalemmal Ca-store mobilization and store-operated Ca(2+)-influx via unspecific cation channels. (United States)

    Klauke, N; Blanchard, M; Plattner, H


    The polyamine secretagogue, aminoethyldextran (AED), causes a cortical [Ca(2+)] transient in Paramecium cells, as analyzed by fluorochrome imaging. Our most essential findings are: (i) Cortical Ca(2+) signals also occur when AED is applied in presence of the fast Ca(2+) chelator, BAPTA. (ii) Extracellular La(3+) application causes within seconds a rapid, reversible fluorescence signal whose reversibility can be attributed to a physiological [Ca(2+)](i) transient (while injected La(3+) causes a sustained fluorescence signal). (iii) Simply increasing [Ca(2+)](o) causes a similar rapid, short-lived [Ca(2+)](i) transient. All these phenomena, (i-iii), are compatible with activation of an extracellular "Ca(2+)/(polyvalent cation)-sensing receptor" known from some higher eukaryotic systems, where this sensor (responding to Ca(2+), La(3+) and some multiply charged cations) is linked to cortical calcium stores which, thus, are activated. In Paramecium, such subplasmalemmal stores ("alveolar sacs") are physically linked to the cell membrane and they can also be activated by the Ca(2+) releasing agent, 4-chloro-m-cresol, just like in Sarcoplasmic Reticulum. Since this drug causes a cortical Ca(2+) signal also in absence of Ca(2+)(o) we largely exclude a "Ca(2+)-induced Ca(2+) release" (CICR) mechanism. Our finding of increased cortical Ca(2+) signals after store depletion and re-addition of extracellular Ca(2+) can be explained by a "store-operated Ca(2+) influx" (SOC), i.e., a Ca(2+) influx superimposing store activation. AED stimulation in presence of Mn(2+)(o) causes fluorescence quenching in Fura-2 loaded cells, indicating involvement of unspecific cation channels. Such channels, known to occur in Paramecium, share some general characteristics of SOC-type Ca(2+) influx channels. In conclusion, we assume the following sequence of events during AED stimulated exocytosis: (i) activation of an extracellular Ca(2+)/polyamine-sensing receptor, (ii) release of Ca(2+) from

  15. Modulation of action potential and calcium signaling by levetiracetam in rat sensory neurons. (United States)

    Ozcan, Mete; Ayar, Ahmet


    Levetiracetam (LEV), a new anticonvulsant agent primarily used to treat epilepsy, has been used in pain treatment but the cellular mechanism of this action remains unclear. This study aimed to investigate effects of LEV on the excitability and membrane depolarization-induced calcium signaling in isolated rat sensory neurons using the whole-cell patch clamp and fura 2-based ratiometric Ca(2+)-imaging techniques. Dorsal root ganglia (DRG) were excised from neonatal rats, and cultured following enzymatic and mechanical dissociation. Under current clamp conditions, acute application of LEV (30 µM, 100 µM and 300 µM) significantly increased input resistance and caused the membrane to hyperpolarize from resting membrane potential in a dose-dependent manner. Reversal potentials of action potential (AP) after hyperpolarising amplitudes were shifted to more negative, toward to potassium equilibrium potentials, after application of LEV. It also caused a decrease in number of APs in neurons fired multiple APs in response to prolonged depolarization. Fura-2 fluorescence Ca(2+) imaging protocols revealed that HiK(+) (30 mM)-induced intracellular free Ca(2+) ([Ca(2+)](i)) was inhibited to 97.8 ± 4.6% (n = 17), 92.6 ± 4.8% (n = 17, p < 0.01) and 89.1 ± 5.1% (n = 18, p < 0.01) after application of 30 µM, 100 µM and 300 µM LEV (respectively), without any significant effect on basal levels of [Ca(2+)](i). This is the first evidence for the effect of LEV on the excitability of rat sensory neurons through an effect which might involve activation of potassium channels and inhibition of entry of Ca(2+), providing new insights for cellular mechanism(s) of LEV in pain treatment modalities.

  16. Arctigenin exhibits relaxation effect on bronchus by affecting transmembrane flow of calcium. (United States)

    Zhao, Zhenying; Yin, Yongqiang; Wang, Zengyong; Fang, Runping; Wu, Hong; Jiang, Min; Bai, Gang; Luo, Guo'an


    Arctigenin, a lignan extract from Arctium lappa (L.), exhibits anti-inflammation, antioxidation, vasodilator effects, etc. However, the effects of arctigenin on bronchus relaxation are not well investigated. This study aimed to investigate how arctigenin regulates bronchus tone and calcium ion (Ca(2+)) flow. Trachea strips of guinea pigs were prepared for testing the relaxation effect of arctigenin to acetylcholine, histamine, KCl, and CaCl2, respectively. Furthermore, L-type calcium channel currents were detected by patch-clamp, and intracellular Ca(2+) concentration was detected by confocal microscopy. The results showed that arctigenin exhibited relaxation effect on tracheae to different constrictors, and this was related to decreasing cytoplasmic Ca(2+) concentration by inhibiting Ca(2+) influx partly through L-type calcium channel as well as promoting Ca(2+) efflux. In summary, this study provides new insight into the mechanisms by which arctigenin exhibits relaxation effect on bronchus and suggests its potential use for airway disease therapy.

  17. The cytotoxic and proapoptotic activities of hypnophilin are associated with calcium signaling in UACC-62 cells. (United States)

    Pinto, Mauro C X; Cota, Betania B; Rodrigues, Michele A; Leite, Maria F; de Souza-Fagundes, Elaine M


    Hypnophilin (HNP) is a sesquiterpene that is isolated from Lentinus cf. strigosus and has cytotoxic activities. Here, we studied the calcium signaling and cytotoxic effects of HNP in UACC-62 cells, a human skin melanoma cell line. HNP was able to increase the intracellular calcium concentration in UACC-62 cells, which was blocked in cells stimulated in Ca(2+) -free media. HNP treatment with BAPTA-AM, an intracellular Ca(2+) chelator, caused an increase in calcium signals. HNP showed cytotoxicity against UACC-62 cells in which it induced DNA fragmentation and morphological alterations, including changes in the nuclear chromatin profile and increased cytoplasmatic vacuolization, but it had no effect on the plasma membrane integrity. These data suggest that cytotoxicity in UACC-62 cells, after treatment with HNP, is associated with Ca(2+) influx. Together, these findings suggest that HNP is a relevant tool for the further investigation of new anticancer approaches.

  18. Heterotrimeric G protein participated in modulation of cytoplasmic calcium concentration in pollen cells

    Institute of Scientific and Technical Information of China (English)

    SHANG Zhonglin; MA Ligeng; WANG Xuechen; SUN Daye


    Cytoplasmic free calcium concentration([Ca2+]c) in pollen cells of Lilium daviddi is measured with confocal laser scanning microscopy to investigate the effect of heterotrimeric G protein (G protein) on [Ca2+]c and the possible signal transduction pathway of G protein triggering cellular calcium signal. After application, cholera toxin (CTX), an agonist of G protein, triggers a transient increase of [Ca2+]c in pollen cells, and evokes a spatial-temporal characteristic calcium dynamics; while pertussis toxin (PTX), a G protein antagonist, leads to the decrease of [Ca2+]c. Both L-type Ca2+ channel blocker verapamil and inhibitor of IP3 receptor heparin inhibit CTX-induced [Ca2+]c increase. The results show that G protein may play a role in the modulation of [Ca2+]c through enhancing the extracellular Ca2+ influx and releasing of Ca2+ from intracellular stores.

  19. Nitrate and ammonium influxes in soybean (Glycine max) roots : Direct comparison of N-13 and N-15 tracing

    NARCIS (Netherlands)

    Clarkson, DT; Gojon, A; Saker, LR; Wiersema, PK; Purves, JV; Tillard, P; Arnold, GM; Paans, AJM; Vaalburg, W; Stulen, [No Value


    We compared influxes and internal transport in soybean plants (Glycine max cv. Kingsoy) of labelled N from external solutions where either ammonium or nitrate was labelled with the stable isotope N-15 and the radioactive isotope N-13. The objective was to see whether mass spectrometric determination

  20. Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. (United States)

    Mitani, Namiki; Yamaji, Naoki; Ago, Yukiko; Iwasaki, Kozo; Ma, Jian Feng


    A high accumulation of silicon (Si) is required for overcoming abiotic and biotic stresses, but the molecular mechanisms of Si uptake, especially in dicotyledonous species, is poorly understood. Herein, we report the identification of an influx transporter of Si in two Cucurbita moschata (pumpkin) cultivars greatly differing in Si accumulation, which are used for the rootstocks of bloom and bloomless Cucumis sativus (cucumber), respectively. Heterogeneous expression in both Xenopus oocytes and rice mutant defective in Si uptake showed that the influx transporter from the bloom pumpkin rootstock can transport Si, whereas that from the bloomless rootstock cannot. Analysis with site-directed mutagenesis showed that, among the two amino acid residues differing between the two types of rootstocks, only changing a proline to a leucine at position 242 results in the loss of Si transport activity. Furthermore, all pumpkin cultivars for bloomless rootstocks tested have this mutation. The transporter is localized in all cells of the roots, and investigation of the subcellular localization with different approaches consistently showed that the influx Si transporter from the bloom pumpkin rootstock was localized at the plasma membrane, whereas the one from the bloomless rootstock was localized at the endoplasmic reticulum. Taken together, our results indicate that the difference in Si uptake between two pumpkin cultivars is probably the result of allelic variation in one amino acid residue of the Si influx transporter, which affects the subcellular localization and subsequent transport of Si from the external solution to the root cells.

  1. Nitrate and ammonium influxes in soybean (Glycine max) roots : Direct comparison of N-13 and N-15 tracing

    NARCIS (Netherlands)

    Clarkson, DT; Gojon, A; Saker, LR; Wiersema, PK; Purves, JV; Tillard, P; Arnold, GM; Paans, AJM; Vaalburg, W; Stulen, [No Value

    We compared influxes and internal transport in soybean plants (Glycine max cv. Kingsoy) of labelled N from external solutions where either ammonium or nitrate was labelled with the stable isotope N-15 and the radioactive isotope N-13. The objective was to see whether mass spectrometric

  2. Modulation of neutrophil influx in glomerulonephritis in the rat with anti-macrophage inflammatory protein-2 (MIP-2) antibody. (United States)

    Feng, L; Xia, Y; Yoshimura, T; Wilson, C B


    The role of the chemokine, macrophage inflammatory protein-2 (MIP-2), during anti-glomerular basement membrane (GBM) antibody (Ab) glomerulonephritis (GN) was studied. Rat MIP-2 cDNA had been cloned previously. Recombinant rat MIP-2 (rMIP-2) from Escherichia coli exhibited neutrophil chemotactic activity and produced neutrophil influx when injected into the rat bladder wall. By using a riboprobe derived from the cDNA and an anti-rMIP-2 polyclonal Ab, MIP-2 was found to be induced in glomeruli with anti-GBM Ab GN as mRNA by 30 min and protein by 4 h, with both disappearing by 24 h. The expression of MIP-2 correlated with glomerular neutrophil influx. A single dose of the anti-MIP-2 Ab 30 min before anti-GBM Ab was effective in reducing neutrophil influx (40% at 4 h, P rMIP-2 Ab had no effect on anti-GBM Ab binding (paired-label isotope study). Functional improvement in the glomerular damage was evidenced by a reduction of abnormal proteinuria (P < 0.05). These results suggest that MIP-2 is a major neutrophil chemoattractant contributing to influx of neutrophils in Ab-induced glomerular inflammation in the rat.

  3. Determining water influx and geological reserves for oil and gas pools from data of the history of development

    Energy Technology Data Exchange (ETDEWEB)

    Zoltan, I.; Papp, I.; Szantho, I.


    Two methods are presented for computing to determine parameters describing water influx. The question is examined of determining the geological reserves of hydrocarbons. The calculation is made on specific numerical examples for one hypothetical gas pool and pool No. 1 of the Paleozoic-Miocene of the Tazlar field.

  4. Efficiency of nitrate uptake in spinach : impact of external nitrate concentration and relative growth rate on nitrate influx and efflux

    NARCIS (Netherlands)

    Ter Steege, MW; Stulen, [No Value; Wiersema, PK; Posthumus, F; Vaalburg, W


    Regulation of nitrate influx and efflux in spinach (Spinacia oleracea L., cv. Subito), was studied in short-term label experiments with N-13- and N-15-nitrate. Nitrate fluxes were examined in relation to the N demand for growth, defined as relative growth rate (RGR) times plant N concentration. Plan

  5. Differential contribution of cytoplasmic Ca2+ and Ca2+ influx to gamete fusion and egg activation in maize. (United States)

    Antoine, A F; Faure, J E; Dumas, C; Feijó, J A


    In multicellular organisms, gamete fusion triggers a set of events, collectively known as egg activation, that leads to the development of a new individual. Every species that has been studied shows at least one rise in cytoplasmic Ca2+ concentration ([Ca2+]Cyt) after gamete fusion which is believed to be involved in activation. Yet the source and regulation of this Ca2+ signal and the way it is transduced inside the zygote are controversial. In higher plants, in vitro fertilization (IVF) has enabled the description of a rise in [Ca2+]Cyt (ref. 4) that is sufficient for activation, and of a Ca2+ influx that spreads as a wavefront from the fusion site The relationship between these two responses is unknown. Using a new combination of methods that simultaneously monitor the extracellular flux with a Ca2+-vibrating probe, and [Ca2+]Cyt by widefield imaging, we directly determined that the Ca2+ influx precedes the [Ca2+]Cyt elevation by 40-120 s. In addition, results from experiments using the Ca2+-channel inhibitor gadolinium (Gd3+) suggest that the Ca2+ influx may be necessary for sperm incorporation. We also present evidence for a putative sperm-dependent Gd3+-insensitive localized Ca2+ influx confined to the fusion point.

  6. Macroscopic consequences of calcium signaling in microdomains: A first passage time approach

    CERN Document Server

    Rovetti, Robert; Garfinkel, Alan; Shiferaw, Yohannes


    Calcium (Ca) plays an important role in regulating various cellular processes. In a variety of cell types, Ca signaling occurs within microdomains where channels deliver localized pulses of Ca which activate a nearby collection of Ca-sensitive receptors. The small number of channels involved ensures that the signaling process is stochastic. The aggregate response of several thousand of these microdomains yields a whole-cell response which dictates the cell behavior. Here, we study analytically the statistical properties of a population of these microdomains in response to a trigger signal. We apply these results to understand the relationship between Ca influx and Ca release in cardiac cells. In this context, we use a first passage time approach to show analytically how Ca release in the whole cell depends on the single channel kinetics of Ca channels and the properties of microdomains. Using these results, we explain the underlying mechanism for the graded relationship between Ca influx and Ca release in car...

  7. Epac, Rap and Rab3 act in concert to mobilize calcium from sperm's acrosome during exocytosis. (United States)

    Ruete, María C; Lucchesi, Ornella; Bustos, Matías A; Tomes, Claudia N


    Exocytosis of sperm's single secretory granule or acrosome (acrosome reaction, AR) is a highly regulated event essential for fertilization. The AR begins with an influx of calcium from the extracellular milieu and continues with the synthesis of cAMP and the activation of its target Epac. The cascade bifurcates into a Rab3-GTP-driven limb that assembles the fusion machinery and a Rap-GTP-driven limb that mobilizes internal calcium. To understand the crosstalk between the two signaling cascades, we applied known AR inhibitors in three experimental approaches: reversible, stage-specific blockers in a functional assay, a far-immunofluorescence protocol to detect active Rab3 and Rap, and single cell-confocal microscopy to visualize fluctuations in internal calcium stores. Our model system was human sperm with their plasma membrane permeabilized with streptolysin O and stimulated with external calcium. The inhibition caused by reagents that prevented the activation of Rap was reversed by mobilizing intracellular calcium pharmacologically, whereas that caused by AR inhibitors that impeded Rab3's binding to GTP was not. Both limbs of the exocytotic cascade joined at or near the stage catalyzed by Rab3 in a unidirectional, hierarchical connection in which the intra-acrosomal calcium mobilization arm was subordinated to the fusion protein arm; somewhere after Rab3, the pathways became independent. We delineated the sequence of events that connect an external calcium signal to internal calcium mobilization during exocytosis. We have taken advantage of the versatility of the sperm model to investigate how cAMP, calcium, and the proteinaceous fusion machinery coordinate to accomplish secretion. Because the requirement of calcium from two different sources is not unique to sperm and fusion proteins are highly conserved, our findings might contribute to elucidate mechanisms that operate in regulated exocytosis in other secretory cell types.

  8. Start of insulin therapy in patients with type 2 diabetes mellitus promotes the influx of macrophages into subcutaneous adipose tissue. (United States)

    Jansen, H J; Stienstra, R; van Diepen, J A; Hijmans, A; van der Laak, J A; Vervoort, G M M; Tack, C J


    Insulin therapy in patients with type 2 diabetes mellitus is accompanied by weight gain characterised by an increase in abdominal fat mass. The expansion of adipose tissue mass is generally paralleled by profound morphological and inflammatory changes. We hypothesised that the insulin-associated increase in fat mass would also result in changes in the morphology of human subcutaneous adipose tissue and in increased inflammation, especially when weight gain was excessive. We investigated the effects of weight gain on adipocyte size, macrophage influx, and mRNA expression and protein levels of key inflammatory markers within the adipose tissue in patients with type 2 diabetes mellitus before and 6 months after starting insulin therapy. As expected, insulin therapy significantly increased body weight. At the level of the subcutaneous adipose tissue, insulin treatment led to an influx of macrophages. When comparing patients gaining no or little weight with patients gaining >4% body weight after 6 months of insulin therapy, both subgroups displayed an increase in macrophage influx. However, individuals who had gained weight had higher protein levels of monocyte chemoattractant protein-1, TNF-α and IL-1β after 6 months of insulin therapy compared with those who had not gained weight. We conclude that insulin therapy in patients with type 2 diabetes mellitus improved glycaemic control but also induced body weight gain and an influx of macrophages into the subcutaneous adipose tissue. In patients characterised by a pronounced insulin-associated weight gain, the influx of macrophages into the adipose tissue was accompanied by a more pronounced inflammatory status. NCT00781495. The study was funded by European Foundation for the Study of Diabetes and the Dutch Diabetes Research Foundation.

  9. Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle. (United States)

    Kaper, Thijs; Looger, Loren L; Takanaga, Hitomi; Platten, Michael; Steinman, Lawrence; Frommer, Wolf B


    Mammalian cells rely on cellular uptake of the essential amino acid tryptophan. Tryptophan sequestration by up-regulation of the key enzyme for tryptophan degradation, indoleamine 2,3-dioxygenase (IDO), e.g., in cancer and inflammation, is thought to suppress the immune response via T cell starvation. Additionally, the excreted tryptophan catabolites (kynurenines) induce apoptosis of lymphocytes. Whereas tryptophan transport systems have been identified, the molecular nature of kynurenine export remains unknown. To measure cytosolic tryptophan steady-state levels and flux in real time, we developed genetically encoded fluorescence resonance energy transfer nanosensors (FLIPW). The transport properties detected by FLIPW in KB cells, a human oral cancer cell line, and COS-7 cells implicate LAT1, a transporter that is present in proliferative tissues like cancer, in tryptophan uptake. Importantly, we found that this transport system mediates tryptophan/kynurenine exchange. The tryptophan influx/kynurenine efflux cycle couples tryptophan starvation to elevation of kynurenine serum levels, providing a two-pronged induction of apoptosis in neighboring cells. The strict coupling protects cells that overproduce IDO from kynurenine accumulation. Consequently, this mechanism may contribute to immunosuppression involved in autoimmunity and tumor immune escape.

  10. Nanosensor detection of an immunoregulatory tryptophan influx/kynurenine efflux cycle.

    Directory of Open Access Journals (Sweden)

    Thijs Kaper


    Full Text Available Mammalian cells rely on cellular uptake of the essential amino acid tryptophan. Tryptophan sequestration by up-regulation of the key enzyme for tryptophan degradation, indoleamine 2,3-dioxygenase (IDO, e.g., in cancer and inflammation, is thought to suppress the immune response via T cell starvation. Additionally, the excreted tryptophan catabolites (kynurenines induce apoptosis of lymphocytes. Whereas tryptophan transport systems have been identified, the molecular nature of kynurenine export remains unknown. To measure cytosolic tryptophan steady-state levels and flux in real time, we developed genetically encoded fluorescence resonance energy transfer nanosensors (FLIPW. The transport properties detected by FLIPW in KB cells, a human oral cancer cell line, and COS-7 cells implicate LAT1, a transporter that is present in proliferative tissues like cancer, in tryptophan uptake. Importantly, we found that this transport system mediates tryptophan/kynurenine exchange. The tryptophan influx/kynurenine efflux cycle couples tryptophan starvation to elevation of kynurenine serum levels, providing a two-pronged induction of apoptosis in neighboring cells. The strict coupling protects cells that overproduce IDO from kynurenine accumulation. Consequently, this mechanism may contribute to immunosuppression involved in autoimmunity and tumor immune escape.

  11. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1. (United States)

    Fukuzumi, M; Shinomiya, H; Shimizu, Y; Ohishi, K; Utsumi, S


    Hypoglycemia is among the most injurious metabolic disorders caused by endotoxemia. In experimental endotoxemia with lipopolysaccharide (LPS) in animals, a marked glucose consumption is observed in macrophage-rich organs. However, the direct effect of LPS on the uptake of glucose by macrophages has not been fully understood, and the present study was undertaken to shed light on this point. The consumption and uptake of glucose, as measured with 2-deoxy-D-[3H]glucose, by murine peritoneal exudate macrophages in culture were accelerated two- to threefold by stimulation with 3 ng of LPS per ml. The rate of glucose uptake reached a plateau after 20 min of stimulation and remained at the maximum as long as LPS was present. Northern (RNA) blot analysis with cDNA probes for five known isoforms of glucose transporter (GLUT) revealed that the expression of GLUT by macrophages was restricted to the GLUT1 isoform during LPS stimulation and the amount of GLUT1 mRNA was increased by the stimulation. These results suggest that macrophage responses to LPS are supported by a rapid and sustained glucose influx via GLUT1 and that this is a participating factor in the development of systemic hypoglycemia when endotoxemia is prolonged. PMID:8557327

  12. Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. (United States)

    Péret, Benjamin; Middleton, Alistair M; French, Andrew P; Larrieu, Antoine; Bishopp, Anthony; Njo, Maria; Wells, Darren M; Porco, Silvana; Mellor, Nathan; Band, Leah R; Casimiro, Ilda; Kleine-Vehn, Jürgen; Vanneste, Steffen; Sairanen, Ilkka; Mallet, Romain; Sandberg, Göran; Ljung, Karin; Beeckman, Tom; Benkova, Eva; Friml, Jiří; Kramer, Eric; King, John R; De Smet, Ive; Pridmore, Tony; Owen, Markus; Bennett, Malcolm J


    In Arabidopsis, lateral roots originate from pericycle cells deep within the primary root. New lateral root primordia (LRP) have to emerge through several overlaying tissues. Here, we report that auxin produced in new LRP is transported towards the outer tissues where it triggers cell separation by inducing both the auxin influx carrier LAX3 and cell-wall enzymes. LAX3 is expressed in just two cell files overlaying new LRP. To understand how this striking pattern of LAX3 expression is regulated, we developed a mathematical model that captures the network regulating its expression and auxin transport within realistic three-dimensional cell and tissue geometries. Our model revealed that, for the LAX3 spatial expression to be robust to natural variations in root tissue geometry, an efflux carrier is required--later identified to be PIN3. To prevent LAX3 from being transiently expressed in multiple cell files, PIN3 and LAX3 must be induced consecutively, which we later demonstrated to be the case. Our study exemplifies how mathematical models can be used to direct experiments to elucidate complex developmental processes.

  13. Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering. (United States)

    Idevall-Hagren, Olof; Lü, Alice; Xie, Beichen; De Camilli, Pietro


    The extended synaptotagmins (E-Syts) are ER proteins that act as Ca(2+)-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca(2+) regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca(2+) concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca(2+) range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca(2+) via its influx from the extracellular medium, such as store-operated Ca(2+) entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca(2+).

  14. Lactobacillus casei reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx. (United States)

    Zhang, Yong; Guo, Xiao; Guo, Jianlin; He, Qiuwen; Li, He; Song, Yuqin; Zhang, Heping


    Gut microbiota mediated low-grade inflammation is involved in the onset of type 2 diabetes (T2DM). In this study, we used a high fat sucrose (HFS) diet-induced pre-insulin resistance and a low dose-STZ HFS rat models to study the effect and mechanism of Lactobacillus casei Zhang in protecting against T2DM onset. Hyperglycemia was favorably suppressed by L. casei Zhang treatment. Moreover, the hyperglycemia was connected with type 1 immune response, high plasma bile acids and urine chloride ion loss. This chloride ion loss was significantly prevented by L. casei via upregulating of chloride ion-dependent genes (ClC1-7, GlyRα1, SLC26A3, SLC26A6, GABAAα1, Bestrophin-3 and CFTR). A shift in the caecal microflora, particularly the reduction of bile acid 7α-dehydroxylating bacteria, and fecal bile acid profiles also occurred. These change coincided with organ chloride influx. Thus, we postulate that the prevention of T2DM onset by L. casei Zhang may be via a microbiota-based bile acid-chloride exchange mechanism.

  15. Calcium and Vitamin D (United States)

    ... Pizza, cheese, frozen 1 serving 115 mg Pudding, chocolate, prepared with 2% milk 4 oz 160 mg ... Treatment Medication and Treatment Adherence Calcium/Vitamin D Nutrition Overall Health Fractures/Fall Prevention Exercise/Safe Movement ...

  16. Stoichiometry of Calcium Medicines (United States)

    Pinto, Gabriel


    The topic of calcium supplement and its effects on human lives is presented in the way of questions to the students. It enables the students to realize the relevance of chemistry outside the classroom surrounding.

  17. Get Enough Calcium (United States)

    ... Resources You may also be interested in: Calcium: Shopping list Menopause: Questions for ... A Federal Government website managed by the U.S. Department of Health and Human Services is ...

  18. Stoichiometry of Calcium Medicines (United States)

    Pinto, Gabriel


    The topic of calcium supplement and its effects on human lives is presented in the way of questions to the students. It enables the students to realize the relevance of chemistry outside the classroom surrounding.

  19. Calcium and Your Child (United States)

    ... for dinner. Create mini-pizzas by topping whole-wheat English muffins or bagels with pizza sauce, low- ... Minerals Do I Need to Drink Milk? Lactose Intolerance Becoming a Vegetarian Soy Foods and Health Calcium ...

  20. Calcium and Calcium-Base Alloys (United States)


    should be satisfactory, because the electrolytic process for •(!>: A. H. Everts and G. D. Baglev’, " Physical «nrt m<„.+„4 i «_ of Calcium«, Electrochem...Rev. Metalurgie , 3j2, (1), 129 (1935). 10 ^sm^mssss^ma^^ extension between two known loads, is preferable to the value of 3,700,000 p.B.i. obtained

  1. The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase-D toxin. (United States)

    Chaves-Moreira, Daniele; Souza, Fernanda N; Fogaça, Rosalvo T H; Mangili, Oldemir C; Gremski, Waldemiro; Senff-Ribeiro, Andrea; Chaim, Olga M; Veiga, Silvio S


    Brown spider venom phospholipase-D belongs to a family of toxins characterized as potent bioactive agents. These toxins have been involved in numerous aspects of cell pathophysiology including inflammatory response, platelet aggregation, endothelial cell hyperactivation, renal disorders, and hemolysis. The molecular mechanism by which these toxins cause hemolysis is under investigation; literature data have suggested that enzyme catalysis is necessary for the biological activities triggered by the toxin. However, the way by which phospholipase-D activity is directly related with human hemolysis has not been determined. To evaluate how brown spider venom phospholipase-D activity causes hemolysis, we examined the impact of recombinant phospholipase-D on human red blood cells. Using six different purified recombinant phospholipase-D molecules obtained from a cDNA venom gland library, we demonstrated that there is a correlation of hemolytic effect and phospholipase-D activity. Studying recombinant phospholipase-D, a potent hemolytic and phospholipase-D recombinant toxin (LiRecDT1), we determined that the toxin degrades synthetic sphingomyelin (SM), lysophosphatidylcholine (LPC), and lyso-platelet-activating factor. Additionally, we determined that the toxin degrades phospholipids in a detergent extract of human erythrocytes, as well as phospholipids from ghosts of human red blood cells. The products of the degradation of synthetic SM and LPC following recombinant phospholipase-D treatments caused hemolysis of human erythrocytes. This hemolysis, dependent on products of metabolism of phospholipids, is also dependent on calcium ion concentration because the percentage of hemolysis increased with an increase in the dose of calcium in the medium. Recombinant phospholipase-D treatment of human erythrocytes stimulated an influx of calcium into the cells that was detected by a calcium-sensitive fluorescent probe (Fluo-4). This calcium influx was shown to be channel

  2. Effect of diazepam on calcium translocation during physiological muscle fatigue. (United States)

    Bianchi, C P; Narayan, S R


    Stimulation of frog sartorius muscle at 1 Hz leads to an initial positive staircase during the first 120 twitches and is followed by a negative staircase. There is a net calcium influx into two distinct compartments within the muscle during the positive staircase. The two compartments are separated by measuring the calcium extracted from muscles soaked in strontium-Ringer for 15 min and the calcium remaining in the muscle. A net gain of extractable Ca++ (0.32 mumol/g wet wt.) and residual Ca++ (0.18 mumol/g) is observed during positive staircase. A loss in residual Ca++, a gain in extractable Ca++ and a net loss of Ca++ (0.09 mumol/g) to the bathing medium occur during the period preceding physiological muscle fatigue (60 to 120 twitches). Diazepam (EC50, 5.6 X 10(-6) M) causes a marked reduction in the latent period and increases the rate constant 2.6 times the control value for physiological muscle fatigue. A net loss of 0.31 mumol/g of Ca++ to the bathing medium occurs during the interval between 60 and 120 twitches. Diazepam increases net Ca++ efflux 3.5-fold during this interval when compared to control muscles. Diazepam does not affect the Ca++ gained during the positive staircase but accelerates the loss of calcium from the residual and the extractable compartments during the initial phase of physiological muscle fatigue. Physiological muscle fatigue is attributed to an accumulation of calcium in the transverse tubular network and an uncoupling of the muscle action potential from contraction.

  3. Red blood cell calcium homeostasis in patients with end-stage renal disease

    Energy Technology Data Exchange (ETDEWEB)

    Gafter, U.; Malachi, T.; Barak, H.; Djaldetti, M.; Levi, J. (Hasharon Hospital, Petah-Tiqva (Israel))


    Low cell calcium level is essential for preservation of red blood cell (RBC) membrane deformability and survival. RBCs from patients with end-stage renal disease (ESRD) demonstrate reduction in membrane deformability, possibly as a result of increased RBC cellular calcium level. To evaluate calcium homeostasis in RBCs from patients with ESRD, we measured cell calcium level, basal and calmodulin-stimulated calcium-stimulated Mg-dependent ATPase (CaATPase) activity, and calcium 45 efflux were measured before and after hemodialysis. The in vitro effect of uremic plasma and of urea on CaATPase activity of normal RBCs was tested, and 45Ca influx into RBCs of patients undergoing hemodialysis also was determined. A morphologic evaluation of red cells from patients with ESRD was performed with a scanning electron microscope. RBC calcium level in patients (mean +/- SEM 21.2 +/- 2.8 mumol/L of cells; n = 28) was higher than in controls (4.9 +/- 0.3 mumol/L of cells; n = 24; p less than 0.001). Hemodialysis had no effect on cell calcium level. Both basal and calmodulin-stimulated RBC CaATPase activities in patients with ESRD (n = 9) were reduced by approximately 50% (p less than 0.01), but after hemodialysis, enzyme activity returned to normal. 45Ca efflux from calcium-loaded cells, which was 2574.0 +/- 217.0 mumol/L of cells per 0.5 hours before hemodialysis, increased to 3140.7 +/- 206.8 mumol/L of cells per 0.5 hours after hemodialysis (p less than 0.005). In vitro incubation of normal RBCs with uremic plasma depressed CaATPase activity, but incubation with urea had no effect. RBCs of patients with ESRD revealed increased 45Ca influx, 7.63 +/- 1.15 mumol/L of cells per hour versus 4.61 +/- 0.39 mumol/L of cells per hour (p less than 0.025). RBCs of patients revealed a high incidence of spherocytosis and echynocytosis, which correlated with a high cell calcium level (r = 0.894, p less than 0.01).

  4. Magnesium: Effect on ocular health as a calcium channel antagonist

    Directory of Open Access Journals (Sweden)

    Şafak Korkmaz


    Full Text Available Magnesium is the physiologic calcium channel blocker,involving in many different metabolic processes by maintainingcell membrane function, modulating smooth musclecontraction and influencing enzymatic activities. Magnesiumhas been shown to increase blood flow to tissuesby modifying endothelial function via endothelin-1 (ET-1and nitric Oxide (NO pathways. Magnesium also exhibitsneuroprotective role by blocking N-methyl-D-aspartate(NMDA receptor related calcium influx and by inhibitingthe release of glutamate, hence protects the cell againstoxidative stress and apoptosis. Both increase in bloodflow and its neuroprotective effect make magnesium agood candidate for glaucoma studies. Magnesium hasbeen shown to decrease oxidative stress and apoptosisin retinal tissue and to have retinal ganglion cell sparingeffect. A series of studies has been conducted aboutmagnesium could decrease insulin resistance in diabeticpatients, ease glycemia control and prevent diabetic retinopathy.Magnesium is found to be critically important inmaintaining normal ionic homeostasis of lens. Magnesiumdeficiency has been shown to cause increased lenticularoxidative stress and ionic imbalance in the lens so triggercataractogenesis. J Clin Exp Invest 2013; 4 (2: 244-251Key words: Magnesium, calcium channel blockage,glaucoma, neuroprotection, diabetic retinopathy, cataract

  5. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.


    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate ab

  6. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.


    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate ab

  7. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.


    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate

  8. Acid-gastric antisecretory effect of the ethanolic extract from Arctium lappa L. root: role of H(+), K(+)-ATPase, Ca(2+) influx and the cholinergic pathway. (United States)

    da Silva, Luisa Mota; Burci, Ligia de Moura; Crestani, Sandra; de Souza, Priscila; da Silva, Rita de Cássia Melo Vilhena de Andrade Fonseca; Dartora, Nessana; de Souza, Lauro Mera; Cipriani, Thales Ricardo; da Silva-Santos, José Eduardo; André, Eunice; Werner, Maria Fernanda de Paula


    Arctium lappa L., popularly known as burdock, is a medicinal plant used worldwide. The antiulcer and gastric-acid antisecretory effects of ethanolic extract from roots of Arctium lappa (EET) were already demonstrated. However, the mechanism by which the extract reduces the gastric acid secretion remains unclear. Therefore, this study was designed to evaluate the antisecretory mode of action of EET. The effects of EET on H(+), K(+)-ATPase activity were verified in vitro, whereas the effects of the extract on cholinergic-, histaminergic- or gastrinergic-acid gastric stimulation were assessed in vivo on stimulated pylorus ligated rats. Moreover, ex vivo contractility studies on gastric muscle strips from rats were also employed. The incubation with EET (1000 µg/ml) partially inhibited H(+), K(+)-ATPase activity, and the intraduodenal administration of EET (10 mg/kg) decreased the volume and acidity of gastric secretion stimulated by bethanechol, histamine, and pentagastrin. EET (100-1000 µg/ml) did not alter the gastric relaxation induced by histamine but decreased acetylcholine-induced contraction in gastric fundus strips. Interestingly, EET also reduced the increase in the gastric muscle tone induced by 40 mM KCl depolarizing solution, as well as the maximum contractile responses evoked by CaCl2 in Ca(2+)-free depolarizing solution, without impairing the effect of acetylcholine on fundus strips maintained in Ca(2+) -free nutritive solution. Our results reinforce the gastric antisecretory properties of preparations obtained from Arctium lappa, and indicate that the mechanisms involved in EET antisecretory effects include a moderate reduction of the H(+), K(+)-ATPase activity associated with inhibitory effects on calcium influx and of cholinergic pathways in the stomach muscle.

  9. Regulation of Intestinal Epithelial Calcium Transport Proteins by Stanniocalcin-1 in Caco2 Cells

    Directory of Open Access Journals (Sweden)

    Jinmei Xiang


    Full Text Available Stanniocalcin-1 (STC1 is a calcium and phosphate regulatory hormone. However, the exact molecular mechanisms underlying how STC1 affects Ca2+ uptake remain unclear. Here, the expression levels of the calcium transport proteins involved in transcellular transport in Caco2 cells were examined following over-expression or inhibition of STC1. These proteins include the transient receptor potential vanilloid members (TRPV 5 and 6, the plasma membrane calcium ATPase 1b (PMCA1b, the sodium/calcium exchanger (NCX1, and the vitamin D receptor (VDR. Both gene and protein expressions of TRPV5 and TRPV6 were attenuated in response to over-expression of STC1, and the opposite trend was observed in cells treated with siRNASTC1. To further investigate the ability of STC1 to influence TRPV6 expression, cells were treated with 100 ng/mL of recombinant human STC1 (rhSTC1 for 4 h following pre-transfection with siRNASTC1 for 48 h. Intriguingly, the increase in the expression of TRPV6 resulting from siRNASTC1 was reversed by rhSTC1. No significant effect of STC1 on the expression of PMCA1b, NCX1 or VDR was observed in this study. In conclusion, the effect of STC1 on calcium transport in intestinal epithelia is due to, at least in part, its negative regulation of the epithelial channels TRPV5/6 that mediate calcium influx.

  10. Large-conductance calcium-activated potassium channels facilitate transmitter release in salamander rod synapse. (United States)

    Xu, Jian Wei; Slaughter, Malcolm M


    Large-conductance calcium-activated potassium (BK) channels are colocalized with calcium channels at sites of exocytosis at the presynaptic terminals throughout the nervous system. It is expected that their activation would provide negative feedback to transmitter release, but the opposite is sometimes observed. Attempts to resolve this apparent paradox based on alterations in action potential waveform have been ambiguous. In an alternative approach, we investigated the influence of this channel on neurotransmitter release in a nonspiking neuron, the salamander rod photoreceptors. Surprisingly, the BK channel facilitates calcium-mediated transmitter release from rods. The two presynaptic channels form a positive coupled loop. Calcium influx activates the BK channel current, leading to potassium efflux that increases the calcium current. The normal physiological voltage range of the rod is well matched to the dynamics of this positive loop. When the rod is further depolarized, then the hyperpolarizing BK channel current exceeds its facilitatory effect, causing truncation of transmitter release. Thus, the calcium channel-BK channel linkage performs two functions at the synapse: nonlinear potentiator and safety brake.

  11. A model of calcium signaling and degranulation dynamics induced by laser irradiation in mast cells

    Institute of Scientific and Technical Information of China (English)

    SHI XiaoMin; ZHENG YuFan; LIU ZengRong; YANG WenZhong


    Recent experiments show that calcium signaling and degranulation dynamics induced by low power laser irradiation in mast cells must rely on extracellular Ca2+ influx. An analytical expression of Ca2+ flux through TRPV4 cation channel in response to interaction of laser photon energy and extracellular Ca2+ is deduced, and a model characterizing dynamics of calcium signaling and degranulation activated by laser irradiation in mast cells is established. The model indicates that the characteristics of calcium signaling and degranulation dynamics are determined by interaction between laser photon energy and Ca2+ influx. Extracellular Ca2+ concentration is so high that even small photon energy can activate mast cells, thus avoiding the possible injury caused by laser irradiation with shorter wavelengths. The model predicts that there exists a narrow parameter domain of photon energy and extracellular Ca2+ concentration of which results in cytosolic Ca2+ limit cycle oscillations, and shows that PKC activity is in direct proportion to the frequency of Ca2+ oscillations. With the model it is found that sustained and stable maximum plateau of cytosolic Ca2+ concentration can get optimal degranulation rate. Furthermore, the idea of introducing the realistic physical energy into model is applicable to modeling other physical signal transduction systems.

  12. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau


    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  13. An influx of macrophages is the predominant local immune response in ovine pulmonary adenocarcinoma. (United States)

    Summers, C; Norval, M; De Las Heras, M; Gonzalez, L; Sharp, J M; Woods, G M


    Infection with a retrovirus, Jaagsiekte sheep retrovirus (JSRV), causes ovine pulmonary adenocarcinoma (OPA). The excess production of surfactant proteins by alveolar tumour cells results in increased production of pulmonary fluid, which is characteristically expelled through the nostrils of affected sheep. The immune response to JSRV and the tumour is poorly understood: no JSRV-specific circulating antibodies or T cells have been detected to date. The aim of the present study was to obtain phenotypic evidence for a local immune response in OPA lungs. Specific-pathogen free lambs were infected intratracheally with JSRV. When clinical signs of OPA were apparent, the lungs were removed at necropsy and immunohistochemistry (IHC) was performed on lung sections using a panel of mouse anti-sheep mAbs. No influx of dendritic cells, B cells, CD4, CD8 or gammadelta T cells was seen in the neoplastic nodules or in their periphery. MHC Class II-positive cells were found intratumourally, peritumourally and in the surrounding alveolar lumina. In the tumours, many of these cells were shown to be fibroblasts and the remainder were likely to be mature macrophages. In the alveolar lumen, the MHC Class II-positive cells were CD14-positive and expressed high levels of IFN-gamma. They appeared to be immature monocytes or macrophages which then differentiated to become CD14-negative as they reached the periphery of the tumours. A high level of MHC Class I expression was detected on a range of cells in the OPA lungs but the tumour nodules themselves contained no MHC Class I-positive cells. On the basis of these findings, it is proposed that the lack of an effective immune response in OPA could result from a mechanism of peripheral tolerance in which the activity of the invading macrophages is suppressed by the local environment, possibly as a consequence of the inhibitory properties of the surfactant proteins.

  14. Automated Kick Control Procedure for an Influx in Managed Pressure Drilling Operations

    Directory of Open Access Journals (Sweden)

    Jing Zhou


    Full Text Available Within drilling of oil and gas wells, the Managed Pressure Drilling (MPD method with active control of wellbore pressure during drilling has partly evolved from conventional well control procedures. However, for MPD operations the instrumentation is typically more extensive compared to conventional drilling. Despite this, any influx of formation fluids (commonly known as a kick during MPD operations is typically handled by conventional well control methods, at least if the kick is estimated to be larger than a threshold value. Conventional well control procedures rely on manual control of the blow out preventer, pumps, and choke valves and do not capitalize on the benefits from the instrumentation level associated with MPD. This paper investigates two alternative well control procedures specially adapted to backpressure MPD: the dynamic shut-in (DSI procedure and the automatic kick control (AKC procedure. Both methods capitalize on improvements in Pressure While Drilling (PWD technology. A commercially available PWD tool buffers high-resolution pressure measurements, which can be used in an automated well control procedure. By using backpressure MPD, the choke valve opening is tuned automatically using a feedback-feedforward control method. The two procedures are evaluated using a high fidelity well flow model and cases from a North Sea drilling operation are simulated. The results show that using AKC procedure reduces the time needed to establish control of the well compared to DSI procedure. It also indicates that the AKC procedure reduces the total kick size compared to the DSI procedure, and thereby reduces the risk of lost circulation.

  15. Aqueous extract of Rosmarinus officinalis L. inhibits neutrophil influx and cytokine secretion. (United States)

    Silva, Ana Mara de Oliveira E; Machado, Isabel Daufenback; Santin, José Roberto; de Melo, Illana Louise Pereira; Pedrosa, Gabriela Vieira; Genovese, Maria Ines; Farsky, Sandra Helena Poliselli; Mancini-Filho, Jorge


    Rosmarinus officinalis L. phenolic compounds have attracted considerable attention because of their antioxidant and antimicrobial properties, including its ability to treat inflammatory disorders. In this work, we investigated the in vivo and in vitro effects of R. officinalis aqueous extract on neutrophil trafficking from the blood into an inflamed tissue, on cell-derived secretion of chemical mediators, and on oxidative stress. Anti-inflammatory activity was investigated using carrageenan-induced inflammation in the subcutaneous tissue of male Wistar rats orally treated with the R. officinalis extract (100, 200, or 400 mg/kg). The leukocyte influx (optical microscopy), secretion of chemical mediators (prostaglandin E2 (PGE2), TNF-α, interleukin 6 (IL-6), leukotriene B4 (LTB4), and cytokine-induced neutrophil chemoattractant 1 by enzyme-linked immunosorbent assay), and the anti-oxidative profile (super oxide dismutase (SOD), glutathione peroxidase, and thiobarbituric acid reactive substance (TBARS) spectrophotometry) were quantified in the inflamed exudate. N-Formyl-methionine-leucine-phenylalanine-induced chemotaxis, lipopolysaccharide-induced NO2 (-) production (Greiss reaction), and adhesion molecule expression (flow cytometry) were in vitro quantified using oyster glycogen recruited peritoneal neutrophils previous treated with the extract (1, 10, or 100 µg/mL). Animals orally treated with phosphate-buffered saline and neutrophils incubated with Hank's balanced salt solution were used as control. R. officinalis extract oral treatment caused a dose-dependent reduction in the neutrophil migration as well as decreased SOD, TBARS, LTB4, PGE2, IL-6, and TNF-α levels in the inflamed exudate. In vitro treatment with R. officinalis decreased neutrophil chemotaxis, NO2 (-) production, and shedding of L-selectin and β2 integrin expressions. Results here presented show that R. officinalis aqueous extract displays important in vivo and in vitro anti

  16. Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. (United States)

    Rahman, Abidur; Hosokawa, Satoko; Oono, Yutaka; Amakawa, Taisaku; Goto, Nobuharu; Tsurumi, Seiji


    The plant hormones auxin and ethylene have been shown to play important roles during root hair development. However, cross talk between auxin and ethylene makes it difficult to understand the independent role of either hormone. To dissect their respective roles, we examined the effects of two compounds, chromosaponin I (CSI) and 1-naphthoxyacetic acid (1-NOA), on the root hair developmental process in wild-type Arabidopsis, ethylene-insensitive mutant ein2-1, and auxin influx mutants aux1-7, aux1-22, and double mutant aux1-7 ein2. Beta-glucuronidase (GUS) expression analysis in the BA-GUS transgenic line, consisting of auxin-responsive domains of PS-IAA4/5 promoter and GUS reporter, revealed that 1-NOA and CSI act as auxin uptake inhibitors in Arabidopsis roots. The frequency of root hairs in ein2-1 roots was greatly reduced in the presence of CSI or 1-NOA, suggesting that endogenous auxin plays a critical role for the root hair initiation in the absence of an ethylene response. All of these mutants showed a reduction in root hair length, however, the root hair length could be restored with a variable concentration of 1-naphthaleneacetic acid (NAA). NAA (10 nM) restored the root hair length of aux1 mutants to wild-type level, whereas 100 nM NAA was needed for ein2-1 and aux1-7 ein2 mutants. Our results suggest that insensitivity in ethylene response affects the auxin-driven root hair elongation. CSI exhibited a similar effect to 1-NOA, reducing root hair growth and the number of root hair-bearing cells in wild-type and ein2-1 roots, while stimulating these traits in aux1-7and aux1-7ein2 roots, confirming that CSI is a unique modulator of AUX1.

  17. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia


    Wilson, Rosamund J; Copley, J Brian


    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent...

  18. [Microbial geochemical calcium cycle]. (United States)

    Zavarzin, G A


    The participation of microorganisms in the geochemical calcium cycle is the most important factor maintaining neutral conditions on the Earth. This cycle has profound influence on the fate of inorganic carbon, and, thereby, on the removal of CO2 from the atmosphere. The major part of calcium deposits was formed in the Precambrian, when prokaryotic biosphere predominated. After that, calcium recycling based on biogenic deposition by skeletal organisms became the main process. Among prokaryotes, only a few representatives, e.g., cyanobacteria, exhibit a special calcium function. The geochemical calcium cycle is made possible by the universal features of bacteria involved in biologically mediated reactions and is determined by the activities of microbial communities. In the prokaryotic system, the calcium cycle begins with the leaching of igneous rock predominantly through the action of the community of organotrophic organisms. The release of carbon dioxide to the soil air by organotrophic aerobes leads to leaching with carbonic acid and soda salinization. Under anoxic conditions, of major importance is the organic acid production by primary anaerobes (fermentative microorganisms). Calcium carbonate is precipitated by secondary anaerobes (sulfate reducers) and to a smaller degree by methanogens. The role of the cyanobacterial community in carbonate deposition is exposed by stromatolites, which are the most common organo-sedimentary Precambrian structures. Deposition of carbonates in cyanobacterial mats as a consequence of photoassimilation of CO2 does not appear to be a significant process. It is argued that carbonates were deposited at the boundary between the "soda continent", which emerged as a result of subaerial leaching with carbonic acid, and the ocean containing Ca2+. Such ecotones provided favorable conditions for the development of the benthic cyanobacterial community, which was a precursor of stromatolites.

  19. Pathophysiological Significance of Store-Operated Calcium Entry in Megakaryocyte Function: Opening New Paths for Understanding the Role of Calcium in Thrombopoiesis

    Directory of Open Access Journals (Sweden)

    Christian A. Di Buduo


    Full Text Available Store-Operated Calcium Entry (SOCE is a universal calcium (Ca2+ influx mechanism expressed by several different cell types. It is now known that Stromal Interaction Molecule (STIM, the Ca2+ sensor of the intracellular compartments, together with Orai and Transient Receptor Potential Canonical (TRPC, the subunits of Ca2+ permeable channels on the plasma membrane, cooperate in regulating multiple cellular functions as diverse as proliferation, differentiation, migration, gene expression, and many others, depending on the cell type. In particular, a growing body of evidences suggests that a tight control of SOCE expression and function is achieved by megakaryocytes along their route from hematopoietic stem cells to platelet production. This review attempts to provide an overview about the SOCE dynamics in megakaryocyte development, with a focus on most recent findings related to its involvement in physiological and pathological thrombopoiesis.

  20. Blockade of CCR2 reduces macrophage influx and development of chronic renal damage in murine renovascular hypertension. (United States)

    Kashyap, Sonu; Warner, Gina M; Hartono, Stella P; Boyilla, Rajendra; Knudsen, Bruce E; Zubair, Adeel S; Lien, Karen; Nath, Karl A; Textor, Stephen C; Lerman, Lilach O; Grande, Joseph P


    Renovascular hypertension (RVH) is a common cause of both cardiovascular and renal morbidity and mortality. In renal artery stenosis (RAS), atrophy in the stenotic kidney is associated with an influx of macrophages and other mononuclear cells. We tested the hypothesis that chemokine receptor 2 (CCR2) inhibition would reduce chronic renal injury by reducing macrophage influx in the stenotic kidney of mice with RAS. We employed a well-established murine model of RVH to define the relationship between macrophage infiltration and development of renal atrophy in the stenotic kidney. To determine the role of chemokine ligand 2 (CCL2)/CCR2 signaling in the development of renal atrophy, mice were treated with the CCR2 inhibitor RS-102895 at the time of RAS surgery and followed for 4 wk. Renal tubular epithelial cells expressed CCL2 by 3 days following surgery, a time at which no significant light microscopic alterations, including interstitial inflammation, were identified. Macrophage influx increased with time following surgery. At 4 wk, the development of severe renal atrophy was accompanied by an influx of inducible nitric oxide synthase (iNOS)+ and CD206+ macrophages that coexpressed F4/80, with a modest increase in macrophages coexpressing arginase 1 and F4/80. The CCR2 inhibitor RS-102895 attenuated renal atrophy and significantly reduced the number of dual-stained F4/80+ iNOS+ and F4/80+ CD206+ but not F4/80+ arginase 1+ macrophages. CCR2 inhibition reduces iNOS+ and CD206+ macrophage accumulation that coexpress F4/80 and renal atrophy in experimental renal artery stenosis. CCR2 blockade may provide a novel therapeutic approach to humans with RVH.

  1. An exact calculation of the N2+ and H2+ influx at cathode surface in N2-H2 discharges (United States)

    Suraj, K. S.; Alex, Prince

    An exact calculation of N2+ and H2+ influx, at cathode surface in N2-H2 discharge, has been derived using electron impact ionization cross-section at plasma sheath boundary. The analytical formula is very convenient in practical applications. Through the analysis of experimental parameters for glow discharge plasma nitriding, the formula explains, why treatment in an N2-H2 mixture with H2 percentage ∼70% gives most enhanced result.

  2. Identification of a Calcium Signalling Pathway of S-[6]-Gingerol in HuH-7 Cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Li


    Full Text Available Calcium signals in hepatocytes control cell growth, proliferation, and death. Members of the transient receptor potential (TRP cation channel superfamily are candidate calcium influx channels. NFκB activation strictly depends on calcium influx and often induces antiapoptotic genes favouring cell survival. Previously, we reported that S-[6]-gingerol is an efficacious agonist of the transient receptor potential cation channel subfamily V member 1 (TRPV1 in neurones. In this study, we tested the effect of S-[6]-gingerol on HuH-7 cells using the Fluo-4 calcium assay, RT-qPCR, transient cell transfection, and luciferase measurements. We found that S-[6]-gingerol induced a transient rise in [Ca2+]i in HuH-7 cells. The increase in [Ca2+]i induced by S-[6]-gingerol was abolished by preincubation with EGTA and was also inhibited by the TRPV1 channel antagonist capsazepine. Expression of TRPV1 in HuH-7 cells was confirmed by mRNA analysis as well as a test for increase of [Ca2+]i by TRPV1 agonist capsaicin and its inhibition by capsazepine. We found that S-[6]-gingerol induced rapid NFκB activation through TRPV1 in HuH-7 cells. Furthermore, S-[6]-gingerol-induced NFκB activation was dependent on the calcium gradient and TRPV1. The rapid NFκB activation by S-[6]-gingerol was associated with an increase in mRNA levels of NFκB-target genes: cIAP-2, XIAP, and Bcl-2 that encode antiapoptotic proteins.

  3. Development of a homogeneous calcium mobilization assay for high throughput screening of mas-related gene receptor agonists

    Institute of Scientific and Technical Information of China (English)

    Rui ZHANG; Pang-ke YAN; Cai-hong ZHOU; Jia-yu LIAO; Ming-wei WANG


    Aim: To develop homogeneous calcium mobilization assay for high-throughput screening (HTS) of mas-related gene (Mrg) receptor agonists. Methods: CHO-K1 cells stably expressing the full-length MrgD receptor and a calcium-sensitive dye were used to develop an HTS assay based on intracellular calcium influx. This method was applied to large-scale screening of a library containing 8000 synthetic compounds and natural product extracts, cAMP measurements were camed out to verify the bioactivities of the hits found by the calcium mobilization assay. Similar approaches were also employed in the identification of the MrgA1 recep-tor agonists following HTS of 16 000 samples. Results: EC50 values of the positive control compounds (β-alanine for MrgD receptor and dynorphin A for MrgA1 receptor) determined by the calcium mobilization assay were consistent with those reported in the literature, and the Z' factors were 0.65 and 0.50 for MrgD and MrgA1 receptor assay, respectively. About 31 compounds for the MrgD receptor and 48 compounds for the MrgA1 receptor showing ≥20% of the maximal agonist activities found in the controls were initially identified as hits. Secondary screen- ing confirmed that 2 compounds for each receptor possessed specific agonist activities. Intracellular cAMP level measurements indicated that the 2 confirmed hits displayed the functionality of the MrgD receptor agonists. Conclusion: A series of validation studies demonstrated that the homogeneous calcium mobili-zation assay developed was highly efficient, amenable to automation and a robust tool to screen potential MrgD and MrgA1 receptor agonists. Its application may be expanded to other G-protein coupled receptors that mobilize calcium influx upon activation.

  4. Inositol trisphosphate and calcium signalling (United States)

    Berridge, Michael J.


    Inositol trisphosphate is a second messenger that controls many cellular processes by generating internal calcium signals. It operates through receptors whose molecular and physiological properties closely resemble the calcium-mobilizing ryanodine receptors of muscle. This family of intracellular calcium channels displays the regenerative process of calcium-induced calcium release responsible for the complex spatiotemporal patterns of calcium waves and oscillations. Such a dynamic signalling pathway controls many cellular processes, including fertilization, cell growth, transformation, secretion, smooth muscle contraction, sensory perception and neuronal signalling.

  5. Inhibition of /sup 22/Na influx by tricyclic and tetracyclic antidepressants and binding of (/sup 3/H)imipramine in bovine adrenal medullary cells

    Energy Technology Data Exchange (ETDEWEB)

    Arita, M.; Wada, A.; Takara, H.; Izumi, F.


    In bovine adrenal medullary cells we investigated the effects of antidepressants on ionic channels and secretion of catecholamines. Tricyclic (imipramine, amitriptyline and nortriptyline) and tetracyclic (maprotiline and mianserin) antidepressants inhibited carbachol-induced influx of /sup 22/Na, /sup 45/Ca and secretion of catecholamines (IC50, 14-96 microM). Influx of /sup 22/Na, /sup 45/Ca and secretion of catecholamines due to veratridine also were inhibited by these drugs (IC50, 10-17 microM). However, antidepressants did not suppress high concentration of K-induced 45Ca influx and catecholamine secretion, suggesting that antidepressants do not inhibit voltage-dependent Ca channels. (/sup 3/H)Imipramine bound specifically to adrenal medullary cells. Binding was saturable, reversible and with two different equilibrium dissociation constants (13.3 and 165.0 microM). Tricyclic and tetracyclic antidepressants competed for the specific binding of (/sup 3/H)imipramine at the same concentrations as they inhibited /sup 22/Na influx caused by carbachol or veratridine. Carbachol, d-tubocurarine, hexamethonium, tetrodotoxin, veratridine and scorpion venom did not inhibit the specific binding of (/sup 3/H)imipramine. These results suggest that tricyclic and tetracyclic antidepressants bind to two populations of binding sites which are functionally associated with nicotinic receptor-associated ionic channels and with voltage-dependent Na channels, and inhibit Na influx. Inhibition of Na influx leads to the reduction of Ca influx and catecholamine secretion caused by carbachol or veratridine.

  6. Developmental mapping of small-conductance calcium-activated potassium channel expression in the rat nervous system. (United States)

    Gymnopoulos, Marco; Cingolani, Lorenzo A; Pedarzani, Paola; Stocker, Martin


    Early electrical activity and calcium influx regulate crucial aspects of neuronal development. Small-conductance calcium-activated potassium (SK) channels regulate action potential firing and shape calcium influx through feedback regulation in mature neurons. These functions, observed in the adult nervous system, make them ideal candidates to regulate activity- and calcium-dependent processes in neurodevelopment. However, to date little is known about the onset of expression and regions expressing SK channel subunits in the embryonic and postnatal development of the central nervous system (CNS). To allow studies on the contribution of SK channels to different phases of development of single neurons and networks, we have performed a detailed in situ hybridization mapping study, providing comprehensive distribution profiles of all three SK subunits (SK1, SK2, and SK3) in the rat CNS during embryonic and postnatal development. SK channel transcripts are expressed at early stages of prenatal CNS development. The three SK channel subunits display different developmental expression gradients in distinct CNS regions, with time points of expression and up- or downregulation that can be associated with a range of diverse developmental events. Their early expression in embryonic development suggests an involvement of SK channels in the regulation of developmental processes. Additionally, this study shows how the postnatal ontogenetic patterns lead to the adult expression map for each SK channel subunit and how their coexpression in the same regions or neurons varies throughout development.

  7. Calcium and Calcium Supplements: Achieving the Right Balance (United States)

    ... bone mass, which is a risk factor for osteoporosis. Many Americans don't get enough calcium in their diets. Children and adolescent girls are at particular risk, but so are adults age 50 and older. How much calcium you ...

  8. Gravimetric Determination of Calcium as Calcium Carbonate Hydrate. (United States)

    Henrickson, Charles H.; Robinson, Paul R.


    The gravimetric determination of calcium as calcium carbonate is described. This experiment is suitable for undergraduate quantitative analysis laboratories. It is less expensive than determination of chloride as silver chloride. (BB)

  9. Importance of Evaluating Cell Cholesterol Influx With Efflux in Determining the Impact of Human Serum on Cholesterol Metabolism and Atherosclerosis (United States)

    Weibel, Ginny L.; Drazul-Schrader, Denise; Shivers, Debra K.; Wade, Alisha N.; Rothblat, George H.; Reilly, Muredach P.; de la Llera-Moya, Margarita


    Objective Cholesterol efflux relates to cardiovascular disease but cannot predict cellular cholesterol mass changes. We asked whether influx and net flux assays provide additional insights. Approach and Results Adapt a bidirectional flux assay to cells where efflux has clinical correlates and examine the association of influx, efflux, and net flux to serum triglycerides (TGs). Apolipoprotein B–depleted (high-density lipoprotein-fraction) serum from individuals with unfavorable lipids (median [interquartile range]; high-density lipoprotein-cholesterol=39 [32–42], low-density lipoprotein-cholesterol=109 [97–137], TGs=258 [184–335] mg/dL; n=13) promoted greater ATP-binding cassette transporter A1–mediated [1,2-3H] cholesterol efflux (3.8±0.3%/4 hour versus 1.2±0.4%/4 hour; Pcholesterol=72 [58–88], low-density lipoprotein-cholesterol=111 [97–131], TGs=65 [56–69] mg/dL; n=10). Thus, high TGs associated with more ATP-binding cassette transporter A1 acceptors. Efflux of cholesterol mass (µg free cholesterol/mg cell protein per 8 hour) to serum was also higher (7.06±0.33 versus 5.83±0.48; P=0.04). However, whole sera from individuals with unfavorable lipids promoted more influx (5.14±0.65 versus 2.48±0.85; P=0.02) and lower net release of cholesterol mass (1.93±0.46 versus 3.36±0.47; P=0.04). The pattern differed when mass flux was measured using apolipoprotein B–depleted serum rather than serum. Although individuals with favorable lipids tended to have greater influx than those with unfavorable lipids, efflux to apolipoprotein B–depleted serum was markedly higher (6.81±0.04 versus 2.62±0.14; Pcholesterol mass release despite increased ATP-binding cassette transporter A1–mediated efflux in samples of individuals with high TGs/unfavorable lipids. Conclusions When considering the efficiency of serum specimens to modulate cell cholesterol content, both influx and efflux need to be measured. PMID:24202308

  10. Sedimentation influx and volcanic interactions in the Fuji Five Lakes: implications for paleoseismological records (United States)

    Lamair, Laura; Hubert-Ferrari, Aurélia; Yamamoto, Shinya; El Ouahabi, Meriam; Garrett, Ed; Shishikura, Masanobu; Schmidt, Sabine; Boes, Evelien; Obrochta, Stephen; Nakamura, Atsunori; Miyairi, Yosuke; Yokoyama, Yusuke; De Batist, Marc; Heyvaert, Vanessa M. A.


    The Fuji Fives Lakes are located at the foot of Mount Fuji volcano close to the triple junction, where the North American Plate, the Eurasian plate and the Philippine Sea Plate meet. These lakes are ideally situated to study Mount Fuji volcanism and the interaction between volcanism, changes in lake sedimentation rates and the ability of lakes to record paleoearthquakes. Here, we present newly acquired geological data of Lake Yamanaka and Lake Motosu, including seismic reflection profiles, gravity and piston cores. These two lakes and their respective watersheds were affected by several eruptions of Mount Fuji. Lake Yamanaka, a very shallow lake (max. depth 14 m), was heavily impacted by the scoria fall-out of the A.D. 1707 Hoei eruption of Mount Fuji. A detailed investigation of the effect of the Hoei eruption was conducted on short gravity cores, using high resolution XRD, C/N and 210Pb/137Cs analyses. The preliminary results suggest that the sedimentation rate of Lake Yamanaka drastically reduced after the Hoei eruption, followed by an increase until the present day. Similarly, lacustrine sedimentation in Lake Motosu (max. depth 122 m) was disturbed by Mount Fuji volcanism at a larger scale. The watershed of Lake Motosu was impacted by several lava flows and scoria cones. For example, the Omuro scoria cone reduced the catchment size of Lake Motosu and modified its physiography. The related scoria fall out covered an extensive part of the lake catchment and reduced terrigenous sedimentary influx to Lake Motosu. Within the deep basin of Lake Motosu, seismic reflection data shows two different periods that are distinguished by a major change in the dominant sedimentary processes. During the first period, sublacustrine landslides and turbidity currents were the dominant sedimentation processes. During the second one, the seismic stratigraphy evidences only deposition of numerous turbidites interrupting the hemipelagic sedimentation. Changes in sedimentary processes

  11. Selective inhibition by ethanol of mitochondrial calcium influx mediated by uncoupling protein-2 in relation to N-methyl-D-aspartate cytotoxicity in cultured neurons.

    Directory of Open Access Journals (Sweden)

    Ryo Fukumori

    Full Text Available BACKGROUND: We have shown the involvement of mitochondrial uncoupling protein-2 (UCP2 in the cytotoxicity by N-methyl-D-aspartate receptor (NMDAR through a mechanism relevant to the increased mitochondrial Ca(2+ levels in HEK293 cells with acquired NMDAR channels. Here, we evaluated pharmacological profiles of ethanol on the NMDA-induced increase in mitochondrial Ca(2+ levels in cultured murine neocortical neurons. METHODOLOGY/PRINCIPAL FINDINGS: In neurons exposed to glutamate or NMDA, a significant increase was seen in mitochondrial Ca(2+ levels determined by Rhod-2 at concentrations of 0.1 to 100 µM. Further addition of 250 mM ethanol significantly inhibited the increase by glutamate and NMDA in Rhod-2 fluorescence, while similarly potent inhibition of the NMDA-induced increase was seen after exposure to ethanol at 50 to 250 mM in cultured neurons. Lentiviral overexpression of UCP2 significantly accelerated the increase by NMDA in Rhod-2 fluorescence in neurons, without affecting Fluo-3 fluorescence for intracellular Ca(2+ levels. In neurons overexpressing UCP2, exposure to ethanol resulted in significantly more effective inhibition of the NMDA-induced increase in mitochondrial free Ca(2+ levels than in those without UCP2 overexpression, despite a similarly efficient increase in intracellular Ca(2+ levels irrespective of UCP2 overexpression. Overexpression of UCP2 significantly increased the number of dead cells in a manner prevented by ethanol in neurons exposed to glutamate. In HEK293 cells with NMDAR containing GluN2B subunit, more efficient inhibition was similarly induced by ethanol at 50 and 250 mM on the NMDA-induced increase in mitochondrial Ca(2+ levels than in those with GluN2A subunit. Decreased protein levels of GluN2B, but not GluN2A, subunit were seen in immunoprecipitates with UCP2 from neurons with brief exposure to ethanol at concentrations over 50 mM. CONCLUSIONS/SIGNIFICANCE: Ethanol could inhibit the interaction between UCP2 and NMDAR channels to prevent the mitochondrial Ca(2+ incorporation and cell death after NMDAR activation in neurons.

  12. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2 leading to cell depolarization and calcium influx

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Bechmann, Louise Ellegaard; Hartmann, Bolette


    , but the mechanisms involved are not well understood. Here, we show that rats express NT in the gut and that glucose gavage stimulates secretion similarly to oral glucose in humans. Therefore, we conducted experiments on isolated perfused rat small intestine with a view to characterize the cellular pathways...

  13. Calcium, vitamin D and bone


    Borg, Andrew A.


    Calcium, protein and vitamin D are the main nutrients relevant to bone health. This short article discusses the importance of vitamin D and its relation to calcium homeostasis. The various causes, clinical manifestations and treatment are outlined.

  14. Calcium efflux systems in stress signalling and adaptation in plants

    Directory of Open Access Journals (Sweden)

    Jayakumar eBose


    Full Text Available Transient cytosolic calcium ([Ca2+]cyt elevation is an ubiquitous denominator of the signalling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium signature that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms in shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signalling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analysed in detail. The spatial and temporal organisation of calcium signalling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarised. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modelled by using a four-component model (plasma- and endo- membrane-based Ca2+-permeable channels and efflux systems taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasising the crucial role these active efflux systems play in plant adaptive responses to environment.

  15. Changes in intracellular calcium in brain cells of aged rats

    Institute of Scientific and Technical Information of China (English)

    Yu Li; Yunpeng Cao


    BACKGROUND: Studies have shown that voltage-dependent calcium influx, and enhancement of certain calcium-dependent processes in neurons, is related to aging. OBJECTIVE: To observe changes in intracellular calcium ([Ca2+]i) in neurons of aged rats, and to compare with young rats. DESIGN, TIME AND SETTING: A randomized control experiment of neurophysiology was performed at the Central Laboratory of School of Pharmaceutical Science, China Medical University from June to August 2004. MATERIALS: Ten male, healthy, Wistar rats, 19 months old, were selected for the aged group. Ten male, 3-month-old, Wistar rats were selected for the young control group. Fura-2/AM was provided by the Institute of Pharmaceutical Research of Chinese Academy of Medical Sciences, and the F-2000 fluorospectrophotometer was a product of Hitachi, Japan. METHODS: Fluorescence Fura-2 spectrophotometer was used to measure [Ca2+]i in acutely dissociated brain cells of aged and young rats. The concentration of extracellular potassium was controlled by adding different volumes of chloridated potassium solution of high concentration. MAIN OUTCOME MEASURES: [Ca2+]i in neurons of young and aged rats in the presence of 1 mmol/L extracellular calcium concentration and 0 mmol/L (resting state), 5, 10, 20, and 40 mmol/L extracellular potassium. Absolute increase of [Ca2+]i in neurons of young and aged rats when extraceUular potassium was 5,10,20, 40 mmol/L. RESULTS: In the presence of 1 mmol/L extracellular Ca2+ and 0 mmol/L (resting state), 5, 10, 20, and 40 mmol/L extracellular potassium, [Ca2+]i in the neurons of aged rats was significantly less than that in young rats (P 0.05). CONCLUSION: The overload of [Ca2+]i in neurons of aged rats is greater than that of young rats under the same circumstances.

  16. Enhanced currents through L-type calcium channels in cardiomyocytes disturb the electrophysiology of the dystrophic heart. (United States)

    Koenig, Xaver; Rubi, Lena; Obermair, Gerald J; Cervenka, Rene; Dang, Xuan B; Lukacs, Peter; Kummer, Stefan; Bittner, Reginald E; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz


    Duchenne muscular dystrophy (DMD), induced by mutations in the gene encoding for the cytoskeletal protein dystrophin, is an inherited disease characterized by progressive muscle weakness. Besides the relatively well characterized skeletal muscle degenerative processes, DMD is also associated with cardiac complications. These include cardiomyopathy development and cardiac arrhythmias. The current understanding of the pathomechanisms in the heart is very limited, but recent research indicates that dysfunctional ion channels in dystrophic cardiomyocytes play a role. The aim of the present study was to characterize abnormalities in L-type calcium channel function in adult dystrophic ventricular cardiomyocytes. By using the whole cell patch-clamp technique, the properties of currents through calcium channels in ventricular cardiomyocytes isolated from the hearts of normal and dystrophic adult mice were compared. Besides the commonly used dystrophin-deficient mdx mouse model for human DMD, we also used mdx-utr mice, which are both dystrophin- and utrophin-deficient. We found that calcium channel currents were significantly increased, and channel inactivation was reduced in dystrophic cardiomyocytes. Both effects enhance the calcium influx during an action potential (AP). Whereas the AP in dystrophic mouse cardiomyocytes was nearly normal, implementation of the enhanced dystrophic calcium conductance in a computer model of a human ventricular cardiomyocyte considerably prolonged the AP. Finally, the described dystrophic calcium channel abnormalities entailed alterations in the electrocardiograms of dystrophic mice. We conclude that gain of function in cardiac L-type calcium channels may disturb the electrophysiology of the dystrophic heart and thereby cause arrhythmias.

  17. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma


    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  18. Calcium signaling mediates antifungal activity of triazole drugs in the Aspergilli. (United States)

    Liu, Fei-fei; Pu, Li; Zheng, Qing-qing; Zhang, Yuan-wei; Gao, Rong-sui; Xu, Xu-shi; Zhang, Shi-zhu; Lu, Ling


    Azoles are widely applied and largely effective as antifungals; however, the increasing prevalence of clinically resistant isolates has yet to be matched by approaches to improve the efficacy of antimicrobial therapy. In this study, using the model fungus Aspergillus nidulans and one of the most common human pathogen Aspergillus fumigatus as research materials, we present the evidence that calcium signaling is involved in the azole-antifungals-induced stress-response reactions. In normal media, antifungal-itraconazole (ITZ) is able to induce the [Ca(2+)]c increased sharply but the addition of calcium chelator-EGTA or BAPTA almost blocks the calcium influx responses, resulted in the dramatically decreasing of [Ca(2+)]c transient. Real-time PCR analysis verified that six-tested Ca(2+)-inducible genes-two calcium channels (cchA/midA), a calmodulin-dependent phosphatase-calcineurin (cnaA), a transcription factor-crzA, and two calcium transporters (pmrA/pmcA)-could be transiently up-regulated by adding ITZ, indicating these components are involved in the azole stress-response reaction. Defect of cnaA or crzA caused more susceptibility to azole antifungals than did single mutants or double deletions of midA and cchA. Notably, EGTA may influence Rh123 accumulation as an azole-mimicking substrate through the process of the drug absorption. In vivo studies of a Galleria mellonella model identified that the calcium chelator works as an adjunct antifungal agent with azoles for invasive aspergillosis. Most importantly, combination of ITZ and EGTA or ITZ with calcium signaling inhibitor-FK506 greatly enhances the ITZ efficacy. Thus, our study provides potential clues that specific inhibitors of calcium signaling could be clinically useful adjuncts to conventional azole antifungals in the Aspergilli.

  19. High Blood Calcium (Hypercalcemia) (United States)

    ... as well as kidney function and levels of calcium in your urine. Your provider may do other tests to further assess your condition, such as checking your blood levels of phosphorus (a mineral). Imaging studies also may be helpful, such as bone ...

  20. Calcium carbonate overdose (United States)

    Calcium carbonate is not very poisonous. Recovery is quite likely. But, long-term overuse is more serious than a single overdose, because it can cause kidney damage. Few people die from an antacid overdose. Keep all medicines in child-proof bottles and out ...

  1. Solar Imagery - Chromosphere - Calcium (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about 500...

  2. Extracellular Calcium and Magnesium

    African Journals Online (AJOL)

    i cellular and neuronal metabolism and functions. The objective of ... as having preeclampsia or eclampsia, in the same age range. ... Booking status Number (n) ("/o) Number (n) (%). Booked 7 ... is influx of calcium ions into the cell leacling to.

  3. Calcium aluminate in alumina (United States)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to

  4. Antenatal calcium intake in Malaysia. (United States)

    Mahdy, Zaleha Abdullah; Basri, Hashimah; Md Isa, Zaleha; Ahmad, Shuhaila; Shamsuddin, Khadijah; Mohd Amin, Rahmah


    To determine the adequacy of antenatal calcium intake in Malaysia, and the influencing factors. A cross-sectional study was conducted among postnatal women who delivered in two tertiary hospitals. Data were collected from antenatal cards, hospital documents and diet recall on daily milk and calcium intake during pregnancy. SPSS version 19.0 was used for statistical analyses. A total of 150 women were studied. The total daily calcium intake was 834 ± 43 mg (mean ± standard error of the mean), but the calcium intake distribution curve was skewed to the right with a median intake of 725 mg daily. When calcium intake from milk and calcium supplements was excluded, the daily dietary calcium intake was only 478 ± 25 mg. Even with inclusion of milk and calcium supplements, more than a third (n=55 or 36.7%) of the women consumed less than 600 mg calcium in their daily diet. The adequacy of daily calcium intake was not influenced by maternal age, ethnicity, income or maternal job or educational status as well as parity. The daily dietary calcium intake of the Malaysian antenatal population is far from adequate without the addition of calcium supplements and milk. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  5. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk


    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...

  6. Characteristics of odorant elicited calcium fluxes in acutely-isolated chick olfactory neurons. (United States)

    Jung, Yewah; Wirkus, Eric; Amendola, Diedra; Gomez, George


    To understand avian olfaction, it is important to characterize the peripheral olfactory system of a representative bird species. This study determined the functional properties of olfactory receptor neurons of the chicken olfactory epithelium. Individual neurons were acutely isolated from embryonic day-18 to newborn chicks by dissection and enzymatic dissociation. We tested single olfactory neurons with behaviorally relevant odorant mixtures and measured their responses using ratiometric calcium imaging; techniques used in this study were identical to those used in other studies of olfaction in other vertebrate species. Chick olfactory neurons displayed properties similar to those found in other vertebrates: they responded to odorant stimuli with either decreases or increases in intracellular calcium, calcium increases were mediated by a calcium influx, and responses were reversibly inhibited by 100 microM L: -cis-diltiazem, 1 mM Neomycin, and 20 microM U73122, which are biochemical inhibitors of second messenger signaling. In addition, some cells showed a complex pattern of responses, with different odorant mixtures eliciting increases or decreases in calcium in the same cell. It appears that there are common features of odorant signaling shared by a variety of vertebrate species, as well as features that may be peculiar to chickens.

  7. In vivo and in vitro cadmium accumulation during the moult cycle of the male shore crab Carcinus maenas-interaction with calcium metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Norum, Ulrik [Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark)]. E-mail:; Bondgaard, Morten [Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Pedersen, Thomas V. [Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Bjerregaard, Poul [Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark)


    The effect of moult stage on cadmium accumulation and distribution was investigated in vivo in male shore crabs Carcinus maenas exposed to 1 mg Cd l{sup -1} for 7 days. The accumulation of cadmium in all tissues examined was markedly higher in postmoult (A{sub 1-2} and B{sub 1-2}) compared to intermoult (C{sub 1}, C{sub 3} and C{sub 4}) and premoult (D{sub 0-3}). In addition, elevated levels of cadmium were found in gills of late premoult (D{sub 2-3}) animals. The total amount of cadmium accumulated in the tissues (haemolymph, gills, midgut gland and muscle) increased from 43 {mu}g Cd in early premoult (D{sub 0-1}) to 391 {mu}g Cd in late postmoult (B{sub 1-2}). Gills and midgut gland were the primary cadmium accumulating tissues in C{sub 4}-intermoult and premoult (D{sub 0-3}); in early postmoult (A{sub 1-2}) haemolymph and midgut gland were the main cadmium containing tissues, while midgut gland dominated in late postmoult (B{sub 1-2}) and early intermoult (C{sub 1} and C{sub 3}). A detailed account of calcium distribution in haemolymph, gills, midgut gland, muscle and exoskeleton during the moult cycle is presented. Mechanistic links between cadmium and calcium uptake in posterior gills of C{sub 4}-intermoult and early postmoult (A{sub 1-2}) crabs were explored using an in vitro gill perfusion technique. Calcium and cadmium influxes were markedly higher in postmoult compared to intermoult. No differences between intermoult and postmoult effluxes were found for either calcium or cadmium. From intermoult to postmoult net influx increased from 2.4 to 29 {mu}mol Ca{sup 2+} g{sup -1} ww{sub gill} h{sup -1} and from 0.24 to 25 nmol Cd{sup 2+} g{sup -1} ww{sub gill} h{sup -1}. The results indicate that the postmoult increase in cadmium influx is due to increased active transport of cadmium, at least partly, by accidental uptake via calcium transporting proteins. The in vitro net influx rates corresponded accurately to the observed in vivo accumulation of both cadmium

  8. Bioceramics of calcium orthophosphates. (United States)

    Dorozhkin, Sergey V


    A strong interest in use of ceramics for biomedical applications appeared in the late 1960's. Used initially as alternatives to metals in order to increase a biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics, bioactive (or surface reactive) and bioresorbable ones. Furthermore, any type of bioceramics could be porous to provide tissue ingrowth. This review is devoted to bioceramics prepared from calcium orthophosphates, which belong to the categories of bioresorbable and bioactive compounds. During the past 30-40 years, there have been a number of major advances in this field. Namely, after the initial work on development of bioceramics that was tolerated in the physiological environment, emphasis was shifted towards the use of bioceramics that interacted with bones by forming a direct chemical bond. By the structural and compositional control, it became possible to choose whether the bioceramics of calcium orthophosphates was biologically stable once incorporated within the skeletal structure or whether it was resorbed over time. At the turn of the millennium, a new concept of calcium orthophosphate bioceramics, which is able to regenerate bone tissues, has been developed. Current biomedical applications of calcium orthophosphate bioceramics include replacements for hips, knees, teeth, tendons and ligaments, as well as repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jawbone, spinal fusion and bone fillers after tumor surgery. Potential future applications of calcium orthophosphate bioceramics will include drug-delivery systems, as well as they will become effective carriers of growth factors, bioactive peptides and/or various types of cells for tissue engineering purposes.

  9. Calcium in ciliated protozoa: sources, regulation, and calcium-regulated cell functions. (United States)

    Plattner, H; Klauke, N


    In ciliates, a variety of processes are regulated by Ca2+, e.g., exocytosis, endocytosis, ciliary beat, cell contraction, and nuclear migration. Differential microdomain regulation may occur by activation of specific channels in different cell regions (e.g., voltage-dependent Ca2+ channels in cilia), by local, nonpropagated activation of subplasmalemmal Ca stores (alveolar sacs), by different sensitivity thresholds, and eventually by interplay with additional second messengers (cilia). During stimulus-secretion coupling, Ca2+ as the only known second messenger operates at approximately 5 microM, whereby mobilization from alveolar sacs is superimposed by "store-operated Ca2+ influx" (SOC), to drive exocytotic and endocytotic membrane fusion. (Content discharge requires binding of extracellular Ca2+ to some secretory proteins.) Ca2+ homeostasis is reestablished by binding to cytosolic Ca2+-binding proteins (e.g., calmodulin), by sequestration into mitochondria (perhaps by Ca2+ uniporter) and into endoplasmic reticulum and alveolar sacs (with a SERCA-type pump), and by extrusion via a plasmalemmal Ca2+ pump and a Na+/Ca2+ exchanger. Comparison of free vs total concentration, [Ca2+] vs [Ca], during activation, using time-resolved fluorochrome analysis and X-ray microanalysis, respectively, reveals that altogether activation requires a calcium flux that is orders of magnitude larger than that expected from the [Ca2+] actually required for local activation.

  10. Juice of Bryophyllum pinnatum (Lam.) inhibits oxytocin-induced increase of the intracellular calcium concentration in human myometrial cells. (United States)

    Simões-Wüst, A P; Grãos, M; Duarte, C B; Brenneisen, R; Hamburger, M; Mennet, M; Ramos, M H; Schnelle, M; Wächter, R; Worel, A M; von Mandach, U


    The use of preparations from Bryophyllum pinnatum in tocolysis is supported by both clinical (retrospective comparative studies) and experimental (using uterus strips) evidence. We studied here the effect of B. pinnatum juice on the response of cultured human myometrial cells to stimulation by oxytocin, a hormone known to be involved in the control of uterine contractions by increasing the intracellular free calcium concentration ([Ca2+]i). In this work, [Ca2+]i was measured online during stimulation of human myometrial cells (hTERT-C3 and M11) with oxytocin, which had been pre-incubated in the absence or in the presence of B. pinnatum juice. Since no functional voltage-gated Ca2+ channels could be detected in these myometrial cells, the effect of B. pinnatum juice was as well studied in SH-SY5Y neuroblastoma cells, which are known to have such channels and can be depolarised with KCl. B. pinnatum juice prevented the oxytocin-induced increase in [Ca2+]i in hTERT-C3 human myometrial cells in a dose-dependent manner, achieving a ca. 80% inhibition at a 2% concentration. Comparable results were obtained with M11 human primary myometrial cells. In hTERT-C3 cells, prevention of the oxytocin-induced increase in [Ca2+]i was independent of the extracellular Ca2+ concentration and of voltage-dependent Ca2+-channels. B. pinnatum juice delayed, but did not prevent the depolarization-induced increase in [Ca2+]i in SH-SY5Y cells. Taken together, the data suggest a specific and concentration-dependent effect of B. pinnatum juice on the oxytocin signalling pathway, which seems to corroborate its use in tocolysis. Such a specific mechanism would explain the rare and minor side-effects in tocolysis with B. pinnatum as well as its high therapeutic index.

  11. Facilitation of plateau potentials in turtle motoneurones by a pathway dependent on calcium and calmodulin

    DEFF Research Database (Denmark)

    Perrier, J F; Mejia-Gervacio, S; Hounsgaard, J


    or trifluoperazine reduced the amplitude of depolarization-induced plateau potentials. Inactivation of calmodulin also inhibited facilitation of plateau potentials by activation of group I metabotropic glutamate receptors or muscarinic receptors. 3. In low-sodium medium and in the presence of tetraethylammonium...

  12. Effects of ethanol, octanoic and decanoic acids of fermentation and the passive influx of protons through the plasma membrane of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S. (Nietvoorbij Inst. of Viticulture and Oenology, Stellenbosch (South Africa)); Hofmeyr, J.H.S. (Dept. of Biochemistry and Inst. of Biotechnology, Stellenbosch Univ. (South Africa))


    Ethanol, octanoic and decanoic acids are known toxic products of alcoholic fermentation and inhibit yeast functions such as growth and fermentation. pH-stat measurements showed that, in a concentration range up to 20 mg/l, octanoic and decaonoic acids increase the rate of passive H[sup +] influx across the plama membrane of Saccharomyces cerevisiae IGC 3507. Decanoic acid was more active than octanoic acid, which agrees with its higher liposolubility. The fatty acids probably act as H[sup +] carriers, since the magnitude of the effect depended on pH and correlated with the concentration of protonated fatty acids. Esterification of the fatty acids partially abolished the enhancing effect on passive H[sup +] influx. Passive H[sup +] influx showed saturation kinetics with half-maximal activity at 6.6 [mu]M H[sup +] (pH 5.2). Contrary to previous findings, ethanol inhibited H[sup +] influx exponentially up to a concentration of 8% (v/v). At higher concentrations, ethanol reactivated H[sup +] influx; the original rate of H[sup +] uptake was reached at 14% (v/v) ethanol. In the same concentration ranges that affected passive H[sup +] influx, ethanol, octanoic and decanoic acids inhibited the fermentation rate. This inhibitory effect of the fatty acids on fermentation rate depended on liposolubility, pH, and esterification in the same way as that found for their effect on passive H[sup +] influx. Inhibition of fermentation by octanoic and decanoic acids could therefore result from their effect on the rate of passive H[sup +] influx. (orig.).

  13. Calcium-Activated Potassium Channels in Ischemia Reperfusion: A Brief Update

    Directory of Open Access Journals (Sweden)

    Jean-Yves eTano


    Full Text Available Ischemia and reperfusion (IR injury constitutes one of the major causes of cardiovascular morbidity and mortality. The discovery of new therapies to block/mediate the effects of IR is therefore an important goal in the biomedical sciences. Dysfunction associated with IR involves modification of calcium-activated potassium channels (KCa through different mechanisms, which are still under study. Respectively, the KCa family, major contributors to plasma membrane calcium influx in cells and essential players in the regulation of the vascular tone are interesting candidates. This family is divided into two groups including the large conductance (BKCa and the small/intermediate conductance (SKCa/IKCa K+ channels. In the heart and brain, these channels have been described to offer protection against IR injury. BKCa and SKCa channels deserve special attention since new data demonstrate that these channels are also expressed in mitochondria. More studies are however needed to fully determine their potential use as therapeutic targets.

  14. Roscovitine: a novel regulator of P/Q-type calcium channels and transmitter release in central neurons (United States)

    Yan, Zhen; Chi, Ping; Bibb, James A; Ryan, Timothy A; Greengard, Paul


    Roscovitine is widely used for inhibition of cdk5, a cyclin-dependent kinase expressed predominantly in the brain. A novel function of roscovitine, i.e. an effect on Ca2+ channels and transmitter release in central neurons, was studied by whole-cell voltage-clamp recordings and time-lapse fluorescence imaging techniques. Extracellular application of roscovitine markedly enhanced the tail calcium current following repolarization from depolarized voltages. This effect was rapid, reversible and dose dependent. Roscovitine dramatically slowed the deactivation kinetics of calcium channels. The deactivation time constant was increased 3- to 6-fold, suggesting that roscovitine could prolong the channel open state and increase the calcium influx. The potentiation of tail calcium currents caused by roscovitine and by the L-channel activator Bay K 8644 was not occluded but additive. Roscovitine-induced potentiation of tail calcium currents was significantly blocked by the P/Q-channel blocker CgTx-MVIIC, indicating that the major target of roscovitine is the P/Q-type calcium channel. In mutant mice with targeted deletion of p35, a neuronal specific activator of cdk5, roscovitine regulated calcium currents in a manner similar to that observed in wild-type mice. Moreover, intracellular perfusion of roscovitine failed to modulate calcium currents. These results suggest that roscovitine acts on extracellular site(s) of calcium channels via a cdk5-independent mechanism. Roscovitine potentiated glutamate release at presynaptic terminals of cultured hippocampal neurons detected with the vesicle trafficking dye FM1–43, consistent with the positive effect of roscovitine on the P/Q-type calcium channel, the major mediator of action potential-evoked transmitter release in the mammalian CNS. PMID:11986366

  15. Dynamics of intrinsic dendritic calcium signaling during tonic firing of thalamic reticular neurons.

    Directory of Open Access Journals (Sweden)

    Patrick Chausson

    Full Text Available The GABAergic neurons of the nucleus reticularis thalami that control the communication between thalamus and cortex are interconnected not only through axo-dendritic synapses but also through gap junctions and dendro-dendritic synapses. It is still unknown whether these dendritic communication processes may be triggered both by the tonic and the T-type Ca(2+ channel-dependent high frequency burst firing of action potentials displayed by nucleus reticularis neurons during wakefulness and sleep, respectively. Indeed, while it is known that activation of T-type Ca(2+ channels actively propagates throughout the dendritic tree, it is still unclear whether tonic action potential firing can also invade the dendritic arborization. Here, using two-photon microscopy, we demonstrated that dendritic Ca(2+ responses following somatically evoked action potentials that mimic wake-related tonic firing are detected throughout the dendritic arborization. Calcium influx temporally summates to produce dendritic Ca(2+ accumulations that are linearly related to the duration of the action potential trains. Increasing the firing frequency facilitates Ca(2+ influx in the proximal but not in the distal dendritic compartments suggesting that the dendritic arborization acts as a low-pass filter in respect to the back-propagating action potentials. In the more distal compartment of the dendritic tree, T-type Ca(2+ channels play a crucial role in the action potential triggered Ca(2+ influx suggesting that this Ca(2+ influx may be controlled by slight changes in the local dendritic membrane potential that determine the T-type channels' availability. We conclude that by mediating Ca(2+ dynamic in the whole dendritic arborization, both tonic and burst firing of the nucleus reticularis thalami neurons might control their dendro-dendritic and electrical communications.

  16. In situ spectral calibration method for the impurity influx monitor (divertor) for ITER using angled physical contact fibers. (United States)

    Iwamae, A; Ogawa, H; Sugie, T; Kusama, Y


    The in situ calibration method for the impurity influx monitor (divertor) is experimentally examined. The total reflectance of the optical path from the focal point of the Cassegrain telescope to the first mirror is derived using a micro retroreflector array. An optical fiber with angled physical contact (APC) connectors reduces the return edge reflection. APC fibers and a multimode coupler increase the signal-to-noise ratio by about one order compared to that of triple-branched fibers and enable measurement of the wavelength dependence of the total reflectance of the optical system even after potential deterioration of mirror surfaces reduces reflectance.

  17. In vivo quantification of the unidirectional influx constant for Gd-DTPA diffusion across the myocardial capillaries with MR imaging

    DEFF Research Database (Denmark)

    Larsson, H B; Stubgaard, M; Søndergaard, Lise


    The authors present an in vivo method for measuring the unidirectional influx constant (Ki) for gadolinium diethylenetriaminepentaacetic acid (DTPA) diffusion across the capillary membrane in the human myocardium with magnetic resonance imaging. Ki is related to the extraction fraction (E......) and the perfusion (F) by the equation Ki = E.F.Ki was obtained by using the longitudinal relaxation rate (R1) as a measure of the myocardial concentration of Gd-DTPA in the mathematical model for transcapillary transport across capillary membranes. Myocardial enhancement after Gd-DTPA injection was followed...

  18. Modulation of neutrophil influx in glomerulonephritis in the rat with anti-macrophage inflammatory protein-2 (MIP-2) antibody.


    Feng, L.; Xia, Y.; Yoshimura, T.; Wilson, C. B.


    The role of the chemokine, macrophage inflammatory protein-2 (MIP-2), during anti-glomerular basement membrane (GBM) antibody (Ab) glomerulonephritis (GN) was studied. Rat MIP-2 cDNA had been cloned previously. Recombinant rat MIP-2 (rMIP-2) from Escherichia coli exhibited neutrophil chemotactic activity and produced neutrophil influx when injected into the rat bladder wall. By using a riboprobe derived from the cDNA and an anti-rMIP-2 polyclonal Ab, MIP-2 was found to be induced in glomeruli...

  19. Interference of aluminium and pH on the Na-influx in an aquatic insect Corixa punctata (Illig. )

    Energy Technology Data Exchange (ETDEWEB)

    Witters, H.; Vangenechten, J.H.D.; Van Puymbroeck, S.; Vanderborght, O.L.J.


    Some investigations concerning the impact of acid precipitation on aquatic biota, assess possible toxic effects of aluminium in relation to low pH. But those studies mainly refer to the survival of fishes under these stress conditions. Experiments with some aquatic invertebrates (crustaceans and insect larvae) on mortality under pH and aluminium-stress indicated that aluminium should be the key additional toxic factor in acid water. In this paper, data are presented on the influence of different aluminium-concentrations in relation with a low pH-value, on the Na-influx and haemolymph Na-concentration in the adult waterbug Corixa punctata (Illig.).

  20. Fruit Calcium: Transport and Physiology

    Directory of Open Access Journals (Sweden)

    Bradleigh eHocking


    Full Text Available Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact fruit development, physical traits and disease susceptibility through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to ripening and the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g. blossom end rot in tomatoes or bitter pit in apples. This review works towards an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved

  1. Structure-function of proteins interacting with the alpha1 pore-forming subunit of high voltage-activated calcium channel

    Directory of Open Access Journals (Sweden)

    Alan eNeely


    Full Text Available Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, high-voltage-activated calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1 associated with four additional polypeptide chains β, α2, δ and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of high-voltage-activated calcium channels.

  2. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels (United States)

    Neely, Alan; Hidalgo, Patricia


    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  3. Synthesis of calcium superoxide (United States)

    Rewick, R. T.; Blucher, W. G.; Estacio, P. L.


    Efforts to prepare Ca(O2) sub 2 from reactions of calcium compounds with 100% O3 and with O(D-1) atoms generated by photolysis of O3 at 2537 A are described. Samples of Ca(OH) sub 2, CaO, CaO2, Ca metal, and mixtures containing suspected impurities to promote reaction have been treated with excess O3 under static and flow conditions in the presence and absence of UV irradiation. Studies with KO2 suggest that the superoxide anion is stable to radiation at 2537 A but reacts with oxygen atoms generated by the photolysis of O3 to form KO3. Calcium superoxide is expected to behave in an analogous.


    Barton, J.


    This invention relates to an improvement in the process for the purification of caicium or magnesium containing an alkali metal as impurity, which comprises distiiling a batch of the mixture in two stages, the first stage distillation being carried out in the presence of an inert gas at an absolute pressure substantially greater than the vapor pressure of calcium or maguesium at the temperature of distillation, but less than the vaper pressure at that temperature of the alkali metal impurity so that only the alkali metal is vaporized and condensed on a condensing surface. A second stage distilso that substantially only the calcium or magnesium distills under its own vapor pressure only and condenses in solid form on a lower condensing surface.

  5. Calcium, essential for health (United States)

    Martínez de Victoria, Emilio


    Calcium (Ca) is the most abundant mineral element in our body. It accounts for about 2% of body weight. The functions of calcium are: a) functions skeletal and b) regulatory functions. Bone consists of a protein matrix that mineralizes mainly with calcium (the most abundant), phosphate and magnesium, for it is essential an adequate dietary intake of Ca, phosphorus and vitamin D. The ionic Ca (Ca2+) is essential to maintain and / or perform different specialized functions of, virtually, all body cells cellular. Because of its important functions Ca2+ must be closely regulated, keeping plasma concentrations within narrow ranges. For this reason there is an accurate response against hypocalcemia or hypercalcemia in which the parathormone, calcitriol, calcitonin and vitamin K are involved. Ca intakes in the Spanish population are low in a significant percentage of the older adult’s population, especially in women. The main source of Ca in the diet is milk and milk derivatives. Green leafy vegetables, fruits and legumes can be important sources of Ca in a Mediterranean dietary pattern. The bioavailability of dietary Ca depends on physiological and dietary factors. Physiological include age, physiological status (gestation and lactation) Ca and vitamin D status and disease. Several studies relate Ca intake in the diet and various diseases, such as osteoporosis, cancer, cardiovascular disease and obesity.

  6. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James


    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  7. Calcium antagonists and vasospasm. (United States)

    Meyer, F B


    A critical review of the clinical data supports the conclusion that nimodipine decreases the severity of neurologic deficits and improves outcome after subarachnoid hemorrhage. The mechanisms by which mortality and morbidity are reduced are still controversial. First, the frequency of vasospasm is not altered (Figs. 5 and 6). Second, the consistent reversal of vasospasm once present has not been demonstrated either angiographically or by noninvasive cerebral blood flow studies. These observations suggest that there is either modification of microcirculatory flow (i.e., dilation of pial conducting vessels or decreased platelet aggregation) or a direct neuronal protective effect. As suggested previously, support for either mechanism is not resolute, and further investigation is necessary. Currently, nimodipine has been the most thoroughly investigated calcium antagonist both from an experimental and clinical perspective. Oral administration has had few reported complications. Therefore, the benefit/risk ratio clearly supports the prophylactic use of this calcium antagonist in patients of all clinical grades after subarachnoid hemorrhage. Evidence also indicates that starting nimodipine after the onset of delayed ischemic deficits is of benefit. Finally, it can be predicted that in the future additional calcium antagonists with more selective vascular or neuronal effects will be developed for use in neurologic disorders.

  8. Inactivation kinetics and pharmacology distinguish two calcium currents in mouse pancreatic B-cells

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, W.F.; Satin, L.S.; Cook, D.L. (Univ. of Washington School of Medicine, Seattle (USA))


    Voltage-dependent calcium currents were studied in cultured adult mouse pancreatic B-cells using the whole-cell voltage-clamp technique. When calcium currents were elicited with 10-sec depolarizing command pulses, the time course of inactivation was well fit by the sum of two exponentials. The more rapidly-inactivating component had a time constant of 75 +/- 5 msec at 0 mV and displayed both calcium influx- and voltage-dependent inactivation, while the more slowly-inactivating component had a time constant of 2750 +/- 280 msec at 0 mV and inactivated primarily via voltage. The fast component was subject to greater steady-state inactivation at holding potentials between -100 and -40 mV and activated at a lower voltage threshold. This component was also significantly reduced by nimodipine (0.5 microM) when a holding potential of -100 mV was used, whereas the slow component was unaffected. In contrast, the slow component was greatly increased by replacing external calcium with barium, while the fast component was unchanged. Cadmium (1-10 microM) displayed a voltage-dependent block of calcium currents consistent with a greater effect on the high-threshold, more-slowly inactivating component. Taken together, the data suggest that cultured mouse B-cells, as with other insulin-secreting cells we have studied, possess at least two distinct calcium currents. The physiological significance of two calcium currents having distinct kinetic and steady-state inactivation characteristics for B-cell burst firing and insulin secretion is discussed.

  9. Abortive and propagating intracellular calcium waves: analysis from a hybrid model.

    Directory of Open Access Journals (Sweden)

    Nara Guisoni

    Full Text Available The functional properties of inositol(1,4,5-triphosphate (IP3 receptors allow a variety of intracellular Ca(2+ phenomena. In this way, global phenomena, such as propagating and abortive Ca(2+ waves, as well as local events such as puffs, have been observed. Several experimental studies suggest that many features of global phenomena (e.g., frequency, amplitude, speed wave depend on the interplay of biophysical processes such as diffusion, buffering, efflux and influx rates, which in turn depend on parameters such as buffer concentration, Ca(2+ pump density, cytosolic IP3 level, and intercluster distance. Besides, it is known that cells are able to modify some of these parameters in order to regulate the Ca(2+ signaling. By using a hybrid model, we analyzed different features of the hierarchy of calcium events as a function of two relevant parameters for the calcium signaling, the intercluster distance and the pump strength or intensity. In the space spanned by these two parameters, we found two modes of calcium dynamics, one dominated by abortive calcium waves and the other by propagating waves. Smaller distances between the release sites promote propagating calcium waves, while the increase of the efflux rate makes the transition from propagating to abortive waves occur at lower values of intercluster distance. We determined the frontier between these two modes, in the parameter space defined by the intercluster distance and the pump strength. Furthermore, we found that the velocity of simulated calcium waves accomplishes Luther's law, and that an effective rate constant for autocatalytic calcium production decays linearly with both the intercluster distance and the pump strength.

  10. Calcium signalling and calcium channels: evolution and general principles. (United States)

    Verkhratsky, Alexei; Parpura, Vladimir


    Calcium as a divalent cation was selected early in evolution as a signaling molecule to be used by both prokaryotes and eukaryotes. Its low cytosolic concentration likely reflects the initial concentration of this ion in the primordial soup/ocean as unicellular organisms were formed. As the concentration of calcium in the ocean subsequently increased, so did the diversity of homeostatic molecules handling calcium. This includes the plasma membrane channels that allowed the calcium entry, as well as extrusion mechanisms, i.e., exchangers and pumps. Further diversification occurred with the evolution of intracellular organelles, in particular the endoplasmic reticulum and mitochondria, which also contain channels, exchanger(s) and pumps to handle the homeostasis of calcium ions. Calcium signalling system, based around coordinated interactions of the above molecular entities, can be activated by the opening of voltage-gated channels, neurotransmitters, second messengers and/or mechanical stimulation, and as such is all-pervading pathway in physiology and pathophysiology of organisms.

  11. Elemental calcium intake associated with calcium acetate/calcium carbonate in the treatment of hyperphosphatemia (United States)

    Wilson, Rosamund J; Copley, J Brian


    Background Calcium-based and non-calcium-based phosphate binders have similar efficacy in the treatment of hyperphosphatemia; however, calcium-based binders may be associated with hypercalcemia, vascular calcification, and adynamic bone disease. Scope A post hoc analysis was carried out of data from a 16-week, Phase IV study of patients with end-stage renal disease (ESRD) who switched to lanthanum carbonate monotherapy from baseline calcium acetate/calcium carbonate monotherapy. Of the intent-to-treat population (N=2520), 752 patients with recorded dose data for calcium acetate (n=551)/calcium carbonate (n=201) at baseline and lanthanum carbonate at week 16 were studied. Elemental calcium intake, serum phosphate, corrected serum calcium, and serum intact parathyroid hormone levels were analyzed. Findings Of the 551 patients with calcium acetate dose data, 271 (49.2%) had an elemental calcium intake of at least 1.5 g/day at baseline, and 142 (25.8%) had an intake of at least 2.0 g/day. Mean (95% confidence interval [CI]) serum phosphate levels were 6.1 (5.89, 6.21) mg/dL at baseline and 6.2 (6.04, 6.38) mg/dL at 16 weeks; mean (95% CI) corrected serum calcium levels were 9.3 (9.16, 9.44) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Of the 201 patients with calcium carbonate dose data, 117 (58.2%) had an elemental calcium intake of at least 1.5 g/day, and 76 (37.8%) had an intake of at least 2.0 g/day. Mean (95% CI) serum phosphate levels were 5.8 (5.52, 6.06) mg/dL at baseline and 5.8 (5.53, 6.05) mg/dL at week 16; mean (95% CI) corrected serum calcium levels were 9.7 (9.15, 10.25) mg/dL and 9.2 (9.06, 9.34) mg/dL, respectively. Conclusion Calcium acetate/calcium carbonate phosphate binders, taken to control serum phosphate levels, may result in high levels of elemental calcium intake. This may lead to complications related to calcium balance. PMID:28182142

  12. Golli Myelin Basic Proteins Modulate Voltage-Operated Ca(++) Influx and Development in Cortical and Hippocampal Neurons. (United States)

    Vt, Cheli; DA, Santiago González; V, Spreuer; V, Handley; At, Campagnoni; Pm, Paez


    The golli proteins, products of the myelin basic protein gene, are widely expressed in oligodendrocyte progenitor cells and neurons during the postnatal development of the brain. While golli appears to be important for oligodendrocyte migration and differentiation, its function in neuronal development is completely unknown. We have found that golli proteins function as new and novel modulators of voltage-operated Ca(++) channels (VOCCs) in neurons. In vitro, golli knock-out (KO) neurons exhibit decreased Ca(++) influx after plasma membrane depolarization and a substantial maturational delay. Increased expression of golli proteins enhances L-type Ca(++) entry and processes outgrowth in cortical neurons, and pharmacological activation of L-type Ca(++) channels stimulates maturation and prevents cell death in golli-KO neurons. In situ, Ca(++) influx mediated by L-type VOCCs was significantly decreased in cortical and hippocampal neurons of the golli-KO brain. These Ca(++) alterations affect cortical and hippocampal development and the proliferation and survival of neural progenitor cells during the postnatal development of the golli-KO brain. The CA1/3 sections and the dentate gyrus of the hippocampus were reduced in the golli-KO mice as well as the density of dendrites in the somatosensory cortex. Furthermore, the golli-KO mice display abnormal behavior including deficits in episodic memory and reduced anxiety. Because of the expression of the golli proteins within neurons in learning and memory centers of the brain, this work has profound implication in neurodegenerative diseases and neurological disorders.

  13. Dithiocarbamate fungicides increase intracellular Zn(2+) levels by increasing influx of Zn(2+) in rat thymic lymphocytes. (United States)

    Kanemoto-Kataoka, Yumiko; Oyama, Tomohiro M; Ishibashi, Hitoshi; Oyama, Yasuo


    Dithiocarbamate fungicides are used as alternative antifouling agents to highly toxic organotin antifouling agents, such as tri-n-butyltin and triphenyltin. There are some concerns regarding their environmental and health risks. It has been shown that tri-n-butyltin increases intracellular Zn(2+) levels of mammalian lymphocytes. Therefore, we examined the effects of dithiocarbamate fungicides (Ziram, Thiram, and Zineb) on rat thymic lymphocytes using a flow-cytometric technique to elucidate how these fungicides affect intracellular Zn(2+) levels. We further determined whether the agents increase intracellular Zn(2+) and/or Ca(2+), because both Zn(2+) and Ca(2+) are intracellular signals in lymphocytes, and excessive increases in their intracellular concentrations can have adverse effects. Dithiocarbamate fungicides increased intracellular Zn(2+) levels, without affecting intracellular Ca(2+) levels. Ziram was the most potent compound, increasing intracellular Zn(2+) levels via Zn(2+) influx. Ziram (1μM) greatly decreased the cellular nonprotein thiol content, and Zn(2+) chelators attenuated the Ziram-induced decrease. Ziram increased the population of annexin V-positive cells in a Zn(2+)-dependent manner. Therefore, we propose that dithiocarbamate fungicides induce Zn(2+) influx, resulting in an excessive elevation of intracellular Zn(2+) levels, leading to the induction of apoptosis. This study gives a basic insight into the mechanisms of dithiocarbamate fungicide-induced adverse events.

  14. Transient Influx of Nickel in Root Mitochondria Modulates Organic Acid and Reactive Oxygen Species Production in Nickel Hyperaccumulator Alyssum murale* (United States)

    Agrawal, Bhavana; Czymmek, Kirk J.; Sparks, Donald L.; Bais, Harsh P.


    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation. PMID:23322782

  15. The Role of Extracellular Ca2+Influx, Intracellular Ca2+ Release and Calmodulin in Mouse Egg Fertilization

    Institute of Scientific and Technical Information of China (English)


    The effects of various Ca2+-modifying drugs on moue egg fertilization were studied. Ca2+ chelator, ethylen glycol-bis-(2-aminoethyl)-tetracetic acid (EGTA) ,and calmodulin (CaM) antagonist,trifluoperzaine (TFP) ,inhibited fertilization in a dose-dependent manner,whild Ca2+ channel bolcker,verapamil ,did not have any effect. When intracellular Ca2+ release was blocked by 8-(N, N-diethylamino) octy1-3,4,5-trimethoxy- benzonate (TMB-8) or the Ca2+ oscillations were inhibited by an inhibitor of endoplasmic reticulum Ca2+-AT- Pase,thapsigargin,the second polar body emission and pronuclear formation were significantly decreased. In contrast,inhibition of intracellular Ca2+ release via bolckage of inositol 1,4,5-triphosphate (IP3) production by neomycin or lithium did not affect fertilization. The results sugest that both extracellular influx,intracellu- lar Ca2+ release and CaM activation are required for normal fertilization. However ,extracellular influx through voltage-gated Ca2+ channel and intracellular release induced by IP3 are not the only pathways for producing Ca2+ transients in moue eggs.

  16. The Role of Extracellular Ca2+ Influx,Intracellular Ca2+ Release and Calmodulin in Mouse Egg Fertilization

    Institute of Scientific and Technical Information of China (English)

    SunQing-yuan; TanJing-he; 等


    The effects of various Ca2+-modifying drugs on moue egg fertilization were studied.Ca2+ chelator,ethylen glycol-bis-(2-aminoethyl)-tetracetic acid(EGTA),and calmodulin(CaM) antagonist,trifluoperzaine (TFP),inhibited fertilization in a dose-dependent manner,whild Ca2+ channel bolcker,verspamil,did not have any effect.When intracellular Ca2+ release was blocked by 8-(N,N-diethylamino) octy 1-3,4,5-trimethoxy-benzonate(TME-8) or the Ca2+ oscillations were inhibited by an inhibitor of endoplasmic reticulum Ca2+-At-Pase,thapsigargin,the second polar body emission and pronuclear formation were significantly decreased.In contrast,inhibition of intracellular Ca2+ release via bolckage of inositol 1,4,5-triphosphate (IP3) production by neomycin or lithium did not affect fertilization.The results sugest that both extracellular influx,intracellular Ca2+ release and CaM activation are required for mormal fertilization.However,extracellular influx through voltage-gated Ca2+ channel and intracellular release induced by IP3 and not the only pathways for producing Ca2+ transients in moue eggs.

  17. Effect of glucose intake on human leucocyte /sup 86/Rb influx and (/sup 3/H)-ouabain binding

    Energy Technology Data Exchange (ETDEWEB)

    Turaihi, K.; Baron, D.N.; Dandona, P.


    /sup 86/Rb influx and (/sup 3/H) ouabain binding by human leucocytes were measured in eight normal nonobese fasting subjects before and after a challenge with 75 g glucose orally. The mean ouabain-sensitive /sup 86/Rb influx increased significantly from 194 to 283 mmol/kg protein/h (P less than .01), and (/sup 3/H)-ouabain binding increased from 236 to 403 fmol/mg protein. The mean plasma potassium concentration fell from 4.2 to 3.9 mmol/L (P less than .05). Following intravenous glucose infusion, the median /sup 86/Rb transport increased from 186 to 267 mmol/kg protein/h, while median plasma potassium concentration fell from 4.3 to 3.9 mmol/L. Therefore, glucose intake acutely increases Na-K ATPase units, stimulates potassium (Rb) transport, and causes a concomitant fall in plasma potassium concentrations. Nutritional intake is probably an important determinant of Na-K ATPase units and activity in the human leucocyte.

  18. Canonical Transient Receptor Potential (TRPC) 1 Acts as a Negative Regulator for Vanilloid TRPV6-mediated Ca2+ Influx* (United States)

    Schindl, Rainer; Fritsch, Reinhard; Jardin, Isaac; Frischauf, Irene; Kahr, Heike; Muik, Martin; Riedl, Maria Christine; Groschner, Klaus; Romanin, Christoph


    TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca2+ selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 cells, however, no interaction was observed with TRPC3, TRPC4, or TRPC5. Ca2+ and Na+ currents of TRPV6-overexpressing HEK293 cells are significantly reduced by co-expression of TRPC1, correlating with a dramatically suppressed plasma membrane targeting of TRPV6. In line with their intracellular retention, remaining currents of TRPC1 and TRPV6 co-expression resemble in current-voltage relationship that of TRPV6. Studying the N-terminal ankyrin like repeat domain, structurally similar in the two proteins, we have found that these cytosolic segments were sufficient to mediate a direct heteromeric interaction. Moreover, the inhibitory role of TRPC1 on TRPV6 influx was also maintained by expression of only its N-terminal ankyrin-like repeat domain. Our experiments provide evidence for a functional interaction of TRPC1 with TRPV6 that negatively regulates Ca2+ influx in HEK293 cells. PMID:22932896

  19. Transient Influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale. (United States)

    Agrawal, Bhavana; Czymmek, Kirk J; Sparks, Donald L; Bais, Harsh P


    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation.

  20. Contractile abnormalities of mouse muscles expressing hyperkalemic periodic paralysis mutant NaV1.4 channels do not correlate with Na+ influx or channel content. (United States)

    Lucas, Brooke; Ammar, Tarek; Khogali, Shiemaa; DeJong, Danica; Barbalinardo, Michael; Nishi, Cameron; Hayward, Lawrence J; Renaud, Jean-Marc


    Hyperkalemic periodic paralysis (HyperKPP) is characterized by myotonic discharges that occur between episodic attacks of paralysis. Individuals with HyperKPP rarely suffer respiratory distress even though diaphragm muscle expresses the same defective Na(+) channel isoform (NaV1.4) that causes symptoms in limb muscles. We tested the hypothesis that the extent of the HyperKPP phenotype (low force generation and shift toward oxidative type I and IIA fibers) in muscle is a function of 1) the NaV1.4 channel content and 2) the Na(+) influx through the defective channels [i.e., the tetrodotoxin (TTX)-sensitive Na(+) influx]. We measured NaV1.4 channel protein content, TTX-sensitive Na(+) influx, force generation, and myosin isoform expression in four muscles from knock-in mice expressing a NaV1.4 isoform corresponding to the human M1592V mutant. The HyperKPP flexor digitorum brevis muscle showed no contractile abnormalities, which correlated well with its low NaV1.4 protein content and by far the lowest TTX-sensitive Na(+) influx. In contrast, diaphragm muscle expressing the HyperKPP mutant contained high levels of NaV1.4 protein and exhibited a TTX-sensitive Na(+) influx that was 22% higher compared with affected extensor digitorum longus (EDL) and soleus muscles. Surprisingly, despite this high burden of Na(+) influx, the contractility phenotype was very mild in mutant diaphragm compared with the robust abnormalities observed in EDL and soleus. This study provides evidence that HyperKPP phenotype does not depend solely on the NaV1.4 content or Na(+) influx and that the diaphragm does not depend solely on Na(+)-K(+) pumps to ameliorate the phenotype. Copyright © 2014 the American Physiological Society.

  1. Multiple Modes of Calcium-Induced Calcium Release in Sympathetic Neurons I (United States)

    Albrecht, Meredith A.; Colegrove, Stephen L.; Hongpaisan, Jarin; Pivovarova, Natalia B.; Andrews, S. Brian; Friel, David D.


    Many cells express ryanodine receptors (RyRs) whose activation is thought to amplify depolarization-evoked elevations in cytoplasmic Ca2+ concentration ([Ca2+]i) through a process of Ca2+-induced Ca2+ release (CICR). In neurons, it is usually assumed that CICR triggers net Ca2+ release from an ER Ca2+ store. However, since net ER Ca2+ transport depends on the relative rates of Ca2+ uptake and release via distinct pathways, weak activation of a CICR pathway during periods of ER Ca accumulation would have a totally different effect: attenuation of Ca2+ accumulation. Stronger CICR activation at higher [Ca2+]i could further attenuate Ca2+ accumulation or trigger net Ca2+ release, depending on the quantitative properties of the underlying Ca2+ transporters. This and the companion study (Hongpaisan, J., N.B. Pivovarova, S.L. Colgrove, R.D. Leapman, and D.D. Friel, and S.B. Andrews. 2001. J. Gen. Physiol. 118:101–112) investigate which of these CICR “modes” operate during depolarization-induced Ca2+ entry in sympathetic neurons. The present study focuses on small [Ca2+]i elevations (less than ∼350 nM) evoked by weak depolarization. The following two approaches were used: (1) Ca2+ fluxes were estimated from simultaneous measurements of [Ca2+]i and ICa in fura-2–loaded cells (perforated patch conditions), and (2) total ER Ca concentrations ([Ca]ER) were measured using X-ray microanalysis. Flux analysis revealed triggered net Ca2+ release during depolarization in the presence but not the absence of caffeine, and [Ca2+]i responses were accelerated by SERCA inhibitors, implicating ER Ca2+ accumulation, which was confirmed by direct [Ca]ER measurements. Ryanodine abolished caffeine-induced CICR and enhanced depolarization-induced ER Ca2+ accumulation, indicating that activation of the CICR pathway normally attenuates ER Ca2+ accumulation, which is a novel mechanism for accelerating evoked [Ca2+]i responses. Theory shows how such a low gain mode of CICR can operate

  2. Calcium sparks in the heart: dynamics and regulation

    Directory of Open Access Journals (Sweden)

    Hoang-Trong TM


    Full Text Available Tuan M Hoang-Trong,1 Aman Ullah,1 M Saleet Jafri1,21Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA; 2Biomedical Engineering and Technology, University of Maryland, Baltimore, MD, USAAbstract: Ca2+ plays a central role in the contraction of the heart. It is the bi-directional link between electrical excitation of the heart and contraction. Electrical excitation initiates Ca2+ influx across the sarcolemma and T-tubular membrane that triggered calcium release from the sarcoplasmic reticulum (SR. Ca2+ sparks are the elementary events of calcium release from the SR. Therefore, understanding the dynamics of Ca2+ sparks is essential for understanding the function of the heart. To this end, numerous experimental and computational studies have focused on this topic, exploring the mechanisms of calcium spark initiation, termination, and regulation and what role these play in normal and patho-physiology. The proper understanding of Ca2+ spark regulation and dynamics serves as the foundation for our insights into a multitude of pathological conditions that may develop and that can be the result of structural and/or functional changes at the cellular or subcellular level. Computational modeling of Ca2+ spark dynamics has proven to be a useful tool to understand Ca2+ spark dynamics. This review addresses our current understanding of Ca2+ sparks and how synchronized SR Ca2+ release, in which Ca2+ sparks is a major pathway, is linked to the different cardiac diseases, especially arrhythmias.Keywords: leak, arrhythmia, excitation-contraction coupling, phosphorylation

  3. Contribution of presynaptic calcium-activated potassium currents to transmitter release regulation in cultured Xenopus nerve-muscle synapses. (United States)

    Pattillo, J M; Yazejian, B; DiGregorio, D A; Vergara, J L; Grinnell, A D; Meriney, S D


    Using Xenopus nerve-muscle co-cultures, we have examined the contribution of calcium-activated potassium (K(Ca)) channels to the regulation of transmitter release evoked by single action potentials. The presynaptic varicosities that form on muscle cells in these cultures were studied directly using patch-clamp recording techniques. In these developing synapses, blockade of K(Ca) channels with iberiotoxin or charybdotoxin decreased transmitter release by an average of 35%. This effect would be expected to be caused by changes in the late phases of action potential repolarization. We hypothesize that these changes are due to a reduction in the driving force for calcium that is normally enhanced by the local hyperpolarization at the active zone caused by potassium current through the K(Ca) channels that co-localize with calcium channels. In support of this hypothesis, we have shown that when action potential waveforms were used as voltage-clamp commands to elicit calcium current in varicosities, peak calcium current was reduced only when these waveforms were broadened beginning when action potential repolarization was 20% complete. In contrast to peak calcium current, total calcium influx was consistently increased following action potential broadening. A model, based on previously reported properties of ion channels, faithfully reproduced predicted effects on action potential repolarization and calcium currents. From these data, we suggest that the large-conductance K(Ca) channels expressed at presynaptic varicosities regulate transmitter release magnitude during single action potentials by altering the rate of action potential repolarization, and thus the magnitude of peak calcium current.

  4. Calcium – how and why?

    Indian Academy of Sciences (India)

    J K Jaiswal


    Calcium is among the most commonly used ions, in a multitude of biological functions, so much so that it is impossible to imagine life without calcium. In this article I have attempted to address the question as to how calcium has achieved this status with a brief mention of the history of calcium research in biology. It appears that during the origin and early evolution of life the Ca2+ ion was given a unique opportunity to be used in several biological processes because of its unusual physical and chemical properties.

  5. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)


    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  6. Cardiovascular Effects of Calcium Supplements

    Directory of Open Access Journals (Sweden)

    Ian R. Reid


    Full Text Available Calcium supplements reduce bone turnover and slow the rate of bone loss. However, few studies have demonstrated reduced fracture incidence with calcium supplements, and meta-analyses show only a 10% decrease in fractures, which is of borderline statistical and clinical significance. Trials in normal older women and in patients with renal impairment suggest that calcium supplements increase the risk of cardiovascular disease. To further assess their safety, we recently conducted a meta-analysis of trials of calcium supplements, and found a 27%–31% increase in risk of myocardial infarction, and a 12%–20% increase in risk of stroke. These findings are robust because they are based on pre-specified analyses of randomized, placebo-controlled trials and are consistent across the trials. Co-administration of vitamin D with calcium does not lessen these adverse effects. The increased cardiovascular risk with calcium supplements is consistent with epidemiological data relating higher circulating calcium concentrations to cardiovascular disease in normal populations. There are several possible pathophysiological mechanisms for these effects, including effects on vascular calcification, vascular cells, blood coagulation and calcium-sensing receptors. Thus, the non-skeletal risks of calcium supplements appear to outweigh any skeletal benefits, and are they appear to be unnecessary for the efficacy of other osteoporosis treatments.

  7. Calcium measurement methods

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi


    Full Text Available Rightly stressed by prof. Wolfgang Walz in the Preface to the series Neuromethods series, the “careful application of methods is probably the most important step in the process of scientific inquiry”. Thus, I strongly suggest to all those interested in calcium signaling and especially to the new-comers in the hot topic of neuroscience (which has so much space even in science-society debate for its implications in legal issues and in the judge-decision process to take profit from this so well edited book. I am saying this since prof. Verkhratsky and prof. Petersen......

  8. PA1b, a plant peptide, induces intracellular [Ca2+] in- crease via Ca2+ influx through the L-type Ca2+ channel and triggers secretion in pancreatic β cells

    Institute of Scientific and Technical Information of China (English)


    Using alginic acid to adsorb polypeptides at pH 2.7, we isolated a peptide pea albumin 1b (PA1b) from pea seeds. The PA1b is a single chain peptide consisting of 37 amino acid residues with 6 cysteines which constitutes the cystine-knot structure. Using microfluorometry and patch clamp techniques, we found that PA1b significantly elevated the intracellular calcium level ([Ca2+ ]i) and elicited membrane capacitance increase in the primary rat pancreatic β cells. The PA1b effect on [Ca2+]i elevation was abolished in the absence of extracellular Ca2+ or in the presence of L-type Ca2+ channel blocker, ni- modipine. Interestingly, we found that PA1b significantly depolarized membrane potential, which could lead to the opening of voltage-dependent L-type Ca2+ channels and influx of extracellular Ca2+, and then evoke robust secretion. In this study we identified the plant peptide PA1b which is capable of affecting the excitability and function of mammalian pancreatic β cell.

  9. PA1b, a plant peptide, induces intracellular [Ca2+] increase via Ca2+ influx through the L-type Ca2+ channel and triggers secretion in pancreatic β cells

    Institute of Scientific and Technical Information of China (English)

    HU ZhiTao; DUN XinPeng; ZHANG Ming; ZHU HongLiang; XIE Li; WU ZhengXing; CHEN ZhengWang; XU Tao


    Using alginic acid to adsorb polypeptides at pH 2.7, we isolated a peptide pea albumin 1b (PA1b) from pea seeds. The PA1b is a single chain peptide consisting of 37 amino acid residues with 6 cysteines which constitutes the cystine-knot structure. Using microfluorometry and patch clamp techniques, we found that PA1b significantly elevated the intracellular calcium level ([Ca2+]i) and elicited membrane capacitance increase in the primary rat pancreatic β cells. The PA1b effect on [Ca2+]i elevation was abolished in the absence of extracellular Ca2+ or in the presence of L-type Ca2+ channel blocker, nimodipine. Interestingly, we found that PA1b significantly depolarized membrane potential, which could lead to the opening of voltage-dependent L-type Ca2+ channels and influx of extracellular Ca2+, and then evoke robust secretion. In this study we identified the plant peptide PA1b which is capable of affecting the excitability and function of mammalian pancreatic β cell.

  10. Effects of calcium on the steady outward currents at the equator of the rat lens. (United States)

    Parmelee, J T; Robinson, K R; Patterson, J W


    The relationships between calcium and the steady outward currents at the equator of the rat lens were studied using the vibrating probe technique. In a calcium-free medium, the current was greatly increased and it returned to its original level when calcium was restored to the medium. The Ca-free effect was not observed in Na-free medium. Iodoacetate (IAA) inhibited the initial current, but a current then returned which is referred to as a secondary current. The secondary current was not observed in a Ca-free medium and, therefore, it is thought to be a calcium-dependent potassium current. These responses are consistent with effects on potassium efflux measured by others and lend support to the interpretation that the outward currents observed at the equator of the rat lens are potassium currents. The currents are partially inhibited but not abolished in Na-free bathing medium. This is consistent with the view that the inward currents at the optical poles may be related to the influx of sodium.

  11. MCTP is an ER-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity (United States)

    Genç, Özgür; Dickman, Dion K; Ma, Wenpei; Tong, Amy; Fetter, Richard D; Davis, Graeme W


    Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission. DOI: PMID:28485711

  12. Effect of Shenmai Injection on L-type Calcium Current of Diaphragmatic Muscle in Rats

    Institute of Scientific and Technical Information of China (English)

    赵丽敏; 熊盛道; 牛汝楫; 徐永健; 张珍祥


    In this study, whole cell patch clamp recording technique was employed to investigate the effect of Shenmai Injection (SMI) on L-type calcium current of diaphragmatic muscle in rats. The result showed that when the diaphragmatic muscle cell was held at -80 mV and depolarized to +60 mV, 10 μl/ml, 50 μl/ml and 100μl/ml SMI enhanced the inner peak L-type calcium current from -(6.8±0.7) pA/pF (n=7) to -(7.3±0.8) pA/pF (P>0.05, n=7), -(8.6±1.0) pA/pF (P<0.05, n=7) and -(9.4±1.2) pA/pF (P<0.05, n=7), respectively. The rates of L-type calcium current were increased by (7. 34±2.37) %, (25. 72±5.94)% , and (38. 16±7.33)% ,respectively. However, it had no significant effect on maximal activation potential and reversal potential. Our results suggested that SMI could activate the calcium channel of the diaphragmatic fibers of the rats, increase the influx of Ca2+ , and enhance the contractility of diaphragmatic muscles.

  13. Transmitter modulation of spike-evoked calcium transients in arousal related neurons

    DEFF Research Database (Denmark)

    Kohlmeier, Kristi Anne; Leonard, Christopher S


    Nitric oxide synthase (NOS)-containing cholinergic neurons in the laterodorsal tegmentum (LDT) influence behavioral and motivational states through their projections to the thalamus, ventral tegmental area and a brainstem 'rapid eye movement (REM)-induction' site. Action potential-evoked intracel......Nitric oxide synthase (NOS)-containing cholinergic neurons in the laterodorsal tegmentum (LDT) influence behavioral and motivational states through their projections to the thalamus, ventral tegmental area and a brainstem 'rapid eye movement (REM)-induction' site. Action potential......-evoked intracellular calcium transients dampen excitability and stimulate NO production in these neurons. In this study, we investigated the action of several arousal-related neurotransmitters and the role of specific calcium channels in these LDT Ca(2+)-transients by simultaneous whole-cell recording and calcium...... of cholinergic LDT neurons and that inhibition of spike-evoked Ca(2+)-transients is a common action of neurotransmitters that also activate GIRK channels in these neurons. Because spike-evoked calcium influx dampens excitability, our findings suggest that these 'inhibitory' transmitters could boost firing rate...

  14. Molecular basis of inherited calcium Channelopathies: role of mutations in pore-forming subunits

    Institute of Scientific and Technical Information of China (English)



    The pore-forming alpha subunits of voltage-gated calcium channels contain the essential biophysical machinery that underlies calcium influx in response to cell depolarization.In combination with requisite auxiliary subunits,these pore subunits form calcium channel complexes that are pivotal to the physiology and pharmacology of diverse cells ranging from sperm to neurons.Not surprisingly,mutations in the pore subunits generate diverse pathologies,termed channelopathies,that range from failures in excitation-contraction coupling to night blindness.Over the last decade, major insights into the mechanisms of pathogenesis have been derived from animals showing spontaneous or induced mutations.In parallel,there has been considerable growth in our understanding of the workings of voltage-gated ion channels from a structure-function,regulation and cell biology perspective.Here we document our current understanding of the mutations underlying channelopathies involving the voltage-gated calcium channel alpha subunits in humans and other species.

  15. sup 86 Rb(K) influx and ( sup 3 H)ouabain binding by human platelets: Evidence for beta-adrenergic stimulation of Na-K ATPase activity

    Energy Technology Data Exchange (ETDEWEB)

    Turaihi, K.; Khokher, M.A.; Barradas, M.A.; Mikhailidis, D.P.; Dandona, P. (Royal Free Hospital and School of Medicine, London (England))


    Although active transport of potassium into human platelets has been demonstrated previously, there is hitherto no evidence that human platelets have an ouabain-inhibitable Na-K ATPase in their membrane. The present study demonstrates active rubidium (used as an index of potassium influx), {sup 86}Rb(K), influx into platelets, inhibitable by ouabain, and also demonstrates the presence of specific ({sup 3}H)ouabain binding by the human platelet. This {sup 86}Rb(K) influx was stimulated by adrenaline, isoprenaline, and salbutamol, but noradrenaline caused a mild inhibition. Active {sup 86}Rb(K) influx by platelets was inhibited markedly by timolol, mildly by atenolol, but not by phentolamine. Therefore, active {sup 86}Rb(K) influx in human platelets is enhanced by stimulation of beta adrenoceptors of the beta 2 subtype. The platelet may therefore replace the leukocyte in future studies of Na-K ATPase activity. This would be a considerable advantage in view of the ease and rapidity of preparation of platelets.

  16. H⁺-activated Na⁺ influx in the ventricular myocyte couples Ca²⁺-signalling to intracellular pH. (United States)

    Garciarena, Carolina D; Youm, Jae Boum; Swietach, Pawel; Vaughan-Jones, Richard D


    Acid extrusion on Na(+)-coupled pH-regulatory proteins (pH-transporters), Na(+)/H(+) exchange (NHE1) and Na(+)-HCO3(-) co-transport (NBC), drives Na(+) influx into the ventricular myocyte. This H(+)-activated Na(+)-influx is acutely up-regulated at pHipH-transporter) with gap-junctions at intercalated discs. Overall Na(+)-influx via NBC is considerably lower, but much is co-localised with L-type Ca(2+)-channels in transverse-tubules. Through a functional coupling with Na(+)/Ca(2+) exchange (NCX), H(+)-activated Na(+)-influx increases sarcoplasmic-reticular Ca(2+)-loading and release during intracellular acidosis. This raises Ca(2+)-transient amplitude, rescuing it from direct H(+)-inhibition. Functional coupling is biochemically regulated and linked to membrane receptors, through effects on NHE1 and NBC. It requires adequate cytoplasmic Na(+)-mobility, as NHE1 and NCX are spatially separated (up to 60μm). The relevant functional NCX activity must be close to dyads, as it exerts no effect on bulk diastolic Ca(2+). H(+)-activated Na(+)-influx is up-regulated during ischaemia-reperfusion and some forms of maladaptive hypertrophy and heart failure. It is thus an attractive system for therapeutic manipulation. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".

  17. Extracellular calcium sensing and extracellular calcium signaling (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)


    , localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.

  18. Local fibroblast proliferation but not influx is responsible for synovial hyperplasia in a murine model of rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Yusuke; Mizoguchi, Fumitaka; Saito, Tetsuya [Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 (Japan); Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) Program, Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan); Kawahata, Kimito [Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 (Japan); Ueha, Satoshi; Matsushima, Kouji [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) Program, Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan); Department of Molecular Preventive Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Inagaki, Yutaka [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) Program, Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan); Center for Matrix Biology and Medicine, Graduate School of Medicine and the Institute of Medical Sciences, Tokai University, 143 Shimo-kasuya, Isehara, Kanagawa, 259-1193 (Japan); Miyasaka, Nobuyuki [Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 (Japan); Kohsaka, Hitoshi, E-mail: [Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519 (Japan); Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) Program, Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan)


    Synovial fibroblasts play crucial roles in inflammation and joint destruction in rheumatoid arthritis (RA). How they accumulate in the RA joints remains unclear. This study was conducted to discern whether cellular influx from the outside of the joints and local proliferation are responsible for synovial fibroblast accumulation in an animal model of RA. We found that synovial fibroblasts were identified as GFP+ cells using collagen type I alpha 2 (Col1a2)-GFP transgenic reporter mice. Then, bone marrow transplantation and parabiosis techniques were utilized to study the cellular influx. Irradiated wild-type mice were transplanted with bone marrow from Col1a2-GFP mice. Col1a2-GFP and wild-type mice were conjoined for parabiosis. The transplanted mice and the parabionts were subjected to collagen antibody-induced arthritis (CAIA). We found no GFP+ cells in the hyperplastic synovial tissues from the transplanted mice with CAIA and from the wild-type parabionts with CAIA. Furthermore, normal and CAIA synovial tissues from Col1a2-GFP mice and from fluorescent ubiquitination-based cell cycle indicator (Fucci) transgenic mice, in which cells in S/G{sub 2}/M phases of the cell cycle express Azami-Green, were studied for Ki67, a cellular proliferation marker, and vimentin, a fibroblast marker, expression. The percentages of Ki67+/GFP+ and Azami-Green+/vimentin+ cells in the CAIA synovial tissues were higher than those in the untreated synovial tissues (34% vs. 0.40% and 19% vs. 0.26%, respectively). These findings indicate that local fibroblast proliferation but not cellular influx is responsible for the synovial hyperplasia in CAIA. Suppression of proliferation of the local synovial fibroblasts should be a promising treatment for RA. - Highlights: • We studied how synovial fibroblasts accumulate in joints in a murine model of RA. • Bone marrow-derived cells did not accumulate in arthritic joints. • Synovial fibroblasts did not accumulate in arthritic joints via

  19. Calcium-activated K+ Channels of Mouse β-cells are Controlled by Both Store and Cytoplasmic Ca2+


    Goforth, P. B.; Bertram, R.; Khan, F. A.; Zhang, M.; Sherman, A.; Satin, L. S.


    A novel calcium-dependent potassium current (Kslow) that slowly activates in response to a simulated islet burst was identified recently in mouse pancreatic β-cells (Göpel, S.O., T. Kanno, S. Barg, L. Eliasson, J. Galvanovskis, E. Renström, and P. Rorsman. 1999. J. Gen. Physiol. 114:759–769). Kslow activation may help terminate the cyclic bursts of Ca2+-dependent action potentials that drive Ca2+ influx and insulin secretion in β-cells. Here, we report that when [Ca2+]i handling was disrupted...

  20. The mystery is solved-CatSper is the principal calcium channel activated by progesterone in human spermatozoa

    Institute of Scientific and Technical Information of China (English)

    Christopher LR Barratt


    @@ Aremarkable advance in sperm physiology has recently been published in Nature.Two groups using patch clamping techniques on human sperm have solved a mystery about the sperm cell that has puzzled both andrologists and those involved in non-genomic cellular signalling for over 20 years.In these papers, Lishko1 and Strunker2 independently demonstrate that the universal characteristic effect of progesterone on sperm-a rapid influx of calcium-is via a sperm-specific channel CatSper.

  1. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium pantothenate, calcium chloride double salt..., calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may... information required by the Act, the following: (1) The name of the additive “calcium chloride double salt of...

  2. Calcium channels and migraine. (United States)

    Pietrobon, Daniela


    Missense mutations in CACNA1A, the gene that encodes the pore-forming α1 subunit of human voltage-gated Ca(V)2.1 (P/Q-type) calcium channels, cause a rare form of migraine with aura (familial hemiplegic migraine type 1: FHM1). Migraine is a common disabling brain disorder whose key manifestations are recurrent attacks of unilateral headache that may be preceded by transient neurological aura symptoms. This review, first, briefly summarizes current understanding of the pathophysiological mechanisms that are believed to underlie migraine headache, migraine aura and the onset of a migraine attack, and briefly describes the localization and function of neuronal Ca(V)2.1 channels in the brain regions that have been implicated in migraine pathogenesis. Then, the review describes and discusses i) the functional consequences of FHM1 mutations on the biophysical properties of recombinant human Ca(V)2.1 channels and native Ca(V)2.1 channels in neurons of knockin mouse models carrying the mild R192Q or severe S218L mutations in the orthologous gene, and ii) the functional consequences of these mutations on neurophysiological processes in the cerebral cortex and trigeminovascular system thought to be involved in the pathophysiology of migraine, and the insights into migraine mechanisms obtained from the functional analysis of these processes in FHM1 knockin mice. This article is part of a Special Issue entitled: Calcium channels. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Calcium electroporation in three cell lines; a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille


    BACKGROUND: Electroporation with calcium (calcium electroporation) can induce ATP depletion-associated cellular death. In the clinical setting, the cytotoxic drug bleomycin is currently used with electroporation (electrochemotherapy) for palliative treatment of tumors. Calcium electroporation...... offers several advantages over standard treatment options: calcium is inexpensive and may readily be applied without special precautions, as is the case with cytostatic drugs. Therefore, details on the use of calcium electroporation are essential for carrying out clinical trials comparing calcium...

  4. A composition for isolating an influx of stratum waters in a well and a method for producing it

    Energy Technology Data Exchange (ETDEWEB)

    Valiyev, I.Sh.; Kuvandykov, I.Sh.; Sokolov, B.B.


    Proposed is a composition for isolating an influx of stratum water into a well, which contains an emulsifier - an aqueous solution of diethanolamide of fatty acids with 10-16 carbon atoms and a dispersed phase, which is distinguished by the fact that in order to improve the insulating properties of the composition, it contains paraffin as the dispersed phase with the following component ration in percent by weight: paraffin, 10-70; aqueous solution of diethanolamide of fatty acids with 10-16 carbon atoms, 30-90; diethanolamides of fatty acids with 10-16 carbon atoms, 0.5-6 and water, the remainder. The disperse phase - parafin - in a melted form is emulsified in an aqueous solution of the emulsifier, heated above the melting point of the paraffin, with subsequent natural cooling of the obtained direct emulsion to hardening of the dispersed phase.

  5. Vitamin D, Calcium, and Bone Health (United States)

    ... in Balance › Vitamin D, Calcium, and Bone Health Vitamin D, Calcium, and Bone Health March 2012 Download ... also helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin ...

  6. Calcium, vitamin D, and your bones (United States)

    ... page: // Calcium, vitamin D, and your bones To use the sharing ... and maintain strong bones. How Much Calcium and Vitamin D do I Need? Amounts of calcium are ...

  7. Synthesis and characterization of BaFe{sub 2}As{sub 2} single crystals grown by in-flux technique

    Energy Technology Data Exchange (ETDEWEB)

    Garitezi, T.M.; Adriano, C.; Rosa, P.F.S.; Bittar, E.M.; Bufaical, L.; Almeida, R.L.; Granado, E.; Pagliuso, P.G., E-mail: [Universidade Estadual de Campinas (UNICAM), SP (Brazil). Instituto de Fisica Gleb Wataghin; Grant, T; Fisk, Z. [University of California, Irvine, CA (United States); Avila, M.A.; Ribeiro, R.A. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Kuhns, P.L.; Reyes, A.P.; Urbano, R.R. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL (United States)


    We report a detailed characterization of BaFe{sub 2}As{sub 2} single crystals grown by a metallic In-flux technique, an alternative to well-established growth routes using FeAs self- or Sn-flux. Electrical resistivity, magnetic susceptibility, nuclear magnetic resonance, and energy dispersive spectroscopy measurements showed no evidence of flux incorporation. More importantly, our results demonstrate that BaFe{sub 2}As{sub 2} single crystals grown by In-flux have extremely high quality. To explore the efficiency of the In-flux growth method, we have also prepared nearly optimally doped superconducting samples of Ba(Fe{sub 1} {sub -x} M {sub x} ){sub 2}As{sub 2} (M = Co, Cu, Ni, and Ru). Among other interesting features, this alternative chemical substitution method has led to enhancement of the maximum T{sub c} for most dopings. (author)

  8. Involvement of both sodium influx and potassium efflux in ciguatoxin-induced nodal swelling of frog myelinated axons. (United States)

    Mattei, César; Molgó, Jordi; Benoit, Evelyne


    Ciguatoxins, mainly produced by benthic dinoflagellate Gambierdiscus species, are responsible for a complex human poisoning known as ciguatera. Previous pharmacological studies revealed that these toxins activate voltage-gated Na+ channels. In frog nodes of Ranvier, ciguatoxins induce spontaneous and repetitive action potentials (APs) and increase axonal volume that may explain alterations of nerve functioning in intoxicated humans. The present study aimed determining the ionic mechanisms involved in Pacific ciguatoxin-1B (P-CTX-1B)-induced membrane hyperexcitability and subsequent volume increase in frog nodes of Ranvier, using electrophysiology and confocal microscopy. The results reveal that P-CTX-1B action is not dependent on external Cl- ions since it was not affected by substituting Cl- by methylsulfate ions. In contrast, substitution of external Na+ by Li+ ions suppressed spontaneous APs and prevented nodal swelling. This suggests that P-CTX-1B-modified Na+ channels are not selective to Li+ ions and/or are blocked by these ions, and that Na+ influx through Na+ channels opened during spontaneous APs is required for axonal swelling. The fact that the K+ channel blocker tetraethylammonium modified, but did not suppress, spontaneous APs and greatly reduced nodal swelling induced by P-CTX-1B indicates that K+ efflux might also be involved. This is supported by the fact that P-CTX-1B, when tested in the presence of both tetraethylammonium and the K+ ionophore valinomycin, produced the characteristic nodal swelling. It is concluded that, during the action of P-CTX-1B, water movements responsible for axonal swelling depend on both Na+ influx and K+ efflux. These results pave the way for further studies regarding ciguatera treatment.

  9. Biogeochemical response of organic-rich freshwater marshes in the Louisiana delta plain to chronic river water influx (United States)

    Swarzenski, C.M.; Doyle, T.W.; Fry, B.; Hargis, T.G.


    To help evaluate effects of Mississippi River inputs to sustainability of coastal Louisiana ecosystems, we compared porewater and substrate quality of organic-rich Panicum hemitomon freshwater marshes inundated by river water annually for more than 30 years (Penchant basin, PB) or not during the same time (Barataria basin, BB). In the marshes receiving river water the soil environment was more reduced, the organic substrate was more decomposed and accumulated more sulfur. The porewater dissolved ammonium and orthophosphate concentrations were an order of magnitude higher and sulfide and alkalinity concentrations were more than twice as high in PB compared with BB marshes. The pH was higher and dissolved iron concentrations were more than an order of magnitude lower in PB marshes than in BB marshes. The influx of nutrient-rich river water did not enhance end-of-year above-ground standing biomass or vertical accretion rates of the shallow substrate. The differences in porewater chemistry and substrate quality are reasonably linked to the long-term influx of river water through biogeochemical processes and transformations involving alkalinity, nitrate and sulfate. The key factor is the continual replenishment of alkalinity, nitrate and sulfate via overland flow during high river stage each year for several weeks to more than 6 months. This leads to a reducing soil environment, pooling of the phytotoxin sulfide and inorganic nutrients in porewater, and internally generated alkalinity. Organic matter decomposition is enhanced under these conditions and root mats degraded. The more decomposed root mat makes these marshes more susceptible to erosion during infrequent high-energy events (for example hurricanes) and regular low-energy events, such as tides and the passage of weather fronts. Our findings were unexpected and, if generally applicable, suggest that river diversions may not be the beneficial mitigating agent of wetland restoration and conservation that they are

  10. Sulfate influx on band 3 protein of equine erythrocyte membrane (Equus caballus) using different experimental temperatures and buffer solutions. (United States)

    Casella, S; Piccione, D; Ielati, S; Bocchino, E G; Piccione, G


    The aim of this study was to assess the anion transport in equine erythrocytes through the measurement of the sulfate uptake operating from band 3 using different experimental temperatures and buffer solutions. Blood samples of six clinically healthy horses were collected via jugular vein puncture, and an emochrome-citometric examination was performed. The blood was divided into four aliquots and by centrifugation and aspiration the plasma and buffy coat were carefully discarded. The red blood cells were washed with an isosmotic medium and centrifuged. The obtained cell suspensions were incubated with two different experimental buffer solutions (buffer A: 115 mM Na2SO4, 10 mM NaCl, 20 mM ethylenediaminetetraacetic acid, 30 mM glucose; and buffer B: 115 mM Na2SO4, 10 mM NaCl, 20 mM ethylenediaminetetraacetic acid, 30 mM MgCl2) in a water bath for 1 h at 25 °C and 37 °C. Normal erythrocytes, suspended at 3% hematocrit, were used to measure the SO4= influx by absorption spectrophotometry at 425 nm wavelength. Unpaired Student's t-test showed a statistically significant decrease (P buffer solutions. Comparing the buffer A with buffer B unpaired Student's t-test showed statistically lower values (P < 0.0001) for A solution versus B solution both at 25 °C and at 37 °C. The greater inhibition of SO4 (=) influx measured in equine erythrocytes indicates the increased formation of the sulfydryl bonds in band 3 and the modulation of the sulfydryl groups, culminating in the conformational changes in band 3. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Better well control through safe drilling margin identification, influx analysis and direct bottom hole pressure control method for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Veeningen, Daan [National Oilwell Varco IntelliServ (NOV), Houston, TX (United States)


    Currently, well control events are almost exclusively detected by using surface measurements. Measuring a volume increase in the 'closed loop' mud circulation system; a standpipe pressure decrease; or changes in a variety of drilling parameters provide indicators of a kick. Especially in deep water, where the riser comprises a substantial section of the well bore, early kick detection is paramount for limiting the severity of a well bore influx and improve the ability to regain well control. While downhole data is presently available from downhole tools nearby the bit, available data rates are sparse as mud pulse telemetry bandwidth is limited and well bore measurements compete with transmission of other subsurface data. Further, data transfer is one-directional, latency is significant and conditions along the string are unknown. High-bandwidth downhole data transmission system, via a wired or networked drill string system, has the unique capability to acquire real-time pressure and temperature measurement at a number of locations along the drill string. This system provides high-resolution downhole data available at very high speed, eliminating latency and restrictions that typically limit the availability of downhole data. The paper describes well control opportunities for deep water operations through the use of downhole data independent from surface measurements. First, the networked drill string provides efficient ways to identify pore pressure, fracture gradient, and true mud weight that comprise the safe drilling margin. Second, the independent measurement capability provides early kick detection and improved ability to analyze an influx even with a heterogeneous mud column through distributed along-string annular pressure measurements. Third, a methodology is proposed for a direct measurement method using downhole real-time pressure for maintaining constant bottom hole pressure during well kills in deep water. (author)

  12. Influence of external calcium and thapsigargin on the uptake of polystyrene beads by the macrophage-like cell lines U937 and MH-S (United States)


    Background Macrophages are equipped with several receptors for the recognition of foreign particles and pathogens. Upon binding to these receptors, particles become internalized. An interaction of particles with macrophage surface receptors is accompanied by an increase in cytosolic calcium concentration. This calcium is provided by intracellular stores and also by an influx of external calcium upon activation of the calcium channels. Nevertheless, the role of calcium in phagocytosis remains controversial. Some researchers postulate the necessity of calcium in Fc-receptor-mediated phagocytosis and a calcium-independent phagocytosis of complement opsonized particles. Others refute the need for calcium in Fc-receptor-mediated phagocytosis by macrophages. Methods In this study, the influence of external calcium concentrations and thapsigargin on the phagocytosis of polystyrene latex beads by the macrophage-like cell lines MH-S (murine) and differentiated U937 (human) was analyzed. The phagocytosis efficiency was determined by flow cytometry and was evaluated statistically by ANOVA test and Dunett’s significance test, or ANOVA and Bonferroni’s Multiple Comparison. Results Acquired data revealed an external calcium-independent way of internalization of non-functionalized polystyrene latex beads at free calcium concentrations ranging from 0 mM to 3 mM. The phagocytosis efficiency of the cells is not significantly decreased by a complete lack of external calcium. Furthermore, the presence of thapsigargin, known to lead to an increase of cytosolic calcium levels, did not have a significant enhancing influence on bead uptake by MH-S cells and only an enhancing effect on bead uptake by macrophage-like U937 cells at an external calcium concentration of 4 mM. Conclusion The calcium-independent phagocytosis process and the decrease of phagocytosis efficiency in the presence of complement receptor inhibitor staurosporine lead to the assumption that besides other calcium

  13. Neuroprotective activity of stiripentol with a possible involvement of voltage-dependent calcium and sodium channels. (United States)

    Verleye, Marc; Buttigieg, Dorothée; Steinschneider, Rémy


    A growing body of data has shown that recurrent epileptic seizures may be caused by an excessive release of the excitatory neurotransmitter glutamate in the brain. Glutamatergic overstimulation results in massive neuronal influxes of calcium and sodium through N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainic acid glutamate subtype receptors and also through voltage-gated calcium and sodium channels. These persistent and abnormal sodium and calcium entry points have deleterious consequences (neurotoxicity) for neuronal function. The therapeutic value of an antiepileptic drug would include not only control of seizure activity but also protection of neuronal tissue. The present study examines the in vitro neuroprotective effects of stiripentol, an antiepileptic compound with γ-aminobutyric acidergic properties, on neuronal-astroglial cultures from rat cerebral cortex exposed to oxygen-glucose deprivation (OGD) or to glutamate (40 µM for 20 min), two in vitro models of brain injury. In addition, the affinity of stiripentol for the different glutamate receptor subtypes and the interaction with the cell influx of Na(+) and of Ca(2+) enhanced by veratridine and NMDA, respectively, are assessed. Stiripentol (10-100 µM) included in the culture medium during OGD or with glutamate significantly increased the number of surviving neurons relative to controls. Stiripentol displayed no binding affinity for different subtypes of glutamate receptors (IC50  >100 µM) but significantly blocked the entry of Na(+) and Ca(2+) activated by veratridine and NMDA, respectively. These results suggest that Na(+) and Ca(2+) channels could contribute to the neuroprotective properties of sitiripentol.

  14. Mammary-Specific Ablation of the Calcium-Sensing Receptor During Lactation Alters Maternal Calcium Metabolism, Milk Calcium Transport, and Neonatal Calcium Accrual


    Mamillapalli, Ramanaiah; VanHouten, Joshua; Dann, Pamela; Bikle, Daniel; Chang, Wenhan; Brown, Edward; Wysolmerski, John


    To meet the demands for milk calcium, the lactating mother adjusts systemic calcium and bone metabolism by increasing dietary calcium intake, increasing bone resorption, and reducing renal calcium excretion. As part of this adaptation, the lactating mammary gland secretes PTHrP into the maternal circulation to increase bone turnover and mobilize skeletal calcium stores. Previous data have suggested that, during lactation, the breast relies on the calcium-sensing receptor (CaSR) to coordinate ...

  15. Calcium requirement of phytochrome-mediated fern-spore germination: no direct phytochrome-calcium interaction in the phytochrome-initiated transduction chain (United States)

    Scheuerlein, R.; Wayne, R.; Roux, S. J.


    Phytochrome-mediated germination of fern spores of Dryopteris paleacea Sw. was initiated by a saturating red-light (R) irradiation after 20 h of imbibition. For its realization external Ca2+ was required, with a threshold at a submicromolar concentration, and an optimum was reached around 10(-4) M. At concentrations > or = 10(-1) M only a reduced response was obtained, based probably on an unspecific osmotic or ionic effect. The germination response was inhibited by La3+, an antagonist of Ca2+. From these results it is concluded that Ca2+ influx from the medium into the spores may be an important event in phytochrome-mediated germination. In the absence of Ca2+ the R-stimulated system remained capable of responding to Ca2+, added as late as 40 h after R. Moreover, Ca2+ was effective even if added after the active form of phytochrome, Pfr, had been abolished by far-red (FR) 24 h after R. Thus, the primary effect of Pfr, that initiates the transduction chain, does not require calcium. "Coupling" of Pfr to subsequent dark reactions has been investigated by R-FR irradiations with various dark intervals. The resulting "escape kinetics" were characterized by a lag phase (6 h) and half-maximal escape from FR reversibility (19 h). These kinetics were not significantly changed by the presence or absence of calcium. Thus, direct interaction of Pfr and calcium is not a step in the transduction chain initiated by the active form of phytochrome.

  16. Novel vistas of calcium-mediated signalling in the thalamus. (United States)

    Pape, Hans-Christian; Munsch, Thomas; Budde, Thomas


    Traditionally, the role of calcium ions (Ca(2+)) in thalamic neurons has been viewed as that of electrical charge carriers. Recent experimental findings in thalamic cells have only begun to unravel a highly complex Ca(2+) signalling network that exploits extra- and intracellular Ca(2+) sources. In thalamocortical relay neurons, interactions between T-type Ca(2+) channel activation, Ca(2+)-dependent regulation of adenylyl cyclase activity and the hyperpolarization-activated cation current ( I(h)) regulate oscillatory burst firing during periods of sleep and generalized epilepsy, while a functional triad between Ca(2+) influx through high-voltage-activated (most likely L-type) Ca(2+) channels, Ca(2+)-induced Ca(2+) release via ryanodine receptors (RyRs) and a repolarizing mechanism (possibly via K(+) channels of the BK(Ca) type) supports tonic spike firing as required during wakefulness. The mechanisms seem to be located mostly at dendritic and somatic sites, respectively. One functional compartment involving local GABAergic interneurons in certain thalamic relay nuclei is the glomerulus, in which the dendritic release of GABA is regulated by Ca(2+) influx via canonical transient receptor potential channels (TRPC), thereby presumably enabling transmitters of extrathalamic input systems that are coupled to phospholipase C (PLC)-activating receptors to control feed-forward inhibition in the thalamus. Functional interplay between T-type Ca(2+) channels in dendrites and the A-type K(+) current controls burst firing, contributing to the range of oscillatory activity observed in these interneurons. GABAergic neurons in the reticular thalamic (RT) nucleus recruit a specific set of Ca(2+)-dependent mechanisms for the generation of rhythmic burst firing, of which a particular T-type Ca(2+) channel in the dendritic membrane, the Ca(2+)-dependent activation of non-specific cation channels ( I(CAN)) and of K(+) channels (SK(Ca) type) are key players. Glial Ca(2+) signalling in

  17. The speed of swelling kinetics modulates cell volume regulation and calcium signaling in astrocytes: A different point of view on the role of aquaporins. (United States)

    Mola, Maria Grazia; Sparaneo, Angelo; Gargano, Concetta Domenica; Spray, David C; Svelto, Maria; Frigeri, Antonio; Scemes, Eliana; Nicchia, Grazia Paola


    Regulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD. Using calcium imaging, we show that AQP-mediated fast swelling kinetics also significantly increases the amplitude of calcium transients inhibited by Gadolinium and Ruthenium Red, two inhibitors of the transient receptor potential vanilloid 4 (TRPV4) channels, and prevented by removing extracellular calcium. Finally, inhibition of TRPV4 or removal of extracellular calcium does not affect RVD. All together our study provides evidence that (1) AQP influenced swelling kinetics is the main trigger for RVD and in mediating calcium signaling after hypotonic stimulus together with TRPV4, and (2) calcium influx from the extracellular space and/or TRPV4 are not essential for RVD to occur in astrocytes.

  18. Easy Determination of Water Influx in Reservoirs%油藏水侵量计算的简易新方法

    Institute of Scientific and Technical Information of China (English)

    LI Chuan-liang; XIAN Li-dong


    This paper presents two methods for easy determination of water influx in reservoirs based on the material balancetheory of reservoirs,I.e.,the Net Production Volume Curve,and the Production Index Curve.These methods can be used for esti-mation of water influx in reservoirs without any assumption of aquifer shape and size by applying the production performancedata.Hence the tedium of the conventional trial-and-error calculations and obvious uncertainty could be overcome in applicationof the easy and practical new methods.

  19. 21 CFR 184.1191 - Calcium carbonate. (United States)


    ... HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of... soda process”; (2) By precipitation of calcium carbonate from calcium hydroxide in the...

  20. The acute neurotoxicity of mefloquine may be mediated through a disruption of calcium homeostasis and ER function in vitro

    Directory of Open Access Journals (Sweden)

    Vahey Maryanne


    Full Text Available Abstract Background There is no established biochemical basis for the neurotoxicity of mefloquine. We investigated the possibility that the acute in vitro neurotoxicity of mefloquine might be mediated through a disruptive effect of the drug on endoplasmic reticulum (ER calcium homeostasis. Methods Laser scanning confocal microscopy was employed to monitor real-time changes in basal intracellular calcium concentrations in embryonic rat neurons in response to mefloquine and thapsigargin (a known inhibitor of the ER calcium pump in the presence and absence of external calcium. Changes in the transcriptional regulation of known ER stress response genes in neurons by mefloquine were investigated using Affymetrix arrays. The MTT assay was employed to measure the acute neurotoxicity of mefloquine and its antagonisation by thapsigargin. Results At physiologically relevant concentrations mefloquine was found to mobilize neuronal ER calcium stores and antagonize the pharmacological action of thapsigargin, a specific inhibitor of the ER calcium pump. Mefloquine also induced a sustained influx of extra-neuronal calcium via an unknown mechanism. The transcription of key ER proteins including GADD153, PERK, GRP78, PDI, GRP94 and calreticulin were up-regulated by mefloquine, suggesting that the drug induced an ER stress response. These effects appear to be related, in terms of dose effect and kinetics of action, to the acute neurotoxicity of the drug in vitro. Conclusions Mefloquine was found to disrupt neuronal calcium homeostasis and induce an ER stress response at physiologically relevant concentrations, effects that may contribute, at least in part, to the neurotoxicity of the drug in vitro.

  1. Evolution of the Calcium Paradigm: The Relation between Vitamin D, Serum Calcium and Calcium Absorption

    Directory of Open Access Journals (Sweden)

    Borje E. Christopher Nordin


    Full Text Available Osteoporosis is the index disease for calcium deficiency, just as rickets/osteomalacia is the index disease for vitamin D deficiency, but there is considerable overlap between them. The common explanation for this overlap is that hypovitaminosis D causes malabsorption of calcium which then causes secondary hyperparathyroidism and is effectively the same thing as calcium deficiency. This paradigm is incorrect. Hypovitaminosis D causes secondary hyperparathyroidism at serum calcidiol levels lower than 60 nmol/L long before it causes malabsorption of calcium because serum calcitriol (which controls calcium absorption is maintained until serum calcidiol falls below 20 nmol/L. This secondary hyperparathyroidism, probably due to loss of a “calcaemic” action of vitamin D on bone first described in 1957, destroys bone and explains why vitamin D insufficiency is a risk factor for osteoporosis. Vitamin D thus plays a central role in the maintenance of the serum (ionised calcium, which is more important to the organism than the preservation of the skeleton. Bone is sacrificed when absorbed dietary calcium does not match excretion through the skin, kidneys and bowel which is why calcium deficiency causes osteoporosis in experimental animals and, by implication, in humans.

  2. [Thapsigargin-sensitive and insensitive intracellular calcium stores in acinar cells of the submandibular salivary gland in rats]. (United States)

    Kopach, O V; Kruhlykov, I A; Voĭtenko, N V; Fedirko, N V


    Acinar cells of rat submandibular salivary gland are characterized by heterogeneity of intracellular Ca2+ stores. In the present work we have studied this heterogeneity using Arsenazo III dye to measure a cellular total calcium content and Fura-2/AM, to determine free cytosolic calcium concentration ([Ca2+]i). We have found that the amount of Ca2+ released by inhibition of Ca2+ ATPase of the ER with thapsigargin comprises approximately 30% of total ER calcium. This result was obtained in experiments on both intact and permeabilized acinar cells. We have also shown that both Ca2+ ATPase inhibition with thapsigargin and emptying the stores with acetylcholine (ACh) led to activation of store-operated Ca2+ influx (an increase in total calcium content of approximately 14%). In permeabilized cells application of ACh after preincubation with thapsigargin led to a further decrease in total cellular calcium content (approximately 38%). At the same time in intact cells it resulted in generation of [Ca2+]i transients with gradually decreasing amplitudes. Thus, ACh is capable of producing an additional release of Ca2+ from thapsigargin-insensitive stores. This additional release is IP3-dependent since it was completely blocked by heparin. We conclude that in acinar cells of rat submandibular gland thapsigargin-sensitive and thapsigargin-insensitive Ca2+ stores could exist.

  3. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    Energy Technology Data Exchange (ETDEWEB)

    Bizzozero, Julien, E-mail:; Scrivener, Karen L.


    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction.

  4. Calcium-dependent activator protein for secretion 2 (CAPS2) promotes BDNF secretion and is critical for the development of GABAergic interneuron network. (United States)

    Shinoda, Yo; Sadakata, Tetsushi; Nakao, Kazuhito; Katoh-Semba, Ritsuko; Kinameri, Emi; Furuya, Asako; Yanagawa, Yuchio; Hirase, Hajime; Furuichi, Teiichi


    Calcium-dependent activator protein for secretion 2 (CAPS2) is a dense-core vesicle-associated protein that is involved in the secretion of BDNF. BDNF has a pivotal role in neuronal survival and development, including the development of inhibitory neurons and their circuits. However, how CAPS2 affects BDNF secretion and its biological significance in inhibitory neurons are largely unknown. Here we reveal the role of CAPS2 in the regulated secretion of BDNF and show the effect of CAPS2 on the development of hippocampal GABAergic systems. We show that CAPS2 is colocalized with BDNF, both synaptically and extrasynaptically in axons of hippocampal neurons. Overexpression of exogenous CAPS2 in hippocampal neurons of CAPS2-KO mice enhanced depolarization-induced BDNF exocytosis events in terms of kinetics, frequency, and amplitude. We also show that in the CAPS2-KO hippocampus, BDNF secretion is reduced, and GABAergic systems are impaired, including a decreased number of GABAergic neurons and their synapses, a decreased number of synaptic vesicles in inhibitory synapses, and a reduced frequency and amplitude of miniature inhibitory postsynaptic currents. Conversely, excitatory neurons in the CAPS2-KO hippocampus were largely unaffected with respect to field excitatory postsynaptic potentials, miniature excitatory postsynaptic currents, and synapse number and morphology. Moreover, CAPS2-KO mice exhibited several GABA system-associated deficits, including reduced late-phase long-term potentiation at CA3-CA1 synapses, decreased hippocampal theta oscillation frequency, and increased anxiety-like behavior. Collectively, these results suggest that CAPS2 promotes activity-dependent BDNF secretion during the postnatal period that is critical for the development of hippocampal GABAergic networks.

  5. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG


    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  6. Calcium signals in olfactory neurons. (United States)

    Tareilus, E; Noé, J; Breer, H


    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  7. Nitric Oxide Blocks Blue Light-Induced K+ Influx by Elevating the Cytosolic Ca2+ Concentration in Vicia faba L.Guard Cells

    Institute of Scientific and Technical Information of China (English)

    Xiang Zhao; Yuan-Yuan Li; Hui-Li Xiao; Chang-Shui Xu; Xiao Zhang


    Ca2+ plays a pivotal role in nitric oxide (NO)-promoted stomatal closure.However,the function of Ca2+ in NO inhibition of blue light (BL)-induced stomatal opening remains largely unknown.Here,we analyzed the role of Ca2+ in the crosstalk between BL and NO signaling in Vicia faba L.guard cells.Extracellular Ca2+ modulated the BL-induced stomatal opening in a dose-dependent manner,and an application of 5 μM Ca2+ in the pipette solution significantly inhibited BL-activated K+ influx.Sodium nitroprusside (SNP),a NO donor,showed little effect on BL-induced K+ influx and stomatal opening response in the absence of extracellular Ca2+,but K+ influx and stomatal opening were inhibited by SNP when Ca2+ was added to the bath solution.Interestingly,although both SNP and BL could activate the plasma membrane Ca2+ channels and induce the rise of cytosolic Ca2+,the change in levels of Ca2+ channel activity and cytosolic Ca2+ concentration were different between SNP and BL treatments.SNP at 100 μM obviously activated the plasma membrane Ca2+ channels and induced cytosolic Ca2+ rise by 102.4%.In contrast,a BL pulse (100 μmol/m2 per s for 30 s) slightly activated the Ca2+ channels and resulted in a Ca2+ rise of only 20.8%.Consistently,cytosolic Ca2+ promoted K+ influx at 0.5 μM or below,and significantly inhibited K+ influx at 5 μM or above.Taken together,our findings indicate that Ca2+ plays dual and distinctive roles in the crosstalk between BL and NO signaling in guard cells,mediating both the BL-induced K+ influx as an activator at a lower concentration and the NO-blocked K+ influx as an inhibitor at a higher concentration.

  8. 21 CFR 184.1187 - Calcium alginate. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium alginate. 184.1187 Section 184.1187 Food... Specific Substances Affirmed as GRAS § 184.1187 Calcium alginate. (a) Calcium alginate (CAS Reg. No. 9005.... Calcium alginate is prepared by the neutralization of purified alginic acid with appropriate pH...

  9. Calcium phosphates for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Pena, P.; Aza, A.H. de; Rodriguez, M.A.


    The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies. (Author)

  10. Calcium-sensing beyond neurotransmitters

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Han, Weiping


    synaptotagmins are located in brain and endocrine cells, and some of these synaptotagmins bind to phospholipids and calcium at levels that trigger regulated exocytosis of SVs and LDCVs. This led to the proposed synaptotagmin-calcium-sensor paradigm, that is, members of the synaptotagmin family function...... as calcium sensors for the regulated exocytosis of neurotransmitters, neuropeptides and hormones. Here, we provide an overview of the synaptotagmin family, and review the recent mouse genetic studies aimed at understanding the functions of synaptotagmins in neurotransmission and endocrine-hormone secretion......Neurotransmitters, neuropeptides and hormones are released through the regulated exocytosis of SVs (synaptic vesicles) and LDCVs (large dense-core vesicles), a process that is controlled by calcium. Synaptotagmins are a family of type 1 membrane proteins that share a common domain structure. Most...

  11. Calcium and Vitamin D increase mRNA levels for the growth control hIK1 channel in human epidermal keratinocytes but functional channels are not observed

    Directory of Open Access Journals (Sweden)

    Rossie Sandra


    Full Text Available Abstract Background Intermediate-conductance, calcium-activated potassium channels (IKs modulate proliferation and differentiation in mesodermal cells by enhancing calcium influx, and they contribute to the physiology of fluid movement in certain epithelia. Previous reports suggest that IK channels stimulate proliferative growth in a keratinocyte cell line; however, because these channels indirectly promote calcium influx, a critically unique component of the keratinocyte differentiation program, an alternative hypothesis is that they would be anti-proliferative and pro-differentiating. This study addresses these hypotheses. Methods Real-time PCR, patch clamp electrophysiology, and proliferation assays were used to determine if human IK1 (hIK1 expression and function are correlated with either proliferation or differentiation in cultured human skin epidermal keratinocytes, and skin biopsies grown in explant culture. Results hIK1 mRNA expression in human keratinocytes and skin was increased in response to anti-proliferative/pro-differentiating stimuli (elevated calcium and Vitamin D. Correspondingly, the hIK1 agonist 1-EBIO inhibited keratinocyte proliferation suggesting that the channel could be anti-proliferative and pro-differentiating. However, this proliferative inhibition by 1-EBIO was not reversed by a panel of hIK1 blockers, calling into question the mechanism of 1-EBIO action. Subsequent patch clamp electrophysiological analysis failed to detect hIK1 channel currents in keratinocytes, even those expressing substantial hIK1 mRNA in response to calcium and Vitamin D induced differentiation. Identical electrophysiological recording conditions were then used to observe robust IK1 currents in fibroblasts which express IK1 mRNA levels comparable to those of keratinocytes. Thus, the absence of observable hIK1 currents in keratinocytes was not a function of the electrophysiological techniques. Conclusion Human keratinocyte differentiation is

  12. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings

    Directory of Open Access Journals (Sweden)

    Anisur eRahman


    Full Text Available The present study investigates the regulatory role of exogenous calcium (Ca in developing salt stress tolerance in rice seedlings. Hydroponically grown 13-d-old rice (Oryza sativa L. cv. BRRI dhan47 seedlings were exposed to 200 mM NaCl alone and combined with 2 mM CaCl2 and 2 mM ethylene glycol tetraacetic acid (EGTA, a Ca scavenger for three days. The salt stress caused growth inhibition, chlorosis and water shortage in the rice seedlings. The salt-induced stress disrupted ion homeostasis through Na+ influx and K+ efflux, and decreased other mineral nutrient uptake. Salt-induced stress caused oxidative stress in rice seedlings through lipid peroxidation, loss of plasma membrane integrity, higher reactive oxygen species (ROS production and methylglyoxal (MG formation. The salt-stressed rice seedlings supplemented with exogenous Ca recovered from water loss, chlorosis and growth inhibition. Calcium supplementation in the salt-stressed rice seedlings improved ion homeostasis by inhibition of Na+ influx and K+ leakage. Exogenous Ca also improved ROS and MG detoxification by improving the antioxidant defense and glyoxalase systems, respectively. On the other hand, applying EGTA along with salt and Ca again negatively affected the rice seedlings as EGTA negated Ca activity. It confirms that, the positive responses in salt-stressed rice seedlings to exogenous Ca were for Ca mediated improvement of ion homeostasis, antioxidant defense and glyoxalase system.

  13. Calcium Supplementation Improves Na+/K+ Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings (United States)

    Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki


    The present study investigates the regulatory role of exogenous calcium (Ca) in developing salt stress tolerance in rice seedlings. Hydroponically grown 13-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 200 mM NaCl alone and combined with 2 mM CaCl2 and 2 mM ethylene glycol tetraacetic acid (EGTA, a Ca scavenger) for 3 days. The salt stress caused growth inhibition, chlorosis and water shortage in the rice seedlings. The salt-induced stress disrupted ion homeostasis through Na+ influx and K+ efflux, and decreased other mineral nutrient uptake. Salt stress caused oxidative stress in seedlings through lipid peroxidation, loss of plasma membrane integrity, higher reactive oxygen species (ROS) production and methylglyoxal (MG) formation. The salt-stressed seedlings supplemented with exogenous Ca recovered from water loss, chlorosis and growth inhibition. Calcium supplementation in the salt-stressed rice seedlings improved ion homeostasis by inhibition of Na+ influx and K+ leakage. Exogenous Ca also improved ROS and MG detoxification by improving the antioxidant defense and glyoxalase systems, respectively. On the other hand, applying EGTA along with salt and Ca again negatively affected the seedlings as EGTA negated Ca activity. It confirms that, the positive responses in salt-stressed rice seedlings to exogenous Ca were for Ca mediated improvement of ion homeostasis, antioxidant defense and glyoxalase system. PMID:27242816

  14. A Putative Calcium-Permeable Cyclic Nucleotide-Gated Channel, CNGC18, Regulates Polarized Pollen Tube Growth

    Institute of Scientific and Technical Information of China (English)


    A tip-focused Ca2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca2+ are required for this process. However the molecular identity and regulation of the potential Ca2+ channels remains elusive.The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca2+]ex). CNGC18-yellow fluorescence protein (YFP)was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes.The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator)blocked the PM localization. These results support a role for PM-localized CNGC18 in the regulation of polarized pollen tube growth through Its potential function in the modulation of calcium influxes.

  15. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin


    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  16. Calcium affects on vascular endpoints

    Directory of Open Access Journals (Sweden)

    Patel Vaishali B


    Full Text Available Abstract Calcium is one of the most abundant minerals in the body and its metabolism is one of the basic biologic processes in humans. Although historically linked primarily to bone structural development and maintenance, calcium is now recognized as a key component of many physiologic pathways necessary for optimum health including cardiovascular, neurological, endocrine, renal, and gastrointestinal systems. A recent meta-analysis published in August 2011 showed a potential increase in cardiovascular events related to calcium supplementation. The possible mechanism of action of this correlation has not been well elucidated. This topic has generated intense interest due to the widespread use of calcium supplements, particularly among the middle aged and elderly who are at the most risk from cardiac events. Prior studies did not control for potential confounding factors such as the use of statins, aspirin or other medications. These controversial results warrant additional well-designed studies to investigate the relationship between calcium supplementation and cardiovascular outcomes. The purpose of this review is to highlight the current literature in regards to calcium supplementation and cardiovascular health; and to identify areas of future research.

  17. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex.

    Directory of Open Access Journals (Sweden)

    Weiping Zhang

    Full Text Available Calcium-activated chloride channels of the anoctamin (alias TMEM16 protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.

  18. Renal- and calcium-dependent vascular effects of Polybia paulista wasp venom

    Directory of Open Access Journals (Sweden)

    JFC Vinhote


    Full Text Available In the present study, the effects of Polybia paulista venom (PPV on renal and vascular tissues were investigated. Isolated kidneys perfused with PPV (1 and 3 μg/mL had increased perfusion pressure, renal vascular resistance, urinary flow, and glomerular filtration rate; and reduced sodium tubular transport. Histological evaluation demonstrated deposits of proteins in Bowman's space and tubular lumen, and focal areas of necrosis. The venom promoted a cytotoxic effect on Madin-Darby canine kidney (MDCK cells. A significant increase in lactic dehydrogenase levels was observed in response to venom exposure. In isolated mesenteric vascular beds, pressure and vascular resistance augmented in a dose-dependent manner. PPV increased the contractility of aortic rings maintained under basal tension. This contractile response was inhibited when preparations were maintained in Ca2+-free medium. Likewise, verapamil, a voltage-gated calcium channel blocker, also inhibited the contractile response. In this study, phentolamine, a blocker of α-adrenergic receptor blocker, significantly reduced the contractile effect of PPV in the aortic ring. In conclusion, PPV produced nephrotoxicity, which suggests a direct effect on necrotic cellular death in renal tubule cells. The vascular contractile effect of PPV appears to involve calcium influx through voltage-gated calcium channels via adrenergic regulation.

  19. Methodological Principles of Assessing the Volume of Investment Influx from Non-State Pension Funds into the Economy of Ukraine

    Directory of Open Access Journals (Sweden)

    Dmitro Leonov


    Full Text Available This article addresses the processes of forming investment resources from nonstate pension funds under current conditions in Ukraine and the laws and regula tions that define the principles of the formation of in vestment institutions. Based on factors that in the near est future will affect the decisionmaking process by which different kinds of investors make payments to non state pension funds, we develop a procedure for assessing the volume of investment influx from nonstate pension funds into the economy and propose a procedure for long and shortterm prognosis of the volume of investment in flux from nonstate pension funds into the Ukrainian economy.

  20. Stable Isotopes of Carbon Monoxide in an Urban Environment: A Study at Indianapolis, IN as part of the INFLUX Campaign (United States)

    Vimont, I.; Petrenko, V. V.; Turnbull, J. C.; Place, P.; White, J. W. C.; Karion, A.


    We have developed a new system capable of measuring stable isotopes of carbon monoxide (CO) in small atmospheric samples. Measurements at 3 tall tower sites in Indianapolis, IN, USA have been ongoing since July 2013 as part of the INdianapolis FLUX (INFLUX) project. These three towers consist of an upwind, or background site, a site in the urban center, and a site on the downwind edge of the city. The tower collections are discrete, one hour integrated samples taken using NOAA's Portable Flask Package system. These sites have been measured for CO mole fraction, 13CO, and C18O approximately 6 times per month. We present a time series of data from these three sites, as well as a source analysis of the CO produced during the winter months (the winter data allow the use of several simplifying assumptions). We have identified mobile (vehicular) fossil fuel emissions as the only clearly significant wintertime source of CO, and quantified the stable isotopic signature of that source. We also present data from a traffic study done in March of 2015. A vehicle-based collection system was used for this study, and both continuous CO mole fraction and discrete CO mole fraction, 13CO, and C18O measurements were made. The results for CO stable isotopes are consistent with the vehicular emission CO isotopic signatures inferred from the tower samples.

  1. Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea volcano, Hawaii (United States)

    Mastin, L.G.


    In 1790 a major hydromagmatic eruption at the summit of Kilauea volcano, Hawaii, deposited up to 10 m of pyroclastic fall and surge deposits and killed several dozen Hawaiian natives who were crossing the island. Previous studies have hypothesized that the explosivity of this eruption was due to the influx of groundwater into the conduit and mixing of the groundwater with ascending magma. This study proposes that surface water, not groundwater, was the agent responsible for the explosiveness of the eruption. That is, a lake or pond may have existed in the caldera in 1790 and explosions may have taken place when magma ascended into the lake from below. That assertion is based on two lines of evidence: (1) high vesicularity (averaging 73% of more than 3000 lapilli) and high vesicle number density (105-107 cm-3 melt) of pumice clasts suggest that some phases of the eruption involved vigorous, sustained magma ascent; and (2) numerical calculations suggest that under most circumstances, hydrostatic pressure would not be sufficient to drive water into the eruptive conduit during vigorous magma ascent unless the water table were above the ground surface. These results are supported by historical data on the rate of infilling of the caldera floor during the early 1800s. When extrapolated back to 1790, they suggest that the caldera floor was below the water table.

  2. Alterations in plasma membrane promote overexpression and increase of sodium influx through epithelial sodium channel in hypertensive platelets. (United States)

    Cerecedo, D; Martínez-Vieyra, Ivette; Sosa-Peinado, Alejandro; Cornejo-Garrido, Jorge; Ordaz-Pichardo, Cynthia; Benítez-Cardoza, Claudia


    Platelets are small, anucleated cell fragments that activate in response to a wide variety of stimuli, triggering a complex series of intracellular pathways leading to a hemostatic thrombus formation at vascular injury sites. However, in essential hypertension, platelet activation contributes to causing myocardial infarction and ischemic stroke. Reported abnormalities in platelet functions, such as platelet hyperactivity and hyperaggregability to several agonists, contribute to the pathogenesis and complications of thrombotic events associated with hypertension. Platelet membrane lipid composition and fluidity are determining for protein site accessibility, structural arrangement of platelet surface, and response to appropriate stimuli. The present study aimed to demonstrate whether structural and biochemical abnormalities in lipid membrane composition and fluidity characteristic of platelets from hypertensive patients influence the expression of the Epithelial Sodium Channel (ENaC), fundamental for sodium influx during collagen activation. Wb, cytometry and quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) assays demonstrated ENaC overexpression in platelets from hypertensive subjects and in relation to control subjects. Additionally, our results strongly suggest a key role of β-dystroglycan as a scaffold for the organization of ENaC and associated proteins. Understanding of the mechanisms of platelet alterations in hypertension should provide valuable information for the pathophysiology of hypertension.

  3. In vitro ZnCl2 cytotoxicity and genotoxicity in human leukocytes: Zero-order kinetic cellular zinc influx

    Directory of Open Access Journals (Sweden)

    Luciana Pereira de Pereira


    Full Text Available Zinc (Zn is an essential trace element for cellular viability, but concentrations above physiologic level may lead to cellular damage. The purpose of the present study was to evaluate the in vitro ZnCl2 genotoxicity and cytotoxicity in human leukocyte cells. This was assessed in an unprecedented way that correlated the level of intracellular Zn after cell exposition with the cellular damage. The exposure to increased Zn concentrations (2.5-20 µg mL-1, showed significantly reduced cellular leukocyte viability. However, significant DNA damages were observed only when the Zn exposure concentrations were from 10-20 µg mL-1. The Zn intracellular levels found in leukocytes was from 72.25-268.9 ρg cell-1, starting to induce cytotoxicity and genotoxicity at concentrations of 95.68 and 126.2 ρg cell-1, respectively. The relationship between the exposure concentration and intracellular levels of Zn suggests that the influx of Zn, in the form of ZnCl2, occurs in human leukocytes under zero-order kinetics.

  4. Endogenous IL-33 Deficiency Exacerbates Liver Injury and Increases Hepatic Influx of Neutrophils in Acute Murine Viral Hepatitis (United States)

    Carrière, Virginie; Arshad, Muhammad Imran; Le Seyec, Jacques; Lefevre, Benjamin; Farooq, Muhammad; Jan, Aurélien; Manuel, Christelle; Touami-Bernard, Laurence; Lucas-Clerc, Catherine; Genet, Valentine; Gascan, Hugues; Girard, Jean-Philippe; Chalmel, Frédéric; Lamontagne, Lucie; Piquet-Pellorce, Claire


    The alarmin IL-33 has been described to be upregulated in human and murine viral hepatitis. However, the role of endogenous IL-33 in viral hepatitis remains obscure. We aimed to decipher its function by infecting IL-33-deficient mice (IL-33 KO) and their wild-type (WT) littermates with pathogenic mouse hepatitis virus (L2-MHV3). The IL-33 KO mice were more sensitive to L2-MHV3 infection exhibiting higher levels of AST/ALT, higher tissue damage, significant weight loss, and earlier death. An increased depletion of B and T lymphocytes, NKT cells, dendritic cells, and macrophages was observed 48 h postinfection (PI) in IL-33 KO mice than that in WT mice. In contrast, a massive influx of neutrophils was observed in IL-33 KO mice at 48 h PI. A transcriptomic study of inflammatory and cell-signaling genes revealed the overexpression of IL-6, TNFα, and several chemokines involved in recruitment/activation of neutrophils (CXCL2, CXCL5, CCL2, and CCL6) at 72 h PI in IL-33 KO mice. However, the IFNγ was strongly induced in WT mice with less profound expression in IL-33 KO mice demonstrating that endogenous IL-33 regulated IFNγ expression during L2-MHV3 hepatitis. In conclusion, we demonstrated that endogenous IL-33 had multifaceted immunoregulatory effect during viral hepatitis via induction of IFNγ, survival effect on immune cells, and infiltration of neutrophils in the liver. PMID:28607531

  5. Endogenous IL-33 Deficiency Exacerbates Liver Injury and Increases Hepatic Influx of Neutrophils in Acute Murine Viral Hepatitis

    Directory of Open Access Journals (Sweden)

    Virginie Carrière


    Full Text Available The alarmin IL-33 has been described to be upregulated in human and murine viral hepatitis. However, the role of endogenous IL-33 in viral hepatitis remains obscure. We aimed to decipher its function by infecting IL-33-deficient mice (IL-33 KO and their wild-type (WT littermates with pathogenic mouse hepatitis virus (L2-MHV3. The IL-33 KO mice were more sensitive to L2-MHV3 infection exhibiting higher levels of AST/ALT, higher tissue damage, significant weight loss, and earlier death. An increased depletion of B and T lymphocytes, NKT cells, dendritic cells, and macrophages was observed 48 h postinfection (PI in IL-33 KO mice than that in WT mice. In contrast, a massive influx of neutrophils was observed in IL-33 KO mice at 48 h PI. A transcriptomic study of inflammatory and cell-signaling genes revealed the overexpression of IL-6, TNFα, and several chemokines involved in recruitment/activation of neutrophils (CXCL2, CXCL5, CCL2, and CCL6 at 72 h PI in IL-33 KO mice. However, the IFNγ was strongly induced in WT mice with less profound expression in IL-33 KO mice demonstrating that endogenous IL-33 regulated IFNγ expression during L2-MHV3 hepatitis. In conclusion, we demonstrated that endogenous IL-33 had multifaceted immunoregulatory effect during viral hepatitis via induction of IFNγ, survival effect on immune cells, and infiltration of neutrophils in the liver.

  6. Exercise restores bioavailability of hydrogen sulfide and promotes autophagy influx in livers of mice fed with high-fat diet. (United States)

    Wang, Bing; Zeng, Jing; Gu, Qi


    In the gold standard treatment for nonalcoholic fatty liver disease (NAFLD), exercise training has been shown to effectively improve nonalcoholic steatohepatitis (NASH). However, limited data are available about the underlying mechanisms involved. This work was undertaken to investigate the mechanisms underlying the beneficial effect of exercise training on high-fat diet (HFD)-induced NAFLD in mice. Male mice were fed with HFD and given moderate-intensity exercise for 24 weeks. Exercise training lowered mass gain, attenuated systemic insulin resistance and glucose intolerance, and mitigated hepatic steatosis and fibrosis in mice fed with HFD. Exercise training improved mitochondrial function and enhanced mitochondrial β-oxidation in livers of HFD-fed mice. Exercise training enhanced hydrogen sulfide (H2S) levels in plasma and livers, and mRNA expression of cystathionine β-synthase (CBS), cystathionine γ-lyase (CES), and 3-mercaptopyruvate sulfurtransferase (3-MST) in livers of HFD-fed mice. Exercise training had no significant effect on the ratio of LC3-II/LC3-I, but decreased p62 protein expression in livers of HFD-fed mice. Additionally, exercise training reduced formation of malondialdehyde, enhanced ratio of GSH/GSSG, and down-regulated expression of TNF-α and IL-6 in livers of HFD-fed mice. Exercise training restored bioavailability of H2S and promoted autophagy influx in livers, which might contribute to its benefit on HFD-induced NAFLD.

  7. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai


    Deposition of ammonium (NH4 +) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4 + is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root. © 2011 Blackwell Publishing Ltd.

  8. Factors affecting calcium balance in Chinese adolescents. (United States)

    Yin, Jing; Zhang, Qian; Liu, Ailing; Du, Weijing; Wang, Xiaoyan; Hu, Xiaoqi; Ma, Guansheng


    Chinese dietary reference intakes (DRIs) for calcium were developed mainly from studies conducted amongst Caucasians, yet a recent review showed that reference calcium intakes for Asians are likely to be different from those of Caucasians (Lee and Jiang, 2008). In order to develop calcium DRIs for Chinese adolescents, it is necessary to explore the characteristics and potential influencing factors of calcium metabolic balance in Chinese adolescents. A total of 80 students (15.1+/-0.8 years) were recruited stratified by gender from a 1-year calcium supplementation study. Subjects were randomly designed to four groups and supplemented with calcium carbonate tablets providing elemental calcium at 63, 354, 660, and 966 mg/day, respectively. Subjects consumed food from a 3-day cycle menu prepared by staff for 10 days. Elemental calcium in samples of foods, feces, and urine was determined in duplicates by inductively coupled plasma atomic emission spectrometry. The total calcium intake ranged from 352 to 1323 mg/day. The calcium apparent absorption efficiency and retention in boys were significantly higher than that in girls (68.7% vs. 46.4%, 480 mg/day vs. 204 mg/day, PCalcium retention increased with calcium intakes, but did not reach a plateau. Calcium absorption efficiency in boys increased with calcium intake up to 665 mg/day, and decreased after that. In girls, calcium absorption efficiency decreased with calcium intake. Calcium absorption efficiency increased within 1 year after first spermatorrhea in boys, but decreased with pubertal development in girls. Sex, calcium intake, age, and pubertal development were the most important determinants of calcium absorption (R(2)=0.508, Pcalcium intake, age, and pubertal development are important factors for calcium retention and absorption during growth, which should be considered for the development of calcium DRIs for Chinese adolescents.

  9. Short-term exposure to L-type calcium channel blocker, verapamil, alters the expression pattern of calcium-binding proteins in the brain of goldfish, Carassius auratus. (United States)

    Palande, Nikhil V; Bhoyar, Rahul C; Biswas, Saikat P; Jadhao, Arun G


    The influx of calcium ions (Ca(2+)) is responsible for various physiological events including neurotransmitter release and synaptic modulation. The L-type voltage dependent calcium channels (L-type VDCCs) transport Ca(2+) across the membrane. Calcium-binding proteins (CaBPs) bind free cytosolic Ca(2+) and prevent excitotoxicity caused by sudden increase in cytoplasmic Ca(2+). The present study was aimed to understand the regulation of expression of neuronal CaBPs, namely, calretinin (CR) and parvalbumin (PV) following blockade of L-type VDCCs in the CNS of Carassius auratus. Verapamil (VRP), a potent L-type VDCC blocker, selectively blocks Ca(2+) entry at the plasma membrane level. VRP present in the aquatic environment at a very low residual concentration has shown ecotoxicological effects on aquatic animals. Following acute exposure for 96h, median lethal concentration (LC50) for VRP was found to be 1.22mg/L for goldfish. At various doses of VRP, the behavioral alterations were observed in the form of respiratory difficulty and loss of body balance confirming the cardiovascular toxicity caused by VRP at higher doses. In addition to affecting the cardiovascular system, VRP also showed effects on the nervous system in the form of altered expression of PV. When compared with controls, the pattern of CR expression did not show any variations, while PV expression showed significant alterations in few neuronal populations such as the pretectal nucleus, inferior lobes, and the rostral corpus cerebellum. Our result suggests possible regulatory effect of calcium channel blockers on the expression of PV. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Tweeters and Woofers: The Complex Orchestra of Calcium Currents in T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Lilian L Nohara


    Full Text Available Elevation of intracellular calcium ion (Ca2+ levels is a vital event that regulates T lymphocyte homeostasis, activation, proliferation, differentiation, and apoptosis. The mechanisms that regulate intracellular Ca2+ signalling in lymphocytes involve tightly controlled orchestration of multiple ion channels, membrane receptors, and signalling molecules. T cell receptor (TCR engagement results in depletion of endoplasmic reticulum (ER Ca2+ stores and subsequent sustained influx of extracellular Ca2+ through Ca2+ release-activated Ca2+ (CRAC channels in the plasma membrane. This process termed store-operated Ca2+ entry (SOCE involves the ER Ca2+ sensing molecule, stromal interaction molecule 1 (STIM1, and a pore-forming plasma membrane protein, ORAI1. However, several other important Ca2+ channels that are instrumental in T cell function also exist. In this review, we discuss the role of additional Ca2+ channel families expressed on the plasma membrane of T cells that likely contribute to Ca2+ influx following TCR engagement, which include the IP3 receptors, the P2X receptors, the NMDA receptors, and the TRP channels, with a focus on the voltage-dependent Ca2+ (CaV channels.

  11. The antiatherogenic potential of calcium antagonists. (United States)

    Weinstein, D B


    Atherosclerosis is an arterial disease characterized by focal accumulation of collagen, elastin, lipids, and calcium at sites associated with macrophage infiltration and altered smooth muscle metabolic function. Studies in several types of animal models, especially cholesterol-fed rabbits, have shown that calcium competitors, calcium chelators, anticalcifying agents, and calcium channel blockers can reduce the accumulation of atherogenic lesion components and thus apparently decrease the progression of lesions. Although there are some conflicting data in the animal model studies using calcium channel antagonists, as a result of differences in experimental designs, it is now apparent that several classes of calcium channel blockers inhibit the progression of early arterial lesions induced by cholesterol feeding. The dihydropyridine calcium channel blockers appear to be more potent antiatherosclerotic agents than other classes of calcium channel antagonists. Several mechanisms involving regulation of endothelial cell, smooth muscle cell, and macrophage metabolic functions may be responsible for the calcium channel blocker effects on early lesion progression. For example, recent studies in cell culture model systems suggest that calcium channel blockers may significantly alter activities that regulate lipoprotein-derived cholesterol accumulation by cells. Some of these activities are independent of calcium flux across voltage-operated calcium channels. Thus, calcium channel blockers may reduce the progression of atherogenic lesions by a combination of decreasing calcium accumulation within arterial wall cells and by altering calcium-independent metabolic activities.

  12. The slow calcium-dependent potassium current in a myenteric neurone of the guinea-pig ileum. (United States)

    Hirst, G D; Johnson, S M; van Helden, D F


    Experiments were performed in current-clamped and voltage-clamped after-hyperpolarizing (AH) neurones of the guinea-pig myenteric plexus to examine the properties of the potassium conductance (gK, Ca) underlying the slow calcium-activated after-hyperpolarization (VK, Ca). The action potential plateau lengthened by the addition of tetraethylammonium chloride (TEA) to the bathing medium was compared to VK, Ca. Results were consistent with enhanced calcium entry causing an increase of VK, Ca. 4-Aminopyridine (4-AP) directly reduced VK, Ca. Voltage-clamp data of gK, Ca were well fitted by a process with a delay (approximately equal to 60 ms) followed by exponential activation (time constant approximately equal to 300 ms) and inactivation (time constant approximately equal to 2 s). The presence of a small, much slower inactivating process was noted. Values for time constants were similar to those reported by Morita, North & Tokimasa (1982) and North & Tokimasa (1983) where gK, Ca was measured during VK, Ca subsequent to action potential stimulation. The relation between gK, Ca (or the calcium-activated potassium current IK, Ca) and estimated calcium influx resulting from short-duration calcium currents elicited at various voltages was compared. Both the integral of the calcium current and gK, Ca showed a similar dependence on the depolarizations used to elicit IK, Ca except there was a positive shift of about 4 mV for the gK, Ca curve. This shift was attributed to a requirement for calcium ions to prime the gK, Ca mechanism. An inward ion charge movement of about 8 pC was required before significant activation of gK, Ca occurred. After the 'priming' condition had been established, the sensitivity of gK, Ca to inward calcium current measured at the resting potential was about 500 pS/pC of inward charge. Large calcium entry obtained by prolonged calcium currents caused saturation of the peak amplitude of IK, Ca and initiated currents with slower time to peak amplitude and

  13. Dopaminergic regulation of dendritic calcium: fast multisite calcium imaging. (United States)

    Zhou, Wen-Liang; Oikonomou, Katerina D; Short, Shaina M; Antic, Srdjan D


    Optimal dopamine tone is required for the normal cortical function; however it is still unclear how cortical-dopamine-release affects information processing in individual cortical neurons. Thousands of glutamatergic inputs impinge onto elaborate dendritic trees of neocortical pyramidal neurons. In the process of ensuing synaptic integration (information processing), a variety of calcium transients are generated in remote dendritic compartments. In order to understand the cellular mechanisms of dopaminergic modulation it is important to know whether and how dopaminergic signals affect dendritic calcium transients. In this chapter, we describe a relatively inexpensive method for monitoring dendritic calcium fluctuations at multiple loci across the pyramidal dendritic tree, at the same moment of time (simultaneously). The experiments have been designed to measure the amplitude, time course and spatial extent of action potential-associated dendritic calcium transients before and after application of dopaminergic drugs. In the examples provided here the dendritic calcium transients were evoked by triggering the somatic action potentials (backpropagation-evoked), and puffs of exogenous dopamine were applied locally onto selected dendritic branches.

  14. Formation of calcium complexes by borogluconate in vitro and during calcium borogluconate infusion in sheep. (United States)

    Farningham, D A


    The effect of borogluconate on plasma calcium fractions was studied in vitro and in vivo in sheep. In vitro calcium chloride was more effective in raising ionised plasma calcium than calcium borogluconate. Sodium borate or gluconate added to blood caused only small decreases in blood ionised calcium. However, together, a synergistic reduction in ionised calcium was observed. Following calcium borogluconate infusions into sheep, total plasma calcium rose primarily because of an increase in the unionised ultrafiltrable fraction. Other changes observed following the infusion were hypercalciuria, decreased glomerular filtration rate and acidosis. Sodium borogluconate administered subcutaneously lowered total plasma calcium. This probably resulted from enhanced calcium excretion. It is suggested that since the anionic component of calcium solutions alters the availability and retention of calcium, it is likely to affect clinical efficacy significantly.

  15. Electrophysiological properties and calcium handling of embryonic stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jae Boum Youm


    Full Text Available Embryonic stem cell-derived cardiomyocytes (ESC-CMs hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes. They are immature in morphology, similar to sinus nodal-like in the electrophysiology, higher contribution of trans-sarcolemmal Ca2+ influx to Ca2+ handling, and higher dependence on anaerobic glycolysis. Here, I review a detailed electrophysiology and Ca2+ handling features of ESC-CMs during differentiation into adult cardiomyocytes to gain insights into how all the developmental changes are related to each other to display cardinal features of developing cardiomyocytes.

  16. Voltage-gated calcium channel subunits from platyhelminths: Potential role in praziquantel action✩ (United States)

    Jeziorski, Michael C.; Greenberg, Robert M.


    Voltage-gated calcium (Ca2+) channels provide the pathway for Ca2+ influxes that underlie Ca2+-dependent responses in muscles, nerves and other excitable cells. They are also targets of a wide variety of drugs and toxins. Ca2+ channels are multisubunit protein complexes consisting of a pore-forming α1 subunit and other modulatory subunits, including the β subunit. Here, we review the structure and function of schistosome Ca2+ channel subunits, with particular emphasis on variant Ca2+ channel β subunits (Cavβvar) found in these parasites. In particular, we examine the role these β subunits may play in the action of praziquantel, the current drug of choice against schistosomiasis. We also present evidence that Cavβvar homologs are found in other praziquantel-sensitive platyhelminths such as the pork tapeworm, Taenia solium, and that these variant β subunits may thus represent a platyhelminth-specific gene family. PMID:16545816

  17. Calcium as a trigger for cerebellar long-term synaptic depression. (United States)

    Finch, Elizabeth A; Tanaka, Keiko; Augustine, George J


    Cerebellar long-term depression (LTD) is a form of long-term synaptic plasticity that is triggered by calcium(Ca2+) signals in the postsynaptic Purkinje cell. This Ca2+comes both from IP3-mediated release from intracellular Ca2+ stores, as well as from Ca2+ influx through voltage-gated Ca2+ channels. The Ca2+ signal that triggers LTD occurs locally within dendritic spines and is due to supralinear summation of signals coming from these two Ca2+ sources. The properties of this postsynaptic Ca2+signal can explain several features of LTD, such as its associativity, synapse specificity, and dependence on thetiming of synaptic activity, and can account for the slow kinetics of LTD expression. Thus, from a Ca2+ signaling perspective, LTD is one of the best understood forms of synaptic plasticity.

  18. Calcium wave of tubuloglomerular feedback. (United States)

    Peti-Peterdi, János


    ATP release from macula densa (MD) cells into the interstitium of the juxtaglomerular (JG) apparatus (JGA) is an integral component of the tubuloglomerular feedback (TGF) mechanism that controls the glomerular filtration rate. Because the cells of the JGA express a number of calcium-coupled purinergic receptors, these studies tested the hypothesis that TGF activation triggers a calcium wave that spreads from the MD toward distant cells of the JGA and glomerulus. Ratiometric calcium imaging of in vitro microperfused isolated JGA-glomerulus complex dissected from rabbits was performed with fluo-4/fura red and confocal fluorescence microscopy. Activation of TGF by increasing tubular flow rate at the MD rapidly produced a significant elevation in intracellular Ca(2+) concentration ([Ca(2+)](i)) in extraglomerular mesangial cells (by 187.6 +/- 45.1 nM) and JG renin granular cells (by 281.4 +/- 66.6 nM). Subsequently, cell-to-cell propagation of the calcium signal at a rate of 12.6 +/- 1.1 microm/s was observed upstream toward proximal segments of the afferent arteriole and adjacent glomeruli, as well as toward intraglomerular elements including the most distant podocytes (5.9 +/- 0.4 microm/s). The same calcium wave was observed in nonperfusing glomeruli, causing vasoconstriction and contractions of the glomerular tuft. Gap junction uncoupling, an ATP scavenger enzyme cocktail, and pharmacological inhibition of P(2) purinergic receptors, but not adenosine A(1) receptor blockade, abolished the changes in [Ca(2+)](i) and propagation of the calcium wave. These studies provided evidence that both gap junctional communication and extracellular ATP are integral components of the TGF calcium wave.

  19. [Calcium metabolism characteristics in microgravity]. (United States)

    Grigor'ev, A I; Larina, I M; Morukov, B V


    The results of research of calcium exchange parameters at cosmonauts taken part in long space flights (SF) onboard of orbital stations "SALUT" and "MIR" within 1978-1998 were generalized. The analysis of data received during observation of 44 cosmonauts (18 of them have taken part in long SF twice) was done. The observation was carried out before and after SF by duration 30-438 days. The content of a total calcium in blood serum was increased basically by the increase of its ionized fraction after flights of moderate (3-6 months) and large duration (6-14 months) along with the significant increase of PTH and decrease of calcitonin levels. The content of osteocalcin after SF was increased. Three cosmonauts participated in research of calcium kinetics using stable isotopes before, in time and after a 115-day SF. Reduction of intestinal absorption, excretion through a gastrointestinal tract, and increase of calcium excretion with urine were marked in time of SF. In early postflight period a level of intestinal absorption, on the average, was much lower than in SF, and the calcium removal through intestine was increased. Both renal and intestinal excretion of calcium were not normalized in 3.5-4.5 months after end of SF. Increase of resorbtive processes in bone tissues which induced negative bone balance during flight was observed in all test subjects, proceeding from estimations of speed of the basic calcium flows made on the basis of mathematical modeling. The conclusion about decrease in speed of bone tissue remodeling and strengthening of its resorption proves to be true by data of research of biochemical and endocrine markers.

  20. Counteracting effect of TRPC1-associated Ca2+ influx on TNF-α-induced COX-2-dependent prostaglandin E2 production in human colonic myofibroblasts. (United States)

    Hai, Lin; Kawarabayashi, Yasuhiro; Imai, Yuko; Honda, Akira; Inoue, Ryuji


    TNF-α-NF-κB signaling plays a central role in inflammation, apoptosis, and neoplasia. One major consequence of this signaling in the gut is increased production of prostaglandin E(2) (PGE(2)) via cyclooxygenase-2 (COX-2) induction in myofibroblasts, which has been reported to be dependent on Ca(2+). In this study, we explored a potential role of canonical transient receptor potential (TRPC) proteins in this Ca(2+)-mediated signaling using a human colonic myofibroblast cell line CCD-18Co. In CCD-18Co cell, treatment with TNF-α greatly enhanced Ca(2+) influx induced by store depletion along with increased cell-surface expression of TRPC1 protein (but not of the other TRPC isoforms) and induction of a Gd(3+)-sensitive nonselective cationic conductance. Selective inhibition of TRPC1 expression by small interfering RNA (siRNA) or functionally effective TRPC1 antibody targeting the near-pore region of TRPC1 (T1E3) antagonized the enhancement of store-dependent Ca(2+) influx by TNF-α, whereas potentiated TNF-α induced PGE(2) production. Overexpression of TRPC1 in CCD-18Co produced opposite consequences. Inhibitors of NF-κB (curcumin, SN-50) attenuated TNF-α-induced enhancement of TRPC1 expression, store-dependent Ca(2+) influx, and COX-2-dependent PGE(2) production. In contrast, inhibition of calcineurin-nuclear factor of activated T-cell proteins (NFAT) signaling by FK506 or NFAT Activation Inhibitor III enhanced the PGE(2) production without affecting TRPC1 expression and the Ca(2+) influx. Finally, the suppression of store-dependent Ca(2+) influx by T1E3 antibody or siRNA knockdown significantly facilitated TNF-α-induced NF-κB nuclear translocation. In aggregate, these results strongly suggest that, in colonic myofibroblasts, NF-κB and NFAT serve as important positive and negative transcriptional regulators of TNF-α-induced COX-2-dependent PGE(2) production, respectively, at the downstream of TRPC1-associated Ca(2+) influx.

  1. A key role for STIM1 in store operated calcium channel activation in airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Peel Samantha E


    Full Text Available Abstract Background Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca2+ stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca2+ in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC or receptor operated channels (ROC. Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca2+ stores. The mechanism underlying SOC activation following depletion of intracellular Ca2+ stores in smooth muscle has not been identified. Methods To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay. Results Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70% of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca2+ influx in response to store depletion by cyclopiazonic acid (60% or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp. Conclusion Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca2+ store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model.

  2. Calcium supplement: humanity's double-edged sword. (United States)

    Bunyaratavej, Narong; Buranasinsup, Shutipen


    The principle aim of the present study is to investigate the dark side of calcium, pollutions in calcium preparation especially lead (Pb), mercury (Hg) and cadmium (Cd). The collected samples were the different calcium salts in the market and 18 preparations which were classified into 3 groups: Calcium carbonate salts, Chelated calcium and natural-raw calcium. All samples were analyzed for lead, cadmium and mercury by inductively Coupled Plasma Mass Spectrometry (ICP-MS) technique, in house method based on AOAC (2005) 999.10 by ICP-MS. The calcium carbonate and the natural-raw calcium in every sample contained lead at 0.023-0.407 mg/kg of calcium powder. Meanwhile, the natural-raw calcium such as oyster, coral and animal bone showed amount of lead at 0.106-0.384 mg/kg with small amounts of mercury and cadmium. The chelated calcium such as calcium gluconate, calcium lactate and calcium citrate are free of lead.

  3. GTPase of the Immune-Associated Nucleotide Protein 5 Regulates the Lysosomal Calcium Compartment in T Lymphocytes (United States)

    Serrano, Daniel; Ghobadi, Farnaz; Boulay, Guylain; Ilangumaran, Subburaj; Lavoie, Christine; Ramanathan, Sheela


    T lymphocytes from Gimap5lyp/lyp rats carrying a recessive mutation in the GTPase of immune-associated protein 5 (Gimap5) gene undergo spontaneous apoptosis. Molecular mechanisms underlying this survival defect are not yet clear. We have shown that Gimap5lyp/lyp T lymphocytes display reduced calcium influx following T cell antigen receptor (TCR) stimulation that was associated with impaired buffering of calcium by mitochondria. Here, we investigated the subcellular localization of GIMAP5 and its influence on Ca2+ response in HEK293T cells and T lymphocytes. The more abundantly expressed GIMAP5v2 localizes to the lysosome and certain endosomal vesicles. Gimap5lyp/lyp T lymphocytes showed increased accumulation of calcium in the lysosomes as evidenced by Gly-Phe β-naphthylamide (GPN) triggered Ca2+ release. As a corollary, GPN-induced Ca2+ flux was decreased in HEK293T cells expressing GIMAP5v2. Strikingly, TCR stimulation of rat, mouse, and human T lymphocytes increased lysosomal calcium content. Overall, our findings show that lysosomes modulate cellular Ca2+ response during T cell activation and that GIMAP5 regulates the lysosomal Ca2+ compartment in T lymphocytes. PMID:28223986

  4. Differential Ca2+ influx, KCa channel activity, and Ca2+ clearance distinguish Th1 and Th2 lymphocytes. (United States)

    Fanger, C M; Neben, A L; Cahalan, M D


    In Th1 and Th2 lymphocytes, activation begins with identical stimuli but results in the production of different cytokines. The expression of some cytokine genes is differentially induced according to the amplitude and pattern of Ca2+ signaling. Using fura- 2 Ca2+ imaging of murine Th1 and Th2 clones, we observed that the Ca2+ rise elicited following store depletion with thapsigargin is significantly lower in Th2 cells than in Th1 cells. Maximal Ca2+ influx rates and whole-cell Ca2+ currents showed that both Th1 and Th2 cells express indistinguishable Ca2+-release-activated Ca2+ channels. Therefore, we investigated other mechanisms controlling the concentration of intracellular Ca2+, including K+ channels and Ca2+ clearance from the cytosol. Whole-cell recording demonstrated that there is no distinction in the amplitudes of voltage-gated K+ currents in the two cell types. Ca2+-activated K+ (KCa) currents, however, were significantly smaller in Th2 cells than in Th1 cells. Pharmacological equalization of Ca2+-activated K+ currents in the two cell types reduced but did not completely eliminate the difference between Th1 and Th2 Ca2+ responses, suggesting divergence in an additional Ca2+ regulatory mechanism. Therefore, we analyzed Ca2+ clearance from the cytosol of both cell types and found that Th2 cells extrude Ca2+ more quickly than Th1 cells. The combination of a faster Ca2+ clearance mechanism and smaller Ca2+-activated K+ currents in Th2 cells accounts for the lower Ca2+ response of Th2 cells compared with Th1 cells.

  5. Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Sudipta Das


    Full Text Available Among the several new antimalarials discovered over the past decade are at least three clinical candidate drugs, each with a distinct chemical structure, that disrupt Na+ homeostasis resulting in a rapid increase in intracellular Na+ concentration ([Na+]i within the erythrocytic stages of Plasmodium falciparum. At present, events triggered by Na+ influx that result in parasite demise are not well-understood. Here we report effects of two such drugs, a pyrazoleamide and a spiroindolone, on intraerythrocytic P. falciparum. Within minutes following the exposure to these drugs, the trophozoite stage parasite, which normally contains little cholesterol, was made permeant by cholesterol-dependent detergents, suggesting it acquired a substantial amount of the lipid. Consistently, the merozoite surface protein 1 and 2 (MSP1 and MSP2, glycosylphosphotidylinositol (GPI-anchored proteins normally uniformly distributed in the parasite plasma membrane, coalesced into clusters. These alterations were not observed following drug treatment of P. falciparum parasites adapted to grow in a low [Na+] growth medium. Both cholesterol acquisition and MSP1 coalescence were reversible upon the removal of the drugs, implicating an active process of cholesterol exclusion from trophozoites that we hypothesize is inhibited by high [Na+]i. Electron microscopy of drug-treated trophozoites revealed substantial morphological changes normally seen at the later schizont stage including the appearance of partial inner membrane complexes, dense organelles that resemble "rhoptries" and apparent nuclear division. Together these results suggest that [Na+]i disruptor drugs by altering levels of cholesterol in the parasite, dysregulate trophozoite to schizont development and cause parasite demise.

  6. The effect of variable calcium and very low calcium diets on human calcium metabolism. Ph.D. Thesis. Final Report (United States)

    Chu, J.


    The effects of a very low calcium diet, with variable high and low protein intake, on the dynamics of calcium metabolism and the mechanism of calciuretics, are examined. The experiment, using male subjects, was designed to study the role of intestinal calcium absorption on urinary calcium excretion, and the rate of production of endogeneously secreted calcium in the gastrointestinal tract. The study showed an average of 70% fractional absorption rate during very low calcium intake, and that a decrease in renal tubular reabsorption of calcium is responsible for calciuretic effects of high protein intake. The study also indicates that there is a tendency to develop osteoporosis after long periods of low calcium intake, especially with a concurrent high protein intake.

  7. An exact calculation of the N2+ and H2+ influx at cathode surface in N2–H2 discharges

    Directory of Open Access Journals (Sweden)

    K.S. Suraj


    Full Text Available An exact calculation of N2+ and H2+ influx, at cathode surface in N2–H2 discharge, has been derived using electron impact ionization cross-section at plasma sheath boundary. The analytical formula is very convenient in practical applications. Through the analysis of experimental parameters for glow discharge plasma nitriding, the formula explains, why treatment in an N2–H2 mixture with H2 percentage ∼70% gives most enhanced result.

  8. Sources of calcium in agonist-induced contraction of rat distal colon smooth muscle in vitro

    Institute of Scientific and Technical Information of China (English)

    Hua Zhou; De-Hu Kong; QunWan Pan; HaiHua Wang


    AIM:To study the origin of calcium necessary foragonist-induced contraction of the distal colon in rats.METHODS:The change in intracellular calcium concentration ([Ca2+]i)evoked by elevating external Ca2+was detected by fura 2/AM fluorescence.Contractile activity was measured with a force displacement transducer.Tension was continuously monitored and recorded using a Powerlab 4/25T data acquisition system with an ML110 bridge bioelectric physiographic amplifier.RESULTS:Store depletion induced Ca2+ influx had an effect on [Ca2+]i.In nominally Ca2+-free medium,the sarco-endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (1 μmol/L) increased [Ca2+]i from 68 to 241 nmol/L,and to 458 (P<0.01) and 1006 nmol/L (P<0.01),respectively,when 1.5 mmol/L and 3.0 mmol/L extracellular Ca2+ was reintroduced.Furthermore,the change in [Ca2+]1.was observed with verapamil (5 μmol/L),La3+(1 mmol/L) or KCI (40 mmol/L) in the bathing solution.These channels were sensitive to La3+(P<0.01),insensitive to verapamil,and voltage independent.In isolated distal colons we found that in normal Krebs solution,contraction induced by acetylcholine (ACh) was partially inhibited by verapamil,and the inhibitory rate was 41% (P<0.05).On the other hand,in Ca2+-free Krebs solution,ACh induced transient contraction due to Ca2+ release from the inLracellular stores.The transient contraction lasted until the Ca2+ store was depleted.Restoration of extracellular Ca2+ in the presence of atropine produced contraction,mainly due to Ca2+ influx.Such contraction was not inhibited by verapamil,but was decreased by La3+ (50 μmol/L) from 0.96 to 0.72 g (P<0.01).CONCLUSION:The predominant source of activator Ca2+ for the contractile response to agonist is extracellular Ca2+,and intracellular Caz+ has little role to play in mediating excitation-contraction coupling by agonists in rat distal colon smooth muscle in vitro.The influx of extracellular Ca2+ is mainly mediated through voltage-,receptor- and

  9. Measuring Ca2+ influxes of TRPC1-dependent Ca2+ channels in HL-7702 cells with Non-invasive Micro-test Technique

    Institute of Scientific and Technical Information of China (English)

    Zhen-Ya Zhang; Wen-Jun Wang; Li-Jie Pan; Yue Xu; Zong-Ming Zhang


    AIM:To explore the possibility of using the Noninvasive Micro-test Technique (NMT) to investigate the role of Transient Receptor Potential Canonical 1 (TRPC1) in regulating Ca2+ influxes in HL-7702 cells, a normal human liver cell line.METHODS: Net Ca2+ fluxes were measured with NMT,a technology that can obtain dynamic information of specific/selective ionic/molecular activities on material surfaces, non-invasively. The expression levels of TRPC1 were increased by liposomal transfection, whose effectiveness was evaluated by Western-blotting and single cell reverse transcription-polymerase chain reaction.RESULTS: Ca2+ influxes could be elicited by adding 1 mmol/L CaCl2 to the test solution of HL-7702 cells. They were enhanced by addition of 20 μmol/L noradrenalin and inhibited by 100 μmol/L LaCl3 (a non-selective Ca2+ channel blocker);5 μmol/L nifedipine did not induce any change. Overexpression of TRPC1 caused increased Ca2+ influx. Five micromoles per liter nifedipine did not inhibit this elevation, whereas 100 μmol/L LaCl3 did.CONCLUSION: In HL-7702 cells, there is a type of TRPC1-dependent Ca2+ channel, which could be detected via NMT and inhibited by La3+.

  10. A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Takashi Nakano


    Full Text Available Corticostriatal synapse plasticity of medium spiny neurons is regulated by glutamate input from the cortex and dopamine input from the substantia nigra. While cortical stimulation alone results in long-term depression (LTD, the combination with dopamine switches LTD to long-term potentiation (LTP, which is known as dopamine-dependent plasticity. LTP is also induced by cortical stimulation in magnesium-free solution, which leads to massive calcium influx through NMDA-type receptors and is regarded as calcium-dependent plasticity. Signaling cascades in the corticostriatal spines are currently under investigation. However, because of the existence of multiple excitatory and inhibitory pathways with loops, the mechanisms regulating the two types of plasticity remain poorly understood. A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32, as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA, protein phosphatase 2A (PP2A, and the phosphorylation site at threonine 75 of DARPP-32 (Thr75 served as the major switch for inducing LTD and LTP. Calcium input modulated this loop through the PP2B (phosphatase 2B-CK1 (casein kinase 1-Cdk5 (cyclin-dependent kinase 5-Thr75 pathway and PP2A, whereas calcium and dopamine input activated the loop via PKA activation by cyclic AMP (cAMP. The positive feedback loop displayed robust bi-stable responses following changes in the reaction parameters. Increased basal dopamine levels disrupted this dopamine-dependent plasticity. The

  11. Calcium transport in protoplasts isolated from ml-o barley isolines resistant and susceptible to powdery mildew. [Hordeum vulgare L

    Energy Technology Data Exchange (ETDEWEB)

    Wrona, A.F.; Spanswick, R.M.; Aist, J.R. (Cornell Univ., Ithaca, NY (USA))


    Free cytoplasmic calcium has been postulated to play a role in preventing powdery mildew in a series of homozygous ml-o mutants of barley, Hordeum vulgare L. Protoplasts isolated from 7-day-old plants of the ml-o resistant-susceptible (R-S) barley isolines, Riso 5678/3* {times} Carlsberg II R and S, were used to test for differences in fluxes of Ca{sup 2+} across the plasmalemma. Greater influx or lesser efflux might account for a higher free cytosolic Ca{sup 2+} postulated to exist in ml-o R mutants. Uniform patterns of uptake were maintained for 3 hours from solutions of 0.2 and 2 millimolar Ca{sup 2+}. Washout curves of {sup 45}Ca{sup 2+} from R and S protoplasts revealed three compartments - presumed to represent release from the vacuole, organelles, and the cytoplasm (which included bound as well as free Ca{sup 2+}). Uptake and washout did not differ between isolines. On the basis of recent determinations of submicromolar levels of free cytoplasmic Ca{sup 2+} and their initial rates of {sup 45}ca-labeled Ca{sup 2+} uptake, they show that measurement of the unidirectional influx of Ca{sup 2+} across the plasmalemma is not feasible because the specific activity of the pool of free cytoplasmic calcium increases almost instantaneously to a level that would result in a significant, but unknown, efflux of label. Similarly, measurement of the efflux of Ca{sup 2+} across the plasmalemma is not possible since the activity of the pool of free cytoplasmic calcium is a factor of 350 smaller than the most rapid component of the washout experiment. This pool of cytoplasmic free Ca{sup 2+} will wash out too rapidly and be too small to detect under the conditions of these experiments.

  12. The effect of calcium gluconate and other calcium supplements as a dietary calcium source on magnesium absorption in rats. (United States)

    Chonan, O; Takahashi, R; Yasui, H; Watanuki, M


    The effects of commercially available calcium supplements (calcium carbonate, calcium gluconate, oyster shell preparation and bovine bone preparation) and gluconic acid on the absorption of calcium and magnesium were evaluated for 30 days in male Wistar rats. There were no differences in the apparent absorption ratio of calcium among rats fed each calcium supplement; however, the rats fed the calcium gluconate diet had a higher apparent absorption ratio of magnesium than the rats fed the other calcium supplements. Dietary gluconic acid also more markedly stimulated magnesium absorption than the calcium carbonate diet, and the bone (femur and tibia) magnesium contents of rats fed the gluconic acid diet were significantly higher than those of the rats fed the calcium carbonate diet. Furthermore, the weight of cecal tissue and the concentrations of acetic acid and butyric acid in cecal digesta of rats fed the calcium gluconate diet or the gluconic acid diet were significantly increased. We speculate that the stimulation of magnesium absorption in rats fed the calcium gluconate diet is a result of the gluconic acid component and the effect of gluconic acid on magnesium absorption probably results from cecal hypertrophy, magnesium solubility in the large intestine and the effects of volatile fatty acids on magnesium absorption.

  13. Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes

    Directory of Open Access Journals (Sweden)

    Dmitry eSamigullin


    Full Text Available At the frog neuromuscular junction, under physiological conditions, the direct measurement of calcium currents and of the concentration of intracellular calcium buffers—which determine the kinetics of calcium concentration and neurotransmitter release from the nerve terminal—has hitherto been technically impossible. With the aim of quantifying both Ca2+ currents and the intracellular calcium buffers, we measured fluorescence signals from nerve terminals loaded with the low-affinity calcium dye Magnesium Green or the high-affinity dye Oregon Green BAPTA-1, simultaneously with microelectrode recordings of nerve-action potentials and end-plate currents. The action-potential-induced fluorescence signals in the nerve terminals developed much more slowly than the postsynaptic response. To clarify the reasons for this observation and to define a spatiotemporal profile of intracellular calcium and of the concentration of mobile and fixed calcium buffers, mathematical modeling was employed. The best approximations of the experimental calcium transients for both calcium dyes were obtained when the calcium current had an amplitude of 1.6 ± 0.08 рА and a half-decay time of 1.2 ± 0.06 ms, and when the concentrations of mobile and fixed calcium buffers were 250 ± 13 µM and 8 ± 0.4 mM, respectively. High concentrations of endogenous buffers define the time course of calcium transients after an action potential in the axoplasm, and may modify synaptic plasticity.

  14. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce (United States)

    Kevin T. Smith; Walter C. Shortle; Jon H. Connolly; Rakesh Minocha; Jody Jellison


    Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of...

  15. Calcium release from experimental dental materials. (United States)

    Okulus, Zuzanna; Buchwald, Tomasz; Voelkel, Adam


    The calcium release from calcium phosphate-containing experimental dental restorative materials was examined. The possible correlation of ion release with initial calcium content, solubility and degree of curing (degree of conversion) of examined materials was also investigated. Calcium release was measured with the use of an ion-selective electrode in an aqueous solution. Solubility was established by the weighing method. Raman spectroscopy was applied for the determination of the degree of conversion, while initial calcium content was examined with the use of energy-dispersive spectroscopy. For examined materials, the amount of calcium released was found to be positively correlated with solubility and initial calcium content. It was also found that the degree of conversion does not affect the ability of these experimental composites to release calcium ions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The ins and outs of mitochondrial calcium. (United States)

    Finkel, Toren; Menazza, Sara; Holmström, Kira M; Parks, Randi J; Liu, Julia; Sun, Junhui; Liu, Jie; Pan, Xin; Murphy, Elizabeth


    Calcium is thought to play an important role in regulating mitochondrial function. Evidence suggests that an increase in mitochondrial calcium can augment ATP production by altering the activity of calcium-sensitive mitochondrial matrix enzymes. In contrast, the entry of large amounts of mitochondrial calcium in the setting of ischemia-reperfusion injury is thought to be a critical event in triggering cellular necrosis. For many decades, the details of how calcium entered the mitochondria remained a biological mystery. In the past few years, significant progress has been made in identifying the molecular components of the mitochondrial calcium uniporter complex. Here, we review how calcium enters and leaves the mitochondria, the growing insight into the topology, stoichiometry and function of the uniporter complex, and the early lessons learned from some initial mouse models that genetically perturb mitochondrial calcium homeostasis.

  17. Familial hypocalciuric hypercalcemia and calcium sensing receptor

    DEFF Research Database (Denmark)

    Mrgan, Monija; Nielsen, Sanne; Brixen, Kim


    Familial hypocalciuric hypercalcemia (FHH) is a lifelong, benign autosomal dominant disease characterized by hypercalcemia, normal to increased parathyroid hormone level, and a relatively low renal calcium excretion. Inactivation of the calcium-sensing receptor in heterozygous patients results in...

  18. Vitamin D, Calcium, and Bone Health (United States)

    ... Bone Health Featured Resource Find an Endocrinologist Search Vitamin D, Calcium, and Bone Health March 2012 Download ... also helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin ...

  19. Decalcification of calcium polycarbophil in rats. (United States)

    Yamada, T; Saito, T; Takahara, E; Nagata, O; Tamai, I; Tsuji, A


    The in vivo decalcification of calcium polycarbophil was examined. The decalcification ratio of [45Ca]calcium polycarbophil in the stomach after oral dosing to rats was more than 70% at each designated time and quite closely followed in the in vitro decalcification curve, indicating that the greater part of the calcium ion is released from calcium polycarbophil under normal gastric acidic conditions. The residual radioactivity in rat gastrointestine was nearly equal to that after oral administration of either [45Ca]calcium chloride + polycarbophil. The serum level of radioactivity was nearly equal to that after oral dosing of [45Ca]