WorldWideScience

Sample records for depletes mitochondrial dna

  1. Deoxyribonucleoside kinases in mitochondrial DNA depletion.

    Science.gov (United States)

    Saada-Reisch, Ann

    2004-10-01

    Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non-replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible to TK2 deficiency. The precise pathophysiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.

  2. Genetics Home Reference: MPV17-related hepatocerebral mitochondrial DNA depletion syndrome

    Science.gov (United States)

    ... DNA depletion syndrome MPV17-related hepatocerebral mitochondrial DNA depletion syndrome Printable PDF Open All Close All Enable ... collapse boxes. Description MPV17 -related hepatocerebral mitochondrial DNA depletion syndrome is an inherited disorder that can cause ...

  3. Age-related mitochondrial DNA depletion and the impact on pancreatic Beta cell function.

    Science.gov (United States)

    Nile, Donna L; Brown, Audrey E; Kumaheri, Meutia A; Blair, Helen R; Heggie, Alison; Miwa, Satomi; Cree, Lynsey M; Payne, Brendan; Chinnery, Patrick F; Brown, Louise; Gunn, David A; Walker, Mark

    2014-01-01

    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes.

  4. The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion

    DEFF Research Database (Denmark)

    Miller, Chaya; Wang, Liya; Ostergaard, Elsebet

    2011-01-01

    SUCLA2-related mitochondrial DNA (mtDNA) depletion syndrome is a result of mutations in the β subunit of the ADP-dependent isoform of the Krebs cycle succinyl-CoA synthase (SCS). The mechanism of tissue specificity and mtDNA depletion is elusive but complementation by the GDP-dependent isoform en...

  5. Mitochondrial DNA Depletion Syndrome is Expressed in Amniotic Fluid Cell Cultures

    OpenAIRE

    Blake, Julian C.; Taanman, Jan-Willem; Morris, Andrew M. M.; Gray, R. George F.; Cooper, J. Mark; McKiernan, Patrick J.; Leonard, James V.; Schapira, Anthony H. V.

    1999-01-01

    Mitochondrial DNA depletion syndrome is an autosomal inherited disease associated with grossly reduced cellular levels of mitochondrial DNA in infancy. Most patients are born after a full and uncomplicated pregnancy, are normal at birth, but develop symptoms in the early neonatal period. These observations have led to the suggestion that the patients have a defect affecting the control of mitochondrial DNA copy number after birth. Using immunocytochemical techniques, we demonstrated that the ...

  6. Mitochondrial DNA copy number threshold in mtDNA depletion myopathy.

    Science.gov (United States)

    Durham, S E; Bonilla, E; Samuels, D C; DiMauro, S; Chinnery, P F

    2005-08-09

    The authors measured the absolute amount of mitochondrial DNA (mtDNA) within single muscle fibers from two patients with thymidine kinase 2 (TK2) deficiency and two healthy controls. TK2 deficient fibers containing more than 0.01 mtDNA/microm3 had residual cytochrome c oxidase (COX) activity. This defines the minimum amount of wild-type mtDNA molecules required to maintain COX activity in skeletal muscle and provides an explanation for the mosaic histochemical pattern seen in patients with mtDNA depletion syndrome.

  7. Clinical case of Mitochondrial DNA Depletion

    Directory of Open Access Journals (Sweden)

    A. V. Degtyareva

    2017-01-01

    Full Text Available The article reports clinical case of early neonatal manifestation of a rare genetic disease – mitochondrial DNA depletion syndrome, confirmed in laboratory in Russia. Mutations of FBXL4, which encodes an orphan mitochondrial F-box protein, involved in the maintenance of mitochondrial DNA (mtDNA, ultimately leading to disruption of mtDNA replication and decreased activity of mitochondrial respiratory chain complexes. It’s a reason of abnormalities in clinically affected tissues, most of all the muscular system and the brain. In our case hydronephrosis on the right, subependimal cysts of the brain, partial intestinal obstruction accompanied by polyhydramnios were diagnosed antenatal. Baby’s condition at birth was satisfactory and worsened dramatically towards the end of the first day of life. Clinical presentation includes sepsis-like symptom complex, neonatal depression, muscular hypotonia, persistent decompensated lactic acidosis, increase in the concentration of mitochondrial markers in blood plasma and urine, and changes in the basal ganglia of the brain. Imaging of the brain by magnetic resonance imaging (MRI demonstrated global volume loss particularly the subcortical and periventricular white matter with significant abnormal signal in bilateral basal ganglia and brainstem with associated delayed myelination. Differential diagnosis was carried out with hereditary diseases that occur as a «sepsis-like» symptom complex, accompanied by lactic acidosis: a group of metabolic disorders of amino acids, organic acids, β-oxidation defects of fatty acids, respiratory mitochondrial chain disorders and glycogen storage disease. The diagnosis was confirmed after sequencing analysis of 62 mytochondrial genes by NGS (Next Generation Sequencing. Reported disease has an unfavorable prognosis, however, accurate diagnosis is very important for genetic counseling and helps prevent the re-birth of a sick child in the family.

  8. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Science.gov (United States)

    Warren, Emily Booth; Aicher, Aidan Edward; Fessel, Joshua Patrick; Konradi, Christine

    2017-01-01

    Mitochondrial DNA (mtDNA), the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD) patients who had developed L-DOPA Induced Dyskinesia (LID), compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr) treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  9. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Directory of Open Access Journals (Sweden)

    Emily Booth Warren

    Full Text Available Mitochondrial DNA (mtDNA, the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD patients who had developed L-DOPA Induced Dyskinesia (LID, compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  10. Cellular aging of mitochondrial DNA-depleted cells

    International Nuclear Information System (INIS)

    Park, Sun Young; Choi, Bongkun; Cheon, Hwanju; Pak, Youngmi Kim; Kulawiec, Mariola; Singh, Keshav K.; Lee, Myung-Shik

    2004-01-01

    We have reported that mitochondrial DNA-depleted ρ 0 cells are resistant to cell death. Because aged cells have frequent mitochondrial DNA mutations, the resistance of ρ 0 cells against cell death might be related to the apoptosis resistance of aged cells and frequent development of cancers in aged individuals. We studied if ρ 0 cells have features simulating aged cells. SK-Hep1 hepatoma ρ 0 cells showed typical morphology associated with aging such as increased size and elongated appearance. They had increased senescence-associated β-Gal activity, lipofuscin pigment, and plasminogen activator inhibitor-1 expression. Consistent with their decreased proliferation, the expression of mitotic cyclins was decreased and that of cdk inhibitors was increased. Rb hypophosphorylation and decreased telomerase activity were also noted. Features simulating aged cells were also observed in MDA-MB-435 ρ 0 cells. These results support the mitochondrial theory of aging, and suggest that ρ 0 cells could serve as an in vitro model for aged cells

  11. Adult mitochondrial DNA depletion syndrome with mild manifestations

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2013-06-01

    Full Text Available Mitochondrial DNA depletion syndrome (MDS is usually a severe disorder of infancy or childhood, due to a reduced copy number of mtDNA molecules. MDS with only mild, non-specific clinical manifestations and onset in adulthood has not been reported. A 47-year-old Caucasian female with short stature and a history of migraine, endometriosis, Crohn’s disease, C-cell carcinoma of the thyroid gland, and a family history positive for mitochondrial disorder (2 sisters, aunt, niece, developed day-time sleepiness, exercise intolerance, and myalgias in the lower-limb muscles since age 46y. She slept 9-10 hours during the night and 2 hours after lunch daily. Clinical exam revealed sore neck muscles, bilateral ptosis, and reduced Achilles tendon reflexes exclusively. Blood tests revealed hyperlipidemia exclusively. Nerve conduction studies, needle electromyography, and cerebral and spinal magnetic resonance imaging were non-informative. Muscle biopsy revealed detached lobulated fibers with subsarcolemmal accentuation of the NADH and SDH staining. Real-time polymerase chain reaction revealed depletion of the mtDNA down to 9% of normal. MDS may be associated with a mild phenotype in adults and may not significantly progress during the first year after onset. In an adult with hypersomnia, severe tiredness, exercise intolerance, and a family history positive for mitochondrial disorder, a MDS should be considered.

  12. Thymidine kinase 2 enzyme kinetics elucidate the mechanism of thymidine-induced mitochondrial DNA depletion.

    Science.gov (United States)

    Sun, Ren; Wang, Liya

    2014-10-07

    Mitochondrial thymidine kinase 2 (TK2) is a nuclear gene-encoded protein, synthesized in the cytosol and subsequently translocated into the mitochondrial matrix, where it catalyzes the phosphorylation of thymidine (dT) and deoxycytidine (dC). The kinetics of dT phosphorylation exhibits negative cooperativity, but dC phosphorylation follows hyperbolic Michaelis-Menten kinetics. The two substrates compete with each other in that dT is a competitive inhibitor of dC phosphorylation, while dC acts as a noncompetitive inhibitor of dT phosphorylation. In addition, TK2 is feedback inhibited by dTTP and dCTP. TK2 also phosphorylates a number of pyrimidine nucleoside analogues used in antiviral and anticancer therapy and thus plays an important role in mitochondrial toxicities caused by nucleoside analogues. Deficiency in TK2 activity due to genetic alterations causes devastating mitochondrial diseases, which are characterized by mitochondrial DNA (mtDNA) depletion or multiple deletions in the affected tissues. Severe TK2 deficiency is associated with early-onset fatal mitochondrial DNA depletion syndrome, while less severe deficiencies result in late-onset phenotypes. In this review, studies of the enzyme kinetic behavior of TK2 enzyme variants are used to explain the mechanism of mtDNA depletion caused by TK2 mutations, thymidine overload due to thymidine phosphorylase deficiency, and mitochondrial toxicity caused by antiviral thymidine analogues.

  13. "Stiff neonate" with mitochondrial DNA depletion and secondary neurotransmitter defects.

    LENUS (Irish Health Repository)

    Moran, Margaret M

    2011-12-01

    Mitochondrial disorders comprise a heterogenous group. A neonate who presented with episodes of severe truncal hypertonia and apnea progressed to a hypokinetic rigid syndrome characterized by hypokinesia, tremulousness, profound head lag, absent suck and gag reflexes, brisk deep tendon reflexes, ankle and jaw clonus, and evidence of autonomic dysfunction. Analysis of cerebrospinal fluid neurotransmitters from age 7 weeks demonstrated low levels of amine metabolites (homovanillic acid and 5-hydroxyindoleacetic acid), tetrahydrobiopterin, and pyridoxal phosphate. Mitochondrial DNA quantitative studies on muscle homogenate demonstrated a mitochondrial DNA depletion disorder. Respiratory chain enzymology demonstrated decreased complex IV activity. Screening for mitochondrial DNA rearrangement disorders and sequencing relevant mitochondrial genes produced negative results. No clinical or biochemical response to treatment with pyridoxal phosphate, tetrahydrobiopterin, or l-dopa occurred. The clinical course was progressive, and the patient died at age 19 months. Mitochondrial disorders causing secondary neurotransmitter diseases are usually severe, but are rarely reported. This diagnosis should be considered in neonates or infants who present with hypertonia, hypokinesia rigidity, and progressive neurodegeneration.

  14. Targeted impairment of thymidine kinase 2 expression in cells induces mitochondrial DNA depletion and reveals molecular mechanisms of compensation of mitochondrial respiratory activity

    International Nuclear Information System (INIS)

    Villarroya, Joan; Lara, Mari-Carmen; Dorado, Beatriz; Garrido, Marta; Garcia-Arumi, Elena; Meseguer, Anna; Hirano, Michio; Vila, Maya R.

    2011-01-01

    Highlights: → We impaired TK2 expression in Ost TK1 - cells via siRNA-mediated interference (TK2 - ). → TK2 impairment caused severe mitochondrial DNA (mtDNA) depletion in quiescent cells. → Despite mtDNA depletion, TK2 - cells show high cytochrome oxidase activity. → Depletion of mtDNA occurs without imbalance in the mitochondrial dNTP pool. → Nuclear-encoded ENT1, DNA-pol γ, TFAM and TP gene expression is lowered in TK2 - cells. -- Abstract: The mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed the first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1 - cells, a cell line devoid of endogenous thymidine kinase 1 (TK1). Stable TK2-deficient cell lines showed a reduction of TK2 levels close to 80%. In quiescent conditions, TK2-deficient cells showed severe mtDNA depletion, also close to 80% the control levels. However, TK2-deficient clones showed increased cytochrome c oxidase activity, higher cytochrome c oxidase subunit I transcript levels and higher subunit II protein expression respect to control cells. No alterations of the deoxynucleotide pools were found, whereas a reduction in the expression of genes involved in nucleoside/nucleotide homeostasis (human equilibrative nucleoside transporter 1, thymidine phosphorylase) and mtDNA maintenance (DNA-polymerase γ, mitochondrial transcription factor A) was observed. Our findings highlight the importance of cellular compensatory mechanisms that enhance the expression of respiratory components to ensure respiratory activity despite profound depletion in mtDNA levels.

  15. Genetics Home Reference: RRM2B-related mitochondrial DNA depletion syndrome, encephalomyopathic form with renal ...

    Science.gov (United States)

    ... Additional NIH Resources (1 link) National Institute of Neurological Disorders and Stroke: Mitochondrial Myopathy Information Page Educational Resources (7 links) Cincinnati Children's Hospital: Mitochondrial Diseases Disease InfoSearch: Mitochondrial DNA depletion ...

  16. Adult cases of mitochondrial DNA depletion due to TK2 defect: an expanding spectrum.

    Science.gov (United States)

    Béhin, A; Jardel, C; Claeys, K G; Fagart, J; Louha, M; Romero, N B; Laforêt, P; Eymard, B; Lombès, A

    2012-02-28

    In this study we aim to demonstrate the occurrence of adult forms of TK2 mutations causing progressive mitochondrial myopathy with significant muscle mitochondrial DNA (mtDNA) depletion. Patients' investigations included serum creatine kinase, blood lactate, electromyographic, echocardiographic, and functional respiratory analyses as well as TK2 gene sequencing and TK2 activity measurement. Mitochondrial activities and mtDNA were analyzed in the patients' muscle biopsy. The 3 adult patients with TK2 mutations presented with slowly progressive myopathy compatible with a fairly normal life during decades. Apart from its much slower progression, these patients' phenotype closely resembled that of pediatric cases including early onset, absence of CNS symptoms, generalized muscle weakness predominating on axial and proximal muscles but affecting facial, ocular, and respiratory muscles, typical mitochondrial myopathy with a mosaic pattern of COX-negative and ragged-red fibers, combined mtDNA-dependent respiratory complexes deficiency and mtDNA depletion. In accordance with the disease's relatively slow progression, the residual mtDNA content was higher than that observed in pediatric cases. That difference was not explained by the type of the TK2 mutations or by the residual TK2 activity. TK2 mutations can cause mitochondrial myopathy with a slow progression. Comparison of patients with similar mutations but different disease progression might address potential mechanisms of mtDNA maintenance modulation.

  17. Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion.

    Science.gov (United States)

    Wang, L

    2010-06-01

    Adequate mitochondrial DNA (mtDNA) copies are required for normal mitochondria function and reductions in mtDNA copy number due to genetic alterations cause tissue-specific mtDNA depletion syndrome (MDS). There are eight nuclear genes, directly or indirectly involved in mtDNA replication and mtDNA precursor synthesis, which have been identified as the cause of MDS. However, the tissue specific pathology of these nuclear gene mutations is not well understood. Here, mtDNA synthesis, mtDNA copy number control, and mtDNA turnover, as well as the synthesis of mtDNA precursors in relation to the levels of salvage enzymes are discussed. The question why MDS caused by TK2 and p53R2 mutations are predominantly muscle specific while dGK deficiency affected mainly liver will be addressed.

  18. First description of a novel mitochondrial mutation in the MT-TI gene associated with multiple mitochondrial DNA deletion and depletion in family with severe dilated mitochondrial cardiomyopathy.

    Science.gov (United States)

    Alila-Fersi, Olfa; Tabebi, Mouna; Maalej, Marwa; Belguith, Neila; Keskes, Leila; Mkaouar-Rebai, Emna; Fakhfakh, Faiza

    2018-03-18

    Mitochondria are essential for early cardiac development and impaired mitochondrial function was described associated with heart diseases such as hypertrophic or dilated mitochondrial cardiomyopathy. In this study, we report a family including two individuals with severe dilated mitochondrial cardiomyopathy. The whole mitochondrial genome screening showed the presence of several variations and a novel homoplasmic mutation m.4318-4322delC in the MT-TI gene shared by the two patients and their mother and leading to a disruption of the tRNA Ile secondary structure. In addition, a mitochondrial depletion was present in blood leucocyte of the two affected brother whereas a de novo heteroplasmic multiple deletion in the major arc of mtDNA was present in blood leucocyte and mucosa of only one of them. These deletions in the major arc of the mtDNA resulted to the loss of several protein-encoding genes and also some tRNA genes. The mtDNA deletion and depletion could result to an impairment of the oxidative phosphorylation and energy metabolism in the respiratory chain in the studied patients. Our report is the first description of a family with severe lethal dilated mitochondrial cardiomyopathy and presenting several mtDNA abnormalities including punctual mutation, deletion and depletion. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A defect in the thymidine kinase 2 gene causing isolated mitochondrial myopathy without mtDNA depletion.

    Science.gov (United States)

    Leshinsky-Silver, E; Michelson, M; Cohen, S; Ginsberg, M; Sadeh, M; Barash, V; Lerman-Sagie, T; Lev, D

    2008-07-01

    Isolated mitochondrial myopathies (IMM) are either due to primary defects in mtDNA, in nuclear genes that control mtDNA abundance and structure such as thymidine kinase 2 (TK2), or due to CoQ deficiency. Defects in the TK2 gene have been found to be associated with mtDNA depletion attributed to a depleted mitochondrial dNTP pool in non-dividing cells. We report an unusual case of IMM, homozygous for the H90N mutation in the TK2 gene but unlike other cases with the same mutation, does not demonstrate mtDNA depletion. The patient's clinical course is relatively mild and a muscle biopsy showed ragged red muscle fibers with a mild decrease in complexes I and an increase in complexes IV and II activities. This report extends the phenotypic expression of TK2 defects and suggests that all patients who present with an IMM even with normal quantities of mtDNA should be screened for TK2 mutations.

  20. Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene.

    Science.gov (United States)

    Bornstein, Belén; Area, Estela; Flanigan, Kevin M; Ganesh, Jaya; Jayakar, Parul; Swoboda, Kathryn J; Coku, Jorida; Naini, Ali; Shanske, Sara; Tanji, Kurenai; Hirano, Michio; DiMauro, Salvatore

    2008-06-01

    Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in the RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in seven infants from four families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at 3 months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exons 6, 8, and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy.

  1. Tissue specific distribution of pyrimidine deoxynucleoside salvage enzymes shed light on the mechanism of mitochondrial DNA depletion.

    Science.gov (United States)

    Wang, L; Eriksson, S

    2010-06-01

    Deficiency in thymidine kinase 2 (TK2) activity due to genetic alterations caused tissue specific mitochondrial DNA (mtDNA) depletion syndrome with symptoms resembling these of AIDS patients treated with nucleoside analogues. Mechanisms behind this mitochondrial effects is still not well understood. With rat as a model we isolated mitochondrial and cytosolic fractions from major organs and studied enzymes involved in thymidine (dT) and deoxycytidine (dC) phosphorylation by using ionic exchange column chromatography. A cytosolic form of TK2 was identified in all tested tissues in addition to mitochondrial TK2. TK1 was detected in liver and spleen cytosolic extracts while dCK was found in liver, spleen and lung cytosolic extracts. Thus, the nature of dT and dC salvage enzymes in each tissue type was determined. In most tissues TK2 is the only salvage enzyme present except liver and spleen. These results may help to explain the mechanisms of mitochondrial toxicity of antiviral nucleoside analogues and mtDNA depletion caused by TK2 deficiency.

  2. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency.

    Science.gov (United States)

    Saada, Ann; Shaag, Avraham; Elpeleg, Orly

    2003-05-01

    Decreased mitochondrial thymidine kinase (TK2) activity is associated with mitochondrial DNA (mtDNA) depletion and respiratory chain dysfunction and is manifested by isolated, fatal skeletal myopathy. Other tissues such as liver, brain, heart, and skin remain unaffected throughout the patients' life. In order to elucidate the mechanism of tissue specificity in the disease we have investigated the expression of the mitochondrial deoxynucleotide carrier, the mtDNA content and the activity of TK2 in mitochondria of various tissues. Our results suggest that low basal TK2 activity combined with a high requirement for mitochondrial encoded proteins in muscle predispose this tissue to the devastating effect of TK2 deficiency.

  3. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Directory of Open Access Journals (Sweden)

    Joan Villarroya

    Full Text Available Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT and brown (BAT adipose tissues in thymidine kinase 2 (Tk2 H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues.

  4. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Science.gov (United States)

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.

  5. Molecular mechanisms of mitochondrial DNA depletion diseases caused by deficiencies in enzymes in purine and pyrimidine metabolism.

    Science.gov (United States)

    Eriksson, Staffan; Wang, Liya

    2008-06-01

    Mitochondrial DNA depletion syndrome (MDS), a reduction of mitochondrial DNA copy number, often affects muscle or liver. Mutations in enzymes of deoxyribonucleotide metabolism give MDS, for example, the mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) genes. Sixteen TK2 and 22 dGK alterations are known. Their characteristics and symptoms are described. Levels of five key deoxynucleotide metabolizing enzymes in mouse tissues were measured. TK2 and dGK levels in muscles were 5- to 10-fold lower than other nonproliferating tissues and 100-fold lower compared to spleen. Each type of tissue apparently relies on de novo and salvage synthesis of DNA precursors to varying degrees.

  6. Mitochondrial DNA depletion syndrome presenting with ataxia and ...

    African Journals Online (AJOL)

    Laila Selim

    2012-07-24

    Jul 24, 2012 ... Sequencing analysis of the TK2 gene revealed no sequence variation. ... the pathogenesis of the myopathic form of mitochondrial depletion syndrome should be ..... [39,40]. However, the biochemical evidence of deficiency of.

  7. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  8. Mitochondrial DNA repair and aging

    Energy Technology Data Exchange (ETDEWEB)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-11-30

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.

  9. Mitochondrial DNA repair and aging

    International Nuclear Information System (INIS)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-01-01

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis

  10. Desmin common mutation is associated with multi-systemic disease manifestations and depletion of mitochondria and mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Elizabeth eMcCormick

    2015-06-01

    Full Text Available Desmin (DES is a major muscle scaffolding protein that also functions to anchor mitochondria. Pathogenic DES mutations, however, have not previously been recognized as a cause of multi-systemic mitochondrial disease. Here, we describe a 45-year-old man who presented to The Children’s Hospital of Philadelphia Mitochondrial-Genetics Diagnostic Clinic for evaluation of progressive cardiac, neuromuscular, gastrointestinal, and mood disorders. Muscle biopsy at age 45 was remarkable for cytoplasmic bodies, as well as ragged red fibers and SDH positive/COX negative fibers that were suggestive of a mitochondrial myopathy. Muscle also showed significant reductions in mitochondrial content (16% of control mean for citrate synthase activity and mitochondrial DNA (35% of control mean. His family history was significant for cardiac conduction defects and myopathy in multiple maternal relatives. Multiple single gene and panel-based sequencing studies were unrevealing. Whole exome sequencing identified a known pathogenic p.S13F mutation in DES that had previously been associated with desmin-related myopathy. Desmin-related myopathy is an autosomal dominant disorder characterized by right ventricular hypertrophic cardiomyopathy, myopathy, and arrhythmias. However, neuropathy, gastrointestinal dysfunction, and depletion of both mitochondria and mitochondrial DNA have not previously been widely recognized in this disorder. Recognition that mitochondrial dysfunction occurs in desmin-related myopathy clarifies the basis for the multi-systemic manifestations, as are typical of primary mitochondrial disorders. Understanding the mitochondrial pathophysiology of desmin-related myopathy highlights the possibility of new therapies for the otherwise untreatable and often fatal class of disease. We postulate that drug treatments aimed at improving mitochondrial biogenesis or reducing oxidative stress may be effective therapies to ameliorate the effects of desmin

  11. Mitochondrial DNA depletion, mitochondrial mutations and high TFAM expression in hepatocellular carcinoma

    OpenAIRE

    Qiao, Lihua; Ru, Guoqing; Mao, Zhuochao; Wang, Chenghui; Nie, Zhipeng; Li, Qiang; Huang-yang, Yiyi; Zhu, Ling; Liang, Xiaoyang; Yu, Jialing; Jiang, Pingping

    2017-01-01

    We investigated the role of mitochondrial genetic alterations in hepatocellular carcinoma by directly comparing the mitochondrial genomes of 86 matched pairs of HCC and non-tumor liver samples. Substitutions in 637 mtDNA sites were detected, comprising 89.80% transitions and 6.60% transversions. Forty-six somatic variants, including 15 novel mutations, were identified in 40.70% of tumor tissues. Of those, 21 were located in the non-coding region and 25 in the protein-coding region. Twenty-two...

  12. Co-occurring Down syndrome and SUCLA2-related mitochondrial depletion syndrome.

    Science.gov (United States)

    Couser, Natario L; Marchuk, Daniel S; Smith, Laurie D; Arreola, Alexandra; Kaiser-Rogers, Kathleen A; Muenzer, Joseph; Pandya, Arti; Gucsavas-Calikoglu, Muge; Powell, Cynthia M

    2017-10-01

    Mitochondrial DNA depletion syndrome 5 (MIM 612073) is a rare autosomal recessive disorder caused by homozygous or compound heterozygous pathogenic variants in the beta subunit of the succinate-CoA ligase gene located within the 13q14 band. We describe two siblings of Hispanic descent with SUCLA2-related mitochondrial depletion syndrome (encephalomyopathic form with methylmalonic aciduria); the older sibling is additionally affected with trisomy 21. SUCLA2 sequencing identified homozygous p.Arg284Cys pathogenic variants in both patients. This mutation has previously been identified in four individuals of Italian and Caucasian descent. The older sibling with concomitant disease has a more severe phenotype than what is typically described in patients with either SUCLA2-related mitochondrial depletion syndrome or Down syndrome alone. The younger sibling, who has a normal female chromosome complement, is significantly less affected compared to her brother. While the clinical and molecular findings have been reported in about 50 patients affected with a deficiency of succinate-CoA ligase caused by pathogenic variants in SUCLA2, this report describes the first known individual affected with both a mitochondrial depletion syndrome and trisomy 21. © 2017 Wiley Periodicals, Inc.

  13. Mitochondrial DNA Depletion in Respiratory Chain–Deficient Parkinson Disease Neurons

    Science.gov (United States)

    Rygiel, Karolina A.; Hepplewhite, Philippa D.; Morris, Christopher M.; Picard, Martin; Turnbull, Doug M.

    2016-01-01

    Objective To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI–IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single‐neuron level. Methods Multiple‐label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI–IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser‐capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication‐associated 7S DNA employing a triplex real‐time polymerase chain reaction (PCR) assay. Results Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single‐cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription‐primed mtDNA replication. Consistent with this, real‐time PCR analysis revealed fewer transcription/replication‐associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Interpretation Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA‐encoded factors mechanistically connected via TFAM. ANN NEUROL 2016;79:366–378 PMID:26605748

  14. Blood cell mitochondrial DNA content and premature ovarian aging.

    Directory of Open Access Journals (Sweden)

    Marco Bonomi

    Full Text Available Primary ovarian insufficiency (POI is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA content in a group of women undergoing ovarian hyperstimulation (OH, and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF and 42 poor responders (PR to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001 in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  15. Molecular insight into mitochondrial DNA depletion syndrome in two patients with novel mutations in the deoxyguanosine kinase and thymidine kinase 2 genes.

    Science.gov (United States)

    Wang, Liya; Limongelli, Anna; Vila, Maya R; Carrara, Franco; Zeviani, Massimo; Eriksson, Staffan

    2005-01-01

    Thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) are the two key enzymes in mitochondrial DNA (mtDNA) precursor synthesis. Deficiencies in TK2 or dGK activity, due to genetic alteration, have been shown to cause tissue-specific depletion of mtDNA. In the case of TK2 deficiency, affected individuals suffer severe myopathy and, in the case of dGK deficiency, devastating liver or multi-systemic disease. Here, we report clinical and biochemical findings from two patients with mtDNA depletion syndrome. Patient A was a compound heterozygote carrying the previously reported T77M mutation and a novel mutation (R161K) in the TK2 gene. Patient B carried a novel mutation (L250S) in the dGK gene. The clinical symptoms of patient A included muscular weakness and exercise intolerance due to a severe mitochondrial myopathy associated with a 92% reduction in mtDNA. There was minimal involvement of other organs. Patient B suffered from rapidly progressive, early onset fatal liver failure associated with profoundly decreased mtDNA levels in liver and, to a lesser extent, in skeletal muscle. Site-directed mutagenesis was used to introduce the mutations detected in patients A and B into the TK2 and dGK cDNAs, respectively. We then characterized each of these recombinant enzymes. Catalytic activities of the three mutant enzymes were reduced to about 2-4% for TK2 and 0.5% for dGK as compared to the wild-type enzymes. Altered competition between dCyd and dThd was observed for the T77M mutant. The residual activities of the two mitochondrial enzymes correlated directly with disease development.

  16. Mitochondrial alterations with mitochondrial DNA depletion in the nerves of AIDS patients with peripheral neuropathy induced by 2'3'-dideoxycytidine (ddC).

    Science.gov (United States)

    Dalakas, M C; Semino-Mora, C; Leon-Monzon, M

    2001-11-01

    The 2'3'-dideoxycytidine (ddC), a nonazylated dideoxynucleoside analog used for the treatment of AIDS, causes a dose-dependent, painful, sensorimotor axonal peripheral neuropathy in up to 30% of the patients. To investigate the cause of the neuropathy, we performed morphological and molecular studies on nerve biopsy specimens from well-selected patients with ddC-neuropathy and from control subjects with disease, including patients with AIDS-related neuropathy never treated with ddC. Because ddC, in vitro, inhibits the replication of mitochondrial DNA (mtDNA), we counted the number of normal and abnormal mitochondria in a 0.04 mm(2) cross-sectional area of the nerves and quantified the copy numbers of mtDNA by competitive PCR in all specimens. A varying degree of axonal degeneration was present in all nerves. Abnormal mitochondria with enlarged size, excessive vacuolization, electron-dense concentric inclusions and degenerative myelin structures were prominent in the ddC-neuropathy and accounted for 55% +/- 2.5% of all counted mitochondria in the axon and Schwann cells, compared with 9% +/- 0.7% of the controls (p ddC-treated patients compared with the controls. We conclude that ddC induces a mitochondrial neuropathy with depletion of the nerve's mtDNA. The findings are consistent with the ability of ddC to selectively inhibit the gamma-DNA polymerase in neuronal cell lines. Toxicity to mitochondria of the peripheral nerve is a new cause of acquired neuropathy induced by exogenous toxins and may be the cause of neuropathy associated with the other neurotoxic antiretroviral drugs or toxic-metabolic conditions.

  17. Hearing loss in a patient with the myopathic form of mitochondrial DNA depletion syndrome and a novel mutation in the TK2 gene.

    Science.gov (United States)

    Martí, Ramon; Nascimento, Andrés; Colomer, Jaume; Lara, Mari C; López-Gallardo, Ester; Ruiz-Pesini, Eduardo; Montoya, Julio; Andreu, Antoni L; Briones, Paz; Pineda, Mercè

    2010-08-01

    Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is a devastating disorder of infancy caused by a significant reduction of the number of copies of mitochondrial DNA in one or more tissues. We report a Spanish patient with the myopathic form of MDS, harboring two mutations in the thymidine kinase 2 gene (TK2): a previously reported deletion (p.K244del) and a novel nucleotide duplication in the exon 2, generating a frameshift and premature stop codon. Sensorineural hearing loss was a predominant symptom in the patient and a novel feature of MDS due to TK2 mutations. The patient survived up to the age of 8.5 y, which confirms that survival above the age of 5 y is not infrequent in patients with MDS due to TK2 deficiency.

  18. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    Science.gov (United States)

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Rivera, Henry; Hernández-Laín, Aurelio; Coca-Robinot, David; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2017-01-01

    Whole-exome sequencing was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase, deficiency of mitochondrial complex III and depletion of mtDNA. With whole-exome sequencing data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in thymidine kinase 2 gene ( TK2; NM_004614.4:c.323 C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes. This patient presents an atypical TK2-related myopathic form of mtDNA depletion syndromes, because despite having a very low content of mtDNA (TK2 gene in mtDNA depletion syndromes and expanded the phenotypic spectrum.

  19. An Analysis of Enzyme Kinetics Data for Mitochondrial DNA Strand Termination by Nucleoside Reverse Transcription Inhibitors

    Science.gov (United States)

    Wendelsdorf, Katherine V.; Song, Zhuo; Cao, Yang; Samuels, David C.

    2009-01-01

    Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication. PMID:19132079

  20. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    Energy Technology Data Exchange (ETDEWEB)

    Alán, Lukáš, E-mail: lukas.alan@fgu.cas.cz; Špaček, Tomáš; Pajuelo Reguera, David; Jabůrek, Martin; Ježek, Petr

    2016-07-01

    Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators. We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (> 48 h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity. - Highlights: • The mechanism for mitochondrial nucleoid clustering is proposed. • DNA intercalators (Doxorubicin or Ethidium Bromide) prevent TFAM

  1. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    Directory of Open Access Journals (Sweden)

    Xiaoshan Zhou

    Full Text Available Thymidine kinase 2 (TK2 deficiency in humans causes mitochondrial DNA (mtDNA depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/- that progressively loses its mtDNA. The TK2(-/- mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/- mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/- mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/- mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/- mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  2. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    Science.gov (United States)

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/-) mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/-) mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/-) mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  3. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  4. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    International Nuclear Information System (INIS)

    Jackson, Christopher B.; Gallati, Sabina; Schaller, André

    2012-01-01

    Highlights: ► Serial qPCR accurately determines fragmentation state of any given DNA sample. ► Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. ► Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. ► Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze–thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λ nDNA ) and mtDNA (λ mtDNA ) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two

  5. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Gallati, Sabina, E-mail: sabina.gallati@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Schaller, Andre, E-mail: andre.schaller@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in

  6. Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance

    OpenAIRE

    Akman, Hasan O.; Dorado, Beatriz; López, Luis C.; García-Cazorla, Ángeles; Vilà, Maya R.; Tanabe, Lauren M.; Dauer, William T.; Bonilla, Eduardo; Tanji, Kurenai; Hirano, Michio

    2008-01-01

    Mitochondrial DNA (mtDNA) depletion syndrome (MDS), an autosomal recessive condition, is characterized by variable organ involvement with decreased mtDNA copy number and activities of respiratory chain enzymes in affected tissues. MtDNA depletion has been associated with mutations in nine autosomal genes, including thymidine kinase (TK2), which encodes a ubiquitous mitochondrial protein. To study the pathogenesis of TK2-deficiency, we generated mice harboring an H126N Tk2 mutation. Homozygous...

  7. Alterations of mitochondrial DNA in CEM cells selected for resistance toward ddC toxicity.

    Science.gov (United States)

    Bjerke, M; Franco, M; Johansson, M; Balzarini, J; Karlsson, A

    2006-01-01

    2 ',3 '-dideoxycytidine (ddC) is a nucleoside analog that has been shown to produce a delayed toxicity which may be due to the depletion of mitochondrial DNA (mtDNA). In order to gain further understanding of the events involved in mitochondrial toxicity, two different CEM cell lines were selected for resistance to the delayed ddC toxicity.

  8. Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication.

    Science.gov (United States)

    Holmes, J Bradley; Akman, Gokhan; Wood, Stuart R; Sakhuja, Kiran; Cerritelli, Susana M; Moss, Chloe; Bowmaker, Mark R; Jacobs, Howard T; Crouch, Robert J; Holt, Ian J

    2015-07-28

    Encoding ribonuclease H1 (RNase H1) degrades RNA hybridized to DNA, and its function is essential for mitochondrial DNA maintenance in the developing mouse. Here we define the role of RNase H1 in mitochondrial DNA replication. Analysis of replicating mitochondrial DNA in embryonic fibroblasts lacking RNase H1 reveals retention of three primers in the major noncoding region (NCR) and one at the prominent lagging-strand initiation site termed Ori-L. Primer retention does not lead immediately to depletion, as the persistent RNA is fully incorporated in mitochondrial DNA. However, the retained primers present an obstacle to the mitochondrial DNA polymerase γ in subsequent rounds of replication and lead to the catastrophic generation of a double-strand break at the origin when the resulting gapped molecules are copied. Hence, the essential role of RNase H1 in mitochondrial DNA replication is the removal of primers at the origin of replication.

  9. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice

    Science.gov (United States)

    Safdar, Adeel; Bourgeois, Jacqueline M.; Ogborn, Daniel I.; Little, Jonathan P.; Hettinga, Bart P.; Akhtar, Mahmood; Thompson, James E.; Melov, Simon; Mocellin, Nicholas J.; Kujoth, Gregory C.; Prolla, Tomas A.; Tarnopolsky, Mark A.

    2011-01-01

    A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities. PMID:21368114

  10. Tenofovir alafenamide (TAF) does not deplete mitochondrial DNA in human T-cell lines at intracellular concentrations exceeding clinically relevant drug exposures.

    Science.gov (United States)

    Stray, Kirsten M; Park, Yeojin; Babusis, Darius; Callebaut, Christian; Cihlar, Tomas; Ray, Adrian S; Perron, Michel

    2017-04-01

    HIV-infected patients treated with certain nucleoside reverse transcriptase inhibitors (NRTIs) have experienced adverse effects due to drug-related mitochondrial toxicity. Tenofovir alafenamide (TAF) is a novel prodrug of the NRTI tenofovir (TFV) with an improved safety profile compared to tenofovir disoproxil fumarate (TDF). Prior in vitro studies have demonstrated that the parent nucleotide TFV has no significant effects on mtDNA synthesis. This study investigated whether clinically relevant TAF and TDF exposures affect mtDNA content in human lymphocytes. First, activated or resting peripheral blood mononuclear cells (PBMCs), as well as MT-2 and Jurkat T-cell lines, were continuously treated with ddC for 10 days to establish their susceptibility to mtDNA depletion. PBMCs had low sensitivity to NRTI-mediated mtDNA depletion in vitro. In contrast, ddC treatment of rapidly dividing MT-2 and Jurkat cells resulted in a dose-dependent decrease in mtDNA. Therefore, these two T-cell lines were selected for evaluating TAF and TDF treatment effects. MT-2 and Jurkat cells were pulse-treated with TAF or TDF every 24 h for 10 days to mimic pharmacologically relevant drug exposures. Pulse treatment of cells with 3.3 μM TAF or 1.1 μM TDF for 10 days resulted in 2- to 7-fold greater steady-state intracellular TFV-diphosphate (TFV-DP) levels than those observed clinically in TAF- or TDF-treated patients. At these concentrations, no significant TAF- (106.7% and 84.1% of control; p = 0.77 and 0.12 for MT-2 and Jurkat, respectively) or TDF- (100.6% and 91.0% of control; p = 0.91 and 0.37, respectively) associated reduction in mtDNA content was observed compared with untreated control cells. This study demonstrates that, despite delivering higher intracellular levels of TFV-DP than TDF, TAF does not inhibit mtDNA synthesis in vitro at concentrations exceeding the clinically relevant intracellular drug exposures. Thus, TAF has a low potential for mitochondrial toxicity in

  11. Molecular and clinical characterization of the myopathic form of mitochondrial DNA depletion syndrome caused by mutations in the thymidine kinase (TK2) gene.

    Science.gov (United States)

    Chanprasert, Sirisak; Wang, Jing; Weng, Shao-Wen; Enns, Gregory M; Boué, Daniel R; Wong, Brenda L; Mendell, Jerry R; Perry, Deborah A; Sahenk, Zarife; Craigen, William J; Alcala, Francisco J Climent; Pascual, Juan M; Melancon, Serge; Zhang, Victor Wei; Scaglia, Fernando; Wong, Lee-Jun C

    2013-01-01

    Mitochondrial DNA (mtDNA) depletion syndromes (MDSs) are a clinically and molecularly heterogeneous group of mitochondrial cytopathies characterized by severe mtDNA copy number reduction in affected tissues. Clinically, MDSs are mainly categorized as myopathic, encephalomyopathic, hepatocerebral, or multi-systemic forms. To date, the myopathic form of MDS is mainly caused by mutations in the TK2 gene, which encodes thymidine kinase 2, the first and rate limiting step enzyme in the phosphorylation of pyrimidine nucleosides. We analyzed 9 unrelated families with 11 affected subjects exhibiting the myopathic form of MDS, by sequencing the TK2 gene. Twelve mutations including 4 novel mutations were detected in 9 families. Skeletal muscle specimens were available from 7 out of 11 subjects. Respiratory chain enzymatic activities in skeletal muscle were measured in 6 subjects, and enzymatic activities were reduced in 3 subjects. Quantitative analysis of mtDNA content in skeletal muscle was performed in 5 subjects, and marked mtDNA content reduction was observed in each. In addition, we outline the molecular and clinical characteristics of this syndrome in a total of 52 patients including those previously reported, and a total of 36 TK2 mutations are summarized. Clinically, hypotonia and proximal muscle weakness are the major phenotypes present in all subjects. In summary, our study expands the molecular and clinical spectrum associated with TK2 deficiency. © 2013.

  12. MPV17-related mitochondrial DNA maintenance defect: New cases and review of clinical, biochemical, and molecular aspects.

    Science.gov (United States)

    El-Hattab, Ayman W; Wang, Julia; Dai, Hongzheng; Almannai, Mohammed; Staufner, Christian; Alfadhel, Majid; Gambello, Michael J; Prasun, Pankaj; Raza, Saleem; Lyons, Hernando J; Afqi, Manal; Saleh, Mohammed A M; Faqeih, Eissa A; Alzaidan, Hamad I; Alshenqiti, Abduljabbar; Flore, Leigh Anne; Hertecant, Jozef; Sacharow, Stephanie; Barbouth, Deborah S; Murayama, Kei; Shah, Amit A; Lin, Henry C; Wong, Lee-Jun C

    2018-04-01

    Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile-onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17-related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early-onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late-onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis. © 2017 Wiley Periodicals, Inc.

  13. Assessment of precision and concordance of quantitative mitochondrial DNA assays: a collaborative international quality assurance study

    NARCIS (Netherlands)

    Hammond, Emma L.; Sayer, David; Nolan, David; Walker, Ulrich A.; Ronde, Anthony de; Montaner, Julio S. G.; Cote, Helene C. F.; Gahan, Michelle E.; Cherry, Catherine L.; Wesselingh, Steven L.; Reiss, Peter; Mallal, Simon

    2003-01-01

    Background: A number of international research groups have developed DNA quantitation assays in order to investigate the role of mitochondrial DNA depletion in anti-retroviral therapy-induced toxicities. Objectives: A collaborative study was undertaken to evaluate intra-assay precision and between

  14. Mitochondrial mosaics in the liver of 3 infants with mtDNA defects

    Directory of Open Access Journals (Sweden)

    Scalais Emmanuel

    2009-06-01

    Full Text Available Abstract Background In muscle cytochrome oxidase (COX negative fibers (mitochondrial mosaics have often been visualized. Methods COX activity staining of liver for light and electron microscopy, muscle stains, blue native gel electrophoresis and activity assays of respiratory chain proteins, their immunolocalisation, mitochondrial and nuclear DNA analysis. Results Three unrelated infants showed a mitochondrial mosaic in the liver after staining for COX activity, i.e. hepatocytes with strongly reactive mitochondria were found adjacent to cells with many negative, or barely reactive, mitochondria. Deficiency was most severe in the patient diagnosed with Pearson syndrome. Ragged-red fibers were absent in muscle biopsies of all patients. Enzyme biochemistry was not diagnostic in muscle, fibroblasts and lymphocytes. Blue native gel electrophoresis of liver tissue, but not of muscle, demonstrated a decreased activity of complex IV; in both muscle and liver subcomplexes of complex V were seen. Immunocytochemistry of complex IV confirmed the mosaic pattern in two livers, but not in fibroblasts. MRI of the brain revealed severe white matter cavitation in the Pearson case, but only slight cortical atrophy in the Alpers-Huttenlocher patient, and a normal image in the 3rd. MtDNA in leucocytes showed a common deletion in 50% of the mtDNA molecules of the Pearson patient. In the patient diagnosed with Alpers-Huttenlocher syndrome, mtDNA was depleted for 60% in muscle. In the 3rd patient muscular and hepatic mtDNA was depleted for more than 70%. Mutations in the nuclear encoded gene of POLG were subsequently found in both the 2nd and 3rd patients. Conclusion Histoenzymatic COX staining of a liver biopsy is fast and yields crucial data about the pathogenesis; it indicates whether mtDNA should be assayed. Each time a mitochondrial disorder is suspected and muscle data are non-diagnostic, a liver biopsy should be recommended. Mosaics are probably more frequent

  15. TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs

    Science.gov (United States)

    Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves

    2013-01-01

    Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs. PMID:23775789

  16. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer.

    Science.gov (United States)

    Srirattana, Kanokwan; St John, Justin C

    2018-05-08

    We generated cattle embryos using mitochondrial supplementation and somatic cell nuclear transfer (SCNT), named miNT, to determine how additional mitochondrial DNA (mtDNA) modulates the nuclear genome. To eliminate any confounding effects from somatic cell mtDNA in intraspecies SCNT, donor cell mtDNA was depleted prior to embryo production. Additional oocyte mtDNA did not affect embryo development rates but increased mtDNA copy number in blastocyst stage embryos. Moreover, miNT-derived blastocysts had different gene expression profiles when compared with SCNT-derived blastocysts. Additional mtDNA increased expression levels of genes involved in oxidative phosphorylation, cell cycle and DNA repair. Supplementing the embryo culture media with a histone deacetylase inhibitor, Trichostatin A (TSA), had no beneficial effects on the development of miNT-derived embryos, unlike SCNT-derived embryos. When compared with SCNT-derived blastocysts cultured in the presence of TSA, additional mtDNA alone had beneficial effects as the activity of glycolysis may increase and embryonic cell death may decrease. However, these beneficial effects were not found with additional mtDNA and TSA together, suggesting that additional mtDNA alone enhances reprogramming. In conclusion, additional mtDNA increased mtDNA copy number and expression levels of genes involved in energy production and embryo development in blastocyst stage embryos emphasising the importance of nuclear-mitochondrial interactions.

  17. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    Science.gov (United States)

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  18. Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance.

    Science.gov (United States)

    Akman, Hasan O; Dorado, Beatriz; López, Luis C; García-Cazorla, Angeles; Vilà, Maya R; Tanabe, Lauren M; Dauer, William T; Bonilla, Eduardo; Tanji, Kurenai; Hirano, Michio

    2008-08-15

    Mitochondrial DNA (mtDNA) depletion syndrome (MDS), an autosomal recessive condition, is characterized by variable organ involvement with decreased mtDNA copy number and activities of respiratory chain enzymes in affected tissues. MtDNA depletion has been associated with mutations in nine autosomal genes, including thymidine kinase (TK2), which encodes a ubiquitous mitochondrial protein. To study the pathogenesis of TK2-deficiency, we generated mice harboring an H126N Tk2 mutation. Homozygous Tk2 mutant (Tk2(-/-)) mice developed rapidly progressive weakness after age 10 days and died between ages 2 and 3 weeks. Tk2(-/-) animals showed Tk2 deficiency, unbalanced dNTP pools, mtDNA depletion and defects of respiratory chain enzymes containing mtDNA-encoded subunits that were most prominent in the central nervous system. Histopathology revealed an encephalomyelopathy with prominent vacuolar changes in the anterior horn of the spinal cord. The H126N TK2 mouse is the first knock-in animal model of human MDS and demonstrates that the severity of TK2 deficiency in tissues may determine the organ-specific phenotype.

  19. DNA polymerase beta participates in mitochondrial DNA repair

    DEFF Research Database (Denmark)

    Sykora, P; Kanno, S; Akbari, M

    2017-01-01

    We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments, mitocho......We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments......, mitochondrial-specific protein partners were identified, with the interactors mainly functioning in DNA maintenance and mitochondrial import. Of particular interest was the identification of the proteins TWINKLE, SSBP1 and TFAM, all of which are mitochondria specific DNA effectors and are known to function...... in the nucleoid. Polβ directly interacted with, and influenced the activity of, the mitochondrial helicase TWINKLE. Human kidney cells with Polβ knock-out (KO) had higher endogenous mtDNA damage. Mitochondrial extracts derived from heterozygous Polβ mouse tissue and KO cells had lower nucleotide incorporation...

  20. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  1. Thymidine Kinase 2 Deficiency-Induced mtDNA Depletion in Mouse Liver Leads to Defect beta-Oxidation

    OpenAIRE

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Dobeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathologica...

  2. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    Science.gov (United States)

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  3. Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation.

    Science.gov (United States)

    Lozoya, Oswaldo A; Martinez-Reyes, Inmaculada; Wang, Tianyuan; Grenet, Dagoberto; Bushel, Pierre; Li, Jianying; Chandel, Navdeep; Woychik, Richard P; Santos, Janine H

    2018-04-18

    Mitochondrial function affects many aspects of cellular physiology, and, most recently, its role in epigenetics has been reported. Mechanistically, how mitochondrial function alters DNA methylation patterns in the nucleus remains ill defined. Using a cell culture model of induced mitochondrial DNA (mtDNA) depletion, in this study we show that progressive mitochondrial dysfunction leads to an early transcriptional and metabolic program centered on the metabolism of various amino acids, including those involved in the methionine cycle. We find that this program also increases DNA methylation, which occurs primarily in the genes that are differentially expressed. Maintenance of mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation in the context of mtDNA loss rescues methionine salvage and polyamine synthesis and prevents changes in DNA methylation and gene expression but does not affect serine/folate metabolism or transsulfuration. This work provides a novel mechanistic link between mitochondrial function and epigenetic regulation of gene expression that involves polyamine and methionine metabolism responding to changes in the tricarboxylic acid (TCA) cycle. Given the implications of these findings, future studies across different physiological contexts and in vivo are warranted.

  4. Mitochondrial DNA: A Blind Spot in Neuroepigenetics.

    Science.gov (United States)

    Manev, Hari; Dzitoyeva, Svetlana; Chen, Hu

    2012-04-01

    Neuroepigenetics, which includes nuclear DNA modifications such as 5-methylcytosine and 5-hydoxymethylcytosine and modifications of nuclear proteins such as histones, is emerging as the leading field in molecular neuroscience. Historically, a functional role for epigenetic mechanisms, including in neuroepigenetics, has been sought in the area of the regulation of nuclear transcription. However, one important compartment of mammalian cell DNA, different from nuclear but equally important for physiological and pathological processes (including in the brain), mitochondrial DNA has for the most part not had a systematic epigenetic characterization. The importance of mitochondria and mitochondrial DNA (particularly its mutations) in central nervous system physiology and pathology has long been recognized. Only recently have mechanisms of mitochondrial DNA methylation and hydroxymethylation, including the discovery of mitochondrial DNA-methyltransferases and the presence and the functionality of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (e.g., in modifying the transcription of mitochondrial genome), been unequivocally recognized as a part of mammalian mitochondrial physiology. Here we summarize for the first time evidence supporting the existence of these mechanisms and we propose the term "mitochondrial epigenetics" to be used when referring to them. Currently, neuroepigenetics does not include mitochondrial epigenetics - a gap that we expect to close in the near future.

  5. Reversion of mtDNA depletion in a patient with TK2 deficiency.

    Science.gov (United States)

    Vilà, M R; Segovia-Silvestre, T; Gámez, J; Marina, A; Naini, A B; Meseguer, A; Lombès, A; Bonilla, E; DiMauro, S; Hirano, M; Andreu, A L

    2003-04-08

    Mutations in the thymidine kinase 2 (TK2) gene cause a myopathic form of the mitochondrial DNA depletion syndrome (MDS). Here, the authors report the unusual clinical, biochemical, and molecular findings in a 14-year-old patient in whom pathogenic mutations were identified in the TK2 gene. This report extends the phenotypic expression of primary TK2 deficiency and suggests that factors other than TK2 may modify expression of the clinical phenotype in patients with MDS syndrome.

  6. Sensitivity of mitochondrial DNA depleted ρ0 cells to H2O2 depends on the plasma membrane status.

    Science.gov (United States)

    Tomita, Kazuo; Kuwahara, Yoshikazu; Takashi, Yuko; Tsukahara, Takao; Kurimasa, Akihiro; Fukumoto, Manabu; Nishitani, Yoshihiro; Sato, Tomoaki

    2017-08-19

    To clarify the relationship between mitochondrial DNA (mtDNA)-depleted ρ0 cells and the cellular sensitivity to hydrogen peroxide (H 2 O 2 ), we established HeLa and SAS ρ0 cell lines and investigated their survival rate in H 2 O 2 , radical scavenging enzymes, plasma membrane potential status, and chronological change in intracellular H 2 O 2 amount under the existence of extracellular hydrogen peroxide compared with the parental cells. The results revealed that ρ0 cells had higher sensitivity to H 2 O 2 than their parental cells, even though the catalase activity of ρ0 cells was up-regulated, and the membrane potential of the ρ0 cells was lower than their parental cells. Furthermore, the internal H 2 O 2 amount significantly increased only in ρ0 cells after 50 μM H 2 O 2 treatment for 1 h. These results suggest that plasma membrane status of ρ0 cells may cause degradation, and the change could lead to enhanced membrane permeability to H 2 O 2 . As a consequence, ρ0 cells have a higher H 2 O 2 sensitivity than the parental cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Nucleotide sequence preservation of human mitochondrial DNA

    International Nuclear Information System (INIS)

    Monnat, R.J. Jr.; Loeb, L.A.

    1985-01-01

    Recombinant DNA techniques have been used to quantitate the amount of nucleotide sequence divergence in the mitochondrial DNA population of individual normal humans. Mitochondrial DNA was isolated from the peripheral blood lymphocytes of five normal humans and cloned in M13 mp11; 49 kilobases of nucleotide sequence information was obtained from 248 independently isolated clones from the five normal donors. Both between- and within-individual differences were identified. Between-individual differences were identified in approximately = to 1/200 nucleotides. In contrast, only one within-individual difference was identified in 49 kilobases of nucleotide sequence information. This high degree of mitochondrial nucleotide sequence homogeneity in human somatic cells is in marked contrast to the rapid evolutionary divergence of human mitochondrial DNA and suggests the existence of mechanisms for the concerted preservation of mammalian mitochondrial DNA sequences in single organisms

  8. Mitochondrial DNA and Cancer Epidemiology Workshop

    Science.gov (United States)

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  9. DNA methyltransferase 1 mutations and mitochondrial pathology: is mtDNA methylated?

    Directory of Open Access Journals (Sweden)

    Alessandra eMaresca

    2015-03-01

    Full Text Available Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN and Hereditary sensory neuropathy with dementia and hearing loss (HSN1E are two rare, overlapping neurodegenerative syndromes that have been recently linked to allelic dominant pathogenic mutations in the DNMT1 gene, coding for DNA (cytosine-5-methyltransferase 1. DNMT1 is the enzyme responsible for maintaining the nuclear genome methylation patterns during the DNA replication and repair, thus regulating gene expression. The mutations responsible for ADCA-DN and HSN1E affect the replication foci targeting sequence domain, which regulates DNMT1 binding to chromatin. DNMT1 dysfunction is anticipated to lead to a global alteration of the DNA methylation pattern with predictable downstream consequences on gene expression. Interestingly, ADCA-DN and HSN1E phenotypes share some clinical features typical of mitochondrial diseases, such as optic atrophy, peripheral neuropathy and deafness, and some biochemical evidence of mitochondrial dysfunction. The recent discovery of a mitochondrial isoform of DNMT1 and its proposed role in methylating mitochondrial DNA (mtDNA suggests that DNMT1 mutations may directly affect mtDNA and mitochondrial physiology. On the basis of this latter finding the link between DNMT1 abnormal activity and mitochondrial dysfunction in ADCA-DN and HSN1E appears intuitive, however mtDNA methylation remains highly debated. In the last years several groups demonstrated the presence of 5-methylcytosine in mtDNA by different approaches, but, on the other end, the opposite evidence that mtDNA is not methylated has also been published. Since over 1500 mitochondrial proteins are encoded by the nuclear genome, the altered methylation of these genes may well have a critical role in leading to the mitochondrial impairment observed in ADCA-DN and HSN1E. Thus, many open questions still remain unanswered, such as why mtDNA should be methylated, and how this process is

  10. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.

    Science.gov (United States)

    Schroeder, Elizabeth A; Shadel, Gerald S

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension following mtROS signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses and may regulate Ntg1p-dependent mtDNA stability. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Nuclear counterparts of the cytoplasmic mitochondrial 12S rRNA gene: a problem of ancient DNA and molecular phylogenies.

    Science.gov (United States)

    van der Kuyl, A C; Kuiken, C L; Dekker, J T; Perizonius, W R; Goudsmit, J

    1995-06-01

    Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.

  12. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance : Transgenic TK2, mtDNA, and Antiretrovirals

    OpenAIRE

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK...

  13. Developing a biological dosimeter based on mitochondrial DNA

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S; Carlisle, S M; Unrau, P; Deugau, K V [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    Direct measurement of deoxyribonucleic acid (DNA) damage from ionizing radiation may be advantageous in determining radiation radiation exposures and assessing their effects on atomic radiation workers. The mitochondrial DNA molecule is one potential cellular DNA target which is: fully defined and sequenced; present in many copies per cell; not vital to cellular survival; and less subject to DNA repair than nuclear DNA. A method is described to isolate and analyse normal mitochondrial DNA. We describe the developments needed to determine DNA damage in mitochondrial DNA. The target is to make a biological dosimeter. (author). 6 refs., 3 figs.

  14. Developing a biological dosimeter based on mitochondrial DNA

    International Nuclear Information System (INIS)

    Adams, S.; Carlisle, S.M.; Unrau, P.; Deugau, K.V.

    1995-01-01

    Direct measurement of deoxyribonucleic acid (DNA) damage from ionizing radiation may be advantageous in determining radiation radiation exposures and assessing their effects on atomic radiation workers. The mitochondrial DNA molecule is one potential cellular DNA target which is: fully defined and sequenced; present in many copies per cell; not vital to cellular survival; and less subject to DNA repair than nuclear DNA. A method is described to isolate and analyse normal mitochondrial DNA. We describe the developments needed to determine DNA damage in mitochondrial DNA. The target is to make a biological dosimeter. (author). 6 refs., 3 figs

  15. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Felhi, Rahma; Tabebi, Mouna [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Alila-Fersi, Olfa; Chamkha, Imen [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Maalej, Marwa; Ammar, Marwa [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Kammoun, Fatma [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Keskes, Leila [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Hachicha, Mongia [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Fakhfakh, Faiza, E-mail: faiza.fakhfakh02@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia)

    2016-04-29

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes of complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.

  16. Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells

    International Nuclear Information System (INIS)

    Morales, Albert; Miranda, Merce; Sanchez-Reyes, Alberto; Biete, Alberto; Fernandez-Checa, Jose C.

    1998-01-01

    Purpose: Since reactive oxygen species (ROS) act as mediators of radiation-induced cellular damage, the aim of our studies was to determine the effects of ionizing radiation on the regulation of hepatocellular reduced glutathione (GSH), survival and integrity of nuclear and mitochondrial DNA (mtDNA) in human hepatoblastoma cells (Hep G2) depleted of GSH prior to radiation. Methods and Materials: GSH, oxidized glutathione (GSSG), and generation of ROS were determined in irradiated (50-500 cGy) Hep G2 cells. Clonogenic survival, nuclear DNA fragmentation, and integrity of mtDNA were assessed in cells depleted of GSH prior to radiation. Results: Radiation of Hep G2 cells (50-400 cGy) resulted in a dose-dependent generation of ROS, an effect accompanied by a decrease of reduced GSH, ranging from a 15% decrease for 50 cGy to a 25% decrease for 400 cGy and decreased GSH/GSSG from a ratio of 17 to a ratio of 7 for controls and from 16 to 6 for diethyl maleate (DEM)-treated cells. Depletion of GSH prior to radiation accentuated the increase of ROS by 40-50%. The depletion of GSH by radiation was apparent in different subcellular sites, being particularly significant in mitochondria. Furthermore, depletion of nuclear GSH to 50-60% of initial values prior to irradiation (400 cGy) resulted in DNA fragmentation and apoptosis. Consequently, the survival of Hep G2 to radiation was reduced from 25% of cells not depleted of GSH to 10% of GSH-depleted cells. Fitting the survival rate of cells as a function of GSH using a theoretical model confirmed cellular GSH as a key factor in determining intrinsic sensitivity of Hep G2 cells to radiation. mtDNA displayed an increased susceptibility to the radiation-induced loss of integrity compared to nuclear DNA, an effect that was potentiated by GSH depletion in mitochondria (10-15% intact mtDNA in GSH-depleted cells vs. 25-30% of repleted cells). Conclusion: GSH plays a critical protective role in maintaining nuclear and mtDNA functional

  17. Actin and myosin contribute to mammalian mitochondrial DNA maintenance

    Science.gov (United States)

    Reyes, A.; He, J.; Mao, C. C.; Bailey, L. J.; Di Re, M.; Sembongi, H.; Kazak, L.; Dzionek, K.; Holmes, J. B.; Cluett, T. J.; Harbour, M. E.; Fearnley, I. M.; Crouch, R. J.; Conti, M. A.; Adelstein, R. S.; Walker, J. E.; Holt, I. J.

    2011-01-01

    Mitochondrial DNA maintenance and segregation are dependent on the actin cytoskeleton in budding yeast. We found two cytoskeletal proteins among six proteins tightly associated with rat liver mitochondrial DNA: non-muscle myosin heavy chain IIA and β-actin. In human cells, transient gene silencing of MYH9 (encoding non-muscle myosin heavy chain IIA), or the closely related MYH10 gene (encoding non-muscle myosin heavy chain IIB), altered the topology and increased the copy number of mitochondrial DNA; and the latter effect was enhanced when both genes were targeted simultaneously. In contrast, genetic ablation of non-muscle myosin IIB was associated with a 60% decrease in mitochondrial DNA copy number in mouse embryonic fibroblasts, compared to control cells. Gene silencing of β-actin also affected mitochondrial DNA copy number and organization. Protease-protection experiments and iodixanol gradient analysis suggest some β-actin and non-muscle myosin heavy chain IIA reside within human mitochondria and confirm that they are associated with mitochondrial DNA. Collectively, these results strongly implicate the actomyosin cytoskeleton in mammalian mitochondrial DNA maintenance. PMID:21398640

  18. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    International Nuclear Information System (INIS)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela; Martinelli, Diego; Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella; Dionisi-Vici, Carlo; Nobili, Valerio; Francalanci, Paola; Boldrini, Renata; Callea, Francesco; Santorelli, Filippo Maria; Bertini, Enrico

    2011-01-01

    Highlights: ► Expanded array of mtDNA deletions. ► Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. ► Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. ► Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  19. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase*

    Science.gov (United States)

    Bharti, Sanjay Kumar; Sommers, Joshua A.; Zhou, Jun; Kaplan, Daniel L.; Spelbrink, Johannes N.; Mergny, Jean-Louis; Brosh, Robert M.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase. PMID:25193669

  20. Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency.

    Science.gov (United States)

    Saada, Ann; Ben-Shalom, Efrat; Zyslin, Rivka; Miller, Chaya; Mandel, Hanna; Elpeleg, Orly

    2003-10-24

    Deficiency of mitochondrial thymidine kinase (TK2) is associated with mitochondrial DNA (mtDNA) depletion and manifests by severe skeletal myopathy in infancy. In order to elucidate the pathophysiology of this condition, mitochondrial deoxyribonucleoside triphosphate (dNTP) pools were determined in patients' fibroblasts. Despite normal mtDNA content and cytochrome c oxidase (COX) activity, mitochondrial dNTP pools were imbalanced. Specifically, deoxythymidine triphosphate (dTTP) content was markedly decreased, resulting in reduced dTTP:deoxycytidine triphosphate ratio. These findings underline the importance of balanced mitochondrial dNTP pools for mtDNA synthesis and may serve as the basis for future therapeutic interventions.

  1. Genetics Home Reference: FBXL4-related encephalomyopathic mitochondrial DNA depletion syndrome

    Science.gov (United States)

    ... Additional NIH Resources (1 link) National Institute of Neurological Disorders and Stroke: Mitochondrial Myopathy Information Page Educational Resources (3 links) Cincinnati Children's Hospital: Mitochondrial Diseases Kennedy Krieger Institute: Mitochondrial Disorders ...

  2. DNA repair of UV photoproducts and mutagenesis in human mitochondrial DNA

    International Nuclear Information System (INIS)

    Pascucci, B.; Dogliotti, E.; Versteegh, A.; Hoffen, A. van; Zeeland, A.A. van; Mullenders, L.H.F.

    1997-01-01

    The induction and repair of DNA photolesions and mutations in the mitochondrial (mt) DNA of human cells in culture were analysed after cell exposure to UV-C light. The level of induction of cyclobutane pyrimidine dimers (CPD) in mitochondrial and nuclear DNA was comparable, while a higher frequency of pyrimidine (6-4) pyrimidone photoproducts (6-4 PP) was detected in mitochondrial than in nuclear DNA. Besides the known defect in CPD removal, mitochondria were shown to be deficient also in the excision of 6-4 PP. The effects of repair-defective conditions for the two major UV photolesions on mutagensis was assessed by analysing the frequency and spectrum of spontaneous and UV-induced mutations by restriction site mutation (RSM) method in a restriction endonuclease site, NciI (5'CCCGG3') located within the coding sequence of the mitochondrial gene for tRNA Leu . The spontaneous mutation frequency and spectrum at the NciI site of mitochondrial DNA was very similar to the RSM background mutation frequency (approximately 10 -5 ) and type (predominantly GC > AT transitions at GL 1 ) of the NciI site). Conversely, an approximately tenfold increase over background mutation frequency was recorded after cell exposure to 20 J/m 2 . In this case, the majority of mutations were C > T transitions preferentially located on the non-transcribed DNA strand at C 1 and C 2 of the NciI site. This mutation spectrum is expected by UV mutagenesis. This is the first evidence of induction of mutations in mitochondrial DNA by treatment of human cells with a carcinogen. (author)

  3. The use of mitochondrial DNA (mtDNA-investigations in Forensic Sciences

    Directory of Open Access Journals (Sweden)

    S. Dawson

    1996-07-01

    Full Text Available A variety of methods was developed to characterize mtDNA. The initial aim of these techniques was to try and link diseases with specific mitochondrial defects. As a result of the maternal inheritance trait of mtDNA these techniques facilitate studies of the phylogenetic history and population structure of the human population. It has been shown that mitochondrial DNA typing can be of great value for human identification in forensic cases. The identification of victims of mass-disasters or mass-murders, where human remains can be recovered only after many years have passed, is one of the most challenging fields of forensic identification. By using automated DNA sequencing with fluorescent labels, mitochondrial DNA sequences can be generated rapidly and accurately. Computer software facilitates the rapid comparison of individual and reference sequences.

  4. Mitochondrial DNA mutations in human tumor cells

    OpenAIRE

    LI, HUI; HONG, ZE-HUI

    2012-01-01

    Mitochondria play significant roles in cellular energy metabolism, free radical generation and apoptosis. The dysfunction of mitochondria is correlated with the origin and progression of tumors; thus, mutations in the mitochondrial genome that affect mitochondrial function may be one of the causal factors of tumorigenesis. Although the role of mitochondrial DNA (mtDNA) mutations in carcinogenesis has been investigated extensively by various approaches, the conclusions remain controversial to ...

  5. Mitochondrial DNA depletion syndrome presenting with ataxia and ...

    African Journals Online (AJOL)

    The patient presented to Cairo University Pediatric Hospital with the clinical suspicion of mitochondrial encephalomyopathy. Histochemical and biochemical studies of the respiratory chain complexes were performed on the muscle biopsy specimen from the patient. Molecular diagnosis was done by quantitative radioactive ...

  6. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Martinelli, Diego [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Dionisi-Vici, Carlo [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Nobili, Valerio [Gastroenterology and Liver Unit, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Francalanci, Paola; Boldrini, Renata; Callea, Francesco [Dept. Pathology, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Santorelli, Filippo Maria [UOC Neurogenetica e Malattie Neuromuscolari, Fondazione Stella Maris, Pisa (Italy); Bertini, Enrico [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); and others

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Expanded array of mtDNA deletions. Black-Right-Pointing-Pointer Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. Black-Right-Pointing-Pointer Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. Black-Right-Pointing-Pointer Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  7. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α.

    Science.gov (United States)

    Vadrot, Nathalie; Ghanem, Sarita; Braut, Françoise; Gavrilescu, Laura; Pilard, Nathalie; Mansouri, Abdellah; Moreau, Richard; Reyl-Desmars, Florence

    2012-01-01

    During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α) targets hepatocytes and induces abnormal reactive oxygen species (ROS) production responsible for mitochondrial DNA (mtDNA) alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β) plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR) we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC) was used to measure the rapid (10 min) and transient TNF-α induced increase in ROS production (168±15%). A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM). In addition, mitochondrial D-loop immunoprecipitation (mtDIP) revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15)p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.

  8. Mitochondrial DNA maintenance is regulated in human hepatoma cells by glycogen synthase kinase 3β and p53 in response to tumor necrosis factor α.

    Directory of Open Access Journals (Sweden)

    Nathalie Vadrot

    Full Text Available During chronic liver inflammation, up-regulated Tumor Necrosis Factor alpha (TNF-α targets hepatocytes and induces abnormal reactive oxygen species (ROS production responsible for mitochondrial DNA (mtDNA alterations. The serine/threonine Glycogen Synthase Kinase 3 beta (GSK3β plays a pivotal role during inflammation but its involvement in the maintenance of mtDNA remains unknown. The aim of this study was to investigate its involvement in TNF-α induced mtDNA depletion and its interrelationship with p53 a protein known to maintain mtDNA copy numbers. Using quantitative polymerase chain reaction (qPCR we found that at 30 min in human hepatoma HepG2 cells TNF-α induced 0.55±0.10 mtDNA lesions per 10 Kb and a 52.4±2.8% decrease in mtDNA content dependent on TNF-R1 receptor and ROS production. Both lesions and depletion returned to baseline from 1 to 6 h after TNF-α exposure. Luminol-amplified chemiluminescence (LAC was used to measure the rapid (10 min and transient TNF-α induced increase in ROS production (168±15%. A transient 8-oxo-dG level of 1.4±0.3 ng/mg DNA and repair of abasic sites were also measured by ELISA assays. Translocation of p53 to mitochondria was observed by Western Blot and co-immunoprecipitations showed that TNF-α induced p53 binding to GSK3β and mitochondrial transcription factor A (TFAM. In addition, mitochondrial D-loop immunoprecipitation (mtDIP revealed that TNF-α induced p53 binding to the regulatory D-loop region of mtDNA. The knockdown of p53 by siRNAs, inhibition by the phosphoSer(15p53 antibody or transfection of human mutant active GSK3βS9A pcDNA3 plasmid inhibited recovery of mtDNA content while blockade of GSK3β activity by SB216763 inhibitor or knockdown by siRNAs suppressed mtDNA depletion. This study is the first to report the involvement of GSK3β in TNF-α induced mtDNA depletion. We suggest that p53 binding to GSK3β, TFAM and D-loop could induce recovery of mtDNA content through mtDNA repair.

  9. Possible role of mtDNA depletion and respiratory chain defects in aristolochic acid I-induced acute nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhenzhou, E-mail: jiangcpu@yahoo.com.cn; Bao, Qingli, E-mail: bao_ql@126.com; Sun, Lixin, E-mail: slxcpu@126.com; Huang, Xin, E-mail: huangxinhx66@sohu.com; Wang, Tao, E-mail: wangtao1331@126.com; Zhang, Shuang, E-mail: cat921@sina.com; Li, Han, E-mail: hapo1101@163.com; Zhang, Luyong, E-mail: lyzhang@cpu.edu.cn

    2013-01-15

    This report describes an investigation of the pathological mechanism of acute renal failure caused by toxic tubular necrosis after treatment with aristolochic acid I (AAI) in Sprague–Dawley (SD) rats. The rats were gavaged with AAI at 0, 5, 20, or 80 mg/kg/day for 7 days. The pathologic examination of the kidneys showed severe acute tubular degenerative changes primarily affecting the proximal tubules. Supporting these results, we detected significantly increased concentrations of blood urea nitrogen (BUN) and creatinine (Cr) in the rats treated with AAI, indicating damage to the kidneys. Ultrastructural examination showed that proximal tubular mitochondria were extremely enlarged and dysmorphic with loss and disorientation of their cristae. Mitochondrial function analysis revealed that the two indicators for mitochondrial energy metabolism, the respiratory control ratio (RCR) and ATP content, were reduced in a dose-dependent manner after AAI treatment. The RCR in the presence of substrates for complex I was reduced more significantly than in the presence of substrates for complex II. In additional experiments, the activity of respiratory complex I, which is partly encoded by mitochondrial DNA (mtDNA), was more significantly impaired than that of respiratory complex II, which is completely encoded by nuclear DNA (nDNA). A real-time PCR assay revealed a marked reduction of mtDNA in the kidneys treated with AAI. Taken together, these results suggested that mtDNA depletion and respiratory chain defects play critical roles in the pathogenesis of kidney injury induced by AAI, and that the same processes might contribute to aristolochic acid-induced nephrotoxicity in humans. -- Highlights: ► AAI-induced acute renal failure in rats and the proximal tubule was the target. ► Tubular mitochondria were morphologically aberrant in ultrastructural examination. ► AAI impair mitochondrial bioenergetic function and mtDNA replication.

  10. Selective muscle fiber loss and molecular compensation in mitochondrial myopathy due to TK2 deficiency.

    Science.gov (United States)

    Vilà, Maya R; Villarroya, Joan; García-Arumí, Elena; Castellote, Amparo; Meseguer, Anna; Hirano, Michio; Roig, Manuel

    2008-04-15

    A 12-year-old patient with mitochondrial DNA (mtDNA) depletion syndrome due to TK2 gene mutations has been evaluated serially over the last 10 years. We observed progressive muscle atrophy with selective loss of type 2 muscle fibers and, despite severe depletion of mtDNA, normal activities of respiratory chain (RC) complexes and levels of COX II mitochondrial protein in the remaining muscle fibers. These results indicate that compensatory mechanisms account for the slow progression of the disease. Identification of factors that ameliorate mtDNA depletion may reveal new therapeutic targets for these devastating disorders.

  11. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing

    Directory of Open Access Journals (Sweden)

    Tianhong Su

    2018-03-01

    Full Text Available Mitochondrial DNA (mtDNA mutations accumulate in somatic stem cells during ageing and cause mitochondrial dysfunction. In this review, we summarize the studies that link mtDNA mutations to stem cell ageing. We discuss the age-related behaviours of the somatic mtDNA mutations in stem cell populations and how they potentially contribute to stem cell ageing by altering mitochondrial properties in humans and in mtDNA-mutator mice. We also draw attention to the diverse fates of the mtDNA mutations with different origins during ageing, with potential selective pressures on the germline inherited but not the somatic mtDNA mutations.

  12. The efficiency of mitochondrial DNA markers in constructing genetic ...

    African Journals Online (AJOL)

    The efficiency of mitochondrial DNA markers in constructing genetic relationship among Oryx species. ... These data were used to provide the genetic kinship among different Oryx species. The complete cytochrome b gene ... Key words: Conservation, endangered species, Oryx, mitochondrial DNA (mtDNA) markers.

  13. Dysregulated mitophagy and mitochondrial organization in optic atrophy due to OPA1 mutations.

    Science.gov (United States)

    Liao, Chunyan; Ashley, Neil; Diot, Alan; Morten, Karl; Phadwal, Kanchan; Williams, Andrew; Fearnley, Ian; Rosser, Lyndon; Lowndes, Jo; Fratter, Carl; Ferguson, David J P; Vay, Laura; Quaghebeur, Gerardine; Moroni, Isabella; Bianchi, Stefania; Lamperti, Costanza; Downes, Susan M; Sitarz, Kamil S; Flannery, Padraig J; Carver, Janet; Dombi, Eszter; East, Daniel; Laura, Matilde; Reilly, Mary M; Mortiboys, Heather; Prevo, Remko; Campanella, Michelangelo; Daniels, Matthew J; Zeviani, Massimo; Yu-Wai-Man, Patrick; Simon, Anna Katharina; Votruba, Marcela; Poulton, Joanna

    2017-01-10

    To investigate mitophagy in 5 patients with severe dominantly inherited optic atrophy (DOA), caused by depletion of OPA1 (a protein that is essential for mitochondrial fusion), compared with healthy controls. Patients with severe DOA (DOA plus) had peripheral neuropathy, cognitive regression, and epilepsy in addition to loss of vision. We quantified mitophagy in dermal fibroblasts, using 2 high throughput imaging systems, by visualizing colocalization of mitochondrial fragments with engulfing autophagosomes. Fibroblasts from 3 biallelic OPA1(-/-) patients with severe DOA had increased mitochondrial fragmentation and mitochondrial DNA (mtDNA)-depleted cells due to decreased levels of OPA1 protein. Similarly, in siRNA-treated control fibroblasts, profound OPA1 knockdown caused mitochondrial fragmentation, loss of mtDNA, impaired mitochondrial function, and mitochondrial mislocalization. Compared to controls, basal mitophagy (abundance of autophagosomes colocalizing with mitochondria) was increased in (1) biallelic patients, (2) monoallelic patients with DOA plus, and (3) OPA1 siRNA-treated control cultures. Mitophagic flux was also increased. Genetic knockdown of the mitophagy protein ATG7 confirmed this by eliminating differences between patient and control fibroblasts. We demonstrated increased mitophagy and excessive mitochondrial fragmentation in primary human cultures associated with DOA plus due to biallelic OPA1 mutations. We previously found that increased mitophagy (mitochondrial recycling) was associated with visual loss in another mitochondrial optic neuropathy, Leber hereditary optic neuropathy (LHON). Combined with our LHON findings, this implicates excessive mitochondrial fragmentation, dysregulated mitophagy, and impaired response to energetic stress in the pathogenesis of mitochondrial optic neuropathies, potentially linked with mitochondrial mislocalization and mtDNA depletion. Copyright © 2016 The Author(s). Published by Wolters Kluwer Health, Inc

  14. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris

    Directory of Open Access Journals (Sweden)

    Olson Matthew S

    2010-01-01

    Full Text Available Abstract Background Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. Results We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. Conclusions Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris. Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.

  15. Widespread Mitochondrial Depletion via Mitophagy Does Not Compromise Necroptosis

    Directory of Open Access Journals (Sweden)

    Stephen W.G. Tait

    2013-11-01

    Full Text Available Programmed necrosis (or necroptosis is a form of cell death triggered by the activation of receptor interacting protein kinase-3 (RIPK3. Several reports have implicated mitochondria and mitochondrial reactive oxygen species (ROS generation as effectors of RIPK3-dependent cell death. Here, we directly test this idea by employing a method for the specific removal of mitochondria via mitophagy. Mitochondria-deficient cells were resistant to the mitochondrial pathway of apoptosis, but efficiently died via tumor necrosis factor (TNF-induced, RIPK3-dependent programmed necrosis or as a result of direct oligomerization of RIPK3. Although the ROS scavenger butylated hydroxyanisole (BHA delayed TNF-induced necroptosis, it had no effect on necroptosis induced by RIPK3 oligomerization. Furthermore, although TNF-induced ROS production was dependent on mitochondria, the inhibition of TNF-induced necroptosis by BHA was observed in mitochondria-depleted cells. Our data indicate that mitochondrial ROS production accompanies, but does not cause, RIPK3-dependent necroptotic cell death.

  16. Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease.

    Science.gov (United States)

    Boczonadi, Veronika; King, Martin S; Smith, Anthony C; Olahova, Monika; Bansagi, Boglarka; Roos, Andreas; Eyassu, Filmon; Borchers, Christoph; Ramesh, Venkateswaran; Lochmüller, Hanns; Polvikoski, Tuomo; Whittaker, Roger G; Pyle, Angela; Griffin, Helen; Taylor, Robert W; Chinnery, Patrick F; Robinson, Alan J; Kunji, Edmund R S; Horvath, Rita

    2018-03-08

    PurposeTo understand the role of the mitochondrial oxodicarboxylate carrier (SLC25A21) in the development of spinal muscular atrophy-like disease.MethodsWe identified a novel pathogenic variant in a patient by whole-exome sequencing. The pathogenicity of the mutation was studied by transport assays, computer modeling, followed by targeted metabolic testing and in vitro studies in human fibroblasts and neurons.ResultsThe patient carries a homozygous pathogenic variant c.695A>G; p.(Lys232Arg) in the SLC25A21 gene, encoding the mitochondrial oxodicarboxylate carrier, and developed spinal muscular atrophy and mitochondrial myopathy. Transport assays show that the mutation renders SLC25A21 dysfunctional and 2-oxoadipate cannot be imported into the mitochondrial matrix. Computer models of central metabolism predicted that impaired transport of oxodicarboxylate disrupts the pathways of lysine and tryptophan degradation, and causes accumulation of 2-oxoadipate, pipecolic acid, and quinolinic acid, which was confirmed in the patient's urine by targeted metabolomics. Exposure to 2-oxoadipate and quinolinic acid decreased the level of mitochondrial complexes in neuronal cells (SH-SY5Y) and induced apoptosis.ConclusionMitochondrial oxodicarboxylate carrier deficiency leads to mitochondrial dysfunction and the accumulation of oxoadipate and quinolinic acid, which in turn cause toxicity in spinal motor neurons leading to spinal muscular atrophy-like disease.GENETICS in MEDICINE advance online publication, 8 March 2018; doi:10.1038/gim.2017.251.

  17. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Doudican, Nicole A; Song, Binwei; Shadel, Gerald S; Doetsch, Paul W

    2005-06-01

    Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.

  18. Endangered species: mitochondrial DNA loss as a mechanism of human disease.

    Science.gov (United States)

    Herrera, Alan; Garcia, Iraselia; Gaytan, Norma; Jones, Edith; Maldonado, Alicia; Gilkerson, Robert

    2015-06-01

    Human mitochondrial DNA (mtDNA) is a small maternally inherited DNA, typically present in hundreds of copies in a single human cell. Thus, despite its small size, the mitochondrial genome plays a crucial role in the metabolic homeostasis of the cell. Our understanding of mtDNA genotype-phenotype relationships is derived largely from studies of the classical mitochondrial neuromuscular diseases, in which mutations of mtDNA lead to compromised mitochondrial bioenergetic function, with devastating pathological consequences. Emerging research suggests that loss, rather than mutation, of mtDNA plays a major role across a range of prevalent human diseases, including diabetes mellitus, cardiovascular disease, and aging. Here, we examine the 'rules' of mitochondrial genetics and function, the clinical settings in which loss of mtDNA is an emerging pathogenic mechanism, and explore mtDNA damage and its consequences for the organellar network and cell at large. As extranuclear genetic material arrayed throughout the cell to support metabolism, mtDNA is increasingly implicated in a host of disease conditions, opening a range of exciting questions regarding mtDNA and its role in cellular homeostasis.

  19. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  20. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    The aims of this research were to study mitochondrial DNA hypervariable region III and establish the degree of variation characteristic of a fragment. The mitochondrial DNA (mtDNA) is a small circular genome located within the mitochondria in the cytoplasm of the cell and a smaller 1.2 kb pair fragment, called the control ...

  1. Defects in maintenance of mitochondrial DNA are associated with intramitochondrial nucleotide imbalances.

    Science.gov (United States)

    Ashley, Neil; Adams, Susan; Slama, Abdelhamid; Zeviani, Massimo; Suomalainen, Anu; Andreu, Antonio L; Naviaux, Robert K; Poulton, Joanna

    2007-06-15

    Defects in mtDNA maintenance range from fatal multisystem childhood diseases, such as Alpers syndrome, to milder diseases in adults, including mtDNA depletion syndromes (MDS) and familial progressive external ophthalmoplegia (AdPEO). Most are associated with defects in genes involved in mitochondrial deoxynucleotide metabolism or utilization, such as mutations in thymidine kinase 2 (TK2) as well as the mtDNA replicative helicase, Twinkle and gamma polymerase (POLG). We have developed an in vitro system to measure incorporation of radiolabelled dNTPs into mitochondria of saponin permeabilized cells. We used this to compare the rates of mtDNA synthesis in cells from 12 patients with diseases of mtDNA maintenance. We observed reduced incorporation of exogenous alpha (32)P-dTTP in fibroblasts from a patient with Alpers syndrome associated with the A467T substitution in POLG, a patient with dGK mutations, and a patient with mtDNA depletion of unknown origin compared to controls. However, incorporation of alpha (32)P-dTTP relative to either cell doubling time or alpha (32)P-dCTP incorporation was increased in patients with thymidine kinase deficiency or PEO as the result of TWINKLE mutations compared with controls. The specific activity of newly synthesized mtDNA depends on the size of the endogenous pool diluting the exogenous labelled nucleotide. Our result is consistent with a deficiency in the intramitochondrial pool of dTTP relative to dCTP in cells from patients with TK2 deficiency and TWINKLE mutations. Such DNA precursor asymmetry could cause pausing of the replication complex and hence exacerbate the propensity for age-related mtDNA mutations. Because deviations from the normal concentrations of dNTPs are known to be mutagenic, we suggest that intramitochondrial nucleotide imbalance could underlie the multiple mtDNA mutations observed in these patients.

  2. [Effect of endonuclease G depletion on plasmid DNA uptake and levels of homologous recombination in hela cells].

    Science.gov (United States)

    Misic, V; El-Mogy, M; Geng, S; Haj-Ahmad, Y

    2016-01-01

    Endonuclease G (EndoG) is a mitochondrial apoptosis regulator that also has roles outside of programmed cell death. It has been implicated as a defence DNase involved in the degradation of exogenous DNA after transfection of mammalian cells and in homologous recombination of viral and endogenous DNA. In this study, we looked at the effect of EndoG depletion on plasmid DNA uptake and the levels of homologous recombination in HeLa cells. We show that the proposed defence role of EndoG against uptake of non-viral DNA vectors does not extend to the cervical carcinoma HeLa cells, as targeting of EndoG expression by RNA interference failed to increase intracellular plasmid DNA levels. However, reducing EndoG levels in HeLa cells resulted in a statistically significant reduction of homologous recombination between two plasmid DNA substrates. These findings suggest that non-viral DNA vectors are also substrates for EndoG in its role in homologous recombination.

  3. Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription.

    Science.gov (United States)

    Dalla Rosa, Ilaria; Zhang, Hongliang; Khiati, Salim; Wu, Xiaolin; Pommier, Yves

    2017-12-08

    Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.

  4. Maternal inheritance and mitochondrial DNA variants in familial Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Pfeiffer Ronald F

    2010-04-01

    Full Text Available Abstract Background Mitochondrial function is impaired in Parkinson's disease (PD and may contribute to the pathogenesis of PD, but the causes of mitochondrial impairment in PD are unknown. Mitochondrial dysfunction is recapitulated in cell lines expressing mitochondrial DNA (mtDNA from PD patients, implicating mtDNA variants or mutations, though the role of mtDNA variants or mutations in PD risk remains unclear. We investigated the potential contribution of mtDNA variants or mutations to the risk of PD. Methods We examined the possibility of a maternal inheritance bias as well as the association between mitochondrial haplogroups and maternal inheritance and disease risk in a case-control study of 168 multiplex PD families in which the proband and one parent were diagnosed with PD. 2-tailed Fisher Exact Tests and McNemar's tests were used to compare allele frequencies, and a t-test to compare ages of onset. Results The frequency of affected mothers of the proband with PD (83/167, 49.4% was not significantly different from the frequency of affected females of the proband generation (115/259, 44.4% (Odds Ratio 1.22; 95%CI 0.83 - 1.81. After correcting for multiple tests, there were no significant differences in the frequencies of mitochondrial haplogroups or of the 10398G complex I gene polymorphism in PD patients compared to controls, and no significant associations with age of onset of PD. Mitochondrial haplogroup and 10398G polymorphism frequencies were similar in probands having an affected father as compared to probands having an affected mother. Conclusions These data fail to demonstrate a bias towards maternal inheritance in familial PD. Consistent with this, we find no association of common haplogroup-defining mtDNA variants or for the 10398G variant with the risk of PD. However, these data do not exclude a role for mtDNA variants in other populations, and it remains possible that other inherited mitochondrial DNA variants, or somatic mDNA

  5. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences.

    Science.gov (United States)

    Malik, Afshan N; Czajka, Anna; Cunningham, Phil

    2016-07-01

    Mitochondria contain an extra-nuclear genome in the form of mitochondrial DNA (MtDNA), damage to which can lead to inflammation and bioenergetic deficit. Changes in MtDNA levels are increasingly used as a biomarker of mitochondrial dysfunction. We previously reported that in humans, fragments in the nuclear genome known as nuclear mitochondrial insertion sequences (NumtS) affect accurate quantification of MtDNA. In the current paper our aim was to determine whether mouse NumtS affect the quantification of MtDNA and to establish a method designed to avoid this. The existence of NumtS in the mouse genome was confirmed using blast N, unique MtDNA regions were identified using FASTA, and MtDNA primers which do not co-amplify NumtS were designed and tested. MtDNA copy numbers were determined in a range of mouse tissues as the ratio of the mitochondrial and nuclear genome using real time qPCR and absolute quantification. Approximately 95% of mouse MtDNA was duplicated in the nuclear genome as NumtS which were located in 15 out of 21 chromosomes. A unique region was identified and primers flanking this region were used. MtDNA levels differed significantly in mouse tissues being the highest in the heart, with levels in descending order (highest to lowest) in kidney, liver, blood, brain, islets and lung. The presence of NumtS in the nuclear genome of mouse could lead to erroneous data when studying MtDNA content or mutation. The unique primers described here will allow accurate quantification of MtDNA content in mouse models without co-amplification of NumtS. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  6. Genetics Home Reference: TK2-related mitochondrial DNA depletion syndrome, myopathic form

    Science.gov (United States)

    ... Additional NIH Resources (1 link) National Institute of Neurological Disorders and Stroke: Mitochondrial Myopathies Information Page Educational Resources (10 links) Boston Children's Hospital: Muscle Weakness Cincinnati Children's Hospital: Mitochondrial Diseases ...

  7. The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination

    KAUST Repository

    Blomme, Jonas

    2017-04-19

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gainand loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.

  8. Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA.

    Science.gov (United States)

    Karavaeva, Iuliia E; Golyshev, Sergey A; Smirnova, Ekaterina A; Sokolov, Svyatoslav S; Severin, Fedor F; Knorre, Dmitry A

    2017-04-01

    Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8 , ATG32 or ATG33 , implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes. © 2017. Published by The Company of Biologists Ltd.

  9. Mitochondrial DNA: An Endogenous Trigger for Immune Paralysis.

    Science.gov (United States)

    Schäfer, Simon T; Franken, Lars; Adamzik, Michael; Schumak, Beatrix; Scherag, André; Engler, Andrea; Schönborn, Niels; Walden, Jennifer; Koch, Susanne; Baba, Hideo A; Steinmann, Jörg; Westendorf, Astrid M; Fandrey, Joachim; Bieber, Thomas; Kurts, Christian; Frede, Stilla; Peters, Jürgen; Limmer, Andreas

    2016-04-01

    Critically ill patients are at high risk to suffer from sepsis, even in the absence of an initial infectious source, but the molecular mechanisms for their increased sepsis susceptibility, including a suppressed immune system, remain unclear. Although microbes and pathogen-associated molecular pattern are accepted inducers of sepsis and septic immunosuppression, the role of endogenous Toll-like receptor (TLR) ligands, such as mitochondrial DNA (mtDNA), in altering the immune response is unknown. Mitochondrial DNA serum concentrations of the mitochondrial genes D-Loop and adenosine triphosphatase 6 were determined (quantitative polymerase chain reaction) in 165 septic patients and 50 healthy volunteers. Furthermore, cytotoxic T-cell activity was analyzed in wild-type and TLR9 knockout mice, with/without previous mtDNA administration, followed by injection of an ovalbumin-expressing adenoviral vector. Mitochondrial DNA serum concentrations were increased in septic patients (adenosine triphosphatase 6, 123-fold; D-Loop, 76-fold, P < 0.0001) compared with volunteers. Furthermore, a single mtDNA injection caused profound, TLR9-dependent immunosuppression of adaptive T-cell cytotoxicity in wild-type but not in TLR9 knockout mice and evoked various immunosuppressive mechanisms including the destruction of the splenic microstructure, deletion of cross-presenting dendritic cells, and up-regulation of programmed cell death ligand 1 and indoleamine 2,3-dioxygenase. Several of these findings in mice were mirrored in septic patients, and mtDNA concentrations were associated with an increased 30-day mortality. The findings of this study imply that mtDNA, an endogenous danger associated molecular pattern, is a hitherto unknown inducer of septic immunoparalysis and one possible link between initial inflammation and subsequent immunosuppression in critically ill patients.

  10. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior. This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.

  11. Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation.

    Science.gov (United States)

    Ngo, Huu B; Lovely, Geoffrey A; Phillips, Rob; Chan, David C

    2014-01-01

    TFAM (transcription factor A, mitochondrial) is a DNA-binding protein that activates transcription at the two major promoters of mitochondrial DNA (mtDNA)--the light strand promoter (LSP) and the heavy strand promoter 1 (HSP1). Equally important, it coats and packages the mitochondrial genome. TFAM has been shown to impose a U-turn on LSP DNA; however, whether this distortion is relevant at other sites is unknown. Here we present crystal structures of TFAM bound to HSP1 and to nonspecific DNA. In both, TFAM similarly distorts the DNA into a U-turn. Yet, TFAM binds to HSP1 in the opposite orientation from LSP explaining why transcription from LSP requires DNA bending, whereas transcription at HSP1 does not. Moreover, the crystal structures reveal dimerization of DNA-bound TFAM. This dimerization is dispensable for DNA bending and transcriptional activation but is important in DNA compaction. We propose that TFAM dimerization enhances mitochondrial DNA compaction by promoting looping of the DNA.

  12. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity

    DEFF Research Database (Denmark)

    Croteau, Deborah L; Rossi, Marie L; Canugovi, Chandrika

    2012-01-01

    in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present...... in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial......Q helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity....

  13. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.

    Science.gov (United States)

    Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna

    2017-03-24

    Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.

  14. Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction

    Science.gov (United States)

    Furda, Amy M.; Marrangoni, Adele M.; Lokshin, Anna; Van Houten, Bennett

    2013-01-01

    Mitochondrial DNA (mtDNA) is essential for proper mitochondrial function and encodes 22 tRNAs, 2 rRNAs and 13 polypeptides that make up subunits of complex I, III, IV, in the electron transport chain and complex V, the ATP synthase. Although mitochondrial dysfunction has been implicated in processes such as premature aging, neurodegeneration, and cancer, it has not been shown whether persistent mtDNA damage causes a loss of oxidative phosphorylation. We addressed this question by treating mouse embryonic fibroblasts with either hydrogen peroxide (H2O2) or the alkylating agent methyl methanesulfonate (MMS) and measuring several endpoints, including mtDNA damage and repair rates using QPCR, levels of mitochondrial- and nuclear-encoded proteins using antibody analysis, and a pharmacologic profile of mitochondria using the Seahorse Extracellular Flux Analyzer. We show that a 60 min treatment with H2O2 causes persistent mtDNA lesions, mtDNA loss, decreased levels of a nuclear-encoded mitochondrial subunit, a loss of ATP-linked oxidative phosphorylation and a loss of total reserve capacity. Conversely, a 60 min treatment with 2 mM MMS causes persistent mtDNA lesions but no mtDNA loss, no decrease in levels of a nuclear-encoded mitochondrial subunit, and no mitochondrial dysfunction. These results suggest that persistent mtDNA damage is not sufficient to cause mitochondrial dysfunction. PMID:22766155

  15. Application of oligonucleotide array CGH to the simultaneous detection of a deletion in the nuclear TK2 gene and mtDNA depletion.

    Science.gov (United States)

    Zhang, Shulin; Li, Fang-Yuan; Bass, Harold N; Pursley, Amber; Schmitt, Eric S; Brown, Blaire L; Brundage, Ellen K; Mardach, Rebecca; Wong, Lee-Jun

    2010-01-01

    Thymidine kinase 2 (TK2), encoded by the TK2 gene on chromosome 16q22, is one of the deoxyribonucleoside kinases responsible for the maintenance of mitochondrial deoxyribonucleotide pools. Defects in TK2 mainly cause a myopathic form of the mitochondrial DNA depletion syndrome (MDDS). Currently, only point mutations and small insertions and deletions have been reported in TK2 gene; gross rearrangements of TK2 gene and possible hepatic involvement in patients with TK2 mutations have not been described. We report a non-consanguineous Jordanian family with three deceased siblings due to mtDNA depletion. Sequence analysis of the father detected a heterozygous c.761T>A (p.I254N) mutation in his TK2 gene; however, point mutations in the mother were not detected. Subsequent gene dosage analysis using oligonucleotide array CGH identified an intragenic approximately 5.8-kb deletion encompassing the 5'UTR to intron 2 of her TK2 gene. Sequence analysis confirmed that the deletion spans c.1-495 to c.283-2899 of the TK2 gene (nucleotide 65,136,256-65,142,086 of chromosome 16). Analysis of liver and muscle specimens from one of the deceased infants in this family revealed compound heterozygosity for the paternal point mutation and maternal intragenic deletion. In addition, a significant reduction of the mtDNA content in liver and muscle was detected (10% and 20% of age- and tissue-matched controls, respectively). Prenatal diagnosis was performed in the third pregnancy. The fetus was found to carry both the point mutation and the deletion. This child died 6months after birth due to myopathy. A serum specimen demonstrated elevated liver transaminases in two of the infants from whom results were available. This report expands the mutation spectrum associated with TK2 deficiency. While the myopathic form of MDDS appears to be the main phenotype of TK2 mutations, liver dysfunction may also be a part of the mitochondrial depletion syndrome caused by TK2 gene defects.

  16. Mitochondrial DNA levels in Huntington disease leukocytes and dermal fibroblasts.

    Science.gov (United States)

    Jędrak, Paulina; Krygier, Magdalena; Tońska, Katarzyna; Drozd, Małgorzata; Kaliszewska, Magdalena; Bartnik, Ewa; Sołtan, Witold; Sitek, Emilia J; Stanisławska-Sachadyn, Anna; Limon, Janusz; Sławek, Jarosław; Węgrzyn, Grzegorz; Barańska, Sylwia

    2017-08-01

    Huntington disease (HD) is an inherited neurodegenerative disorder caused by mutations in the huntingtin gene. Involvement of mitochondrial dysfunctions in, and especially influence of the level of mitochondrial DNA (mtDNA) on, development of this disease is unclear. Here, samples of blood from 84 HD patients and 79 controls, and dermal fibroblasts from 10 HD patients and 9 controls were analysed for mtDNA levels. Although the type of mitochondrial haplogroup had no influence on the mtDNA level, and there was no correlation between mtDNA level in leukocytes in HD patients and various parameters of HD severity, some considerable differences between HD patients and controls were identified. The average mtDNA/nDNA relative copy number was significantly higher in leukocytes, but lower in fibroblasts, of symptomatic HD patients relative to the control group. Moreover, HD women displayed higher mtDNA levels in leukocytes than HD men. Because this is the largest population analysed to date, these results might contribute to explanation of discrepancies between previously published studies concerning levels of mtDNA in cells of HD patients. We suggest that the size of the investigated population and type of cells from which DNA is isolated could significantly affect results of mtDNA copy number estimation in HD. Hence, these parameters should be taken into consideration in studies on mtDNA in HD, and perhaps also in other diseases where mitochondrial dysfunction occurs.

  17. Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases.

    Science.gov (United States)

    Nakayama, Hiroyuki; Otsu, Kinya

    2018-03-06

    Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases. © 2018 The Author(s).

  18. Mitochondrial DNA replication: a PrimPol perspective

    Science.gov (United States)

    Bailey, Laura J.

    2017-01-01

    PrimPol, (primase–polymerase), the most recently identified eukaryotic polymerase, has roles in both nuclear and mitochondrial DNA maintenance. PrimPol is capable of acting as a DNA polymerase, with the ability to extend primers and also bypass a variety of oxidative and photolesions. In addition, PrimPol also functions as a primase, catalysing the preferential formation of DNA primers in a zinc finger-dependent manner. Although PrimPol's catalytic activities have been uncovered in vitro, we still know little about how and why it is targeted to the mitochondrion and what its key roles are in the maintenance of this multicopy DNA molecule. Unlike nuclear DNA, the mammalian mitochondrial genome is circular and the organelle has many unique proteins essential for its maintenance, presenting a differing environment within which PrimPol must function. Here, we discuss what is currently known about the mechanisms of DNA replication in the mitochondrion, the proteins that carry out these processes and how PrimPol is likely to be involved in assisting this vital cellular process. PMID:28408491

  19. Mgm101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA

    International Nuclear Information System (INIS)

    Meeusen, S.; Tieu, Q.; Wong, E.; Weiss, E.; Schieltz, D.; Yates, J.R.; Nunnari, J.

    1999-01-01

    Maintenance of mitochondrial DNA (mtDNA) during cell division is required for progeny to be respiratory competent. Maintenance involves the replication, repair, assembly, segregation, and partitioning of the mitochondrial nucleoid. MGM101 has been identified as a gene essential for mtDNA maintenance in S. cerevisiae, but its role is unknown. Using liquid chromatography coupled with tandem mass spectrometry, we identified Mgm101p as a component of highly enriched nucleoids, suggesting that it plays a nucleoid-specific role in maintenance. Subcellular fractionation, indirect immunofluorescence and GFP tagging show that Mgm101p is exclusively associated with the mitochondrial nucleoid structure in cells. Furthermore, DNA affinity chromatography of nucleoid extracts indicates that Mgm101p binds to DNA, suggesting that its nucleoid localization is in part due to this activity. Phenotypic analysis of cells containing a temperature sensitive mgm101 allele suggests that Mgm101p is not involved in mtDNA packaging, segregation, partitioning or required for ongoing mtDNA replication. We examined Mgm101p's role in mtDNA repair. As compared with wild-type cells, mgm101 cells were more sensitive to mtDNA damage induced by UV irradiation and were hypersensitive to mtDNA damage induced by gamma rays and H2O2 treatment. Thus, we propose that Mgm101p performs an essential function in the repair of oxidatively damaged mtDNA that is required for the maintenance of the mitochondrial genome. (author)

  20. A Spatio-Temporal Analysis of Mitochondrial DNA Haplogroup I

    Directory of Open Access Journals (Sweden)

    Revesz Peter Z.

    2016-01-01

    Full Text Available The recent recovery of ancient DNA from a growing number of human samples shows that mitochondrial DNA haplogroup I was introduced to Europe after the end of the Last Glacial Maximum. This paper provides a spatio-temporal analysis of the various subhaplogroups of mitochondrial DNA I. The study suggests that haplogroup I diversified into haplogroups I1, I2’3, I4 and I5 at specific regions in Eurasia and then spread southward to Crete and Egypt.

  1. Reduced mitochondrial DNA content associates with poor prognosis of prostate cancer in African American men.

    Directory of Open Access Journals (Sweden)

    Shahriar Koochekpour

    Full Text Available Reduction or depletion of mitochondrial DNA (mtDNA has been associated with cancer progression. Although imbalanced mtDNA content is known to occur in prostate cancer, differences in mtDNA content between African American (AA and Caucasian American (CA men are not defined. We provide the first evidence that tumors in AA men possess reduced level of mtDNA compared to CA men. The median tumor mtDNA content was reduced in AA men. mtDNA content was also reduced in normal prostate tissues of AA men compared to CA men, suggesting a possible predisposition to cancer in AA men. mtDNA content was also reduced in benign prostatic hyperplasia (BPH tissue from AA men. Tumor and BPH tissues from patients ≥ 60 years of age possess reduced mtDNA content compared to patients 7 compared to ≤ 7, whereas reduced mtDNA content was observed in tumors of Gleason grade >7 compared to ≤ 7. Together, our data suggest that AA men possess lower mtDNA levels in normal and tumor tissues compared to CA men, which could contribute to higher risk and more aggressive prostate cancer in AA men.

  2. Reduced mitochondrial DNA content associates with poor prognosis of prostate cancer in African American men.

    Science.gov (United States)

    Koochekpour, Shahriar; Marlowe, Timothy; Singh, Keshav K; Attwood, Kristopher; Chandra, Dhyan

    2013-01-01

    Reduction or depletion of mitochondrial DNA (mtDNA) has been associated with cancer progression. Although imbalanced mtDNA content is known to occur in prostate cancer, differences in mtDNA content between African American (AA) and Caucasian American (CA) men are not defined. We provide the first evidence that tumors in AA men possess reduced level of mtDNA compared to CA men. The median tumor mtDNA content was reduced in AA men. mtDNA content was also reduced in normal prostate tissues of AA men compared to CA men, suggesting a possible predisposition to cancer in AA men. mtDNA content was also reduced in benign prostatic hyperplasia (BPH) tissue from AA men. Tumor and BPH tissues from patients ≥ 60 years of age possess reduced mtDNA content compared to patients 7 compared to ≤ 7, whereas reduced mtDNA content was observed in tumors of Gleason grade >7 compared to ≤ 7. Together, our data suggest that AA men possess lower mtDNA levels in normal and tumor tissues compared to CA men, which could contribute to higher risk and more aggressive prostate cancer in AA men.

  3. Impaired exercise performance and skeletal muscle mitochondrial function in rats with secondary carnitine deficiency

    Directory of Open Access Journals (Sweden)

    Jamal BOUITBIR

    2016-08-01

    Full Text Available Purpose: The effects of carnitine depletion upon exercise performance and skeletal muscle mitochondrial function remain largely unexplored. We therefore investigated the effect of N-trimethyl-hydrazine-3-propionate (THP, a carnitine analogue inhibiting carnitine biosynthesis and renal carnitine reabsorption, on physical performance and skeletal muscle mitochondrial function in rats.Methods: Male Sprague Dawley rats were treated daily with water (control rats; n=12 or with 20 mg/100 g body weight THP (n=12 via oral gavage for 3 weeks. Following treatment, half of the animals of each group performed an exercise test until exhaustion.Results: Distance covered and exercise performance were lower in THP-treated compared to control rats. In the oxidative soleus muscle, carnitine depletion caused atrophy (-24% and impaired function of complex II and IV of the mitochondrial electron transport chain. The free radical leak (ROS production relative to oxygen consumption was increased and the cellular glutathione pool decreased. Moreover, mRNA expression of markers of mitochondrial biogenesis and mitochondrial DNA were decreased in THP-treated compared to control rats. In comparison, in the glycolytic gastrocnemius muscle, carnitine depletion was associated with impaired function of complex IV and increased free radical leak, whilst muscle weight and cellular glutathione pool were maintained. Markers of mitochondrial proliferation and mitochondrial DNA were unaffected.Conclusions: Carnitine deficiency is associated with impaired exercise capacity in rats treated with THP. THP-induced carnitine deficiency is associated with impaired function of the electron transport chain in oxidative and glycolytic muscle as well as with atrophy and decreased mitochondrial DNA in oxidative muscle.

  4. Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs

    International Nuclear Information System (INIS)

    Ashley, Neil; Poulton, Joanna

    2009-01-01

    The anthracyclines, such as doxorubicin (DXR), are potent anti-cancer drugs but they are limited by their clinical toxicity. The mechanisms involved remain poorly understood partly because of the difficulty in determining sub-cellular drug localisation. Using a novel method utilising the fluorescent DNA dye PicoGreen, we found that anthracyclines intercalated not only into nuclear DNA but also mitochondrial DNA (mtDNA). Intercalation of mtDNA by anthracyclines may thus contribute to the marked mitochondrial toxicity associated with these drugs. By contrast, ethidium bromide intercalated exclusively into mtDNA, without interacting with nuclear DNA, thereby explaining why mtDNA is the main target for ethidium. By exploiting PicoGreen quenching we also developed a novel assay for quantification of mtDNA levels by flow-cytometry, an approach which should be useful for studies of mitochondrial dysfunction. In summary our PicoGreen assay should be useful to study drug/DNA interactions within live cells, and facilitate therapeutic drug monitoring and kinetic studies in cancer patients.

  5. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    International Nuclear Information System (INIS)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi

    2012-01-01

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  6. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi, E-mail: harasima@pharm.hokudai.ac.jp [Hokkaido University, Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences (Japan)

    2012-08-15

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  7. Mitochondrial DNA sequence evolution in shorebird populations

    NARCIS (Netherlands)

    Wenink, P.W.

    1994-01-01

    This thesis describes the global molecular population structure of two shorebird species, in particular of the dunlin, Calidris alpina, by means of comparative sequence analysis of the most variable part of the mitochondrial DNA (mtDNA) genome. There are several reasons

  8. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis are mediated by reactive oxygen species in ionizing radiation-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee [Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Young Sang [College of Natural Sciences, Chungnam National University, Daejeon (Korea, Republic of)

    2011-09-15

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated {beta}-galactosidase (SA-{beta}-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and H{sub 2}O{sub 2}-treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and H{sub 2}O{sub 2}-treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-{beta}-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

  9. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis are mediated by reactive oxygen species in ionizing radiation-induced premature senescence

    International Nuclear Information System (INIS)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee; Kim, Young Sang

    2011-01-01

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated β-galactosidase (SA-β-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and H 2 O 2 -treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and H 2 O 2 -treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-β-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

  10. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    Science.gov (United States)

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  11. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins.

    Science.gov (United States)

    Wrede, Joanna E; Mengel-From, Jonas; Buchwald, Dedra; Vitiello, Michael V; Bamshad, Michael; Noonan, Carolyn; Christiansen, Lene; Christensen, Kaare; Watson, Nathaniel F

    2015-10-01

    Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins. Academic clinical research center. 15 sleep duration discordant monozygotic twin pairs (30 twins, 80% female; mean age 42.1 years [SD 15.0]). Sleep duration was phenotyped with wrist actigraphy. Each twin pair included a "normal" (7-9 h/24) and "short" (sleeping twin. Fasting peripheral blood leukocyte DNA was assessed for mtDNA copy number via the n-fold difference between qPCR measured mtDNA and nuclear DNA creating an mtDNA measure without absolute units. We used generalized estimating equation linear regression models accounting for the correlated data structure to assess within-pair effects of sleep duration on mtDNA copy number. Mean within-pair sleep duration difference per 24 hours was 94.3 minutes (SD 62.6 min). We found reduced sleep duration (β = 0.06; 95% CI 0.004, 0.12; P sleep efficiency (β = 0.51; 95% CI 0.06, 0.95; P sleep duration was associated with a decrease in mtDNA copy number of 0.06. Likewise, a 1% decrease in actigraphy-defined sleep efficiency was associated with a decrease in mtDNA copy number of 0.51. Reduced sleep duration and sleep efficiency were associated with reduced mitochondrial DNA copy number in sleep duration discordant monozygotic twins offering a potential mechanism whereby short sleep impairs health and longevity through mitochondrial stress. © 2015 Associated Professional Sleep Societies, LLC.

  12. Nuclear Expression of a Mitochondrial DNA Gene: Mitochondrial Targeting of Allotopically Expressed Mutant ATP6 in Transgenic Mice

    Directory of Open Access Journals (Sweden)

    David A. Dunn

    2012-01-01

    Full Text Available Nuclear encoding of mitochondrial DNA transgenes followed by mitochondrial targeting of the expressed proteins (allotopic expression; AE represents a potentially powerful strategy for creating animal models of mtDNA disease. Mice were created that allotopically express either a mutant (A6M or wildtype (A6W mt-Atp6 transgene. Compared to non-transgenic controls, A6M mice displayed neuromuscular and motor deficiencies (wire hang, pole, and balance beam analyses; P0.05. This study illustrates a mouse model capable of circumventing in vivo mitochondrial mutations. Moreover, it provides evidence supporting AE as a tool for mtDNA disease research with implications in development of DNA-based therapeutics.

  13. Fluorescent in situ hybridization of mitochondrial DNA and RNA

    Czech Academy of Sciences Publication Activity Database

    Alán, Lukáš; Zelenka, Jaroslav; Ježek, Jan; Dlasková, Andrea; Ježek, Petr

    2010-01-01

    Roč. 57, č. 4 (2010), s. 403-408 ISSN 0001-527X R&D Projects: GA ČR GAP302/10/0346; GA ČR GPP304/10/P204; GA AV ČR KJB500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : mitochondrial DNA and RNA * nucleoids of mitochondrial DNA * molecular beacon fluorescent hybridization probes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.234, year: 2010

  14. Mitochondrial DNA Mutations in Epithelial Ovarian Tumor Progression

    Science.gov (United States)

    2007-12-01

    Panici PL, Fazio VM: Mutations of D310 mitochondrial mononu- cleotide repeat in primary tumors and cytological speci- mens . Cancer Lett 2003, 190:73...BR: Detection of LOH and mitochondrial DNA alter- ations in ductal lavage and nipple aspirate fluids from high- risk patients. Breast Cancer Res

  15. Selective Gene Delivery for Integrating Exogenous DNA into Plastid and Mitochondrial Genomes Using Peptide-DNA Complexes.

    Science.gov (United States)

    Yoshizumi, Takeshi; Oikawa, Kazusato; Chuah, Jo-Ann; Kodama, Yutaka; Numata, Keiji

    2018-05-14

    Selective gene delivery into organellar genomes (mitochondrial and plastid genomes) has been limited because of a lack of appropriate platform technology, even though these organelles are essential for metabolite and energy production. Techniques for selective organellar modification are needed to functionally improve organelles and produce transplastomic/transmitochondrial plants. However, no method for mitochondrial genome modification has yet been established for multicellular organisms including plants. Likewise, modification of plastid genomes has been limited to a few plant species and algae. In the present study, we developed ionic complexes of fusion peptides containing organellar targeting signal and plasmid DNA for selective delivery of exogenous DNA into the plastid and mitochondrial genomes of intact plants. This is the first report of exogenous DNA being integrated into the mitochondrial genomes of not only plants, but also multicellular organisms in general. This fusion peptide-mediated gene delivery system is a breakthrough platform for both plant organellar biotechnology and gene therapy for mitochondrial diseases in animals.

  16. Replication stalling by catalytically impaired Twinkle induces mitochondrial DNA rearrangements in cultured cells

    NARCIS (Netherlands)

    Pohjoismaki, J.L.; Goffart, S.; Spelbrink, J.N.

    2011-01-01

    Pathological mitochondrial DNA (mtDNA) rearrangements have been proposed to result from repair of double-strand breaks caused by blockage of mitochondrial DNA (mtDNA) replication. As mtDNA deletions are seen only in post-mitotic tissues, it has been suggested that they are selected out in actively

  17. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma.

    Science.gov (United States)

    Calabrese, Francesco Maria; Clima, Rosanna; Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-08-02

    Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as 'passengers' and consequently have no discernible effect in this type of cancer.

  18. Pathological mechanisms underlying single large‐scale mitochondrial DNA deletions

    Science.gov (United States)

    Rocha, Mariana C.; Rosa, Hannah S.; Grady, John P.; Blakely, Emma L.; He, Langping; Romain, Nadine; Haller, Ronald G.; Newman, Jane; McFarland, Robert; Ng, Yi Shiau; Gorman, Grainne S.; Schaefer, Andrew M.; Tuppen, Helen A.; Taylor, Robert W.

    2018-01-01

    Objective Single, large‐scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large‐scale mtDNA deletions in skeletal muscle. Methods We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large‐scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. Results We have defined 3 “classes” of single, large‐scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. Interpretation Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex‐specific protein‐encoding genes. Furthermore, removal of mt‐tRNA genes impacts specific complexes only at high deletion levels, when complex‐specific protein‐encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115–130 PMID:29283441

  19. Return of the mitochondrial DNA : Case study of mitochondrial genome evolution in the genus Fusarium

    NARCIS (Netherlands)

    Brankovics, Balázs

    2018-01-01

    Mitochondrial DNA played a prominent role in the fields of population genetics, systematics and evolutionary biology, due to its favorable characteristics, such as, uniparental inheritance, fast evolution and easy accessibility. However, the mitochondrial sequences have been mostly neglected in

  20. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-01

    Jul 1, 2015 ... population genetics research, studies based on mitochondrial DNA (mtDNA) and Y-chromosome DNA are an excellent way of illustrating population structure .... avoid landing investigators into serious situations of medical genetic privacy and ethnics, especially for. mtDNA coding area whose mutation often ...

  1. Solar radiation and mitochondrial DNA damage

    International Nuclear Information System (INIS)

    Hill, H.Z.; Locitzer, J.; Nassrin, E.; Ogbonnaya, A.; Hubbard, K.

    2003-01-01

    The 16.6 kB human mitochondrial DNA contains two homologous 13 base pair direct repeats separated by about 5 kB. During asynchronous mitochondrial DNA replication, the distant repeat sequences are thought to anneal, resulting in the looping out of a portion of the non-template strand which is subsequently deleted as a result of interaction with reactive oxygen species (ROS). A normal daughter and a deleted daughter mitochondrion result from such insults. This deletion has been termed the common deletion as it is the most frequent of the known mitochondrial DNA deletions. The common deletion is present in high frequency in several mitochondrial disorders, accumulates with age in slow turnover tissues and is increased in sun-exposed skin. Berneburg, et al. (Photochem. Photobiol. 66: 271, 1997) induced the common deletion in normal human fibroblasts after repeated exposures to UVA. In this study, the common deletion has been shown to be induced by repeated non-lethal exposures to FS20 sunlamp irradiation. Increases in the common deletion were demonstrated using nested PCR which produced a 303 bp product that was compared to a 324 bp product that required the presence of the undeleted 5 kB region. The cells were exposed to 10 repeated doses ranging from 0.5 (UVB) - 0.24 (UVA) J/sq m to 14.4 (UVB) - 5.8 J/sq m (UVA) measured using a UVX digital radiometer and UVB and UVA detectors respectively. Comparison with the earlier study by Berneberg, et al. suggests that this type of simulated solar damage is considerably more effective in fewer exposures than UVA radiation alone. The common deletion provides a cytoplasmic end-point for ROS damage produced by low dose chronic irradiations and other low level toxic exposures and should prove useful in evaluating cytoplasmic damage produced by ionizing radiation as well

  2. Associations of mitochondrial haplogroups and mitochondrial DNA copy numbers with end-stage renal disease in a Han population.

    Science.gov (United States)

    Zhang, Yuheng; Zhao, Ying; Wen, Shuzhen; Yan, Rengna; Yang, Qinglan; Chen, Huimei

    2017-09-01

    Mitochondrial DNA (mtDNA) is closely related to mitochondrion function, and variations have been suggested to be involved in pathogenesis of complex diseases. The present study sought to elucidate mitochondrial haplogroups and mtDNA copy number in end-stage renal disease (ESRD) in a Han population. First, the mitochondrial haplogroups of 37 ESRD patients were clustered into several haplogroups, and haplogroup A & D were taken as the candidate risk haplogroups for ESRD. Second, the frequencies of A and D were assessed in 344 ESRD patients and 438 healthy controls, respectively. Haplogroup D was found to be risk maker for ESRD in young subjects (numbers were evaluated with quantitative-PCR. The ESRD patients exhibited greater cell-free mtDNA contents than the healthy controls but less intracellular mtDNA. Haplogroup D exhibited a further increase in cell-free mtDNA content and a decrease in intracellular mtDNA content among the ESRDs patients. Our findings suggest that mtNDA haplogroup D may contributes to pathogenesis of early-onset ESRD through alterations of mtDNA copy numbers.

  3. Induced pluripotent stem cells with a pathological mitochondrial DNA deletion

    Science.gov (United States)

    Cherry, Anne B. C.; Gagne, Katelyn E.; McLoughlin, Erin M.; Baccei, Anna; Gorman, Bryan; Hartung, Odelya; Miller, Justine D.; Zhang, Jin; Zon, Rebecca L.; Ince, Tan A.; Neufeld, Ellis J.; Lerou, Paul H.; Fleming, Mark D.; Daley, George Q.; Agarwal, Suneet

    2013-01-01

    In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. PMID:23400930

  4. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage.

    Science.gov (United States)

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P; Morales-Nebreda, Luisa; Cheng, Yuan; Hogan, Erin; Yeldandi, Anjana; Chi, Monica; Piseaux, Raul; Ridge, Karen; Michael Hart, C; Chandel, Navdeep; Scott Budinger, G R; Kamp, David W

    2016-12-01

    Alveolar epithelial cell (AEC) injury and mitochondrial dysfunction are important in the development of lung fibrosis. Our group has shown that in the asbestos exposed lung, the generation of mitochondrial reactive oxygen species (ROS) in AEC mediate mitochondrial DNA (mtDNA) damage and apoptosis which are necessary for lung fibrosis. These data suggest that mitochondrial-targeted antioxidants should ameliorate asbestos-induced lung. To determine whether transgenic mice that express mitochondrial-targeted catalase (MCAT) have reduced lung fibrosis following exposure to asbestos or bleomycin and, if so, whether this occurs in association with reduced AEC mtDNA damage and apoptosis. Crocidolite asbestos (100µg/50µL), TiO 2 (negative control), bleomycin (0.025 units/50µL), or PBS was instilled intratracheally in 8-10 week-old wild-type (WT - C57Bl/6J) or MCAT mice. The lungs were harvested at 21d. Lung fibrosis was quantified by collagen levels (Sircol) and lung fibrosis scores. AEC apoptosis was assessed by cleaved caspase-3 (CC-3)/Surfactant protein C (SFTPC) immunohistochemistry (IHC) and semi-quantitative analysis. AEC (primary AT2 cells from WT and MCAT mice and MLE-12 cells) mtDNA damage was assessed by a quantitative PCR-based assay, apoptosis was assessed by DNA fragmentation, and ROS production was assessed by a Mito-Sox assay. Compared to WT, crocidolite-exposed MCAT mice exhibit reduced pulmonary fibrosis as measured by lung collagen levels and lung fibrosis score. The protective effects in MCAT mice were accompanied by reduced AEC mtDNA damage and apoptosis. Similar findings were noted following bleomycin exposure. Euk-134, a mitochondrial SOD/catalase mimetic, attenuated MLE-12 cell DNA damage and apoptosis. Finally, compared to WT, asbestos-induced MCAT AT2 cell ROS production was reduced. Our finding that MCAT mice have reduced pulmonary fibrosis, AEC mtDNA damage and apoptosis following exposure to asbestos or bleomycin suggests an important role

  5. Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Laurent Chatre

    Full Text Available The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.

  6. Double-stranded DNA-dependent ATPase Irc3p is directly involved in mitochondrial genome maintenance.

    Science.gov (United States)

    Sedman, Tiina; Gaidutšik, Ilja; Villemson, Karin; Hou, YingJian; Sedman, Juhan

    2014-12-01

    Nucleic acid-dependent ATPases are involved in nearly all aspects of DNA and RNA metabolism. Previous studies have described a number of mitochondrial helicases. However, double-stranded DNA-dependent ATPases, including translocases or enzymes remodeling DNA-protein complexes, have not been identified in mitochondria of the yeast Saccharomyces cerevisae. Here, we demonstrate that Irc3p is a mitochondrial double-stranded DNA-dependent ATPase of the Superfamily II. In contrast to the other mitochondrial Superfamily II enzymes Mss116p, Suv3p and Mrh4p, which are RNA helicases, Irc3p has a direct role in mitochondrial DNA (mtDNA) maintenance. Specific Irc3p-dependent mtDNA metabolic intermediates can be detected, including high levels of double-stranded DNA breaks that accumulate in irc3Δ mutants. irc3Δ-related topology changes in rho- mtDNA can be reversed by the deletion of mitochondrial RNA polymerase RPO41, suggesting that Irc3p counterbalances adverse effects of transcription on mitochondrial genome stability. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction.

    Science.gov (United States)

    Resseguie, Emily A; Staversky, Rhonda J; Brookes, Paul S; O'Reilly, Michael A

    2015-08-01

    High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced cell death through downstream targets p53 and p21. Evidence for its role in regulating mitochondrial function is emerging, yet it has not been determined if mitochondrial dysfunction or ROS activates ATM. Because ATM maintains mitochondrial homeostasis, we hypothesized that hyperoxia induces both mitochondrial dysfunction and ROS that activate ATM. In A549 lung epithelial cells, hyperoxia decreased mitochondrial respiratory reserve capacity at 12h and basal respiration by 48 h. ROS were significantly increased at 24h, yet mitochondrial DNA double strand breaks were not detected. ATM was not required for activating p53 when mitochondrial respiration was inhibited by chronic exposure to antimycin A. Also, ATM was not further activated by mitochondrial ROS, which were enhanced by depleting manganese superoxide dismutase (SOD2). In contrast, ATM dampened the accumulation of mitochondrial ROS during exposure to hyperoxia. Our findings suggest that hyperoxia-induced mitochondrial dysfunction and ROS do not activate ATM. ATM more likely carries out its canonical response to nuclear DNA damage and may function to attenuate mitochondrial ROS that contribute to oxygen toxicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Performance of mitochondrial DNA mutations detecting early stage cancer

    International Nuclear Information System (INIS)

    Jakupciak, John P; Srivastava, Sudhir; Sidransky, David; O'Connell, Catherine D; Maragh, Samantha; Markowitz, Maura E; Greenberg, Alissa K; Hoque, Mohammad O; Maitra, Anirban; Barker, Peter E; Wagner, Paul D; Rom, William N

    2008-01-01

    Mutations in the mitochondrial genome (mtgenome) have been associated with cancer and many other disorders. These mutations can be point mutations or deletions, or admixtures (heteroplasmy). The detection of mtDNA mutations in body fluids using resequencing microarrays, which are more sensitive than other sequencing methods, could provide a strategy to measure mutation loads in remote anatomical sites. We determined the mtDNA mutation load in the entire mitochondrial genome of 26 individuals with different early stage cancers (lung, bladder, kidney) and 12 heavy smokers without cancer. MtDNA was sequenced from three matched specimens (blood, tumor and body fluid) from each cancer patient and two matched specimens (blood and sputum) from smokers without cancer. The inherited wildtype sequence in the blood was compared to the sequences present in the tumor and body fluid, detected using the Affymetrix Genechip ® Human Mitochondrial Resequencing Array 1.0 and supplemented by capillary sequencing for noncoding region. Using this high-throughput method, 75% of the tumors were found to contain mtDNA mutations, higher than in our previous studies, and 36% of the body fluids from these cancer patients contained mtDNA mutations. Most of the mutations detected were heteroplasmic. A statistically significantly higher heteroplasmy rate occurred in tumor specimens when compared to both body fluid of cancer patients and sputum of controls, and in patient blood compared to blood of controls. Only 2 of the 12 sputum specimens from heavy smokers without cancer (17%) contained mtDNA mutations. Although patient mutations were spread throughout the mtDNA genome in the lung, bladder and kidney series, a statistically significant elevation of tRNA and ND complex mutations was detected in tumors. Our findings indicate comprehensive mtDNA resequencing can be a high-throughput tool for detecting mutations in clinical samples with potential applications for cancer detection, but it is

  9. Characterization of a Dairy Gyr herd with respect to its mitochondrial DNA (mt DNA origin

    Directory of Open Access Journals (Sweden)

    Anibal Eugênio Vercesi Filho

    2010-01-01

    Full Text Available The Zebu breeds were introduced in Brazil mainly in the last century by imports from the Indian subcontinent. When the Zebu cattle arrived, the national herd suffered a significative change by backcrossing the national cows of taurine origin with Zebu sires. These processes created a polymorphism in the mitochondrial DNA (mtDNA in the Zebu animals with are in a major part derived from backcrossing and sharing mtDNA of taurine origin. To verify the maternal origin of cows belonging to the Dairy Gyr herd of APTA, Mococa 60 females were analyzed and 33 presented mtDNA from Bos taurus origin and 27 presented mtDNA from Bos indicus origin. None of these animals presented patterns of both mtDNA origins, indicating absence of heteroplasmy for these mitochondrial genotypes.

  10. PCR-Free Enrichment of Mitochondrial DNA from Human Blood and Cell Lines for High Quality Next-Generation DNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Meetha P Gould

    Full Text Available Recent advances in sequencing technology allow for accurate detection of mitochondrial sequence variants, even those in low abundance at heteroplasmic sites. Considerable sequencing cost savings can be achieved by enriching samples for mitochondrial (relative to nuclear DNA. Reduction in nuclear DNA (nDNA content can also help to avoid false positive variants resulting from nuclear mitochondrial sequences (numts. We isolate intact mitochondrial organelles from both human cell lines and blood components using two separate methods: a magnetic bead binding protocol and differential centrifugation. DNA is extracted and further enriched for mitochondrial DNA (mtDNA by an enzyme digest. Only 1 ng of the purified DNA is necessary for library preparation and next generation sequence (NGS analysis. Enrichment methods are assessed and compared using mtDNA (versus nDNA content as a metric, measured by using real-time quantitative PCR and NGS read analysis. Among the various strategies examined, the optimal is differential centrifugation isolation followed by exonuclease digest. This strategy yields >35% mtDNA reads in blood and cell lines, which corresponds to hundreds-fold enrichment over baseline. The strategy also avoids false variant calls that, as we show, can be induced by the long-range PCR approaches that are the current standard in enrichment procedures. This optimization procedure allows mtDNA enrichment for efficient and accurate massively parallel sequencing, enabling NGS from samples with small amounts of starting material. This will decrease costs by increasing the number of samples that may be multiplexed, ultimately facilitating efforts to better understand mitochondria-related diseases.

  11. Lack of mitochondrial MutS homolog 1 in Toxoplasma gondii disrupts maintenance and fidelity of mitochondrial DNA and reveals metabolic plasticity.

    Directory of Open Access Journals (Sweden)

    Tamila Garbuz

    Full Text Available The importance of maintaining the fidelity of the mitochondrial genome is underscored by the presence of various repair pathways within this organelle. Presumably, the repair of mitochondrial DNA would be of particular importance in organisms that possess only a single mitochondrion, like the human pathogens Plasmodium falciparum and Toxoplasma gondii. Understanding the machinery that maintains mitochondrial DNA in these parasites is of particular relevance, as mitochondrial function is a validated and effective target for anti-parasitic drugs. We previously determined that the Toxoplasma MutS homolog TgMSH1 localizes to the mitochondrion. MutS homologs are key components of the nuclear mismatch repair system in mammalian cells, and both yeast and plants possess MutS homologs that localize to the mitochondria where they regulate DNA stability. Here we show that the lack of TgMSH1 results in accumulation of single nucleotide variations in mitochondrial DNA and a reduction in mitochondrial DNA content. Additionally, parasites lacking TgMSH1 function can survive treatment with the cytochrome b inhibitor atovaquone. While the Tgmsh1 knockout strain has several missense mutations in cytochrome b, none affect amino acids known to be determinants of atovaquone sensitivity and atovaquone is still able to inhibit electron transport in the Tgmsh1 mutants. Furthermore, culture of Tgmsh1 mutant in the presence atovaquone leads to parasites with enhanced atovaquone resistance and complete shutdown of respiration. Thus, parasites lacking TgMSH1 overcome the disruption of mitochondrial DNA by adapting their physiology allowing them to forgo the need for oxidative phosphorylation. Consistent with this idea, the Tgmsh1 mutant is resistant to mitochondrial inhibitors with diverse targets and exhibits reduced ability to grow in the absence of glucose. This work shows TgMSH1 as critical for the maintenance and fidelity of the mitochondrial DNA in Toxoplasma

  12. Mitochondrial DNA Mutation Associated with Leber's Hereditary Optic Neuropathy

    Science.gov (United States)

    Wallace, Douglas C.; Singh, Gurparkash; Lott, Marie T.; Hodge, Judy A.; Schurr, Theodore G.; Lezza, Angela M. S.; Elsas, Louis J.; Nikoskelainen, Eeva K.

    1988-12-01

    Leber's hereditary optic neuropathy is a maternally inherited disease resulting in optic nerve degeneration and cardiac dysrhythmia. A mitochondrial DNA replacement mutation was identified that correlated with this disease in multiple families. This mutation converted a highly conserved arginine to a histidine at codon 340 in the NADH dehydrogenase subunit 4 gene and eliminated an Sfa NI site, thus providing a simple diagnostic test. This finding demonstrated that a nucleotide change in a mitochondrial DNA energy production gene can result in a neurological disease.

  13. MitBASE : a comprehensive and integrated mitochondrial DNA database. The present status

    NARCIS (Netherlands)

    Attimonelli, M.; Altamura, N.; Benne, R.; Brennicke, A.; Cooper, J. M.; D'Elia, D.; Montalvo, A.; Pinto, B.; de Robertis, M.; Golik, P.; Knoop, V.; Lanave, C.; Lazowska, J.; Licciulli, F.; Malladi, B. S.; Memeo, F.; Monnerot, M.; Pasimeni, R.; Pilbout, S.; Schapira, A. H.; Sloof, P.; Saccone, C.

    2000-01-01

    MitBASE is an integrated and comprehensive database of mitochondrial DNA data which collects, under a single interface, databases for Plant, Vertebrate, Invertebrate, Human, Protist and Fungal mtDNA and a Pilot database on nuclear genes involved in mitochondrial biogenesis in Saccharomyces

  14. Nuclear and mitochondrial DNA quantification of various forensic materials.

    Science.gov (United States)

    Andréasson, H; Nilsson, M; Budowle, B; Lundberg, H; Allen, M

    2006-12-01

    Due to the different types and quality of forensic evidence materials, their DNA content can vary substantially, and particularly low quantities can impact the results in an identification analysis. In this study, the quantity of mitochondrial and nuclear DNA was determined in a variety of materials using a previously described real-time PCR method. DNA quantification in the roots and distal sections of plucked and shed head hairs revealed large variations in DNA content particularly between the root and the shaft of plucked hairs. Also large intra- and inter-individual variations were found among hairs. In addition, DNA content was estimated in samples collected from fingerprints and accessories. The quantification of DNA on various items also displayed large variations, with some materials containing large amounts of nuclear DNA while no detectable nuclear DNA and only limited amounts of mitochondrial DNA were seen in others. Using this sensitive real-time PCR quantification assay, a better understanding was obtained regarding DNA content and variation in commonly analysed forensic evidence materials and this may guide the forensic scientist as to the best molecular biology approach for analysing various forensic evidence materials.

  15. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.

    1977-01-01

    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.

  16. Mitochondrial DNA inheritance in the human fungal pathogen Cryptococcus gattii.

    Science.gov (United States)

    Wang, Zixuan; Wilson, Amanda; Xu, Jianping

    2015-02-01

    The inheritance of mitochondrial DNA (mtDNA) is predominantly uniparental in most sexual eukaryotes. In this study, we examined the mitochondrial inheritance pattern of Cryptococcus gattii, a basidiomycetous yeast responsible for the recent and ongoing outbreak of cryptococcal infections in the US Pacific Northwest and British Columbia (especially Vancouver Island) in Canada. Using molecular markers, we analyzed the inheritance of mtDNA in 14 crosses between strains within and between divergent lineages in C. gattii. Consistent with results from recent studies, our analyses identified significant variations in mtDNA inheritance patterns among strains and crosses, ranging from strictly uniparental to biparental. For two of the crosses that showed uniparental mitochondrial inheritance in standard laboratory conditions, we further investigated the effects of the following environmental variables on mtDNA inheritance: UV exposure, temperature, and treatments with the methylation inhibitor 5-aza-2'-deoxycytidine and with the ubiquitination inhibitor ammonium chloride. Interestingly, one of these crosses showed no response to these environmental variables while the other exhibited diverse patterns ranging from complete uniparental inheritance of the MATa parent mtDNA, to biparental inheritance, and to a significant bias toward inheritance of the MATα parental mtDNA. Our results indicate that mtDNA inheritance in C. gattii differs from that in its closely related species Cryptococcus neoformans. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. [Diagnosis of mitochondrial disorders in children with next generation sequencing].

    Science.gov (United States)

    Liu, Zhimei; Fang, Fang; Ding, Changhong; Zhang, Weihua; Li, Jiuwei; Yang, Xinying; Wang, Xiaohui; Wu, Yun; Wang, Hongmei; Liu, Liying; Han, Tongli; Wang, Xu; Chen, Chunhong; Lyu, Junlan; Wu, Husheng

    2015-10-01

    To explore the application value of next generation sequencing (NGS) in the diagnosis of mitochondrial disorders. According to mitochondrial disease criteria, genomic DNA was extracted using standard procedure from peripheral venous blood of patients with suspected mitochondrial disease collected from neurological department of Beijing Children's Hospital Affiliated to Capital Medical University between October 2012 and February 2014. Targeted NGS to capture and sequence the entire mtDNA and exons of the 1 000 nuclear genes related to mitochondrial structure and function. Clinical data were collected from patients diagnosed at a molecular level, then clinical features and the relationship between genotype and phenotype were analyzed. Mutation was detected in 21 of 70 patients with suspected mitochondrial disease, in whom 10 harbored mtDNA mutation, while 11 nuclear DNA (nDNA) mutation. In 21 patients, 1 was diagnosed congenital myasthenic syndrome with episodic apnea due to CHAT gene p.I187T homozygous mutation, and 20 were diagnosed mitochondrial disease, in which 10 were Leigh syndrome, 4 were mitochondrial encephalomyopathy with lactic acidosis and stroke like episodes syndrome, 3 were Leber hereditary optic neuropathy (LHON) and LHON plus, 2 were mitochondrial DNA depletion syndrome and 1 was unknown. All the mtDNA mutations were point mutations, which contained A3243G, G3460A, G11778A, T14484C, T14502C and T14487C. Ten mitochondrial disease patients harbored homozygous or compound heterozygous mutations in 5 genes previously shown to cause disease: SURF1, PDHA1, NDUFV1, SUCLA2 and SUCLG1, which had 14 mutations, and 7 of the 14 mutations have not been reported. NGS has a certain application value in the diagnosis of mitochondrial diseases, especially in Leigh syndrome atypical mitochondrial syndrome and rare mitochondrial disorders.

  18. Mitochondrial DNA Damage and Diseases [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Gyanesh Singh

    2015-07-01

    Full Text Available Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA damage.  One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.

  19. MicroRNA as biomarkers of mitochondrial toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, Bethany R., E-mail: bethany.baumgart@bms.com [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Gray, Katherine L. [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Woicke, Jochen [Department of Pathology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Bunch, Roderick T.; Sanderson, Thomas P. [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Van Vleet, Terry R. [Department of Investigative Toxicology and Pathology, Abbvie, 1 N. Waukegan Rd., North Chicago, IL 60064-6123, USA. (United States)

    2016-12-01

    Mitochondrial toxicity can be difficult to detect as most cells can tolerate reduced activity as long as minimal capacity for function is maintained. However, once minimal capacity is lost, apoptosis or necrosis occurs quickly. Identification of more sensitive, early markers of mitochondrial toxicity was the objective of this work. Rotenone, a mitochondrial complex I inhibitor, and 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor, were administered daily to male Sprague–Dawley rats at subcutaneous doses of 0.1 or 0.3 mg/kg/day and intraperitoneal doses of 5 or 10 mg/kg/day, respectively, for 1 week. Samples of kidney, skeletal muscle (quadriceps femoris), and serum were collected for analysis of mitochondrial DNA (mtDNA) copy number and microRNA (miRNA) expression patterns. MtDNA was significantly decreased with administration of rotenone at 0.3 mg/kg/day and 3-NP at 5 and 10 mg/kg/day in the quadriceps femoris and with 3-NP at 10 mg/kg/day in the kidney. Additionally, rotenone and 3-NP treatment produced changes to miRNA expression that were similar in direction (i.e. upregulation, downregulation) to those previously linked to mitochondrial functions, such as mitochondrial damage and biogenesis (miR-122, miR-202-3p); regulation of ATP synthesis, abolished oxidative phosphorylation, and loss of membrane potential due to increased reactive oxygen species (ROS) production (miR-338-5p, miR-546, miR-34c); and mitochondrial DNA damage and depletion (miR-546). These results suggest that miRNAs may be sensitive biomarkers for early detection of mitochondrial toxicity. - Highlights: • MtDNA decreased after treatment with respiratory chain inhibitors rotenone and 3-NP. • Decrease in mtDNA is generally dose-related and indicative of mitochondrial toxicity. • Altered miRNA has reported roles in regulating mitochondrial function. • Induction of miR-338-5p in kidney and serum suggests potential as renal biomarker. • Induction of miR-122 implies

  20. Absence of a universal mechanism of mitochondrial toxicity by nucleoside analogs.

    Science.gov (United States)

    Lund, Kaleb C; Peterson, LaRae L; Wallace, Kendall B

    2007-07-01

    Nucleoside analogs are associated with various mitochondrial toxicities, and it is becoming increasingly difficult to accommodate these differences solely in the context of DNA polymerase gamma inhibition. Therefore, we examined the toxicities of zidovudine (AZT) (10 and 50 microM; 2.7 and 13.4 microg/ml), didanosine (ddI) (10 and 50 microM; 2.4 and 11.8 microg/ml), and zalcitabine (ddC) (1 and 5 microM; 0.21 and 1.1 microg/ml) in HepG2 and H9c2 cells without the presumption of mitochondrial DNA (mtDNA) depletion. Ethidium bromide (EtBr) (0.5 microg/ml; 1.3 microM) was used as a positive control. AZT treatment resulted in metabolic disruption (increased lactate and superoxide) and increased cell mortality with decreased proliferation, while mtDNA remained unchanged or increased (HepG2 cells; 50 microM AZT). ddC caused pronounced mtDNA depletion in HepG2 cells but not in H9c2 cells and increased mortality in HepG2 cells, but no significant metabolic disruption in either cell type. ddI caused a moderate depletion of mtDNA in both cell types but showed no other effects. EtBr exposure resulted in metabolic disruption, increased cell mortality with decreased cell proliferation, and mtDNA depletion in both cell types. We conclude that nucleoside analogs display unique toxicities within and between culture models, and therefore, care should be taken when generalizing about the mechanisms of nucleoside reverse transcriptase inhibitor toxicity. Additionally, mtDNA abundance does not necessarily correlate with metabolic disruption, especially in cell culture; careful discernment is recommended in this regard.

  1. Absence of a Universal Mechanism of Mitochondrial Toxicity by Nucleoside Analogs▿

    OpenAIRE

    Lund, Kaleb C.; Peterson, LaRae L.; Wallace, Kendall B.

    2007-01-01

    Nucleoside analogs are associated with various mitochondrial toxicities, and it is becoming increasingly difficult to accommodate these differences solely in the context of DNA polymerase gamma inhibition. Therefore, we examined the toxicities of zidovudine (AZT) (10 and 50 μM; 2.7 and 13.4 μg/ml), didanosine (ddI) (10 and 50 μM; 2.4 and 11.8 μg/ml), and zalcitabine (ddC) (1 and 5 μM; 0.21 and 1.1 μg/ml) in HepG2 and H9c2 cells without the presumption of mitochondrial DNA (mtDNA) depletion. E...

  2. Role of Mitochondrial DNA Mutations in Cellular Vulnerability to Mitochondria-Specific Environmental Toxins

    National Research Council Canada - National Science Library

    Hirsch, Etienne C

    2005-01-01

    In recent years, growing evidence has shown that mutations of mitochondrial DNA (mtDNA) are an important cause of mitochondrial disorders in humans, and have been associated with common neurodegenerative disorders, aging and cancers...

  3. Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease.

    Science.gov (United States)

    Fetterman, Jessica L; Holbrook, Monica; Westbrook, David G; Brown, Jamelle A; Feeley, Kyle P; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Weisbrod, Robert M; Widlansky, Michael E; Gokce, Noyan; Ballinger, Scott W; Hamburg, Naomi M

    2016-03-31

    Prior studies demonstrate mitochondrial dysfunction with increased reactive oxygen species generation in peripheral blood mononuclear cells in diabetes mellitus. Oxidative stress-mediated damage to mitochondrial DNA promotes atherosclerosis in animal models. Thus, we evaluated the relation of mitochondrial DNA damage in peripheral blood mononuclear cells s with vascular function in patients with diabetes mellitus and with atherosclerotic cardiovascular disease. We assessed non-invasive vascular function and mitochondrial DNA damage in 275 patients (age 57 ± 9 years, 60 % women) with atherosclerotic cardiovascular disease alone (N = 55), diabetes mellitus alone (N = 74), combined atherosclerotic cardiovascular disease and diabetes mellitus (N = 48), and controls age >45 without diabetes mellitus or atherosclerotic cardiovascular disease (N = 98). Mitochondrial DNA damage measured by quantitative PCR in peripheral blood mononuclear cells was higher with clinical atherosclerosis alone (0.55 ± 0.65), diabetes mellitus alone (0.65 ± 1.0), and combined clinical atherosclerosis and diabetes mellitus (0.89 ± 1.32) as compared to control subjects (0.23 ± 0.64, P < 0.0001). In multivariable models adjusting for age, sex, and relevant cardiovascular risk factors, clinical atherosclerosis and diabetes mellitus remained associated with higher mitochondrial DNA damage levels (β = 0.14 ± 0.13, P = 0.04 and β = 0.21 ± 0.13, P = 0.002, respectively). Higher mitochondrial DNA damage was associated with higher baseline pulse amplitude, a measure of arterial pulsatility, but not with flow-mediated dilation or hyperemic response, measures of vasodilator function. We found greater mitochondrial DNA damage in patients with diabetes mellitus and clinical atherosclerosis. The association of mitochondrial DNA damage and baseline pulse amplitude may suggest a link between mitochondrial dysfunction and excessive small artery pulsatility with potentially adverse microvascular impact.

  4. Increased mitochondrial DNA deletions and copy number in transfusion-dependent thalassemia

    Science.gov (United States)

    Calloway, Cassandra

    2016-01-01

    BACKGROUND. Iron overload is the primary cause of morbidity in transfusion-dependent thalassemia. Increase in iron causes mitochondrial dysfunction under experimental conditions, but the occurrence and significance of mitochondrial damage is not understood in patients with thalassemia. METHODS. Mitochondrial DNA (mtDNA) to nuclear DNA copy number (Mt/N) and frequency of the common 4977-bp mitochondrial deletion (ΔmtDNA4977) were quantified using a quantitative PCR assay on whole blood samples from 38 subjects with thalassemia who were receiving regular transfusions. RESULTS. Compared with healthy controls, Mt/N and ΔmtDNA4977 frequency were elevated in thalassemia (P = 0.038 and P 15 mg/g dry-weight or splenectomy, with the highest levels observed in subjects who had both risk factors (P = 0.003). Myocardial iron (MRI T2* 40/1 × 107 mtDNA, respectively (P = 0.025). Subjects with Mt/N values below the group median had significantly lower Matsuda insulin sensitivity index (5.76 ± 0.53) compared with the high Mt/N group (9.11 ± 0.95, P = 0.008). CONCLUSION. Individuals with transfusion-dependent thalassemia demonstrate age-related increase in mtDNA damage in leukocytes. These changes are markedly amplified by splenectomy and are associated with extrahepatic iron deposition. Elevated mtDNA damage in blood cells may predict the risk of iron-associated organ damage in thalassemia. FUNDING. This project was supported by Children’s Hospital & Research Center Oakland Institutional Research Award and by the National Center for Advancing Translational Sciences, NIH, through UCSF-CTSI grant UL1 TR000004. PMID:27583305

  5. Mitochondrial DNA diagnosis for taeniasis and cysticercosis.

    Science.gov (United States)

    Yamasaki, Hiroshi; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Sato, Marcello Otake; Ito, Akira

    2006-01-01

    Molecular diagnosis for taeniasis and cysticercosis in humans on the basis of mitochondrial DNA analysis was reviewed. Development and application of three different methods, including restriction fragment length polymorphism analysis, base excision sequence scanning thymine-base analysis and multiplex PCR, were described. Moreover, molecular diagnosis of cysticerci found in specimens submitted for histopathology and the molecular detection of taeniasis using copro-DNA were discussed.

  6. A mitochondrial DNA SNP multiplex assigning Caucasians into 36 haplo- and subhaplogroups

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Rockenbauer, Eszter; Sørensen, Erik

    2008-01-01

    Mitochondrial DNA (mtDNA) is maternally inherited without recombination events and has a high copy number, which makes mtDNA analysis feasible even when genomic DNA is sparse or degraded. Here, we present a SNP typing assay with 33 previously described mtDNA coding region SNPs for haplogroup...... previously typed by sequencing of the mitochondrial HV1 and HV2 regions. Haplogroup assignments based on mtDNA coding region SNPs and sequencing of HV1 and HV2 regions gave identical results for 27% of the samples, and except for one sample, differences in haplogroup assignments were at the subhaplogroup...

  7. Minisequencing mitochondrial DNA pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2008-04-01

    Full Text Available Abstract Background There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. Methods We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. Results We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain patients carrying haplogroup J lineages (Fisher's Exact test, P-value Conclusion We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories.

  8. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    Science.gov (United States)

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  9. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    Science.gov (United States)

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Characterization of Bombyx mori mitochondrial transcription factor A, a conserved regulator of mitochondrial DNA.

    Science.gov (United States)

    Sumitani, Megumi; Kondo, Mari; Kasashima, Katsumi; Endo, Hitoshi; Nakamura, Kaoru; Misawa, Toshihiko; Tanaka, Hiromitsu; Sezutsu, Hideki

    2017-04-15

    In the present study, we initially cloned and characterized a mitochondrial transcription factor A (Tfam) homologue in the silkworm, Bombyx mori. Bombyx mori TFAM (BmTFAM) localized to mitochondria in cultured silkworm and human cells, and co-localized with mtDNA nucleoids in human HeLa cells. In an immunoprecipitation analysis, BmTFAM was found to associate with human mtDNA in mitochondria, indicating its feature as a non-specific DNA-binding protein. In spite of the low identity between BmTFAM and human TFAM (26.5%), the expression of BmTFAM rescued mtDNA copy number reductions and enlarged mtDNA nucleoids in HeLa cells, which were induced by human Tfam knockdown. Thus, BmTFAM compensates for the function of human TFAM in HeLa cells, demonstrating that the mitochondrial function of TFAM is highly conserved between silkworms and humans. BmTfam mRNA was strongly expressed in early embryos. Through double-stranded RNA (dsRNA)-based RNA interference (RNAi) in silkworm embryos, we found that the knockdown of BmTFAM reduced the amount of mtDNA and induced growth retardation at the larval stage. Collectively, these results demonstrate that BmTFAM is a highly conserved mtDNA regulator and may be a good candidate for investigating and modulating mtDNA metabolism in this model organism. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Mitochondrial and Nuclear DNA Damage and Repair in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2013-01-01

    Full Text Available Aging and oxidative stress seem to be the most important factors in the pathogenesis of age-related macular degeneration (AMD, a condition affecting many elderly people in the developed world. However, aging is associated with the accumulation of oxidative damage in many biomolecules, including DNA. Furthermore, mitochondria may be especially important in this process because the reactive oxygen species produced in their electron transport chain can damage cellular components. Therefore, the cellular response to DNA damage, expressed mainly through DNA repair, may play an important role in AMD etiology. In several studies the increase in mitochondrial DNA (mtDNA damage and mutations, and the decrease in the efficacy of DNA repair have been correlated with the occurrence and the stage of AMD. It has also been shown that mitochondrial DNA accumulates more DNA lesions than nuclear DNA in AMD. However, the DNA damage response in mitochondria is executed by nucleus-encoded proteins, and thus mutagenesis in nuclear DNA (nDNA may affect the ability to respond to mutagenesis in its mitochondrial counterpart. We reported that lymphocytes from AMD patients displayed a higher amount of total endogenous basal and oxidative DNA damage, exhibited a higher sensitivity to hydrogen peroxide and UV radiation, and repaired the lesions induced by these factors less effectively than did cells from control individuals. We postulate that poor efficacy of DNA repair (i.e., is impaired above average for a particular age when combined with the enhanced sensitivity of retinal pigment epithelium cells to environmental stress factors, contributes to the pathogenesis of AMD. Collectively, these data suggest that the cellular response to both mitochondrial and nuclear DNA damage may play an important role in AMD pathogenesis.

  12. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins

    DEFF Research Database (Denmark)

    Wrede, Joanna E; Mengel-From, Jonas; Buchwald, Dedra

    2015-01-01

    STUDY OBJECTIVES: Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins...... structure to assess within-pair effects of sleep duration on mtDNA copy number. MEASUREMENTS AND RESULTS: Mean within-pair sleep duration difference per 24 hours was 94.3 minutes (SD 62.6 min). We found reduced sleep duration (β = 0.06; 95% CI 0.004, 0.12; P sleep efficiency (β = 0.51; 95% CI 0.......06, 0.95; P DNA copy number within twin pairs. Thus every 1-minute decrease in actigraphy-defined sleep duration was associated with a decrease in mtDNA copy number of 0.06. Likewise, a 1% decrease in actigraphy-defined sleep efficiency was associated...

  13. mtDNA, Metastasis, and the Mitochondrial Unfolded Protein Response (UPRmt).

    Science.gov (United States)

    Kenny, Timothy C; Germain, Doris

    2017-01-01

    While several studies have confirmed a link between mitochondrial DNA (mtDNA) mutations and cancer cell metastasis, much debate remains regarding the nature of the alternations in mtDNA leading to this effect. Meanwhile, the mitochondrial unfolded protein response (UPR mt ) has gained much attention in recent years, with most studies of this pathway focusing on its role in aging. However, the UPR mt has also been studied in the context of cancer. More recent work suggests that rather than a single mutation or alternation, specific combinatorial mtDNA landscapes able to activate the UPR mt may be those that are selected by metastatic cells, while mtDNA landscapes unable to activate the UPR mt do not. This review aims at offering an overview of the confusing literature on mtDNA mutations and metastasis and the more recent work on the UPR mt in this setting.

  14. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis.

    Science.gov (United States)

    Falah, Masoumeh; Houshmand, Massoud; Najafi, Mohammad; Balali, Maryam; Mahmoudian, Saeid; Asghari, Alimohamad; Emamdjomeh, Hessamaldin; Farhadi, Mohammad

    2016-01-01

    Age-related hearing impairment, or presbycusis, is the most common communication disorder and neurodegenerative disease in the elderly. Its prevalence is expected to increase, due to the trend of growth of the elderly population. The current diagnostic test for detection of presbycusis is implemented after there has been a change in hearing sensitivity. Identification of a pre-diagnostic biomarker would raise the possibility of preserving hearing sensitivity before damage occurs. Mitochondrial dysfunction, including the production of reactive oxygen species and induction of expression of apoptotic genes, participates in the progression of presbycusis. Mitochondrial DNA sequence variation has a critical role in presbycusis. However, the nature of the relationship between mitochondrial DNA copy number, an important biomarker in many other diseases, and presbycusis is undetermined. Fifty-four subjects with presbycusis and 29 healthy controls were selected after ear, nose, throat examination and pure-tone audiometry. DNA was extracted from peripheral blood samples. The copy number of mitochondrial DNA relative to the nuclear genome was measured by quantitative real-time polymerase chain reaction. Subjects with presbycusis had a lower median mitochondrial DNA copy number than healthy subjects and the difference was statistically significant ( P =0.007). Mitochondrial DNA copy number was also significantly associated with degree of hearing impairment ( P =0.025) and audiogram configuration ( P =0.022). The findings of this study suggest that lower mitochondrial DNA copy number is responsible for presbycusis through alteration of mitochondrial function. Moreover, the significant association of mitochondrial DNA copy number in peripheral blood samples with the degree of hearing impairment and audiogram configuration has potential for use as a standard test for presbycusis, providing the possibility of the development of an easy-to-use biomarker for the early detection of

  15. Compound mitochondrial DNA mutations in a neurological patient ...

    Indian Academy of Sciences (India)

    Compound mitochondrial DNA mutations in a neurological patient with ataxia, myoclonus and deafness. Ji Hoon Park, Bo Ram Yoon, Hye Jin Kim, Phil Hyu Lee, Byung-Ok Choi and Ki Wha Chung. J. Genet. 93, 173–177. Table 1. Variations from the whole mtDNA sequence in the AMDF patient. Mutation. Report. Locus/ ...

  16. DNA sequence evolution in fast evolving mitochondrial DNA nad1 exons in Geraniaceae and Plantaginaceae

    NARCIS (Netherlands)

    Bakker, F.T.; Breman, F.; Merckx, V.

    2006-01-01

    Previously, nucleotide substitution rates in mitochondrial DNA of Geraniaceae and Plantaginaceae have been shown to be exceptionally high compared with other angiosperm mtDNA lineages. It has also been shown that mtDNA introns were lost in Geraniaceae and Plantaginaceae. In this study we compile 127

  17. Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Matthew E Gegg

    Full Text Available Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD. Impairment of the mitochondrial electron transport chain (ETC and an increased frequency in deletions of mitochondrial DNA (mtDNA, which encodes some of the subunits of the ETC, have been reported in the substantia nigra of PD brains. The identification of mutations in the PINK1 gene, which cause an autosomal recessive form of PD, has supported mitochondrial involvement in PD. The PINK1 protein is a serine/threonine kinase localized in mitochondria and the cytosol. Its precise function is unknown, but it is involved in neuroprotection against a variety of stress signalling pathways.In this report we have investigated the effect of silencing PINK1 expression in human dopaminergic SH-SY5Y cells by siRNA on mtDNA synthesis and ETC function. Loss of PINK1 expression resulted in a decrease in mtDNA levels and mtDNA synthesis. We also report a concomitant loss of mitochondrial membrane potential and decreased mitochondrial ATP synthesis, with the activity of complex IV of the ETC most affected. This mitochondrial dysfunction resulted in increased markers of oxidative stress under basal conditions and increased cell death following treatment with the free radical generator paraquat.This report highlights a novel function of PINK1 in mitochondrial biogenesis and a role in maintaining mitochondrial ETC activity. Dysfunction of both has been implicated in sporadic forms of PD suggesting that these may be key pathways in the development of the disease.

  18. Mitochondrial DNA Unwinding Enzyme Required for Liver Regeneration | Center for Cancer Research

    Science.gov (United States)

    The liver has an exceptional capacity to proliferate. This ability allows the liver to regenerate its mass after partial surgical removal or injury and is the key to successful partial liver transplants. Liver cells, called hepatocytes, are packed with mitochondria, and regulating mitochondrial DNA (mtDNA) copy number is crucial to mitochondrial function, including energy production, during proliferation. Yves Pommier, M.D., Ph.D., of CCR’s Developmental Therapeutics Branch, and his colleagues recently showed that the vertebrate mitochondrial topoisomerase, Top1mt, was critical in maintaining mitochondrial function in the heart after doxorubicin-induced damage. The group wondered whether Top1mt might play a similar role in liver regeneration.

  19. Slow mitochondrial repair of 5'-AMP renders mtDNA susceptible to damage in APTX deficient cells

    DEFF Research Database (Denmark)

    Akbari, Mansour; Sykora, Peter; Bohr, Vilhelm A

    2015-01-01

    deficient cells. Moreover, the removal of 5'-AMP from DNA was significantly slower in the mitochondrial extracts from human cell lines and mouse tissues compared with their corresponding nuclear extracts. These results suggest that, contrary to nuclear DNA repair, mitochondrial DNA repair is not able...... elucidated. Here, we monitored the repair of 5'-AMP DNA damage in nuclear and mitochondrial extracts from human APTX(+/+) and APTX(-/-) cells. The efficiency of repair of 5'-AMP DNA was much lower in mitochondrial than in nuclear protein extracts, and resulted in persistent DNA repair intermediates in APTX......Aborted DNA ligation events in eukaryotic cells can generate 5'-adenylated (5'-AMP) DNA termini that can be removed from DNA by aprataxin (APTX). Mutations in APTX cause an inherited human disease syndrome characterized by early-onset progressive ataxia with ocular motor apraxia (AOA1). APTX...

  20. Absence of a Universal Mechanism of Mitochondrial Toxicity by Nucleoside Analogs▿

    Science.gov (United States)

    Lund, Kaleb C.; Peterson, LaRae L.; Wallace, Kendall B.

    2007-01-01

    Nucleoside analogs are associated with various mitochondrial toxicities, and it is becoming increasingly difficult to accommodate these differences solely in the context of DNA polymerase gamma inhibition. Therefore, we examined the toxicities of zidovudine (AZT) (10 and 50 μM; 2.7 and 13.4 μg/ml), didanosine (ddI) (10 and 50 μM; 2.4 and 11.8 μg/ml), and zalcitabine (ddC) (1 and 5 μM; 0.21 and 1.1 μg/ml) in HepG2 and H9c2 cells without the presumption of mitochondrial DNA (mtDNA) depletion. Ethidium bromide (EtBr) (0.5 μg/ml; 1.3 μM) was used as a positive control. AZT treatment resulted in metabolic disruption (increased lactate and superoxide) and increased cell mortality with decreased proliferation, while mtDNA remained unchanged or increased (HepG2 cells; 50 μM AZT). ddC caused pronounced mtDNA depletion in HepG2 cells but not in H9c2 cells and increased mortality in HepG2 cells, but no significant metabolic disruption in either cell type. ddI caused a moderate depletion of mtDNA in both cell types but showed no other effects. EtBr exposure resulted in metabolic disruption, increased cell mortality with decreased cell proliferation, and mtDNA depletion in both cell types. We conclude that nucleoside analogs display unique toxicities within and between culture models, and therefore, care should be taken when generalizing about the mechanisms of nucleoside reverse transcriptase inhibitor toxicity. Additionally, mtDNA abundance does not necessarily correlate with metabolic disruption, especially in cell culture; careful discernment is recommended in this regard. PMID:17470651

  1. Two potential Petunia hybrida mitochondrial DNA replication origins show structural and in vitro functional homology with the animal mitochondrial DNA heavy and light strand replication origins

    NARCIS (Netherlands)

    Haas, Jan M. de; Hille, Jacques; Kors, Frank; Meer, Bert van der; Kool, Ad J.; Folkerts, Otto; Nijkamp, H. John J.

    1991-01-01

    Four Petunia hybrida mitochondrial (mt) DNA fragments have been isolated, sequenced, localized on the physical map and analyzed for their ability to initiate specific DNA synthesis. When all four mtDNA fragments were tested as templates in an in vitro DNA synthesizing lysate system, developed from

  2. In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription.

    Science.gov (United States)

    Farge, Géraldine; Mehmedovic, Majda; Baclayon, Marian; van den Wildenberg, Siet M J L; Roos, Wouter H; Gustafsson, Claes M; Wuite, Gijs J L; Falkenberg, Maria

    2014-07-10

    The mechanisms regulating the number of active copies of mtDNA are still unclear. A mammalian cell typically contains 1,000-10,000 copies of mtDNA, which are packaged into nucleoprotein complexes termed nucleoids. The main protein component of these structures is mitochondrial transcription factor A (TFAM). Here, we reconstitute nucleoid-like particles in vitro and demonstrate that small changes in TFAM levels dramatically impact the fraction of DNA molecules available for transcription and DNA replication. Compaction by TFAM is highly cooperative, and at physiological ratios of TFAM to DNA, there are large variations in compaction, from fully compacted nucleoids to naked DNA. In compacted nucleoids, TFAM forms stable protein filaments on DNA that block melting and prevent progression of the replication and transcription machineries. Based on our observations, we suggest that small variations in the TFAM-to-mtDNA ratio may be used to regulate mitochondrial gene transcription and DNA replication. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Quantitative PCR analysis of diepoxybutane and epihalohydrin damage to nuclear versus mitochondrial DNA

    Energy Technology Data Exchange (ETDEWEB)

    LaRiviere, Frederick J. [Department of Chemistry, Washington and Lee University, Lexington, VA 24450 (United States); Newman, Adam G.; Watts, Megan L.; Bradley, Sharonda Q.; Juskewitch, Justin E. [Department of Chemistry, Colby College, 5757 Mayflower Hill Drive, Waterville, ME 04901 (United States); Greenwood, Paul G. [Department of Biology, Colby College, Waterville, ME 04901 (United States); Millard, Julie T., E-mail: jtmillar@colby.edu [Department of Chemistry, Colby College, 5757 Mayflower Hill Drive, Waterville, ME 04901 (United States)

    2009-05-12

    The bifunctional alkylating agents diepoxybutane (DEB) and epichlorohydrin (ECH) are linked to the elevated incidence of certain cancers among workers in the synthetic polymer industry. Both compounds form interstrand cross-links within duplex DNA, an activity suggested to contribute to their cytotoxicity. To assess the DNA targeting of these compounds in vivo, we assayed for damage within chicken erythro-progenitor cells at three different sites: one within mitochondrial DNA, one within expressed nuclear DNA, and one within unexpressed nuclear DNA. We determined the degree of damage at each site via a quantitative polymerase chain reaction, which compares amplification of control, untreated DNA to that from cells exposed to the agent in question. We found that ECH and the related compound epibromohydrin preferentially target nuclear DNA relative to mitochondrial DNA, whereas DEB reacts similarly with the two genomes. Decreased reactivity of the mitochondrial genome could contribute to the reduced apoptotic potential of ECH relative to DEB. Additionally, formation of lesions by all agents occurred at comparable levels for unexpressed and expressed nuclear loci, suggesting that alkylation is unaffected by the degree of chromatin condensation.

  4. Quantitative PCR analysis of diepoxybutane and epihalohydrin damage to nuclear versus mitochondrial DNA

    International Nuclear Information System (INIS)

    LaRiviere, Frederick J.; Newman, Adam G.; Watts, Megan L.; Bradley, Sharonda Q.; Juskewitch, Justin E.; Greenwood, Paul G.; Millard, Julie T.

    2009-01-01

    The bifunctional alkylating agents diepoxybutane (DEB) and epichlorohydrin (ECH) are linked to the elevated incidence of certain cancers among workers in the synthetic polymer industry. Both compounds form interstrand cross-links within duplex DNA, an activity suggested to contribute to their cytotoxicity. To assess the DNA targeting of these compounds in vivo, we assayed for damage within chicken erythro-progenitor cells at three different sites: one within mitochondrial DNA, one within expressed nuclear DNA, and one within unexpressed nuclear DNA. We determined the degree of damage at each site via a quantitative polymerase chain reaction, which compares amplification of control, untreated DNA to that from cells exposed to the agent in question. We found that ECH and the related compound epibromohydrin preferentially target nuclear DNA relative to mitochondrial DNA, whereas DEB reacts similarly with the two genomes. Decreased reactivity of the mitochondrial genome could contribute to the reduced apoptotic potential of ECH relative to DEB. Additionally, formation of lesions by all agents occurred at comparable levels for unexpressed and expressed nuclear loci, suggesting that alkylation is unaffected by the degree of chromatin condensation.

  5. Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Anna-Karin Berglund

    2017-02-01

    Full Text Available Previous work has demonstrated the presence of ribonucleotides in human mitochondrial DNA (mtDNA and in the present study we use a genome-wide approach to precisely map the location of these. We find that ribonucleotides are distributed evenly between the heavy- and light-strand of mtDNA. The relative levels of incorporated ribonucleotides reflect that DNA polymerase γ discriminates the four ribonucleotides differentially during DNA synthesis. The observed pattern is also dependent on the mitochondrial deoxyribonucleotide (dNTP pools and disease-causing mutations that change these pools alter both the absolute and relative levels of incorporated ribonucleotides. Our analyses strongly suggest that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of a mitochondrial ribonucleotide excision repair pathway in human cells. Furthermore, we clearly demonstrate that when dNTP pools are limiting, ribonucleotides serve as a source of building blocks to maintain DNA replication. Increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools may contribute to a pathogenic mechanism that affects mtDNA stability and impair new rounds of mtDNA replication.

  6. Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA.

    Science.gov (United States)

    Berglund, Anna-Karin; Navarrete, Clara; Engqvist, Martin K M; Hoberg, Emily; Szilagyi, Zsolt; Taylor, Robert W; Gustafsson, Claes M; Falkenberg, Maria; Clausen, Anders R

    2017-02-01

    Previous work has demonstrated the presence of ribonucleotides in human mitochondrial DNA (mtDNA) and in the present study we use a genome-wide approach to precisely map the location of these. We find that ribonucleotides are distributed evenly between the heavy- and light-strand of mtDNA. The relative levels of incorporated ribonucleotides reflect that DNA polymerase γ discriminates the four ribonucleotides differentially during DNA synthesis. The observed pattern is also dependent on the mitochondrial deoxyribonucleotide (dNTP) pools and disease-causing mutations that change these pools alter both the absolute and relative levels of incorporated ribonucleotides. Our analyses strongly suggest that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of a mitochondrial ribonucleotide excision repair pathway in human cells. Furthermore, we clearly demonstrate that when dNTP pools are limiting, ribonucleotides serve as a source of building blocks to maintain DNA replication. Increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools may contribute to a pathogenic mechanism that affects mtDNA stability and impair new rounds of mtDNA replication.

  7. Association between mitochondrial DNA variations and Alzheimer's Disease in the ADNI cohort

    Science.gov (United States)

    Lakatos, Anita; Derbeneva, Olga; Younes, Danny; Keator, David; Bakken, Trygve; Lvova, Maria; Brandon, Marty; Guffanti, Guia; Reglodi, Dora; Saykin, Andrew; Weiner, Michael; Macciardi, Fabio; Schork, Nicholas; Wallace, Douglas C.; Potkin, Steven G.

    2010-01-01

    Despite the central role of amyloid deposition in the development of Alzheimer's disease (AD), the pathogenesis of AD still remains elusive at the molecular level. Increasing evidence suggests that compromised mitochondrial function contributes to the aging process and thus may increase the risk of AD. Dysfunctional mitochondria contribute to reactive oxygen species (ROS) which can lead to extensive macromolecule oxidative damage and the progression of amyloid pathology. Oxidative stress and amyloid toxicity leave neurons chemically vulnerable. Because the brain relies on aerobic metabolism, it is apparent that mitochondria are critical for the cerebral function. Mitochondrial DNA sequence-changes could shift cell dynamics and facilitate neuronal vulnerability. Therefore we postulated that mitochondrial DNA sequence polymorphisms may increase the risk of AD. We evaluated the role of mitochondrial haplogroups derived from 138 mitochondrial polymorphisms in 358 Caucasian ADNI subjects. Our results indicate that the mitochondrial haplogroup UK may confer genetic susceptibility to AD independently of the APOE4 allele. PMID:20538375

  8. Detection of novel polymorphisms in the mitochondrial DNA D-Loop ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-04-08

    Apr 8, 2015 ... 1Department of Molecular Biology, Babylon University, Hilla City, Iraq. 2Babylon ... Mitochondrial DNA (mtDNA) is a useful genetic marker for answering .... to you for choosing the project, your enthusiasm for helping us ...

  9. Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p.

    Science.gov (United States)

    Brewer, Laurence R; Friddle, Raymond; Noy, Aleksandr; Baldwin, Enoch; Martin, Shelley S; Corzett, Michele; Balhorn, Rod; Baskin, Ronald J

    2003-10-01

    Mitochondrial and nuclear DNA are packaged by proteins in a very different manner. Although protein-DNA complexes called "nucleoids" have been identified as the genetic units of mitochondrial inheritance in yeast and man, little is known about their physical structure. The yeast mitochondrial protein Abf2p was shown to be sufficient to compact linear dsDNA, without the benefit of supercoiling, using optical and atomic force microscopy single molecule techniques. The packaging of DNA by Abf2p was observed to be very weak as evidenced by a fast Abf2p off-rate (k(off) = 0.014 +/- 0.001 s(-1)) and the extremely small forces (<0.6 pN) stabilizing the condensed protein-DNA complex. Atomic force microscopy images of individual complexes showed the 190-nm structures are loosely packaged relative to nuclear chromatin. This organization may leave mtDNA accessible for transcription and replication, while making it more vulnerable to damage.

  10. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity.

    Science.gov (United States)

    Pokrzywinski, Kaytee L; Biel, Thomas G; Kryndushkin, Dmitry; Rao, V Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.

  11. Genetic characteristics of mitochondrial DNA was associated with colorectal carcinogenesis and its prognosis.

    Directory of Open Access Journals (Sweden)

    Jae-Ho Lee

    Full Text Available Clinical value of mitochondrial DNA has been described in colorectal cancer (CRC. To clarify its role in colorectal carcinogenesis, mitochondrial microsatellite instability (mtMSI and other markers were investigated in CRCs and their precancerous lesions, as a multitier genetic study. DNA was isolated from paired normal and tumoral tissues in 78 tubular adenomas (TAs, 34 serrated polyps (SPs, and 100 CRCs. mtMSI, nucleus microsatellite instability (nMSI, KRAS mutation, and BRAF mutation were investigated in these tumors and their statistical analysis was performed. mtMSI was found in 30% of CRCs and 21.4% of precancerous lesions. Mitochondrial copy number was higher in SPs than TAs and it was associated with mtMSI in low grade TAs. KRAS and BRAF mutations were mutually exclusive in TAs and SPs. CRCs with mtMSI showed shorter overall survival times than the patients without mtMSI. In CRCs without nMSI or BRAF mutation, mtMSI was a more accurate marker for predicting prognosis. The genetic change of mitochondrial DNA is an early and independent event in colorectal precancerous lesions and mtMSI and mitochondrial contents are associated with the tubular adenoma-carcinoma sequence, resulting in poor prognosis. This result suggested that the genetic change in mitochondrial DNA appears to be a possible prognosis marker in CRC.

  12. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function

    Directory of Open Access Journals (Sweden)

    Abou-Rached Charbel

    2008-04-01

    Full Text Available Abstract Background StWhy1, a member of the plant-specific Whirly single-stranded DNA-binding protein family, was first characterized as a transcription factor involved in the activation of the nuclear PR-10a gene following defense-related stress in potato. In Arabidopsis thaliana, Whirlies have recently been shown to be primarily localized in organelles. Two representatives of the family, AtWhy1 and AtWhy3 are imported into plastids while AtWhy2 localizes to mitochondria. Their function in organelles is currently unknown. Results To understand the role of mitochondrial Whirlies in higher plants, we produced A. thaliana lines with altered expression of the atwhy2 gene. Organellar DNA immunoprecipitation experiments demonstrated that AtWhy2 binds to mitochondrial DNA. Overexpression of atwhy2 in plants perturbs mitochondrial function by causing a diminution in transcript levels and mtDNA content which translates into a low activity level of respiratory chain complexes containing mtDNA-encoded subunits. This lowered activity of mitochondria yielded plants that were reduced in size and had distorted leaves that exhibited accelerated senescence. Overexpression of atwhy2 also led to early accumulation of senescence marker transcripts in mature leaves. Inactivation of the atwhy2 gene did not affect plant development and had no detectable effect on mitochondrial morphology, activity of respiratory chain complexes, transcription or the amount of mtDNA present. This lack of phenotype upon abrogation of atwhy2 expression suggests the presence of functional homologues of the Whirlies or the activation of compensating mechanisms in mitochondria. Conclusion AtWhy2 is associated with mtDNA and its overexpression results in the production of dysfunctional mitochondria. This report constitutes the first evidence of a function for the Whirlies in organelles. We propose that they could play a role in the regulation of the gene expression machinery of organelles.

  13. Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis

    DEFF Research Database (Denmark)

    Nosek, J.; Novotna, M.; Hlavatovicova, Z.

    2004-01-01

    The complete sequence of the mitochondrial DNA of the opportunistic yeast pathogen Candida parapsilosis was determined. The mitochondrial genome is represented by linear DNA molecules terminating with tandem repeats of a 738-bp unit. The number of repeats varies, thus generating a population...

  14. Running on empty: does mitochondrial DNA mutation limit replicative lifespan in yeast?: Mutations that increase the division rate of cells lacking mitochondrial DNA also extend replicative lifespan in Saccharomyces cerevisiae.

    Science.gov (United States)

    Dunn, Cory D

    2011-10-01

    Mitochondrial DNA (mtDNA) mutations escalate with increasing age in higher organisms. However, it has so far been difficult to experimentally determine whether mtDNA mutation merely correlates with age or directly limits lifespan. A recent study shows that budding yeast can also lose functional mtDNA late in life. Interestingly, independent studies of replicative lifespan (RLS) and of mtDNA-deficient cells show that the same mutations can increase both RLS and the division rate of yeast lacking the mitochondrial genome. These exciting, parallel findings imply a potential causal relationship between mtDNA mutation and replicative senescence. Furthermore, these results suggest more efficient methods for discovering genes that determine lifespan. Copyright © 2011 WILEY Periodicals, Inc.

  15. As deficiências auditivas relacionadas às alterações do DNA mitocondrial. Hearing loss related to mitochondrial DNA changes

    Directory of Open Access Journals (Sweden)

    Maria F. P. de Carvalho

    2002-03-01

    Full Text Available A deficiência auditiva é sintoma comum que pode apresentar várias etiologias, entre elas as causadas por alterações genéticas. As mutações genéticas podem ocorrer em genes nucleares e mitocondriais. A mitocôndria, uma organela intracelular, tem o seu próprio genoma (DNA, que é uma molécula circular e é transmitido exclusivamente pela mãe. As mutações do DNA mitocondrial são transmitidas pela linhagem materna, mas podem ocorrer mutações espontâneas. O fenótipo, ou expressão clínica, da mutação mitocondrial vai depender da quantidade de DNA mitocondrial mutante existente na célula, situação conhecida como heteroplasmia. A mitocôndria tem a função de disponibilizar energia para as células sob a forma de ATP (trifosfato de adenosina. Os órgãos que requerem grande quantidade de energia são mais comumente acometidos em casos de mutações do DNA mitocondrial, como células nervosas, musculares, endócrinas, ópticas e auditivas. Como a cóclea é grande consumidora de energia, uma mutação no DNA mitocondrial de células ciliadas causa deficiência auditiva do tipo neurossensorial, bilateral, simétrica e progressiva. As deficiências auditivas causadas por mutações no DNA mitocondrial correspondem a 0,5% a 1% de todas as deficiências auditivas de origem genética. Foi realizada uma extensa revisão bibliográfica, a fim de estudar as deficiências auditivas causadas por alterações no DNA mitocondrial. A deficiência auditiva pode se apresentar na forma isolada (forma não sindrômica, como nos casos de hiper-sensibilidade aos antibióticos aminoglicosídeos e presbiacusia, ou associada a outras doenças (forma sindrômica, como na síndrome de Kearns-Sayre e diabete e surdez de herança materna.Hearing loss is a common symptom that may be manifested by many etiologies and it is frequently associated to genetic problems. Genetic mutations may occur in nuclear or mitochondrial genes. Mitochondria are

  16. Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging?

    Directory of Open Access Journals (Sweden)

    Gábor Zsurka

    2018-03-01

    Full Text Available Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA in aging tissues lacks G > T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG. In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H2O2 by a Fenton reaction. The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration.

  17. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals.

    Science.gov (United States)

    Luo, Arong; Zhang, Aibing; Ho, Simon Yw; Xu, Weijun; Zhang, Yanzhou; Shi, Weifeng; Cameron, Stephen L; Zhu, Chaodong

    2011-01-28

    A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (CO1) to diagnose and delimit species. However, there is no compelling a priori reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal CO1 barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation. Based on 1,179 mitochondrial genomes of eutherians, we found that the universal CO1 barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels. We suggest that the CO1 barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups.

  18. Mitochondrial DNA analysis suggests a Chibchan migration into Colombia

    OpenAIRE

    Noguera-Santamaría, Maria Claudia; Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana. Grupo de Genética Humana, Facultad de Medicina, Universidad de La Sabana. Facultad de Ciencias de la Salud. Grupo Gisafaco. Corporación Universitaria Remington; Anderson, Carl Edlund; Department of Foreign Languages & Cultures, Universidad de La Sabana; Uricoechea, Daniel; Grupo de Genética Humana, Facultad de Medicina, Universidad de La Sabana; Durán, Clemencia; Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana.; Briceño-Balcázar, Ignacio; Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana Grupo de Genética Humana, Facultad de Medicina, Universidad de La Sabana; Bernal-Villegas, Jaime; Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana Universidad Tecnológica de Bolívar

    2015-01-01

    The characterization of mitochondrial DNA (mtDNA) allows the establishment of genetic structures and phylogenetic relationships in human populations, tracing lineages far back in time. We analysed samples of mtDNA from twenty (20) Native American populations (700 individuals) dispersed throughout Colombian territory. Samples were collected during 1989-1993 in the context of the program Expedición Humana (“Human Expedition”) and stored in the Biological Repository of the Institute of Human Gen...

  19. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme.

    Science.gov (United States)

    Vidone, Michele; Clima, Rosanna; Santorsola, Mariangela; Calabrese, Claudia; Girolimetti, Giulia; Kurelac, Ivana; Amato, Laura Benedetta; Iommarini, Luisa; Trevisan, Elisa; Leone, Marco; Soffietti, Riccardo; Morra, Isabella; Faccani, Giuliano; Attimonelli, Marcella; Porcelli, Anna Maria; Gasparre, Giuseppe

    2015-06-01

    Glioblastoma multiforme (GBM) is the most malignant brain cancer in adults, with a poor prognosis, whose molecular stratification still represents a challenge in pathology and clinics. On the other hand, mitochondrial DNA (mtDNA) mutations have been found in most tumors as modifiers of the bioenergetics state, albeit in GBM a characterization of the mtDNA status is lacking to date. Here, a characterization of the burden of mtDNA mutations in GBM samples was performed. First, investigation of tumor-specific vs. non tumor-specific mutations was carried out with the MToolBox bioinformatics pipeline by analyzing 45 matched tumor/blood samples, from whole genome or whole exome sequencing datasets obtained from The Cancer Genome Atlas (TCGA) consortium. Additionally, the entire mtDNA sequence was obtained in a dataset of 104 fresh-frozen GBM samples. Mitochondrial mutations with potential pathogenic interest were prioritized based on heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. A preliminary biochemical analysis of the activity of mitochondrial respiratory complexes was also performed on fresh-frozen GBM samples. Although a high number of mutations was detected, we report that the large majority of them does not pass the prioritization filters. Therefore, a relatively limited burden of pathogenic mutations is indeed carried by GBM, which did not appear to determine a general impairment of the respiratory chain. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mitochondrial Targeted Endonuclease III DNA Repair Enzyme Protects against Ventilator Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Masahiro Hashizume

    2014-08-01

    Full Text Available The mitochondrial targeted DNA repair enzyme, 8-oxoguanine DNA glycosylase 1, was previously reported to protect against mitochondrial DNA (mtDNA damage and ventilator induced lung injury (VILI. In the present study we determined whether mitochondrial targeted endonuclease III (EndoIII which cleaves oxidized pyrimidines rather than purines from damaged DNA would also protect the lung. Minimal injury from 1 h ventilation at 40 cmH2O peak inflation pressure (PIP was reversed by EndoIII pretreatment. Moderate lung injury due to ventilation for 2 h at 40 cmH2O PIP produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio, and marked increases in MIP-2 and IL-6. Oxidative mtDNA damage and decreases in the total tissue glutathione (GSH and the GSH/GSSH ratio also occurred. All of these indices of injury were attenuated by mitochondrial targeted EndoIII. Massive lung injury caused by 2 h ventilation at 50 cmH2O PIP was not attenuated by EndoIII pretreatment, but all untreated mice died prior to completing the two hour ventilation protocol, whereas all EndoIII-treated mice lived for the duration of ventilation. Thus, mitochondrial targeted DNA repair enzymes were protective against mild and moderate lung damage and they enhanced survival in the most severely injured group.

  1. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis

    Directory of Open Access Journals (Sweden)

    Falah M

    2016-10-01

    Full Text Available Masoumeh Falah,1,2 Massoud Houshmand,3 Mohammad Najafi,2 Maryam Balali,1 Saeid Mahmoudian,1 Alimohamad Asghari,4 Hessamaldin Emamdjomeh,1 Mohammad Farhadi1 1ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; 2Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran; 3Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran; 4Skull base research center, Iran University of Medical Sciences, Tehran, Iran Objectives: Age-related hearing impairment, or presbycusis, is the most common communication disorder and neurodegenerative disease in the elderly. Its prevalence is expected to increase, due to the trend of growth of the elderly population. The current diagnostic test for detection of presbycusis is implemented after there has been a change in hearing sensitivity. Identification of a pre-diagnostic biomarker would raise the possibility of preserving hearing sensitivity before damage occurs. Mitochondrial dysfunction, including the production of reactive oxygen species and induction of expression of apoptotic genes, participates in the progression of presbycusis. Mitochondrial DNA sequence variation has a critical role in presbycusis. However, the nature of the relationship between mitochondrial DNA copy number, an important biomarker in many other diseases, and presbycusis is undetermined.Methods: Fifty-four subjects with presbycusis and 29 healthy controls were selected after ear, nose, throat examination and pure-tone audiometry. DNA was extracted from peripheral blood samples. The copy number of mitochondrial DNA relative to the nuclear genome was measured by quantitative real-time polymerase chain reaction.Results: Subjects with presbycusis had a lower median mitochondrial DNA copy number than healthy subjects and the difference was statistically significant (P=0.007. Mitochondrial DNA

  2. Mitochondrial DNA variation in brood stocks of the lake trout

    International Nuclear Information System (INIS)

    Grewe, P.M.; Hebert, P.D.N.

    1986-01-01

    Efforts are in progress to restore lake trout populations in the Great Lakes from hatchery stocks. In most cases, plantings include a variety of brood stocks that originated from different portions of the Great Lakes. Members of the various stocks can be differentially fin clipped to permit comparison of their survival success, but this does not allow assessment of their reproductive capability in the wild. Assessment of reproductive success requires the existence of genetic markers between brook stocks which will ideally persist over many generations. Efforts to identify allozyme differences between brood stocks have met with little success. The present investigation has employed an alternative technique to identify genetic markers--the restriction analysis of mitochondrial DNA. Mitochondiral DNA analysis of 7 lake trout brood stocks has revealed the existence of 10 mitochondrial clones falling into 3 major groups. The results indicate that mt-DNA markers have great potential for brood stock management. Genetic variability in the nuclear genome of each stock can be maintained by utilizing a large number of male parents, while restricting female parents to members of a single mitochondrial clone. Genetically marked fry could then be produced with only minor shifts in hatchery management

  3. Mitochondrial DNA repair and association with aging- an update

    DEFF Research Database (Denmark)

    Diaz, Ricardo Gredilla; Bohr, Vilhelm; Stevnsner, Tinna V.

    2010-01-01

    in the aging process and to be particularly deleterious in post-mitotic cells. Thus, DNA repair is an important mechanism for maintenance of genomic integrity. Despite the importance of mitochondria in the aging process, it was thought for many years that mitochondria lacked an enzymatic DNA repair system...... proteins and novel DNA repair pathways, thought to be exclusively present in the nucleus, have recently been described also to be present in mitochondria. Here we review the main mitochondrial DNA repair pathways and their association with the aging process....

  4. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    Czech Academy of Sciences Publication Activity Database

    Alán, Lukáš; Špaček, Tomáš; Pajuelo-Reguera, David; Jabůrek, Martin; Ježek, Petr

    2016-01-01

    Roč. 302, Jul 1 (2016), s. 31-40 ISSN 0041-008X R&D Projects: GA ČR(CZ) GAP305/12/1247; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : Doxorubicin * Ethidium Bromide * nucleoid clusters * mitochondrial DNA stress * mitochondrial transcription factor A Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.791, year: 2016

  5. Periodic expression of nuclear and mitochondrial DNA replication genes during the trypanosomatid cell cycle.

    Science.gov (United States)

    Pasion, S G; Brown, G W; Brown, L M; Ray, D S

    1994-12-01

    In trypanosomatids, DNA replication in the nucleus and in the single mitochondrion (or kinetoplast) initiates nearly simultaneously, suggesting that the DNA synthesis (S) phases of the nucleus and the mitochondrion are coordinately regulated. To investigate the basis for the temporal link between nuclear and mitochondrial DNA synthesis phases the expression of the genes encoding DNA ligase I, the 51 and 28 kDa subunits of replication protein A, dihydrofolate reductase and the mitochondrial type II topoisomerase were analyzed during the cell cycle progression of synchronous cultures of Crithidia fasciculata. These DNA replication genes were all expressed periodically, with peak mRNA levels occurring just prior to or at the peak of DNA synthesis in the synchronized cultures. A plasmid clone (pdN-1) in which TOP2, the gene encoding the mitochondrial topoisomerase, was disrupted by the insertion of a NEO drug-resistance cassette was found to express both a truncated TOP2 mRNA and a truncated topoisomerase polypeptide. The truncated mRNA was also expressed periodically coordinate with the expression of the endogenous TOP2 mRNA indicating that cis elements necessary for periodic expression are contained within cloned sequences. The expression of both TOP2 and nuclear DNA replication genes at the G1/S boundary suggests that regulated expression of these genes may play a role in coordinating nuclear and mitochondrial S phases in trypanosomatids.

  6. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response

    DEFF Research Database (Denmark)

    Xing, Meichun; Wang, Xiaohui; Palmai-Pallag, Timea

    2015-01-01

    have investigated the role of MUS81 in human cells by acutely depleting the protein using shRNAs. We found that MUS81 depletion from human fibroblasts leads to accumulation of ssDNA and a constitutive DNA damage response that ultimately activates cellular senescence. Moreover, we show that MUS81...

  7. What cost mitochondria? The maintenance of functional mitochondrial DNA within and across generations

    NARCIS (Netherlands)

    Aanen, D.K.; Spelbrink, J.N.; Beekman, M.

    2014-01-01

    The peculiar biology of mitochondrial DNA (mtDNA) potentially has detrimental consequences for organismal health and lifespan. Typically, eukaryotic cells contain multiple mitochondria, each with multiple mtDNA genomes. The high copy number of mtDNA implies that selection on mtDNA functionality is

  8. A role for recombination junctions in the segregation of mitochondrial DNA in yeast.

    Science.gov (United States)

    Lockshon, D; Zweifel, S G; Freeman-Cook, L L; Lorimer, H E; Brewer, B J; Fangman, W L

    1995-06-16

    In S. cerevisiae, mitochondrial DNA (mtDNA) molecules, in spite of their high copy number, segregate as if there were a small number of heritable units. The rapid segregation of mitochondrial genomes can be analyzed using mtDNA deletion variants. These small, amplified genomes segregate preferentially from mixed zygotes relative to wild-type mtDNA. This segregation advantage is abolished by mutations in a gene, MGT1, that encodes a recombination junction-resolving enzyme. We show here that resolvase deficiency causes a larger proportion of molecules to be linked together by recombination junctions, resulting in the aggregation of mtDNA into a small number of cytological structures. This change in mtDNA structure can account for the increased mitotic loss of mtDNA and the altered pattern of mtDNA segregation from zygotes. We propose that the level of unresolved recombination junctions influences the number of heritable units of mtDNA.

  9. Preventing the transmission of mitochondrial DNA disorders using prenatal or preimplantation genetic diagnosis.

    Science.gov (United States)

    Smeets, Hubert J M; Sallevelt, Suzanne C E H; Dreesen, Jos C F M; de Die-Smulders, Christine E M; de Coo, Irenaeus F M

    2015-09-01

    Mitochondrial disorders are among the most common inborn errors of metabolism; at least 15% are caused by mitochondrial DNA (mtDNA) mutations, which occur de novo or are maternally inherited. For familial heteroplasmic mtDNA mutations, the mitochondrial bottleneck defines the mtDNA mutation load in offspring, with an often high or unpredictable recurrence risk. Oocyte donation is a safe option to prevent the transmission of mtDNA disease, but the offspring resulting from oocyte donation are genetically related only to the father. Prenatal diagnosis (PND) is technically possible but usually not applicable because of limitations in predicting the phenotype. For de novo mtDNA point mutations, recurrence risks are low and PND can be offered to provide reassurance regarding fetal health. PND is also the best option for female carriers with low-level mutations demonstrating skewing to 0% or 100%. A fairly new option for preventing the transmission of mtDNA diseases is preimplantation genetic diagnosis (PGD), in which embryos with a mutant load below a mutation-specific or general expression threshold of 18% can be transferred. PGD is currently the best reproductive option for familial heteroplasmic mtDNA point mutations. Nuclear genome transfer and genome editing techniques are currently being investigated and might offer additional reproductive options for specific mtDNA disease cases. © 2015 New York Academy of Sciences.

  10. The effect of chronic alcohol consumption on mitochondrial DNA mutagenesis in human blood

    Energy Technology Data Exchange (ETDEWEB)

    Wurmb-Schwark, N. von [Institute of Legal Medicine, Christian Albrecht University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel (Germany)], E-mail: nvonwurmb@rechtsmedizin.uni-kiel.de; Ringleb, A.; Schwark, T. [Institute of Legal Medicine, Christian Albrecht University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel (Germany); Broese, T.; Weirich, S.; Schlaefke, D. [Clinic of Psychiatry and Psychotherapy, University of Rostock, Gehlsheimer Str. 20, Rostock (Germany); Wegener, R. [Institute of Legal Medicine, St-Georg-Str. 108, University of Rostock, 18055 Rostock (Germany); Oehmichen, M. [Institute of Legal Medicine, Christian Albrecht University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel (Germany)

    2008-01-01

    The 4977 bp deletion of mitochondrial DNA (mtDNA) is known to accumulate with increasing age in post mitotic tissues. Recently, studies came out detecting this specific alteration also in fast replicating cells, e.g. in blood or skin tissue, often in correlation to specific diseases or - specifically in skin - external stressors such as UV radiation. In this study, we investigated mitochondrial mutagenesis in 69 patients with a chronic alcoholic disease and 46 age matched controls with a moderate drinking behavior. Two different fragments, specific for total and for deleted mtDNA (dmtDNA) were amplified in a duplex-PCR. A subsequent fragment analysis was performed and for relative quantification, the quotient of the peak areas of amplification products specific for deleted and total mtDNA was determined. Additionally, a real time PCR was performed to quantify mtDNA copy number. The relative amount of 4977 bp deleted mtDNA in alcoholics was significantly increased compared to controls. On the other hand, no difference regarding the mtDNA/nuclear DNA ratio in both investigated groups was detected. Additionally, no age dependence could be found nor in alcoholics, neither in the control group. These findings indicate that mtDNA mutagenesis in blood can be influenced by stressors such as alcohol. Ethanol seems to be a significant factor to alter mitochondrial DNA in blood and might be an additional contributor for the cellular aging process.

  11. The effect of chronic alcohol consumption on mitochondrial DNA mutagenesis in human blood

    International Nuclear Information System (INIS)

    Wurmb-Schwark, N. von; Ringleb, A.; Schwark, T.; Broese, T.; Weirich, S.; Schlaefke, D.; Wegener, R.; Oehmichen, M.

    2008-01-01

    The 4977 bp deletion of mitochondrial DNA (mtDNA) is known to accumulate with increasing age in post mitotic tissues. Recently, studies came out detecting this specific alteration also in fast replicating cells, e.g. in blood or skin tissue, often in correlation to specific diseases or - specifically in skin - external stressors such as UV radiation. In this study, we investigated mitochondrial mutagenesis in 69 patients with a chronic alcoholic disease and 46 age matched controls with a moderate drinking behavior. Two different fragments, specific for total and for deleted mtDNA (dmtDNA) were amplified in a duplex-PCR. A subsequent fragment analysis was performed and for relative quantification, the quotient of the peak areas of amplification products specific for deleted and total mtDNA was determined. Additionally, a real time PCR was performed to quantify mtDNA copy number. The relative amount of 4977 bp deleted mtDNA in alcoholics was significantly increased compared to controls. On the other hand, no difference regarding the mtDNA/nuclear DNA ratio in both investigated groups was detected. Additionally, no age dependence could be found nor in alcoholics, neither in the control group. These findings indicate that mtDNA mutagenesis in blood can be influenced by stressors such as alcohol. Ethanol seems to be a significant factor to alter mitochondrial DNA in blood and might be an additional contributor for the cellular aging process

  12. Mitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia.

    Science.gov (United States)

    Torrell, Helena; Salas, Antonio; Abasolo, Nerea; Morén, Constanza; Garrabou, Glòria; Valero, Joaquín; Alonso, Yolanda; Vilella, Elisabet; Costas, Javier; Martorell, Lourdes

    2014-10-01

    It has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A > G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T > C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia. © 2014 Wiley Periodicals, Inc.

  13. The current status of studies on mitochondrial DNA with tumor, radiation biological effects and aging

    International Nuclear Information System (INIS)

    Liu Qingjie; Sang Lu

    2004-01-01

    The mitochondrial plays a very important role in sustaining the normal physiological function, because it is the center of energy making and mitochondrial DNA (mtDNA) is the only genetic material outside the nuclear. The result of studies showed that many diseases have a close relationship with mtDNA mutation and deletion. This article reviewed the current status of research on mtDNA with tumor, radiation biological effects and aging, in order to initiate the application study of mtDNA in the circle of radiation medicine

  14. Human mitochondrial DNA (mtDNA) types in Malaysia

    International Nuclear Information System (INIS)

    Lian, L.H.; Koh, C.L.; Lim, M.E.

    2000-01-01

    Each human cell contains hundreds of mitochondria and thousands of double-stranded circular mtDNA. The delineation of human mtDNA variation and genetics over the past decade has provided unique and often startling insights into human evolution, degenerative diseases, and aging. Each mtDNA of 16,569 base pairs, encodes 13 polypeptides essential to the enzymes of the mitochondrial energy generating pathway, plus the necessary tRNAs and rRNAs. The highly polymorphic noncoding D-(displacement) loop region, also called the control region, is approximately 1.2 kb long. It contains two well-characterized hypervariable (HV-) regions, HV1 and HV2. MtDNA identification is usually based on these sequence differences. According to the TWTGDAM (Technical Working Group for DNA Analysis Methods), the minimum requirement for a mtDNA database for HV1 is from positions 16024 to 16365 and for HV2, from positions 00073 to 00340. The targeted Malaysian population subgroups for this study were mainly the Malays, Chinese, Indians, and indigenous Ibans, Bidayuhs, Kadazan-Dusuns, and Bajaus. Research methodologies undertaken included DNA extraction of samples from unrelated individuals, amplification of the specific regions via the polymerase chain reaction (PCR), and preparation of template DNA for sequencing by using an automated DNA sequencer. Sufficient nucleotide sequence data were generated from the mtDNA analysis. When the sequences were analyzed, sequence variations were found to be caused by nucleotide substitutions, insertions, and deletions. Of the three causes of the sequence variations, nucleotide substitutions (86.1%) accounted for the vast majority of polymorphism. It is noted that transitions (83.5%) were predominant when compared to the significantly lower frequencies of transversions (2.6%). Insertions (0.9%) and deletions (13.0%) were rather rare and found only in HV2. The data generated will also form the basis of a Malaysian DNA sequence database of mtDNA D

  15. RPO41-independent maintenance of [rho-] mitochondrial DNA in Saccharomyces cerevisiae.

    Science.gov (United States)

    Fangman, W L; Henly, J W; Brewer, B J

    1990-01-01

    A subset of promoters in the mitochondrial DNA (mtDNA) of the yeast Saccharomyces cerevisiae has been proposed to participate in replication initiation, giving rise to a primer through site-specific cleavage of an RNA transcript. To test whether transcription is essential for mtDNA maintenance, we examined two simple mtDNA deletion ([rho-]) genomes in yeast cells. One genome (HS3324) contains a consensus promoter (ATATAAGTA) for the mitochondrial RNA polymerase encoded by the nuclear gene RPO41, and the other genome (4a) does not. As anticipated, in RPO41 cells transcripts from the HS3324 genome were more abundant than were transcripts from the 4a genome. When the RPO41 gene was disrupted, both [rho-] genomes were efficiently maintained. The level of transcripts from HS3324 mtDNA was decreased greater than 400-fold in cells carrying the RPO41 disrupted gene; however, the low-level transcripts from 4a mtDNA were undiminished. These results indicate that replication of [rho-] genomes can be initiated in the absence of wild-type levels of the RPO41-encoded RNA polymerase.

  16. Disease: H00469 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H00469 Mitochondrial DNA depletion syndrome (MDS) Mitochondrial DNA depletion synd...n mitochondrial DNA in the affected tissues. The manifestations vary from tissue-specific mtDNA depletion to...5400 221350 615084 615418 615471 617156 PMID:20444604 ... AUTHORS ... Suomalainen A, Isohanni P ... TITLE ... Mitochondrial DNA depletion...drial transcription factor A, cause neonatal liver failure associated with mtDNA depletion. ... JOURNAL ... Mol Genet Metab 119:91-9 (2016) DOI:10.1016/j.ymgme.2016.07.001

  17. In EXOG-depleted cardiomyocytes cell death is marked by a decreased mitochondrial reserve capacity of the electron transport chain

    NARCIS (Netherlands)

    Tigchelaar, Wardit; De Jong, Anne Margreet; van Gilst, Wiek H.; De Boer, Rudolf A.; Sillje, Herman H. W.

    Depletion ofmitochondrial endo/exonuclease G-like (EXOG) in cultured neonatal cardiomyocytes stimulates mitochondrial oxygen consumption rate (OCR) and induces hypertrophy via reactive oxygen species (ROS). Here, we show that neurohormonal stress triggers cell death in endo/exonuclease

  18. [SUCLA2-related encephalomyopathic mitochondrial DNA depletion syndrome: a case report and review of literature].

    Science.gov (United States)

    Liu, Zhimei; Fang, Fang; Ding, Changhong; Wu, Husheng; Lyu, Junlan; Wu, Yun

    2014-11-01

    To analyze the clinical characteristics of SUCLA2-related encephalomyopathic mitochondrial DNA depletion syndrome (MDS) in one patient, and review the latest clinical research reports. Clinical, laboratory and genetic data of one case of SUCLA2-related encephalomyopathic MDS diagnosed by department of Neurology, Beijing Children's Hospital in November, 2013 were reported, and through taking "SUCLA2" as key words to search at CNKI, Wanfang, PubMed and the Human Gene Mutation Database (HGMD) professional to date, the clinical characteristics of 24 reported cases of SUCLA2-related encephalomyopathic MDS in international literature in combination with our case were analyzed. (1) The patient was 5 years and 9 months old, born as a term small for gestational age infant whose birth weight was 2 400 g, and presented since birth with severe muscular hypotonia, feeding difficulties, failure to thrive, psychomotor retardation and hearing impairment. Until now, he still showed severe developmental retardation, together with muscular atrophy, thoracocyllosis and scoliosis, and facial features. The patient is the first born from consanguineous healthy parents, whose relationship is cousins. Laboratory tests showed urinary excretion of mild methylmalonic acid (MMA), elevated plasma lactate concentration, and increased C3-carnitine and C4-dicarboxylic-carnitine in plasma carnitine ester profiling. MRI showed brain atrophy-like and bilateral T2 hyperintensities in bilateral caudate nuclei and putamen. By Next-Generation Sequencing (NGS), we identified a novel homozygous missense mutation (c.970G > A) in the SUCLA2 in a highly conserved amino acid residue. (2) The total number was only 25 with a male to female ratio of 14: 11, and age of onset of 23 was 0-4 months. The most common clinical features in patients with SUCLA2 mutation were permanent hypotonia, muscle atrophy, psychomotor retardation and scoliosis or kyphosis. Frequent signs included hearing impairment, hyperkinesia

  19. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells.

    Science.gov (United States)

    Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C

    2017-10-15

    Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.

  20. Hybrid male sterility is caused by mitochondrial DNA deletion.

    Science.gov (United States)

    Hayashida, Kenji; Kohno, Shigeru

    2009-07-01

    Although it is known that the hybrid male mouse is sterile just like any other animal's heterogametic sex, the reason why only the male germ cells are impaired has yet to be discovered. TdT-mediated dUTP nick end labeling assay using a confocal fluorescence microscope and DNA fragmentation assay of hybrid testis indicated destruction of the mitochondrial DNA (mtDNA) rather than the nuclear DNA. Previously we reported that maternal mtDNA inheritance is through selective sperm mtDNA elimination based on the sperm factor and two egg factors, and expression of these three factors was recognized in the hybrid testis. It was thereby assumed that mtDNA destruction caused by the expression of maternal mtDNA inheritance system in male germ cells is implicated in the hybrid male sterility of mice.

  1. Exploring the mitochondrial DNA variability of the Amazonian Yanomami.

    Science.gov (United States)

    Varano, Sara; Scorrano, Gabriele; Martínez-Labarga, Cristina; Finocchio, Andrea; Rapone, Cesare; Berti, Andrea; Rickards, Olga

    2016-11-01

    The aim of this study was to explore the mitochondrial variability in the Yanomami population to reconstruct its demographic history and explore its genetic composition in relation to its cultural and linguistic features. A total of 174 human head hair shafts -collected in 1958- belonging to individuals from a Yanomami group living in Santa Isabel, Brazil, were analyzed. Automated extraction of the hairs was performed, and several methods were applied to optimize the analysis of the degraded DNA. The mtDNA hypervariable segments I-II, along with the 9-bp COII-tRNA Lys deletion, were investigated. Using published data from the Yanomami and other Amazonian populations, several statistical analyses were carried out to explore the genetic variability within the study population. Ninety eight percent of the mitochondrial DNA (mtDNA) sequences analyzed belonged to Native American haplogroups, while 2% belonged to African haplogroups. Compared with the Yanomami groups previously studied, the Santa Isabel sample seemed more genetically similar to other Amazonian populations. Among the Yanomami samples studied to date, the Santa Isabel Yanomami show a higher genetic heterogeneity. This could be due to gene flow with non-Yanomami populations, as well as to the introduction of new mitochondrial haplotypes by gold miners. In both cases, the geographic location of Santa Isabel might have made this Yanomami village less isolated than the others, suggesting that the Rio Negro played a central role in increasing its genetic variability. On the whole, the Yanomami were quite genetically diversified, probably mirroring their great linguistic heterogeneity. Am. J. Hum. Biol. 28:846-856, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Continued colonization of the human genome by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Miria Ricchetti

    2004-09-01

    Full Text Available Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4-6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA.

  3. Capturing goats: documenting two hundred years of mitochondrial DNA diversity among goat populations from Britain and Ireland

    Science.gov (United States)

    Carolan, Seán; Enright, Ruth; Werner, Raymond; Bradley, Daniel G.; Finlay, Emma K.; Mattiangeli, Valeria

    2017-01-01

    The domestic goat (Capra hircus) plays a key role in global agriculture, being especially prized in regions of marginal pasture. However, the advent of industrialized breeding has seen a dramatic reduction in genetic diversity within commercial populations, while high extinction rates among feral herds have further depleted the reservoir of genetic variation available. Here, we present the first survey of whole mitochondrial genomic variation among the modern and historical goat populations of Britain and Ireland using a combination of mtDNA enrichment and high throughput sequencing. Fifteen historical taxidermy samples, representing the indigenous ‘Old Goat’ populations of the islands, were sequenced alongside five modern Irish dairy goats and four feral samples from endangered populations in western Ireland. Phylogenetic and network analyses of European mitochondrial variation revealed distinct groupings dominated by historical British and Irish samples, which demonstrate a degree of maternal genetic structure between the goats of insular and continental Europe. Several Irish modern feral samples also fall within these clusters, suggesting continuity between these dwindling populations and the ancestral ‘Old Goats’ of Ireland and Britain. PMID:28250207

  4. Capturing goats: documenting two hundred years of mitochondrial DNA diversity among goat populations from Britain and Ireland.

    Science.gov (United States)

    Cassidy, Lara M; Teasdale, Matthew D; Carolan, Seán; Enright, Ruth; Werner, Raymond; Bradley, Daniel G; Finlay, Emma K; Mattiangeli, Valeria

    2017-03-01

    The domestic goat ( Capra hircus ) plays a key role in global agriculture, being especially prized in regions of marginal pasture. However, the advent of industrialized breeding has seen a dramatic reduction in genetic diversity within commercial populations, while high extinction rates among feral herds have further depleted the reservoir of genetic variation available. Here, we present the first survey of whole mitochondrial genomic variation among the modern and historical goat populations of Britain and Ireland using a combination of mtDNA enrichment and high throughput sequencing. Fifteen historical taxidermy samples, representing the indigenous 'Old Goat' populations of the islands, were sequenced alongside five modern Irish dairy goats and four feral samples from endangered populations in western Ireland. Phylogenetic and network analyses of European mitochondrial variation revealed distinct groupings dominated by historical British and Irish samples, which demonstrate a degree of maternal genetic structure between the goats of insular and continental Europe. Several Irish modern feral samples also fall within these clusters, suggesting continuity between these dwindling populations and the ancestral 'Old Goats' of Ireland and Britain. © 2017 The Author(s).

  5. A unique DNA found in post-mitochondrial fraction from Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Guimaraes, R.C.; Bloch, D.P.

    1982-01-01

    A DNA found in post-mitochondrial fractions from Ehrlich ascites cells, comprising 0.2% of the total cellular DNA, is partially characterized. It appears in cytoplasmic homogenates as a 14.6 S molecule, and is eluted from hydroxyapatite with 0.24 M sodium phosphate buffer. Its Cs 2 SO 4 buoyant density is lower than Erlich ascites tumor nuclear DNA and it has low dG+dC content, as determined by chromatography of hydrolysates of 32 P-labelled DNA. It is enriched in sequences which reassociate rapidly in the presence of excess nuclear DNA. It can be used as promoter for DNA synthesis by an endogenous DNA-dependent DNA polymerase found in association with the post-mitochondrial preparations. It is found to be associated with newly incorporated radioactivity following incubation in vitro with labelled UTP. Its localization in situ has not yet been attempled. It is thought to represent viral A-type particle associated, or plasma membrane associated DNA. (author) [pt

  6. Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA.

    Science.gov (United States)

    Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr

    2014-04-01

    Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

  7. Heterology of mitochondrial DNA from mammals detected by electron microscopic heteroduplex analyses

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C

    1983-01-01

    Heteroduplex analysis of mitochondrial DNA (mtDNA) from evolutionary closely related mammals (rat vs. mouse, man vs. monkey) are analyzed and compared to heteroduplex analysis of mt-DNA from more distantly related mammals (rat vs. man, rat vs. monkey, mouse vs. man, mouse vs. monkey and man vs. c...

  8. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies

    Science.gov (United States)

    Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.

    2015-01-01

    Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard

  9. Human C4orf14 interacts with the mitochondrial nucleoid and is involved in the biogenesis of the small mitochondrial ribosomal subunit.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Kazak, L; Wood, S R; Mao, C C; Fearnley, I M; Walker, J E; Holt, I J

    2012-07-01

    The bacterial homologue of C4orf14, YqeH, has been linked to assembly of the small ribosomal subunit. Here, recombinant C4orf14 isolated from human cells, co-purified with the small, 28S subunit of the mitochondrial ribosome and the endogenous protein co-fractionated with the 28S subunit in sucrose gradients. Gene silencing of C4orf14 specifically affected components of the small subunit, leading to decreased protein synthesis in the organelle. The GTPase of C4orf14 was critical to its interaction with the 28S subunit, as was GTP. Therefore, we propose that C4orf14, with bound GTP, binds to components of the 28S subunit facilitating its assembly, and GTP hydrolysis acts as the release mechanism. C4orf14 was also found to be associated with human mitochondrial nucleoids, and C4orf14 gene silencing caused mitochondrial DNA depletion. In vitro C4orf14 is capable of binding to DNA. The association of C4orf14 with mitochondrial translation factors and the mitochondrial nucleoid suggests that the 28S subunit is assembled at the mitochondrial nucleoid, enabling the direct transfer of messenger RNA from the nucleoid to the ribosome in the organelle.

  10. Mitochondrial DNA T4216C and A4917G variations in multiple sclerosis

    DEFF Research Database (Denmark)

    Andalib, Sasan; Talebi, Mahnaz; Sakhinia, Ebrahim

    2015-01-01

    DNA gene and A4917G variation in the mtDNA NADH Dehydrogenase 2 (ND2) gene are associated with MS in an Iranian population. MATERIAL AND METHODS: Blood samples were collected from 100 patients with MS and 100 unrelated healthy controls, and DNA extraction was performed by salting-out. By means.......637). Logistic regression analysis revealed an odds ratio (OR) of 1.2 with 95% CI of 0.4-3.5. CONCLUSION: The present study revealed no association between MS and T4216C variation in the ND1 mtDNA gene and A4917G variation in the mtDNA ND2 gene in the Iranian population....... focuses on the neurogenetics of the complex pathogenesis of MS in relation to factors such as mitochondrial DNA (mtDNA) variations. T4216C and A4917G are common mitochondrial gene variations associated with MS. The present study tested whether mtDNA T4216C variation in the NADH Dehydrogenase 1 (ND1) mt...

  11. In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription

    NARCIS (Netherlands)

    Farge, Géraldine; Mehmedovic, Majda; Baclayon, Marian; van den Wildenberg, Siet M J L; Roos, Wouter H; Gustafsson, Claes M; Wuite, Gijs J L; Falkenberg, Maria

    2014-01-01

    The mechanisms regulating the number of active copies of mtDNA are still unclear. A mammalian cell typically contains 1,000-10,000 copies of mtDNA, which are packaged into nucleoprotein complexes termed nucleoids. The main protein component of these structures is mitochondrial transcription factor A

  12. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair

    DEFF Research Database (Denmark)

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott

    2014-01-01

    slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I...

  13. Mitochondrial DNA variation in the Viking age population of Norway

    OpenAIRE

    Krzewińska, Maja; Bjørnstad, Gro; Skoglund, Pontus; Olason, Pall Isolfur; Bill, Jan; Götherström, Anders; Hagelberg, Erika

    2015-01-01

    The medieval Norsemen or Vikings had an important biological and cultural impact on many parts of Europe through raids, colonization and trade, from about AD 793 to 1066. To help understand the genetic affinities of the ancient Norsemen, and their genetic contribution to the gene pool of other Europeans, we analysed DNA markers in Late Iron Age skeletal remains from Norway. DNA was extracted from 80 individuals, and mitochondrial DNA polymorphisms were detected by next-generation sequencing. ...

  14. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  15. Complex forms of mitochondrial DNA in human B cells transformed by Epstein-Barr virus (EBV)

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C; Zeuthen, J

    1983-01-01

    Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed lymphoblast......Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed...

  16. Detection of irradiated fresh, chilled, and frozen foods by the mitochondrial DNA method

    International Nuclear Information System (INIS)

    Machioni, E.; Bergaentzle, M.; Todoriki, S.; Hasselmann, C.; Kuntz, F.

    1996-01-01

    DNA molecules are very sensitive to ionising radiation, even at low doses. Strand breaks are easy to detect despite the generally low DNA content of foods, but such ruptures are not specific to radiation processing. Preliminary experiments showed that cellular DNA in beef underwent strong enzymatic degradation during storage at +4 o C and thus radiation effects could not be isolated. In order to make DNA strand rupture more specific to radiation (other than by deep freezing) it appears necessary to isolate the irradiated DNA from cell enzymes. This is the case for mitochondrial DNA which is protected from enzymatic degradation by the mitochondrial walls but not from radiation. It can, therefore, be assumed that DNA strand breaks in mitochondria will be specific to ionising radiation. The aim of this work is to develop and validate the proposed test on different food samples (meat and fish products) which are already or may be industrially irradiated in the near future. (author)

  17. Depletion-induced instability in protein-DNA mixtures: Influence of protein charge and size

    NARCIS (Netherlands)

    Vries, de R.J.

    2006-01-01

    While there is abundant experimental and theoretical work on polymer-induced DNA condensation, it is still unclear whether globular proteins can condense linear DNA or not. We develop a simple analytical approximation for the depletion attraction between rodlike segments of semiflexible

  18. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo

    International Nuclear Information System (INIS)

    Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T.

    1988-01-01

    DNA repair is essential for maintaining the integrity of the genetic material, and a number of DNA repair mechanisms have been fairly well characterized for the nuclear DNA of eukaryotic cells as well as prokaryotes. However, little is know about DNA repair in mitochondria. Using highly sensitive immunoanalytical methods to detect specific DNA alkylation products, the authors found active removal of O 6 -ethyl-2'-deoxyguanosine (O 6 -EtdGuo) from rat liver mitochondrial DNA after pulse-exposure to N-ethyl-N-nitrosourea in vivo. In the kidney, O 6 -EtdGuo was removed from mitochondrial DNA with moderate efficiency, but nearly no removal was observed from the DNA of brain mitochondria. Among the rat tissues examined, the kinetics of O 6 -EtdGuo elimination from mitochondrial DNA was very similar to the kinetics of removal from nuclear DNA. O 4 -Ethyl-2'-deoxythymidine, another premutagenic DNA ethylation product, was stable in both mitochondrial and nuclear DNA of rat liver

  19. Mitochondrial cardiomyopathies

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab

    2016-07-01

    Full Text Available Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA while more than 99% of them are encoded by nuclear DNA (nDNA. Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs of various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular noncompaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain (ETC complexes subunits and their assembly factors, mitochondrial tRNAs, rRNAs, ribosomal proteins, and translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  20. Mitochondrial Disease

    OpenAIRE

    Bulent Kurt; Turgut Topal

    2013-01-01

    Mitochondria are the major energy source of cells. Mitochondrial disease occurs due to a defect in mitochondrial energy production. A valuable energy production in mitochondria depend a healthy interconnection between nuclear and mitochondrial DNA. A mutation in nuclear or mitochondrial DNA may cause abnormalities in ATP production and single or multiple organ dysfunctions, secondarily. In this review, we summarize mitochondrial physiology, mitochondrial genetics, and clinical expression and ...

  1. Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome

    Science.gov (United States)

    2017-01-01

    Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology. PMID:28680532

  2. Molecular identification of Malaysian Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) using life stage specific mitochondrial DNA.

    Science.gov (United States)

    Kavitha, R; Tan, T C; Lee, H L; Nazni, W A; Sofian, A M

    2013-06-01

    DNA identification of blow fly species can be a very useful tool in forensic entomology. One of the potential benefits that mitochondrial DNA (mtDNA) has offered in the field of forensic entomology is species determination. Conventional identification methods have limitations for sibling and closely related species of blow fly and stage and quality of the specimen used. This could be overcome by DNA-based identification methods using mitochondrial DNA which does not demand intact or undamaged specimens. Mitochondrial DNA is usually isolated from whole blow fly and legs. Alternate sources for mitochondrial DNA isolation namely, egg, larva, puparium and empty puparium were explored in this study. The sequence of DNA obtained for each sample for every life cycle stage was 100% identical for a particular species, indicating that the egg, 1st instar, 2nd instar, 3rd instar, pupa, empty puparium and adult from the same species and obtained from same generation will exhibit similar DNA sequences. The present study also highlighted the usefulness of collecting all life cycle stages of blow fly during crime scene investigation with proper preservation and subsequent molecular analysis. Molecular identification provides a strong basis for species identification and will prove an invaluable contribution to forensic entomology as an investigative tool in Malaysia.

  3. Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models

    Directory of Open Access Journals (Sweden)

    Wielstra Ben

    2012-08-01

    Full Text Available Abstract Background If the geographical displacement of one species by another is accompanied by hybridization, mitochondrial DNA can introgress asymmetrically, from the outcompeted species into the invading species, over a large area. We explore this phenomenon using the two parapatric crested newt species, Triturus macedonicus and T. karelinii, distributed on the Balkan Peninsula in south-eastern Europe, as a model. Results We first delimit a ca. 54,000 km2 area in which T. macedonicus contains T. karelinii mitochondrial DNA. This introgression zone bisects the range of T. karelinii, cutting off a T. karelinii enclave. The high similarity of introgressed mitochondrial DNA haplotypes with those found in T. karelinii suggests a recent transfer across the species boundary. We then use ecological niche modeling to explore habitat suitability of the location of the present day introgression zone under current, mid-Holocene and Last Glacial Maximum conditions. This area was inhospitable during the Last Glacial Maximum for both species, but would have been habitable at the mid-Holocene. Since the mid-Holocene, habitat suitability generally increased for T. macedonicus, whereas it decreased for T. karelinii. Conclusion The presence of a T. karelinii enclave suggests that T. karelinii was the first to colonize the area where the present day introgression zone is positioned after the Last Glacial Maximum. Subsequently, we propose T. karelinii was outcompeted by T. macedonicus, which captured T. karelinii mitochondrial DNA via introgressive hybridization in the process. Ecological niche modeling suggests that this replacement was likely facilitated by a shift in climate since the mid-Holocene. We suggest that the northwestern part of the current introgression zone was probably never inhabited by T. karelinii itself, and that T. karelinii mitochondrial DNA spread there through T. macedonicus exclusively. Considering the spatial distribution of the

  4. Nuclear transfer to prevent mitochondrial DNA disorders : revisiting the debate on reproductive cloning

    NARCIS (Netherlands)

    Bredenoord, A. L.; Dondorp, W.; Pennings, G.; De Wert, G.

    Preclinical experiments are currently performed to examine the feasibility of several types of nuclear transfer to prevent mitochondrial DNA (mtDNA) disorders. Whereas the two most promising types of nuclear transfer to prevent mtDNA disorders, spindle transfer and pronuclear transfer, do not amount

  5. Fatal neonatal-onset mitochondrial respiratory chain disease with T cell immunodeficiency.

    Science.gov (United States)

    Reichenbach, Janine; Schubert, Ralf; Horvàth, Rita; Petersen, Jens; Fütterer, Nancy; Malle, Elisabeth; Stumpf, Andreas; Gebhardt, Boris R; Koehl, Ulrike; Schraven, Burkhart; Zielen, Stefan

    2006-09-01

    We present the clinical and laboratory features of a boy with a new syndrome of mitochondrial depletion syndrome and T cell immunodeficiency. The child suffered from severe recurrent infectious diseases, anemia, and thrombocytopenia. Clinically, he presented with severe psychomotor retardation, axial hypotonia, and a disturbed pain perception leading to debilitating biting of the thumb, lower lip, and tongue. Brain imaging showed hypoplasia of corpus callosum and an impaired myelinization of the temporo-occipital region with consecutive supratentorial hydrocephalus. Histologic examination of a skeletal muscle biopsy was normal. Biochemical investigation showed combined deficiency of respiratory chain complexes II+III and IV. MtDNA depletion was found by real-time PCR. No pathogenic mutations were identified in the TK2, SUCLA2, DGUOK, and ECGF1 genes. A heterozygous missense mutation was found in POLG1. The pathogenic relevance of this mutation is unclear. Interestingly, a lack of CD8(+) T lymphocytes as well as NK cells was also observed. The percentage of CD45RO-expressing cells was decreased in activated CD8(+) T lymphocytes. Activation of T lymphocytes via IL-2 was diminished. The occurrence of the immunologic deficiency in our patient with mtDNA depletion is a rare finding, implying that cells of the immune system might also be affected by mitochondrial disease.

  6. The Complete Mitochondrial DNA Sequence of Scenedesmus obliquus Reflects an Intermediate Stage in the Evolution of the Green Algal Mitochondrial Genome

    Science.gov (United States)

    Nedelcu, Aurora M.; Lee, Robert W.; Lemieux, Claude; Gray, Michael W.; Burger, Gertraud

    2000-01-01

    Two distinct mitochondrial genome types have been described among the green algal lineages investigated to date: a reduced–derived, Chlamydomonas-like type and an ancestral, Prototheca-like type. To determine if this unexpected dichotomy is real or is due to insufficient or biased sampling and to define trends in the evolution of the green algal mitochondrial genome, we sequenced and analyzed the mitochondrial DNA (mtDNA) of Scenedesmus obliquus. This genome is 42,919 bp in size and encodes 42 conserved genes (i.e., large and small subunit rRNA genes, 27 tRNA and 13 respiratory protein-coding genes), four additional free-standing open reading frames with no known homologs, and an intronic reading frame with endonuclease/maturase similarity. No 5S rRNA or ribosomal protein-coding genes have been identified in Scenedesmus mtDNA. The standard protein-coding genes feature a deviant genetic code characterized by the use of UAG (normally a stop codon) to specify leucine, and the unprecedented use of UCA (normally a serine codon) as a signal for termination of translation. The mitochondrial genome of Scenedesmus combines features of both green algal mitochondrial genome types: the presence of a more complex set of protein-coding and tRNA genes is shared with the ancestral type, whereas the lack of 5S rRNA and ribosomal protein-coding genes as well as the presence of fragmented and scrambled rRNA genes are shared with the reduced–derived type of mitochondrial genome organization. Furthermore, the gene content and the fragmentation pattern of the rRNA genes suggest that this genome represents an intermediate stage in the evolutionary process of mitochondrial genome streamlining in green algae. [The sequence data described in this paper have been submitted to the GenBank data library under accession no. AF204057.] PMID:10854413

  7. Construction and confirmation of the plasmid of human mitochondrial DNA 4977 bp deletion induced by ionizing radiation

    International Nuclear Information System (INIS)

    Chen Xiaosui; Zhou Lijun; Wang Yuxiao; Qu Jia; Feng Jiangbing; Lu Xue; Chen Deqing; Liu Qingjie

    2006-01-01

    Objective: To construct a stable plasmid that spanning deleted human mitochondrial DNA (mtDNA) 4977 bp induced by ionizing radiation and another one for control DNA fragment, in order to use in the human mitochondrial genome study in the future. Methods: The peripheral blood, which had no mtDNA 4977 bp deletion found in previous study, was exposed to 10 Gy 60 Co γ-rays in vitro. The total cell DNA was extracted and PCR was carried out: a nest-PCR of three-round PCR was used for the mtDNA 4977 bp deletion and one- round regular PCR was used for the control ND1 gene. The PCR products were used for transfection by electroporation and the positive clones were obtained after screening. The plasmid DNA was isolated and sequenced after enzymatic digestion and purification. The sequence result was BLASTed with the human mitochondrial genome. Results: The sizes of PCR products for the flanked 4977 bp deletion and the ND1 gene were similar with those predicted according to GeneBank. The sequences for the positive clones were above 99 per cent homologous with the human mitochondrial genome after BLASTed. Conclusion: The plasmids for deleted human mtDNA 4977 bp and control DNA fragment have been constructed successfully, and they could be used in the quality and quantity studies on human mtDNA 4977 bp deletion. (authors)

  8. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy.

    Science.gov (United States)

    Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog; Jurkunas, Ula V

    2016-06-20

    Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.

  9. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    ; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage...... oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity...

  10. Private mitochondrial DNA variants in danish patients with hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Hagen, Christian M; Aidt, Frederik H; Havndrup, Ole

    2015-01-01

    Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease primarily caused by mutations in genes coding for sarcomeric proteins. A molecular-genetic etiology can be established in ~60% of cases. Evolutionarily conserved mitochondrial DNA (mtDNA) haplogroups are susceptibility factors for HCM......>G, and MT-CYB: m.15024G>A, p.C93Y remained. A detailed analysis of these variants indicated that none of them are likely to cause HCM. In conclusion, private mtDNA mutations are frequent, but they are rarely, if ever, associated with HCM....

  11. Phylogeography of mitochondrial DNA variation in brown bears and polar bears.

    Science.gov (United States)

    Shields, G F; Adams, D; Garner, G; Labelle, M; Pietsch, J; Ramsay, M; Schwartz, C; Titus, K; Williamson, S

    2000-05-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples. Copyright 2000 Academic Press.

  12. Phylogeography of mitochondrial DNA variation in brown bears and polar bears

    Science.gov (United States)

    Shields, Gerald F.; Adams, Deborah; Garner, Gerald W.; Labelle, Martine; Pietsch, Jacy; Ramsay, Malcolm; Schwartz, Charles; Titus, Kimberly; Williamson, Scott

    2000-01-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples.

  13. Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ

    DEFF Research Database (Denmark)

    Euro, Liliya; Haapanen, Outi; Róg, Tomasz

    2017-01-01

    of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable......DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site...... changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory β-subunit, and (3) formation of a putative transient replisome-binding platform...

  14. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain.

    Science.gov (United States)

    Lauritzen, Knut H; Hasan-Olive, Md Mahdi; Regnell, Christine E; Kleppa, Liv; Scheibye-Knudsen, Morten; Gjedde, Albert; Klungland, Arne; Bohr, Vilhelm A; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-12-01

    Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABA A ) receptor subunits α 1 . However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Differential diagnosis of mitochondrial neurogastrointestinal encephalomyopathy. First clinical description in Russia

    Directory of Open Access Journals (Sweden)

    S. A. Kurbatov

    2015-01-01

    Full Text Available Mitochondrial neurogastrointestinal encephalomyopathy syndrome (MNGIE is a rare autosomal recessive progressive multisystem disorder. Most of MNGIE is caused by mutations in the gene encoding thymidine phosphorylase (TYMP, locus 22q13. Mitochondrial dysfunction represents multiple deletions and depletion of mtDNA. We present a case of MNGIE with a novel mutation in the position c.1001T>G of TYMP gene, hypergonadotropic hypogonadism, decrement of compound muscle action potential following repetitive nerve stimulation on EMG which was not previously described in literature and differential diagnoses MNGIE with other conditions.

  16. SG-ADVISER mtDNA: a web server for mitochondrial DNA annotation with data from 200 samples of a healthy aging cohort.

    Science.gov (United States)

    Rueda, Manuel; Torkamani, Ali

    2017-08-18

    Whole genome and exome sequencing usually include reads containing mitochondrial DNA (mtDNA). Yet, state-of-the-art pipelines and services for human nuclear genome variant calling and annotation do not handle mitochondrial genome data appropriately. As a consequence, any researcher desiring to add mtDNA variant analysis to their investigations is forced to explore the literature for mtDNA pipelines, evaluate them, and implement their own instance of the desired tool. This task is far from trivial, and can be prohibitive for non-bioinformaticians. We have developed SG-ADVISER mtDNA, a web server to facilitate the analysis and interpretation of mtDNA genomic data coming from next generation sequencing (NGS) experiments. The server was built in the context of our SG-ADVISER framework and on top of the MtoolBox platform (Calabrese et al., Bioinformatics 30(21):3115-3117, 2014), and includes most of its functionalities (i.e., assembly of mitochondrial genomes, heteroplasmic fractions, haplogroup assignment, functional and prioritization analysis of mitochondrial variants) as well as a back-end and a front-end interface. The server has been tested with unpublished data from 200 individuals of a healthy aging cohort (Erikson et al., Cell 165(4):1002-1011, 2016) and their data is made publicly available here along with a preliminary analysis of the variants. We observed that individuals over ~90 years old carried low levels of heteroplasmic variants in their genomes. SG-ADVISER mtDNA is a fast and functional tool that allows for variant calling and annotation of human mtDNA data coming from NGS experiments. The server was built with simplicity in mind, and builds on our own experience in interpreting mtDNA variants in the context of sudden death and rare diseases. Our objective is to provide an interface for non-bioinformaticians aiming to acquire (or contrast) mtDNA annotations via MToolBox. SG-ADVISER web server is freely available to all users at https://genomics.scripps.edu/mtdna .

  17. The mitochondrial and plastid genomes of Volvox carteri: bloated molecules rich in repetitive DNA

    Directory of Open Access Journals (Sweden)

    Lee Robert W

    2009-03-01

    Full Text Available Abstract Background The magnitude of noncoding DNA in organelle genomes can vary significantly; it is argued that much of this variation is attributable to the dissemination of selfish DNA. The results of a previous study indicate that the mitochondrial DNA (mtDNA of the green alga Volvox carteri abounds with palindromic repeats, which appear to be selfish elements. We became interested in the evolution and distribution of these repeats when, during a cursory exploration of the V. carteri nuclear DNA (nucDNA and plastid DNA (ptDNA sequences, we found palindromic repeats with similar structural features to those of the mtDNA. Upon this discovery, we decided to investigate the diversity and evolutionary implications of these palindromic elements by sequencing and characterizing large portions of mtDNA and ptDNA and then comparing these data to the V. carteri draft nuclear genome sequence. Results We sequenced 30 and 420 kilobases (kb of the mitochondrial and plastid genomes of V. carteri, respectively – resulting in partial assemblies of these genomes. The mitochondrial genome is the most bloated green-algal mtDNA observed to date: ~61% of the sequence is noncoding, most of which is comprised of short palindromic repeats spread throughout the intergenic and intronic regions. The plastid genome is the largest (>420 kb and most expanded (>80% noncoding ptDNA sequence yet discovered, with a myriad of palindromic repeats in the noncoding regions, which have a similar size and secondary structure to those of the mtDNA. We found that 15 kb (~0.01% of the nuclear genome are homologous to the palindromic elements of the mtDNA, and 50 kb (~0.05% are homologous to those of the ptDNA. Conclusion Selfish elements in the form of short palindromic repeats have propagated in the V. carteri mtDNA and ptDNA, resulting in the distension of these genomes. Copies of these same repeats are also found in a small fraction of the nucDNA, but appear to be inert in this

  18. Frequent occurrence of mitochondrial DNA mutations in Barrett's metaplasia without the presence of dysplasia.

    Directory of Open Access Journals (Sweden)

    Soong Lee

    Full Text Available BACKGROUND: Barrett's esophagus (BE is one of the most common premalignant lesions and can progress to esophageal adenocarcinoma (EA. The numerous molecular events may play a role in the neoplastic transformation of Barrett's mucosa such as the change of DNA ploidy, p53 mutation and alteration of adhesion molecules. However, the molecular mechanism of the progression of BE to EA remains unclear and most studies of mitochondrial DNA (mtDNA mutations in BE have performed on BE with the presence of dysplasia. METHODS/FINDINGS: Thus, the current study is to investigate new molecular events (Barrett's esophageal tissue-specific-mtDNA alterations/instabilities in mitochondrial genome and causative factors for their alterations using the corresponding adjacent normal mucosal tissue (NT and tissue (BT from 34 patients having Barrett's metaplasia without the presence of dysplasia. Eighteen patients (53% exhibited mtDNA mutations which were not found in adjacent NT. mtDNA copy number was about 3 times higher in BT than in adjacent NT. The activity of the mitochondrial respiratory chain enzyme complexes in tissues from Barrett's metaplasia without the presence of dysplasia was impaired. Reactive oxygen species (ROS level in BT was significantly higher than those in corresponding samples. CONCLUSION/SIGNIFICANCE: High ROS level in BT may contribute to the development of mtDNA mutations, which may play a crucial role in disease progression and tumorigenesis in BE.

  19. Fly Diversity Revealed by PCR-RFLP of Mitochondrial DNA

    Science.gov (United States)

    Asraoui, Jimmy F.; Sayar, Nancy P.; Knio, Khouzama M.; Smith, Colin A.

    2008-01-01

    In this article, we describe an inexpensive, two-session undergraduate laboratory activity that introduces important molecular biology methods in the context of biodiversity. In the first session, students bring tentatively identified flies (order Diptera, true flies) to the laboratory, extract DNA, and amplify a region of the mitochondrial gene…

  20. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900 MHz radiofrequency fields

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yulong; Zong, Lin; Gao, Zhen [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Zhu, Shunxing [Laboratory Animal Center, Nantong University, Nantong, Jiangsu Province (China); Tong, Jian [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Cao, Yi, E-mail: yicao@suda.edu.cn [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China)

    2017-03-15

    Highlights: • Increased reactive oxygen species. • Decreased mitochondrial transcription Factor A and polymerase gamma. • Decreased mitochondrial transcripts (ND1 and 16S) and mtDNA copy number. • Increased 8-hydroxy-2′deoxyguanosine. • Decreased adenosine triphosphate. - Abstract: HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 μW/cm{sup 2} power intensity for 4 h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2′-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells.

  1. A novel mutation in the mitochondrial DNA cytochrome b gene (MTCYB) in a patient with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes syndrome.

    Science.gov (United States)

    Emmanuele, Valentina; Sotiriou, Evangelia; Rios, Purificación Gutierrez; Ganesh, Jaya; Ichord, Rebecca; Foley, A Reghan; Akman, H Orhan; Dimauro, Salvatore

    2013-02-01

    Mutations in the mitochondrial DNA cytochrome b gene (MTCYB) have been commonly associated with isolated mitochondrial myopathy and exercise intolerance, rarely with multisystem disorders, and only once with a parkinsonism/mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS) overlap syndrome. Here, we describe a novel mutation (m.14864 T>C) in MTCYB in a 15-year-old girl with a clinical history of migraines, epilepsy, sensorimotor neuropathy, and strokelike episodes, a clinical picture reminiscent of MELAS.  The mutation, which changes a highly conserved cysteine to arginine at amino acid position 40 of cytochrome b, was heteroplasmic in muscle, blood, fibroblasts, and urinary sediment from the patient but absent in accessible tissues from her asymptomatic mother. This case demonstrates that MTCYB must be included in the already long list of mitochondrial DNA genes that have been associated with the MELAS phenotype.

  2. Parental diabetes status reveals association of mitochondrial DNA haplogroup J1 with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Wainstein Julio

    2009-06-01

    Full Text Available Abstract Background Although mitochondrial dysfunction is consistently manifested in patients with Type 2 Diabetes mellitus (T2DM, the association of mitochondrial DNA (mtDNA sequence variants with T2DM varies among populations. These differences might stem from differing environmental influences among populations. However, other potentially important considerations emanate from the very nature of mitochondrial genetics, namely the notable high degree of partitioning in the distribution of human mtDNA variants among populations, as well as the interaction of mtDNA and nuclear DNA-encoded factors working in concert to govern mitochondrial function. We hypothesized that association of mtDNA genetic variants with T2DM could be revealed while controlling for the effect of additional inherited factors, reflected in family history information. Methods To test this hypothesis we set out to investigate whether mtDNA genetic variants will be differentially associated with T2DM depending on the diabetes status of the parents. To this end, association of mtDNA genetic backgrounds (haplogroups with T2DM was assessed in 1055 Jewish patients with and without T2DM parents ('DP' and 'HP', respectively. Results Haplogroup J1 was found to be 2.4 fold under-represented in the 'HP' patients (p = 0.0035. These results are consistent with a previous observation made in Finnish T2DM patients. Moreover, assessing the haplogroup distribution in 'DP' versus 'HP' patients having diabetic siblings revealed that haplogroup J1 was virtually absent in the 'HP' group. Conclusion These results imply the involvement of inherited factors, which modulate the susceptibility of haplogroup J1 to T2DM.

  3. Mitochondrial myopathies.

    Science.gov (United States)

    DiMauro, Salvatore

    2006-11-01

    Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  4. Mitochondrial DNA sequence variation in Finnish patients with matrilineal diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Soini Heidi K

    2012-07-01

    Full Text Available Abstract Background The genetic background of type 2 diabetes is complex involving contribution by both nuclear and mitochondrial genes. There is an excess of maternal inheritance in patients with type 2 diabetes and, furthermore, diabetes is a common symptom in patients with mutations in mitochondrial DNA (mtDNA. Polymorphisms in mtDNA have been reported to act as risk factors in several complex diseases. Findings We examined the nucleotide variation in complete mtDNA sequences of 64 Finnish patients with matrilineal diabetes. We used conformation sensitive gel electrophoresis and sequencing to detect sequence variation. We analysed the pathogenic potential of nonsynonymous variants detected in the sequences and examined the role of the m.16189 T>C variant. Controls consisted of non-diabetic subjects ascertained in the same population. The frequency of mtDNA haplogroup V was 3-fold higher in patients with diabetes. Patients harboured many nonsynonymous mtDNA substitutions that were predicted to be possibly or probably damaging. Furthermore, a novel m.13762 T>G in MTND5 leading to p.Ser476Ala and several rare mtDNA variants were found. Haplogroup H1b harbouring m.16189 T > C and m.3010 G > A was found to be more frequent in patients with diabetes than in controls. Conclusions Mildly deleterious nonsynonymous mtDNA variants and rare population-specific haplotypes constitute genetic risk factors for maternally inherited diabetes.

  5. Exercise intervention in a family with exercise intolerance and a novel mutation in the mitochondrial POLG gene

    OpenAIRE

    Morán, María; Blázquez, A.; Fiuza Luces, María del Carmen; Díez Bermejo, Jorge; Delmiro, Aitor; Docampo, J.; Serrano Lorenzo, Pablo; González Quintana, Adrián; Arenas, Joaquín; Laín Hernández, A.; Lucía Mulas, Alejandro; Domínguez González, C.; Martín, M.

    2016-01-01

    Mutations in the POLG gene, encoding the mitochondrial DNA (mtDNA) polymerase subunit gamma-1, have been identified in severe mtDNA depletion syndromes and mtDNA deletion disorders which include ataxia neuropathy spectrum disorders and AR and AD forms of progressive external ophthalmoplegia (PEO) and PEO-plus disorders. We report on a family with exercise intolerance. The proband was a 50-year-old man with severe muscle pain and premature fatigue after exercise of mild to moderate intensity. ...

  6. Nickel exposure induces oxidative damage to mitochondrial DNA in Neuro2a cells: the neuroprotective roles of melatonin.

    Science.gov (United States)

    Xu, Shang-Cheng; He, Min-Di; Lu, Yong-Hui; Li, Li; Zhong, Min; Zhang, Yan-Wen; Wang, Yuan; Yu, Zheng-Ping; Zhou, Zhou

    2011-11-01

    Recent studies suggest that oxidative stress and mitochondrial dysfunction play important roles in the neurotoxicity of nickel. Because mitochondrial DNA (mtDNA) is highly vulnerable to oxidative stress and melatonin can efficiently protect mtDNA against oxidative damage in various pathological conditions, the aims of this study were to determine whether mtDNA oxidative damage was involved in the neurotoxicity of nickel and to assay the neuroprotective effects of melatonin in mtDNA. In this study, we exposed mouse neuroblastoma cell lines (Neuro2a) to different concentrations of nickel chloride (NiCl(2), 0.125, 0.25, and 0.5 mm) for 24 hr. We found that nickel significantly increased reactive oxygen species (ROS) production and mitochondrial superoxide levels. In addition, nickel exposure increased mitochondrial 8-hydroxyguanine (8-OHdG) content and reduced mtDNA content and mtDNA transcript levels. Consistent with this finding, nickel was found to destroy mtDNA nucleoid structure and decrease protein levels of Tfam, a key protein component for nucleoid organization. However, all the oxidative damage to mtDNA induced by nickel was efficiently attenuated by melatonin pretreatment. Our results suggest that oxidative damage to mtDNA may account for the neurotoxicity of nickel. Melatonin has great pharmacological potential in protecting mtDNA against the adverse effects of nickel in the nervous system. © 2011 John Wiley & Sons A/S.

  7. Introducing Human Population Biology through an Easy Laboratory Exercise on Mitochondrial DNA

    Science.gov (United States)

    Pardinas, Antonio F.; Dopico, Eduardo; Roca, Agustin; Garcia-Vazquez, Eva; Lopez, Belen

    2010-01-01

    This article describes an easy and cheap laboratory exercise for students to discover their own mitochondrial haplogroup. Students use buccal swabs to obtain mucosa cells as noninvasive tissue samples, extract DNA, and with a simple polymerase chain reaction-restriction fragment length polymorphism analysis they can obtain DNA fragments of…

  8. Differential mitochondrial DNA and gene expression in inherited retinal dysplasia in miniature Schnauzer dogs.

    Science.gov (United States)

    Appleyard, Greg D; Forsyth, George W; Kiehlbauch, Laura M; Sigfrid, Kristen N; Hanik, Heather L J; Quon, Anita; Loewen, Matthew E; Grahn, Bruce H

    2006-05-01

    To investigate the molecular basis of inherited retinal dysplasia in miniature Schnauzers. Retina and retinal pigment epithelial tissues were collected from canine subjects at the age of 3 weeks. Total RNA isolated from these tissues was reverse transcribed to make representative cDNA pools that were compared for differences in gene expression by using a subtractive hybridization technique referred to as representational difference analysis (RDA). Expression differences identified by RDA were confirmed and quantified by real-time reverse-transcription PCR. Mitochondrial morphology from leukocytes and skeletal muscle of normal and affected miniature Schnauzers was examined by transmission electron microscopy. RDA screening of retinal pigment epithelial cDNA identified differences in mRNA transcript coding for two mitochondrial (mt) proteins--cytochrome oxidase subunit 1 and NADH dehydrogenase subunit 6--in affected dogs. Contrary to expectations, these identified sequences did not contain mutations. Based on the implication of mt-DNA-encoded proteins by the RDA experiments we used real-time PCR to compare the relative amounts of mt-DNA template in white blood cells from normal and affected dogs. White blood cells of affected dogs contained less than 30% of the normal amount of two specific mtDNA sequences, compared with the content of the nuclear-encoded glyceraldehyde-3-phosphate dehydrogenase (GA-3-PDH) reference gene. Retina and RPE tissue from affected dogs had reduced mRNA transcript levels for the two mitochondrial genes detected in the RDA experiment. Transcript levels for another mtDNA-encoded gene as well as the nuclear-encoded mitochondrial Tfam transcription factor were reduced in these tissues in affected dogs. Mitochondria from affected dogs were reduced in number and size and were unusually electron dense. Reduced levels of nuclear and mitochondrial transcripts in the retina and RPE of miniature Schnauzers affected with retinal dysplasia suggest that

  9. A Clinical, Neuropathological and Genetic Study of Homozygous A467T POLG-Related Mitochondrial Disease.

    Directory of Open Access Journals (Sweden)

    Sanjeev Rajakulendran

    Full Text Available Mutations in the nuclear gene POLG (encoding the catalytic subunit of DNA polymerase gamma are an important cause of mitochondrial disease. The most common POLG mutation, A467T, appears to exhibit considerable phenotypic heterogeneity. The mechanism by which this single genetic defect results in such clinical diversity remains unclear. In this study we evaluate the clinical, neuropathological and mitochondrial genetic features of four unrelated patients with homozygous A467T mutations. One patient presented with the severe and lethal Alpers-Huttenlocher syndrome, which was confirmed on neuropathology, and was found to have a depletion of mitochondrial DNA (mtDNA. Of the remaining three patients, one presented with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS, one with a phenotype in the Myoclonic Epilepsy, Myopathy and Sensory Ataxia (MEMSA spectrum and one with Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoplegia (SANDO. All three had secondary accumulation of multiple mtDNA deletions. Complete sequence analysis of muscle mtDNA using the MitoChip resequencing chip in all four cases demonstrated significant variation in mtDNA, including a pathogenic MT-ND5 mutation in one patient. These data highlight the variable and overlapping clinical and neuropathological phenotypes and downstream molecular defects caused by the A467T mutation, which may result from factors such as the mtDNA genetic background, nuclear genetic modifiers and environmental stressors.

  10. Norgal: extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data.

    Science.gov (United States)

    Al-Nakeeb, Kosai; Petersen, Thomas Nordahl; Sicheritz-Pontén, Thomas

    2017-11-21

    Whole-genome sequencing (WGS) projects provide short read nucleotide sequences from nuclear and possibly organelle DNA depending on the source of origin. Mitochondrial DNA is present in animals and fungi, while plants contain DNA from both mitochondria and chloroplasts. Current techniques for separating organelle reads from nuclear reads in WGS data require full reference or partial seed sequences for assembling. Norgal (de Novo ORGAneLle extractor) avoids this requirement by identifying a high frequency subset of k-mers that are predominantly of mitochondrial origin and performing a de novo assembly on a subset of reads that contains these k-mers. The method was applied to WGS data from a panda, brown algae seaweed, butterfly and filamentous fungus. We were able to extract full circular mitochondrial genomes and obtained sequence identities to the reference sequences in the range from 98.5 to 99.5%. We also assembled the chloroplasts of grape vines and cucumbers using Norgal together with seed-based de novo assemblers. Norgal is a pipeline that can extract and assemble full or partial mitochondrial and chloroplast genomes from WGS short reads without prior knowledge. The program is available at: https://bitbucket.org/kosaidtu/norgal .

  11. Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L [Rochester Univ., N.Y. (USA). Dept. of Radiation Biology and Biophysics

    1975-01-01

    The repair of damage induced by ultraviolet light has been examined in both the nuclear and mitochondrial DNA of the yeast Saccharomyces cerevisiae. The sensitive assay used in this study is based on the capacity of the bacteriophage T4 u.v. endonuclease to produce single-strand breaks in DNA that contains pyrimidine dimers, thus permitting the use of low fluences (doses) of u.v. The results demonstrate that virtually all of the dimers induced in the nuclear DNA of a repair-proficient strain (RAD+) are removed following dark incubation for four hours in growth medium. In contrast, the dimers induced in mitochondrial DNA by the same u.v. fluence are retained under the same conditions. In the excision-deficient mutant, rad1-2, no evidence was obtained for removal of pyrimidine dimers from nuclear DNA. Photoreactivation of both RAD + and rad1-2 cultures resulted in decreases of dimers from both nuclear and mitochondrial DNA. It is concluded that an excision-repair mechanism operates on nuclear but not mitochondrial DNA in repair-proficient yeast, and that the rad1-2 mutant is defective in this process.

  12. Exercise-Induced Neuroprotection of Hippocampus in APP/PS1 Transgenic Mice via Upregulation of Mitochondrial 8-Oxoguanine DNA Glycosylase

    Directory of Open Access Journals (Sweden)

    Hai Bo

    2014-01-01

    Full Text Available Improving mitochondrial function has been proposed as a reasonable therapeutic strategy to reduce amyloid-β (Aβ load and to modify the progression of Alzheimer’s disease (AD. However, the relationship between mitochondrial adaptation and brain neuroprotection caused by physical exercise in AD is poorly understood. This study was undertaken to investigate the effects of long-term treadmill exercise on mitochondrial 8-oxoguanine DNA glycosylase-1 (OGG1 level, mtDNA oxidative damage, and mitochondrial function in the hippocampus of APP/PS1 transgenic mouse model of AD. In the present study, twenty weeks of treadmill training significantly improved the cognitive function and reduced the expression of Aβ-42 in APP/PS1 transgenic (Tg mice. Training also ameliorated mitochondrial respiratory function by increasing the complexes I, and IV and ATP synthase activities, whereas it attenuated ROS generation and mtDNA oxidative damage in Tg mice. Furthermore, the impaired mitochondrial antioxidant enzymes and mitochondrial OGG1 activities seen in Tg mice were restored with training. Acetylation level of mitochondrial OGG1 and MnSOD was markedly suppressed in Tg mice after exercise training, in parallel with increased level of SIRT3. These findings suggest that exercise training could increase mtDNA repair capacity in the mouse hippocampus, which in turn would result in protection against AD-related mitochondrial dysfunction and phenotypic deterioration.

  13. Mitochondrial DNA as a non-invasive biomarker: Accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias

    International Nuclear Information System (INIS)

    Malik, Afshan N.; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana; Laftah, Abas; Cunningham, Phil

    2011-01-01

    Highlights: → Mitochondrial dysfunction is central to many diseases of oxidative stress. → 95% of the mitochondrial genome is duplicated in the nuclear genome. → Dilution of untreated genomic DNA leads to dilution bias. → Unique primers and template pretreatment are needed to accurately measure mitochondrial DNA content. -- Abstract: Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that the methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as β-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a 'dilution bias' when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.

  14. Forensics and mitochondrial DNA: applications, debates, and foundations.

    Science.gov (United States)

    Budowle, Bruce; Allard, Marc W; Wilson, Mark R; Chakraborty, Ranajit

    2003-01-01

    Debate on the validity and reliability of scientific methods often arises in the courtroom. When the government (i.e., the prosecution) is the proponent of evidence, the defense is obliged to challenge its admissibility. Regardless, those who seek to use DNA typing methodologies to analyze forensic biological evidence have a responsibility to understand the technology and its applications so a proper foundation(s) for its use can be laid. Mitochondrial DNA (mtDNA), an extranuclear genome, has certain features that make it desirable for forensics, namely, high copy number, lack of recombination, and matrilineal inheritance. mtDNA typing has become routine in forensic biology and is used to analyze old bones, teeth, hair shafts, and other biological samples where nuclear DNA content is low. To evaluate results obtained by sequencing the two hypervariable regions of the control region of the human mtDNA genome, one must consider the genetically related issues of nomenclature, reference population databases, heteroplasmy, paternal leakage, recombination, and, of course, interpretation of results. We describe the approaches, the impact some issues may have on interpretation of mtDNA analyses, and some issues raised in the courtroom.

  15. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore.

    Science.gov (United States)

    Rottenberg, Hagai; Hoek, Jan B

    2017-10-01

    Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging-related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro-apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA

    DEFF Research Database (Denmark)

    Rebolledo-Jaramillo, Boris; Su, Marcia Shu-Wei; Stoler, Nicholas

    2014-01-01

    The manifestation of mitochondrial DNA (mtDNA) diseases depends on the frequency of heteroplasmy (the presence of several alleles in an individual), yet its transmission across generations cannot be readily predicted owing to a lack of data on the size of the mtDNA bottleneck during oogenesis......, an order of magnitude higher than for nuclear DNA. Notably, we found a positive association between the number of heteroplasmies in a child and maternal age at fertilization, likely attributable to oocyte aging. This study also took advantage of droplet digital PCR (ddPCR) to validate heteroplasmies...... and confirm a de novo mutation. Our results can be used to predict the transmission of disease-causing mtDNA variants and illuminate evolutionary dynamics of the mitochondrial genome....

  17. Stock discrimination in Great Lakes Walleye using mitochondrial DNA restriction analysis

    International Nuclear Information System (INIS)

    Billington, N.; Hebert, P.D.N.

    1986-01-01

    Over the past two years it has become evident that because of its strict maternal inheritance and rapid rate of evolutionary differentiation, mitochondrial (mt) DNA diversity offers exceptional promise in the discrimination of fish stocks. The current project aims to determine the extent of mt DNA variation among stocks of walleye (Stizostedion vitreum) from the Great Lakes. At this point, mt DNA has been isolated from 68 walleye representing the Thames River stock and a reef breeding stock from western Lake Erie, as well as from individuals of S. canadense, a species which hybridizes with S. vitreum. Mitochondrial DNA was extracted from livers of these fish, purified by CsCl density gradient centrifugation and digested using 20 endonucleases. Polymorphisms were detected with 8 of the enzymes. There was a great deal of variation among fish from both spawning populations, so much so that individual fish could be identified by this technique. No single enzyme allowed discrimination of the two stocks, but restriction pattern variation following Dde I digestion permitted separation of 50% of Lake Erie fish from Thames River stock. Comparison of mt DNA restriction patterns of walleye and sauger showed that two species are easily separable, setting the stage for a more detailed study of hybridization between the taxa

  18. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Salem, Ikhlass Haj [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-07-29

    Highlights: {yields} We reported a patient with Wolfram syndrome and dilated cardiomyopathy. {yields} We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). {yields} Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. {yields} The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  19. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    International Nuclear Information System (INIS)

    Mezghani, Najla; Mnif, Mouna; Mkaouar-Rebai, Emna; Kallel, Nozha; Salem, Ikhlass Haj; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-01-01

    Highlights: → We reported a patient with Wolfram syndrome and dilated cardiomyopathy. → We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). → Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. → The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  20. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly

    DEFF Research Database (Denmark)

    Mengel-From, Jonas; Thinggaard, Mikael; Dalgård, Christine

    2014-01-01

    compared to nuclear DNA, i.e. the mitochondrial DNA copy number, was measured by PCR technology and used as a proxy for the content of mitochondria copies. In 1,067 Danish twins and singletons (18-93 years of age), with the majority being elderly individuals, the estimated mean mitochondrial DNA copy...

  1. Mitochondrial DNA D-loop sequence variation among 5 maternal lines of the Zemaitukai horse breed

    Directory of Open Access Journals (Sweden)

    E. Gus Cothran

    2005-12-01

    Full Text Available Genetic variation in Zemaitukai horses was investigated using mitochondrial DNA (mtDNA sequencing. The study was performed on 421 bp of the mitochondrial DNA control region, which is known to be more variable than other sections of the mitochondrial genome. Samples from each of the remaining maternal family lines of Zemaitukai horses and three random samples for other Lithuanian (Lithuanian Heavy Draught, Zemaitukai large type and ten European horse breeds were sequenced. Five distinct haplotypes were obtained for the five Zemaitukai maternal families supporting the pedigree data. The minimal difference between two different sequence haplotypes was 6 and the maximal 11 nucleotides in Zemaitukai horse breed. A total of 20 nucleotide differences compared to the reference sequence were found in Lithuanian horse breeds. Genetic cluster analysis did not shown any clear pattern of relationship among breeds of different type.

  2. A Novel 3670-Base Pair Mitochondrial DNA Deletion Resulting in Multi-systemic Manifestations in a Child

    Directory of Open Access Journals (Sweden)

    Hsin-Ming Liu

    2012-08-01

    Full Text Available Mitochondrial DNA (mtDNA deletion is a rare occurrence that results in defects to oxidative phosphorylation. The common clinical presentations of mtDNA deletion vary but include mitochondrial myopathy, Pearson syndrome, Kearns-Sayre syndrome, and progressive external ophthalmoplegia. Here, we report the case of a 10-year-old boy who presented with progressive deterioration of his clinical status (which included hypoglycemia, short stature, sensorineural hearing loss, retinitis pigmentosa, and chronic gastrointestinal dysmotility that progressed to acute deterioration with pancreatitis, Fanconi syndrome, lactic acidosis, and acute encephalopathy. Following treatment, the patient was stabilized and his neurological condition improved. Through a combination of histological examinations and biochemical and molecular analyses, mitochondrial disease was confirmed. A novel 3670-base pair deletion (deletion of mtDNA nt 7,628-11,297 was identified in the muscle tissue. A direct repeat of CTACT at the breakpoints was also detected.

  3. The efficiency of mitochondrial DNA markers in constructing genetic ...

    African Journals Online (AJOL)

    Administrator

    2011-05-30

    May 30, 2011 ... To date, only parts of mitochondrial DNA from cytochrome b, 12S rRNA, 16S rRNA and non-coding D- loop had been sequenced for different species of Oryx. Discrepancy in the genetic relationship among. Oryx species was previously revealed when combinations of these sequences were analyzed. In the.

  4. Mitochondrial DNA phylogeography of least cisco Coregonus sardinella in Alaska.

    Science.gov (United States)

    Padula, V M; Causey, D; López, J A

    2017-03-01

    This study presents the first detailed analysis of the mitochondrial DNA diversity of least cisco Coregonus sardinella in Alaska using a 678 bp segment of the control region (D-loop) of the mitochondrial genome. Findings suggest that the history of C. sardinella in Alaska differs from that of other species of Coregonus present in the state and surrounding regions. The examined populations of C. sardinella are genetically diverse across Alaska. Sixty-eight distinct mitochondrial haplotypes were identified among 305 individuals sampled from nine locations. The haplotype minimum spanning network and phylogeny showed a modest level of geographic segregation among haplotypes, suggesting high levels of on-going or recent connectivity among distant populations. Observed Φ ST values and the results of homogeneity and AMOVAs indicate incipient genetic differentiation between aggregations in three broad regional groups. Sites north of the Brooks Range formed one group, sites in the Yukon and Selawik Rivers formed a second group and sites south of the Yukon drainage formed the third group. Overall, the sequence data showed that a large proportion of mtDNA genetic variation in C. sardinella is shared across Alaska, but this variation is not homogeneously distributed across all regions and for all haplotype groups. © 2017 The Fisheries Society of the British Isles.

  5. Archeogenetika. Mitochondriální DNA a migrace Homo sapiens

    Czech Academy of Sciences Publication Activity Database

    Černý, Viktor

    2010-01-01

    Roč. 11, - (2010), s. 13-17 ISSN 1213-1628 R&D Projects: GA ČR GA206/08/1587; GA MŠk ME 917 Institutional research plan: CEZ:AV0Z80020508 Keywords : archaeogenetics * migrations * mitochondrial DNA Subject RIV: AC - Archeology, Anthropology, Ethnology

  6. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions.

    Science.gov (United States)

    Martínez-Reyes, Inmaculada; Diebold, Lauren P; Kong, Hyewon; Schieber, Michael; Huang, He; Hensley, Christopher T; Mehta, Manan M; Wang, Tianyuan; Santos, Janine H; Woychik, Richard; Dufour, Eric; Spelbrink, Johannes N; Weinberg, Samuel E; Zhao, Yingming; DeBerardinis, Ralph J; Chandel, Navdeep S

    2016-01-21

    Mitochondrial metabolism is necessary for the maintenance of oxidative TCA cycle function and mitochondrial membrane potential. Previous attempts to decipher whether mitochondria are necessary for biological outcomes have been hampered by genetic and pharmacologic methods that simultaneously disrupt multiple functions linked to mitochondrial metabolism. Here, we report that inducible depletion of mitochondrial DNA (ρ(ο) cells) diminished respiration, oxidative TCA cycle function, and the mitochondrial membrane potential, resulting in diminished cell proliferation, hypoxic activation of HIF-1, and specific histone acetylation marks. Genetic reconstitution only of the oxidative TCA cycle function specifically in these inducible ρ(ο) cells restored metabolites, resulting in re-establishment of histone acetylation. In contrast, genetic reconstitution of the mitochondrial membrane potential restored ROS, which were necessary for hypoxic activation of HIF-1 and cell proliferation. These results indicate that distinct mitochondrial functions associated with respiration are necessary for cell proliferation, epigenetics, and HIF-1 activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Prevalence of migraine in persons with the 3243A>G mutation in mitochondrial DNA

    DEFF Research Database (Denmark)

    Guo, S.; Esserlind, A-L; Andersson, Z

    2016-01-01

    % vs. 6%; P persons with the mDNA 3243A>G mutation was found. This finding suggests a clinical association between a monogenetically inherited disorder......BACKGROUND AND PURPOSE: Over the last three decades mitochondrial dysfunction has been postulated to be a potential mechanism in migraine pathogenesis. The lifetime prevalence of migraine in persons carrying the 3243A>G mutation in mitochondrial DNA was investigated. METHODS: In this cross......-sectional study, 57 mDNA 3243A>G mutation carriers between May 2012 and October 2014 were included. As a control group, a population-based cohort from our epidemiological studies on migraine in Danes was used. History of headache and migraine was obtained by telephone interview, based on a validated semi...

  8. Mitochondrial DNA (mtDNA haplogroups in 1526 unrelated individuals from 11 Departments of Colombia

    Directory of Open Access Journals (Sweden)

    Juan J. Yunis

    2013-01-01

    Full Text Available The frequencies of four mitochondrial Native American DNA haplogroups were determined in 1526 unrelated individuals from 11 Departments of Colombia and compared to the frequencies previously obtained for Amerindian and Afro-Colombian populations. Amerindian mtDNA haplogroups ranged from 74% to 97%. The lowest frequencies were found in Departments on the Caribbean coast and in the Pacific region, where the frequency of Afro-Colombians is higher, while the highest mtDNA Amerindian haplogroup frequencies were found in Departments that historically have a strong Amerindian heritage. Interestingly, all four mtDNA haplogroups were found in all Departments, in contrast to the complete absence of haplogroup D and high frequencies of haplogroup A in Amerindian populations in the Caribbean region of Colombia. Our results indicate that all four Native American mtDNA haplogroups were widely distributed in Colombia at the time of the Spanish conquest.

  9. Mitochondrial DNA plays an equal role in influencing female and male longevity in centenarians.

    Science.gov (United States)

    He, Yong-Han; Lu, Xiang; Tian, Jiao-Yang; Yan, Dong-Jing; Li, Yu-Chun; Lin, Rong; Perry, Benjamin; Chen, Xiao-Qiong; Yu, Qin; Cai, Wang-Wei; Kong, Qing-Peng

    2016-10-01

    The mitochondrion is a double membrane-bound organelle which plays important functional roles in aging and many other complex phenotypes. Transmission of the mitochondrial genome in the matrilineal line causes the evolutionary selection sieve only in females. Theoretically, beneficial or neutral variations are more likely to accumulate and be retained in the female mitochondrial genome during evolution, which may be an initial trigger of gender dimorphism in aging. The asymmetry of evolutionary processes between gender could lead to males and females aging in different ways. If so, gender specific variation loads could be an evolutionary result of maternal heritage of mitochondrial genomes, especially in centenarians who live to an extreme age and are considered as good models for healthy aging. Here, we tested whether the mitochondrial variation loads were associated with altered aging patterns by investigating the mtDNA haplogroup distribution and genetic diversity between female and male centenarians. We found no evidence of differences in aging patterns between genders in centenarians. Our results indicate that the evolutionary consequence of gender dimorphism in mitochondrial genomes is not a factor in the altered aging patterns in human, and that mitochondrial DNA contributes equally to longevity in males and females. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Liver ultrastructural morphology and mitochondrial DNA levels in HIV/hepatitis C virus coinfection: no evidence of mitochondrial damage with highly active antiretroviral therapy.

    Science.gov (United States)

    Matsukura, Motoi; Chu, Fanny F S; Au, May; Lu, Helen; Chen, Jennifer; Rietkerk, Sonja; Barrios, Rolando; Farley, John D; Montaner, Julio S; Montessori, Valentina C; Walker, David C; Côté, Hélène C F

    2008-06-19

    Liver mitochondrial toxicity is a concern, particularly in HIV/hepatitis C virus (HCV) coinfection. Liver biopsies from HIV/HCV co-infected patients, 14 ON-highly active antiretroviral therapy (HAART) and nine OFF-HAART, were assessed by electron microscopy quantitative morphometric analyses. Hepatocytes tended to be larger ON-HAART than OFF-HAART (P = 0.05), but mitochondrial volume, cristae density, lipid volume, mitochondrial DNA and RNA levels were similar. We found no evidence of increased mitochondrial toxicity in individuals currently on HAART, suggesting that concomitant HAART should not delay HCV therapy.

  11. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy.

    Science.gov (United States)

    Mezghani, Najla; Mnif, Mouna; Mkaouar-Rebai, Emna; Kallel, Nozha; Salem, Ikhlass Haj; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-07-29

    Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Episodic weakness due to mitochondrial DNA MT-ATP6/8 mutations.

    Science.gov (United States)

    Auré, Karine; Dubourg, Odile; Jardel, Claude; Clarysse, Lucie; Sternberg, Damien; Fournier, Emmanuel; Laforêt, Pascal; Streichenberger, Nathalie; Petiot, Philippe; Gervais-Bernard, Hélène; Vial, Christophe; Bedat-Millet, Anne-Laure; Drouin-Garraud, Valérie; Bouillaud, Frédéric; Vandier, Christophe; Fontaine, Bertrand; Lombès, Anne

    2013-11-19

    To report that homoplasmic deleterious mutations in the mitochondrial DNA MT-ATP6/8 genes may be responsible for acute episodes of limb weakness mimicking periodic paralysis due to channelopathies and dramatically responding to acetazolamide. Mitochondrial DNA sequencing and restriction PCR, oxidative phosphorylation functional assays, reactive oxygen species metabolism, and patch-clamp technique in cultured skin fibroblasts. Occurrence of a typical MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) syndrome in a single member of a large pedigree with episodic weakness associated with a later-onset distal motor neuropathy led to the disclosure of 2 deleterious mitochondrial DNA mutations. The MT-ATP6 m.9185T>C p.Leu220Pro mutation, previously associated with Leigh syndrome, was present in all family members, while the MT-TL1 m.3271T>C mutation, a known cause of MELAS syndrome, was observed in the sole patient with MELAS presentation. Significant defect of complexes V and I as well as oxidative stress were observed in both primary fibroblasts and cybrid cells with 100% m.9185T>C mutation. Permanent plasma membrane depolarization and altered permeability to K(+) in fibroblasts provided a link with the paralysis episodes. Screening of 9 patients, based on their clinical phenotype, identified 4 patients with similar deleterious MT-ATP6 mutations (twice m.9185T>C and once m.9176T>C or m.8893T>C). A fifth patient presented with an original potentially deleterious MT-ATP8 mutation (m.8403T>C). All mutations were associated with almost-normal complex V activity but significant oxidative stress and permanent plasma membrane depolarization. Homoplasmic mutations in the MT-ATP6/8 genes may cause episodic weakness responding to acetazolamide treatment.

  13. Mitochondrial and Nuclear DNA in Patients with Severe Polytrauma

    Directory of Open Access Journals (Sweden)

    M. Sh Khubutia

    2013-01-01

    Full Text Available The components of mitochondria from the cells damaged by injury are a key component for the development of systemic inflammatory response syndrome (SIRS under aseptic conditions. At the same time, there is a significant increase in the plasma level of mitochondrial DNA (mtDNA, which may be a prognostic marker for infectious complications in patients with severe polytrauma. Objective: to study the time course of changes in the serum levels of mtDNA and nuclear DNA (nDNA in healthy individuals and patients with polytrauma and to reveal its possible association with the development of infectious pulmonary complications and with mortality. Subjects and methods. Seven healthy volunteers and 25 polytrauma with polytrauma of a mean injury severity score (ISS of 40.2±9.2. Sixteen (64% patients developed purulent tracheobronchitis and pneumonia; 5 (20% patients died. The amount of mtDNA and nDNA was determined within the first at 12 and 24 hours, then on days 3 and 5—7 after injury by the authors’ modified procedure using as the exogenous control of a circular DNA molecule. The content of mtDNA and nDNA was expressed as absolute values, by taking the arithmetic mean values as 100% for the volunteers. Results. There was a more than 2.5-fold increase in mtDNA levels in dead patients as compared to survivors (p<0.05; the differences in nDMA levels were insignificant (p=0.1. Within the first 12 hours, the mean mtDNA level in patients with pneumonia was 34 times greater than the reference values and continued to rise in the following 12 hours whereas in those without pneumonia, it was only 17 times higher with its further decrease in the comparable time periods. In the first 12 hours, nDNA was increased in both groups, but 24 hours after injury it was 2555 times more than the reference value only in patients with pneumonia whereas it was decreased 3-fold in those without this condition. Conclusion. This paper is the first to describe the time course of

  14. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks

    International Nuclear Information System (INIS)

    Turney, Benjamin W.; Kerr, Martin; Chitnis, Meenali M.; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S.; Brewster, Simon F.; Macaulay, Valentine M.

    2012-01-01

    Background and purpose: IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. Methods: We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. Results: We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30–40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. Conclusions: These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments.

  15. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks.

    Science.gov (United States)

    Turney, Benjamin W; Kerr, Martin; Chitnis, Meenali M; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S; Brewster, Simon F; Macaulay, Valentine M

    2012-06-01

    IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30-40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. MELAS syndrome, cardiomyopathy, rhabdomyolysis, and autism associated with the A3260G mitochondrial DNA mutation.

    Science.gov (United States)

    Connolly, Barbara S; Feigenbaum, Annette S J; Robinson, Brian H; Dipchand, Anne I; Simon, David K; Tarnopolsky, Mark A

    2010-11-12

    The A to G transition mutation at position 3260 of the mitochondrial genome is usually associated with cardiomyopathy and myopathy. One Japanese kindred reported the phenotype of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS syndrome) in association with the A3260G mtDNA mutation. We describe the first Caucasian cases of MELAS syndrome associated with the A3260G mutation. Furthermore, this mutation was associated with exercise-induced rhabdomyolysis, hearing loss, seizures, cardiomyopathy, and autism in the large kindred. We conclude that the A3260G mtDNA mutation is associated with wide phenotypic heterogeneity with MELAS and other "classical" mitochondrial phenotypes being manifestations. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Evolution and inheritance of animal mitochondrial DNA: rules and exceptions.

    Science.gov (United States)

    Ladoukakis, Emmanuel D; Zouros, Eleftherios

    2017-12-01

    Mitochondrial DNA (mtDNA) has been studied intensely for "its own" merit. Its role for the function of the cell and the organism remains a fertile field, its origin and evolution is an indispensable part of the evolution of life and its interaction with the nuclear DNA is among the most important cases of genome synergism and co-evolution. Also, mtDNA was proven one of the most useful tools in population genetics and molecular phylogenetics. In this article we focus on animal mtDNA and discuss briefly how our views about its structure, function and transmission have changed, how these changes affect the information we have accumulated through its use in the fields of phylogeny and population structure and what are the most important questions that remain open for future research.

  18. Mutations in BALB mitochondrial DNA induce CCL20 up-regulation promoting tumorigenic phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Sligh, James [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Janda, Jaroslav [University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Jandova, Jana, E-mail: jjandova@email.arizona.edu [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States)

    2014-11-15

    Highlights: • Alterations in mitochondrial DNA are commonly found in various human cancers. • Mutations in BALB mitochondrial DNA induce up-regulation of chemokine CCL20. • Increased growth and motility of mtBALB cells is associated with CCL20 levels. • mtDNA changes in BALB induce in vivo tumor growth through CCL20 up-regulation. • Mutations in mitochondrial DNA play important roles in keratinocyte neoplasia. - Abstract: mtDNA mutations are common in human cancers and are thought to contribute to the process of neoplasia. We examined the role of mtDNA mutations in skin cancer by generating fibroblast cybrids harboring a mutation in the gene encoding the mitochondrial tRNA for arginine. This somatic mutation (9821insA) was previously reported in UV-induced hyperkeratotic skin tumors in hairless mice and confers specific tumorigenic phenotypes to mutant cybrids. Microarray analysis revealed and RT-PCR along with Western blot analysis confirmed the up-regulation of CCL20 and its receptor CCR6 in mtBALB haplotype containing the mt-Tr 9821insA allele compared to wild type mtB6 haplotype. Based on reported role of CCL20 in cancer progression we examined whether the hyper-proliferation and enhanced motility of mtBALB haplotype would be associated with CCL20 levels. Treatment of both genotypes with recombinant CCL20 (rmCCL20) resulted in enhanced growth and motility of mtB6 cybrids. Furthermore, the acquired somatic alteration increased the in vivo tumor growth of mtBALB cybrids through the up-regulation of CCL20 since neutralizing antibody significantly decreased in vivo tumor growth of these cells; and tumors from anti-CCL20 treated mice injected with mtBALB cybrids showed significantly decreased CCL20 levels. When rmCCL20 or mtBALB cybrids were used as chemotactic stimuli, mtB6 cybrids showed increased motility while anti-CCL20 antibody decreased the migration and in vivo tumor growth of mtBALB cybrids. Moreover, the inhibitors of MAPK signaling and NF

  19. The mitochondrial DNA makeup of Romanians: A forensic mtDNA control region database and phylogenetic characterization.

    Science.gov (United States)

    Turchi, Chiara; Stanciu, Florin; Paselli, Giorgia; Buscemi, Loredana; Parson, Walther; Tagliabracci, Adriano

    2016-09-01

    To evaluate the pattern of Romanian population from a mitochondrial perspective and to establish an appropriate mtDNA forensic database, we generated a high-quality mtDNA control region dataset from 407 Romanian subjects belonging to four major historical regions: Moldavia, Transylvania, Wallachia and Dobruja. The entire control region (CR) was analyzed by Sanger-type sequencing assays and the resulting 306 different haplotypes were classified into haplogroups according to the most updated mtDNA phylogeny. The Romanian gene pool is mainly composed of West Eurasian lineages H (31.7%), U (12.8%), J (10.8%), R (10.1%), T (9.1%), N (8.1%), HV (5.4%),K (3.7%), HV0 (4.2%), with exceptions of East Asian haplogroup M (3.4%) and African haplogroup L (0.7%). The pattern of mtDNA variation observed in this study indicates that the mitochondrial DNA pool is geographically homogeneous across Romania and that the haplogroup composition reveals signals of admixture of populations of different origin. The PCA scatterplot supported this scenario, with Romania located in southeastern Europe area, close to Bulgaria and Hungary, and as a borderland with respect to east Mediterranean and other eastern European countries. High haplotype diversity (0.993) and nucleotide diversity indices (0.00838±0.00426), together with low random match probability (0.0087) suggest the usefulness of this control region dataset as a forensic database in routine forensic mtDNA analysis and in the investigation of maternal genetic lineages in the Romanian population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression.

    Science.gov (United States)

    Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2017-08-01

    Mitochondria have their own gene expression system that is independent of the nuclear system, and control cellular functions in cooperation with the nucleus. While a number of useful technologies for achieving nuclear transgene expression have been reported, only a few have focused on mitochondria. In this study, we validated the utility of an artificial mitochondrial DNA vector with a virus promoter on mitochondrial transgene expression. We designed and constructed pCMV-mtLuc (CGG) that contains a CMV promotor derived from Cytomegalovirus and an artificial mitochondrial genome with a NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. Nluc luciferase activity measurements showed that the pCMV-mtLuc (CGG) efficiently produced the Nluc luciferase protein in human HeLa cells. Moreover, we optimized the mitochondrial transfection of pCMV-mtLuc (CGG) using a MITO-Porter system, a liposome-based carrier for mitochondrial delivery via membrane fusion. As a result, we found that transfection of pCMV-mtLuc (CGG) by MITO-Porter modified with the KALA peptide (cationic amphipathic cell-penetrating peptide) showed a high mitochondrial transgene expression. The developed mitochondrial transgene expression system represents a potentially useful tool for the fields of nanoscience and nanotechnology for controlling the intracellular microenvironment via the regulation of mitochondrial function and promises to open additional innovative research fields of study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes.

    Science.gov (United States)

    Sadikovic, Bekim; Wang, Jing; El-Hattab, Ayman W; Landsverk, Megan; Douglas, Ganka; Brundage, Ellen K; Craigen, William J; Schmitt, Eric S; Wong, Lee-Jun C

    2010-12-20

    Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and more severe disease with multisystem involvement.

  2. Genotype-Phenotype Correlation of Maternally Inherited Disorders due to Mutations in Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Peterus Thajeb

    2006-09-01

    Full Text Available Mitochondrial disorders are heterogeneous systemic ailments that are most often caused by maternal inheritance of a variety of mutations of the mitochondrial (mt DNA. Paternal inheritance and somatic mutation are rare. The disorders are well recognized not only for the genotypic heterogeneity, but also the phenotypic variation among the affected members of a single family. The genotype-phenotype correlation of the diversity of the syndromic and non-syndromic features of mitochondrial disorders are discussed. Some aspects of the molecular mechanisms of this heterogeneity, and the histopathologic findings are highlighted.

  3. The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals

    Directory of Open Access Journals (Sweden)

    Galtier Nicolas

    2009-03-01

    Full Text Available Abstract Background During the last ten years, major advances have been made in characterizing and understanding the evolution of mitochondrial DNA, the most popular marker of molecular biodiversity. Several important results were recently reported using mammals as model organisms, including (i the absence of relationship between mitochondrial DNA diversity and life-history or ecological variables, (ii the absence of prominent adaptive selection, contrary to what was found in invertebrates, and (iii the unexpectedly large variation in neutral substitution rate among lineages, revealing a possible link with species maximal longevity. We propose to challenge these results thanks to the bird/mammal comparison. Direct estimates of population size are available in birds, and this group presents striking life-history trait differences with mammals (higher mass-specific metabolic rate and longevity. These properties make birds the ideal model to directly test for population size effects, and to discriminate between competing hypotheses about the causes of substitution rate variation. Results A phylogenetic analysis of cytochrome b third-codon position confirms that the mitochondrial DNA mutation rate is quite variable in birds, passerines being the fastest evolving order. On average, mitochondrial DNA evolves slower in birds than in mammals of similar body size. This result is in agreement with the longevity hypothesis, and contradicts the hypothesis of a metabolic rate-dependent mutation rate. Birds show no footprint of adaptive selection on cytochrome b evolutionary patterns, but no link between direct estimates of population size and cytochrome b diversity. The mutation rate is the best predictor we have of within-species mitochondrial diversity in birds. It partly explains the differences in mitochondrial DNA diversity patterns observed between mammals and birds, previously interpreted as reflecting Hill-Robertson interferences with the W

  4. Cell-free mitochondrial DNA copy number variation in head and neck squamous cell carcinoma: A study of non-invasive biomarker from Northeast India.

    Science.gov (United States)

    Kumar, Manish; Srivastava, Shilpee; Singh, Seram Anil; Das, Anup Kumar; Das, Ganesh Chandra; Dhar, Bishal; Ghosh, Sankar Kumar; Mondal, Rosy

    2017-10-01

    Head and neck squamous cell carcinoma is the most commonly diagnosed cancer worldwide. The lifestyle, food habits, and customary practices manifest the Northeast Indian population toward higher susceptibility to develop head and neck squamous cell carcinoma. Here, we have investigated the association of smoke and smokeless tobacco, and alcohol with copy number variation of cell-free mitochondrial DNA and cell-free nuclear DNA in cases and controls. Cell-free DNA from plasma was isolated from 50 head and neck squamous cell carcinoma cases and 50 controls with informed written consent using QIAamp Circulating Nucleic Acid Kit. Real-time polymerase chain reaction was done for copy number variation in cell-free mitochondrial DNA and cell-free nuclear DNA. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic application between the two study groups using clinicopathological parameters. The levels of cell-free nuclear DNA and cell-free mitochondrial DNA of cases in association with smoke and smokeless tobacco, alcohol with smoking (p squamous cell carcinoma cases and controls, we distinguished cell-free mitochondrial DNA (cutoff: 19.84 raw Ct; sensitivity: 84%; specificity: 100%; p < 0.001) and cell-free nuclear DNA (cutoff: 463,282 genomic equivalent/mL; sensitivity: 53%; specificity: 87%; p < 0.001). The copy number variation in cases (cell-free nuclear DNA: 5451.66 genomic equivalent/mL and cell-free mitochondrial DNA: 29,103,476.15 genomic equivalent/mL) and controls (cell-free nuclear DNA: 1650.9 genomic equivalent/mL and cell-free mitochondrial DNA: 9,189,312.54 genomic equivalent/mL), respectively. Our result indicates that the cell-free mitochondrial DNA content is highly associated with smoke and smokeless tobacco, betel quid chewing, and alcohol which shows greater promises, holding the key characteristics of diagnostic biomarkers, that is, minimal invasiveness, high specificity, and sensitivity.

  5. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB).

    Science.gov (United States)

    van Loon, Barbara; Samson, Leona D

    2013-03-01

    Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known to repair DNA lesions that are specific substrates of AAG. Here we use immunofluorescence to show that AAG localizes to mitochondria, and we find that native AAG is present in purified human mitochondrial extracts, as well as that exposure to alkylating agent promotes AAG accumulation in the mitochondria. We identify mitochondrial single-stranded binding protein (mtSSB) as a novel interacting partner of AAG; interaction between mtSSB and AAG is direct and increases upon methyl methanesulfonate (MMS) treatment. The consequence of this interaction is specific inhibition of AAG glycosylase activity in the context of a single-stranded DNA (ssDNA), but not a double-stranded DNA (dsDNA) substrate. By inhibiting AAG-initiated processing of damaged bases, mtSSB potentially prevents formation of DNA breaks in ssDNA, ensuring that base removal primarily occurs in dsDNA. In summary, our findings suggest the existence of AAG-initiated BER in mitochondria and further support a role for mtSSB in DNA repair. Copyright © 2012. Published by Elsevier B.V.

  6. [Relationship between mitochondrial DNA copy number, membrane potential of human embryo and embryo morphology].

    Science.gov (United States)

    Zhao, H; Teng, X M; Li, Y F

    2017-11-25

    Objective: To explore the relationship between the embryo with the different morphological types in the third day and its mitochondrial copy number, the membrane potential. Methods: Totally 117 embryos with poor development after normal fertilization and were not suitable transferred in the fresh cycle and 106 frozen embryos that were discarded voluntarily by infertility patients with in vitro fertilization-embryo transfer after successful pregnancy were selected. According to evaluation of international standard in embryos, all cleavage stage embryos were divided into class Ⅰ frozen embryo group ( n= 64), class Ⅱ frozen embryo group ( n= 42) and class Ⅲ fresh embryonic group (not transplanted embryos; n= 117). Real-time PCR and confocal microscopy methods were used to detect mitochondrial DNA (mtDNA) copy number and the mitochondrial membrane potential of a single embryo. The differences between embryo quality and mtDNA copy number and membrane potential of each group were compared. Results: The copy number of mtDNA and the mitochondrial membrane potential in class Ⅲ fresh embryonic group [(1.7±1.0)×10(5) copy/μl, 1.56±0.32] were significantly lower than those in class Ⅰ frozen embryo group [(3.4±1.7)×10(5) copy/μl, 2.66±0.21] and class Ⅱ frozen embryo group [(2.6±1.2)×10(5) copy/μl, 1.80±0.32; all Pembryo group were significantly higher than those in classⅡ frozen embryo group (both Pembryos of the better quality embryo are higher.

  7. Development of a Model for the Teaching of Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    A.P.S. Souza

    2010-05-01

    Full Text Available The Cellular Biology and Molecular Biology are fields of Science that use very abstract concepts, because they look into microscopic and molecular aspects of the nature. The process of teaching/learning of those disciplines requires didactic material, as an alternative approach for the students, to increase the chances of understanding these issues and to become an important tool in the synthesis of this knowledge. One of the methods that can be employed is the didactic models based on multimedia, because they allow an easy and fun interaction with these subjects. On this work was created a new educational model that represents the human mitochondrial DNA molecule, mtDNA, in its circular form, using the softwares Excel 2007 and PowerPoint 2007. The model was constructed in hypertext format, which allowed a quick and interactive access to the information contained in the genes found in the L and the H strands of mtDNA, and its function in the mitochondrial processes, like themechanism of energy production that occurs inside of the mitochondria by the coupling of electron transfer and ATP synthesis or still others uses like forensic identification.

  8. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring.

    Science.gov (United States)

    Langie, Sabine A S; Achterfeldt, Sebastian; Gorniak, Joanna P; Halley-Hogg, Kirstin J A; Oxley, David; van Schooten, Frederik J; Godschalk, Roger W L; McKay, Jill A; Mathers, John C

    2013-08-01

    The mechanisms through which environmental and dietary factors modulate DNA repair are still unclear but may include dysregulation of gene expression due to altered epigenetic markings. In a mouse model, we investigated the effect of maternal folate depletion during pregnancy and lactation, and high-fat feeding from weaning, on base excision repair (BER) and DNA methylation and expression of selected BER-related genes in the brain of adult offspring. While folate depletion did not affect BER activity of the mothers, BER increased in the offspring at weaning (P=0.052). In the long term, as observed in 6-mo-old offspring, the double insult, i.e., maternal low-folate supply and high-fat feeding from weaning, decreased BER activity significantly in the cortex, cerebellum, hippocampus, and subcortical regions (P≤0.017). This fall in BER activity was associated with small changes in methylation or expression of BER-related genes. Maternal folate depletion led to slightly increased oxidative DNA damage levels in subcortical regions of adult offspring, which may increase sensitivity to oxidative stress and predispose to neurological disorders. In summary, our data suggest that low-folate supply during early life may leave an epigenetic mark that can predispose the offspring to further dietary insults, causing adverse effects during adult life.

  9. Mitochondrial DNA deletion in a patient with combined features of Leigh and Pearson syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Blok, R.B.; Thorburn, D.R.; Danks, D.M. [Royal Children`s Hospital, Melbourne (Australia)] [and others

    1994-09-01

    We describe a heteroplasmic 4237 bp mitochondrial DNA (mtDNA) deletion in an 11 year old girl who has suffered from progressive illness since birth. She has some features of Leigh syndrome (global developmental delay with regression, brainstem dysfunction and lactic acidosis), together with other features suggestive of Pearson syndrome (history of pancytopenia and failure to thrive). The deletion was present at a level greater than 50% in skeletal muscle, but barely detectable in skin fibroblasts following Southern blot analysis, and only observed in blood following PCR analysis. The deletion spanned nt 9498 to nt 13734, and was flanked by a 12 bp direct repeat. Genes for cytochrome c oxidase subunit III, NADH dehydrogenase subunits 3, 4L, 4 and 5, and tRNAs for glycine, arginine, histidine, serine({sup AGY}) and leucine({sup CUN}) were deleted. Southern blotting also revealed an altered Apa I restriction site which was shown by sequence analysis to be caused by G{r_arrow}A nucleotide substitution at nt 1462 in the 12S rRNA gene. This was presumed to be a polymorphism. No abnormalities of mitochondrial ultrastructure, distribution or of respiratory chain enzyme complexes I-IV in skeletal muscle were observed. Mitochondrial disorders with clinical features overlapping more than one syndrome have been reported previously. This case further demonstrates the difficulty in correlating observed clinical features with a specific mitochondrial DNA mutation.

  10. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    Science.gov (United States)

    Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption. Published by Elsevier Ltd.

  11. Mitochondrial DNA haplogroup phylogeny of the dog: Proposal for a cladistic nomenclature.

    Science.gov (United States)

    Fregel, Rosa; Suárez, Nicolás M; Betancor, Eva; González, Ana M; Cabrera, Vicente M; Pestano, José

    2015-05-01

    Canis lupus familiaris mitochondrial DNA analysis has increased in recent years, not only for the purpose of deciphering dog domestication but also for forensic genetic studies or breed characterization. The resultant accumulation of data has increased the need for a normalized and phylogenetic-based nomenclature like those provided for human maternal lineages. Although a standardized classification has been proposed, haplotype names within clades have been assigned gradually without considering the evolutionary history of dog mtDNA. Moreover, this classification is based only on the D-loop region, proven to be insufficient for phylogenetic purposes due to its high number of recurrent mutations and the lack of relevant information present in the coding region. In this study, we design 1) a refined mtDNA cladistic nomenclature from a phylogenetic tree based on complete sequences, classifying dog maternal lineages into haplogroups defined by specific diagnostic mutations, and 2) a coding region SNP analysis that allows a more accurate classification into haplogroups when combined with D-loop sequencing, thus improving the phylogenetic information obtained in dog mitochondrial DNA studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Mitochondrial DNA variation, but not nuclear DNA, sharply divides morphologically identical chameleons along an ancient geographic barrier.

    Directory of Open Access Journals (Sweden)

    Dan Bar Yaacov

    Full Text Available The Levant is an important migration bridge, harboring border-zones between Afrotropical and palearctic species. Accordingly, Chameleo chameleon, a common species throughout the Mediterranean basin, is morphologically divided in the southern Levant (Israel into two subspecies, Chamaeleo chamaeleon recticrista (CCR and C. c. musae (CCM. CCR mostly inhabits the Mediterranean climate (northern Israel, while CCM inhabits the sands of the north-western Negev Desert (southern Israel. AFLP analysis of 94 geographically well dispersed specimens indicated moderate genetic differentiation (PhiPT = 0.097, consistent with the classical division into the two subspecies, CCR and CCM. In contrast, sequence analysis of a 637 bp coding mitochondrial DNA (mtDNA fragment revealed two distinct phylogenetic clusters which were not consistent with the morphological division: one mtDNA cluster consisted of CCR specimens collected in regions northern of the Jezreel Valley and another mtDNA cluster harboring specimens pertaining to both the CCR and CCM subspecies but collected southern of the Jezreel Valley. AMOVA indicated clear mtDNA differentiation between specimens collected northern and southern to the Jezreel Valley (PhiPT = 0.79, which was further supported by a very low coalescent-based estimate of effective migration rates. Whole chameleon mtDNA sequencing (∼17,400 bp generated from 11 well dispersed geographic locations revealed 325 mutations sharply differentiating the two mtDNA clusters, suggesting a long allopatric history further supported by BEAST. This separation correlated temporally with the existence of an at least 1 million year old marine barrier at the Jezreel Valley exactly where the mtDNA clusters meet. We discuss possible involvement of gender-dependent life history differences in maintaining such mtDNA genetic differentiation and suggest that it reflects (ancient local adaptation to mitochondrial-related traits.

  13. Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence.

    Science.gov (United States)

    André, P; Kim, A; Khrapko, K; Thilly, W G

    1997-08-01

    The study of rare genetic changes in human tissues requires specialized techniques. Point mutations at fractions at or below 10(-6) must be observed to discover even the most prominent features of the point mutational spectrum. PCR permits the increase in number of mutant copies but does so at the expense of creating many additional mutations or "PCR noise". Thus, each DNA sequence studied must be characterized with regard to the DNA polymerase and conditions used to avoid interpreting a PCR-generated mutation as one arising in human tissue. The thermostable DNA polymerase derived from Pyrococcus furiosus designated Pfu has the highest fidelity of any DNA thermostable polymerase studied to date, and this property recommends it for analyses of tissue mutational spectra. Here, we apply constant denaturant capillary electrophoresis (CDCE) to separate and isolate the products of DNA amplification. This new strategy permitted direct enumeration and identification of point mutations created by Pfu DNA polymerase in a 96-bp low melting domain of a human mitochondrial sequence despite the very low mutant fractions generated in the PCR process. This sequence, containing part of the tRNA glycine and NADH dehydrogenase subunit 3 genes, is the target of our studies of mitochondrial mutagenesis in human cells and tissues. Incorrectly synthesized sequences were separated from the wild type as mutant/wild-type heteroduplexes by sequential enrichment on CDCE. An artificially constructed mutant was used as an internal standard to permit calculation of the mutant fraction. Our study found that the average error rate (mutations per base pair duplication) of Pfu was 6.5 x 10(-7), and five of its more frequent mutations (hot spots) consisted of three transversions (GC-->TA, AT-->TA, and AT-->CG), one transition (AT-->GC), and one 1-bp deletion (in an AAAAAA sequence). To achieve an even higher sensitivity, the amount of Pfu-induced mutants must be reduced.

  14. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand.

    Science.gov (United States)

    Yasukawa, Takehiro; Reyes, Aurelio; Cluett, Tricia J; Yang, Ming-Yao; Bowmaker, Mark; Jacobs, Howard T; Holt, Ian J

    2006-11-15

    Using two-dimensional agarose gel electrophoresis, we show that mitochondrial DNA (mtDNA) replication of birds and mammals frequently entails ribonucleotide incorporation throughout the lagging strand (RITOLS). Based on a combination of two-dimensional agarose gel electrophoretic analysis and mapping of 5' ends of DNA, initiation of RITOLS replication occurs in the major non-coding region of vertebrate mtDNA and is effectively unidirectional. In some cases, conversion of nascent RNA strands to DNA starts at defined loci, the most prominent of which maps, in mammalian mtDNA, in the vicinity of the site known as the light-strand origin.

  15. The mitochondrial DNA 10197 G > A mutation causes MELAS/Leigh overlap syndrome presenting with acute auditory agnosia.

    Science.gov (United States)

    Leng, Yinglin; Liu, Yuhe; Fang, Xiaojing; Li, Yao; Yu, Lei; Yuan, Yun; Wang, Zhaoxia

    2015-04-01

    Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes/Leigh (MELAS/LS) overlap syndrome is a mitochondrial disorder subtype with clinical and magnetic resonance imaging (MRI) features that are characteristic of both MELAS and Leigh syndrome (LS). Here, we report an MELAS/LS case presenting with cortical deafness and seizures. Cranial MRI revealed multiple lesions involving bilateral temporal lobes, the basal ganglia and the brainstem, which conformed to neuroimaging features of both MELAS and LS. Whole mitochondrial DNA (mtDNA) sequencing and PCR-RFLP revealed a de novo heteroplasmic m.10197 G > A mutation in the NADH dehydrogenase subunit 3 gene (ND3), which was predicted to cause an alanine to threonine substitution at amino acid 47. Although the mtDNA m.10197 G > A mutation has been reported in association with LS, Leber hereditary optic neuropathy and dystonia, it has never been linked with MELAS/LS overlap syndrome. Our patient therefore expands the phenotypic spectrum of the mtDNA m.10197 G > A mutation.

  16. Mitochondrial DNA differentiates Alzheimer's disease from Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Podlesniy, Petar; Llorens, Franc; Golanska, Ewa; Sikorska, Beata; Liberski, Pawel; Zerr, Inga; Trullas, Ramon

    2016-05-01

    Low content of cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) is a biomarker of early stage Alzheimer's disease (AD), but whether mtDNA is altered in a rapid neurodegenerative dementia such as Creutzfeldt-Jakob disease is unknown. CSF mtDNA was measured using digital polymerase chain reaction (dPCR) in two independent cohorts comprising a total of 112 patients diagnosed with sporadic Creutzfeldt-Jakob disease (sCJD), probable AD, or non-Alzheimer's type dementia. Patients with AD exhibit low mtDNA content in CSF compared with patients diagnosed with sCJD or with non-Alzheimer's type dementias. The CSF concentration of mtDNA does not correlate with Aβ, t-tau, p-tau, and 14-3-3 protein levels in CSF. Low-CSF mtDNA is not a consequence of brain damage and allows the differential diagnosis of AD from sCJD and other dementias. These results support the hypothesis that mtDNA in CSF is a pathophysiological biomarker of AD. Copyright © 2015 Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  17. Introgression of mitochondrial DNA among Myodes voles: consequences for energetics?

    Directory of Open Access Journals (Sweden)

    Boratyński Zbyszek

    2011-12-01

    Full Text Available Abstract Background Introgression of mitochondrial DNA (mtDNA is among the most frequently described cases of reticulate evolution. The tendency of mtDNA to cross interspecific barriers is somewhat counter-intuitive considering the key function of enzymes that it encodes in the oxidative-phosphorylation process, which could give rise to hybrid dysfunction. How mtDNA reticulation affects the evolution of metabolic functions is, however, uncertain. Here we investigated how morpho-physiological traits vary in natural populations of a common rodent (the bank vole, Myodes glareolus and whether this variation could be associated with mtDNA introgression. First, we confirmed that M. glareolus harbour mtDNA introgressed from M. rutilus by analyzing mtDNA (cytochrome b, 954 bp and nuclear DNA (four markers; 2333 bp in total sequence variation and reconstructing loci phylogenies among six natural populations in Finland. We then studied geographic variation in body size and basal metabolic rate (BMR among the populations of M. glareolus and tested its relationship with mtDNA type. Results Myodes glareolus and its arctic neighbour, M. rutilus, are reciprocally monophyletic at the analyzed nuclear DNA loci. In contrast, the two northernmost populations of M. glareolus have a fixed mitotype that is shared with M. rutilus, likely due to introgressive hybridization. The analyses of phenotypic traits revealed that the body mass and whole-body, but not mass corrected, BMR are significantly reduced in M. glareolus females from northern Finland that also have the introgressed mitotype. Restricting the analysis to the single population where the mitotypes coexist, the association of mtDNA type with whole-body BMR remained but those with mass corrected BMR and body mass did not. Mitochondrial sequence variation in the introgressed haplotypes is compatible with demographic growth of the populations, but may also be a result of positive selection. Conclusion Our

  18. Mitochondrial DNA copy number and chronic lymphocytic leukemia/small lymphocytic lymphoma risk in two prospective studies

    NARCIS (Netherlands)

    Kim, Christopher; Bassig, Bryan A; Seow, Wei Jie; Hu, Wei; Purdue, Mark P; Huang, Wen-Yi; Liu, Chin-San; Cheng, Wen-Ling; Männistö, Satu; Vermeulen, Roel; Weinstein, Stephanie J; Lim, Unhee; Hosgood, H Dean; Bonner, Matthew R; Caporaso, Neil E; Albanes, Demetrius; Lan, Qing; Rothman, Nathaniel

    BACKGROUND: Mitochondrial DNA copy number (mtDNA CN) may be modified by mitochondria in response to oxidative stress. Previously, mtDNA CN was associated with non-Hodgkin lymphoma (NHL) risk, particularly chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). We conducted a replication

  19. Distribution of mitochondrial DNA nucleoids inside the linear tubules vs. bulk parts of mitochondrial network as visualized by 4Pi microscopy

    Czech Academy of Sciences Publication Activity Database

    Dlasková, Andrea; Engstová, Hana; Plecitá-Hlavatá, Lydie; Lessard, M.; Alán, Lukáš; Reguera Pajuelo, David; Jabůrek, Martin; Ježek, Petr

    2015-01-01

    Roč. 47, č. 3 (2015), s. 255-263 ISSN 0145-479X R&D Projects: GA ČR(CZ) GAP305/12/1247; GA MŠk(CZ) EE2.3.30.0025; GA MŠk(CZ) ED1.1.00/02.0109; GA ČR(CZ) GA13-02033S Institutional support: RVO:67985823 Keywords : mitochondrial network * mitochondrial DNA * nucleoids * 4Pimicroscopy Subject RIV: EA - Cell Biology Impact factor: 2.080, year: 2015

  20. Method for assessing damage to mitochondrial DNA caused by radiation and epichlorohydrin

    International Nuclear Information System (INIS)

    Singh, G.; Hauswirth, W.W.; Ross, W.E.; Neims, A.H.

    1985-01-01

    This paper describes a rapid and reliable method for quantification of damage to mitochondrial DNA (mtDNA), especially strand breaks. The degree of damage to mtDNA is assessed by the proportion of physical forms (i.e., supercoiled versus open-circular and linear forms) upon agarose gel electrophoresis, blotting, and visualization by hybridization with [ 32 P]mtDNA probes. The use of a radiolabeled probe is a crucial step in the procedure because it provides both a means to quantify by radioautography and to obtain the mtDNA specificity required to eliminate misinterpretation due to nuclear DNA contamination. To demonstrate the utility of this technique, X-irradiation and epichlorohydrin are shown to damage both isolated mtDNA and mtDNA in whole cells in a dose-dependent fashion

  1. Nitric oxide and DOPAC-induced cell death: from GSH depletion to mitochondrial energy crisis.

    Science.gov (United States)

    Nunes, Carla; Barbosa, Rui M; Almeida, Leonor; Laranjinha, João

    2011-09-01

    The molecular mechanisms inherent to cell death associated with Parkinson's disease are not clearly understood. Diverse pathways, sequence of events and models have been explored in several studies. Recently, we have proposed an integrative mechanism, encompassing the interaction of nitric oxide (•NO) and a major dopamine metabolite, dihydroxyphenylacetic (DOPAC), leading to a synergistic mitochondrial dysfunction and cell death that may be operative in PD. In this study, we have studied the sequence of events underlying the mechanisms of cell death in PC12 cells exposed to •NO and DOPAC in terms of: a) free radical production; b) modulation by glutathione (GSH); c) energetic status and d) outer membrane mitochondria permeability. Using Electron Paramagnetic Resonance (EPR) it is shown the early production of oxygen free radicals followed by a depletion of GSH reflected by an increase of GSSG/GSH ratio in the cells treated with the mixture of •NO/DOPAC, as compared with the cells individually exposed to each of the stimulus. Glutathione ethyl ester (GSH-EE) and N-acetylcysteine (NAC) may rescue cells from death, increasing GSH content and preventing ATP loss in cells treated with the mixture DOPAC/•NO but failed to exert similar effects in the cells challenged only with •NO. The depletion of GSH is accompanied by a decreased activity of mitochondrial complex I. At a later stage, the concerted action of DOPAC and •NO include a rise in the ratio Bax/Bcl-2, an observation not evident when cells were exposed only to •NO. The results support a free radical-induced pathway leading to cell death involving the concerted action of DOPAC and •NO and the critical role of GSH in maintaining a functional mitochondria. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Detection of mitochondrial DNA deletions in human cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu, Qing-Jie; Feng, Jiang-Bin; Lu, Xue; Li, Yu-Wen; Chen, De-Qing

    2008-01-01

    Full text: Purpose: To screen the novel mitochondrial DNA (mt DNA) deletions induced by ionizing radiation, and analyze the several kinds of mt DNA deletions, known as 3895 bp, 889 bp, 7436 bp or 4934 bp deletions. Methods: Long-range PCR with two pairs of primers, which could amplify the whole human mitochondrial genome, was used to analyze the lymphoblastoid cell line before and after exposed to 10 Gy 60 Co γ-rays. The limited condition PCR was used to certify the possible mt DNA deletion showed by long-range PCR. The PCR products were purified, cloned, sequenced and the sequence result were BLASTed. Regular PCR or nest-PCR were used to analyze the 3895 bp, 889 bp, 7436 bp or 4934 bp deletions before and after radiation exposure. The final PCR products were purified, sequenced and BALSTed on standard human mitochondrial genome sequence database. Results: (1) The predicted bands of mt DNA were observed on the control cell lines, and the possible mt DNA deletions were also detected on the irradiated cell lines. The deletions were certified by the limited condition PCR. The sequence BLAST results of the cloned PCR products showed that two kinds of deletions, 7455 bp deletion (nt 475-7929 in heavy strand) and 9225 bp deletion (nt 7714-369 in heavy strand), which were between two 8 bp direct repeats. Further bioinformatics analysis showed that the two deletions were novel deletions. (2) The 889 bp and 3895 bp deletion were not detected for the cell line samples not exposed to 60 Co γ-rays. The 889 bp and 3895 bp deletions were detected on samples exposed to 10 Gy 60 Co γ-rays. The BALST results showed that the 889 bp and 3895 deletions flanked nt 11688 bp-12576, nt 548 bp-4443, respectively. The 7436 bp deletion levels were not changed much before and after irradiation. (3) The 4934 bp deletions had the same pattern as 7436 bp deletion, but it could induced by radiation. Conclusions: Ionizing radiation could induce the human lymphoblastoid two novel mt DNA

  3. Mitochondrial DNA mutations in preneoplastic lesions of the gastrointestinal tract: A biomarker for the early detection of cancer

    Directory of Open Access Journals (Sweden)

    Montgomery Elizabeth A

    2006-12-01

    Full Text Available Abstract Background Somatic mutations of mitochondrial DNA (mtDNA are common in many human cancers. We have described an oligonucleotide microarray ("MitoChip" for rapid sequencing of the entire mitochondrial genome (Zhou et al, J Mol Diagn 2006, facilitating the analysis of mtDNA mutations in preneoplastic lesions. We examined 14 precancerous lesions, including seven Barrett esophagus biopsies, with or without associated dysplasia; four colorectal adenomas; and three inflammatory colitis-associated dysplasia specimens. In all cases, matched normal tissues from the corresponding site were obtained as germline control. MitoChip analysis was performed on DNA obtained from cryostat-embedded specimens. Results A total of 513,639 bases of mtDNA were sequenced in the 14 samples, with 490,224 bases (95.4% bases assigned by the automated genotyping software. All preneoplastic lesions examined demonstrated at least one somatic mtDNA sequence alteration. Of the 100 somatic mtDNA alterations observed in the 14 cases, 27 were non-synonymous coding region mutations (i.e., resulting in an amino acid change, 36 were synonymous, and 37 involved non-coding mtDNA. Overall, somatic alterations most commonly involved the COI, ND4 and ND5 genes. Notably, somatic mtDNA alterations were observed in preneoplastic lesions of the gastrointestinal tract even in the absence of histopathologic evidence of dysplasia, suggesting that the mitochondrial genome is susceptible at the earliest stages of multistep cancer progression. Conclusion Our findings further substantiate the rationale for exploring the mitochondrial genome as a biomarker for the early diagnosis of cancer, and confirm the utility of a high-throughput array-based platform for this purpose from a clinical applicability standpoint.

  4. Historically low mitochondrial DNA diversity in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Tsangaras, Kyriakos; Ávila-Arcos, María C; Ishida, Yasuko; Helgen, Kristofer M; Roca, Alfred L; Greenwood, Alex D

    2012-10-24

    The koala (Phascolarctos cinereus) is an arboreal marsupial that was historically widespread across eastern Australia until the end of the 19th century when it suffered a steep population decline. Hunting for the fur trade, habitat conversion, and disease contributed to a precipitous reduction in koala population size during the late 1800s and early 1900s. To examine the effects of these reductions in population size on koala genetic diversity, we sequenced part of the hypervariable region of mitochondrial DNA (mtDNA) in koala museum specimens collected in the 19th and 20th centuries, hypothesizing that the historical samples would exhibit greater genetic diversity. The mtDNA haplotypes present in historical museum samples were identical to haplotypes found in modern koala populations, and no novel haplotypes were detected. Rarefaction analyses suggested that the mtDNA genetic diversity present in the museum samples was similar to that of modern koalas. Low mtDNA diversity may have been present in koala populations prior to recent population declines. When considering management strategies, low genetic diversity of the mtDNA hypervariable region may not indicate recent inbreeding or founder events but may reflect an older historical pattern for koalas.

  5. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  6. LORD-Q: a long-run real-time PCR-based DNA-damage quantification method for nuclear and mitochondrial genome analysis

    Science.gov (United States)

    Lehle, Simon; Hildebrand, Dominic G.; Merz, Britta; Malak, Peter N.; Becker, Michael S.; Schmezer, Peter; Essmann, Frank; Schulze-Osthoff, Klaus; Rothfuss, Oliver

    2014-01-01

    DNA damage is tightly associated with various biological and pathological processes, such as aging and tumorigenesis. Although detection of DNA damage is attracting increasing attention, only a limited number of methods are available to quantify DNA lesions, and these techniques are tedious or only detect global DNA damage. In this study, we present a high-sensitivity long-run real-time PCR technique for DNA-damage quantification (LORD-Q) in both the mitochondrial and nuclear genome. While most conventional methods are of low-sensitivity or restricted to abundant mitochondrial DNA samples, we established a protocol that enables the accurate sequence-specific quantification of DNA damage in >3-kb probes for any mitochondrial or nuclear DNA sequence. In order to validate the sensitivity of this method, we compared LORD-Q with a previously published qPCR-based method and the standard single-cell gel electrophoresis assay, demonstrating a superior performance of LORD-Q. Exemplarily, we monitored induction of DNA damage and repair processes in human induced pluripotent stem cells and isogenic fibroblasts. Our results suggest that LORD-Q provides a sequence-specific and precise method to quantify DNA damage, thereby allowing the high-throughput assessment of DNA repair, genotoxicity screening and various other processes for a wide range of life science applications. PMID:24371283

  7. A novel quantitative assay of mitophagy: Combining high content fluorescence microscopy and mitochondrial DNA load to quantify mitophagy and identify novel pharmacological tools against pathogenic heteroplasmic mtDNA.

    Science.gov (United States)

    Diot, Alan; Hinks-Roberts, Alex; Lodge, Tiffany; Liao, Chunyan; Dombi, Eszter; Morten, Karl; Brady, Stefen; Fratter, Carl; Carver, Janet; Muir, Rebecca; Davis, Ryan; Green, Charlotte J; Johnston, Iain; Hilton-Jones, David; Sue, Carolyn; Mortiboys, Heather; Poulton, Joanna

    2015-10-01

    Mitophagy is a cellular mechanism for the recycling of mitochondrial fragments. This process is able to improve mitochondrial DNA (mtDNA) quality in heteroplasmic mtDNA disease, in which mutant mtDNA co-exists with normal mtDNA. In disorders where the load of mutant mtDNA determines disease severity it is likely to be an important determinant of disease progression. Measuring mitophagy is technically demanding. We used pharmacological modulators of autophagy to validate two techniques for quantifying mitophagy. First we used the IN Cell 1000 analyzer to quantify mitochondrial co-localisation with LC3-II positive autophagosomes. Unlike conventional fluorescence and electron microscopy, this high-throughput system is sufficiently sensitive to detect transient low frequency autophagosomes. Secondly, because mitophagy preferentially removes pathogenic heteroplasmic mtDNA mutants, we developed a heteroplasmy assay based on loss of m.3243A>G mtDNA, during culture conditions requiring oxidative metabolism ("energetic stress"). The effects of the pharmacological modulators on these two measures were consistent, confirming that the high throughput imaging output (autophagosomes co-localising with mitochondria) reflects mitochondrial quality control. To further validate these methods, we performed a more detailed study using metformin, the most commonly prescribed antidiabetic drug that is still sometimes used in Maternally Inherited Diabetes and Deafness (MIDD). This confirmed our initial findings and revealed that metformin inhibits mitophagy at clinically relevant concentrations, suggesting that it may have novel therapeutic uses. Copyright © 2015. Published by Elsevier Ltd.

  8. Transgene expression of Drosophila melanogaster nucleoside kinase reverses mitochondrial thymidine kinase 2 deficiency.

    Science.gov (United States)

    Krishnan, Shuba; Zhou, Xiaoshan; Paredes, João A; Kuiper, Raoul V; Curbo, Sophie; Karlsson, Anna

    2013-02-15

    A strategy to reverse the symptoms of thymidine kinase 2 (TK2) deficiency in a mouse model was investigated. The nucleoside kinase from Drosophila melanogaster (Dm-dNK) was expressed in TK2-deficient mice that have been shown to present with a severe phenotype caused by mitochondrial DNA depletion. The Dm-dNK(+/-) transgenic mice were shown to be able to rescue the TK2-deficient mice. The Dm-dNK(+/-)TK2(-/-) mice were normal as judged by growth and behavior during the observation time of 6 months. The Dm-dNK-expressing mice showed a substantial increase in thymidine-phosphorylating activity in investigated tissues. The Dm-dNK expression also resulted in highly elevated dTTP pools. The dTTP pool alterations did not cause specific mitochondrial DNA mutations or deletions when 6-month-old mice were analyzed. The mitochondrial DNA was also detected at normal levels. In conclusion, the Dm-dNK(+/-)TK2(-/-) mouse model illustrates how dTMP synthesized in the cell nucleus can compensate for loss of intramitochondrial dTMP synthesis in differentiated tissue. The data presented open new possibilities to treat the severe symptoms of TK2 deficiency.

  9. High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Ghada Al-Kafaji

    2013-01-01

    Full Text Available Oxidative damage to mitochondrial DNA (mtDNA has been linked to the pathogenicity of diabetic nephropathy. We tested the hypothesis that mtDNA copy number may be increased in human mesangial cells in response to high glucose-induced reactive oxygen species (ROS to compensate for damaged mtDNA. The effect of manganese superoxide dismutase mimetic (MnTBAP on glucose-induced mtDNA copy number was also examined. The copy number of mtDNA was determined by real-time PCR in human mesangial cells cultured in 5 mM glucose, 25 mM glucose, and mannitol (osmotic control, as well as in cells cultured in 25 mM glucose in the presence and absence of 200 μM MnTBAP. Intracellular ROS was assessed by confocal microscopy and flow cytometry in human mesangial cells. The copy number of mtDNA was significantly increased when human mesangial cells were incubated with 25 mM glucose compared to 5 mM glucose and mannitol. In addition, 25 mM glucose rapidly generated ROS in the cells, which was not detected in 5 mM glucose. Furthermore, mtDNA copy number was significantly decreased and maintained to normal following treatment of cells with 25 mM glucose and MnTBAP compared to 25 mM glucose alone. Inclusion of MnTBAP during 25 mM glucose incubation inhibited mitochondrial superoxide in human mesangial cells. Increased mtDNA copy number in human mesangial cells by high glucose could contribute to increased mitochondrial superoxide, and prevention of mtDNA copy number could have potential in retarding the development of diabetic nephropathy.

  10. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Samantha C Lewis

    2015-02-01

    Full Text Available Mitochondrial DNA (mtDNA encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.

  11. Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors

    Directory of Open Access Journals (Sweden)

    Heyman Yvan

    2005-11-01

    Full Text Available Abstract Background Recent work has shown that mitochondrial biogenesis and mitochondrial functions are critical determinants of embryonic development. However, the expression of the factors controlling mitochondrial biogenesis in early embryogenesis has received little attention so far. Methods We used real-time quantitative PCR to quantify mitochondrial DNA (mtDNA in bovine oocytes and in various stages of in vitro produced embryos. To investigate the molecular mechanisms responsible for the replication and the transcriptional activation of mtDNA, we quantified the mRNA corresponding to the mtDNA-encoded cytochrome oxidase 1 (COX1, and two nuclear-encoded factors, i.e. the Nuclear Respiratory Factor 1 (NRF1, and the nuclear-encoded Mitochondrial Transcription Factor A (mtTFA. Results Unlike findings reported in mouse embryos, the mtDNA content was not constant during early bovine embryogenesis. We found a sharp, 60% decrease in mtDNA content between the 2-cell and the 4/8-cell stages. COX1 mRNA was constant until the morula stage after which it increased dramatically. mtTFA mRNA was undetectable in oocytes and remained so until the 8/16-cell stage; it began to appear only at the morula stage, suggesting de novo synthesis. In contrast, NRF1 mRNA was detectable in oocytes and the quantity remained constant until the morula stage. Conclusion Our results revealed a reduction of mtDNA content in early bovine embryos suggesting an active process of mitochondrial DNA degradation. In addition, de novo mtTFA expression associated with mitochondrial biogenesis activation and high levels of NRF1 mRNA from the oocyte stage onwards argue for the essential function of these factors during the first steps of bovine embryogenesis.

  12. Discovery of cyanophage genomes which contain mitochondrial DNA polymerase.

    Science.gov (United States)

    Chan, Yi-Wah; Mohr, Remus; Millard, Andrew D; Holmes, Antony B; Larkum, Anthony W; Whitworth, Anna L; Mann, Nicholas H; Scanlan, David J; Hess, Wolfgang R; Clokie, Martha R J

    2011-08-01

    DNA polymerase γ is a family A DNA polymerase responsible for the replication of mitochondrial DNA in eukaryotes. The origins of DNA polymerase γ have remained elusive because it is not present in any known bacterium, though it has been hypothesized that mitochondria may have inherited the enzyme by phage-mediated nonorthologous displacement. Here, we present an analysis of two full-length homologues of this gene, which were found in the genomes of two bacteriophages, which infect the chlorophyll-d containing cyanobacterium Acaryochloris marina. Phylogenetic analyses of these phage DNA polymerase γ proteins show that they branch deeply within the DNA polymerase γ clade and therefore share a common origin with their eukaryotic homologues. We also found homologues of these phage polymerases in the environmental Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA) database, which fell in the same clade. An analysis of the CAMERA assemblies containing the environmental homologues together with the filter fraction metadata indicated some of these assemblies may be of bacterial origin. We also show that the phage-encoded DNA polymerase γ is highly transcribed as the phage genomes are replicated. These findings provide data that may assist in reconstructing the evolution of mitochondria.

  13. Dissociation of DNA damage and mitochondrial injury caused by hydrogen peroxide in SV-40 transformed lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2002-11-01

    Full Text Available Abstract Background Since lung epithelial cells are constantly being exposed to reactive oxygen intermediates (ROIs, the alveolar surface is a major site of oxidative stress, and each cell type may respond differently to oxidative stress. We compared the extent of oxidative DNA damage with that of mitochondrial injury in lung epithelial cells at the single cell level. Result DNA damage and mitochondrial injury were measured after oxidative stress in the SV-40 transformed lung epithelial cell line challenged with hydrogen peroxide (H2O2. Single cell analysis of DNA damage was determined by assessing the number of 8-oxo-2-deoxyguanosine (8-oxo-dG positive cells, a marker of DNA modification, and the length of a comet tail. Mitochondrial membrane potential, ΔΨm, was determined using JC-1. A 1 h pulse of H2O2 induced small amounts of apoptosis (3%. 8-oxo-dG-positive cells and the length of the comet tail increased within 1 h of exposure to H2O2. The number of cells with reduced ΔΨm increased after the addition of H2O2 in a concentration-dependent manner. In spite of a continual loss of ΔΨm, DNA fragmentation was reduced 2 h after exposure to H2O2. Conclusion The data suggest that SV-40 transformed lung epithelial cells are resistant to oxidative stress, showing that DNA damage can be dissociated from mitochondrial injury.

  14. Arsenic trioxide promotes mitochondrial DNA mutation and cell apoptosis in primary APL cells and NB4 cell line.

    Science.gov (United States)

    Meng, Ran; Zhou, Jin; Sui, Meng; Li, ZhiYong; Feng, GuoSheng; Yang, BaoFeng

    2010-01-01

    This study aimed to investigate the effects of arsenic trioxide (As(2)O(3)) on the mitochondrial DNA (mtDNA) of acute promyelocytic leukemia (APL) cells. The NB4 cell line was treated with 2.0 micromol/L As(2)O(3) in vitro, and the primary APL cells were treated with 2.0 micromol/L As(2)O(3) in vitro and 0.16 mg kg(-1) d(-1) As(2)O(3) in vivo. The mitochondrial DNA of all the cells above was amplified by PCR, directly sequenced and analyzed by Sequence Navigatore and Factura software. The apoptosis rates were assayed by flow cytometry. Mitochondrial DNA mutation in the D-loop region was found in NB4 and APL cells before As(2)O(3) use, but the mutation spots were remarkably increased after As(2)O(3) treatment, which was positively correlated to the rates of cellular apoptosis, the correlation coefficient: r (NB4-As2O3)=0.973818, and r (APL-As2O3)=0.934703. The mutation types include transition, transversion, codon insertion or deletion, and the mutation spots in all samples were not constant and regular. It is revealed that As(2)O(3) aggravates mtDNA mutation in the D-loop region of acute promyelocytic leukemia cells both in vitro and in vivo. Mitochondrial DNA might be one of the targets of As(2)O(3) in APL treatment.

  15. Regulation of Small Mitochondrial DNA Replicative Advantage by Ribonucleotide Reductase in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Elliot Bradshaw

    2017-09-01

    Full Text Available Small mitochondrial genomes can behave as selfish elements by displacing wild-type genomes regardless of their detriment to the host organism. In the budding yeast Saccharomyces cerevisiae, small hypersuppressive mtDNA transiently coexist with wild-type in a state of heteroplasmy, wherein the replicative advantage of the small mtDNA outcompetes wild-type and produces offspring without respiratory capacity in >95% of colonies. The cytosolic enzyme ribonucleotide reductase (RNR catalyzes the rate-limiting step in dNTP synthesis and its inhibition has been correlated with increased petite colony formation, reflecting loss of respiratory function. Here, we used heteroplasmic diploids containing wild-type (rho+ and suppressive (rho− or hypersuppressive (HS rho− mitochondrial genomes to explore the effects of RNR activity on mtDNA heteroplasmy in offspring. We found that the proportion of rho+ offspring was significantly increased by RNR overexpression or deletion of its inhibitor, SML1, while reducing RNR activity via SML1 overexpression produced the opposite effects. In addition, using Ex Taq and KOD Dash polymerases, we observed a replicative advantage for small over large template DNA in vitro, but only at low dNTP concentrations. These results suggest that dNTP insufficiency contributes to the replicative advantage of small mtDNA over wild-type and cytosolic dNTP synthesis by RNR is an important regulator of heteroplasmy involving small mtDNA molecules in yeast.

  16. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    Science.gov (United States)

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host.

  17. Radiolabeled Cu-ATSM as a novel indicator of overreduced intracellular state due to mitochondrial dysfunction: studies with mitochondrial DNA-less ρ0 cells and cybrids carrying MELAS mitochondrial DNA mutation

    International Nuclear Information System (INIS)

    Yoshii, Yukie; Yoneda, Makoto; Ikawa, Masamichi; Furukawa, Takako; Kiyono, Yasushi; Mori, Tetsuya; Yoshii, Hiroshi; Oyama, Nobuyuki; Okazawa, Hidehiko; Saga, Tsuneo; Fujibayashi, Yasuhisa

    2012-01-01

    Objectives: Radiolabeled Cu-diacetyl-bis (N 4 -methylthiosemicarbazone) ( ⁎ Cu-ATSM), including 60/62/64 Cu-ATSM, is a potential imaging agent of hypoxic tumors for positron emission tomography (PET). We have reported that ⁎ Cu-ATSM is trapped in tumor cells under intracellular overreduced states, e.g., hypoxia. Here we evaluated ⁎ Cu-ATSM as an indicator of intracellular overreduced states in mitochondrial disorders using cell lines with mitochondrial dysfunction. Methods: Mitochondrial DNA-less ρ 0 206 cells; the parental 143B human osteosarcoma cells; the cybrids carrying mutated mitochondria from a patient of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) (2SD); and that carrying wild-type one (2SA) were used. Cells were treated under normoxia or hypoxia, and 64 Cu-ATSM uptake was examined to compare it with levels of biological reductant NADH and NADPH. Results: ρ 0 206 cells showed higher 64 Cu-ATSM uptake than control 143B cells under normoxia, whereas 64 Cu-ATSM uptake was not significantly increased under hypoxia in ρ 0 206 cells. Additionally, 64 Cu-ATSM uptake showed correlate change to the NADH and NADPH levels, but not oxygenic conditions. 2SD cells showed increased 64 Cu-ATSM uptake under normoxia as compared with the control 2SA, and 64 Cu-ATSM uptake followed NADH and NADPH levels, but not oxygenic conditions. Conclusions: 64 Cu-ATSM accumulated in cells with overreduced states due to mitochondrial dysfunction, even under normoxia. We recently reported that 62 Cu-ATSM-PET can visualize stroke-like episodes maintaining oxygen supply in MELAS patients. Taken together, our data indicate that ⁎ Cu-ATSM uptake reflects overreduced intracellular states, despite oxygenic conditions; thus, ⁎ Cu-ATSM would be a promising marker of intracellular overreduced states for disorders with mitochondrial dysfunction, such as MELAS, Parkinson's disease and Alzheimer's disease.

  18. Randomized phase I trial HIV-CORE 003: Depletion of serum amyloid P component and immunogenicity of DNA vaccination against HIV-1.

    Science.gov (United States)

    Borthwick, Nicola J; Lane, Thirusha; Moyo, Nathifa; Crook, Alison; Shim, Jung Min; Baines, Ian; Wee, Edmund G; Hawkins, Philip N; Gillmore, Julian D; Hanke, Tomáš; Pepys, Mark B

    2018-01-01

    The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer's disease, depletes circulating SAP by 95-99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. Clinicaltrials

  19. Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Ray K. Boyapati

    2017-02-01

    Full Text Available Mitochondrial DNA (mtDNA has many similarities with bacterial DNA because of their shared common ancestry. Increasing evidence demonstrates mtDNA to be a potent danger signal that is recognised by the innate immune system and can directly modulate the inflammatory response. In humans, elevated circulating mtDNA is found in conditions with significant tissue injury such as trauma and sepsis and increasingly in chronic organ-specific and systemic illnesses such as steatohepatitis and systemic lupus erythematosus. In this review, we examine our current understanding of mtDNA-mediated inflammation and how the mechanisms regulating mitochondrial homeostasis and mtDNA release represent exciting and previously under-recognised important factors in many human inflammatory diseases, offering many new translational opportunities.

  20. A test of the transcription model for biased inheritance of yeast mitochondrial DNA.

    Science.gov (United States)

    Lorimer, H E; Brewer, B J; Fangman, W L

    1995-09-01

    Two strand-specific origins of replication appear to be required for mammalian mitochondrial DNA (mtDNA) replication. Structural equivalents of these origins are found in the rep sequences of Saccharomyces cerevisiae mtDNA. These striking similarities have contributed to a universal model for the initiation of mtDNA replication in which a primer is created by cleavage of an origin region transcript. Consistent with this model are the properties of deletion mutants of yeast mtDNA ([rho-]) with a high density of reps (HS [rho-]). These mutant mtDNAs are preferentially inherited by the progeny resulting from the mating of HS [rho-] cells with cells containing wild-type mtDNA ([rho+]). This bias is presumed to result from a replication advantage conferred on HS [rho-] mtDNA by the high density of rep sequences acting as origins. To test whether transcription is indeed required for the preferential inheritance of HS [rho-] mtDNA, we deleted the nuclear gene (RPO41) for the mitochondrial RNA polymerase, reducing transcripts by at least 1000-fold. Since [rho-] genomes, but not [rho+] genomes, are stable when RPO41 is deleted, we examined matings between HS [rho-] and neutral [rho-] cells. Neutral [rho-] mtDNAs lack rep sequences and are not preferentially inherited in [rho-] x [rho+] crosses. In HS [rho-] x neutral [rho-] matings, the HS [rho-] mtDNA was preferentially inherited whether both parents were wild type or both were deleted for RPO41. Thus, transcription from the rep promoter does not appear to be necessary for biased inheritance. Our results, and analysis of the literature, suggest that priming by transcription is not a universal mechanism for mtDNA replication initiation.

  1. Evolution of mitochondrial DNA and its relation to basal metabolic rate.

    Science.gov (United States)

    Feng, Ping; Zhao, Huabin; Lu, Xin

    2015-08-01

    Energy metabolism is essential for the survival of animals, which can be characterized by maximum metabolic rate (MMR) and basal metabolic rate (BMR). Because of the crucial roles of mitochondria in energy metabolism, mitochondrial DNA (mtDNA) has been subjected to stronger purifying selection in strongly locomotive than weakly locomotive birds and mammals. Although maximum locomotive speed (an indicator of MMR) showed a negative correlation with the evolutionary rate of mtDNA, it is unclear whether BMR has driven the evolution of mtDNA. Here, we take advantage of the large amount of mtDNA and BMR data in 106 mammals to test whether BMR has influenced the mtDNA evolution. Our results showed that, in addition to the locomotive speed, mammals with higher BMR have subjected to stronger purifying selection on mtDNA than did those with lower BMR. The evolution of mammalian mtDNA has been modified by two levels of energy metabolism, including MMR and BMR. Our study provides a more comprehensive view of mtDNA evolution in relation to energy metabolism.

  2. Mitochondrial DNA sequence data reveals association of haplogroup U with psychosis in bipolar disorder.

    Science.gov (United States)

    Frye, Mark A; Ryu, Euijung; Nassan, Malik; Jenkins, Gregory D; Andreazza, Ana C; Evans, Jared M; McElroy, Susan L; Oglesbee, Devin; Highsmith, W Edward; Biernacka, Joanna M

    2017-01-01

    Converging genetic, postmortem gene-expression, cellular, and neuroimaging data implicate mitochondrial dysfunction in bipolar disorder. This study was conducted to investigate whether mitochondrial DNA (mtDNA) haplogroups and single nucleotide variants (SNVs) are associated with sub-phenotypes of bipolar disorder. MtDNA from 224 patients with Bipolar I disorder (BPI) was sequenced, and association of sequence variations with 3 sub-phenotypes (psychosis, rapid cycling, and adolescent illness onset) was evaluated. Gene-level tests were performed to evaluate overall burden of minor alleles for each phenotype. The haplogroup U was associated with a higher risk of psychosis. Secondary analyses of SNVs provided nominal evidence for association of psychosis with variants in the tRNA, ND4 and ND5 genes. The association of psychosis with ND4 (gene that encodes NADH dehydrogenase 4) was further supported by gene-level analysis. Preliminary analysis of mtDNA sequence data suggests a higher risk of psychosis with the U haplogroup and variation in the ND4 gene implicated in electron transport chain energy regulation. Further investigation of the functional consequences of this mtDNA variation is encouraged. Copyright © 2016. Published by Elsevier Ltd.

  3. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    International Nuclear Information System (INIS)

    Yasuzaki, Yukari; Yamada, Yuma; Harashima, Hideyoshi

    2010-01-01

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we provide a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.

  4. Historically low mitochondrial DNA diversity in koalas (Phascolarctos cinereus

    Directory of Open Access Journals (Sweden)

    Tsangaras Kyriakos

    2012-10-01

    Full Text Available Abstract Background The koala (Phascolarctos cinereus is an arboreal marsupial that was historically widespread across eastern Australia until the end of the 19th century when it suffered a steep population decline. Hunting for the fur trade, habitat conversion, and disease contributed to a precipitous reduction in koala population size during the late 1800s and early 1900s. To examine the effects of these reductions in population size on koala genetic diversity, we sequenced part of the hypervariable region of mitochondrial DNA (mtDNA in koala museum specimens collected in the 19th and 20th centuries, hypothesizing that the historical samples would exhibit greater genetic diversity. Results The mtDNA haplotypes present in historical museum samples were identical to haplotypes found in modern koala populations, and no novel haplotypes were detected. Rarefaction analyses suggested that the mtDNA genetic diversity present in the museum samples was similar to that of modern koalas. Conclusions Low mtDNA diversity may have been present in koala populations prior to recent population declines. When considering management strategies, low genetic diversity of the mtDNA hypervariable region may not indicate recent inbreeding or founder events but may reflect an older historical pattern for koalas.

  5. Identification of Forensic Samples via Mitochondrial DNA in the Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Millard, Julie T.; Pilon, André M.

    2003-04-01

    A recent forensic approach for identification of unknown biological samples is mitochondrial DNA (mtDNA) sequencing. We describe a laboratory exercise suitable for an undergraduate biochemistry course in which the polymerase chain reaction is used to amplify a 440 base pair hypervariable region of human mtDNA from a variety of "crime scene" samples (e.g., teeth, hair, nails, cigarettes, envelope flaps, toothbrushes, and chewing gum). Amplification is verified via agarose gel electrophoresis and then samples are subjected to cycle sequencing. Sequence alignments are made via the program CLUSTAL W, allowing students to compare samples and solve the "crime."

  6. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    International Nuclear Information System (INIS)

    Palmeira, Carlos M.; Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-01-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes

  7. Role of Mitochondrial DNA Copy Number Alteration in Human Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Chen-Sung Lin

    2016-05-01

    Full Text Available We investigated the role of mitochondrial DNA (mtDNA copy number alteration in human renal cell carcinoma (RCC. The mtDNA copy numbers of paired cancer and non-cancer parts from five resected RCC kidneys after radical nephrectomy were determined by quantitative polymerase chain reaction (Q-PCR. An RCC cell line, 786-O, was infected by lentiviral particles to knock down mitochondrial transcriptional factor A (TFAM. Null target (NT and TFAM-knockdown (TFAM-KD represented the control and knockdown 786-O clones, respectively. Protein or mRNA expression levels of TFAM; mtDNA-encoded NADH dehydrogenase subunit 1 (ND1, ND6 and cytochrome c oxidase subunit 2 (COX-2; nuclear DNA (nDNA-encoded succinate dehydrogenase subunit A (SDHA; v-akt murine thymoma viral oncogene homolog 1 gene (AKT-encoded AKT and v-myc myelocytomatosis viral oncogene homolog gene (c-MYC-encoded MYC; glycolytic enzymes including hexokinase II (HK-II, glucose 6-phosphate isomerase (GPI, phosphofructokinase (PFK, and lactate dehydrogenase subunit A (LDHA; and hypoxia-inducible factors the HIF-1α and HIF-2α, pyruvate dehydrogenase kinase 1 (PDK1, and pyruvate dehydrogenase E1 component α subunit (PDHA1 were analyzed by Western blot or Q-PCR. Bioenergetic parameters of cellular metabolism, basal mitochondrial oxygen consumption rate (mOCRB and basal extracellular acidification rate (ECARB, were measured by a Seahorse XFe-24 analyzer. Cell invasiveness was evaluated by a trans-well migration assay and vimentin expression. Doxorubicin was used as a chemotherapeutic agent. The results showed a decrease of mtDNA copy numbers in resected RCC tissues (p = 0.043. The TFAM-KD clone expressed lower mtDNA copy number (p = 0.034, lower mRNA levels of TFAM (p = 0.008, ND1 (p = 0.007, and ND6 (p = 0.017, and lower protein levels of TFAM and COX-2 than did the NT clone. By contrast, the protein levels of HIF-2α, HK-II, PFK, LDHA, AKT, MYC and vimentin; trans-well migration activity (p = 0

  8. Analisis heteroplasmy DNA mitokondria pulpa gigi pada identifikasi personal forensik (Heteroplasmy analysis of dental pulp mitochondrial DNA in forensic personal identification

    Directory of Open Access Journals (Sweden)

    Ardyni Febri K

    2013-09-01

    Full Text Available Background: Mitochondrial DNA (mtDNA sequence analysis of the hypervariable control region has been shown to be an effective tool for personal identification. The high copy and maternal mode of inheritance make mtDNA analysis particularly useful when old samples or degradation of biological samples prohibits the detection of nuclear DNA analysis. Dental pulp is covered with hard tissue such as dentin and enamel. It is highly capable of protecting the DNA and thus is extremely useful. One of the diasadvantages of mitochondrial DNA is heteroplasmy. Heteroplasmy is the presence of a mixture of more than one type of an organellar genome within a cell or individual. It can lead to ambiguity in forensic personal identification. Due to that, the evidence of heteroplasmy in dental pulp is needed. Purpose: The study was aimed to determine the heteroplasmy occurance of mitocondrial DNA in dental pulp. Methods: Blood and teeth samples were taken from 6 persons, each samples was extracted with DNAzol. DNA samples were amplified with PCR and sequencing to analyze the nucleotide sequences polymorphism of the hypervariable region 1 in mtDNA and compared with revised Cambridge Reference Sequence (rCRS. results: The dental pulp and blood nucleotide sequence of hypervariable region 1 mitochondrial DNA showed polymorphism when compared with rCRS and heteroplasmy when compared between dental pulp with blood. Conclusion: The study showed that heteroplasmy was found in mithocondrial DNA from dental pulp.latar belakang: Analisis sekuens DNA mitokondria (mtDNA regio kontrol hypervariable telah terbukti menjadi alat efektif untuk identifikasi personal. Kopi DNA yang banyak dan pewarisan maternal membuat analisis mtDNA sangat berguna ketika sampel lama atau sampel biologis yang terdegradasi menghambat deteksi analisis DNA inti. Pulpa gigi terlindung jaringan keras seperti dentin dan enamel. Hal ini membuat pulpa mampu melindungi DNA dan dengan demikian sangat berguna

  9. Bridging two scholarly islands enriches both: COI DNA barcodes for species identification versus human mitochondrial variation for the study of migrations and pathologies.

    Science.gov (United States)

    Thaler, David S; Stoeckle, Mark Y

    2016-10-01

    DNA barcodes for species identification and the analysis of human mitochondrial variation have developed as independent fields even though both are based on sequences from animal mitochondria. This study finds questions within each field that can be addressed by reference to the other. DNA barcodes are based on a 648-bp segment of the mitochondrially encoded cytochrome oxidase I. From most species, this segment is the only sequence available. It is impossible to know whether it fairly represents overall mitochondrial variation. For modern humans, the entire mitochondrial genome is available from thousands of healthy individuals. SNPs in the human mitochondrial genome are evenly distributed across all protein-encoding regions arguing that COI DNA barcode is representative. Barcode variation among related species is largely based on synonymous codons. Data on human mitochondrial variation support the interpretation that most - possibly all - synonymous substitutions in mitochondria are selectively neutral. DNA barcodes confirm reports of a low variance in modern humans compared to nonhuman primates. In addition, DNA barcodes allow the comparison of modern human variance to many other extant animal species. Birds are a well-curated group in which DNA barcodes are coupled with census and geographic data. Putting modern human variation in the context of intraspecies variation among birds shows humans to be a single breeding population of average variance.

  10. Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera).

    Science.gov (United States)

    Shi, Huizhen; Dong, Ji; Irwin, David M; Zhang, Shuyi; Mao, Xiuguang

    2016-05-01

    Transposition of mitochondrial DNA into the nucleus, which gives rise to nuclear mitochondrial DNAs (NUMTs), has been well documented in eukaryotes. However, very few studies have assessed the frequency of these transpositions during the evolutionary history of a specific taxonomic group. Here we used the horseshoe bats (Rhinolophus) as a case study to determine the frequency and relative timing of nuclear transfers of mitochondrial control region sequences. For this, phylogenetic and coalescent analyzes were performed on NUMTs and authentic mtDNA sequences generated from eight horseshoe bat species. Our results suggest at least three independent transpositions, including two ancient and one more recent, during the evolutionary history of Rhinolophus. The two ancient transpositions are represented by the NUMT-1 and -2 clades, with each clade consisting of NUMTs from almost all studied species but originating from different portions of the mtDNA genome. Furthermore, estimates of the most recent common ancestor for each clade corresponded to the time of the initial diversification of this genus. The recent transposition is represented by NUMT-3, which was discovered only in a specific subgroup of Rhinolophus and exhibited a close relationship to its mitochondrial counterpart. Our similarity searches of mtDNA in the R. ferrumequinum genome confirmed the presence of NUMT-1 and NUMT-2 clade sequences and, for the first time, assessed the extent of NUMTs in a bat genome. To our knowledge, this is the first study to report on the frequency of transpositions of mtDNA occurring before the common ancestry of a genus. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Retrospective assessment of the most common mitochondrial DNA mutations in a large Hungarian cohort of suspect mitochondrial cases.

    Science.gov (United States)

    Remenyi, Viktoria; Inczedy-Farkas, Gabriella; Komlosi, Katalin; Horvath, Rita; Maasz, Anita; Janicsek, Ingrid; Pentelenyi, Klara; Gal, Aniko; Karcagi, Veronika; Melegh, Bela; Molnar, Maria Judit

    2015-08-01

    Prevalence estimations for mitochondrial disorders still vary widely and only few epidemiologic studies have been carried out so far. With the present work we aim to give a comprehensive overview about frequencies of the most common mitochondrial mutations in Hungarian patients. A total of 1328 patients were tested between 1999 and 2012. Among them, 882 were screened for the m.3243A > G, m.8344A > G, m.8993T > C/G mutations and deletions, 446 for LHON primary mutations. The mutation frequency in our cohort was 2.61% for the m.3243A > G, 1.47% for the m.8344A > G, 17.94% for Leber's Hereditary Optic Neuropathy (m.3460G > A, m.11778G > A, m.14484T > C) and 0.45% for the m.8993T > C/G substitutions. Single mtDNA deletions were detected in 14.97%, while multiple deletions in 6.01% of the cases. The mutation frequency in Hungarian patients suggestive of mitochondrial disease was similar to other Caucasian populations. Further retrospective studies of different populations are needed in order to accurately assess the importance of mitochondrial diseases and manage these patients.

  12. Heteroplasmy and ancient translocation of mitochondrial DNA to the nucleus in the Chinese Horseshoe Bat (Rhinolophus sinicus complex.

    Directory of Open Access Journals (Sweden)

    Xiuguang Mao

    Full Text Available The utility and reliability of mitochondrial DNA sequences in phylogenetic and phylogeographic studies may be compromised by widespread and undetected nuclear mitochondrial copies (numts as well as heteroplasmy within individuals. Both numts and heteroplasmy are likely to be common across diverse taxa yet few studies have characterised their frequencies and variation at the intra-specific level. Here we report the presence of both numts and heteroplasmy in the mitochondrial control region of the Chinese horseshoe bat Rhinolophus sinicus. In total we generated 123 sequences from 18 bats, which contained two different numt clades (i.e. Numt-1 and Numt-2 and one mtDNA clade. The sequence divergence between Numt-1 and Numt-2 was 16.8% and each numt type was found in all four R. sinicus taxa, suggesting either two ancient translocations of mitochondrial DNA into the nucleus from the same source taxon, or a single translocation from different source taxa that occurred before the split of R. sinicus into different lineages. Within the mtDNA clade, phylogenetic relationships among the four taxa of R. sinicus were similar to those seen in previous results. Based on PCR comparisons, heteroplasmy was inferred between almost all individuals of R. sinicus with respect to sequence variation. Consistent with introgression of mtDNA between Central sinicus and septentrionalis, individuals from these two taxa exhibited similar signatures of repeated sequences in the control region. Our study highlights the importance of testing for the presence of numts and heteroplasmy when applying mtDNA markers to phylogenetic studies.

  13. Variations in mitochondrial DNA and gene transcription in freezing-tolerant larvae of Eurosta solidaginis (Diptera: Tephritidae) and Gynaephora groenlandica (Lepidoptera: Lymantriidae).

    Science.gov (United States)

    Levin, D B; Danks, H V; Barber, S A

    2003-06-01

    Respiration, mitochondrial (mt)DNA content, and mitochondrial-specific RNA expression in fat body cells from active and cold-adapted larvae of the goldenrod gall fly, Eurosta solidaginis, and the Arctic woolly bear caterpillar, Gynaephora groenlandica, were compared. Reduced amounts of mtDNA were observed in cold-adapted larvae of both E. solidaginis and G. groenlandica collected in fall or winter, compared with summer-collected larvae. mtDNA increased to levels similar to those of summer-collected larvae after incubation at 10 degrees C or 15 degrees C for 5 h. Mitochondrial-specific RNAs (COI and 16S) were observed in fat body cells of both active and cold-adapted E. solidaginis larvae. Our results suggest that mitochondrial proteins required for respiration may be restored rapidly from stable RNAs present in overwintering larvae.

  14. MELAS syndrome associated with both A3243G-tRNALeu mutation and multiple mitochondrial DNA deletions.

    Science.gov (United States)

    Aharoni, Sharon; Traves, Teres A; Melamed, Eldad; Cohen, Sarit; Silver, Esther Leshinsky

    2010-09-15

    The syndrome of mitochondrial encephalopathy, lactic acidosis, and stroke-like episode (MELAS) is characterized clinically by recurrent focal neurological deficits, epilepsy, and short stature. The phenotypic spectrum is extremely diverse, with multisystemic organ involvement leading to isolated diabetes, deafness, renal tubulopathy, hypertrophic cardiomyopathy, and retinitis pigmentosa. In 80% of cases, the syndrome is associated with an AG transmission mutation (A3243G) in the tRNALeu gene of the mitochondrial DNA (mtDNA). We describe a woman with a unique combination of the MELAS A3243G mutation and multiple mtDNA deletions with normal POLG sequence. The patient presented with diabetes mellitus, sensorineural deafness, short stature, and mental disorientation. All her three children died in early adolescence. 2010 Elsevier B.V. All rights reserved.

  15. Mitochondrial DNA evolution in the genus Equus.

    Science.gov (United States)

    George, M; Ryder, O A

    1986-11-01

    Employing mitochondrial DNA (mtDNA) restriction-endonuclease maps as the basis of comparison, we have investigated the evolutionary affinities of the seven species generally recognized as the genus Equus. Individual species' cleavage maps contained an average of 60 cleavage sites for 16 enzymes, of which 29 were invariant for all species. Based on an average divergence rate of 2%/Myr, the variation between species supports a divergence of extant lineages from a common ancestor approximately 3.9 Myr before the present. Comparisons of cleavage maps between Equus przewalskii (Mongolian wild horse) and E. caballus (domestic horse) yielded estimates of nucleotide sequence divergence ranging from 0.27% to 0.41%. This range was due to intraspecific variation, which was noted only for E. caballus. For pairwise comparisons within this family, estimates of sequence divergence ranged from 0% (E. hemionus onager vs. E. h. kulan) to 7.8% (E. przewalskii vs. E. h. onager). Trees constructed according to the parsimony principle, on the basis of 31 phylogenetically informative restriction sites, indicate that the three extant zebra species represent a monophyletic group with E. grevyi and E. burchelli antiquorum diverging most recently. The phylogenetic relationships of E. africanus and E. hemionus remain enigmatic on the basis of the mtDNA analysis, although a recent divergence is unsupported.

  16. The ovarian DNA damage repair response is induced prior to phosphoramide mustard-induced follicle depletion, and ataxia telangiectasia mutated inhibition prevents PM-induced follicle depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2016-02-01

    Phosphoramide mustard (PM) is an ovotoxic metabolite of cyclophosphamide and destroys primordial and primary follicles potentially by DNA damage induction. The temporal pattern by which PM induces DNA damage and initiation of the ovarian response to DNA damage has not yet been well characterized. This study investigated DNA damage initiation, the DNA repair response, as well as induction of follicular demise using a neonatal rat ovarian culture system. Additionally, to delineate specific mechanisms involved in the ovarian response to PM exposure, utility was made of PKC delta (PKCδ) deficient mice as well as an ATM inhibitor (KU 55933; AI). Fisher 344 PND4 rat ovaries were cultured for 12, 24, 48 or 96 h in medium containing DMSO ± 60 μM PM or KU 55933 (48 h; 10 nM). PM-induced activation of DNA damage repair genes was observed as early as 12 h post-exposure. ATM, PARP1, E2F7, P73 and CASP3 abundance were increased but RAD51 and BCL2 protein decreased after 96 h of PM exposure. PKCδ deficiency reduced numbers of all follicular stages, but did not have an additive impact on PM-induced ovotoxicity. ATM inhibition protected all follicle stages from PM-induced depletion. In conclusion, the ovarian DNA damage repair response is active post-PM exposure, supporting that DNA damage contributes to PM-induced ovotoxicity. - Highlights: • PM exposure induces DNA damage repair gene expression. • Inhibition of ATM prevented PM-induced follicle depletion. • PKCδ deficiency did not impact PM-induced ovotoxicity.

  17. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination.

    Science.gov (United States)

    Sammler, Svenja; Bleidorn, Christoph; Tiedemann, Ralph

    2011-01-14

    Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation. The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB

  18. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae provide evidence for pervasive mitochondrial DNA recombination

    Directory of Open Access Journals (Sweden)

    Bleidorn Christoph

    2011-01-01

    Full Text Available Abstract Background Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Results Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni and 22,737 bp (P. panini, they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation. Conclusions The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB, which has been

  19. The methylation of nuclear and mitochondrial DNA in ageing phenotypes and longevity.

    Science.gov (United States)

    Bacalini, Maria Giulia; D'Aquila, Patrizia; Marasco, Elena; Nardini, Christine; Montesanto, Alberto; Franceschi, Claudio; Passarino, Giuseppe; Garagnani, Paolo; Bellizzi, Dina

    2017-07-01

    An increasing body of data is progressively indicating that the comprehension of the epigenetic landscape, actively integrated with the genetic elements, is crucial to delineate the molecular basis of the inter-individual complexity of ageing process. Indeed, it has emerged that DNA methylation changes occur during ageing, consisting mainly in a progressive process of genome demethylation, in a hypermethylation of gene-specific CpG dinucleotides, as well as in an inter-individual divergence of the epigenome due to stochastic events and environmental exposures throughout life, namely as epigenetic drift. Additionally, it has also come to light an implication of the mitochondrial genome in the regulation of the intracellular epigenetic landscape, as demonstrated by the being itself object of epigenetic modifications. An overview of DNA methylation changes occurring during ageing process at both nuclear and mitochondrial level will be described in this review, also taking into account the recent and promising data available on the 5-hydroxymethylcytosine. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mechanism of Homologous Recombination and Implications for Aging-Related Deletions in Mitochondrial DNA

    Science.gov (United States)

    2013-01-01

    SUMMARY Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells. PMID:24006472

  1. Mitochondrial DNA Copy Number in Peripheral Blood Is Independently Associated with Visceral Fat Accumulation in Healthy Young Adults

    Directory of Open Access Journals (Sweden)

    Jee-Yon Lee

    2014-01-01

    Full Text Available Aims. Visceral obesity is associated with an increased risk of cardiometabolic diseases and it is important to identify the underlying mechanisms. There is growing evidence that mitochondrial dysfunction is associated with metabolic disturbances related to visceral obesity. In addition, maintaining mitochondrial DNA (mtDNA copy number is important for preserving mitochondrial function. Therefore, we investigated the relationship between mtDNA copy number and visceral fat in healthy young adults. Methods. A total of 94 healthy young subjects were studied. Biomarkers of metabolic risk factors were assessed along with body composition by computed tomography. mtDNA copy number was measured in peripheral leukocytes using real-time polymerase chain reaction (PCR methods. Results. The mtDNA copy number correlated with BMI (r=-0.22, P=0.04, waist circumference (r=-0.23, P=0.03, visceral fat area (r=-0.28, P=-0.01, HDL-cholesterol levels (r=0.25, P=0.02, and hs-CRP (r=0.32, P=0.02 after adjusting for age and sex. Both stepwise and nonstepwise multiple regression analyses confirmed that visceral fat area was independently associated with mtDNA copy number (β=-0.33, P<0.01, β=0.32, and P=0.03, resp.. Conclusions. An independent association between mtDNA content and visceral adiposity was identified. These data suggest that mtDNA copy number is a potential predictive marker for metabolic disturbances. Further studies are required to understand the causality and clinical significance of our findings.

  2. Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; van Tilburg, Amanda Y.; Ruiters, Marcel H. J.; Rots, Marianne G.

    2017-01-01

    Like the nucleus, mitochondria contain their own DNA and recent reports provide accumulating evidence that also the mitochondrial DNA (mtDNA) is subjective to DNA methylation. This evidence includes the demonstration of mitochondria-localised DNA methyltransferases and demethylases, and the

  3. Patterns in Nuclear and Mitochondrial DNA Reveal Historical and Recent Isolation in the Black-Tailed Godwit (

    NARCIS (Netherlands)

    Trimbos, K.B.; Doorenweerd, C.; Kraaijeveld, K.; Musters, C.J.M.; Groen, N.M.; de Knijff, P.; Piersma, T.; de Snoo, G.R.

    2014-01-01

    On the basis of morphological differences, three subspecies of Black-tailed Godwit (Limosa limosa) have been recognized (L. l. limosa, L. l. islandica and L. l. melanuroides). In previous studies mitochondrial DNA (mtDNA) sequence data showed minimal genetic divergence between the three subspecies

  4. Increased levels of mitochondrial DNA copy number in patients with vitiligo.

    Science.gov (United States)

    Vaseghi, H; Houshmand, M; Jadali, Z

    2017-10-01

    Oxidative stress is known to be involved in the pathogenesis of autoimmune diseases such as vitiligo. Evidence suggests that the human mitochondrial DNA copy number (mtDNAcn) is vulnerable to damage mediated by oxidative stress. The purpose of this study was to examine and compare peripheral blood mtDNAcn and oxidative DNA damage byproducts (8-hydroxy-2-deoxyguanosine; 8-OHdG) in patients with vitiligo and healthy controls (HCs). The relative mtDNAcn and the oxidative damage (formation of 8-OHdG in mtDNA) of each sample were determined by real-time quantitative PCR. Blood samples were obtained from 56 patients with vitiligo and 46 HCs. The mean mtDNAcn and the degree of mtDNA damage were higher in patients with vitiligo than in HCs. These data suggest that increase in mtDNAcn and oxidative DNA damage may be involved in the pathogenesis of vitiligo. © 2017 British Association of Dermatologists.

  5. Mitochondrial DNA (mtDNA haplogroups and serum levels of anti-oxidant enzymes in patients with osteoarthritis

    Directory of Open Access Journals (Sweden)

    Fernandez-Moreno Mercedes

    2011-11-01

    Full Text Available Abstract Background Oxidative stress play a main role in the initiation and progression of the OA disease and leads to the degeneration of mitochondria. To prevent this, the chondrocytes possess a well-coordinated enzymatic antioxidant system. Besides, the mitochondrial DNA (mtDNA haplogroups are associated with the OA disease. Thus, the main goal of this work is to assess the incidence of the mtDNA haplogroups on serum levels of two of the main antioxidant enzymes, Manganese Superoxide Dismutase (Mn-SOD or SOD2 and catalase, and to test the suitability of these two proteins for potential OA-related biomarkers. Methods We analyzed the serum levels of SOD2 and catalase in 73 OA patients and 77 healthy controls carrying the haplogroups J, U and H, by ELISA assay. Knee and hip radiographs were classified according to Kellgren and Lawrence (K/L scoring from Grade 0 to Grade IV. Appropriate statistical analyses were performed to test the effects of clinical variables, including gender, body mass index (BMI, age, smoking status, diagnosis, haplogroups and radiologic K/L grade on serum levels of these enzymes. Results Serum levels of SOD2 appeared statistically increased in OA patients when compared with healthy controls (p Conclusions The increased levels of SOD2 in OA patients indicate an increased oxidative stress OA-related, therefore this antioxidant enzyme could be a suitable candidate biomarker for diagnosis of OA. Mitochondrial haplogroups significantly correlates with serum levels of catalase

  6. Enfermedades genéticas del ADN mitocondrial humano Genetic diseases of the mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Abelardo Solano

    2001-04-01

    Full Text Available Las enfermedades mitocondriales son un grupo de trastornos que están producidos por un fallo en el sistema de fosforilación oxidativa (sistema Oxphos, la ruta final del metabolismo energético mitocondrial, con la consiguiente deficiencia en la biosíntesis del trifosfato de adenosina (ATP, por sus siglas en inglés. Parte de los polipéptidos que componen este sistema están codificados en el ácido desoxirribonucleico (DNA mitocondrial y, en los últimos años, se han descrito mutaciones que se han asociado con síndromes clínicos bien definidos. Las características genéticas del DNA mitocondrial, herencia materna, poliplasmia y segregación mitótica, confieren a estas enfermedades propiedades muy particulares. Las manifestaciones clínicas de estas enfermedades son muy heterogéneas y afectan a distintos órganos y tejidos por lo que su correcto diagnóstico implica la obtención de datos clínicos, morfológicos, bioquímicos y genéticos. El texto completo en inglés de este artículo está disponible en: http://www.insp.mx/salud/index.htmlMitochondrial diseases are a group of disorders produced by defects in the oxidative phosphorylation system (Oxphos system, the final pathway of the mitochondrial energetic metabolism, resulting in a deficiency of the biosynthesis of ATP. Part of the polypeptide subunits involved in the Oxphos system are codified by the mitochondrial DNA. In the last years, mutations in this genetic system have been described and associated to well defined clinical syndromes. The clinical features of these disorders are very heterogeneous affecting, in most cases, to different organs and tissues and their correct diagnosis require precise clinical, morphological, biochemical and genetic data. The peculiar genetic characteristics of the mitochondrial DNA (maternal inheritance, polyplasmia and mitotic segregation give to these disorders very distinctive properties. The English version of this paper is available at

  7. High-Resolution Melting (HRM) of Hypervariable Mitochondrial DNA Regions for Forensic Science.

    Science.gov (United States)

    Dos Santos Rocha, Alípio; de Amorim, Isis Salviano Soares; Simão, Tatiana de Almeida; da Fonseca, Adenilson de Souza; Garrido, Rodrigo Grazinoli; Mencalha, Andre Luiz

    2018-03-01

    Forensic strategies commonly are proceeding by analysis of short tandem repeats (STRs); however, new additional strategies have been proposed for forensic science. Thus, this article standardized the high-resolution melting (HRM) of DNA for forensic analyzes. For HRM, mitochondrial DNA (mtDNA) from eight individuals were extracted from mucosa swabs by DNAzol reagent, samples were amplified by PCR and submitted to HRM analysis to identify differences in hypervariable (HV) regions I and II. To confirm HRM, all PCR products were DNA sequencing. The data suggest that is possible discriminate DNA from different samples by HRM curves. Also, uncommon dual-dissociation was identified in a single PCR product, increasing HRM analyzes by evaluation of melting peaks. Thus, HRM is accurate and useful to screening small differences in HVI and HVII regions from mtDNA and increase the efficiency of laboratory routines based on forensic genetics. © 2017 American Academy of Forensic Sciences.

  8. TbPIF5 is a Trypanosoma brucei mitochondrial DNA helicase involved in processing of minicircle Okazaki fragments.

    Directory of Open Access Journals (Sweden)

    Beiyu Liu

    2009-09-01

    Full Text Available Trypanosoma brucei's mitochondrial genome, kinetoplast DNA (kDNA, is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei's six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5' to 3' DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb, are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments.

  9. Evaluating the role of mitochondrial DNA variation to the genetic predisposition to radiation-induced toxicity

    International Nuclear Information System (INIS)

    Fachal, Laura; Mosquera-Miguel, Ana; Gómez-Caamaño, Antonio; Sánchez-García, Manuel; Calvo, Patricia; Lobato-Busto, Ramón; Salas, Antonio; Vega, Ana

    2014-01-01

    Background and purpose: Mitochondrial DNA common variants have been reported to be associated with the development of radiation-induced toxicity. Using a large cohort of patients, we aimed to validate these findings by investigating the potential role of common European mitochondrial DNA SNPs (mtSNPs) to the development of radio-toxicity. Material and methods: Overall acute and late toxicity data were assessed in a cohort of 606 prostate cancer patients by means of Standardized Total Average Toxicity (STAT) score. We carried out association tests between radiation toxicity and a selection of 15 mtSNPs (and the haplogroups defined by them). Results: Statistically significant association between mtSNPs and haplogroups with toxicity could not be validated in our Spanish cohort. Conclusions: The present study suggests that the mtDNA common variants analyzed are not associated with clinically relevant increases in risk of overall radiation-induced toxicity in prostate cancer patients

  10. Mitochondrial Dysfunction: A Novel Potential Driver of Epithelial-to-Mesenchymal Transition in Cancer

    Directory of Open Access Journals (Sweden)

    Flora Guerra

    2017-12-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT allows epithelial cancer cells to assume mesenchymal features, endowing them with enhanced motility and invasiveness, thus enabling cancer dissemination and metastatic spread. The induction of EMT is orchestrated by EMT-inducing transcription factors that switch on the expression of “mesenchymal” genes and switch off the expression of “epithelial” genes. Mitochondrial dysfunction is a hallmark of cancer and has been associated with progression to a metastatic and drug-resistant phenotype. The mechanistic link between metastasis and mitochondrial dysfunction is gradually emerging. The discovery that mitochondrial dysfunction owing to deregulated mitophagy, depletion of the mitochondrial genome (mitochondrial DNA or mutations in Krebs’ cycle enzymes, such as succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase, activate the EMT gene signature has provided evidence that mitochondrial dysfunction and EMT are interconnected. In this review, we provide an overview of the current knowledge on the role of different types of mitochondrial dysfunction in inducing EMT in cancer cells. We place emphasis on recent advances in the identification of signaling components in the mito-nuclear communication network initiated by dysfunctional mitochondria that promote cellular remodeling and EMT activation in cancer cells.

  11. Mitochondrial cristae remodelling is associated with disrupted OPA1 oligomerisation in the Huntington's disease R6/2 fragment model.

    Science.gov (United States)

    Hering, Tanja; Kojer, Kerstin; Birth, Nathalie; Hallitsch, Jaqueline; Taanman, Jan-Willem; Orth, Michael

    2017-02-01

    There is evidence of an imbalance of mitochondrial fission and fusion in patients with Huntington's disease (HD) and HD animal models. Fission and fusion are important for mitochondrial homeostasis including mitochondrial DNA (mtDNA) maintenance and may be relevant for the selective striatal mtDNA depletion that we observed in the R6/2 fragment HD mouse model. We aimed to investigate the fission/fusion balance and the integrity of the mitochondrial membrane system in cortex and striatum of end-stage R6/2 mice and wild-type animals. Mitochondrial morphology was determined using electron microscopy, and transcript and protein levels of factors that play a key role in fission and fusion, including DRP1, mitofusin 1 and 2, mitofilin and OPA1, and cytochrome c and caspase 3 were assessed by RT-qPCR and immunoblotting. OPA1 oligomerisation was evaluated using blue native gels. In striatum and cortex of R6/2 mice, mitochondrial cristae morphology was abnormal. Mitofilin and the overall levels of the fission and fusion factors were unaffected; however, OPA1 oligomerisation was abnormal in striatum and cortex of R6/2 mice. Mitochondrial and cytoplasmic cytochrome c levels were similar in R6/2 and wild-type mice with no significant increase of activated caspase 3. Our results indicate that the integrity of the mitochondrial cristae is compromised in striatum and cortex of the R6/2 mice and that this is most likely caused by impaired OPA1 oligomerisation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Differential Immuno-Reactivity to Genomic DNA, RNA and Mitochondrial DNA is Associated with Auto-Immunity

    Directory of Open Access Journals (Sweden)

    Vilena V. Ivanova

    2014-12-01

    Full Text Available Background: Circulating auto-reactive antibodies are hallmark features of auto-immune diseases, however little is known with respect to the specificity of such bio-markers. In the present study, we investigated the specificity of anti-nucleic acid antibodies in the blood of subjects with systemic lupus erythematosus (SLE and healthy controls. Methods: Sera from 12 SLE cases and 8 controls were evaluated for immuno-reactivity to purified RNA, DNA and mitochondrial DNA (mtDNA by enzyme-linked immuno-sorbent assay (ELISA. Results: As expected, immuno-reactivity to total nucleic acids was significantly higher in subjects with SLE when compared to healthy controls, however a clear distinction was observed among the various nucleic acid sub-types, with sera from SLE subjects displaying the greatest immuno-reactivity to RNA followed by mtDNA and then total DNA. Conclusion: The identification of auto-reactive antibodies can serve as highly sensitive biomarkers, although their specificity may not always allow diagnostic certainty. The knowledge that auto-antibodies in subjects with SLE display differential immuno-reactivity may help to improve existing diagnostics and may lead to a better understanding of the pathogenesis of auto-immune disorders.

  13. Chronic exposure to microcystin-LR affected mitochondrial DNA maintenance and caused pathological changes of lung tissue in mice

    International Nuclear Information System (INIS)

    Li, Xinxiu; Xu, Lizhi; Zhou, Wei; Zhao, Qingya; Wang, Yaping

    2016-01-01

    Microcystin-LR (MC-LR), an important variant of cyanotoxin family, was frequently encountered in the contaminated aquatic environment and taken as a potent hepatotoxin. However, a little was known on the association between the long-term MC-LR exposure and lung damage. In this study, we investigated the changes of the pulmonary histopathology, mitochondrial DNA (mtDNA) integrity and the expression of mtDNA encoded genes in the mice with chronic exposed to MC-LR at different concentrations (1, 5, 10, 20 and 40 μg/L) for 12 months. Our results showed that the long-term and persistent exposure to MC-LR disturbed the balance of redox system, influenced mtDNA stability, changed the expression of mitochondrial genes in the lung cells. Notably, MC-LR exposure influenced the level of inflammatory cytokines and resulted in thickening of the alveolar septa. In conclusion, chronic exposure to MC-LR affected mtDNA maintenance, and caused lung impairment in mice. - Highlights: • A simulated natural exposure to MC-LR caused the lung pathological changes. • The chronic exposure disturbed the redox system balance of lung tissue cells. • The chronic exposure impaired the mtDNA stability and mitochondria function. • The lung was one of the vulnerable organs to MC-LR exposure in mice. - Long-term exposure to MC-LR in drinking water disturbed the balance of redox system, affected mitochondrial DNA maintenance and caused lung impairment in mice.

  14. Mitochondrial targeting of human O6-methylguanine DNA methyltransferase protects against cell killing by chemotherapeutic alkylating agents.

    Science.gov (United States)

    Cai, Shanbao; Xu, Yi; Cooper, Ryan J; Ferkowicz, Michael J; Hartwell, Jennifer R; Pollok, Karen E; Kelley, Mark R

    2005-04-15

    DNA repair capacity of eukaryotic cells has been studied extensively in recent years. Mammalian cells have been engineered to overexpress recombinant nuclear DNA repair proteins from ectopic genes to assess the impact of increased DNA repair capacity on genome stability. This approach has been used in this study to specifically target O(6)-methylguanine DNA methyltransferase (MGMT) to the mitochondria and examine its impact on cell survival after exposure to DNA alkylating agents. Survival of human hematopoietic cell lines and primary hematopoietic CD34(+) committed progenitor cells was monitored because the baseline repair capacity for alkylation-induced DNA damage is typically low due to insufficient expression of MGMT. Increased DNA repair capacity was observed when K562 cells were transfected with nuclear-targeted MGMT (nucl-MGMT) or mitochondrial-targeted MGMT (mito-MGMT). Furthermore, overexpression of mito-MGMT provided greater resistance to cell killing by 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) than overexpression of nucl-MGMT. Simultaneous overexpression of mito-MGMT and nucl-MGMT did not enhance the resistance provided by mito-MGMT alone. Overexpression of either mito-MGMT or nucl-MGMT also conferred a similar level of resistance to methyl methanesulfonate (MMS) and temozolomide (TMZ) but simultaneous overexpression in both cellular compartments was neither additive nor synergistic. When human CD34(+) cells were infected with oncoretroviral vectors that targeted O(6)-benzylguanine (6BG)-resistant MGMT (MGMT(P140K)) to the nucleus or the mitochondria, committed progenitors derived from infected cells were resistant to 6BG/BCNU or 6BG/TMZ. These studies indicate that mitochondrial or nuclear targeting of MGMT protects hematopoietic cells against cell killing by BCNU, TMZ, and MMS, which is consistent with the possibility that mitochondrial DNA damage and nuclear DNA damage contribute equally to alkylating agent-induced cell killing during chemotherapy.

  15. Genetic Evidence for Elevated Pathogenicity of Mitochondrial DNA Heteroplasmy in Autism Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Yiqin Wang

    2016-10-01

    Full Text Available Increasing clinical and biochemical evidence implicate mitochondrial dysfunction in the pathophysiology of Autism Spectrum Disorder (ASD, but little is known about the biological basis for this connection. A possible cause of ASD is the genetic variation in the mitochondrial DNA (mtDNA sequence, which has yet to be thoroughly investigated in large genomic studies of ASD. Here we evaluated mtDNA variation, including the mixture of different mtDNA molecules in the same individual (i.e., heteroplasmy, using whole-exome sequencing data from mother-proband-sibling trios from simplex families (n = 903 where only one child is affected by ASD. We found that heteroplasmic mutations in autistic probands were enriched at non-polymorphic mtDNA sites (P = 0.0015, which were more likely to confer deleterious effects than heteroplasmies at polymorphic mtDNA sites. Accordingly, we observed a ~1.5-fold enrichment of nonsynonymous mutations (P = 0.0028 as well as a ~2.2-fold enrichment of predicted pathogenic mutations (P = 0.0016 in autistic probands compared to their non-autistic siblings. Both nonsynonymous and predicted pathogenic mutations private to probands conferred increased risk of ASD (Odds Ratio, OR[95% CI] = 1.87[1.14-3.11] and 2.55[1.26-5.51], respectively, and their influence on ASD was most pronounced in families with probands showing diminished IQ and/or impaired social behavior compared to their non-autistic siblings. We also showed that the genetic transmission pattern of mtDNA heteroplasmies with high pathogenic potential differed between mother-autistic proband pairs and mother-sibling pairs, implicating developmental and possibly in utero contributions. Taken together, our genetic findings substantiate pathogenic mtDNA mutations as a potential cause for ASD and synergize with recent work calling attention to their unique metabolic phenotypes for diagnosis and treatment of children with ASD.

  16. Prolonged decay of molecular rate estimates for metazoan mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Martyna Molak

    2015-03-01

    Full Text Available Evolutionary timescales can be estimated from genetic data using the molecular clock, often calibrated by fossil or geological evidence. However, estimates of molecular rates in mitochondrial DNA appear to scale negatively with the age of the clock calibration. Although such a pattern has been observed in a limited range of data sets, it has not been studied on a large scale in metazoans. In addition, there is uncertainty over the temporal extent of the time-dependent pattern in rate estimates. Here we present a meta-analysis of 239 rate estimates from metazoans, representing a range of timescales and taxonomic groups. We found evidence of time-dependent rates in both coding and non-coding mitochondrial markers, in every group of animals that we studied. The negative relationship between the estimated rate and time persisted across a much wider range of calibration times than previously suggested. This indicates that, over long time frames, purifying selection gives way to mutational saturation as the main driver of time-dependent biases in rate estimates. The results of our study stress the importance of accounting for time-dependent biases in estimating mitochondrial rates regardless of the timescale over which they are inferred.

  17. Effect of polyamine depletion on DNA damage and repair following UV irradiation of HeLa cells

    International Nuclear Information System (INIS)

    Snyder, R.D.; Sunkara, P.S.

    1990-01-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, methylglyoxal bis(guanylhydrazone) (MGBG), difluoromethylornithine (DFMO) or a combination of the two, resulted in reduction in cellular polyamine levels. Analysis of UV light-induced DNA damage and repair in these polyamine depleted cells revealed distinct differences in the repair process relative to that seen in cells possessing a normal polyamine complement. Observed patterns of differential polyamine depletion by DFMO and MGBG, and partial reversal of repair inhibition by polyamine supplementation, suggest that polyamine depletion per se, rather than some secondary effect of inhibitor treatment, is responsible for the inhibition of repair. (author)

  18. Effect of polyamine depletion on DNA damage and repair following UV irradiation of HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.D.; Sunkara, P.S. (Merrell Dow Research Inst., Cincinnati, OH (USA))

    1990-09-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, methylglyoxal bis(guanylhydrazone) (MGBG), difluoromethylornithine (DFMO) or a combination of the two, resulted in reduction in cellular polyamine levels. Analysis of UV light-induced DNA damage and repair in these polyamine depleted cells revealed distinct differences in the repair process relative to that seen in cells possessing a normal polyamine complement. Observed patterns of differential polyamine depletion by DFMO and MGBG, and partial reversal of repair inhibition by polyamine supplementation, suggest that polyamine depletion per se, rather than some secondary effect of inhibitor treatment, is responsible for the inhibition of repair. (author).

  19. Altered mitochondrial genome content signals worse pathology and prognosis in prostate cancer.

    Science.gov (United States)

    Kalsbeek, Anton M F; Chan, Eva K F; Grogan, Judith; Petersen, Desiree C; Jaratlerdsiri, Weerachai; Gupta, Ruta; Lyons, Ruth J; Haynes, Anne-Maree; Horvath, Lisa G; Kench, James G; Stricker, Phillip D; Hayes, Vanessa M

    2018-01-01

    Mitochondrial genome (mtDNA) content is depleted in many cancers. In prostate cancer, there is intra-glandular as well as inter-patient mtDNA copy number variation. In this study, we determine if mtDNA content can be used as a predictor for prostate cancer staging and outcomes. Fresh prostate cancer biopsies from 115 patients were obtained at time of surgery. All cores underwent pathological review, followed by isolation of cancer and normal tissue. DNA was extracted and qPCR performed to quantify the total amount of mtDNA as a ratio to genomic DNA. Differences in mtDNA content were compared for prostate cancer pathology features and disease outcomes. We showed a significantly reduced mtDNA content in prostate cancer compared with normal adjacent prostate tissue (mean difference 1.73-fold, P-value Prostate cancer with increased mtDNA content showed unfavorable pathologic characteristics including, higher disease stage (PT2 vs PT3 P-value = 0.018), extracapsular extension (P-value = 0.02) and a trend toward an increased Gleason score (P-value = 0.064). No significant association was observed between changes in mtDNA content and biochemical recurrence (median follow up of 107 months). Contrary to other cancer types, prostate cancer tissue shows no universally depleted mtDNA content. Rather, the change in mtDNA content is highly variable, mirroring known prostate cancer genome heterogeneity. Patients with high mtDNA content have an unfavorable pathology, while a high mtDNA content in normal adjacent prostate tissue is associated with worse prognosis. © 2017 Wiley Periodicals, Inc.

  20. Transgene Expression of Drosophila melanogaster Nucleoside Kinase Reverses Mitochondrial Thymidine Kinase 2 Deficiency*♦

    Science.gov (United States)

    Krishnan, Shuba; Zhou, Xiaoshan; Paredes, João A.; Kuiper, Raoul V.; Curbo, Sophie; Karlsson, Anna

    2013-01-01

    A strategy to reverse the symptoms of thymidine kinase 2 (TK2) deficiency in a mouse model was investigated. The nucleoside kinase from Drosophila melanogaster (Dm-dNK) was expressed in TK2-deficient mice that have been shown to present with a severe phenotype caused by mitochondrial DNA depletion. The Dm-dNK+/− transgenic mice were shown to be able to rescue the TK2-deficient mice. The Dm-dNK+/−TK2−/− mice were normal as judged by growth and behavior during the observation time of 6 months. The Dm-dNK-expressing mice showed a substantial increase in thymidine-phosphorylating activity in investigated tissues. The Dm-dNK expression also resulted in highly elevated dTTP pools. The dTTP pool alterations did not cause specific mitochondrial DNA mutations or deletions when 6-month-old mice were analyzed. The mitochondrial DNA was also detected at normal levels. In conclusion, the Dm-dNK+/−TK2−/− mouse model illustrates how dTMP synthesized in the cell nucleus can compensate for loss of intramitochondrial dTMP synthesis in differentiated tissue. The data presented open new possibilities to treat the severe symptoms of TK2 deficiency. PMID:23288848

  1. Accumulation of Mitochondrial DNA Common Deletion Since The Preataxic Stage of Machado-Joseph Disease.

    Science.gov (United States)

    Raposo, Mafalda; Ramos, Amanda; Santos, Cristina; Kazachkova, Nadiya; Teixeira, Balbina; Bettencourt, Conceição; Lima, Manuela

    2018-04-21

    Molecular alterations reflecting pathophysiologic changes thought to occur many years before the clinical onset of Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3), a late-onset polyglutamine disorder, remain unidentified. The absence of molecular biomarkers hampers clinical trials, which lack sensitive measures of disease progression, preventing the identification of events occurring prior to clinical onset. Our aim was to analyse the mtDNA content and the amount of the common deletion (m.8482_13460del4977) in a cohort of 16 preataxic MJD mutation carriers, 85 MJD patients and 101 apparently healthy age-matched controls. Relative expression levels of RPPH1, MT-ND1 and MT-ND4 genes were assessed by quantitative real-time PCR. The mtDNA content was calculated as the difference between the expression levels of a mitochondrial gene (MT-ND1) and a nuclear gene (RPPH1); the amount of mtDNA common deletion was calculated as the difference between expression levels of a deleted (MT-ND4) and an undeleted (MT-ND1) mitochondrial genes. mtDNA content in MJD carriers was similar to that of healthy age-matched controls, whereas the percentage of the common deletion was significantly increased in MJD subjects, and more pronounced in the preclinical stage (p < 0.05). The BCL2/BAX ratio was decreased in preataxic carriers compared to controls, suggesting that the mitochondrial-mediated apoptotic pathway is altered in MJD. Our findings demonstrate for the first time that accumulation of common deletion starts in the preclinical stage. Such early alterations provide support to the current understanding that any therapeutic intervention in MJD should start before the overt clinical phenotype.

  2. Temporal pattern of africanization in a feral honeybee population from Texas inferred from mitochondrial DNA

    OpenAIRE

    Pinto, M. Alice; Rubink, William L.; Coulson, Robert N.; Patton, John C.; Johnston, J. Spencer

    2004-01-01

    The invasion of Africanized honeybees (Apis mellifera L.) in the Americas provides a window of opportunity to study the dynamics of secondary contact of subspecies of bees that evolved in allopatry in ecologically distinctive habitats of the Old World. We report here the results of an 11-year mitochondrial DNA survey of a feral honeybee population from southern United States (Texas). The mitochondrial haplotype (mitotype) frequencies changed radically during the 11-year study peri...

  3. Horizontal Transfer of DNA from the Mitochondrial to the Plastid Genome and Its Subsequent Evolution in Milkweeds (Apocynaceae)

    Science.gov (United States)

    Straub, Shannon C.K.; Cronn, Richard C.; Edwards, Christopher; Fishbein, Mark; Liston, Aaron

    2013-01-01

    Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae]) and found evidence of intracellular HGT for a 2.4-kb segment of mitochondrial DNA to the rps2–rpoC2 intergenic spacer of the plastome. The transferred region contains an rpl2 pseudogene and is flanked by plastid sequence in the mitochondrial genome, including an rpoC2 pseudogene, which likely provided the mechanism for HGT back to the plastome through double-strand break repair involving homologous recombination. The plastome insertion is restricted to tribe Asclepiadeae of subfamily Asclepiadoideae, whereas the mitochondrial rpoC2 pseudogene is present throughout the subfamily, which confirms that the plastid to mitochondrial HGT event preceded the HGT to the plastome. Although the plastome insertion has been maintained in all lineages of Asclepiadoideae, it shows minimal evidence of transcription in A. syriaca and is likely nonfunctional. Furthermore, we found recent gene conversion of the mitochondrial rpoC2 pseudogene in Asclepias by the plastid gene, which reflects continued interaction of these genomes. PMID:24029811

  4. Complete mitochondrial DNA sequence of the Eastern keelback mullet Liza affinis.

    Science.gov (United States)

    Gong, Xiaoling; Zhu, Wenjia; Bao, Baolong

    2016-05-01

    Eastern keelback mullet (Liza affinis) inhabits inlet waters and estuaries of rivers. In this paper, we initially determined the complete mitochondrial genome of Liza affinis. The entire mtDNA sequence is 16,831 bp in length, including 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes and 1 putative control region. Its order and numbers of genes are similar to most bony fishes.

  5. Mitochondrial DNA analysis of two southern African elephant populations

    Directory of Open Access Journals (Sweden)

    M.F. Essop

    1996-08-01

    Full Text Available The modern view is that there are at most only two valid forms of the African elephant namely Loxodonta qfricana africana, the bush elephant, and L.a. cyclotis, the forest elephant (Ansell 1974; Meester et al. 1986. The Knysna elephant which was also described as a separate sub-species is now almost extinct. Plans to augment the remnant population by introducing other animals must take into account the taxonomic questions and issue of conserving elephant gene pools (Greig 1982a. Mitochondrial DNA (mtDNA restriction fragment-size comparisons were performed on specimens from the Kruger National Park and the Addo Elephant National Park. If the Addo population's results are extrapolated to the Knysna population, it may be concluded that there is no genetic evidence for the Kruger and Knysna elephant populations to be considered as different sub-species.

  6. The pathophysiology of mitochondrial disease as modeled in the mouse.

    Science.gov (United States)

    Wallace, Douglas C; Fan, Weiwei

    2009-08-01

    It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.

  7. The expanding phenotype of mitochondrial myopathy.

    Science.gov (United States)

    DiMauro, Salvatore; Gurgel-Giannetti, Juliana

    2005-10-01

    Our understanding of mitochondrial diseases (defined restrictively as defects in the mitochondrial respiratory chain) continues to progress apace. In this review we provide an update of information regarding disorders that predominantly or exclusively affect skeletal muscle. Most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency, and mutations in genes that control mitochondrial DNA (mtDNA) abundance and structure such as POLG and TK2. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with altered lipid composition of the inner mitochondrial membrane, but a putative secondary impairment of the respiratory chain remains to be documented. Concerning the 'other genome', the role played by mutations in protein encoding genes of mtDNA in causing isolated myopathies has been confirmed. It has also been confirmed that mutations in tRNA genes of mtDNA can cause predominantly myopathic syndromes and - contrary to conventional wisdom - these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, myalgia, cramps, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  8. Polycyclic aromatic hydrocarbons exposure decreased sperm mitochondrial DNA copy number: A cross-sectional study (MARHCS) in Chongqing, China.

    Science.gov (United States)

    Ling, Xi; Zhang, Guowei; Sun, Lei; Wang, Zhi; Zou, Peng; Gao, Jianfang; Peng, Kaige; Chen, Qing; Yang, Huan; Zhou, Niya; Cui, Zhihong; Zhou, Ziyuan; Liu, Jinyi; Cao, Jia; Ao, Lin

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that have adverse effects on the male reproductive function. Many studies have confirmed that PAHs preferentially accumulate in mitochondria DNA relative to nuclear DNA and disrupt mitochondrial functions. However, it is rare whether exposure to PAHs is associated with mitochondrial damage and dysfunction in sperm. To evaluate the effects of PAHs on sperm mitochondria, we measured mitochondrial membrane potential (MMP), mitochondrial DNA copy number (mtDNAcn) and mtDNA integrity in 666 individuals from the Male Reproductive Health in Chongqing College Students (MARHCS) study. PAHs exposure was estimated by measuring eight urinary PAH metabolites (1-OHNap, 2-OHNap, 1-OHPhe, 2-OHPhe, 3-OHPhe, 4-OHPhe, 2-OHFlu and 1-OHPyr). The subjects were divided into low, median and high exposure groups using the tertile levels of urinary PAH metabolites. In univariate analyses, the results showed that increased levels of 2-OHPhe, 3-OHPhe, ∑Phe metabolites and 2-OHFlu were found to be associated with decreased sperm mtDNAcn. After adjusting for potential confounders, significantly negative associations of these metabolites remained (p = 0.039, 0.012, 0.01, 0.035, respectively). Each 1 μg/g creatinine increase in 2-OHPhe, 3-OHPhe, ∑Phe metabolites and 2-OHFlu was associated with a decrease in sperm mtDNAcn of 9.427%, 11.488%, 9.635% and 11.692%, respectively. There were no significant associations between urinary PAH metabolites and sperm MMP or mtDNA integrity. The results indicated that the low exposure levels of PAHs can cause abnormities in sperm mitochondria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity

    International Nuclear Information System (INIS)

    Ramachandran, Anup; Lebofsky, Margitta; Weinman, Steven A.; Jaeschke, Hartmut

    2011-01-01

    Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/-) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200 mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870 ± 180 U/L) and centrilobular necrosis at 6 h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/- mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. Conclusions: the impaired defense against mitochondrial superoxide formation in SOD2+/- mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.

  10. Increased Nitroxidative Stress Promotes Mitochondrial Dysfunction in Alcoholic and Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Byoung-Joon Song

    2013-01-01

    Full Text Available Increased nitroxidative stress causes mitochondrial dysfunctions through oxidative modifications of mitochondrial DNA, lipids, and proteins. Persistent mitochondrial dysfunction sensitizes the target cells/organs to other pathological risk factors and thus ultimately contributes to the development of more severe disease states in alcoholic and nonalcoholic fatty liver disease. The incidences of nonalcoholic fatty liver disease continuously increase due to high prevalence of metabolic syndrome including hyperlipidemia, hypercholesterolemia, obesity, insulin resistance, and diabetes. Many mitochondrial proteins including the enzymes involved in fat oxidation and energy supply could be oxidatively modified (including S-nitrosylation/nitration under increased nitroxidative stress and thus inactivated, leading to increased fat accumulation and ATP depletion. To demonstrate the underlying mechanism(s of mitochondrial dysfunction, we employed a redox proteomics approach using biotin-N-maleimide (biotin-NM as a sensitive biotin-switch probe to identify oxidized Cys residues of mitochondrial proteins in the experimental models of alcoholic and acute liver disease. The aims of this paper are to briefly describe the mechanisms, functional consequences, and detection methods of mitochondrial dysfunction. We also describe advantages and limitations of the Cys-targeted redox proteomics method with alternative approaches. Finally, we discuss various applications of this method in studying oxidatively modified mitochondrial proteins in extrahepatic tissues or different subcellular organelles and translational research.

  11. Coupled aggregation of mitochondrial single-strand DNA-binding protein tagged with Eos fluorescent protein visualizes synchronized activity of mitochondrial nucleoids

    Czech Academy of Sciences Publication Activity Database

    Olejár, Tomáš; Pajuelo-Reguera, David; Alán, Lukáš; Dlasková, Andrea; Ježek, Petr

    2015-01-01

    Roč. 12, č. 4 (2015), s. 5185-5190 ISSN 1791-2997 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : mitochondrial nucleoid * single-stranded DNA-binding protein * photoconvertible fluorescent protein Eos Subject RIV: EA - Cell Biology Impact factor: 1.559, year: 2015

  12. GEOGRAPHIC DISTRIBUTION OF MOLECULAR VARIANCE WITHIN THE BLUE MARLIN (MAKAIRA NIGRICANS): A HIERARCHICAL ANALYSIS OF ALLOZYME, SINGLE-COPY NUCLEAR DNA, AND MITOCHONDRIAL DNA MARKERS.

    Science.gov (United States)

    Buonaccorsi, Vincent P; Reece, Kimberly S; Morgan, Lee W; Graves, John E

    1999-04-01

    This study presents a comparative hierarchical analysis of variance applied to three classes of molecular markers within the blue marlin (Makaira nigricans). Results are reported from analyses of four polymorphic allozyme loci, four polymorphic anonymously chosen single-copy nuclear DNA (scnDNA) loci, and previously reported restriction fragment length polymorphisms (RFLPs) of mitochondrial DNA (mtDNA). Samples were collected within and among the Atlantic and Pacific Oceans over a period of several years. Although moderate levels of genetic variation were detected at both polymorphic allozyme (H = 0.30) and scnDNA loci (H = 0.37), mtDNA markers were much more diverse (h = 0.85). Allele frequencies were significantly different between Atlantic and Pacific Ocean samples at three of four allozyme loci and three of four scnDNA loci. Estimates of allozyme genetic differentiation (θ O ) ranged from 0.00 to 0.15, with a mean of 0.08. The θ O values for scnDNA loci were similar to those of allozymes, ranging from 0.00 to 0.12 with a mean of 0.09. MtDNA RFLP divergence between oceans (θ O = 0.39) was significantly greater than divergence detected at nuclear loci (95% nuclear confidence interval = 0.04-0.11). The fourfold smaller effective population size of mtDNA and male-mediated gene flow may account for the difference observed between nuclear and mitochondrial divergence estimates. © 1999 The Society for the Study of Evolution.

  13. Mitochondrial DNA polymorphisms associated with longevity in a Finnish population.

    Science.gov (United States)

    Niemi, Anna-Kaisa; Hervonen, Antti; Hurme, Mikko; Karhunen, Pekka J; Jylhä, Marja; Majamaa, Kari

    2003-01-01

    Sequence variation in mitochondrial DNA (mtDNA) may cause slight differences both in the functioning of the respiratory chain and in free radical production, and an association between certain mtDNA haplogroups and longevity has been suggested. In order to determine further the role of mtDNA in longevity, we studied the frequencies of mtDNA haplogroups and haplogroup clusters among elderly subjects and controls in a Finnish population. Samples were obtained from 225 persons aged 90-91 years (Vitality 90+) and from 400 middle-aged controls and 257 infants. MtDNA haplogroups were determined by restriction fragment length polymorphism. The haplogroup frequencies of the Vitality 90+ group differed from both those of the middle-aged controls ( P=0.01) and the infants ( P=0.00005), haplogroup H being less frequent than among the middle-aged subjects ( P=0.001) and infants ( P=0.00001), whereas haplogroups U and J were more frequent. Haplogroup clusters also differed between Vitality 90+ and both the middle-aged subjects ( P=0.002) and infants ( P=0.00001), the frequency of haplogroup cluster HV being lower in the former and that of UK and WIX being higher. These data suggest an association between certain mtDNA haplogroups or haplogroup clusters and longevity. Furthermore, our data appear to favour the presence of advantageous polymorphisms and support a role for mitochondria and mtDNA in the degenerative processes involved in ageing.

  14. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  15. [Polymorphisms of mitochondrial DNA hypervariable regions HVR I and HVR II in Changdu Tibetan in China].

    Science.gov (United States)

    Zhao, Jianmin; Kang, Longli; Bian, Liqiang; La, Zong

    2008-10-01

    To analyze the sequence polymorphisms of mitochondrial DNA HVR I and HVR II in Tibetan population in Changdu area of Tibet. mtDNAs obtained from 97 unrelated individuals were amplified and directly sequenced. One hundred and eleven variable sites were identified, including nucleotide transitions, transversions, insertions and deletions. In HVR I region (nt16024-nt16365), sixty-eight polymorphic sites and 92 haplotypes were observed, and the genetic diversity was 0.9985. In HVR II region (nt73-nt340), forty-three polymorphic sites and 91 haplotypes were detected, and the genetic diversity was 0.9882. The random match probability of HVR I and HVR II regions were 0.0120 and 0.0118, respectively. When the sequence analysis of HVR I and HVR II regions were combined, ninety-seven different haplotypes were found. The combined match probability of two unrelated persons having the same sequence was 0.0103. There are some unique polymorphic loci in the Changdu Tibetan population. The results suggest that there are significant difference in the genetic structure in the mitochondrial DNA D-loop region between Changdu Tibetans and other Asian populations and Caucasians. Sequence polymorphism in mitochondrial DNA HVR I and HVR II can be used as a genetic marker for forensic individual identification and genetic analysis.

  16. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    International Nuclear Information System (INIS)

    Lushaj, Entela B.; Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi

    2012-01-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  17. Mutation of Mitochondrial DNA G13513A Presenting with Leigh Syndrome, Wolff-Parkinson-White Syndrome and Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Shi-Bing Wang

    2008-08-01

    Full Text Available Mutation of mitochondrial DNA (mtDNA G13513A, encoding the ND5 subunit of respiratory chain complex I, can cause mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS and Leigh syndrome. Wolff-Parkinson-White (WPW syndrome and optic atrophy were reported in a high proportion of patients with this mutation. We report an 18-month-old girl, with an 11-month history of psychomotor regression who was diagnosed with WPW syndrome and hypertrophic cardiomyopathy, in association with Leigh syndrome. Supplementation with coenzyme Q10, thiamine and carnitine prevented further regression in gross motor function but the patient's heart function deteriorated and dilated cardiomyopathy developed 11 months later. She was found to have a mutation of mtDNA G13513A. We suggest that mtDNA G13513A mutation is an important factor in patients with Leigh syndrome associated with WPW syndrome and/or optic atrophy, and serial heart function monitoring by echocardiography is recommended in this group of patients.

  18. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB)

    OpenAIRE

    van Loon, Barbara; Samson, Leona D.

    2013-01-01

    Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known...

  19. Mitochondrial DNA and STR analyses for human DNA from maggots crop contents: a forensic entomology case from central-southern China.

    Science.gov (United States)

    Li, X; Cai, J F; Guo, Y D; Xiong, F; Zhang, L; Feng, H; Meng, F M; Fu, Y; Li, J B; Chen, Y Q

    2011-08-01

    Insect larvae and adult insects found on human corpses can provide important forensic evidence however it is useful to be able to prove evidence of association. Without this, it could be claimed that the insect evidence was a contaminant or had been planted on the body. This paper describes how mitochondrial DNA (mtDNA) and STR analysis of the crop contents of larvae of the blowfly Aldrichina grahami collected from separated body parts was used to provide evidence of association.

  20. Radiosensitivity evaluation of Human tumor cell lines by detecting 4977bp deletion in mitochondrial DNA

    International Nuclear Information System (INIS)

    Zhang Yipei

    2009-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using the assay of mtDNA4977bp deletion. Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction(SF), the ratio of mtDNA4977bp deletion and DNA damage were detected by MTT assay and nested PCR technique respectively. Results: MTT assay: The SF of HepG 2 and EC-9706 after irradiated by 2, 4and 8Gy was lower significantly than that of MCF-7, which showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. But there was no statistical difference of SF between HepG 2 and EC-9706. PCR method:The differences on mtDNA 4977bp deletion in mitochondrial DNA among HepG 2 , EC-9706 and MCF-7 were not significant after 1Gy and 4Gy γ-ray irradiation. The ratio of 4977bp deletion in mitochondrial DNA of HepG 2 and EC-9706 increased while that of MCF-7 decreased after 8Gy irradiation. The ratio of mtDNA 4977bp deletion of HepG 2 and EC-9706 was higher significantly than that of MCF-7, which implies that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF -7. Conclusion: As a new biological marker, mtDNA4977bp deletion may be hopeful to evaluate the radiosensitivity of tumor cells more objectively and exactly. (authors)

  1. Inhibition of X-ray induced DNA strand break repair in polyamine-depleted HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.D.

    1989-05-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, alpha-difluoromethylornithine (DFMO) or methylglyoxal bis(guanylhydrazone) (MGBG), results in, depending on the conditions, partial or complete depletion of the cellular polyamines: putrescine, spermidine and spermine. In this compromised state cells exhibited a distinct deficiency in repair of X-ray-induced DNA strand breaks. The half-time for return of normal DNA sedimentation following 1.6 Gy was 9.5 min for untreated control cells and 22, 32 and 50 min for cells treated with MGBG, DFMO+MGBG and DFMO, respectively. Normal repair kinetics were restored to these cells upon a short incubation in media containing all three polyamines. The rapid early phase of repair following higher X-ray doses (16 Gy) was also delayed in polyamine-depleted cells but later repair occurring 1-4 h post-irradiation, representing chromatin reconstitution, was apparently normal. (author).

  2. Inhibition of X-ray induced DNA strand break repair in polyamine-depleted HeLa cells

    International Nuclear Information System (INIS)

    Snyder, R.D.

    1989-01-01

    Treatment of HeLa cells with the polyamine biosynthesis inhibitors, alpha-difluoromethylornithine (DFMO) or methylglyoxal bis(guanylhydrazone) (MGBG), results in, depending on the conditions, partial or complete depletion of the cellular polyamines: putrescine, spermidine and spermine. In this compromised state cells exhibited a distinct deficiency in repair of X-ray-induced DNA strand breaks. The half-time for return of normal DNA sedimentation following 1.6 Gy was 9.5 min for untreated control cells and 22, 32 and 50 min for cells treated with MGBG, DFMO+MGBG and DFMO, respectively. Normal repair kinetics were restored to these cells upon a short incubation in media containing all three polyamines. The rapid early phase of repair following higher X-ray doses (16 Gy) was also delayed in polyamine-depleted cells but later repair occurring 1-4 h post-irradiation, representing chromatin reconstitution, was apparently normal. (author)

  3. Identification of the Mislabeled Breast Cancer Samples by Mitochondrial DNA Haplotyping

    Directory of Open Access Journals (Sweden)

    Xiaogang Chen

    2015-01-01

    Full Text Available The task to identify whether an archival malignant tumor specimen had been mislabeled or interchanged is a challenging one for forensic genetics. The nuclear DNA (nDNA markers were affected by the aberration of tumor cells, so they were not suitable for personal identification when the tumor tissues were tested. In this study, we focused on a new solution - mitochondrial single nucleotide polymorphism (mtSNP haplotyping by a multiplex SNaPshot assay. To validate our strategy of haplotyping with 25 mtSNPs, we analyzed 15 pairs of cancerous/healthy tissues taken from patients with ductal breast carcinoma. The haplotypes of all the fifteen breast cancer tissues were matched with their paired breast tissues. The heteroplasmy at 2 sites, 14783A/G and 16519C/T was observed in one breast tissue, which indicated a mixture of related mitochondrial haplotypes. However, only one haplotype was retained in the paired breast cancer tissue, which could be considered the result of proliferation of tumor subclone. The allele drop-out and allele drop-in were observed when 39 STRs and 20 tri-allelic SNPs of nDNA were applied. Compared to nDNA markers applied, 25 mtSNPs were more stable without interference from aberrance of breast cancer. Also, two cases were presented where the investigation of haplotype with 25 mtSNPs was used to prove the origin of biopsy specimen with breast cancer. The mislabeling of biopsy specimen with breast cancer could be certified in one case but could not be supported in the other case. We highlight the importance of stability of mtSNP haplotype in breast cancer. It was implied that our multiplex SNaPshot assay with 25 mtSNPs was a useful strategy to identify mislabeled breast cancer specimen.

  4. Mitochondrial DNA variation and genetic relationships of Populus species.

    Science.gov (United States)

    Barrett, J W; Rajora, O P; Yeh, F C; Dancik, B P; Strobeck, C

    1993-02-01

    We examined variation in and around the region coding for the cytochrome c oxidase I (coxI) and ATPase 6 (atp6) genes in the mitochondrial genomes of four Populus species (P. nigra, P. deltoides, P. maximowiczii, and P. tremuloides) and the natural hybrid P. x canadensis (P. deltoides x P. nigra). Total cellular DNAs of these poplars were digested with 16 restriction endonucleases and probed with maize mtDNA-specific probes (CoxI and Atp6). The only variant observed for Atp6 was interspecific, with P. maximowiczii separated from the other species as revealed by EcoRI digestions. No intraspecific mtDNA variation was observed among individuals of P. nigra, P. maximowiczii, P. x canadensis, or P. tremuloides for the CoxI probe. However, two varieties of P. deltoides were distinct because of a single site change in the KpnI digestions, demonstrating that P. deltoides var. deltoides (eastern cottonwood) and var. occidentalis (plains cottonwood) have distinct mitochondrial genomes in the region of the coxI gene. Populus x canadensis shared the same restriction fragment patterns as its suspected maternal parent P. deltoides. Nucleotide substitutions per base in and around the coxI and atp6 genes among the Populus species and the hybrid ranged from 0.0017 to 0.0077. The interspecific estimates of nucleotide substitution per base suggested that P. tremuloides was furthest removed from P. deltoides and P. x canadensis and least diverged from P. nigra. Populus maximowiczii was placed between these two clusters.

  5. Understanding mitochondrial myopathies: a review

    Directory of Open Access Journals (Sweden)

    Abhimanyu S. Ahuja

    2018-05-01

    Full Text Available Mitochondria are small, energy-producing structures vital to the energy needs of the body. Genetic mutations cause mitochondria to fail to produce the energy needed by cells and organs which can cause severe disease and death. These genetic mutations are likely to be in the mitochondrial DNA (mtDNA, or possibly in the nuclear DNA (nDNA. The goal of this review is to assess the current understanding of mitochondrial diseases. This review focuses on the pathology, causes, risk factors, symptoms, prevalence data, symptomatic treatments, and new research aimed at possible preventions and/or treatments of mitochondrial diseases. Mitochondrial myopathies are mitochondrial diseases that cause prominent muscular symptoms such as muscle weakness and usually present with a multitude of symptoms and can affect virtually all organ systems. There is no cure for these diseases as of today. Treatment is generally supportive and emphasizes symptom management. Mitochondrial diseases occur infrequently and hence research funding levels tend to be low in comparison with more common diseases. On the positive side, quite a few genetic defects responsible for mitochondrial diseases have been identified, which are in turn being used to investigate potential treatments. Speech therapy, physical therapy, and respiratory therapy have been used in mitochondrial diseases with variable results. These therapies are not curative and at best help with maintaining a patient’s current abilities to move and function.

  6. Genetics of mitochondrial dysfunction and infertility.

    Science.gov (United States)

    Demain, L A M; Conway, G S; Newman, W G

    2017-02-01

    Increasingly, mitochondria are being recognized as having an important role in fertility. Indeed in assisted reproductive technologies mitochondrial function is a key indicator of sperm and oocyte quality. Here, we review the literature regarding mitochondrial genetics and infertility. In many multisystem disorders caused by mitochondrial dysfunction death occurs prior to sexual maturity, or the clinical features are so severe that infertility may be underreported. Interestingly, many of the genes linked to mitochondrial dysfunction and infertility have roles in the maintenance of mitochondrial DNA or in mitochondrial translation. Studies on populations with genetically uncharacterized infertility have highlighted an association with mitochondrial DNA deletions, whether this is causative or indicative of poor functioning mitochondria requires further examination. Studies on the impact of mitochondrial DNA variants present conflicting data but highlight POLG as a particularly interesting candidate gene for both male and female infertility. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. HmtDB 2016: data update, a better performing query system and human mitochondrial DNA haplogroup predictor.

    Science.gov (United States)

    Clima, Rosanna; Preste, Roberto; Calabrese, Claudia; Diroma, Maria Angela; Santorsola, Mariangela; Scioscia, Gaetano; Simone, Domenico; Shen, Lishuang; Gasparre, Giuseppe; Attimonelli, Marcella

    2017-01-04

    The HmtDB resource hosts a database of human mitochondrial genome sequences from individuals with healthy and disease phenotypes. The database is intended to support both population geneticists as well as clinicians undertaking the task to assess the pathogenicity of specific mtDNA mutations. The wide application of next-generation sequencing (NGS) has provided an enormous volume of high-resolution data at a low price, increasing the availability of human mitochondrial sequencing data, which called for a cogent and significant expansion of HmtDB data content that has more than tripled in the current release. We here describe additional novel features, including: (i) a complete, user-friendly restyling of the web interface, (ii) links to the command-line stand-alone and web versions of the MToolBox package, an up-to-date tool to reconstruct and analyze human mitochondrial DNA from NGS data and (iii) the implementation of the Reconstructed Sapiens Reference Sequence (RSRS) as mitochondrial reference sequence. The overall update renders HmtDB an even more handy and useful resource as it enables a more rapid data access, processing and analysis. HmtDB is accessible at http://www.hmtdb.uniba.it/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Müller Mathias

    2007-12-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. Results The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88. The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS PCR (i.e. ARMS-qPCR. For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR. We report the first cases (n = 4 fetuses, n = 3 lambs of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6 indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5% was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. Conclusion Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones

  9. Mitochondrial DNA from El Mirador cave (Atapuerca, Spain reveals the heterogeneity of Chalcolithic populations.

    Directory of Open Access Journals (Sweden)

    Daniel Gómez-Sánchez

    Full Text Available Previous mitochondrial DNA analyses on ancient European remains have suggested that the current distribution of haplogroup H was modeled by the expansion of the Bell Beaker culture (ca 4,500-4,050 years BP out of Iberia during the Chalcolithic period. However, little is known on the genetic composition of contemporaneous Iberian populations that do not carry the archaeological tool kit defining this culture. Here we have retrieved mitochondrial DNA (mtDNA sequences from 19 individuals from a Chalcolithic sample from El Mirador cave in Spain, dated to 4,760-4,200 years BP and we have analyzed the haplogroup composition in the context of modern and ancient populations. Regarding extant African, Asian and European populations, El Mirador shows affinities with Near Eastern groups. In different analyses with other ancient samples, El Mirador clusters with Middle and Late Neolithic populations from Germany, belonging to the Rössen, the Salzmünde and the Baalberge archaeological cultures but not with contemporaneous Bell Beakers. Our analyses support the existence of a common genetic signal between Western and Central Europe during the Middle and Late Neolithic and points to a heterogeneous genetic landscape among Chalcolithic groups.

  10. Clinical differences in patients with mitochondriocytopathies due to nuclear versus mitochondrial DNA mutations.

    Science.gov (United States)

    Rubio-Gozalbo, M E; Dijkman, K P; van den Heuvel, L P; Sengers, R C; Wendel, U; Smeitink, J A

    2000-01-01

    Defects in oxidative phosphorylation (OXPHOS) are genetically unique because the different components involved in this process, respiratory chain enzyme complexes (I, III, and IV) and complex V, are encoded by nuclear and mitochondrial genome. The objective of the study was to assess whether there are clinical differences in patients suffering from OXPHOS defects caused by nuclear or mitochondrial DNA (mtDNA) mutations. We studied 16 families with > or = two siblings with a genetically established OXPHOS deficiency, four due to a nuclear gene mutation and 12 due to a mtDNA mutation. Siblings with a nuclear gene mutation showed very similar clinical pictures that became manifest in the first years (ranging from first months to early childhood). There was a severe progressive course. Seven of the eight children died in their first decade. Conversely, siblings with a mtDNA mutation had clinical pictures that varied from almost alike to very distinct. They became symptomatic at an older age (ranging from childhood to adulthood), with the exception of defects associated with Leigh or Leigh-like phenotype. The clinical course was more gradual and relatively less severe; four of the 26 patients died, one in his second year, another in her second decade and two in their sixth decade. There are differences in age at onset, severity of clinical course, outcome, and intrafamilial variability in patients affected of an OXPHOS defect due to nuclear or mtDNA mutations. Patients with nuclear mutations become symptomatic at a young age, and have a severe clinical course. Patients with mtDNA mutations show a wider clinical spectrum of age at onset and severity. These differences may be of importance regarding the choice of which genome to study in affected patients as well as with respect to genetic counseling. Copyright 2000 Wiley-Liss, Inc.

  11. [Real-time quantification to analyze historical Colombian samples detecting a short fragment of hypervariable region II of mitochondrial DNA].

    Science.gov (United States)

    Pérez, Luz Adriana; Rodríguez, Freddy; Langebaek, Carl Henrik; Groot, Helena

    2016-09-01

    Unlike other molecular biology studies, the analysis of ancient DNA (aDNA) requires special infrastructure and methodological conditions to guarantee the quality of the results. One of the main authenticity criteria is DNA quantification, where quantitative real-time PCR is often used given its sensitivity and specificity. Nevertheless, the implementation of these conditions and methodologies to fulfill authenticity criteria imply higher costs. Objective: To develop a simple and less costly method for mitochondrial DNA quantification suitable for highly degraded samples. Materials and methods: The proposed method is based on the use of mini-primers for the specific amplification of short fragments of mitochondrial DNA. The subsequent purification of these amplified fragments allows a standard curve to be constructed with concentrations in accordance to the state of degradation of the samples. Results: The proposed method successfully detected DNA from ancient samples including bone remains and mummified tissue. DNA inhibitory substances were also detected. Conclusion: The proposed method represents a simpler and cost-effective way to detect low amounts of aDNA, and a tool to differentiate DNA-free samples from samples with inhibitory substances.

  12. Selfish little circles: transmission bias and evolution of large deletion-bearing mitochondrial DNA in Caenorhabditis briggsae nematodes.

    Directory of Open Access Journals (Sweden)

    Katie A Clark

    Full Text Available Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA, in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans.

  13. Selfish Little Circles: Transmission Bias and Evolution of Large Deletion-Bearing Mitochondrial DNA in Caenorhabditis briggsae Nematodes

    Science.gov (United States)

    Clark, Katie A.; Howe, Dana K.; Gafner, Kristin; Kusuma, Danika; Ping, Sita; Estes, Suzanne; Denver, Dee R.

    2012-01-01

    Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA) has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA), in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA) lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans. PMID:22859984

  14. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae)

    Science.gov (United States)

    Shannon C.K. Straub; Richard C. Cronn; Christopher Edwards; Mark Fishbein; Aaron. Liston

    2013-01-01

    Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae...

  15. Patterns in nuclear and mitochondrial DNA reveal historical and recent isolation in the black-tailed godwit (Limosa limosa)

    NARCIS (Netherlands)

    Trimbos, Krijn B.; Doorenweerd, Camiel; Kraaijeveld, Ken; Musters, C.J.M.; Groen, Niko M.; Knijff, Peter de; Piersma, Theunis; de Snoo, Geert R.

    2014-01-01

    On the basis of morphological differences, three subspecies of Black-tailed Godwit (Limosa limosa) have been recognized (L. l. limosa, L. l. islandica and L. l. melanuroides). In previous studies mitochondrial DNA (mtDNA) sequence data showed minimal genetic divergence between the three subspecies

  16. Patterns in Nuclear and Mitochondrial DNA Reveal Historical and Recent Isolation in the Black-Tailed Godwit (Limosa limosa)

    NARCIS (Netherlands)

    Trimbos, K.B.; Doorenweerd, C.; Kraaijeveld, K.; Musters, C.J.M.; Groen, N.M.; Kniff, de P.; Piersma, T.; Snoo, de G.R.

    2014-01-01

    On the basis of morphological differences, three subspecies of Black-tailed Godwit (Limosa limosa) have been recognized (L. l. limosa, L. l. islandica and L. l. melanuroides). In previous studies mitochondrial DNA (mtDNA) sequence data showed minimal genetic divergence between the three subspecies

  17. Recovering mitochondrial DNA lineages of extinct Amerindian nations in extant homopatric Brazilian populations.

    Science.gov (United States)

    Gonçalves, Vanessa F; Parra, Flavia C; Gonçalves-Dornelas, Higgor; Rodrigues-Carvalho, Claudia; Silva, Hilton P; Pena, Sergio Dj

    2010-12-01

    Brazilian Amerindians have experienced a drastic population decrease in the past 500 years. Indeed, many native groups from eastern Brazil have vanished. However, their mitochondrial mtDNA haplotypes, still persist in Brazilians, at least 50 million of whom carry Amerindian mitochondrial lineages. Our objective was to test whether, by analyzing extant rural populations from regions anciently occupied by specific Amerindian groups, we could identify potentially authentic mitochondrial lineages, a strategy we have named 'homopatric targeting'. We studied 173 individuals from Queixadinha, a small village located in a territory previously occupied by the now extinct Botocudo Amerindian nation. Pedigree analysis revealed 74 unrelated matrilineages, which were screened for Amerindian mtDNA lineages by restriction fragment length polymorphism. A cosmopolitan control group was composed of 100 individuals from surrounding cities. All Amerindian lineages identified had their hypervariable segment HVSI sequenced, yielding 13 Amerindian haplotypes in Queixadinha, nine of which were not present in available databanks or in the literature. Among these haplotypes, there was a significant excess of haplogroup C (70%) and absence of haplogroup A lineages, which were the most common in the control group. The novelty of the haplotypes and the excess of the C haplogroup suggested that we might indeed have identified Botocudo lineages. To validate our strategy, we studied teeth extracted from 14 ancient skulls of Botocudo Amerindians from the collection of the National Museum of Rio de Janeiro. We recovered mtDNA sequences from all the teeth, identifying only six different haplotypes (a low haplotypic diversity of 0.8352 ± 0.0617), one of which was present among the lineages observed in the extant individuals studied. These findings validate the technique of homopatric targeting as a useful new strategy to study the peopling and colonization of the New World, especially when direct

  18. Degree of glutathione deficiency and redox imbalance depend on subtype of mitochondrial disease and clinical status.

    Directory of Open Access Journals (Sweden)

    Gregory M Enns

    Full Text Available Mitochondrial disorders are associated with decreased energy production and redox imbalance. Glutathione plays a central role in redox signaling and protecting cells from oxidative damage. In order to understand the consequences of mitochondrial dysfunction on in vivo redox status, and to determine how this varies by mitochondrial disease subtype and clinical severity, we used a sensitive tandem mass spectrometry assay to precisely quantify whole blood reduced (GSH and oxidized (GSSG glutathione levels in a large cohort of mitochondrial disorder patients. Glutathione redox potential was calculated using the Nernst equation. Compared to healthy controls (n = 59, mitochondrial disease patients (n = 58 as a group showed significant redox imbalance (redox potential -251 mV ± 9.7, p<0.0001 with an increased level of oxidation by ∼ 9 mV compared to controls (-260 mV ± 6.4. Underlying this abnormality were significantly lower whole blood GSH levels (p = 0.0008 and GSH/GSSG ratio (p = 0.0002, and significantly higher GSSG levels (p<0.0001 in mitochondrial disease patients compared to controls. Redox potential was significantly more oxidized in all mitochondrial disease subgroups including Leigh syndrome (n = 15, electron transport chain abnormalities (n = 10, mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (n = 8, mtDNA deletion syndrome (n = 7, mtDNA depletion syndrome (n = 7, and miscellaneous other mitochondrial disorders (n = 11. Patients hospitalized in metabolic crisis (n = 7 showed the greatest degree of redox imbalance at -242 mV ± 7. Peripheral whole blood GSH and GSSG levels are promising biomarkers of mitochondrial dysfunction, and may give insights into the contribution of oxidative stress to the pathophysiology of the various mitochondrial disorders. In particular, evaluation of redox potential may be useful in monitoring of clinical status or response to redox-modulating therapies in clinical trials.

  19. Real-Time PCR Quantification of Heteroplasmy in a Mouse Model with Mitochondrial DNA of C57BL/6 and NZB/BINJ Strains

    Science.gov (United States)

    Sangalli, Juliano Rodrigues; Rodrigues, Thiago Bittencourt; Smith, Lawrence Charles; Meirelles, Flávio Vieira; Chiaratti, Marcos Roberto

    2015-01-01

    Mouse models are widely employed to study mitochondrial inheritance, which have implications to several human diseases caused by mutations in the mitochondrial genome (mtDNA). These mouse models take advantage of polymorphisms between the mtDNA of the NZB/BINJ and the mtDNA of common inbred laboratory (i.e., C57BL/6) strains to generate mice with two mtDNA haplotypes (heteroplasmy). Based on PCR followed by restriction fragment length polymorphism (PCR-RFLP), these studies determine the level of heteroplasmy across generations and in different cell types aiming to understand the mechanisms underlying mitochondrial inheritance. However, PCR-RFLP is a time-consuming method of low sensitivity and accuracy that dependents on the use of restriction enzyme digestions. A more robust method to measure heteroplasmy has been provided by the use of real-time quantitative PCR (qPCR) based on allelic refractory mutation detection system (ARMS-qPCR). Herein, we report an ARMS-qPCR assay for quantification of heteroplasmy using heteroplasmic mice with mtDNA of NZB/BINJ and C57BL/6 origin. Heteroplasmy and mtDNA copy number were estimated in germline and somatic tissues, providing evidence of the reliability of the approach. Furthermore, it enabled single-step quantification of heteroplasmy, with sensitivity to detect as low as 0.1% of either NZB/BINJ or C57BL/6 mtDNA. These findings are relevant as the ARMS-qPCR assay reported here is fully compatible with similar heteroplasmic mouse models used to study mitochondrial inheritance in mammals. PMID:26274500

  20. Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides AT+CG in the mitogenome of Kamimuria wangi.

    Science.gov (United States)

    Seligmann, Hervé

    2016-07-01

    Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (XY, i.e. AC) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the AT+CG exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA.

  1. The Involvement of Mitochondrial Membrane Potential in Cross-Resistance Between Radiation and Docetaxel

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Yoshikazu [Department of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai (Japan); Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai (Japan); Roudkenar, Mehryar Habibi; Suzuki, Masatoshi; Urushihara, Yusuke; Fukumoto, Motoi [Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai (Japan); Saito, Yohei [Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai (Japan); Fukumoto, Manabu, E-mail: manabu.fukumoto.a8@tohoku.ac.jp [Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai (Japan); Department of Molecular Pathology, Tokyo Medical University, Tokyo (Japan)

    2016-11-01

    Purpose: To understand the molecular mechanisms underlying cancer cell radioresistance, clinically relevant radioresistant (CRR) cells that continue to proliferate during exposure to 2 Gy/day X-rays for more than 30 days were established. A modified high-density survival assay for anticancer drug screening revealed that CRR cells were resistant to an antimicrotubule agent, docetaxel (DTX). The involvement of reactive oxygen species (ROS) from mitochondria (mtROS) in the cross-resistance to X-rays and DTX was studied. Methods and Materials: Sensitivity to anticancer agents was determined by a modified high-density cell survival or water-soluble tetrazolium salt assay. DTX-induced mtROS generation was determined by MitoSOX red staining. JC-1 staining was used to visualize mitochondrial membrane potential. DTX-induced DNA double-strand breaks were determined by γ-H2AX staining. To obtain mitochondrial DNA-lacking (ρ{sup 0}) cells, the cells were cultured for 3 to 4 weeks in medium containing ethidium bromide. Results: Treatment with DTX increased mtROS in parental cells but not in CRR cells. DTX induced DNA double-strand breaks in parental cells. The mitochondrial membrane potential of CRR cells was lower in CRR cells than in parental cells. Depletion of mtDNA induced DTX resistance in parental cells. Treatment with dimethyl sulfoxide also induced DTX resistance in parental cells. Conclusions: The mitochondrial dysfunction observed in CRR cells contributes to X-ray and DTX cross-resistance. The activation of oxidative phosphorylation in CRR cells may represent an effective approach to overcome radioresistant cancers. In general, the overexpression of β-tubulin or multidrug efflux pumps is thought to be involved in DTX resistance. In the present study, we discovered another DTX resistant mechanism by investigating CRR cells.

  2. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Lerner, Chad A.; Rutagarama, Pierrot; Ahmad, Tanveer; Sundar, Isaac K.; Elder, Alison; Rahman, Irfan, E-mail: irfan_rahman@urmc.rochester.edu

    2016-09-02

    Oxidants or nanoparticles have recently been identified as constituents of aerosols released from various styles of electronic cigarettes (E-cigs). Cells in the lung may be directly exposed to these constituents and harbor reactive properties capable of incurring acute cell injury. Our results show mitochondria are sensitive to both E-cig aerosols and aerosol containing copper nanoparticles when exposed to human lung fibroblasts (HFL-1) using an Air-Liquid Interface culture system, evident by elevated levels of mitochondrial ROS (mtROS). Increased mtROS after aerosol exposure is associated with reduced stability of OxPhos electron transport chain (ETC) complex IV subunit and nuclear DNA fragmentation. Increased levels of IL-8 and IL-6 in HFL-1 conditioned media were also observed. These findings reveal both mitochondrial, genotoxic, and inflammatory stresses are features of direct cell exposure to E-cig aerosols which are ensued by inflammatory duress, raising a concern on deleterious effect of vaping. - Graphical abstract: Oxidants and possibly reactive properties of metal particles in E-cig aerosols impart mitochondrial oxidative stress and DNA damage. These biological effects accompany inflammatory response which may raise concern regarding long term E-cig use. Mitochondria may be particularly sensitive to reactive properties of E-cig aerosols in addition to the potential for them to induce genotoxic stress by generating increased ROS. - Highlights: • Mitochondria are sensitive to both E-cig aerosols and metal nanoparticles. • Increased mtROS by E-cig aerosol is associated with disrupted mitochondrial energy. • E-cig causes nuclear DNA fragmentation. • E-cig aerosols induce pro-inflammatory response in human fibroblasts.

  3. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts

    International Nuclear Information System (INIS)

    Lerner, Chad A.; Rutagarama, Pierrot; Ahmad, Tanveer; Sundar, Isaac K.; Elder, Alison; Rahman, Irfan

    2016-01-01

    Oxidants or nanoparticles have recently been identified as constituents of aerosols released from various styles of electronic cigarettes (E-cigs). Cells in the lung may be directly exposed to these constituents and harbor reactive properties capable of incurring acute cell injury. Our results show mitochondria are sensitive to both E-cig aerosols and aerosol containing copper nanoparticles when exposed to human lung fibroblasts (HFL-1) using an Air-Liquid Interface culture system, evident by elevated levels of mitochondrial ROS (mtROS). Increased mtROS after aerosol exposure is associated with reduced stability of OxPhos electron transport chain (ETC) complex IV subunit and nuclear DNA fragmentation. Increased levels of IL-8 and IL-6 in HFL-1 conditioned media were also observed. These findings reveal both mitochondrial, genotoxic, and inflammatory stresses are features of direct cell exposure to E-cig aerosols which are ensued by inflammatory duress, raising a concern on deleterious effect of vaping. - Graphical abstract: Oxidants and possibly reactive properties of metal particles in E-cig aerosols impart mitochondrial oxidative stress and DNA damage. These biological effects accompany inflammatory response which may raise concern regarding long term E-cig use. Mitochondria may be particularly sensitive to reactive properties of E-cig aerosols in addition to the potential for them to induce genotoxic stress by generating increased ROS. - Highlights: • Mitochondria are sensitive to both E-cig aerosols and metal nanoparticles. • Increased mtROS by E-cig aerosol is associated with disrupted mitochondrial energy. • E-cig causes nuclear DNA fragmentation. • E-cig aerosols induce pro-inflammatory response in human fibroblasts.

  4. Comparison of six simple methods for extracting ribosomal and mitochondrial DNA from Toxocara and Toxascaris nematodes.

    Science.gov (United States)

    Mikaeili, F; Kia, E B; Sharbatkhori, M; Sharifdini, M; Jalalizand, N; Heidari, Z; Zarei, Z; Stensvold, C R; Mirhendi, H

    2013-06-01

    Six simple methods for extraction of ribosomal and mitochondrial DNA from Toxocara canis, Toxocara cati and Toxascaris leonina were compared by evaluating the presence, appearance and intensity of PCR products visualized on agarose gels and amplified from DNA extracted by each of the methods. For each species, two isolates were obtained from the intestines of their respective hosts: T. canis and T. leonina from dogs, and T. cati from cats. For all isolates, total DNA was extracted using six different methods, including grinding, boiling, crushing, beating, freeze-thawing and the use of a commercial kit. To evaluate the efficacy of each method, the internal transcribed spacer (ITS) region and the cytochrome c oxidase subunit 1 (cox1) gene were chosen as representative markers for ribosomal and mitochondrial DNA, respectively. Among the six DNA extraction methods, the beating method was the most cost effective for all three species, followed by the commercial kit. Both methods produced high intensity bands on agarose gels and were characterized by no or minimal smear formation, depending on gene target; however, beating was less expensive. We therefore recommend the beating method for studies where costs need to be kept at low levels. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. 8-oxoguanine DNA glycosylase (OGG1 deficiency elicits coordinated changes in lipid and mitochondrial metabolism in muscle.

    Directory of Open Access Journals (Sweden)

    Vladimir Vartanian

    Full Text Available Oxidative stress resulting from endogenous and exogenous sources causes damage to cellular components, including genomic and mitochondrial DNA. Oxidative DNA damage is primarily repaired via the base excision repair pathway that is initiated by DNA glycosylases. 8-oxoguanine DNA glycosylase (OGG1 recognizes and cleaves oxidized and ring-fragmented purines, including 8-oxoguanine, the most commonly formed oxidative DNA lesion. Mice lacking the OGG1 gene product are prone to multiple features of the metabolic syndrome, including high-fat diet-induced obesity, hepatic steatosis, and insulin resistance. Here, we report that OGG1-deficient mice also display skeletal muscle pathologies, including increased muscle lipid deposition and alterations in genes regulating lipid uptake and mitochondrial fission in skeletal muscle. In addition, expression of genes of the TCA cycle and of carbohydrate and lipid metabolism are also significantly altered in muscle of OGG1-deficient mice. These tissue changes are accompanied by marked reductions in markers of muscle function in OGG1-deficient animals, including decreased grip strength and treadmill endurance. Collectively, these data indicate a role for skeletal muscle OGG1 in the maintenance of optimal tissue function.

  6. Genetic structure of European populations of Salmo salar L (Atlantic salmon) inferred from mitochondrial DNA

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Hansen, Michael Møller; Loeschcke, V.

    1996-01-01

    The genetic relationships between the only natural population of Atlantic salmon (Salmo salar L.) in Denmark and seven other European salmon populations were studied using RFLP analysis of PCR amplified mitochondrial DNA segments. Six different haplotypes were detected by restriction enzyme...

  7. Evaluation of the efficacy of twelve mitochondrial protein-coding genes as barcodes for mollusk DNA barcoding.

    Science.gov (United States)

    Yu, Hong; Kong, Lingfeng; Li, Qi

    2016-01-01

    In this study, we evaluated the efficacy of 12 mitochondrial protein-coding genes from 238 mitochondrial genomes of 140 molluscan species as potential DNA barcodes for mollusks. Three barcoding methods (distance, monophyly and character-based methods) were used in species identification. The species recovery rates based on genetic distances for the 12 genes ranged from 70.83 to 83.33%. There were no significant differences in intra- or interspecific variability among the 12 genes. The monophyly and character-based methods provided higher resolution than the distance-based method in species delimitation. Especially in closely related taxa, the character-based method showed some advantages. The results suggested that besides the standard COI barcode, other 11 mitochondrial protein-coding genes could also be potentially used as a molecular diagnostic for molluscan species discrimination. Our results also showed that the combination of mitochondrial genes did not enhance the efficacy for species identification and a single mitochondrial gene would be fully competent.

  8. Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism.

    Science.gov (United States)

    Cuyàs, E; Fernández-Arroyo, S; Verdura, S; García, R Á-F; Stursa, J; Werner, L; Blanco-González, E; Montes-Bayón, M; Joven, J; Viollet, B; Neuzil, J; Menendez, J A

    2018-02-15

    The anti-diabetic biguanide metformin may exert health-promoting effects via metabolic regulation of the epigenome. Here we show that metformin promotes global DNA methylation in non-cancerous, cancer-prone and metastatic cancer cells by decreasing S-adenosylhomocysteine (SAH), a strong feedback inhibitor of S-adenosylmethionine (SAM)-dependent DNA methyltransferases, while promoting the accumulation of SAM, the universal methyl donor for cellular methylation. Using metformin and a mitochondria/complex I (mCI)-targeted analog of metformin (norMitoMet) in experimental pairs of wild-type and AMP-activated protein kinase (AMPK)-, serine hydroxymethyltransferase 2 (SHMT2)- and mCI-null cells, we provide evidence that metformin increases the SAM:SAH ratio-related methylation capacity by targeting the coupling between serine mitochondrial one-carbon flux and CI activity. By increasing the contribution of one-carbon units to the SAM from folate stores while decreasing SAH in response to AMPK-sensed energetic crisis, metformin can operate as a metabolo-epigenetic regulator capable of reprogramming one of the key conduits linking cellular metabolism to the DNA methylation machinery.

  9. N-Acetyl Cysteine Depletes Reactive Oxygen Species and Prevents Dental Monomer-Induced Intrinsic Mitochondrial Apoptosis In Vitro in Human Dental Pulp Cells.

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    Full Text Available To investigate the involvement of intrinsic mitochondrial apoptosis in dental monomer-induced cytotoxicity and the influences of N-acetyl cysteine (NAC on this process.Human dental pulp cells (hDPCs were exposed to several dental monomers in the absence or presence of NAC, and cell viability, intracellular redox balance, morphology and function of mitochondria and key indicators of intrinsic mitochondrial apoptosis were evaluated using various commercial kits.Dental monomers exerted dose-dependent cytotoxic effects on hDPCs. Concomitant to the over-production of reactive oxygen species (ROS and depletion of glutathione (GSH, differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase were detected. Apoptosis, as indicated by positive Annexin V/propidium iodide (PI staining and activation of caspase-3, was observed after dental monomer treatment. Dental monomers impaired the morphology and function of mitochondria, and induced intrinsic mitochondrial apoptosis in hDPCs via up-regulation of p53, Bax and cleaved caspase-3, and down-regulation of Bcl-2. NAC restored cell viability, relieved oxidative stress and blocked the apoptotic effects of dental monomers.Dental monomers induced oxidative stress and mitochondrial intrinsic apoptosis in hDPCs. NAC could reduce the oxidative stress and thus protect hDPCs against dental monomer-induced apoptosis.

  10. Selective sweeps of mitochondrial DNA can drive the evolution of uniparental inheritance.

    Science.gov (United States)

    Christie, Joshua R; Beekman, Madeleine

    2017-08-01

    Although the uniparental (or maternal) inheritance of mitochondrial DNA (mtDNA) is widespread, the reasons for its evolution remain unclear. Two main hypotheses have been proposed: selection against individuals containing different mtDNAs (heteroplasmy) and selection against "selfish" mtDNA mutations. Recently, uniparental inheritance was shown to promote adaptive evolution in mtDNA, potentially providing a third hypothesis for its evolution. Here, we explore this hypothesis theoretically and ask if the accumulation of beneficial mutations provides a sufficient fitness advantage for uniparental inheritance to invade a population in which mtDNA is inherited biparentally. In a deterministic model, uniparental inheritance increases in frequency but cannot replace biparental inheritance if only a single beneficial mtDNA mutation sweeps through the population. When we allow successive selective sweeps of mtDNA, however, uniparental inheritance can replace biparental inheritance. Using a stochastic model, we show that a combination of selection and drift facilitates the fixation of uniparental inheritance (compared to a neutral trait) when there is only a single selective mtDNA sweep. When we consider multiple mtDNA sweeps in a stochastic model, uniparental inheritance becomes even more likely to replace biparental inheritance. Our findings thus suggest that selective sweeps of beneficial mtDNA haplotypes can drive the evolution of uniparental inheritance. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  11. Signatures of Climatic Change In Human Mitochondrial Dna From Europe

    Science.gov (United States)

    Richards, M. B.; Macaulay, V. A.; Torroni, A.; Bandelt, H.-J.

    Founder analysis is an approach to analysing non-recombining DNA sequence data, such as variation in the mitochondrial DNA (mtDNA), which aims at identifying and dating migrations into new territory. We applied the approach to about 4,000 human mtDNA sequences from Europe and the Near East, in order to estimate the proportion of modern lineages whose ancestors arrived at various times during the continent's past. We found that the major signal dates to about 15,000 years ago, at the time of rewarming following the Last Glacial Maximum (LGM). There is little or no archaeological evidence for immigration into Europe at this time, and the record indicates that at least parts of southern Europe remained populated during the LGM. Therefore, we interpret this signal as the trace of a bottleneck at the time of the LGM, as a result of the retreat from northern Europe during the peak of the glaciation, followed by a re-expansion from one or more refugial zones. Immigration episodes then figure at the beginning of the Early Upper Palaeolithic, during the Middle Upper Palaeolithic, and with the Neolithic. The impact of the latter on the composition of the European mtDNA pool was evidently rather minor. This result implies that climate is likely to have been a major force shaping human demographic history in Europe.

  12. The mitochondrial DNA 4,977-bp deletion and its implication in copy number alteration in colorectal cancer

    Science.gov (United States)

    2011-01-01

    Background Qualitative and quantitative changes in human mitochondrial DNA (mtDNA) have been implicated in various cancer types. A 4,977 bp deletion in the major arch of the mitochondrial genome is one of the most common mutations associated with a variety of human diseases and aging. Methods We conducted a comprehensive study on clinical features and mtDNA of 104 colorectal cancer patients in the Wenzhou area of China. In particular, using a quantitative real time PCR method, we analyzed the 4,977 bp deletion and mtDNA content in tumor tissues and paired non-tumor areas from these patients. Results We found that the 4,977 bp deletion was more likely to be present in patients of younger age (≤65 years, p = 0.027). In patients with the 4,977 bp deletion, the deletion level decreased as the cancer stage advanced (p = 0.031). Moreover, mtDNA copy number in tumor tissues of patients with this deletion increased, both compared with that in adjacent non-tumor tissues and with in tumors of patients without the deletion. Such mtDNA content increase correlated with the levels of the 4,977 bp deletion and with cancer stage (p deletion may play a role in the early stage of colorectal cancer, and it is also implicated in alteration of mtDNA content in cancer cells. PMID:21232124

  13. Mitochondrial DNA analysis of eneolithic trypillians from Ukraine reveals neolithic farming genetic roots.

    Directory of Open Access Journals (Sweden)

    Alexey G Nikitin

    Full Text Available The agricultural revolution in Eastern Europe began in the Eneolithic with the Cucuteni-Trypillia culture complex. In Ukraine, the Trypillian culture (TC existed for over two millennia (ca. 5,400-2,700 BCE and left a wealth of artifacts. Yet, their burial rituals remain a mystery and to date almost nothing is known about the genetic composition of the TC population. One of the very few TC sites where human remains can be found is a cave called Verteba in western Ukraine. This report presents four partial and four complete mitochondrial genomes from nine TC individuals uncovered in the cave. The results of this analysis, combined with the data from previous reports, indicate that the Trypillian population at Verteba carried, for the most part, a typical Neolithic farmer package of mitochondrial DNA (mtDNA lineages traced to Anatolian farmers and Neolithic farming groups of central Europe. At the same time, the find of two specimens belonging to haplogroup U8b1 at Verteba can be viewed as a connection of TC with the Upper Paleolithic European populations. At the level of mtDNA haplogroup frequencies, the TC population from Verteba demonstrates a close genetic relationship with population groups of the Funnel Beaker/ Trichterbecker cultural complex from central and northern Europe (ca. 3,950-2,500 BCE.

  14. Ubiquitin Accumulation on Disease Associated Protein Aggregates Is Correlated with Nuclear Ubiquitin Depletion, Histone De-Ubiquitination and Impaired DNA Damage Response.

    Directory of Open Access Journals (Sweden)

    Adi Ben Yehuda

    Full Text Available Deposition of ubiquitin conjugates on inclusion bodies composed of protein aggregates is a definitive cytopathological hallmark of neurodegenerative diseases. We show that accumulation of ubiquitin on polyQ IB, associated with Huntington's disease, is correlated with extensive depletion of nuclear ubiquitin and histone de-ubiquitination. Histone ubiquitination plays major roles in chromatin regulation and DNA repair. Accordingly, we observe that cells expressing IB fail to respond to radiomimetic DNA damage, to induce gamma-H2AX phosphorylation and to recruit 53BP1 to damaged foci. Interestingly ubiquitin depletion, histone de-ubiquitination and impaired DNA damage response are not restricted to PolyQ aggregates and are associated with artificial aggregating luciferase mutants. The longevity of brain neurons depends on their capacity to respond to and repair extensive ongoing DNA damage. Impaired DNA damage response, even modest one, could thus lead to premature neuron aging and mortality.

  15. Genetic evidence from mitochondrial DNA corroborates the origin of Tibetan chickens.

    Directory of Open Access Journals (Sweden)

    Long Zhang

    Full Text Available Chicken is the most common poultry species and is important to human societies. Tibetan chicken (Gallus gallus domesticus is a breed endemic to China that is distributed mainly on the Qinghai-Tibet Plateau. However, its origin has not been well characterized. In the present study, we sequenced partial mitochondrial DNA (mtDNA control region of 239 and 283 samples from Tibetan and Sichuan indigenous chickens, respectively. Incorporating 1091 published sequences, we constructed the matrilineal genealogy of Tibetan chickens to further document their domestication history. We found that the genetic structure of the mtDNA haplotypes of Tibetan chickens are dominated by seven major haplogroups (A-G. In addition, phylogenetic and network analyses showed that Tibetan chickens are not distinguishable from the indigenous chickens in surrounding areas. Furthermore, some clades of Tibetan chickens may have originated from game fowls. In summary, our results collectively indicated that Tibetan chickens may have diverged from indigenous chickens in the adjacent regions and hybridized with various chickens.

  16. Comparison of radiation-induced DNA-protein cross-links formed in oxic, hypoxic, and glutathione depleted cells

    International Nuclear Information System (INIS)

    Xue, L.; Friedman, L.R.; Chiu, S.; Ramakrishnan, N.; Oleinick, N.L.

    1987-01-01

    Treatment of cells with L-buthionine sulfoximine (BSO) inhibits the synthesis of glutathione (GSH). Subsequent metabolism depletes the cells of GSH. GSH-depletion sensitizes both oxic and hypoxic cells to the lethal effects of ionizing radiation. DNA-protein cross-links (DPC) are formed preferentially between DNA sequences active in transcription and a subset of proteins of the nuclear matrix. Thus, DPC may be an indicator lesion of damage in sensitive regions of the genome. The interrelationships between GSH level, oxic vs. hypoxic status, and the yield of DPC have been studied in terms of number of lesions and repair rate in Chinese hamster V79 and in human lung carcinoma A549 cells. The data suggest that elevated background levels of DPC are indicative of a reduced repair capacity, and greater radiation-induced yields of DPC in hypoxia may also be indicative of a compromised repair mechanism

  17. Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells.

    Science.gov (United States)

    Swalwell, Helen; Latimer, Jennifer; Haywood, Rachel M; Birch-Machin, Mark A

    2012-02-01

    Skin cancer incidence is dramatically increasing worldwide, with exposure to ultraviolet radiation (UVR) a predominant factor. The UVA component initiates oxidative stress in human skin, although its exact role in the initiation of skin cancer, particularly malignant melanoma, remains unclear and is controversial because there is evidence for a melanin-dependent mechanism in UVA-linked melanoma studies. Nonpigmented (CHL-1, A375), moderately pigmented (FM55, SKmel23), and highly pigmented (FM94, hyperpigmented FM55) human melanoma cell lines have been used to investigate UVA-induced production of reactive oxygen species using FACS analysis, at both the cellular (dihydrorhodamine-123) and the mitochondrial (MitoSOX) level, where most cellular stress is generated. For the first time, downstream mtDNA damage (utilizing a quantitative long-PCR assay) has been investigated. Using UVA, UVB, and H(2)O(2) as cellular stressors, we have explored the dual roles of melanin as a photoprotector and photosensitizer. The presence of melanin has no influence over cellular oxidative stress generation, whereas, in contrast, melanin protects against mitochondrial superoxide generation and mtDNA damage (one-way ANOVA with post hoc Tukey's analysis, Pmelanin binds directly to DNA, it acts as a direct photosensitizer of mtDNA damage during UVA irradiation (Pmelanin. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells.

    Science.gov (United States)

    Sun, Xin; Johnson, Jacqueline; St John, Justin C

    2018-05-02

    Replication of mitochondrial DNA is strictly regulated during differentiation and development allowing each cell type to acquire its required mtDNA copy number to meet its specific needs for energy. Undifferentiated cells establish the mtDNA set point, which provides low numbers of mtDNA copy but sufficient template for replication once cells commit to specific lineages. However, cancer cells, such as those from the human glioblastoma multiforme cell line, HSR-GBM1, cannot complete differentiation as they fail to enforce the mtDNA set point and are trapped in a 'pseudo-differentiated' state. Global DNA methylation is likely to be a major contributing factor, as DNA demethylation treatments promote differentiation of HSR-GBM1 cells. To determine the relationship between DNA methylation and mtDNA copy number in cancer cells, we applied whole genome MeDIP-Seq and RNA-Seq to HSR-GBM1 cells and following their treatment with the DNA demethylation agents 5-azacytidine and vitamin C. We identified key methylated regions modulated by the DNA demethylation agents that also induced synchronous changes to mtDNA copy number and nuclear gene expression. Our findings highlight the control exerted by DNA methylation on the expression of key genes, the regulation of mtDNA copy number and establishment of the mtDNA set point, which collectively contribute to tumorigenesis.

  19. Systematics of the Dioryctria abietella Species Group (Lepidoptera: Pyralidae) Based on Mitochondrial DNA Ann

    Science.gov (United States)

    G. Roux-Morabito; N.E. Gillette; A. Roques; L. Dormont; J. Stein; F.A.H. Sperling

    2008-01-01

    Coneworms of the genus Dioryctria Zeller include several serious pests of conifer seeds that are notoriously difficult to distinguish as species. We surveyed mitochondrial DNA variation within the abietella species group by sequencing 451 bp of cytochrome oxidase subunit 1 (COI) and 572 bp of cytochrome oxidase subunit 2 (COII...

  20. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi, E-mail: smshin@chosun.ac.kr

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  2. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    International Nuclear Information System (INIS)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi

    2014-01-01

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  3. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors

    International Nuclear Information System (INIS)

    Pereira, Luísa; Soares, Pedro; Máximo, Valdemar; Samuels, David C

    2012-01-01

    The presence of somatic mitochondrial DNA (mtDNA) mutations in cancer cells has been interpreted in controversial ways, ranging from random neutral accumulation of mutations, to positive selection for high pathogenicity, or conversely to purifying selection against high pathogenicity variants as occurs at the population level. Here we evaluated the predicted pathogenicity of somatic mtDNA mutations described in cancer and compare these to the distribution of variations observed in the global human population and all possible protein variations that could occur in human mtDNA. We focus on oncocytic tumors, which are clearly associated with mitochondrial dysfunction. The protein variant pathogenicity was predicted using two computational methods, MutPred and SNPs&GO. The pathogenicity score of the somatic mtDNA variants were significantly higher in oncocytic tumors compared to non-oncocytic tumors. Variations in subunits of Complex I of the electron transfer chain were significantly more common in tumors with the oncocytic phenotype, while variations in Complex V subunits were significantly more common in non-oncocytic tumors. Our results show that the somatic mtDNA mutations reported over all tumors are indistinguishable from a random selection from the set of all possible amino acid variations, and have therefore escaped the effects of purifying selection that act strongly at the population level. We show that the pathogenicity of somatic mtDNA mutations is a determining factor for the oncocytic phenotype. The opposite associations of the Complex I and Complex V variants with the oncocytic and non-oncocytic tumors implies that low mitochondrial membrane potential may play an important role in determining the oncocytic phenotype

  4. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNAVal mutation

    International Nuclear Information System (INIS)

    Mezghani, Najla; Mnif, Mouna; Kacem, Maha; Mkaouar-Rebai, Emna; Hadj Salem, Ikhlass; Kallel, Nozha; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-01-01

    Highlights: → We report a young Tunisian patient with clinical features of MELAS syndrome. → Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. → We described a novel m.1640A>G mutation in the tRNA Val gene which was absent in 150 controls. → Mitochondrial deletions and POLG1 gene mutations were absent. → The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA Val . This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  5. Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice.

    Science.gov (United States)

    McKay, Jill A; Xie, Long; Harris, Sarah; Wong, Yi K; Ford, Dianne; Mathers, John C

    2011-07-01

    DNA methylation patterns are tissue specific and may influence tissue-specific gene regulation. Human studies investigating DNA methylation in relation to environmental factors primarily use blood-derived DNA as a surrogate for DNA from target tissues. It is therefore important to know if DNA methylation changes in blood in response to environmental changes reflect those in target tissues. Folate intake can influence DNA methylation, via altered methyl donor supply. Previously, manipulations of maternal folate intake during pregnancy altered the patterns of DNA methylation in offspring but, to our knowledge, the consequences for maternal DNA methylation are unknown. Given the increased requirement for folate during pregnancy, mothers may be susceptible to aberrant DNA methylation due to folate depletion. Female mice were fed folate-adequate (2 mg folic acid/kg diet) or folate-deplete (0.4 mg folic acid/kg diet) diets prior to mating and during pregnancy and lactation. Following weaning, dams were killed and DNA methylation was assessed by pyrosequencing® in blood, liver, and kidney at the Esr1, Igf2 differentially methylated region (DMR)1, Igf2 DMR2, Slc39a4CGI1, and Slc39a4CGI2 loci. We observed tissue-specific differences in methylation at all loci. Folate depletion reduced Igf2 DMR1 and Slc39a4CGI1 methylation across all tissues and altered Igf2 DMR2 methylation in a tissue-specific manner (pmethylation measurements may not always reflect methylation within other tissues. Further measurements of blood-derived and tissue-specific methylation patterns are warranted to understand the complexity of tissue-specific responses to altered nutritional exposure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Variations in the Phytophthora infestans Population in Nepal as Revealed by Nuclear and Mitochondrial DNA Polymorphisms.

    Science.gov (United States)

    Ghimire, S R; Hyde, K D; Hodgkiss, I J; Shaw, D S; Liew, E C Y

    2003-02-01

    ABSTRACT Phytophthora infestans isolates collected from potato and tomato crops from various parts of Nepal during the 1999 and 2000 crop seasons were characterized for nuclear and mitochondrial DNA polymorphisms using restriction fragment length polymorphism markers. The nuclear DNA probe RG57 detected 11 multilocus genotypes among 280 isolates. Three genotypes were detected 21 times or more, constituting 94% of the total population, whereas frequencies of other genotypes ranged from 0.004 to 0.014. The overall genotypic diversity as estimated by the Gleason index was 1.78. Most of the overall diversity was present at the highest level (i.e., interregional, 46%), indicating limited gene flow among regions. Cluster analysis of multilocus genotypes derived from RG57 and mating type data for Nepalese isolates and representative isolates worldwide showed Nepalese isolates grouping into four clusters. Characterization of 67 isolates for mitochondrial DNA polymorphisms revealed the presence of two mt-haplotypes, Ia and Ib with the proportions of 0.88 and 0.12, respectively. Polymorphisms in nuclear and mitochondrial DNA revealed a moderate level of diversity in this population. Genotype NP3 had an identical RG57 fingerprint to US1 and had mt-haplotype Ib, confirming the presence of an old population in Nepal. Most of the genotypes had a different RG57 fingerprint than that of US1 and mt-haplotype Ia, the common characteristics of new populations. The presence of a new population at high proportions in Nepal was consistent with the global trend of mt-haplotype distribution, and suggests the displacement of old populations. This study indicates at least three possible introductions of P. infestans to Nepal.

  7. Atypical mitochondrial inheritance patterns in eukaryotes.

    Science.gov (United States)

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  8. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck.

    Science.gov (United States)

    Wilson, Ian J; Carling, Phillipa J; Alston, Charlotte L; Floros, Vasileios I; Pyle, Angela; Hudson, Gavin; Sallevelt, Suzanne C E H; Lamperti, Costanza; Carelli, Valerio; Bindoff, Laurence A; Samuels, David C; Wonnapinij, Passorn; Zeviani, Massimo; Taylor, Robert W; Smeets, Hubert J M; Horvath, Rita; Chinnery, Patrick F

    2016-03-01

    With a combined carrier frequency of 1:200, heteroplasmic mitochondrial DNA (mtDNA) mutations cause human disease in ∼1:5000 of the population. Rapid shifts in the level of heteroplasmy seen within a single generation contribute to the wide range in the severity of clinical phenotypes seen in families transmitting mtDNA disease, consistent with a genetic bottleneck during transmission. Although preliminary evidence from human pedigrees points towards a random drift process underlying the shifting heteroplasmy, some reports describe differences in segregation pattern between different mtDNA mutations. However, based on limited observations and with no direct comparisons, it is not clear whether these observations simply reflect pedigree ascertainment and publication bias. To address this issue, we studied 577 mother-child pairs transmitting the m.11778G>A, m.3460G>A, m.8344A>G, m.8993T>G/C and m.3243A>G mtDNA mutations. Our analysis controlled for inter-assay differences, inter-laboratory variation and ascertainment bias. We found no evidence of selection during transmission but show that different mtDNA mutations segregate at different rates in human pedigrees. m.8993T>G/C segregated significantly faster than m.11778G>A, m.8344A>G and m.3243A>G, consistent with a tighter mtDNA genetic bottleneck in m.8993T>G/C pedigrees. Our observations support the existence of different genetic bottlenecks primarily determined by the underlying mtDNA mutation, explaining the different inheritance patterns observed in human pedigrees transmitting pathogenic mtDNA mutations. © The Author 2016. Published by Oxford University Press.

  9. Founding Amerindian mitochondrial DNA lineages in ancient Maya from Xcaret, Quintana Roo.

    Science.gov (United States)

    González-Oliver, A; Márquez-Morfín, L; Jiménez, J C; Torre-Blanco, A

    2001-11-01

    Ancient DNA from the bone remains of 25 out of 28 pre-Columbian individuals from the Late Classic-Postclassic Maya site of Xcaret, Quintana Roo, was recovered, and mitochondrial DNA (mtDNA) was amplified by using the polymerase chain reaction. The presence of the four founding Amerindian mtDNA lineages was investigated by restriction analysis and by direct sequencing in selected individuals. The mtDNA lineages A, B, and C were found in this population. Eighty-four percent of the individuals were lineage A, whereas lineages B and C were present at low frequencies, 4% and 8%, respectively. Lineage D was absent from our sample. One individual did not possess any of the four lineages. Six skeletons out of 7 dated from the Late Classic period were haplotype A, whereas 11 skeletons out of 16 dated from the Postclassic period were also haplotype A. The distribution of mtDNA lineages in the Xcaret population contrasts sharply with that found in ancient Maya from Copán, which lack lineages A and B. On the other hand, our results resemble more closely the frequencies of mtDNA lineages found in contemporary Maya from the Yucatán Peninsula and in other Native American contemporary populations of Mesoamerican origin. Copyright 2001 Wiley-Liss, Inc.

  10. Radiation response and regulation of apoptosis induced by a combination of TRAIL and CHX in cells lacking mitochondrial DNA: A role for NF-κB-STAT3-directed gene expression

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Ghandhi, Shanaz A.; Zhou, Hongning; Huang, Sarah X.; Chai, Yunfei; Amundson, Sally A.; Hei, Tom K.

    2011-01-01

    Mitochondrial DNA depleted (ρ 0 ) human skin fibroblasts (HSF) with suppressed oxidative phosphorylation were characterized by significant changes in the expression of 2100 nuclear genes, encoding numerous protein classes, in NF-κB and STAT3 signaling pathways, and by decreased activity of mitochondrial death pathway, compared to the parental ρ + HSF. In contrast, the extrinsic TRAIL/TRAIL-Receptor mediated death pathway remained highly active, and exogenous TRAIL in a combination with cycloheximide (CHX) induced higher levels of apoptosis in ρ 0 cells compared to ρ + HSF. Global gene expression analysis using microarray and qRT-PCR demonstrated that mRNA expression levels of many growth factors and their adaptor proteins (FGF13, HGF, IGFBP4, IGFBP6, and IGFL2), cytokines (IL6, ΙL17Β, ΙL18, ΙL19, and ΙL28Β) and cytokine receptors (IL1R1, IL21R, and IL31RA) were substantially decreased after mitochondrial DNA depletion. Some of these genes were targets of NF-κB and STAT3, and their protein products could regulate the STAT3 signaling pathway. Alpha-irradiation further induced expression of several NF-κB/STAT3 target genes, including IL1A, IL1B, IL6, PTGS2/COX2 and MMP12, in ρ + HSF, but this response was substantially decreased in ρ 0 HSF. Suppression of the IKK-NF-κB pathway by the small molecular inhibitor BMS-345541 and of the JAK2-STAT3 pathway by AG490 dramatically increased TRAIL-induced apoptosis in the control and irradiated ρ + HSF. Inhibitory antibodies against IL6, the main activator of JAK2-STAT3 pathway, added into the cell media, also increased TRAIL-induced apoptosis in HSF, especially after alpha-irradiation. Collectively, our results indicated that NF-κB activation was partially lost in ρ 0 HSF resulting in downregulation of the basal or radiation-induced expression of numerous NF-κB targets, further suppressing IL6-JAK2-STAT3 that in concert with NF-κB regulated protection against TRAIL-induced apoptosis.

  11. Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites.

    Directory of Open Access Journals (Sweden)

    Xiao P Peng

    2018-01-01

    Full Text Available Smc5/6, a member of the conserved SMC family of complexes, is essential for growth in most organisms. Its exact functions in a mitotic cell cycle are controversial, as chronic Smc5/6 loss-of-function alleles produce varying phenotypes. To circumvent this issue, we acutely depleted Smc5/6 in budding yeast and determined the first cell cycle consequences of Smc5/6 removal. We found a striking primary defect in replication of the ribosomal DNA (rDNA array. Each rDNA repeat contains a programmed replication fork barrier (RFB established by the Fob1 protein. Fob1 removal improves rDNA replication in Smc5/6 depleted cells, implicating Smc5/6 in the management of programmed fork pausing. A similar improvement is achieved by removing the DNA helicase Mph1 whose recombinogenic activity can be inhibited by Smc5/6 under DNA damage conditions. DNA 2D gel analyses further show that Smc5/6 loss increases recombination structures at RFB regions; moreover, mph1∆ and fob1∆ similarly reduce this accumulation. These findings point to an important mitotic role for Smc5/6 in restraining recombination events when protein barriers in rDNA stall replication forks. As rDNA maintenance influences multiple essential cellular processes, Smc5/6 likely links rDNA stability to overall mitotic growth.

  12. Genetic portrait of Lisboa immigrant population from Angola with mitochondrial DNA.

    Science.gov (United States)

    Simão, Filipa; Costa, Heloísa Afonso; da Silva, Claúdia Vieira; Ribeiro, Teresa; Porto, Maria João; Santos, Jorge Costa; Amorim, António

    2015-03-01

    Portugal has been considered a country of emigrants, nevertheless in the past decades the number of immigrants has grown throughout all the country. This migratory flux has contributed to a raise of heterogeneity at multiple levels. According to statistical data, at the end of 2012 the total number of Angolan immigrants in Portugal equalled about 20,000 individuals. A territorial predominance has been found for the metropolitan region of Lisboa. Angola is a country located in the Atlantic coast of Africa. The presence of Bantu people and the colonisation by Portuguese people on Angolan territory are considered to be the major modulators of the genetic patterns in Angola. Mitochondrial DNA is known for its features that enable an approach to the study of human origin and evolution, as well to the different migration pathways of populations. This genetic marker can also contribute to ascertaining the identity of individuals in forensic cases. The main aim of this study was to determine the genetic structure of the Angolan immigrant population living in Lisboa. Therefore, a total of 173 individuals, inhabitants in Lisboa, nonrelated and with Angolan ancestry were studied. Total control region of mitochondrial DNA was amplified from position 16,024 to position 576 using two pairs of primers - L15997/H016 and L16555/H639. The majority of the identified haplotypes belong to mtDNA lineages known to be specific of the sub-Saharan region. Our results show that this immigrant population inhabitant in Lisboa presents a genetic profile that is characteristic of African populations. This study also demonstrates the genetic diversity that this immigrant population introduces in Lisboa. This does not contradict the historical data concerning colonization of Angola, since this was made mainly by male European individuals, who did not contribute with their maternal information of mtDNA. Lisboa immigrant population from Angola can be accessed via EMPOP dataset with accession number

  13. Subspecies identification of Chimpanzees Pan troglodytes (Primates: Hominidae from the National Zoo of the Metropolitan Park of Santiago, Chile, using mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    J.A. Vega

    2014-05-01

    Full Text Available Natural populations of Chimpanzees Pan troglodytes are declining because of hunting and illegal live animal trafficking. Four subspecies of Chimpanzee have been reported: Pan troglodytes troglodytes, P.t. schweinfurthii, P.t. verus and P.t. ellioti, which have remained geographically separated by natural barriers such as the rivers Niger, Sanaga and Ubangi in central Africa. Sequence analysis of mitochondrial DNA (mtDNA has been used for the determination of these subspecies, which indirectly can also suggest their geographic origin. It was decided to identify the subspecies and the geographic origin of three captive chimpanzees of the National Zoo of the Metropolitan Park of Santiago (Chile, by analyzing their mitochondrial DNA. DNA was extracted from the saliva of three adult chimpanzees (two males and one female. After the analysis of sequences of the mitochondrial hypervariable region (HVI, a phylogenetic tree was constructed using mitochondrial sequences of known Pan troglodytes subspecies. Molecular phylogeny analysis revealed that the chimpanzees are likely to belong to three different subspecies: P.t. schweinfurthii, P.t. verus and P.t. troglodytes. Identification of subspecies of the three chimpanzees of the National Zoo of the Metropolitan Park of Santiago (Chile was possible due to mtDNA analysis. Future identification of chimpanzees will allow the development of a studbook for the chimpanzee subspecies in other Latin American zoos.

  14. Absence of correlation between serum CRP levels and mitochondrial D-loop DNA mutations in gastro-oesophageal adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Benjamin H. L. Tan

    2014-01-01

    Full Text Available Introduction: Both inflammation and mitochondrial DNA (mtDNA mutation are thought to play a role in the many human cancers. The aim of this study was to evaluate the relationship between inflammation and accumulation of mitochondrial DNA (mtDNA mutations in the D-loop region in carcinogenesis of gastro-oesophageal adenocarcinomas. Materials and Methods: Blood samples of 20 patients with gastro-oesophageal adenocarcinoma were taken for measurement of serum C-reactive protein (CRP concentration. Direct sequencing of mtDNA in the D-loop region was done in the 20 adenocarcinoma samples and their corresponding surrounding non-cancerous tissue. Sequences were compared with existing mtDNA databases to identify mutations. Results: mtDNA mutations in the D-loop region occur commonly with almost identical frequency in both non-cancerous tissue (3.0 ΁ 1.6 and adenocarcinoma (3.1 ΁ 1.9 (P = 0.916, paired t-test. CRP levels are not predictive of the number of D-loop mutations in both adenocarcinoma (β: -0.131; 95% CI: -2.354-1.364; P = 0.583 and non-cancerous tissue samples (β: 0.130; 95% CI: -1.125-1.933; P = 0.586. Five new mutations were identified that were not recorded previously in mtDNA databases. Conclusion: D-loop mtDNA mutations are common in both gastro-oesophageal adenocarcinoma and surrounding non-cancerous tissue. However, the accumulation of such mutations appears to occur independent of systemic inflammation. The frequency of D-loop mutations is likely not useful as a marker for carcinogenesis in gastro-oesophageal adenocarcinoma.

  15. Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Santhipriya Inapurapu

    2017-01-01

    Full Text Available Objective(s: To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes in cytosol/mitochondrial compartments, reactive oxygen species production and respiratory control ratio. Results: Wild-type yeast grown on glycerol exhibited heightened sensitivity to cisplatin than yeast grown on glucose. Cisplatin (100 μM, although significantly reduced the growth of wild- type cells, only slightly altered the growth rate of Rho0 cells. Cisplatin treatment decreased both pHcyt and pHmit to a similar extent without affecting the pH difference. Cisplatin dose-dependently increased the oxidative stress in wild-type, but not in respiration-deficient Rho0 strain. Cisplatin decreased the respiratory control ratio. Conclusion: These results suggest that cisplatin toxicity is influenced by the respiratory capacity of the cells and the intracellular oxidative burden. Although cisplatin per se slightly decreased the respiration of yeast cells grown in glucose, it did not disturb the mitochondrial chemiosmotic gradient.

  16. Mitochondrial DNA polymerase from embryos of Drosophila melanogaster: purification, subunit structure, and partial characterization

    International Nuclear Information System (INIS)

    Wernette, C.M.; Kaguni, L.S.

    1986-01-01

    The mitochondrial DNA polymerase has been purified to near-homogeneity from early embryos of Drosophila melanogaster. Sodium dodecyl sulfate gel electrophoresis of the highly purified enzyme reveals two polypeptides with molecular masses of 125,000 and 35,000 daltons, in a ratio of 1:1. The enzyme has a sedimentation coefficient of 7.6 S and a stokes radius of 51 A. Taken together, the data suggest that the D. melanogaster DNA polymerase γ is a heterodimer. DNA polymerase activity gel analysis has allowed the assignment of the DNA polymerization function to the large subunit. The DNA polymerase exhibits a remarkable ability to utilize efficiently a variety of template-primers including gapped DNA, poly(rA).oligo(dT) and singly primed phiX174 DNA. Both the crude and the highly purified enzymes are stimulated by KCl, and inhibited by dideoxythymidine triphosphate and by N-ethylmaleimide. Thus, the catalytic properties of the near-homogeneous Drosophila enzyme are consistent with those of DNA polymerase γ as partially purified from several vertebrates

  17. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs

    Science.gov (United States)

    Barreto, Rafael; Waning, David L.; Gao, Hongyu; Liu, Yunlong; Zimmers, Teresa A.; Bonetto, Andrea

    2016-01-01

    Cachexia affects the majority of cancer patients, with currently no effective treatments. Cachexia is defined by increased fatigue and loss of muscle function resulting from muscle and fat depletion. Previous studies suggest that chemotherapy may contribute to cachexia, although the causes responsible for this association are not clear. The purpose of this study was to investigate the mechanism(s) associated with chemotherapy-related effects on body composition and muscle function. Normal mice were administered chemotherapy regimens used for the treatment of colorectal cancer, such as Folfox (5-FU, leucovorin, oxaliplatin) or Folfiri (5-FU, leucovorin, irinotecan) for 5 weeks. The animals that received chemotherapy exhibited concurrent loss of muscle mass and muscle weakness. Consistently with previous findings, muscle wasting was associated with up-regulation of ERK1/2 and p38 MAPKs. No changes in ubiquitin-dependent proteolysis or in the expression of TGFβ-family members were detected. Further, marked decreases in mitochondrial content, associated with abnormalities at the sarcomeric level and with increase in the number of glycolytic fibers were observed in the muscle of mice receiving chemotherapy. Finally, ACVR2B/Fc or PD98059 prevented Folfiri-associated ERK1/2 activation and myofiber atrophy in C2C12 cultures. Our findings demonstrate that chemotherapy promotes MAPK-dependent muscle atrophy as well as mitochondrial depletion and alterations of the sarcomeric units. Therefore, these findings suggest that chemotherapy potentially plays a causative role in the occurrence of muscle loss and weakness. Moreover, the present observations provide a strong rationale for testing ACVR2B/Fc or MEK1 inhibitors in combination with anticancer drugs as novel strategies aimed at preventing chemotherapy-associated muscle atrophy. PMID:27259276

  18. Molecular Mechanisms for Age-Associated Mitochondrial Deficiency in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Akira Wagatsuma

    2012-01-01

    Full Text Available The abundance, morphology, and functional properties of mitochondria decay in skeletal muscle during the process of ageing. Although the precise mechanisms remain to be elucidated, these mechanisms include decreased mitochondrial DNA (mtDNA repair and mitochondrial biogenesis. Mitochondria possess their own protection system to repair mtDNA damage, which leads to defects of mtDNA-encoded gene expression and respiratory chain complex enzymes. However, mtDNA mutations have shown to be accumulated with age in skeletal muscle. When damaged mitochondria are eliminated by autophagy, mitochondrial biogenesis plays an important role in sustaining energy production and physiological homeostasis. The capacity for mitochondrial biogenesis has shown to decrease with age in skeletal muscle, contributing to progressive mitochondrial deficiency. Understanding how these endogenous systems adapt to altered physiological conditions during the process of ageing will provide a valuable insight into the underlying mechanisms that regulate cellular homeostasis. Here we will summarize the current knowledge about the molecular mechanisms responsible for age-associated mitochondrial deficiency in skeletal muscle. In particular, recent findings on the role of mtDNA repair and mitochondrial biogenesis in maintaining mitochondrial functionality in aged skeletal muscle will be highlighted.

  19. Circulatory mitochondrial DNA is a pro-inflammatory agent in maintenance hemodialysis patients.

    Directory of Open Access Journals (Sweden)

    Hongdi Cao

    Full Text Available Chronic inflammation is highly prevalent in maintenance hemodialysis (MHD patients, and it has been shown to be a strong predictor of morbidity and mortality. Mitochondrial DNA (mtDNA released into circulation after cell damage can promote inflammation in patients and animal models. However, the role and mechanisms of circulatory mtDNA in chronic inflammation in MHD patients remain unknown. Sixty MHD patients and 20 health controls were enrolled in this study. The circulatory mtDNA was detected by quantitative real-time PCR assay. Plasma interleukin 6 (IL-6 and tumor necrosis factor α (TNF-α were quantitated by ELISA assay. Dialysis systems in MHD patients and in vitro were used to evaluate the effect of different dialysis patterns on circulatory mtDNA. Circulatory mtDNA was elevated in MHD patients comparing to that of health control. Regression analysis demonstrated that plasma mtDNA was positively associated with TNF-α and the product of serum calcium and phosphorus, while negatively associated with hemoglobin and serum albumin in MHD patients. MtDNA induced the secretion of IL-6 and TNF-α in the THP-1 cells. Single high-flux hemodialysis (HF-HD and on line hemodiafiltration (OL-HDF but not low-flux hemodialysis (LF-HD could partially reduce plasma mtDNA in MHD patients. In vitro, both HD and hemofiltration (HF could fractional remove mtDNA. Collectively, circulatory mtDNA is elevated and its level is closely correlated with chronic inflammation in MHD patients. HF-HD and HDF can partially reduce circulatory mtDNA in MHD patients.

  20. Introgression evidence and phylogenetic relationships among three (ParaMisgurnus species as revealed by mitochondrial and nuclear DNA markers

    Directory of Open Access Journals (Sweden)

    Jakovlić I.

    2013-01-01

    Full Text Available The taxonomy of (ParaMisgurnus genera is still debated. We therefore used mitochondrial and nuclear DNA markers to analyze the phylogenetic relationships among Misgurnus anguillicaudatus, Paramisgurnus dabryanus and Misgurnus fossilis. Differing phylogenetic signals from mitochondrial and nuclear marker data suggest an introgression event in the history of M. anguillicaudatus and M. mohoity. No substantial genetic evidence was found that Paramisgurnus dabryanus should be classified as a separate genus.

  1. Accurate measurement of mitochondrial DNA deletion level and copy number differences in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    John P Grady

    Full Text Available Accurate and reliable quantification of the abundance of mitochondrial DNA (mtDNA molecules, both wild-type and those harbouring pathogenic mutations, is important not only for understanding the progression of mtDNA disease but also for evaluating novel therapeutic approaches. A clear understanding of the sensitivity of mtDNA measurement assays under different experimental conditions is therefore critical, however it is routinely lacking for most published mtDNA quantification assays. Here, we comprehensively assess the variability of two quantitative Taqman real-time PCR assays, a widely-applied MT-ND1/MT-ND4 multiplex mtDNA deletion assay and a recently developed MT-ND1/B2M singleplex mtDNA copy number assay, across a range of DNA concentrations and mtDNA deletion/copy number levels. Uniquely, we provide a specific guide detailing necessary numbers of sample and real-time PCR plate replicates for accurately and consistently determining a given difference in mtDNA deletion levels and copy number in homogenate skeletal muscle DNA.

  2. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model.

    Science.gov (United States)

    Komulainen, Tuomas; Lodge, Tiffany; Hinttala, Reetta; Bolszak, Maija; Pietilä, Mika; Koivunen, Peppi; Hakkola, Jukka; Poulton, Joanna; Morten, Karl J; Uusimaa, Johanna

    2015-05-04

    Sodium valproate (VPA) is a potentially hepatotoxic antiepileptic drug. Risk of VPA-induced hepatotoxicity is increased in patients with mitochondrial diseases and especially in patients with POLG1 gene mutations. We used a HepG2 cell in vitro model to investigate the effect of VPA on mitochondrial activity. Cells were incubated in glucose medium and mitochondrial respiration-inducing medium supplemented with galactose and pyruvate. VPA treatments were carried out at concentrations of 0-2.0mM for 24-72 h. In both media, VPA caused decrease in oxygen consumption rates and mitochondrial membrane potential. VPA exposure led to depleted ATP levels in HepG2 cells incubated in galactose medium suggesting dysfunction in mitochondrial ATP production. In addition, VPA exposure for 72 h increased levels of mitochondrial reactive oxygen species (ROS), but adversely decreased protein levels of mitochondrial superoxide dismutase SOD2, suggesting oxidative stress caused by impaired elimination of mitochondrial ROS and a novel pathomechanism related to VPA toxicity. Increased cell death and decrease in cell number was detected under both metabolic conditions. However, immunoblotting did not show any changes in the protein levels of the catalytic subunit A of mitochondrial DNA polymerase γ, the mitochondrial respiratory chain complexes I, II and IV, ATP synthase, E3 subunit dihydrolipoyl dehydrogenase of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and glutathione peroxidase. Our results show that VPA inhibits mitochondrial respiration and leads to mitochondrial dysfunction, oxidative stress and increased cell death, thus suggesting an essential role of mitochondria in VPA-induced hepatotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. A case study characterizing animal fecal sources in surface water using a mitochondrial DNA marker.

    Science.gov (United States)

    Bucci, John P; Shattuck, Michelle D; Aytur, Semra A; Carey, Richard; McDowell, William H

    2017-08-01

    Water quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal's gut environment. In contrast, mtDNA host-specific markers are inherent to eukaryotic host cells, which offers the advantage by detecting DNA from the host rather than its fecal bacteria. The present study focused on sampling water presumably from non-point sources (NPS), which can increase bacterial and nitrogen concentrations to receiving water bodies. Stream sampling sites located within the Piscataqua River Watershed (PRW), New Hampshire, USA, were sampled from a range of sites that experienced nitrogen inputs such as sewer and septic systems and suburban runoff. Three mitochondrial (mtDNA) gene marker assays (human, bovine, and canine) were tested from surface water. Nineteen sites were sampled during an 18-month period. Analyses of the combined single and multiplex assay results showed that the proportion of occurrence was highest for bovine (15.6%; n = 77) compared to canine (5.6%; n = 70) and human (5.7%; n = 107) mtDNA gene markers. For the human mtDNA marker, there was a statistically significant relationship between presence vs. absence and land use (Fisher's test p = 0.0031). This result was evident particularly for rural suburban septic, which showed the highest proportion of presence (19.2%) compared to the urban sewered (3.3%), suburban sewered (0%), and agricultural (0%) as well as forested septic (0%) sites. Although further testing across varied land use is needed, our study provides evidence for using the mtDNA marker in large watersheds.

  4. Mitochondrial DNA and craniofacial covariability of Chad Basin females indicate past population events

    Czech Academy of Sciences Publication Activity Database

    Hájek, Martin; Černý, Viktor; Brůžek, J.

    2008-01-01

    Roč. 20, č. 4 (2008), s. 465-474 ISSN 1042-0533 R&D Projects: GA ČR GA206/08/1587 Institutional research plan: CEZ:AV0Z80020508 Keywords : craniofacial morphology * mitochondrial DNA * sub - Saharan Africa * population history Sub ject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 1.976, year: 2008 http://www3.interscience.wiley.com/journal/118903453/abstract?CRETRY=1&SRETRY=0

  5. Identification of West Eurasian mitochondrial haplogroups by mtDNA SNP screening: results of the 2006-2007 EDNAP collaborative exercise

    DEFF Research Database (Denmark)

    Parson, Walther; Fendt, Liane; Ballard, David

    2008-01-01

    no previous experience with the technology and/or mtDNA analysis. The results of this collaborative exercise stimulate the expansion of screening methods in forensic laboratories to increase efficiency and performance of mtDNA typing, and thus demonstrates that mtDNA SNP typing is a powerful tool for forensic......The European DNA Profiling (EDNAP) Group performed a collaborative exercise on a mitochondrial (mt) DNA screening assay that targeted 16 nucleotide positions in the coding region and allowed for the discrimination of major west Eurasian mtDNA haplogroups. The purpose of the exercise was to evaluate...

  6. Mitochondrial DNA Hypomethylation Is a Biomarker Associated with Induced Senescence in Human Fetal Heart Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Dehai Yu

    2017-01-01

    Full Text Available Background. Fetal heart can regenerate to restore its normal anatomy and function in response to injury, but this regenerative capacity is lost within the first week of postnatal life. Although the specific molecular mechanisms remain to be defined, it is presumed that aging of cardiac stem or progenitor cells may contribute to the loss of regenerative potential. Methods. To study this aging-related dysfunction, we cultured mesenchymal stem cells (MSCs from human fetal heart tissues. Senescence was induced by exposing cells to chronic oxidative stress/low serum. Mitochondrial DNA methylation was examined during the period of senescence. Results. Senescent MSCs exhibited flattened and enlarged morphology and were positive for the senescence-associated beta-galactosidase (SA-β-Gal. By scanning the entire mitochondrial genome, we found that four CpG islands were hypomethylated in close association with senescence in MSCs. The mitochondrial COX1 gene, which encodes the main subunit of the cytochrome c oxidase complex and contains the differentially methylated CpG island 4, was upregulated in MSCs in parallel with the onset of senescence. Knockdown of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3B also upregulated COX1 expression and induced cellular senescence in MSCs. Conclusions. This study demonstrates that mitochondrial CpG hypomethylation may serve as a critical biomarker associated with cellular senescence induced by chronic oxidative stress.

  7. Analysis of Africanized honey bee mitochondrial DNA reveals further diversity of origin

    Directory of Open Access Journals (Sweden)

    Walter S. Sheppard

    1999-03-01

    Full Text Available Within the past 40 years, Africanized honey bees spread from Brazil and now occupy most areas habitable by the species Apis mellifera, from Argentina to the southwestern United States. The primary genetic source for Africanized honey bees is believed to be the sub-Saharan honey bee subspecies A. m. scutellata. Mitochondrial markers common in A. m. scutellata have been used to classify Africanized honey bees in population genetic and physiological studies. Assessment of composite mitochondrial haplotypes from Africanized honey bees, using 4 base recognizing restriction enzymes and COI-COII intergenic spacer length polymorphism, provided evidence for a more diverse mitochondrial heritage. Over 25% of the "African" mtDNA found in Africanized populations in Argentina are derived from non-A. m. scutellata sources.Nos últimos 40 anos, abelhas africanizadas se espalharam a partir do Brasil e agora ocupam a maioria das áreas habitáveis pela espécie Apis mellifera, da Argentina ao sudoeste dos Estados Unidos. Acredita-se que a fonte genética primária das abelhas africanizadas seja a subespécie subsaariana de abelha A. m. scutellata. Marcadores mitocondriais comuns em A. m. scutellata têm sido usados para classificar abelhas africanizadas em estudos de fisiologia e genética de população. A avaliação de haplótipos mitocondriais compostos em abelhas africanizadas, usando 3 enzimas de restrição e um polimorfismo de comprimento no espaçador intergênico "COI-COII", evidenciou uma herança mitocondrial mais diversa. Mais de 25% do mtDNA "africano" encontrado em populações africanizadas na Argentina são derivados de fontes não relacionadas a A. m. scutellata.

  8. Mitochondrial dysfunction is responsible for the intestinal calcium absorption inhibition induced by menadione.

    Science.gov (United States)

    Marchionatti, Ana M; Perez, Adriana V; Diaz de Barboza, Gabriela E; Pereira, Beatriz M; Tolosa de Talamoni, Nori G

    2008-02-01

    Menadione (MEN) inhibits intestinal calcium absorption by a mechanism not completely understood. The aim of this work was to find out the role of mitochondria in this inhibitory mechanism. Hence, normal chicks treated with one i.p. dose of MEN were studied in comparison with controls. Intestinal calcium absorption was measured by the in situ ligated intestinal segment technique. GSH, oxidoreductase activities from the Krebs cycle and enzymes of the antioxidant system were measured in isolated mitochondria. Mitochondrial membrane potential was measured by a flow cytometer technique. DNA fragmentation and cytochrome c localization were determined by immunocytochemistry. Data indicate that in 30 min, MEN decreases intestinal Ca(2+) absorption, which returns to the control values after 10 h. GSH was only decreased for half an hour, while the activity of malate dehydrogenase and alpha-ketoglutarate dehydrogenase was diminished for 48 h. Mn(2+)-superoxide dismutase activity was increased in 30 min, whereas the activity of catalase and glutathione peroxidase remained unaltered. DNA fragmentation and cytochrome c release were maximal in 30 min, but were recovered after 15 h. In conclusion, MEN inhibits intestinal Ca(2+) absorption by mitochondrial dysfunction as revealed by GSH depletion and alteration of the permeability triggering the release of cytochrome c and DNA fragmentation.

  9. An association analysis between mitochondrial DNA content, G10398A polymorphism, HPV infection, and the prognosis of cervical cancer in the Chinese Han population.

    Science.gov (United States)

    Feng, Dali; Xu, Hui; Li, Xin; Wei, Yuehua; Jiang, Huangang; Xu, Hong; Luo, Aihua; Zhou, Fuxiang

    2016-04-01

    The aim was to analyze quantitative (mitochondrial DNA (mtDNA) content) and qualitative (G10398A polymorphism) mtDNA alterations as well as human papillomavirus (HPV) infection in cervical cancer prognosis. One hundred and twenty-two cases of formalin-fixed paraffin-embedded cervical carcinoma specimens were collected from the Yichang Tumor Hospital and Zhongnan Hospital of Wuhan University in the recent 10 years together with medical records. A quantitative real-time PCR (RT-PCR) was used to determine the copy number of the mitochondrial DNA and HPV expression levels. G10398A polymorphism was determined by PCR-RFLP assay. The overall survival of patients with higher mtDNA content was significantly reduced compared with lower mtDNA content patients (P = 0.029). But there was no difference of prognosis between the mtDNA 10398 A allele and G allele. However, the Kaplan-Meier survival curve illustrated a significantly reduced overall survival in the patients with 10398A plus high mtDNA copy number compared with the other groups (P content compared with 10398G (P content were positively related in the younger subgroup (≤45 years) (correlation coefficient = 0.456, P = 0.022). This study indicated that mtDNA content and HPV infection status are associated with cervical cancer prognosis. High mitochondrial DNA content plus 10398 A may be a marker of poor prognosis in cervical cancer. And mtDNA variation may potentially influence the predisposition to HPV infection and cervical carcinogenesis.

  10. Mitochondrial DNA variation in the Viking age population of Norway.

    Science.gov (United States)

    Krzewińska, Maja; Bjørnstad, Gro; Skoglund, Pontus; Olason, Pall Isolfur; Bill, Jan; Götherström, Anders; Hagelberg, Erika

    2015-01-19

    The medieval Norsemen or Vikings had an important biological and cultural impact on many parts of Europe through raids, colonization and trade, from about AD 793 to 1066. To help understand the genetic affinities of the ancient Norsemen, and their genetic contribution to the gene pool of other Europeans, we analysed DNA markers in Late Iron Age skeletal remains from Norway. DNA was extracted from 80 individuals, and mitochondrial DNA polymorphisms were detected by next-generation sequencing. The sequences of 45 ancient Norwegians were verified as genuine through the identification of damage patterns characteristic of ancient DNA. The ancient Norwegians were genetically similar to previously analysed ancient Icelanders, and to present-day Shetland and Orkney Islanders, Norwegians, Swedes, Scots, English, German and French. The Viking Age population had higher frequencies of K*, U*, V* and I* haplogroups than their modern counterparts, but a lower proportion of T* and H* haplogroups. Three individuals carried haplotypes that are rare in Norway today (U5b1b1, Hg A* and an uncommon variant of H*). Our combined analyses indicate that Norse women were important agents in the overseas expansion and settlement of the Vikings, and that women from the Orkneys and Western Isles contributed to the colonization of Iceland. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Mitochondrial DNA in wildlife forensic science: Species identification of tissues

    Science.gov (United States)

    Cronin, Matthew A.; Palmisciano, Daniel A.; Vyse, Ernest R.; Cameron, David G.

    1991-01-01

    A common problem in wildlife law enforcement is identifying the species of origin of carcasses, meat, or blood when morphological characters such as hair or bones are not available. Immunological and protein electrophoretic (allozyme or general protein) procedures have been used in species identification with considerable success (Bunch et al. 1976, McClymont et al. 1982, Wolfe 1983, Mardini 1984, Pex and Wolfe 1985, Dratch 1986), However, immunological tests often are not sensitive enough to distinguish closely related species. Furthermore, electrophoretically detectable protein polymorphisms may be lacking in certain populations or species and may not be species-specific.Analysis of DNA in human and wildlife forensics has been shown to be a potentially powerful tool for identification of individuals (Jeffreys et al. 1985, Vassartet al. 1987, Thommasen et al. 1989). Differences in copy number and nucleotide sequence of repetitive sequences in the nuclear (chromosomal) DNA result in hypervariability and individual-specific patterns which have been termed DNA "fingerprints." However, these patterns may be too variable for species identification necessitating analyses of more conservative parts of the genome.Mitochondrial DNA (mtDNA) is haploid, maternally inherited, similar in nucleotide sequence among conspecifics from the same geographic region, and more suitable for species identification, in contrast to hypervariable DNA fingerprints. MtDNA has several characteristics which make it useful as a species-specific marker. In mammals, individuals have a single mtDNA genotype shared by all tissues. Because mtDNA is haploid and reflects only maternal ancestry, the mtDNA gene number in a population is 4 times less than the nuclear gene number (Birky et al. 1983). This can result in relatively rapid loss or fixation of mtDNA genotypes so that all individuals in a population may be descended from a single ancestral female in as few as 4N (N = population size) generations

  12. Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine

    International Nuclear Information System (INIS)

    Velsor, Leonard W.; Kovacevic, Miro; Goldstein, Mark; Leitner, Heather M.; Lewis, William; Day, Brian J.

    2004-01-01

    The toxicity of nucleoside reverse transcriptase inhibitors (NRTIs) is linked to altered mitochondrial DNA (mtDNA) replication and subsequent disruption of cellular energetics. This manifests clinically as elevated concentrations of lactate in plasma. The mechanism(s) underlying how the changes in mtDNA replication lead to lactic acidosis remains unclear. It is hypothesized that mitochondrial oxidative stress links the changes in mtDNA replication to mitochondrial dysfunction and ensuing NRTIs toxicity. To test this hypothesis, changes in mitochondrial function, mtDNA amplification efficiency, and oxidative stress were assessed in HepG2-cultured human hepatoblasts treated with the NRTI stavudine (2',3'-didehydro-2',3'-deoxythymidine or d4T) for 48 h. d4T produced significant mitochondrial dysfunction with a 1.5-fold increase in cellular lactate to pyruvate ratios. In addition, d4T caused a dose-dependent decrease in mtDNA amplification and a correlative increase in abundance of markers of mitochondrial oxidative stress. Manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, MnTBAP, a catalytic antioxidant, ameliorated or reversed d4T-induced changes in cell injury, energetics, mtDNA amplification, and mitochondrial oxidative stress. In conclusion, d4T treatment elevates mitochondrial reactive oxygen species (ROS), enhances mitochondrial oxidative stress, and contributes mechanistically to NRTI-induced toxicity. These deleterious events may be potentiated in acquired immunodeficiency syndrome (AIDS) by human immunodeficiency virus (HIV) infection itself, coinfection (e.g., viral hepatitis), aging, substance, and alcohol use

  13. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    Science.gov (United States)

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  14. Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Anjali Kumari

    Full Text Available Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'-tetrakis (2-pyridylmethyl ethylenediamine (TPEN and Zinc Sulfate (ZnSO4. Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death

  15. Novel Point Mutations and A8027G Polymorphism in Mitochondrial-DNA-Encoded Cytochrome c Oxidase II Gene in Mexican Patients with Probable Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Verónica Loera-Castañeda

    2014-01-01

    Full Text Available Mitochondrial dysfunction has been thought to contribute to Alzheimer disease (AD pathogenesis through the accumulation of mitochondrial DNA mutations and net production of reactive oxygen species (ROS. Mitochondrial cytochrome c-oxidase plays a key role in the regulation of aerobic production of energy and is composed of 13 subunits. The 3 largest subunits (I, II, and III forming the catalytic core are encoded by mitochondrial DNA. The aim of this work was to look for mutations in mitochondrial cytochrome c-oxidase gene II (MTCO II in blood samples from probable AD Mexican patients. MTCO II gene was sequenced in 33 patients with diagnosis of probable AD. Four patients (12% harbored the A8027G polymorphism and three of them were early onset (EO AD cases with familial history of the disease. In addition, other four patients with EOAD had only one of the following point mutations: A8003C, T8082C, C8201T, or G7603A. Neither of the point mutations found in this work has been described previously for AD patients, and the A8027G polymorphism has been described previously; however, it hasn’t been related to AD. We will need further investigation to demonstrate the role of the point mutations of mitochondrial DNA in the pathogenesis of AD.

  16. Plastome Sequencing of Ten Nonmodel Crop Species Uncovers a Large Insertion of Mitochondrial DNA in Cashew.

    Science.gov (United States)

    Rabah, Samar O; Lee, Chaehee; Hajrah, Nahid H; Makki, Rania M; Alharby, Hesham F; Alhebshi, Alawiah M; Sabir, Jamal S M; Jansen, Robert K; Ruhlman, Tracey A

    2017-11-01

    In plant evolution, intracellular gene transfer (IGT) is a prevalent, ongoing process. While nuclear and mitochondrial genomes are known to integrate foreign DNA via IGT and horizontal gene transfer (HGT), plastid genomes (plastomes) have resisted foreign DNA incorporation and only recently has IGT been uncovered in the plastomes of a few land plants. In this study, we completed plastome sequences for l0 crop species and describe a number of structural features including variation in gene and intron content, inversions, and expansion and contraction of the inverted repeat (IR). We identified a putative in cinnamon ( J. Presl) and other sequenced Lauraceae and an apparent functional transfer of to the nucleus of quinoa ( Willd.). In the orchard tree cashew ( L.), we report the insertion of an ∼6.7-kb fragment of mitochondrial DNA into the plastome IR. BLASTn analyses returned high identity hits to mitogenome sequences including an intact open reading frame. Using three plastome markers for five species of , we generated a phylogeny to investigate the distribution and timing of the insertion. Four species share the insertion, suggesting that this event occurred <20 million yr ago in a single clade in the genus. Our study extends the observation of mitochondrial to plastome IGT to include long-lived tree species. While previous studies have suggested possible mechanisms facilitating IGT to the plastome, more examples of this phenomenon, along with more complete mitogenome sequences, will be required before a common, or variable, mechanism can be elucidated. Copyright © 2017 Crop Science Society of America.

  17. Validation of simple and cost-effective stains to assess acrosomal status, DNA damage and mitochondrial activity in rooster spermatozoa.

    Science.gov (United States)

    Rui, Bruno R; Angrimani, Daniel S R; Losano, João Diego A; Bicudo, Luana de Cássia; Nichi, Marcílio; Pereira, Ricardo J G

    2017-12-01

    Several methods have been developed to evaluate spermatozoa function in birds but many of these are sometimes complicated, costly and not applicable to field studies (i.e., performed within poultry breeding facilities). The objective was, therefore, to validate efficient, practical and inexpensive procedures to determine DNA fragmentation, acrosomal integrity, and mitochondrial activity in poultry spermatozoa. Initially, ejaculates were individually diluted and divided into control (4°C, 4h) and UV-irradiated aliquots (room temperature, 4h), and then samples containing different percentages of DNA-damaged spermatozoa (0%, 25%, 50%, 75% and 100%) were subjected to Toluidine Blue (TB) and Sperm Chromatin Dispersion assessments (SCD). Fast Green-Rose Bengal (FG-RB) and FITC-PSA staining protocols were subsequently used to assess acrosome status in aliquots comprising assorted amounts of acrosome-reacted spermatozoa. Furthermore, to validate 3,3'-diaminobenzidine (DAB) assay, ejaculates containing different gradients of spermatozoa with great amounts of mitochondrial activity were concurrently evaluated using DAB and JC-1 stains. The proportion of spermatozoa with abnormal DNA integrity when evaluated using the TB assessment correlated significantly with the expected percentages of UV-irradiated spermatozoa and with SCD results. A significant linear regression coefficient was also observed between expected amounts of acrosome-intact spermatozoa and FG-RB readings, and there was a significant correlation of the data when FG-RB and FITC-PSA were used. Likewise, the use of the DAB assay enabled for accurately ascertaining percentages of rooster spermatozoa with greater and lesser mitochondrial function, and results were highly correlated to results with staining with JC-1. Altogether, findings of the present study indicate acrosomal status, DNA integrity and mitochondrial activity in rooster spermatozoa can be easily and reliably determined using FG-RB, TB and DAB stains

  18. Effect of Mucuna pruriens (Linn.) on mitochondrial dysfunction and DNA damage in epididymal sperm of streptozotocin induced diabetic rat.

    Science.gov (United States)

    Suresh, Sekar; Prithiviraj, Elumalai; Lakshmi, Nagella Venkata; Ganesh, Mohanraj Karthik; Ganesh, Lakshmanan; Prakash, Seppan

    2013-01-09

    Mucuna pruriens Linn. (M. pruriens) is a leguminous plant that has been recognized as an herbal medicine for improving fertility and related disorders in the Indian traditional system of medicine, however without proper scientific validations. To study the effect of ethanolic seed extract of M. pruriens on mitochondrial dysfunction and the DNA damage in hyperglycemic rat epididymal spermatozoa. Male Wistar albino rats were divided as control (Sham), diabetes induced [streptozotocin 60 mg/kg of body weight (b.w.) in 0.1M citrate buffer] (STZ), diabetic rats administered with 200mg/kg b.w. of extract (STZ+MP) and normal rats administered with 200mg/kg b.w. of extract (Sham+MP). M. pruriens was administered (gavage) once daily for a period of 60 days. On 60th day animals were sacrificed by cervical dislocation sperm were collected from epididymis and subjected various analysis like antioxidants, ROS, lipid peroxidation (LPO), DNA damage, chromosomal integrity and mitochondrial membrane potential (MMP). Significant reduction in the sperm count, motility, viability and significant increase in the number of abnormal sperm in STZ compared to sham was noticed. STZ rat sperm showed significant increase in LPO and DNA damage. Both the enzymic and non-enzymic were decreased; MMP and the mitochondrial functions were severely affected in STZ group. The diabetic rats supplemented with M. pruriens showed a remarkable recovery in antioxidant levels and reduced LPO with well preserved sperm DNA. MMP and mitochondrial function test were also preserved in STZ+MP rat sperm. The present study has clearly demonstrated the potency of M. pruriens to reduce the diabetic induced sperm damage induced by oxidative stress (OS). These observations are encouraging to perform similar studies in human. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Meta-Analysis of Mitochondrial DNA Variation in the Iberian Peninsula.

    Directory of Open Access Journals (Sweden)

    Ruth Barral-Arca

    Full Text Available The Iberian Peninsula has been the focus of attention of numerous studies dealing with mitochondrial DNA (mtDNA variation, most of them targeting the control region segment. In the present study we sequenced the control region of 3,024 Spanish individuals from areas where available data were still limited. We also compiled mtDNA haplotypes from the literature involving 4,588 sequences and 28 population groups or small regions. We meta-analyzed all these data in order to shed further light on patterns of geographic variation, taking advantage of the large sample size and geographic coverage, in contrast with the atomized sampling strategy of previous work. The results indicate that the main mtDNA haplogroups show primarily clinal geographic patterns across the Iberian geography, roughly along a North-South axis. Haplogroup HV0 (where haplogroup U is nested is more prevalent in the Franco Cantabrian region, in good agreement with previous findings that identified this area as a climate refuge during the Last Glacial Maximum (LGM, prior to a subsequent demographic re-expansion towards Central Europe and the Mediterranean. Typical sub-Saharan and North African lineages are slightly more prevalent in South Iberia, although at low frequencies; this pattern has been shaped mainly by the transatlantic slave trade and the Arab invasion of the Iberian Peninsula. The results also indicate that summary statistics that aim to measure molecular variation, or AMOVA, have limited sensitivity to detect population substructure, in contrast to patterns revealed by phylogeographic analysis. Overall, the results suggest that mtDNA variation in Iberia is substantially stratified. These patterns might be relevant in biomedical studies given that stratification is a common cause of false positives in case-control mtDNA association studies, and should be also considered when weighting the DNA evidence in forensic casework, which is strongly dependent on haplotype

  20. Meta-Analysis of Mitochondrial DNA Variation in the Iberian Peninsula.

    Science.gov (United States)

    Barral-Arca, Ruth; Pischedda, Sara; Gómez-Carballa, Alberto; Pastoriza, Ana; Mosquera-Miguel, Ana; López-Soto, Manuel; Martinón-Torres, Federico; Álvarez-Iglesias, Vanesa; Salas, Antonio

    2016-01-01

    The Iberian Peninsula has been the focus of attention of numerous studies dealing with mitochondrial DNA (mtDNA) variation, most of them targeting the control region segment. In the present study we sequenced the control region of 3,024 Spanish individuals from areas where available data were still limited. We also compiled mtDNA haplotypes from the literature involving 4,588 sequences and 28 population groups or small regions. We meta-analyzed all these data in order to shed further light on patterns of geographic variation, taking advantage of the large sample size and geographic coverage, in contrast with the atomized sampling strategy of previous work. The results indicate that the main mtDNA haplogroups show primarily clinal geographic patterns across the Iberian geography, roughly along a North-South axis. Haplogroup HV0 (where haplogroup U is nested) is more prevalent in the Franco Cantabrian region, in good agreement with previous findings that identified this area as a climate refuge during the Last Glacial Maximum (LGM), prior to a subsequent demographic re-expansion towards Central Europe and the Mediterranean. Typical sub-Saharan and North African lineages are slightly more prevalent in South Iberia, although at low frequencies; this pattern has been shaped mainly by the transatlantic slave trade and the Arab invasion of the Iberian Peninsula. The results also indicate that summary statistics that aim to measure molecular variation, or AMOVA, have limited sensitivity to detect population substructure, in contrast to patterns revealed by phylogeographic analysis. Overall, the results suggest that mtDNA variation in Iberia is substantially stratified. These patterns might be relevant in biomedical studies given that stratification is a common cause of false positives in case-control mtDNA association studies, and should be also considered when weighting the DNA evidence in forensic casework, which is strongly dependent on haplotype frequencies.

  1. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNA{sup Val} mutation

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Kacem, Maha [Service de Medecine interne, C.H.U. Fattouma Bourguiba de Monastir (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Hadj Salem, Ikhlass [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha; Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-04-22

    Highlights: {yields} We report a young Tunisian patient with clinical features of MELAS syndrome. {yields} Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. {yields} We described a novel m.1640A>G mutation in the tRNA{sup Val} gene which was absent in 150 controls. {yields} Mitochondrial deletions and POLG1 gene mutations were absent. {yields} The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA{sup Val}. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  2. RNase-L regulates the stability of mitochondrial DNA-encoded mRNAs in mouse embryo fibroblasts

    International Nuclear Information System (INIS)

    Chandrasekaran, Krish; Mehrabian, Zara; Li Xiaoling; Hassel, Bret

    2004-01-01

    Accelerated decrease in the levels of mitochondrial DNA-encoded mRNA (mt-mRNA) occurs in neuronal cells exposed either to the excitatory amino acid, glutamate or to the sodium ionophore, monensin, suggesting a role of mitochondrial RNase(s) on the stability of mt-mRNAs. Here we report that in mouse embryo fibroblasts that are devoid of the interferon-regulated RNase, RNase-L, the monensin-induced decrease in the half-life of mt-mRNA was reduced. In monensin (250 nM)-treated RNase-L +/+ cells the average half-life of mt-mRNA, determined after termination of transcription with actinomycin D, was found to be 3 h, whereas in monensin-treated RNase-L -/- cells the half-life of mt-mRNA was >6 h. In contrast, the stability of nuclear DNA-encoded β-actin mRNA was unaffected. Induction of RNase-L expression in mouse 3T3 fibroblasts further decreased the monensin-induced reduction in mt-mRNA half-life to 1.5 h. The results indicate that the RNase-L-dependent decrease in mtDNA-encoded mRNA transcript levels occurs through a decrease in the half-life of mt-mRNA, and that RNase-L may play a role in the stability of mt-mRNA

  3. Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome

    Science.gov (United States)

    McCarthy, Cameron G.; Szasz, Theodora; Goulopoulou, Styliani; Webb, R. Clinton

    2015-01-01

    Fifty percent of trauma patients who present sepsis-like syndrome do not have bacterial infections. This condition is known as systemic inflammatory response syndrome (SIRS). A unifying factor of SIRS and sepsis is cardiovascular collapse. Trauma and severe blood loss cause the release of endogenous molecules known as damage-associated molecular patterns. Mitochondrial N-formyl peptides (F-MIT) are damage-associated molecular patterns that share similarities with bacterial N-formylated peptides and are potent immune system activators. The goal of this study was to investigate whether F-MIT trigger SIRS, including hypotension and vascular collapse via formyl peptide receptor (FPR) activation. We evaluated cardiovascular parameters in Wistar rats treated with FPR or histamine receptor antagonists and inhibitors of the nitric oxide pathway before and after F-MIT infusion. F-MIT, but not nonformylated peptides or mitochondrial DNA, induced severe hypotension via FPR activation and nitric oxide and histamine release. Moreover, F-MIT infusion induced hyperthermia, blood clotting, and increased vascular permeability. To evaluate the role of leukocytes in F-MIT-induced hypotension, neutrophil, basophil, or mast cells were depleted. Depletion of basophils, but not neutrophils or mast cells, abolished F-MIT-induced hypotension. Rats that underwent hemorrhagic shock increased plasma levels of mitochondrial formylated proteins associated with lung damage and antagonism of FPR ameliorated hemorrhagic shock-induced lung injury. Finally, F-MIT induced vasodilatation in isolated resistance arteries via FPR activation; however, F-MIT impaired endothelium-dependent relaxation in the presence of blood. These data suggest that F-MIT may be the link among trauma, SIRS, and cardiovascular collapse. PMID:25637548

  4. Association between mitochondrial DNA variations and schizophrenia in the northern Chinese Han population.

    Science.gov (United States)

    Xu, Feng-Ling; Ding, Mei; Yao, Jun; Shi, Zhang-Sen; Wu, Xue; Zhang, Jing-Jing; Pang, Hao; Xing, Jia-Xin; Xuan, Jin-Feng; Wang, Bao-Jie

    2017-01-01

    To determine whether mitochondrial DNA (mtDNA) variations are associated with schizophrenia, 313 patients with schizophrenia and 326 unaffected participants of the northern Chinese Han population were included in a prospective study. Single-nucleotide polymorphisms (SNPs) including C5178A, A10398G, G13708A, and C13928G were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Hypervariable regions I and II (HVSI and HVSII) were analyzed by sequencing. The results showed that the 4 SNPs and 11 haplotypes, composed of the 4 SNPs, did not differ significantly between patient and control groups. No significant association between haplogroups and the risk of schizophrenia was ascertained after Bonferroni correction. Drawing a conclusion, there was no evidence of an association between mtDNA (the 4 SNPs and the control region) and schizophrenia in the northern Chinese Han population.

  5. A cryptic mitochondrial DNA link between North European and West African dogs.

    Science.gov (United States)

    Adeola, Adeniyi C; Ommeh, Sheila C; Song, Jiao-Jiao; Olaogun, S Charles; Sanke, Oscar J; Yin, Ting-Ting; Wang, Guo-Dong; Wu, Shi-Fang; Zhou, Zhong-Yin; Lichoti, Jacqueline K; Agwanda, Bernard R; Dawuda, Philip M; Murphy, Robert W; Peng, Min-Sheng; Zhang, Ya-Ping

    2017-03-20

    Domestic dogs have an ancient origin and a long history in Africa. Nevertheless, the timing and sources of their introduction into Africa remain enigmatic. Herein, we analyse variation in mitochondrial DNA (mtDNA) D-loop sequences from 345 Nigerian and 37 Kenyan village dogs plus 1530 published sequences of dogs from other parts of Africa, Europe and West Asia. All Kenyan dogs can be assigned to one of three haplogroups (matrilines; clades): A, B, and C, while Nigerian dogs can be assigned to one of four haplogroups A, B, C, and D. None of the African dogs exhibits a matrilineal contribution from the African wolf (Canis lupus lupaster). The genetic signal of a recent demographic expansion is detected in Nigerian dogs from West Africa. The analyses of mitochondrial genomes reveal a maternal genetic link between modern West African and North European dogs indicated by sub-haplogroup D1 (but not the entire haplogroup D) coalescing around 12,000 years ago. Incorporating molecular anthropological evidence, we propose that sub-haplogroup D1 in West African dogs could be traced back to the late-glacial dispersals, potentially associated with human hunter-gatherer migration from southwestern Europe. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  6. Adhesion Regulating Molecule 1 Mediates HAP40 Overexpression-Induced Mitochondrial Defects

    Science.gov (United States)

    Huang, Zih-Ning; Chung, Her Min; Fang, Su-Chiung; Her, Lu-Shiun

    2017-01-01

    Striatal neuron death in Huntington's disease is associated with abnormal mitochondrial dynamics and functions. However, the mechanisms for this mitochondrial dysregulation remain elusive. Increased accumulation of Huntingtin-associated protein 40 (HAP40) has been shown to be associated with Huntington's disease. However, the link between increased HAP40 and Huntington's disease remains largely unknown. Here we show that HAP40 overexpression causes mitochondrial dysfunction and reduces cell viability in the immortalized mouse striatal neurons. HAP40-associated mitochondrial dysfunction is associated with reduction of adhesion regulating molecule 1 (ADRM1) protein. Consistently, depletion of ADRM1 by shRNAs impaired mitochondrial functions and increased mitochondrial fragmentation in mouse striatal cells. Moreover, reducing ADRM1 levels enhanced activity of fission factor dynamin-related GTPase protein 1 (Drp1) via increased phosphorylation at serine 616 of Drp1 (Drp1Ser616). Restoring ADRM1 protein levels was able to reduce HAP40-induced ROS levels and mitochondrial fragmentation and improved mitochondrial functions and cell viability. Moreover, reducing Drp1 activity by Drp1 inhibitor, Mdivi-1, ameliorates both HAP40 overexpression- and ADRM1 depletion-induced mitochondrial dysfunction. Taken together, our studies suggest that HAP40-mediated reduction of ADRM1 alters the mitochondrial fission activity and results in mitochondrial fragmentation and mitochondrial dysfunction. PMID:29209146

  7. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    Imbalanced dNTP pools are highly mutagenic due to a deleterious effect on DNA polymerase fidelity. Mitochondrial DNA defects, including mutations and deletions, are commonly found in a wide variety of different cancer types. In order to further study the interconnection between dNTP pools...... and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces an S phase delay in different human osteosarcoma cell lines. The UV pulse also has a destabilizing effect...... shows that normal mitochondrial function is prerequisite for retaining stable dNTP pools upon DNA damage. Therefore it is likely that mitochondrial deficiency defects may cause an increase in DNA mutations by disrupting dNTP pool balance....

  8. Mitochondrial Mutations in Subjects with Psychiatric Disorders

    NARCIS (Netherlands)

    V. Sequeira (Vasco); S.M. Rollins; C. Magnan (Christophe); M. van Oven (Mannis); P. Baldi (Pierre); R.M. Myers (Richard M.); J.D. Barchas (Jack D.); A.F. Schatzberg (Alan F); S.J. Watson (Stanley J); H. Akil (Huda); W.E. Bunney (William E.); M.P. Vawter (Marquis)

    2015-01-01

    textabstractA considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear

  9. A study of the genetic relationships within and among wolf packs using DNA fingerprinting and mitochondrial DNA

    Science.gov (United States)

    Lehman, Niles; Clarkson, Peter; Mech, L. David; Meier, Thomas J.; Wayne, Robert K.

    1992-01-01

    DNA fingerprinting and mitochondrial DNA analyses have not been used in combination to study relatedness in natural populations. We present an approach that involves defining the mean fingerprint similarities among individuals thought to be unrelated because they have different mtDNA genotypes. Two classes of related individuals are identified by their distance in standard errors above this mean value. The number of standard errors is determined by analysis of the association between fingerprint similarity and relatedness in a population with a known genealogy. We apply this approach to gray wolf packs from Minnesota, Alaska, and the Northwest Territories. Our results show that: (1) wolf packs consist primarily of individuals that are closely related genetically, but some packs contain unrelated, non-reproducing individuals; (2) dispersal among packs within the same area is common; and (3) short-range dispersal appears more common for female than male wolves. The first two of these genetically-based observations are consistent with behavioral data on pack structure and dispersal in wolves, while the apparent sex bias in dispersal was not expected.

  10. [Sequence polymorphisms of the mitochondrial DNA HVR I and HVR II regions in the Deng populations from Tibet in China].

    Science.gov (United States)

    Kang, Longli; Zhang, Xiaofeng; Liu, Kai; Zhao, Jianmin

    2009-12-01

    To analyze the sequence polymorphisms of the mitochondrial DNA hypervariable regions I (HVR I) and HVR II in the Deng population in Linzhi area of Tibet. mtDNAs obtained from 119 unrelated individuals were amplified and directly sequenced. One hundred and ten variable sites were identified, including nucleotide transitions, transversions, and insertions. In the HVR I region (nt16024-nt16365), 68 polymorphic sites and 119 haplotypes were observed, the genetic diversity was 0.9916. In the HVR II (nt73-nt340) region, 42 polymorphic sites and 113 haplotypes were observed, and the genetic diversity was 0.9907. The random match probability of the HVR I and HVR II regions were 0.0084 and 0.0093, respectively. When combining the HVR I and HVR II regions, 119 different haplotypes were found. The combined match probability of two unrelated persons having the same sequence was 0.0084. There are some unique polymorphic loci in the Deng population. There are different genetic structures between Chinese and other Asian populations in the mitochondrial DNA D-loop region. Sequence polymorphism of mitochondrial DNA HVR I and HVR II can be used as a genetic marker for forensic individual identification and genetic analysis.

  11. Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools.

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-07-01

    Full Text Available DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1 an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies, incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2 an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031 and waist-hip ratio (p-value = 2.4×10-5, but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.

  12. Mitochondrial genome and epigenome: two sides of the same coin.

    Science.gov (United States)

    D'Aquila, Patrizia; Montesanto, Alberto; Guarasci, Francesco; Passarino, Giuseppe; Bellizzi, Dina

    2017-01-01

    The involvement of mitochondrial content, structure and function as well as of the mitochondrial genome (mtDNA) in cell biology, by participating in the main processes occurring in the cells, has been a topic of intense interest for many years. More specifically, the progressive accumulation of variations in mtDNA of post-mitotic tissues represents a major contributing factor to both physiological and pathological phenotypes. Recently, an epigenetic overlay on mtDNA genetics is emerging, as demonstrated by the implication of the mitochondrial genome in the regulation of the intracellular epigenetic landscape being itself object of epigenetic modifications. Indeed, in vitro and population studies strongly suggest that, similarly to nuclear DNA, also mtDNA is subject to methylation and hydroxymethylation. It follows that the mitochondrial-nucleus cross talk and mitochondrial retrograde signaling in cellular properties require a concerted functional cooperation between genetic and epigenetic changes. The present paper aims to review the current advances in mitochondrial epigenetics studies and the increasing indication of mtDNA methylation status as an attractive biomarker for peculiar pathological phenotypes and environmental exposure.

  13. Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Wen C Aw

    Full Text Available Here we determine the sex-specific influence of mtDNA type (mitotype and diet on mitochondrial functions and physiology in two Drosophila melanogaster lines. In many species, males and females differ in aspects of their energy production. These sex-specific influences may be caused by differences in evolutionary history and physiological functions. We predicted the influence of mtDNA mutations should be stronger in males than females as a result of the organelle's maternal mode of inheritance in the majority of metazoans. In contrast, we predicted the influence of diet would be greater in females due to higher metabolic flexibility. We included four diets that differed in their protein: carbohydrate (P:C ratios as they are the two-major energy-yielding macronutrients in the fly diet. We assayed four mitochondrial function traits (Complex I oxidative phosphorylation, reactive oxygen species production, superoxide dismutase activity, and mtDNA copy number and four physiological traits (fecundity, longevity, lipid content, and starvation resistance. Traits were assayed at 11 d and 25 d of age. Consistent with predictions we observe that the mitotype influenced males more than females supporting the hypothesis of a sex-specific selective sieve in the mitochondrial genome caused by the maternal inheritance of mitochondria. Also, consistent with predictions, we found that the diet influenced females more than males.

  14. Mitochondrial epigenetics : an overlooked layer of regulation?

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; Rots, Marianne G.

    Despite decades of research, mitochondrial epigenetics remains a controversial notion. Recent findings, however, indicate that dysfunctional mitochondrial DNA (mtDNA) methylation could underlie aging and disease. Unraveling such a level of regulation will be essential in the understanding of and in

  15. Mitochondrial mutations and polymorphisms in psychiatric disorders

    NARCIS (Netherlands)

    V. Sequeira (Vasco); M.V. Martin (Maureen); S.M. Rollins; E.A. Moon (Emily); W.E. Bunney (William E); F. MacCiardi (Fabio); S. Lupoli (Sara); G.D. Smith; J. Kelsoe (John); C.N. Magnan (Christophe); M. van Oven (Mannis); P. Baldi (Pierre); D.C. Wallace; M.P. Vawter (Marquis)

    2012-01-01

    textabstractMitochondrial deficiencies with unknown causes have been observed in schizophrenia (SZ) and bipolar disorder (BD) in imaging and postmortem studies. Polymorphisms and somatic mutations in mitochondrial DNA (mtDNA) were investigated as potential causes with next generation sequencing of

  16. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS mediated cardiomyocyte hypertrophy

    NARCIS (Netherlands)

    Tigchelaar, Wardit; Yu, Hongjuan; De Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Sillje, Herman H W

    2015-01-01

    Recently, a genetic variant in the mitochondrial exo/endo nuclease EXOG, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and

  17. Neurotoxicity of cytarabine (Ara-C) in dorsal root ganglion neurons originates from impediment of mtDNA synthesis and compromise of mitochondrial function.

    Science.gov (United States)

    Zhuo, Ming; Gorgun, Murat F; Englander, Ella W

    2018-06-01

    Peripheral Nervous System (PNS) neurotoxicity caused by cancer drugs hinders attainment of chemotherapy goals. Due to leakiness of the blood nerve barrier, circulating chemotherapeutic drugs reach PNS neurons and adversely affect their function. Chemotherapeutic drugs are designed to target dividing cancer cells and mechanisms underlying their toxicity in postmitotic neurons remain to be fully clarified. The objective of this work was to elucidate progression of events triggered by antimitotic drugs in postmitotic neurons. For proof of mechanism study, we chose cytarabine (ara-C), an antimetabolite used in treatment of hematological cancers. Ara-C is a cytosine analog that terminates DNA synthesis. To investigate how ara-C affects postmitotic neurons, which replicate mitochondrial but not genomic DNA, we adapted a model of Dorsal Root Ganglion (DRG) neurons. We showed that DNA polymerase γ, which is responsible for mtDNA synthesis, is inhibited by ara-C and that sublethal ara-C exposure of DRG neurons leads to reduction in mtDNA content, ROS generation, oxidative mtDNA damage formation, compromised mitochondrial respiration and diminution of NADPH and GSH stores, as well as, activation of the DNA damage response. Hence, it is plausible that in ara-C exposed DRG neurons, ROS amplified by the high mitochondrial content shifts from physiologic to pathologic levels signaling stress to the nucleus. Combined, the findings suggest that ara-C neurotoxicity in DRG neurons originates in mitochondria and that continuous mtDNA synthesis and reliance on oxidative phosphorylation for energy needs sensitize the highly metabolic neurons to injury by mtDNA synthesis terminating cancer drugs. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Systematic CpT (ApG) Depletion and CpG Excess Are Unique Genomic Signatures of Large DNA Viruses Infecting Invertebrates

    Science.gov (United States)

    Upadhyay, Mohita; Sharma, Neha; Vivekanandan, Perumal

    2014-01-01

    Differences in the relative abundance of dinucleotides, if any may provide important clues on host-driven evolution of viruses. We studied dinucleotide frequencies of large DNA viruses infecting vertebrates (n = 105; viruses infecting mammals = 99; viruses infecting aves = 6; viruses infecting reptiles = 1) and invertebrates (n = 88; viruses infecting insects = 84; viruses infecting crustaceans = 4). We have identified systematic depletion of CpT(ApG) dinucleotides and over-representation of CpG dinucleotides as the unique genomic signature of large DNA viruses infecting invertebrates. Detailed investigation of this unique genomic signature suggests the existence of invertebrate host-induced pressures specifically targeting CpT(ApG) and CpG dinucleotides. The depletion of CpT dinucleotides among large DNA viruses infecting invertebrates is at least in part, explained by non-canonical DNA methylation by the infected host. Our findings highlight the role of invertebrate host-related factors in shaping virus evolution and they also provide the necessary framework for future studies on evolution, epigenetics and molecular biology of viruses infecting this group of hosts. PMID:25369195

  19. Neutrophil depletion improves diet-induced non-alcoholic fatty liver disease in mice.

    Science.gov (United States)

    Ou, Rongying; Liu, Jia; Lv, Mingfen; Wang, Jingying; Wang, Jinmeng; Zhu, Li; Zhao, Liang; Xu, Yunsheng

    2017-07-01

    Non-alcoholic fatty liver disease is highly associated with morbidity and mortality in population. Although studies have already demonstrated that the immune response plays a pivotal role in the development of non-alcoholic fatty liver disease, the comprehensive regulation is unclear. Therefore, present study was carried out to investigate the non-alcoholic fatty liver disease development under neutrophil depletion. To achieve the aim of the study, C57BL/6 J mice were fed with high fat diet for 6 weeks before treated with neutrophil deplete antibody 1A8 or isotype control (200 μg/ mouse every week) for another 4 weeks. Treated with 1A8 antibody, obese mice exhibited better whole body metabolic parameters, including reduction of body weight gain and fasting blood glucose levels. Neutrophil depletion also effectively reduced hepatic structural disorders, dysfunction and lipid accumulation. Lipid β-oxidative markers, phosphorylated-AMP-activated protein kinase α and phosphorylated-acetyl-CoA carboxylase levels were increased in 1A8 antibody-treated obese mouse group. The mitochondrial number and function were also reversed after 1A8 antibody treatment, including increased mitochondrial number, reduced lipid oxidative damage and enhanced mitochondrial activity. Furthermore, the expression of inflammatory cytokines, tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1 were obviously reduced after neutrophil depletion, accompanied with decreased F4/80 mRNA level and macrophage percentage in liver. The decreased NF-κB signaling activity was also involved in the beneficial effect of neutrophil depletion. Taken together, neutrophil depletion could attenuate metabolic syndromes and hepatic dysfunction.

  20. Helicobacter pylori infection induces genetic instability of nuclear and mitochondrial DNA in gastric cells

    DEFF Research Database (Denmark)

    Machado, Ana Manuel Dantas; Figueiredo, Ceu; Touati, Eliette

    2009-01-01

    of genetic instabilities in the nuclear and mitochondrial DNA (mtDNA) were examined. EXPERIMENTAL DESIGN: We observed the effects of H. pylori infection on a gastric cell line (AGS), on C57BL/6 mice, and on individuals with chronic gastritis. In AGS cells, the effect of H. pylori infection on base excision...... cells and chronic gastritis tissue were determined by PCR, single-stranded conformation polymorphism, and sequencing. H. pylori vacA and cagA genotyping was determined by multiplex PCR and reverse hybridization. RESULTS: Following H. pylori infection, the activity and expression of base excision repair...... and MMR are down-regulated both in vitro and in vivo. Moreover, H. pylori induces genomic instability in nuclear CA repeats in mice and in mtDNA of AGS cells and chronic gastritis tissue, and this effect in mtDNA is associated with bacterial virulence. CONCLUSIONS: Our results suggest that H. pylori...