WorldWideScience

Sample records for dependent rkky interaction

  1. RKKY interaction in spin polarized armchair graphene nanoribbon

    Energy Technology Data Exchange (ETDEWEB)

    Rezania, Hamed, E-mail: rezania.hamed@gmail.com; Azizi, Farshad

    2016-11-01

    We present the Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction in the presence of magnetic long range ordered armchair graphene nanoribbon. RKKY interaction as a function of distance between localized moments has been analyzed. It has been shown that a magnetic ordering along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain the static spin susceptibilities of armchair graphene nanoribbon. The spin susceptibility components are calculated using Green's function approach for tight binding model Hamiltonian. The effects of spin polarization on the dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show that the chemical potential impacts the spatial behavior of RKKY interaction. - Highlights: • Theoretical calculation of RKKY interaction of armchair graphene nanoribbon. • The investigation of the effect of spin polarization on RKKY interaction. • The investigation of electronic concentration on RKKY interaction of armchair graphene nanoribbon.

  2. Strain-modified RKKY interaction in carbon nanotubes

    DEFF Research Database (Denmark)

    Gorman, P. D.; Duffy, J. M.; Power, Stephen R.

    2015-01-01

    been shown that the interaction range depends on the conformation of the magnetic dopants in both graphene and nanotubes. Here we examine the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in carbon nanotubes in the presence of uniaxial strain for a range of different impurity configurations. We show......For low-dimensionalmetallic structures, such as nanotubes, the exchange coupling between localized magnetic dopants is predicted to decay slowly with separation. The long-range character of this interaction plays a significant role in determining the magnetic order of the system. It has previously...... that strain is capable of amplifying or attenuating the RKKY interaction, significantly increasing certain interaction ranges, and acting as a switch: effectively turning on or off the interaction. We argue that uniaxial strain can be employed to significantly manipulate magnetic interactions in carbon...

  3. RKKY interaction between extended magnetic defect lines in graphene

    DEFF Research Database (Denmark)

    Gorman, P. D.; Duffy, J. M.; Power, Stephen

    2014-01-01

    referred to as the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Recent theoretical studies on the RKKY in graphene have been motivated by possible spintronic applications of magnetically doped graphene systems. In this paper a combination of analytic and numerical techniques are used to examine...

  4. RKKY interaction in mixed valence system and heavy fermion superconductivity

    International Nuclear Information System (INIS)

    Fusui Liu; Gao Lin; Lin Zonghan

    1985-11-01

    The 1-D RKKY interaction of mixed valence system is given by using the thermodynamic perturbation theory. The numerical comparisons of 1-D and 3-D RKKY interaction between systems with localized magnetic moments of mixed valence and non-mixed valence show that the former is much stronger than the latter. From some analyses we propose that the heavy Fermion superconductivity comes from the RKKY interaction between two local f electrons which hop off the impurity site to become two continuum electrons. The source of the two impurity electrons hopping is the Coulomb interaction. It is also emphasized that the RKKY interaction does not disappear for the Kondo lattice, when the temperature is less than the Kondo temperature. (author)

  5. RKKY interaction between Ce ions in CexLa1-xB6

    International Nuclear Information System (INIS)

    Schlottmann, P.

    2000-01-01

    Ce ions in (Ce x La 1-x )B 6 have a Γ 8 ground multiplet, which is fourfold degenerate and has orbital and spin content. The interaction between Ce ions is of the Ruderman-Kittel-Kasuya-Yosida (RKKY) type, which competes with the Kondo screening. The conduction states of the compound are described by three approximately ellipsoidal pockets centered at the X points of the cubic lattice. The RKKY interaction is calculated considering the interference of the three pockets. The interaction strength strongly depends on the relative position of the ions, as well as on the relative orientation of the line joining two ions to the cubic crystalline field axis. The sixteen states of a pair of Ce ions are split by the RKKY interaction into a singlet, a triplet, and a twelvefold degenerate level. The ground state is always either a singlet or a triplet, depending on the sign of the interaction. Using the exact Bethe ansatz solution of a model for a pair of interacting impurities with Γ 8 ground multiplet, we calculate the occupation of the levels, the magnetic-field susceptibility, the specific-heat γ coefficient, and the Wilson ratio for the ground state as a function of the ratio of the RKKY coupling strength to the Kondo temperature along the main crystallographic directions. As a consequence of the RKKY splitting a pair of impurities always has a quadrupolar moment. The implication of the interactions on the quadrupolar order of CeB 6 is also discussed

  6. Strongly anisotropic RKKY interaction in monolayer black phosphorus

    Science.gov (United States)

    Zare, Moslem; Parhizgar, Fariborz; Asgari, Reza

    2018-06-01

    We theoretically study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in two-dimensional black phosphorus, phosphorene. The RKKY interaction enhances significantly for the low levels of hole doping owing to the nearly valence flat band. Remarkably, for the hole-doped phosphorene, the highest RKKY interaction occurs when two impurities located along the zigzag direction and it tends to a minimum value with changing the direction from the zigzag to the armchair direction. We show that the interaction is highly anisotropic and the magnetic ground-state of two magnetic adatoms can be tuned by changing the rotational configuration of impurities. Owing to the anisotropic band dispersion, the oscillatory behavior with respect to the angle of the rotation and the distance of two magnetic impurities, R is well-described by sin (2kF R) , where the Fermi wavelength kF changes in different directions. We also find that the tail of the RKKY oscillations falls off as 1 /R2 at large distances.

  7. RKKY coupling in the gadolinium with shielded exchange interaction

    International Nuclear Information System (INIS)

    Aveline, A.

    1973-01-01

    The model of magnetic interation by indirect exchange mechanism (RKKY) is studied. The shielding effect is estimated and exchange integral J(K vector, K' vector) and magnetic interaction energy Jmn(r) analysis is made. The magnetic interaction energy is determinated in two approximations and compared to the Ruderman-Kittel formula. The free electrons model, to conduction electrons, and 4f wave functions, to localized electrons were utilized [pt

  8. Magnetic properties in kagomé lattice with RKKY interaction: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63, 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2016-03-01

    The magnetic properties of the kagomé lattice have been studied with Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange interactions in a spin-7/2 Ising model using Monte Carlo simulations. The RKKY interaction between the two magnetic layers is considered for different distances. The magnetizations and magnetic susceptibilities of this lattice are given for different triquadratic interactions around each triangular face. The critical temperature is obtained for a fixed size. The magnetic hysteresis cycle of kagomé lattice with RKKY interactions is obtained for different temperatures and for different crystal field with a fixed size of nonmagnetic layer. - Highlights: • We study the RKKY interaction in kagomé lattice using the Monte Carlo simulations. • The transition temperature is obtained for kagomé lattice with RKKY interaction. • The coercive field is obtained for kagomé lattice with RKKY interaction.

  9. Anisotropic surface-state-mediated RKKY interaction between adatoms on a hexagonal lattice

    Science.gov (United States)

    Patrone, Paul N.; Einstein, T. L.

    2012-01-01

    Motivated by recent numerical studies of Ag on Pt(111), we derive an expression for the RKKY interaction mediated by surface states, considering the effect of anisotropy in the Fermi edge. Our analysis is based on a stationary phase approximation. The main contribution to the interaction comes from electrons whose Fermi velocity vF is parallel to the vector R connecting the interacting adatoms; we show that, in general, the corresponding Fermi wave vector kF is not parallel to R. The interaction is oscillatory; the amplitude and wavelength of oscillations have angular dependence arising from the anisotropy of the surface-state band structure. The wavelength, in particular, is determined by the projection of this kF (corresponding to vF) onto the direction of R. Our analysis is easily generalized to other systems. For Ag on Pt(111), our results indicate that the RKKY interaction between pairs of adatoms should be nearly isotropic and so cannot account for the anisotropy found in the studies motivating our work. However, for metals with surface-state dispersions similar to Be(101¯0), we show that the RKKY interaction should have considerable anisotropy.

  10. Anisotropic Surface State Mediated RKKY Interaction Between Adatoms on a Hexagonal Lattice

    Science.gov (United States)

    Einstein, Theodore; Patrone, Paul

    2012-02-01

    Motivated by recent numerical studies of Ag on Pt(111), we derive a far-field expression for the RKKY interaction mediated by surface states on a (111) FCC surface, considering the effect of anisotropy in the Fermi edge. The main contribution to the interaction comes from electrons whose Fermi velocity vF is parallel to the vector R connecting the interacting adatoms; we show that in general, the corresponding Fermi wave-vector kF is not parallel to R. The interaction is oscillatory; the amplitude and wavelength of oscillations have angular dependence arising from the anisotropy of the surface state band structure. The wavelength, in particular, is determined by the component of the aforementioned kF that is parallel to R. Our analysis is easily generalized to other systems. For Ag on Pt(111), our results indicate that the RKKY interaction between pairs of adatoms should be nearly isotropic and so cannot account for the anisotropy found in the studies motivating our work.

  11. Role of electron-electron interactions in the RKKY theory of magnetism

    International Nuclear Information System (INIS)

    Cooke, J.F.

    1978-10-01

    The theory of magnetism in heavy rare earth metals is based on the RKKY theory. In this formalism the indirect exchange interaction between the local 4f spins is mediated by the conduction electrons. When carried to second order in the 4f-conduction electron interaction, traditional perturbation theory leads to a Heisenberg-like interaction between the local spins which depends on the electronic energy bands and 4f-conduction electron exchange matrix elements. This derivation neglects the detailed behavior of electron-electron interaction within the conduction band, which is known to be important in metallic systems. By using an equation of motion method, an expression for the inelastic neutron scattering cross-section has been derived which includes, in an approximate way, this electron-electron interaction. The results of this calculation indicate that spin-wave peaks can be broadened and shifted if the spin-wave band lies near the conduction electron Stoner continuum. The origin of this effect is similar to that found in itinerant electron systems where the spin-wave band actually intersects the Stoner continuum, resulting in the disappearance of the spin-wave mode

  12. Role of electron-electron interactions in the RKKY theory of magnetism

    International Nuclear Information System (INIS)

    Cooke, J.F.

    1979-01-01

    The theory of magnetism in heavy rare earth metals is based on the RKKY theory. In this formalism the indirect exchange interaction between the local 4f spins is mediated by the conduction electrons. When carried to second order in the 4f-conduction electron interaction, traditional pertubation theory leads to a Heisenberg-like interaction between the local spins which depends on the electronic energy bands and 4f-conduction electron exchange matrix elements. This derivation neglects the detailed behavior of electron-electron interaction within the conduction band, which is known to be important in metallic systems. By using an equation of motion method, an expression for the inelastic neutron scattering cross-section has been derived which includes, in an approximate way, this electron-electron interaction. The results of this calculation indicate that spin-wave peaks can be broadened and shifted if the spin-wave band lies near the conduction electron Stoner continuum. The origin of this effect is similar to that found in itinerant electron systems where the spin-wave band actually intersects the Stoner continuum, resulting in the disappearance of the spin-wave mode

  13. Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling

    Science.gov (United States)

    Balcerzak, T.; Szałowski, K.; Jaščur, M.

    2018-04-01

    Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic, vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs potential and the set of equations of state are derived, from which all thermodynamic functions are self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some parameters of interaction potential and electron concentration corresponding to antiferromagnetic phase, the existence of negative thermal expansion coefficient is predicted.

  14. Variable range of the RKKY interaction in edged graphene

    DEFF Research Database (Denmark)

    Duffy, J M; Gorman, P D; Power, S R

    2014-01-01

    The indirect exchange interaction is one of the key factors in determining the overall alignment of magnetic impurities embedded in metallic host materials. In this work we examine the range of this interaction in magnetically doped graphene systems in the presence of armchair edges using...... calculations, and the result for semi-infinite graphene can be interpreted as an intermediate case between ribbon and bulk systems....

  15. The role of electronic dopant on full band in-plane RKKY coupling in armchair graphene nanoribbons-magnetic impurity system

    Science.gov (United States)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen

    2018-05-01

    Motivated by the growing interest in solving the obstacles of spintronics applications, we study the Ruderman-Kittel-Kasuya-Yosida (RKKY) effective pairwise interaction between magnetic impurities interacting through the π -electrons embedded in both electronically doped-semiconducting and metallic armchair graphene nanoribbons. In terms of the Green's function formalism, treated in a tight-binding approximation with hopping beyond Dirac cone approximation, the RKKY coupling is an attraction or a repulsion depending on the magnetic impurities distances. Our results show that the RKKY coupling in semiconducting nanoribbons is much more affected by doping than metallic ones. Furthermore, we found that the RKKY coupling increases with ribbon width, while there exist some critical electronic concentrations in RKKY interaction oscillations. On the other hand, we find an unusual incoming wave-vector direction for electrons which describes more clearly the ferro- and antiferromagnetic spin configurations in such system. Also, the RKKY coupling at low and high-temperature regions has been addressed for both ferro- and antiferromagnetic spin arrangements.

  16. Ionic Liquid Gating Control of RKKY Interaction in FeCoB/Ru/FeCoB and (Pt/Co)2/Ru/(Co/Pt)2 Multilayers.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qu; Wang, Lei; Zhou, Ziyao; Wang, Liqian; Zhang, Yijun; Zhao, Shishun; Dong, Guohua; Cheng, Yuxin; Min, Tai; Hu, Zhongqiang; Chen, Wei; Xia, Ke; Liu, Ming

    2018-03-07

    To overcome the fundamental challenge of the weak natural response of antiferromagnetic materials under a magnetic field, voltage manipulation of antiferromagnetic interaction is developed to realize ultrafast, high-density, and power efficient antiferromagnetic spintronics. Here, we report a low voltage modulation of Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction via ionic liquid gating in synthetic antiferromagnetic multilayers of FeCoB/Ru/FeCoB and (Pt/Co)2/Ru/(Co/Pt)2. At room temperature, the distinct voltage control of transition between antiferromagnetic and ferromagnetic ordering is realized and up to 80% of perpendicular magnetic moments manage to switch with a small-applied voltage bias of 2.5 V. We related this ionic liquid gating-induced RKKY interaction modification to the disturbance of itinerant electrons inside synthetic antiferromagnetic heterostructure and the corresponding change of its Fermi level. Voltage tuning of RKKY interaction may enable the next generation of switchable spintronics between antiferromagnetic and ferromagnetic modes with both fundamental and practical perspectives.

  17. Kondo Impurities Coupled to a Helical Luttinger Liquid: RKKY-Kondo Physics Revisited.

    Science.gov (United States)

    Yevtushenko, Oleg M; Yudson, Vladimir I

    2018-04-06

    We show that the paradigmatic Ruderman-Kittel-Kasuya-Yosida (RKKY) description of two local magnetic moments coupled to propagating electrons breaks down in helical Luttinger liquids when the electron interaction is stronger than some critical value. In this novel regime, the Kondo effect overwhelms the RKKY interaction over all macroscopic interimpurity distances. This phenomenon is a direct consequence of the helicity (realized, for instance, at edges of a time-reversal invariant topological insulator) and does not take place in usual (nonhelical) Luttinger liquids.

  18. Density dependent effective interactions

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1994-01-01

    An effective nucleon-nucleon interaction is defined by an optimal fit to select on-and half-off-of-the-energy shell t-and g-matrices determined by solutions of the Lippmann-Schwinger and Brueckner-Bethe-Goldstone equations with the Paris nucleon-nucleon interaction as input. As such, it is seen to better reproduce the interaction on which it is based than other commonly used density dependent effective interactions. The new (medium modified) effective interaction when folded with appropriate density matrices, has been used to define proton- 12 C and proton- 16 O optical potentials. With them elastic scattering data are well fit and the medium effects identifiable. 23 refs., 8 figs

  19. Competition of Kondo spin fluctuations and RKKY interactions in CeRh/sub 2/Si/sub 2-x/Ge/sub x/ and CeM/sub 2/X/sub 2/ compounds: a Kondo necklace problem

    Energy Technology Data Exchange (ETDEWEB)

    Godart, C; Gupta, L C; Tomy, C V; Vijayaraghavan, R; Thompson, J D

    1989-02-15

    We present the results of our measurements of the lattice constants and magnetic susceptibility of the pseudo-ternary system which crystallizes in the tetragonal ThCr/sub 2/Si/sub 2/ structure. Both of the cell constants a and c increase linearly with x. The magnetic ordering temperature T/sub N/ exhibits initially an enhancement with the increase in x and then decreases as x continues to increase further. These results, along with those on the pressure dependence of T/sub N/ in CeRh/sub 2/Si/sub 2/, can be understood on the basis of the Doniach's model of a Kondo necklace. We discuss also the applicability of this model to describe the strong correlation between the structural aspects and the ground-state properties of the whole series of Ce-based ternaries CeM/sub 2/X/sub 2/ (M = 3d, 4d and 5d elements; X = Si, Ge).

  20. Modeling and calculation of RKKY exchange coupling to explain Ti-vacancy-induced ferromagnetism in Ta-doped TiO2

    Science.gov (United States)

    Majidi, Muhammad Aziz; Bupu, Annamaria; Fauzi, Angga Dito

    2017-12-01

    We present a theoretical study on Ti-vacancy-induced ferromagnetism in anatase TiO2. A recent experimental study has revealed room temperature ferromagnetism in Ta-doped anatase TiO2thin films (Rusydi et al., 2012) [7]. Ta doping assists the formation of Ti vacancies which then induce the formation of localized magnetic moments around the Ti vacancies. As neighboring Ti vacancies are a few unit cells apart, the ferromagnetic order is suspected to be mediated by itinerant electrons. We propose that such an electron-mediated ferromagnetism is driven by Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. To examine our hypothesis, we construct a tight-binding based model Hamiltonian for the anatase TiO2 system. We calculate the RKKY exchange coupling constant of TiO2 as a function of distance between local magnetic moments at various temperatures. We model the system by taking only the layer containing a unit of TiO2, at which the Ti vacancy is believed to form, as our effective two-dimensional unit cell. Our model incorporates the Hubbard repulsive interactions between electrons occupying Ti d orbitals treated within mean-field approximation. The density of states profile resulting from the model captures the relevant electronic properties of TiO2, such as the energy gap of 3.4 eV and the n-type character, which may be a measure of the adequacy of the model. The calculated RKKY coupling constant shows that the ferromagnetic coupling extends up to 3-4 unit cells and enhances slightly as temperature is increased from 0 to 400 K. These results support our hypothesis that the ferromagnetism of this system is driven by RKKY mechanism.

  1. Fermions in interaction with time dependent fields

    International Nuclear Information System (INIS)

    Falkensteiner, P.; Grosse, H.

    1988-01-01

    We solve a two dimensional model describing the interaction of fermions with time dependent external fields. We work out the second quantized formulation and obtain conditions for equivalence of representations at different times. This implies the existence of sectors which describe charged states. We obtain the time dependence of charges and observe that charge differences become integer for unitary equivalent states. For scattering we require the equivalence of in- and out-representations; nevertheless charged sectors may be reached by suitable interactions and ionization is possible. 20 refs. (Author)

  2. Self-consistent velocity dependent effective interactions

    International Nuclear Information System (INIS)

    Kubo, Takayuki; Sakamoto, Hideo; Kammuri, Tetsuo; Kishimoto, Teruo.

    1993-09-01

    The field coupling method is extended to a system with a velocity dependent mean potential. By means of this method, we can derive the effective interactions which are consistent with the mean potential. The self-consistent velocity dependent effective interactions are applied to the microscopic analysis of the structures of giant dipole resonances (GDR) of 148,154 Sm, of the first excited 2 + states of Sn isotopes and of the first excited 3 - states of Mo isotopes. It is clarified that the interactions play crucial roles in describing the splitting of the resonant structure of GDR peaks, in restoring the energy weighted sum rule values, and in reducing B (Eλ) values. (author)

  3. Nuclear spectroscopy with density dependent effective interactions

    International Nuclear Information System (INIS)

    Krewald, S.

    1976-07-01

    The paper investigates excited nuclear states with density-dependent effective interactions. In the first part of the paper, the structure and the width of the multipole giant resonances discovered in 1972 are derived microscopically. Because of their high excitation energy, these giant resonances are unstable to particle emission and thus often have a considerable decay width. Due to their collective structure, the giant resonances can be described by RPA in good approximation. In this paper, the continuum RPA is applied to the spherical nuclei 16 O, 40 Ca, 90 Zr and 208 Pb. The experimental centroid energy are in very good agreement with the calculations performed in the paper. (orig./WL) [de

  4. Theory of Temperature Dependence of the Magnetization in Rare-Earth-Transition-Metal Alloys

    DEFF Research Database (Denmark)

    Szpunar, B.; Lindgård, Per-Anker

    1977-01-01

    -spin. The interaction is mediated by an effective alloy medium calculated using the CPA theory and elliptic densities of states. Es wird gezeigt, daß die Temperaturabhängigkeit der magnetischen Momente und die Curie-Temperatur sowie die Temperatur der ferrimagnetischen Kompensation für Gd1-xTx (T = Co, Ni und Fe) und Y......1-xCox durch ein einfaches Model1 erklärt werden können, das eine RKKY-Wechsel-wirkung zwischen den Momenten der Seltenen Erden und des Pseudo-Spins des Übergangsmetalls annimmt. Die Wechselwirkung wird durch ein effektives Legierungsmedium übermittelt, das mit der CPA-Theorie und elliptischen......It is shown that the temperature dependence of the magnetic moments and Curie and ferrimagnetic compensation temperatures for Gdl-xTx (T = Co, Ni, and Fe) and Y1-xCox can be accounted for by a simple model assuming a RKKY interaction between the rare-earth moments and the transition-metal pseudo...

  5. Interactive green street enhancement using light dependent sensors and actuators

    NARCIS (Netherlands)

    Wouters, Ivo; Chen, W.; Oorschot, van B.; Smeenk, W.

    2008-01-01

    We propose and demonstrate a design of an interactive green street facility using light dependent sensors and actuators for enhancing the social cohesion of people. We show that electronics and green design can have positive effect on social interaction in a neighbourhood by a design example, called

  6. Energy-dependent point interactions in one dimension

    International Nuclear Information System (INIS)

    Coutinho, F A B; Nogami, Y; Tomio, Lauro; Toyama, F M

    2005-01-01

    We consider a new type of point interaction in one-dimensional quantum mechanics. It is characterized by a boundary condition at the origin that involves the second and/or higher order derivatives of the wavefunction. The interaction is effectively energy dependent. It leads to a unitary S-matrix for the transmission-reflection problem. The energy dependence of the interaction can be chosen such that any given unitary S-matrix (or the transmission and reflection coefficients) can be reproduced at all energies. Generalization of the results to coupled-channel cases is discussed

  7. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  8. Density and starting-energy dependent effective interaction

    International Nuclear Information System (INIS)

    Yamaguchi, Norio; Nagata, Sinobu; Kasuga, Teruo

    1979-01-01

    A new effective potential constructed from the reaction matrix calculation of nuclear matters is proposed, taking three-body effects into account. Starting from the two-body scattering equation for nuclear matters, an equation with averaged momentum is introduced as the definition of effective interaction. The parameters in the equation are the Fermi momentum and the starting energy. The nuclear density dependence and the starting energy dependence are independently treated in the potential. The effective interactions including three-body effects were calculated. The dependence on the starting energy is large. The effective interaction is more attractive in the triplet E state, and assures overall saturation without any artificial renormalization. The reaction matrix calculation can be well reproduced by the calculation with this effective potential. The results of calculation for the binding energy of He-4 and O-16 and the shell model matrix elements of O-16 are represented. (Kato, T.)

  9. Identification of Redox and Glucose-Dependent Txnip Protein Interactions

    Directory of Open Access Journals (Sweden)

    Benjamin J. Forred

    2016-01-01

    Full Text Available Thioredoxin-interacting protein (Txnip acts as a negative regulator of thioredoxin function and is a critical modulator of several diseases including, but not limited to, diabetes, ischemia-reperfusion cardiac injury, and carcinogenesis. Therefore, Txnip has become an attractive therapeutic target to alleviate disease pathologies. Although Txnip has been implicated with numerous cellular processes such as proliferation, fatty acid and glucose metabolism, inflammation, and apoptosis, the molecular mechanisms underlying these processes are largely unknown. The objective of these studies was to identify Txnip interacting proteins using the proximity-based labeling method, BioID, to understand differential regulation of pleiotropic Txnip cellular functions. The BioID transgene fused to Txnip expressed in HEK293 identified 31 interacting proteins. Many protein interactions were redox-dependent and were disrupted through mutation of a previously described reactive cysteine (C247S. Furthermore, we demonstrate that this model can be used to identify dynamic Txnip interactions due to known physiological regulators such as hyperglycemia. These data identify novel Txnip protein interactions and demonstrate dynamic interactions dependent on redox and glucose perturbations, providing clarification to the pleiotropic cellular functions of Txnip.

  10. Frequency-dependent hydrodynamic interaction between two solid spheres

    Science.gov (United States)

    Jung, Gerhard; Schmid, Friederike

    2017-12-01

    Hydrodynamic interactions play an important role in many areas of soft matter science. In simulations with implicit solvent, various techniques such as Brownian or Stokesian dynamics explicitly include hydrodynamic interactions a posteriori by using hydrodynamic diffusion tensors derived from the Stokes equation. However, this equation assumes the interaction to be instantaneous which is an idealized approximation and only valid on long time scales. In the present paper, we go one step further and analyze the time-dependence of hydrodynamic interactions between finite-sized particles in a compressible fluid on the basis of the linearized Navier-Stokes equation. The theoretical results show that at high frequencies, the compressibility of the fluid has a significant impact on the frequency-dependent pair interactions. The predictions of hydrodynamic theory are compared to molecular dynamics simulations of two nanocolloids in a Lennard-Jones fluid. For this system, we reconstruct memory functions by extending the inverse Volterra technique. The simulation data agree very well with the theory, therefore, the theory can be used to implement dynamically consistent hydrodynamic interactions in the increasingly popular field of non-Markovian modeling.

  11. Landau parameters for finite range density dependent nuclear interactions

    International Nuclear Information System (INIS)

    Farine, M.

    1997-01-01

    The Landau parameters represent the effective particle-hole interaction at Fermi level. Since between the physical observables and the Landau parameters there is a direct relation their derivation from an effective interaction is of great interest. The parameter F 0 determines the incompressibility K of the system. The parameter F 1 determines the effective mass (which controls the level density at the Fermi level). In addition, F 0 ' determines the symmetry energy, G 0 the magnetic susceptibility, and G 0 ' the pion condensation threshold in nuclear matter. This paper is devoted to a general derivation of Landau parameters for an interaction with density dependent finite range terms. Particular carefulness is devoted to the inclusion of rearrangement terms. This report is part of a larger project which aims at defining a new nuclear interaction improving the well-known D1 force of Gogny et al. for describing the average nuclear properties and exotic nuclei and satisfying, in addition, the sum rules

  12. Two stages of Kondo effect and competition between RKKY and Kondo in Gd-based intermetallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Vaezzadeh, Mehdi [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)]. E-mail: mehdi@kntu.ac.ir; Yazdani, Ahmad [Tarbiat Modares University, P.O. Box 14155-4838, Tehran (Iran, Islamic Republic of); Vaezzadeh, Majid [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Daneshmand, Gissoo [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Kanzeghi, Ali [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)

    2006-05-01

    The magnetic behavior of Gd-based intermetallic compound (Gd{sub 2}Al{sub (1-x)}Au{sub x}) in the form of the powder and needle, is investigated. All the samples are an orthorhombic crystal structure. Only the compound with x=0.4 shows the Kondo effect (other compounds have a normal behavior). Although, for the compound in the form of powder, with x=0.4, the susceptibility measurement {chi}(T) shows two different stages. Moreover for (T>T{sub K2}) a fall of the value of {chi}(T) is observable, which indicates a weak presence of ferromagnetic phase. About the two stages of Kondo effect, we observe at the first (T{sub K1}) an increase of {chi}(T) and in the second stage (T{sub K2}) a new remarkable decrease of {chi}(T) (T{sub K1}>T{sub K2}). For the sample in the form of needles, the first stage is observable only under high magnetic field. This first stage could be corresponds to a narrow resonance between Kondo cloud and itinerant electron. The second stage, which is remarkably visible for the sample in the form of the powder, can be attribute to a complete polarization of Kondo cloud. Observation of these two Kondo stages could be due to the weak presence of RKKY contribution.

  13. Two stages of Kondo effect and competition between RKKY and Kondo in Gd-based intermetallic compound

    International Nuclear Information System (INIS)

    Vaezzadeh, Mehdi; Yazdani, Ahmad; Vaezzadeh, Majid; Daneshmand, Gissoo; Kanzeghi, Ali

    2006-01-01

    The magnetic behavior of Gd-based intermetallic compound (Gd 2 Al (1-x) Au x ) in the form of the powder and needle, is investigated. All the samples are an orthorhombic crystal structure. Only the compound with x=0.4 shows the Kondo effect (other compounds have a normal behavior). Although, for the compound in the form of powder, with x=0.4, the susceptibility measurement χ(T) shows two different stages. Moreover for (T>T K2 ) a fall of the value of χ(T) is observable, which indicates a weak presence of ferromagnetic phase. About the two stages of Kondo effect, we observe at the first (T K1 ) an increase of χ(T) and in the second stage (T K2 ) a new remarkable decrease of χ(T) (T K1 >T K2 ). For the sample in the form of needles, the first stage is observable only under high magnetic field. This first stage could be corresponds to a narrow resonance between Kondo cloud and itinerant electron. The second stage, which is remarkably visible for the sample in the form of the powder, can be attribute to a complete polarization of Kondo cloud. Observation of these two Kondo stages could be due to the weak presence of RKKY contribution

  14. Interacting particle systems in time-dependent geometries

    Science.gov (United States)

    Ali, A.; Ball, R. C.; Grosskinsky, S.; Somfai, E.

    2013-09-01

    Many complex structures and stochastic patterns emerge from simple kinetic rules and local interactions, and are governed by scale invariance properties in combination with effects of the global geometry. We consider systems that can be described effectively by space-time trajectories of interacting particles, such as domain boundaries in two-dimensional growth or river networks. We study trajectories embedded in time-dependent geometries, and the main focus is on uniformly expanding or decreasing domains for which we obtain an exact mapping to simple fixed domain systems while preserving the local scale invariance properties. This approach was recently introduced in Ali et al (2013 Phys. Rev. E 87 020102(R)) and here we provide a detailed discussion on its applicability for self-affine Markovian models, and how it can be adapted to self-affine models with memory or explicit time dependence. The mapping corresponds to a nonlinear time transformation which converges to a finite value for a large class of trajectories, enabling an exact analysis of asymptotic properties in expanding domains. We further provide a detailed discussion of different particle interactions and generalized geometries. All our findings are based on exact computations and are illustrated numerically for various examples, including Lévy processes and fractional Brownian motion.

  15. Incorporating Context Dependency of Species Interactions in Species Distribution Models.

    Science.gov (United States)

    Lany, Nina K; Zarnetske, Phoebe L; Gouhier, Tarik C; Menge, Bruce A

    2017-07-01

    Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same

  16. Effective stochastic generator with site-dependent interactions

    Science.gov (United States)

    Khamehchi, Masoumeh; Jafarpour, Farhad H.

    2017-11-01

    It is known that the stochastic generators of effective processes associated with the unconditioned dynamics of rare events might consist of non-local interactions; however, it can be shown that there are special cases for which these generators can include local interactions. In this paper, we investigate this possibility by considering systems of classical particles moving on a one-dimensional lattice with open boundaries. The particles might have hard-core interactions similar to the particles in an exclusion process, or there can be many arbitrary particles at a single site in a zero-range process. Assuming that the interactions in the original process are local and site-independent, we will show that under certain constraints on the microscopic reaction rules, the stochastic generator of an unconditioned process can be local but site-dependent. As two examples, the asymmetric zero-temperature Glauber model and the A-model with diffusion are presented and studied under the above-mentioned constraints.

  17. Response functions for infinite fermion systems with velocity dependent interactions

    International Nuclear Information System (INIS)

    Garcia-Recio, C.; Salcedo, L.L.; Navarro, J.; Nguyen Van Giai

    1991-01-01

    Response functions of infinite Fermi systems are studied in the framework of the self-consistent Random Phase Approximation. Starting from an effective interaction with velocity and density dependence, or equivalently from a local energy density functional, algebraic expressions for the RPA response function are derived. Simple formulae for the energy-weighted and polarizability sum rules are obtained. The method is illustrated by applications to nuclear matter and liquid 3 He. In nuclear matter, it is shown that existing Skyrme interactions give spin-isospin response functions close to those calculated with finite range interactions. The different renormalization of longitudinal and transverse Coulomb sum rules in nuclear matter is discussed. In 3 He, the low-lying collective spin oscillation can be well described in a wide range of momenta with a Skyrme-type interaction if the relevant Landau parameters are fitted. For the high-lying density oscillation, the introduction of a finite range term in the energy functional improves considerably the agreement with the data. (author) 54 refs., 19 figs., 4 tabs

  18. The impact parameter dependence of swift electron-matter interactions

    International Nuclear Information System (INIS)

    Ritchie, R.H.

    1988-01-01

    In quantal collision theories, momentum and energy are usually taken to be good quantal variables. Classical collision theory, on the other hand, uses position and time to describe interactions between a probe and a target. In modern physics one may wish to express quantal theories in terms of spacelike variables. For example, experiments are now common in which one measures, by means of a narrowly focused beam of swift electrons, the distribution in energy of losses experienced in a very small region of space. Also, in experiments with channeled ions, and in microdosimetry, one is interested in the spatial coherence of unlocalized excitations created by swift ions and electrons, and their ultimate localization through transfer of energy to, e.g., single-particle excitations. In this lecture the author describes work, done in part in collaboration with Professor Howie, on some aspects of the spatial dependence of inelastic interactions between a charged particle and a condensed matter target. 6 refs., 1 fig

  19. Spin-dependent transport through interacting graphene armchair nanoribbons

    International Nuclear Information System (INIS)

    Koller, Sonja; Mayrhofer, Leonhard; Grifoni, Milena

    2010-01-01

    We investigate spin effects in transport across fully interacting, finite-size graphene armchair nanoribbons (ACNs) contacted to collinearly spin-polarized leads. In such systems, the presence of short-range Coulomb interaction between bulk states and states localized at the ribbon ends leads to novel spin-dependent phenomena. Specifically, the total spin of the low-energy many-body states is conserved during tunneling but that of the bulk and end states is not. As a consequence, in the single-electron regime, dominated by Coulomb blockade phenomena, we find pronounced negative differential conductance features for ACNs contacted to parallel polarized leads. These features are, however, absent in an anti-parallel contact configuration, which in turn leads, within a certain gate and bias voltage region, to a negative tunneling magneto-resistance. Moreover, we analyze the changes in the transport characteristics under the influence of an external magnetic field.

  20. Dependencies, human interactions and uncertainties in probabilistic safety assessment

    International Nuclear Information System (INIS)

    Hirschberg, S.

    1990-01-01

    In the context of Probabilistic Safety Assessment (PSA), three areas were investigated in a 4-year Nordic programme: dependencies with special emphasis on common cause failures, human interactions and uncertainty aspects. The approach was centered around comparative analyses in form of Benchmark/Reference Studies and retrospective reviews. Weak points in available PSAs were identified and recommendations were made aiming at improving consistency of the PSAs. The sensitivity of PSA-results to basic assumptions was demonstrated and the sensitivity to data assignment and to choices of methods for analysis of selected topics was investigated. (author)

  1. Cannabinoid and opioid interactions: implications for opiate dependence and withdrawal.

    Science.gov (United States)

    Scavone, J L; Sterling, R C; Van Bockstaele, E J

    2013-09-17

    Withdrawal from opiates, such as heroin or oral narcotics, is characterized by a host of aversive physical and emotional symptoms. High rates of relapse and limited treatment success rates for opiate addiction have prompted a search for new approaches. For many opiate addicts, achieving abstinence may be further complicated by poly-drug use and co-morbid mental disorders. Research over the past decade has shed light on the influence of endocannabinoids (ECs) on the opioid system. Evidence from both animal and clinical studies point toward an interaction between these two systems, and suggest that targeting the EC system may provide novel interventions for managing opiate dependence and withdrawal. This review will summarize the literature surrounding the molecular effects of cannabinoids and opioids on the locus coeruleus-norepinephrine system, a key circuit implicated in the negative sequelae of opiate addiction. A consideration of the trends and effects of marijuana use in those seeking treatment to abstain from opiates in the clinical setting will also be presented. In summary, the present review details how cannabinoid-opioid interactions may inform novel interventions in the management of opiate dependence and withdrawal. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Rotational dependence of Fermi-type resonance interactions in molecules

    Science.gov (United States)

    Mikhailov, Vladimir M.; Smirnov, M. A.

    1997-03-01

    In Pasadena, (Milliken Lab., USA, 1930) F. Rossetti has observed in Raman spectrum of carbon-dioxide molecule the full symmetric vibration of carbon dioxide appeared as the group of four near lying lines instead of the waited single line. The true interpretation of this enigmatic effect (in that time) was given by E. Fermi -- accidental degeneration of the first excited state of the full symmetric vibration in carbon dioxide. It was the first example of the event observed later in various organic molecules. This event was named as resonance Fermi. The rotational dependence of Fermi type resonance interactions in quasirigid molecules in dominant approximation can be selected in an expansion of the effective vibration-rotation Hamiltonian Hvib- roteff by the operator H(g)(Fermi) equals H30 plus (Sigma) nH3n(g). Let us consider in detail the problem of the construction of the effective vibration-rotational Hamiltonian HVR yields Heff from the point of view of various ordering schemes (grouping) of the vibrational-rotational interactions with sequential analysis of the choice of the convenient grouping adequate to the spectroscopic problem.

  3. Modelling interactions of toxicants and density dependence in wildlife populations

    Science.gov (United States)

    Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.

    2013-01-01

    1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to

  4. Study of the magnetic properties of the Ce{sub x} La{sub 1−x} Pt alloy system: Which interaction establishes ferromagnetism in Kondo systems?

    Energy Technology Data Exchange (ETDEWEB)

    Očko, M., E-mail: ocko@ifs.hr [Institute of Physics, Bijenička c 46, 10000 Zagreb (Croatia); Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička c. 54, Zagreb (Croatia); Zadro, K. [Department of Physics, University of Zagreb, Bijenička c. 32, 10000 Zagreb (Croatia); Drobac, Đ.; Aviani, I.; Salamon, K. [Institute of Physics, Bijenička c 46, 10000 Zagreb (Croatia); Mixson, D.; Bauer, E.D.; Sarrao, J.L. [Los Alamos National Laboratory, Mail Stop K 764, Los Alamos, NM 87545 (United States)

    2016-11-01

    In order to study Kondo ferromagnetism, particularly of the CePt compound, we investigate the magnetic properties of the Ce{sub x}La{sub 1−x}Pt alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie–Weiss law at higher temperatures down to about 100 K, but also at the low temperatures above the phase transition. At higher temperatures, the extracted Curie–Weiss constant, θ{sub p}, is negative in contrast to the low temperatures, where θ{sub C} is positive. The extracted effective magnetic moment from the higher temperatures is the same for all the alloys and is close to the theoretical value of the isolated Ce{sup 3+} ion, μ=2.54 μ{sub B}, indicating the hybridization is weak and, and consequently, Kondo interaction is weak. These observations confirm the main important conclusions inferred from an earlier transport properties investigation of this alloy system. The Curie temperature extracted by various approaches was compared to the extraction from the ac-susceptibility measurements. We show that its concentration dependence is not consistent with Doniach's diagram. Hence, RKKY interaction is not responsible for the ferromagnetism in this alloy system. - Highlights: • We have found that for Ce{sub x}La{sub 1−x}Pt the temperature of the ferromagnetic transition linearly depends on x. • The Kondo temperature is independent of x. • Hence, RKKY interaction is not responsible for the ferromagnetism. • The lattice parameters show that direct exchange interaction is possible. • We expect that the investigations of Ce{sub x}Y{sub 1−x} will confirm our conclusions.

  5. Constraints on Exotic Spin-Dependent Interactions Between Matter and Antimatter from Antiprotonic Helium Spectroscopy

    Science.gov (United States)

    Ficek, Filip; Fadeev, Pavel; Flambaum, Victor V.; Jackson Kimball, Derek F.; Kozlov, Mikhail G.; Stadnik, Yevgeny V.; Budker, Dmitry

    2018-05-01

    Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard model particles. Here, we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.

  6. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    Directory of Open Access Journals (Sweden)

    Bardia F Behabadi

    Full Text Available Neocortical pyramidal neurons (PNs receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  7. Energy dependence of radiation interaction parameters of some organic compounds

    Science.gov (United States)

    Singh, Mohinder; Tondon, Akash; Sandhu, B. S.; Singh, Bhajan

    2018-04-01

    Gamma rays interact with a material through photoelectric absorption, Compton scattering, Rayleigh scattering and Pair production in the intermediate energy range. The probability of occurrence of a particular type of process depends on the energy of incident gamma rays, atomic number of the material, scattering angle and geometrical conditions. Various radiological parameters for organic compounds, namely ethylene glycol (C2H6O2), propylene glycol (C3H8O2), glycerin (C3H8O3), isoamyl alcohol (C5H12O), butanone (C4H8O), acetophenone (C8H8O2), cyclohexanone (C6H10O), furfural (C5H4O2), benzaldehyde (C7H6O), cinnamaldehyde (C9H8O), glutaraldehyde (C5H8O2), aniline (C6H7N), benzyl amine (C6H7N), nitrobenzene (C6H5NO2), ethyl benzene (C8H10), ethyl formate (C3H6O2) and water (H2O) are presented at 81, 122, 356 and 511 keV energies employing NaI(Tl) scintillation detector in narrow-beam transmission geometry. The radiation interaction parameters such as mass attenuation, molar extinction and mass energy absorption coefficients, half value layer, total atomic and effective electronic cross-sections and CT number have been evaluated for these organic compounds. The general trend of values of mass attenuation coefficients, half value layer, molar extinction coefficients, total atomic and effective electronic cross-sections and mass energy absorption coefficients shows a decrease with increase in incident gamma photon energy. The values of CT number are found to increases linearly with increase of effective atomic number (Zeff). The variation in CT number around Zeff ≈ 3.3 shows the peak like structure with respect to water and the correlation between CT number and linear attenuation coefficient is about 0.99. Appropriate equations are fitted to these experimentally determined parameters for the organic compounds at incident photon energy ranging from 81 keV to 511 keV used in the present study. Experimental values are compared with the theoretical data obtained using Win

  8. Belarus and Interdependence: The Influence of Dependence on International Interaction

    OpenAIRE

    Behrends, Haylee

    2016-01-01

    In today's globalized world it is nearly impossible for countries to act independently without some degree of cooperation. It is even more diffult for countries with high levels of dependence. Dependence in Belarus on others influences its foreign policy in a way that inhibits Belarus' power. The degree of dependence, power, and interdependence in Belarus is analyzed by looking at its level of participation in international organizations, trade partners, and reliance on foreign aid. Powered b...

  9. Chirality dependent interaction of ammonia with carbon nanotubes

    Science.gov (United States)

    Talukdar, Keka; Shantappa, Anil

    2018-04-01

    For the specific structure and extraordinary properties, carbon nanotubes (CNTs) have many applications in diversified fields. The interaction of CNTs with ammonia is a very interesting matter to study as it is related to the application of CNTs as ammonia sensor. Here the interaction of single walled zigzag, armchair and chiral carbon nanotubes is studied in respect of the change in energies before and after binding with ammonia by molecular dynamics simulation. Their deformation after simulation is modeled. The change of thermal conductivity of the CNTs is also found by simulation. The potential energy before and after absorption of ammonia gives useful information of the system. Thermal conductivities of the ammonia bound CNTs are changed considerably. It is observed that the potential energy and thermal conductivity both are changing for the interaction with ammonia and hence they are sensitive to ammonia binding.

  10. Angular dependence of high Mach number plasma interactions

    International Nuclear Information System (INIS)

    Thomas, V.A.; Brecht, S.H.

    1987-01-01

    In this paper a 2-1/2-dimensional hybrid code is used to examine the collisionless large spatial scale (kc/ω pi ∼ 1) low-frequency (ω ∼ ω ci ) interaction initiated by a plasma shell of finite width traveling at high Alfven Mach number relative to a uniform background plasma. Particular attention is given to the angle of the relative velocity relative to the ambient magnetic field for the range of angles O < θ < π/2. An attempt is made to parameterize some of the important physics including the Alfven ion cyclotron instability, the field-aligned electromagnetic ion counter streaming instability, mixing of the plasma shell with the background ions, and structuring of the interaction region. These results are applicable to various astrophysical interactions such as bow shocks and interplanetary shocks

  11. Exposure-dependent misclassification of exposure in interaction analyses

    DEFF Research Database (Denmark)

    Lundberg, Mats; Hallqvist, J; Diderichsen, Finn

    1999-01-01

    The objectives of this paper are to analyze the consequences of exposure misclassification on effect estimates in interaction analysis, and to develop a mathematical equation for the potentially biased estimate. The main point is to identify situations in which misclassification of the first expo...

  12. Time dependent density matrix theory and effective interaction

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    A correlated ground state of {sup 16}O and an E2 giant resonance built on it are calculated using an extended version of the time-dependent Hartree-Fock theory called the time-dependent density-matrix theory (TDDM). The Skyrme force is used in the calculation of both a mean field and two-body correlations. It is found that TDDM gives reasonable ground-state correlations and a large spreading width of the E2 giant resonance when single-particle states in the continuum are treated appropriately. (author)

  13. Interaction of dependent and non-dependent regions of the acutely injured lung during a stepwise recruitment manoeuvre

    International Nuclear Information System (INIS)

    Gómez-Laberge, Camille; Rettig, Jordan S; Arnold, John H; Wolf, Gerhard K; Smallwood, Craig D; Boyd, Theonia K

    2013-01-01

    The benefit of treating acute lung injury with recruitment manoeuvres is controversial. An impediment to settling this debate is the difficulty in visualizing how distinct lung regions respond to the manoeuvre. Here, regional lung mechanics were studied by electrical impedance tomography (EIT) during a stepwise recruitment manoeuvre in a porcine model with acute lung injury. The following interaction between dependent and non-dependent regions consistently occurred: atelectasis in the most dependent region was reversed only after the non-dependent region became overdistended. EIT estimates of overdistension and atelectasis were validated by histological examination of lung tissue, confirming that the dependent region was primarily atelectatic and the non-dependent region was primarily overdistended. The pulmonary pressure–volume equation, originally designed for modelling measurements at the airway opening, was adapted for EIT-based regional estimates of overdistension and atelectasis. The adaptation accurately modelled the regional EIT data from dependent and non-dependent regions (R 2 > 0.93, P < 0.0001) and predicted their interaction during recruitment. In conclusion, EIT imaging of regional lung mechanics reveals that overdistension in the non-dependent region precedes atelectasis reversal in the dependent region during a stepwise recruitment manoeuvre. (paper)

  14. Effects of isospin and momentum dependent interactions on thermal properties of asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Xu Jun; Ma Hongru; Chen Liewen; Li Baoan

    2008-01-01

    Thermal properties of asymmetric nuclear matter are studied within a self-consistent thermal model using an isospin and momentum-dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, a momentum-independent interaction (MID), and an isoscalar momentum-dependent interaction (eMDYI). In particular, we study the temperature dependence of the isospin-dependent bulk and single-particle properties, the mechanical and chemical instabilities, and liquid-gas phase transition in hot asymmetric nuclear matter. Our results indicate that the temperature dependence of the equation of state and the symmetry energy are not so sensitive to the momentum dependence of the interaction. The symmetry energy at fixed density is found to generally decrease with temperature and for the MDI interaction the decrement is essentially due to the potential part. It is further shown that only the low momentum part of the single-particle potential and the nucleon effective mass increases significantly with temperature for the momentum-dependent interactions. For the MDI interaction, the low momentum part of the symmetry potential is significantly reduced with increasing temperature. For the mechanical and chemical instabilities as well as the liquid-gas phase transition in hot asymmetric nuclear matter, our results indicate that the boundaries of these instabilities and the phase-coexistence region generally shrink with increasing temperature and are sensitive to the density dependence of the symmetry energy and the isospin and momentum dependence of the nuclear interaction, especially at higher temperatures

  15. Importance of momentum dependence interaction on the isospin effects of two-body dissipation

    International Nuclear Information System (INIS)

    Yang Yanfang; Guo Wenjun; Zhao Qiang; Liu Jianye; Zuo Wei

    2002-01-01

    The role of momentum dependence equation of state on the nuclear stopping for the isospin dependence and the isospin independence of in-medium nucleon-nucleon cross section is studied by using the isospin dependence quantum molecular dynamics. The nuclear stopping depends strongly on the isospin dependence of in-medium nucleon-nucleon cross section and weakly on the isospin dependence of the mean field-symmetry potential from above the Fermi energy to about 150 MeV/u for the small impact parameters. A detail study indicates that the difference between the nuclear stopping for the isospin dependence and the isospin independence of in-medium nucleon-nucleon cross section depends sensitively on the momentum dependence interaction, namely, the difference between the nuclear stopping for the isospin dependence and the isospin independence of in-medium nucleon-nucleon cross section in the present of momentum dependence interaction is larger than that without the momentum dependence interaction (MDI) for the mass symmetry and mass asymmetry reaction systems, neutron-rich and neutron-poor reaction systems. Namely, MDI increases the sensitivity of the nuclear stopping on the isospin dependence nucleon-nucleon cross section. Therefore, the knowledge on the isospin dependence of in-medium nucleon-nucleon cross section can be extracted more accurately from nucleon stopping as a probe if the momentum dependence interaction is taken into account

  16. Temperature dependence of the beam-foil interaction

    International Nuclear Information System (INIS)

    Gay, T.J.; Berry, H.G.

    1978-01-01

    The beam energy dependence between 50 and 200 keV of the linear polarization fraction (M/I) of the 2s 1 S--3p 1 P, 5016 A transition in He I on temperature was measured. The thin carbon exciter foils were heated externally by nichrome resistance elements. The measurements of Hight et al. are duplicated; the energy and current dependences are the same for corresponding between beam heating and external heating. It was also observed that γ, the number of slow secondary electrons produced per incident ion, decreases with increasing foil temperature. These two effects, in conjunction, offer a plausible explanation for the variation of polarization with beam current density. 5 figures

  17. Scattering theory for explicitely time-dependent interactions

    International Nuclear Information System (INIS)

    Perusch, M.

    1982-01-01

    Multiple ionization of hydrogen atoms has got increased attention in recent years in connection with high-power lasers. Due to the strong external electromagnetic fields, perturbation theory is no longer valid. The expression for the multiple ionization probability contains the projections of the time-dependent Hamilton operators and the Moeller operators. The main point of the present work is a proof of existence and completeness of the Moeller operators. The proof of existence and completeness is given. The final chapter contains a physical interpretation and discussion of the multiple ionization probability. (G.Q.)

  18. Tables of density dependent effective interactions between 122 and 800 MeV

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1996-01-01

    Coordinate space density dependent effective nucleon-nucleon interaction based upon half-off-shell t and g-matrices are presented. These interactions are based upon the Paris interactions and are presented over a range of energies. 5 refs., 8 tabs

  19. Stretching a semiflexible polymer with orientation-dependent interactions

    International Nuclear Information System (INIS)

    Zhen Yi; Vilgis, Thomas A

    2009-01-01

    The mean field variational approach is employed to study the effect of a nematic field and an external constant force field on the elasticity of a semiflexible polymer. In the stationary phase, we obtain the force–extension relationship and calculate the hairpin density of a stretched semiflexible polymer in nematic solvents. The force–extension behavior is found to be controlled by the parameters gl p and gf where g is the strength of the nematic field, l p is the bare persistence length and f is the external force. Several distinct regimes for the elastic response and the hairpin density emerge depending on the value of gl p and gf. Qualitative comparisons between our computation and other theories are presented

  20. Temperature Dependent Variations of Phonon Interactions in Nanocrystalline Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2015-01-01

    Full Text Available The temperature dependent anharmonic behavior of the phonon modes of nanocrystalline CeO2 was investigated in the temperature range of 80–440 K. The anharmonic constants have been derived from the shift in phonon modes fitted to account for the anharmonic contributions as well as the thermal expansion contribution using the high pressure parameters derived from our own high pressure experimental data reported previously. The total anharmonicity has also been estimated from the true anharmonicity as well as quasiharmonic component. In the line-width variation analysis, the cubic anharmonic term was found to dominate the quartic term. Finally, the phonon lifetime also reflected the trend so observed.

  1. Time-dependent, multimode interaction analysis of the gyroklystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Swati, M. V., E-mail: swati.mv.ece10@iitbhu.ac.in; Chauhan, M. S.; Jain, P. K. [Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)

    2016-08-15

    In this paper, a time-dependent multimode nonlinear analysis for the gyroklystron amplifier has been developed by extending the analysis of gyrotron oscillators by employing the self-consistent approach. The nonlinear analysis developed here has been validated by taking into account the reported experimental results for a 32.3 GHz, three cavity, second harmonic gyroklystron operating in the TE{sub 02} mode. The analysis has been used to estimate the temporal RF growth in the operating mode as well as the nearby competing modes. Device gain and bandwidth have been computed for different drive powers and frequencies. The effect of various beam parameters, such as beam voltage, beam current, and pitch factor, has also been studied. The computational results have estimated the gyroklystron saturated RF power ∼319 kW at 32.3 GHz with efficiency ∼23% and gain ∼26.3 dB with device bandwidth ∼0.027% (8 MHz) for a 70 kV, 20 A electron beam. The computed results are found to be in agreement with the experimental values within 10%.

  2. Temperature dependence of high-resolution resonant photoemission spectra of CeSi

    International Nuclear Information System (INIS)

    Mimura, Kojiro; Noguchi, Satoru; Suzuki, Mitsuharu; Higashiguchi, Mitsuharu; Shimada, Kenya; Ichikawa, Kouichi; Taguchi, Yukihiro; Namatame, Hirofumi; Taniguchi, Masaki; Aita, Osamu

    2005-01-01

    High-resolution Ce 4d-4f resonant photoemission spectra near the Fermi level of CeSi with the Neel temperature of 5.9K have been measured at temperatures from 5.6 to 200K, in order to investigate the competition between the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction and the Kondo effect. As temperature is decreasing down to 30K, the intensity due to the Ce 4f 5/2 1 final state increases because of the evolution of the heavy Fermion behaviour caused by the Kondo effect. The intensity, however, decreases gradually from 30 to 5.6K. This indicates that the heavy Fermion behaviour is strongly suppressed by the anti-ferromagnetic ordering due to the RKKY interaction

  3. Linking plant specialization to dependence in interactions for seed set in pollination networks.

    Science.gov (United States)

    Tur, Cristina; Castro-Urgal, Rocío; Traveset, Anna

    2013-01-01

    Studies on pollination networks have provided valuable information on the number, frequency, distribution and identity of interactions between plants and pollinators. However, little is still known on the functional effect of these interactions on plant reproductive success. Information on the extent to which plants depend on such interactions will help to make more realistic predictions of the potential impacts of disturbances on plant-pollinator networks. Plant functional dependence on pollinators (all interactions pooled) can be estimated by comparing seed set with and without pollinators (i.e. bagging flowers to exclude them). Our main goal in this study was thus to determine whether plant dependence on current insect interactions is related to plant specialization in a pollination network. We studied two networks from different communities, one in a coastal dune and one in a mountain. For ca. 30% of plant species in each community, we obtained the following specialization measures: (i) linkage level (number of interactions), (ii) diversity of interactions, and (iii) closeness centrality (a measure of how much a species is connected to other plants via shared pollinators). Phylogenetically controlled regression analyses revealed that, for the largest and most diverse coastal community, plants highly dependent on pollinators were the most generalists showing the highest number and diversity of interactions as well as occupying central positions in the network. The mountain community, by contrast, did not show such functional relationship, what might be attributable to their lower flower-resource heterogeneity and diversity of interactions. We conclude that plants with a wide array of pollinator interactions tend to be those that are more strongly dependent upon them for seed production and thus might be those more functionally vulnerable to the loss of network interaction, although these outcomes might be context-dependent.

  4. Linking plant specialization to dependence in interactions for seed set in pollination networks.

    Directory of Open Access Journals (Sweden)

    Cristina Tur

    Full Text Available Studies on pollination networks have provided valuable information on the number, frequency, distribution and identity of interactions between plants and pollinators. However, little is still known on the functional effect of these interactions on plant reproductive success. Information on the extent to which plants depend on such interactions will help to make more realistic predictions of the potential impacts of disturbances on plant-pollinator networks. Plant functional dependence on pollinators (all interactions pooled can be estimated by comparing seed set with and without pollinators (i.e. bagging flowers to exclude them. Our main goal in this study was thus to determine whether plant dependence on current insect interactions is related to plant specialization in a pollination network. We studied two networks from different communities, one in a coastal dune and one in a mountain. For ca. 30% of plant species in each community, we obtained the following specialization measures: (i linkage level (number of interactions, (ii diversity of interactions, and (iii closeness centrality (a measure of how much a species is connected to other plants via shared pollinators. Phylogenetically controlled regression analyses revealed that, for the largest and most diverse coastal community, plants highly dependent on pollinators were the most generalists showing the highest number and diversity of interactions as well as occupying central positions in the network. The mountain community, by contrast, did not show such functional relationship, what might be attributable to their lower flower-resource heterogeneity and diversity of interactions. We conclude that plants with a wide array of pollinator interactions tend to be those that are more strongly dependent upon them for seed production and thus might be those more functionally vulnerable to the loss of network interaction, although these outcomes might be context-dependent.

  5. Isoscalar giant resonances and Landau parameters with density-dependent effective interactions

    International Nuclear Information System (INIS)

    Kohno, Michio; Ando, Kazuhiko

    1979-01-01

    Discussion is given on the relations between the Landau parameters and the isoscalar giant (quadrupole- and monopole-) resonance energies by using general density-dependent interactions. In the limit of infinite nuclear matter, the isoscalar giant quadrupole energy is shown to depend not only on the effective mass but also on the Landau parameter F 2 . Collective energies of the isoscalar giant resonances are calculated for 16 O and 40 Ca with four different effective interactions, G-0, B1, SII and SV, by using the scaling- and constrained Hartree-Fock-methods. It is shown that the dependence of the collective energies on the effective interactions is essentially determined by the Landau parameters. The G-0 force is found to be most successful in reproducing the giant resonance energies. Validity of the RPA-moment theorems is examined for the case of local density-dependent interactions. (author)

  6. Angular momentum and incident-energy dependence of nucleus-nucleus interaction

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1991-01-01

    The purpose of this paper is to understand intuitively the origin of the angular momentum and incident-energy dependence of the nucleus-nucleus interaction on the basis of the totally- antisymmetrized many-body theory. With the aim of understanding the structure of the nucleus-nucleus interaction, we show first that the nucleus-nucleus interaction can be written by the use of the density-distribution function and the phase-space distribution function instead of using the many-body wave function itself. And we show that the structure change of the density-distribution function with the increase of the angular momentum causes the angular momentum dependence of the nucleus-nucleus interaction and that the incident-energy dependence of the nucleus-nucleus interaction originates from the structure change of the phase-space distribution function

  7. Distance- and momentum-dependence of modern nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Feldmeier, Hans; Neff, Thomas; Weber, Dennis

    2015-01-01

    A phase-space representation of nuclear interactions, which depends on the distance r vector and relative momentum p vector of the nucleons, is presented. It visualizes in an intuitive way the non-local behavior introduced by cutoffs in momentum space or renormalization procedures that are used to adapt the interaction to low momentum many-body Hilbert spaces, as done in the unitary correlation operator method (UCOM) or with the similarity renormalization group (SRG). It allows to develop intuition about the various interactions and illustrates how the softened interactions reduce the short-range repulsion in favor of non-locality or momentum dependence while keeping the scattering phase shifts invariant. It also reveals that these effective interactions can have undesired complicated momentum dependencies at momenta around and above the Fermi momentum. Properties, similarities, and differences of the Argonne and the N3LO chiral potential, and their UCOM and SRG derivatives are discussed. (author)

  8. A nonperturbative treatment of spin-dependent interactions of light and heavy quarkonia

    International Nuclear Information System (INIS)

    Schoeberl, F.

    1986-01-01

    We propose a nonrelativistic potential model with a regularized Coulomb potential at short range which leads to spin-dependent interactions which are at most as singular as 1/r. The Schroedinger equation is solved numerically including all spin-dependent interactions nonperturbatively. The predicted spectrum of light and heavy quarkonia is in remarkable agreement with experiment. Even the leptonic decay widths as well as the M1 transitions are in agreement with experiment. (Author)

  9. Effects of isospin and momentum-dependent interactions on thermal properties of nuclear matter

    International Nuclear Information System (INIS)

    Xu Jun; Ma Hongru; Chen Liewen; Li Baoan

    2009-01-01

    In this article, three models with different isospin and momentum dependence are used to study the thermodynamical properties of asymmetric nuclear matter. They are isospin and momentum-dependent MDI interaction constrained by the isospin diffusion data of heavy ion collision, the momentum-independent MID interaction and the isoscalar momentum-dependent eMDYI interaction. Temperature effects of symmetry energy, mechanical and chemical instability and liquid-gas phase transition are analyzed. It is found that for MDI model the temperature effects of the symmetry energy attribute from both the kinetic and potential energy, while only potential part contributes to the decreasing of the symmetry energy for MID and eMDYI models. We also find that the mechanical instability, chemical instability and liquid-gas phase transition are all sensitive to the isospin and momentum dependence and the density dependence of the symmetry energy. (authors)

  10. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II

    DEFF Research Database (Denmark)

    Elmlund, Hans; Baraznenok, Vera; Lindahl, Martin

    2006-01-01

    CDK8 (cyclin-dependent kinase 8), along with CycC, Med12, and Med13, form a repressive module (the Cdk8 module) that prevents RNA polymerase II (pol II) interactions with Mediator. Here, we report that the ability of the Cdk8 module to prevent pol II interactions is independent of the Cdk8......-dependent kinase activity. We use electron microscopy and single-particle reconstruction to demonstrate that the Cdk8 module forms a distinct structural entity that binds to the head and middle region of Mediator, thereby sterically blocking interactions with pol II....

  11. Knock-on type exchange and the density dependence of an effective interaction

    International Nuclear Information System (INIS)

    Jeukenne, J.P.; Mahaux, C.

    1981-01-01

    We investigate the origin of the density-dependence of the strength of an effective interaction previously derived from a Brueckner-Hartree-Fock calculation of the optical-model potential in nuclear matter. From the analysis of a model based on the Hartree-Fock approximation and on a Yukawa interaction with a Majorana exchange component, we study to what extent this dependence derives from the momentum-dependence of the exchange contribution of the knock-on type. The model is also used to discuss zero-range pseudopotential methods for including this knock-on contribution. (orig.)

  12. The Two Faces of Social Interaction Reward in Animal Models of Drug Dependence.

    Science.gov (United States)

    El Rawas, Rana; Saria, Alois

    2016-03-01

    Drug dependence is a serious health and social problem. Social factors can modify vulnerability to developing drug dependence, acting as risk factors or protective factors. Whereas stress and peer environment that encourage substance use may increase drug taking, strong attachments between family members and peer environment that do not experience drug use may protect against drug taking and, ultimately, drug dependence. The rewarding effects of drug abuse and social interaction can be evaluated using animal models. In this review we focus on evaluating social interaction reward in the conditioned place preference paradigm. We give an overview of how social interaction, if made available within the drug context, may facilitate, promote and interact with the drug's effects. However, social interaction, if offered alternatively outside the drug context, may have pronounced protective effects against drug abuse and relapse. We also address the importance of the weight difference parameter between the social partners in determining the positive or "agonistic" versus the hostile or "antagonistic" social interaction. We conclude that understanding social interaction reward and its subsequent effects on drug reward is sorely needed for therapeutic interventions against drug dependence.

  13. Context-dependent interactions and the regulation of species richness in freshwater fish

    Science.gov (United States)

    MacDougall, Andrew S.; Harvey, Eric; McCune, Jenny L.; Nilsson, Karin A.; Bennett, Joseph; Firn, Jennifer; Bartley, Timothy; Grace, James B.; Kelly, Jocelyn; Tunney, Tyler D.; McMeans, Bailey; Matsuzaki, Shin-Ichiro S.; Kadoya, Taku; Esch, Ellen; Cazelles, Kevin; Lester, Nigel; McCann, Kevin S.

    2018-01-01

    Species richness is regulated by a complex network of scale-dependent processes. This complexity can obscure the influence of limiting species interactions, making it difficult to determine if abiotic or biotic drivers are more predominant regulators of richness. Using integrative modeling of freshwater fish richness from 721 lakes along an 11olatitudinal gradient, we find negative interactions to be a relatively minor independent predictor of species richness in lakes despite the widespread presence of predators. Instead, interaction effects, when detectable among major functional groups and 231 species pairs, were strong, often positive, but contextually dependent on environment. These results are consistent with the idea that negative interactions internally structure lake communities but do not consistently ‘scale-up’ to regulate richness independently of the environment. The importance of environment for interaction outcomes and its role in the regulation of species richness highlights the potential sensitivity of fish communities to the environmental changes affecting lakes globally.

  14. Mapping DNA damage-dependent genetic interactions in yeast via party mating and barcode fusion genetics.

    Science.gov (United States)

    Díaz-Mejía, J Javier; Celaj, Albi; Mellor, Joseph C; Coté, Atina; Balint, Attila; Ho, Brandon; Bansal, Pritpal; Shaeri, Fatemeh; Gebbia, Marinella; Weile, Jochen; Verby, Marta; Karkhanina, Anna; Zhang, YiFan; Wong, Cassandra; Rich, Justin; Prendergast, D'Arcy; Gupta, Gaurav; Öztürk, Sedide; Durocher, Daniel; Brown, Grant W; Roth, Frederick P

    2018-05-28

    Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via en masse "party" mating can also be monitored en masse for growth to detect genetic interactions. By using site-specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG-GI enables multiplexed quantitative tracking of double mutants via next-generation sequencing. We applied BFG-GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), bleomycin, zeocin, and three other DNA-damaging environments. BFG-GI recapitulated known genetic interactions and yielded new condition-dependent genetic interactions. We validated and further explored a subnetwork of condition-dependent genetic interactions involving MAG1 , SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Competitive interactions between corals and turf algae depend on coral colony form.

    Science.gov (United States)

    Swierts, Thomas; Vermeij, Mark Ja

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral-turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship.

  16. Separation of Rashba and Dresselhaus spin-orbit interactions using crystal direction dependent transport measurements

    International Nuclear Information System (INIS)

    Ho Park, Youn; Kim, Hyung-jun; Chang, Joonyeon; Hee Han, Suk; Eom, Jonghwa; Choi, Heon-Jin; Cheol Koo, Hyun

    2013-01-01

    The Rashba spin-orbit interaction effective field is always in the plane of the two-dimensional electron gas and perpendicular to the carrier wavevector but the direction of the Dresselhaus field depends on the crystal orientation. These two spin-orbit interaction parameters can be determined separately by measuring and analyzing the Shubnikov-de Haas oscillations for various crystal directions. In the InAs quantum well system investigated, the Dresselhaus term is just 5% of the Rashba term. The gate dependence of the oscillation patterns clearly shows that only the Rashba term is modulated by an external electric field

  17. A method for solving a three-body problem with energy-dependent interactions

    International Nuclear Information System (INIS)

    Safronov, A.N.

    1994-01-01

    A method is proposed for solving a three-body problem with energy-dependent interactions. This method is based on introducing the dependence of scattering operators and state vectors on an additional external parameter. Effects caused by the energy dependence of the interaction operator are investigated by using the unitary condition for the amplitude of the 2 → 2 and 2 → 3 transitions. It is shown, in particular, that taking this dependence into account leads to a change in the relation between the asymptotic normalization factor of the wave function of the three-body bound state and the vertex constant of virtual dissociation (synthesis) of the system into two fragments. 15 refs

  18. Nonlinear dynamics of contact interaction of a size-dependent plate supported by a size-dependent beam

    Science.gov (United States)

    Awrejcewicz, J.; Krysko, V. A.; Yakovleva, T. V.; Pavlov, S. P.; Krysko, V. A.

    2018-05-01

    A mathematical model of complex vibrations exhibited by contact dynamics of size-dependent beam-plate constructions was derived by taking the account of constraints between these structural members. The governing equations were yielded by variational principles based on the moment theory of elasticity. The centre of the investigated plate was supported by a beam. The plate and the beam satisfied the Kirchhoff/Euler-Bernoulli hypotheses. The derived partial differential equations (PDEs) were reduced to the Cauchy problems by the Faedo-Galerkin method in higher approximations, whereas the Cauchy problem was solved using a few Runge-Kutta methods. Reliability of results was validated by comparing the solutions obtained by qualitatively different methods. Complex vibrations were investigated with the help of methods of nonlinear dynamics such as vibration signals, phase portraits, Fourier power spectra, wavelet analysis, and estimation of the largest Lyapunov exponents based on the Rosenstein, Kantz, and Wolf methods. The effect of size-dependent parameters of the beam and plate on their contact interaction was investigated. It was detected and illustrated that the first contact between the size-dependent structural members implies chaotic vibrations. In addition, problems of chaotic synchronization between a nanoplate and a nanobeam were addressed.

  19. Chemical Potential Dependence of the Dressed-Quark Propagator from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.

  20. Spin-zero DKP equation with two time-dependent interactions

    Energy Technology Data Exchange (ETDEWEB)

    Saeedi, K.; Hassanabadi, H. [Shahrood University of Technology, Physics Department, Shahrood (Iran, Islamic Republic of); Zarrinkamar, S. [Islamic Azad University, Department of Basic Sciences, Garmsar Branch, Garmsar (Iran, Islamic Republic of)

    2016-11-15

    The Duffin-Kemmer-Petiau equation for spin-zero bosons is considered in (1 + 1) - and (2 + 1) -dimensional space-time. Some time-dependent interactions are considered within the framework and quasi-exact solutions are provided. The results are discussed via various figures. (orig.)

  1. The time-dependent Hartree-Fock equations with Coulomb two-body interaction

    International Nuclear Information System (INIS)

    Chadam, J.M.; Glassey, R.T.

    1975-06-01

    The existence and uniqueness of global solutions to the Cauchy problem is proved in the space of ''smooth'' density matrices for the time-dependent Hartree-Fock equations describing the motion of finite Fermi systems interacting via a Coulomb two-body potential [fr

  2. Dependence of four-body observables on the range of UPA-like effective interactions

    International Nuclear Information System (INIS)

    Perne, R.; Sandhas, W.

    1977-07-01

    A generalized unitary pole approximation (UPA) concerning the three-body amplitudes in the kernel of four-body integral equations is introduced. We furhtermore study the dependence of the 4 He binding energy and of four-body cross sections upon a position space cut-off parameter in the effective interactions. (orig.) [de

  3. Wave-Vector Dependence of the Jahn-Teller Interactions in TmVO4

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Hayes, W.; Smith, S. H.

    1975-01-01

    The resonant Jahn-Teller coupling of the B2g acoustic phonon and the Zeeman-split ground doublet in TmVO4 has been studied by inelastic neutron scattering. Tuning of the magnetic field provides a means for investigating the wave-vector dependence of the interactions. We find that the coupling...

  4. Temperature dependence of the Rashba and Dresselhaus spin–orbit interactions in GaAs wells

    International Nuclear Information System (INIS)

    Wang, W.; Fu, J.Y.

    2016-01-01

    We have recently shown [Fu and Egues, Phys. Rev. B 91 (2015) 075408] unusual properties of the spin–orbit (SO) interaction in relatively wide quantum wells, e.g., the second subband Rashba term can vanish even in asymmetric configurations. Here we report our theoretical investigation on the temperature dependence of Rashba and Dresselhaus SO interactions in GaAs both relatively narrow and wide wells, having the electron occupancy of one and two subbands, respectively. We consider all relevant intra- and intersubband SO terms. We find that the variation of intrasubband couplings as temperatures range from 0.3 to 300 K could attain, ∼meV Å, the order of usual magnitudes for SO terms in GaAs wells. Moreover, we observe distinct behaviors of the SO interaction of the two subbands, as functions of temperature. On the other band, we find that the intersubband SO terms have a relatively weak temperature dependence.

  5. Temperature dependence of the Rashba and Dresselhaus spin–orbit interactions in GaAs wells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [Department of Physics, Jining University, 273155 Qufu, Shandong (China); Fu, J.Y., E-mail: jiyongfu78@gmail.com [Department of Physics, Qufu Normal University, 273165 Qufu, Shandong (China); Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP (Brazil); Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil)

    2016-02-01

    We have recently shown [Fu and Egues, Phys. Rev. B 91 (2015) 075408] unusual properties of the spin–orbit (SO) interaction in relatively wide quantum wells, e.g., the second subband Rashba term can vanish even in asymmetric configurations. Here we report our theoretical investigation on the temperature dependence of Rashba and Dresselhaus SO interactions in GaAs both relatively narrow and wide wells, having the electron occupancy of one and two subbands, respectively. We consider all relevant intra- and intersubband SO terms. We find that the variation of intrasubband couplings as temperatures range from 0.3 to 300 K could attain, ∼meV Å, the order of usual magnitudes for SO terms in GaAs wells. Moreover, we observe distinct behaviors of the SO interaction of the two subbands, as functions of temperature. On the other band, we find that the intersubband SO terms have a relatively weak temperature dependence.

  6. Thermodynamics of InxGa1-xN MOVPE using x-dependent interaction parameter

    International Nuclear Information System (INIS)

    Moon, Won Ha; Kim, Changsung Sean; Choi, Chang Hwan

    2007-01-01

    Thermodynamic properties of In x Ga 1-x N MOVPE are investigated using x-dependent interaction parameter. The interaction parameter (Ω=-1.3435x+6.1607 (kcal/mol)) dependent on In composition is calculated using a molecular-mechanics method to investigate the phase stability of InGaN. This parameter is more reliable than that proposed until now. The phase diagram and critical temperature (1392 K at x=0.44) of In x Ga 1-x N are also obtained. With this interaction parameter, many thermodynamic characteristics of InGaN by the change of In composition, input V/III ratio, and input mol ratio of group III sources are calculated to predict the growth condition of InGaN. These results are in agreement with other data for InGaN. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. The effectiveness of interactive journaling in reducing recidivism among substance-dependent jail inmates.

    Science.gov (United States)

    Proctor, Steven L; Hoffmann, Norman G; Allison, Steve

    2012-04-01

    The present study sought to evaluate the influence of interactive journaling on criminal recidivism and identify significant predictors of recidivism among a sample of 183 male inmates incarcerated in a local jail facility randomly assigned to either an interactive journaling condition or a control group. All participants met DSM-IV-TR criteria for substance dependence, had their current offense indicate substance involvement, and had a minimum of one previous arrest in the prior 12 months. The recidivism rate (51%), in terms of subsequent bookings within a 12-month period, for the journaling group was significantly lower than the recidivism rate (66%) for the control group, χ(2)(1, 183) = 4.13, p journaling vs. placebo), and employment status. Interactive journaling appears to show promise as a brief treatment intervention strategy for substance dependence in local jail settings and may have the potential for reducing recidivism.

  8. Effects of symmetry energy and momentum dependent interaction on low-energy reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Zheng H.

    2016-01-01

    Full Text Available We study the dipole response associated with the Pygmy Dipole Resonance (PDR and the Isovector Giant Dipole Resonance (IVGDR, in connection with specific properties of the nuclear effective interaction (symmetry energy and momentum dependence, in the neutron-rich systems 68Ni, 132Sn and 208Pb. We perform our investigation within a microscopic transport model based on the Landau-Vlasov kinetic equation.We observe that the peak energies of PDR and IVGDR are shifted to higher values when employing momentum dependent interactions, with respect to the results obtained neglecting momentum dependence. The calculated energies are close to the experimental values and similar to the results obtained in Hartree-Fock (HF with Random Phase Approximation (RPA calculations.

  9. Azimuthal angle dependence of Coulomb and nuclear interactions between two deformed nuclei

    International Nuclear Information System (INIS)

    Ismail, M.; Ellithi, A. Y.; Botros, M. M.; Mellik, A. E.

    2007-01-01

    The azimuthal angle (φ) variation of the Coulomb and nuclear heavy ion (HI) potentials is studied in the framework of the double folding model, which is derived from realistic nuclear density distributions and a nucleon-nucleon (NN) interaction. The present calculation shows that the variation of HI potentials with the azimuthal angle depends strongly on the range of the NN forces. For the long-range Coulomb force, the maximum variation with φ is about 0.9%, and for HI potential derived from zero-range NN interaction the φ-variation can reach up to 90.0%. Our calculations are compared with the recent φ-dependence of the HI potential derived from proximity method. The present realistic φ-dependence calculations of the HI potential is completely different from the results of the proximity calculations

  10. From interatomic interaction potentials via Einstein field equation techniques to time dependent contact mechanics

    International Nuclear Information System (INIS)

    Schwarzer, N

    2014-01-01

    In order to understand the principle differences between rheological or simple stress tests like the uniaxial tensile test to contact mechanical tests and the differences between quasistatic contact experiments and oscillatory ones, this study resorts to effective first principles. This study will show how relatively simple models simulating bond interactions in solids using effective potentials like Lennard-Jones and Morse can be used to investigate the effect of time dependent stress-induced softening or stiffening of these solids. The usefulness of the current study is in the possibility of deriving relatively simple dependences of the bulk-modulus B on time, shear and pressure P with time t. In cases where it is possible to describe, or at least partially describe a material by Lennard-Jones potential approaches, the above- mentioned dependences are even completely free of microscopic material parameters. Instead of bond energies and length, only specific integral parameters like Young’s modulus and Poisson’s ratio are required. However, in the case of time dependent (viscose) material behavior the parameters are not constants anymore. They themselves depend on time and the actual stress field, especially the shear field. A body completely consisting of so called standard linear solid interacting particles will then phenomenologically show a completely different and usually much more complicated mechanical behavior. The influence of the time dependent pressure-shear-induced Young’s modulus change is discussed with respect to mechanical contact experiments and their analysis in the case of viscose materials. (papers)

  11. Size-dependent Fano Interaction in the Laser-etched Silicon Nanostructures

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh

    2008-01-01

    Full Text Available AbstractPhoto-excitation and size-dependent Raman scattering studies on the silicon (Si nanostructures (NSs prepared by laser-induced etching are presented here. Asymmetric and red-shifted Raman line-shapes are observed due to photo-excited Fano interaction in the quantum confined nanoparticles. The Fano interaction is observed between photo-excited electronic transitions and discrete phonons in Si NSs. Photo-excited Fano studies on different Si NSs show that the Fano interaction is high for smaller size of Si NSs. Higher Fano interaction for smaller Si NSs is attributed to the enhanced interference between photo-excited electronic Raman scattering and phonon Raman scattering.

  12. Tensile stress dependence of the magnetostatic interaction between Fe-rich wires

    International Nuclear Information System (INIS)

    Gawronski, P.; Zhukov, A.; Blanco, J.M.; Gonzalez, J.; KuIakowski, K.

    2005-01-01

    We study the influence of the applied tensile stress on the magnetostatic interaction between two amorphous Fe-rich wires. The hysteresis loop is measured for: (i) conventional wires produced by in-rotation-water method, with diameter of 125μm (ii) cold-drawn wires with diameter of 50μm. The stress dependence of the interaction field is evaluated from the shape of the hysteresis loops, which show characteristic two-step behaviour. These steps mark the values of the switching field of the wires. For the conventional wires the tensile stress dependence of the interaction field can be explained as a result of the tensile stress dependence of the magnetization. For the cold-drawn wires, the interaction field shows a maximum with the applied stress. This behaviour is interpreted as a consequence of a local variation of the domain structure at the wire ends. It modifies the stray field, and-as a consequence-the switching field of the neighbouring wire

  13. Time-dependent transport in interacting and noninteracting resonant-tunneling systems

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Wingreen, Ned S.; Meir, Yigal

    1994-01-01

    noninteracting resonant-tunneling system are presented. Due to the coherence between the leads and the resonant site, the current does not follow the driving signal adiabatically: a ''ringing'' current is found as a response to a voltage pulse, and a complex time dependence results in the case of harmonic......We consider a mesoscopic region coupled to two leads under the influence of external time-dependent voltages. The time dependence is coupled to source and drain contacts, the gates controlling the tunnel-barrier heights, or to the gates that define the mesoscopic region. We derive, with the Keldysh...... nonequilibrium-Green-function technique, a formal expression for the fully nonlinear, time-dependent current through the system. The analysis admits arbitrary interactions in the mesoscopic region, but the leads are treated as noninteracting. For proportionate coupling to the leads, the time-averaged current...

  14. The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins

    Directory of Open Access Journals (Sweden)

    Laura Graf

    2013-12-01

    Full Text Available The human cytomegalovirus (HCMV-encoded protein kinase, pUL97, is considered a cyclin-dependent kinase (CDK ortholog, due to shared structural and functional characteristics. The primary mechanism of CDK activation is binding to corresponding cyclins, including cyclin T1, which is the usual regulatory cofactor of CDK9. This study provides evidence of direct interaction between pUL97 and cyclin T1 using yeast two-hybrid and co-immunoprecipitation analyses. Confocal immunofluorescence revealed partial colocalization of pUL97 with cyclin T1 in subnuclear compartments, most pronounced in viral replication centres. The distribution patterns of pUL97 and cyclin T1 were independent of HCMV strain and host cell type. The sequence domain of pUL97 responsible for the interaction with cyclin T1 was between amino acids 231–280. Additional co-immunoprecipitation analyses showed cyclin B1 and cyclin A as further pUL97 interaction partners. Investigation of the pUL97-cyclin T1 interaction in an ATP consumption assay strongly suggested phosphorylation of pUL97 by the CDK9/cyclin T1 complex in a substrate concentration-dependent manner. This is the first demonstration of interaction between a herpesviral CDK ortholog and cellular cyclins.

  15. Generalized spin-dependent WIMP-nucleus interactions and the DAMA modulation effect

    Energy Technology Data Exchange (ETDEWEB)

    Scopel, Stefano; Yoon, Kook-Hyun; Yoon, Jong-Hyun, E-mail: scopel@sogang.ac.kr, E-mail: koreasds@naver.com, E-mail: pledge200@gmail.com [Department of Physics, Sogang University, Seoul (Korea, Republic of)

    2015-07-01

    Guided by non-relativistic Effective Field Theory (EFT) we classify the most general spin-dependent interactions between a fermionic Weakly Interacting Massive Particle (WIMP) and nuclei, and within this class of models we discuss the viability of an interpretation of the DAMA modulation result in terms of a signal from WIMP elastic scatterings using a halo-independent approach. We find that, although several relativistic EFT's can lead to a spin-dependent cross section, in some cases with an explicit, non-negligible dependence on the WIMP incoming velocity, three main scenarios can be singled out in the non-relativistic limit which approximately encompass them all, and that only differ by their dependence on the transferred momentum. For two of them compatibility between DAMA and other constraints is possible for a WIMP mass below 30 GeV, but only for a WIMP velocity distribution in the halo of our Galaxy which departs from a Maxwellian. This is achieved by combining a suppression of the WIMP effective coupling to neutrons (to evade constraints from xenon and germanium detectors) to an explicit quadratic or quartic dependence of the cross section on the transferred momentum (that leads to a relative enhancement of the expected rate off sodium in DAMA compared to that off fluorine in droplet detectors and bubble chambers). For larger WIMP masses the same scenarios are excluded by scatterings off iodine in COUPP.

  16. Medium energy inelastic proton-nucleus scattering with spin dependent NN interaction

    International Nuclear Information System (INIS)

    Ahmad, I.; Auger, J.P.

    1981-12-01

    The previously proposed effective profile expansion method for the Glauber multiple scattering model calculation has been extended to the case of proton-nucleus inelastic scattering with spin dependent NN interaction. Using the method which turns out to be computationally simple and of relatively wider applicability, a study of sensitivity of proton-nucleus inelastic scattering calculation to the sometimes neglected momentum transfer dependence of the NN scattering amplitude has been made. We find that the calculated polarization is particularly sensitive in this respect. (author)

  17. Interaction with epsin 1 regulates the constitutive clathrin-dependent internalization of ErbB3.

    Science.gov (United States)

    Szymanska, Monika; Fosdahl, Anne Marthe; Raiborg, Camilla; Dietrich, Markus; Liestøl, Knut; Stang, Espen; Bertelsen, Vibeke

    2016-06-01

    In contrast to other members of the EGF receptor family, ErbB3 is constitutively internalized in a clathrin-dependent manner. Previous studies have shown that ErbB3 does not interact with the coated pit localized adaptor complex 2 (AP-2), and that ErbB3 lacks two AP-2 interacting internalization signals identified in the EGF receptor. Several other clathrin-associated sorting proteins which may recruit cargo into coated pits have, however, been identified, and the study was performed to identify adaptors needed for constitutive internalization of ErbB3. A high-throughput siRNA screen was used to identify adaptor proteins needed for internalization of ErbB3. Upon knock-down of candidate proteins internalization of ErbB3 was identified using an antibody-based internalization assay combined with automatic fluorescence microscopy. Among 29 candidates only knock-down of epsin 1 turned out to inhibit ErbB3. Epsin 1 has ubiquitin interacting motifs (UIMs) and we show that ErbB3 interacts with an epsin 1 deletion mutant containing these UIMs. In support of an ErbB3-epsin 1 UIM dependent interaction, we show that ErbB3 is constitutively ubiquitinated, but that both ubiquitination and the ErbB3-epsin 1 interaction increase upon ligand binding. Altogether the results are consistent with a model whereby both constitutive and ligand-induced internalization of ErbB3 are regulated through interaction with epsin 1. Internalization is an important regulator of growth factor receptor mediated signaling and the current study identify mechanisms regulating plasma membrane turnover of ErbB3. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Scattering of polarized 7Li by 120Sn and projectile-target spin-dependent interactions

    International Nuclear Information System (INIS)

    Sakuragi, Y.; Yahiro, M.; Kamimura, M.; Tanifuji, M.

    1986-07-01

    Scattering of 7 Li by 120 Sn targets at E lab = 44 MeV is investigated in the coupled-channel frame by taking account of the projectile virtual excitations to the lowest three excited states. Calculations are performed by the cluster-folding (CF) interactions and the double-folding (DF) one. Both interactions reproduce very well the expeimental data on the cross section, the vector analyzing power, the second-rank tensor ones and the third-rank tensor one in elastic and projectile inelastic scattering, although some differences are found between the CF results and the DF ones. In the calculation, the virtual excitations of the projectile are important for most of the analyzing powers and the spin-orbit interaction is indispensable for the vector analyzing power. These features are in contrast to those in 7 Li - 58 Ni scattering at 20 MeV and are interpreted as over-Coulomb-barrier effects. The scattering amplitudes and the analyzing powers are investigated by the invariant amplitude method, which provides a key connecting the spin-dependent interactions to the analyzing powers. The method proposes an important relationship between the tensor analyzing powers, which is useful in analyses of both theoretical and experimental results. Finally, it is found that in the elastic scattering the second-rank tensor analyzing powers are proportional to the strength of the second-rank tensor interaction and the vector and third-rank tensor analyzing powers to the square or cube of the strength of this interaction, while in the inelastic scattering the cross section is proportional to the square of the strength of the tensor interaction, other quantities being weakly dependent on the strength. (author)

  19. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Daniel R.; DePrince, A. Eugene, E-mail: deprince@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390 (United States)

    2015-12-07

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.

  20. Characterization of relaxation processes in interacting vortex matter through a time-dependent correlation length

    International Nuclear Information System (INIS)

    Pleimling, Michel; Täuber, Uwe C

    2015-01-01

    Vortex lines in type-II superconductors display complicated relaxation processes due to the intricate competition between their mutual repulsive interactions and pinning to attractive point or extended defects. We perform extensive Monte Carlo simulations for an interacting elastic line model with either point-like or columnar pinning centers. From measurements of the space- and time-dependent height-height correlation function for lateral flux line fluctuations, we extract a characteristic correlation length that we use to investigate different non-equilibrium relaxation regimes. The specific time dependence of this correlation length for different disorder configurations displays characteristic features that provide a novel diagnostic tool to distinguish between point-like pinning centers and extended columnar defects. (paper)

  1. Quantum-well exciton dipolar interaction: Polarization-dependence and Z-LT splitting

    International Nuclear Information System (INIS)

    Nguyen Ba An.

    1996-12-01

    We calculate the exciton dipolar interaction in a semiconductor quantum well. The explicit polarization-dependence, i.e, the dependence on both the exciton dipole moment μ-vector and its inplane wavevector k-vector is derived. The obtained results for the three modes (L, T and Z modes) of the long-range part of the dipolar interaction satisfy the polarization sum rule for any parameters. In the long wavelength limit there is a Z-LT splitting which decreases as the well width increases reflecting a crossover from strict 2D to quasi-2D. A rough crossover from quasi-2D to 3D is also described. (author). 18 refs, 4 figs

  2. Temperature-dependent interaction potential between NF3 molecules and thermophysical properties of gaseous NF3

    International Nuclear Information System (INIS)

    Damyanova, M; Balabanova, E; Hohm, U

    2014-01-01

    A temperature-dependent effective intermolecular interaction potential is applied to describe the interaction between two nitrogen fluoride (NF 3 ) molecules in gas phase. To this end, a spherically-symmetric (n-6) Lennard-Jones temperature-dependent potential (LJTDP) is used. The (n-6) LJTDP takes into account the influence of vibrational excitation of the molecules on the potential parameters, namely, the equilibrium distance r m and the potential well depth ε. The potential parameters at T = 0 K were obtained from the very small amount of existing thermophysical equilibrium and transport properties of low-density NF 3 gas. Fitting formulae are tabulated for a fast and reliable prediction of the thermophysical properties and potential parameters in the temperature range between 200 K and 1200 K. A comparison is also presented between our estimates for some thermophysical properties of the NF 3 gas with the available experimental and calculated data.

  3. Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes

    OpenAIRE

    Tyler, Christina R.; Zychowski, Katherine E.; Sanchez, Bethany N.; Rivero, Valeria; Lucas, Selita; Herbert, Guy; Liu, June; Irshad, Hammad; McDonald, Jacob D.; Bleske, Barry E.; Campen, Matthew J.

    2016-01-01

    Background Deleterious consequences of exposure to traffic emissions may derive from interactions between carbonaceous particulate matter (PM) and gaseous components in a manner that is dependent on the surface area or complexity of the particles. To determine the validity of this hypothesis, we examined pulmonary and neurological inflammatory outcomes in C57BL/6 and apolipoprotein E knockout (ApoE?/?) male mice after acute and chronic exposure to vehicle engine-derived particulate matter, ge...

  4. Voltage-controlled low-energy switching of nanomagnets through Ruderman-Kittel-Kasuya-Yosida interactions for magnetoelectric device applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Bahniman, E-mail: bghosh@utexas.edu; Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K. [Microelectronics Research Center, University of Texas at Austin, 10100 Burnet Road, Bldg. 160, Austin, Texas 78758 (United States)

    2016-07-21

    In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated for ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.

  5. Voltage-controlled low-energy switching of nanomagnets through Ruderman-Kittel-Kasuya-Yosida interactions for magnetoelectric device applications

    International Nuclear Information System (INIS)

    Ghosh, Bahniman; Dey, Rik; Register, Leonard F.; Banerjee, Sanjay K.

    2016-01-01

    In this article, we consider through simulation low-energy switching of nanomagnets via electrostatically gated inter-magnet Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions on the surface of three-dimensional topological insulators, for possible memory and nonvolatile logic applications. We model the possibility and dynamics of RKKY-based switching of one nanomagnet by coupling to one or more nanomagnets of set orientation. Potential applications to both memory and nonvolatile logic are illustrated. Sub-attojoule switching energies, far below conventional spin transfer torque (STT)-based memories and even below CMOS logic appear possible. Switching times on the order of a few nanoseconds, comparable to times for STT switching, are estimated for ferromagnetic nanomagnets, but the approach also appears compatible with the use of antiferromagnets which may allow for faster switching.

  6. Direct Measurement of Nuclear Dependence of Charged Current Quasielasticlike Neutrino Interactions Using MINERvA

    Science.gov (United States)

    Betancourt, M.; Ghosh, A.; Walton, T.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Bodek, A.; Bravar, A.; Cai, T.; Martinez Caicedo, D. A.; Carneiro, M. F.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Sobczyk, J. T.; Solano Salinas, C. J.; Sánchez Falero, S.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Minerva Collaboration

    2017-08-01

    Charged-current νμ interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2 and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.

  7. When ecosystem services interact: crop pollination benefits depend on the level of pest control

    Science.gov (United States)

    Lundin, Ola; Smith, Henrik G.; Rundlöf, Maj; Bommarco, Riccardo

    2013-01-01

    Pollination is a key ecosystem service which most often has been studied in isolation although effects of pollination on seed set might depend on, and interact with, other services important for crop production. We tested three competing hypotheses on how insect pollination and pest control might jointly affect seed set: independent, compensatory or synergistic effects. For this, we performed a cage experiment with two levels of insect pollination and simulated pest control in red clover (Trifolium pratense L.) grown for seed. There was a synergistic interaction between the two services: the gain in seed set obtained when simultaneously increasing pollination and pest control outweighed the sum of seed set gains obtained when increasing each service separately. This study shows that interactions can alter the benefits obtained from service-providing organisms, and this needs to be considered to properly manage multiple ecosystem services. PMID:23269852

  8. Temporal scale dependent interactions between multiple environmental disturbances in microcosm ecosystems.

    Science.gov (United States)

    Garnier, Aurélie; Pennekamp, Frank; Lemoine, Mélissa; Petchey, Owen L

    2017-12-01

    Global environmental change has negative impacts on ecological systems, impacting the stable provision of functions, goods, and services. Whereas effects of individual environmental changes (e.g. temperature change or change in resource availability) are reasonably well understood, we lack information about if and how multiple changes interact. We examined interactions among four types of environmental disturbance (temperature, nutrient ratio, carbon enrichment, and light) in a fully factorial design using a microbial aquatic ecosystem and observed responses of dissolved oxygen saturation at three temporal scales (resistance, resilience, and return time). We tested whether multiple disturbances combine in a dominant, additive, or interactive fashion, and compared the predictability of dissolved oxygen across scales. Carbon enrichment and shading reduced oxygen concentration in the short term (i.e. resistance); although no other effects or interactions were statistically significant, resistance decreased as the number of disturbances increased. In the medium term, only enrichment accelerated recovery, but none of the other effects (including interactions) were significant. In the long term, enrichment and shading lengthened return times, and we found significant two-way synergistic interactions between disturbances. The best performing model (dominant, additive, or interactive) depended on the temporal scale of response. In the short term (i.e. for resistance), the dominance model predicted resistance of dissolved oxygen best, due to a large effect of carbon enrichment, whereas none of the models could predict the medium term (i.e. resilience). The long-term response was best predicted by models including interactions among disturbances. Our results indicate the importance of accounting for the temporal scale of responses when researching the effects of environmental disturbances on ecosystems. © 2017 The Authors. Global Change Biology Published by John Wiley

  9. Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution.

    Science.gov (United States)

    He, Lin; Liu, Fei-Fei; Zhao, Mengyao; Qi, Zhen; Sun, Xuefei; Afzal, Muhammad Zaheer; Sun, Xiaomin; Li, Yanhui; Hao, Jingcheng; Wang, Shuguang

    2018-04-01

    Understanding the interactions between graphene nanomaterials (GNMs) and antibiotics in aqueous solution is critical to both the engineering applications of GNMs and the assessment of their potential impact on the fate and transport of antibiotics in the aquatic environment. In this study, adsorption of one common antibiotic, tetracycline, by graphene oxide (GO) and reduced graphene oxide (RGO) was examined with multi-walled carbon nanotubes (MWCNTs) and graphite as comparison. The results showed that the tetracycline adsorption capacity by the four selected carbonaceous materials on the unit mass basis followed an order of GO>RGO>MWCNTs>graphite. Upon normalization by surface area, graphite, RGO and MWCNTs had almost the same high tetracycline adsorption affinity while GO exhibited the lowest. We proposed π-electron-property dependent interaction mechanisms to explain the observed different adsorption behaviors. Density functional theory (DFT) calculations suggested that the oxygen-containing functional groups on GO surface reduced its π-electron-donating ability, and thus decreased the π-based interactions between tetracycline and GO surface. Comparison of adsorption efficiency at different pH indicated that electrostatic interaction also played an important role in tetracycline-GO interactions. Site energy analysis confirmed a highly heterogeneous distribution of the binding sites and strong tetracycline binding affinity of GO surface. Copyright © 2017. Published by Elsevier B.V.

  10. Human HOX Proteins Use Diverse and Context-Dependent Motifs to Interact with TALE Class Cofactors.

    Science.gov (United States)

    Dard, Amélie; Reboulet, Jonathan; Jia, Yunlong; Bleicher, Françoise; Duffraisse, Marilyne; Vanaker, Jean-Marc; Forcet, Christelle; Merabet, Samir

    2018-03-13

    HOX proteins achieve numerous functions by interacting with the TALE class PBX and MEIS cofactors. In contrast to this established partnership in development and disease, how HOX proteins could interact with PBX and MEIS remains unclear. Here, we present a systematic analysis of HOX/PBX/MEIS interaction properties, scanning all paralog groups with human and mouse HOX proteins in vitro and in live cells. We demonstrate that a previously characterized HOX protein motif known to be critical for HOX-PBX interactions becomes dispensable in the presence of MEIS in all except the two most anterior paralog groups. We further identify paralog-specific TALE-binding sites that are used in a highly context-dependent manner. One of these binding sites is involved in the proliferative activity of HOXA7 in breast cancer cells. Together these findings reveal an extraordinary level of interaction flexibility between HOX proteins and their major class of developmental cofactors. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Functional interactions of HIV-infection and methamphetamine dependence during motor programming.

    Science.gov (United States)

    Archibald, Sarah L; Jacobson, Mark W; Fennema-Notestine, Christine; Ogasawara, Miki; Woods, Steven P; Letendre, Scott; Grant, Igor; Jernigan, Terry L

    2012-04-30

    Methamphetamine (METH) dependence is frequently comorbid with HIV infection and both have been linked to alterations of brain structure and function. In a previous study, we showed that the brain volume loss characteristic of HIV infection contrasts with METH-related volume increases in striatum and parietal cortex, suggesting distinct neurobiological responses to HIV and METH (Jernigan et al., 2005). Functional magnetic resonance imaging (fMRI) has the potential to reveal functional interactions between the effects of HIV and METH. In the present study, 50 participants were studied in four groups: an HIV+ group, a recently METH-dependent group, a dually affected group, and a group of unaffected community comparison subjects. An fMRI paradigm consisting of motor sequencing tasks of varying levels of complexity was administered to examine blood oxygenation level dependent (BOLD) changes. Within all groups, activity increased significantly with increasing task complexity in large clusters within sensorimotor and parietal cortex, basal ganglia, cerebellum, and cingulate. The task complexity effect was regressed on HIV status, METH status, and the HIV×METH interaction term in a simultaneous multiple regression. HIV was associated with less complexity-related activation in striatum, whereas METH was associated with less complexity-related activation in parietal regions. Significant interaction effects were observed in both cortical and subcortical regions; and, contrary to expectations, the complexity-related activation was less aberrant in dually affected than in single risk participants, in spite of comparable levels of neurocognitive impairment among the clinical groups. Thus, HIV and METH dependence, perhaps through their effects on dopaminergic systems, may have opposing functional effects on neural circuits involved in motor programming. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Dependence of Interaction Free Energy between Solutes on an External Electrostatic Field

    Directory of Open Access Journals (Sweden)

    Pei-Kun Yang

    2013-07-01

    Full Text Available To explore the athermal effect of an external electrostatic field on the stabilities of protein conformations and the binding affinities of protein-protein/ligand interactions, the dependences of the polar and hydrophobic interactions on the external electrostatic field, −Eext, were studied using molecular dynamics (MD simulations. By decomposing Eext into, along, and perpendicular to the direction formed by the two solutes, the effect of Eext on the interactions between these two solutes can be estimated based on the effects from these two components. Eext was applied along the direction of the electric dipole formed by two solutes with opposite charges. The attractive interaction free energy between these two solutes decreased for solutes treated as point charges. In contrast, the attractive interaction free energy between these two solutes increased, as observed by MD simulations, for Eext = 40 or 60 MV/cm. Eext was applied perpendicular to the direction of the electric dipole formed by these two solutes. The attractive interaction free energy was increased for Eext = 100 MV/cm as a result of dielectric saturation. The force on the solutes along the direction of Eext computed from MD simulations was greater than that estimated from a continuum solvent in which the solutes were treated as point charges. To explore the hydrophobic interactions, Eext was applied to a water cluster containing two neutral solutes. The repulsive force between these solutes was decreased/increased for Eext along/perpendicular to the direction of the electric dipole formed by these two solutes.

  13. Choice of the density-dependent effective interaction and alpha decay of heavy spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Ratis, Yu.L.; Rybak, K.S.; Furman, V.I.

    1978-01-01

    The parameters of density-dependent effective interaction are studied for some nuclei in the vicinity of a 208 Pb double-magic nucleus. Both nuclei having two nucleons (holes) over magic core and some superfluid nuclei are considered. It is found that the magnitudes of the matrix elements for the zero-range forces (delta forces) are more than three times larger in comparison with the case of the finite-range forces (f forces). Sets of parameters for the effective interaction, which does not lead to the superfluidity of nuclear matter are obtained. Besides, these parameters depend weakly on mass number. It is shown that the attractive part of interaction is substantially larger for the case of f forces than for the delta forces. The theoretical enhancement coefficients for the favoured α decay of 210 Po, 210 Pb and 224 Th nuclei are calculated. For the case of f forces a tendency to saturation of the enhancement coefficients with the increase of the shell-model basis is found

  14. Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Daniel C.; Hammill, Jared T.; Min, Jaeki; Rhee, David Y.; Connelly, Michele; Sviderskiy, Vladislav O.; Bhasin, Deepak; Chen, Yizhe; Ong, Su-Sien; Chai, Sergio C.; Goktug, Asli N.; Huang, Guochang; Monda, Julie K.; Low, Jonathan; Kim, Ho Shin; Paulo, Joao A.; Cannon, Joe R.; Shelat, Anang A.; Chen, Taosheng; Kelsall, Ian R.; Alpi, Arno F.; Pagala, Vishwajeeth; Wang, Xusheng; Peng, Junmin; Singh , Bhuvanesh; Harper, J. Wade; Schulman, Brenda A.; Guy, R. Kip (MSKCC); (Dundee); (SJCH); (Harvard-Med); (MXPL)

    2017-06-05

    N-terminal acetylation is an abundant modification influencing protein functions. Because ~80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.

  15. Short-lived, transitory cell-cell interactions foster migration-dependent aggregation.

    Directory of Open Access Journals (Sweden)

    Melissa D Pope

    Full Text Available During embryonic development, motile cells aggregate into cohesive groups, which give rise to tissues and organs. The role of cell migration in regulating aggregation is unclear. The current paradigm for aggregation is based on an equilibrium model of differential cell adhesivity to neighboring cells versus the underlying substratum. In many biological contexts, however, dynamics is critical. Here, we provide evidence that multicellular aggregation dynamics involves both local adhesive interactions and transport by cell migration. Using time-lapse video microscopy, we quantified the duration of cell-cell contacts among migrating cells that collided and adhered to another cell. This lifetime of cell-cell interactions exhibited a monotonic decreasing dependence on substratum adhesivity. Parallel quantitative measurements of cell migration speed revealed that across the tested range of adhesive substrata, the mean time needed for cells to migrate and encounter another cell was greater than the mean adhesion lifetime, suggesting that aggregation dynamics may depend on cell motility instead of the local differential adhesivity of cells. Consistent with this hypothesis, aggregate size exhibited a biphasic dependence on substratum adhesivity, matching the trend we observed for cell migration speed. Our findings suggest a new role for cell motility, alongside differential adhesion, in regulating developmental aggregation events and motivate new design principles for tuning aggregation dynamics in tissue engineering applications.

  16. Earthquake simulations with time-dependent nucleation and long-range interactions

    Directory of Open Access Journals (Sweden)

    J. H. Dieterich

    1995-01-01

    Full Text Available A model for rapid simulation of earthquake sequences is introduced which incorporates long-range elastic interactions among fault elements and time-dependent earthquake nucleation inferred from experimentally derived rate- and state-dependent fault constitutive properties. The model consists of a planar two-dimensional fault surface which is periodic in both the x- and y-directions. Elastic interactions among fault elements are represented by an array of elastic dislocations. Approximate solutions for earthquake nucleation and dynamics of earthquake slip are introduced which permit computations to proceed in steps that are determined by the transitions from one sliding state to the next. The transition-driven time stepping and avoidance of systems of simultaneous equations permit rapid simulation of large sequences of earthquake events on computers of modest capacity, while preserving characteristics of the nucleation and rupture propagation processes evident in more detailed models. Earthquakes simulated with this model reproduce many of the observed spatial and temporal characteristics of clustering phenomena including foreshock and aftershock sequences. Clustering arises because the time dependence of the nucleation process is highly sensitive to stress perturbations caused by nearby earthquakes. Rate of earthquake activity following a prior earthquake decays according to Omori's aftershock decay law and falls off with distance.

  17. Sequence-dependent rotation axis changes and interaction torque use in overarm throwing.

    Science.gov (United States)

    Hansen, Clint; Rezzoug, Nasser; Gorce, Philippe; Venture, Gentiane; Isableu, Brice

    2016-01-01

    We examined the role of rotation axes during an overarm throwing task. Participants performed such task and were asked to throw a ball at maximal velocity at a target. The purpose of this study was to examine whether the minimum inertia axis would be exploited during the throwing phases, a time when internal-external rotations of the shoulder are particularly important. A motion capture system was used to evaluate the performance and to compute the potential axes of rotation (minimum inertia axis, shoulder-centre of mass axis and the shoulder-elbow axis). More specifically, we investigated whether a velocity-dependent change in rotational axes can be observed in the different throwing phases and whether the control obeys the principle of minimum inertia resistance. Our results showed that the limbs' rotational axis mainly coincides with the minimum inertia axis during the cocking phase and with the shoulder-elbow axis during the acceleration phase. Besides these rotation axes changes, the use of interaction torque is also sequence-dependent. The sequence-dependent rotation axes changes associated with the use of interaction torque during the acceleration phase could be a key factor in the production of hand velocity at ball release.

  18. Dynamical mean-field theoretical approach to explore the temperature-dependent magnetization in Ta-doped TiO2

    Science.gov (United States)

    Majidi, M. A.; Umar, A. S.; Rusydi, A.

    2017-04-01

    TiO2 has, in recent years, become a hot subject as it holds a promise for spintronic application. Recent experimental study on anatase Ti1-x Ta x O2 (x ~ 0.05) thin films shows that the system changes from non-magnetic to ferromagnetic due to Ti vacancies that are formed when a small percentage of Ti atoms are substituted by Ta. Motivated by those results that reveal the ferromagnetic phase at room temperature, we conduct a theoretical study on the temperature-dependent magnetization and the Currie temperature of that system. We hypothesize that when several Ti vacancies are formed in the system, each of them induces a local magnetic moment, then such moments couple each other through Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, forming a ferromagnetic order. To study the temperature dependence of the magnetization and predict the Curie temperature, we construct a tight-binding based Hamiltonian for this system and use the method of dynamical mean-field theory to perform calculations for various temperatures. Our work is still preliminary. The model and method may need further improvement to be consistent with known existing facts. We present our preliminary results to show how the present model works.

  19. Effects of a Dependent Group Contingency on the Verbal Interactions of Middle School Students with Emotional Disturbance

    OpenAIRE

    Hansen, S.; Lignugaris/Kraft, Benjamin

    2005-01-01

    This study examined the effects of a dependent group contingency to increase positive verbal interactions among nine middle school-aged males in a self-contained classroom. Prior to implementing the group contingency, the students received social skills instruction. A withdrawal experimental design was then used to evaluate the effects of the dependent group contingency. Students' positive verbal interactions increased and negative verbal interactions decreased with the implementation of the ...

  20. Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements.

    Science.gov (United States)

    Kyrchanova, Olga; Chetverina, Darya; Maksimenko, Oksana; Kullyev, Andrey; Georgiev, Pavel

    2008-12-01

    Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scs-scs, scs'-scs', 1A2-1A2 and Wari-Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5-Su(Hw), dCTCF-Su(Hw), or dCTCF-Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements.

  1. Density-dependent effective baryon–baryon interaction from chiral three-baryon forces

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan, E-mail: stefan.petschauer@ph.tum.de [Physik Department, Technische Universität München, D-85747 Garching (Germany); Haidenbauer, Johann [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Kaiser, Norbert [Physik Department, Technische Universität München, D-85747 Garching (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn (Germany); Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany)

    2017-01-15

    A density-dependent effective potential for the baryon–baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon–nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.

  2. Study of a tri-trophic prey-dependent food chain model of interacting populations.

    Science.gov (United States)

    Haque, Mainul; Ali, Nijamuddin; Chakravarty, Santabrata

    2013-11-01

    The current paper accounts for the influence of intra-specific competition among predators in a prey dependent tri-trophic food chain model of interacting populations. We offer a detailed mathematical analysis of the proposed food chain model to illustrate some of the significant results that has arisen from the interplay of deterministic ecological phenomena and processes. Biologically feasible equilibria of the system are observed and the behaviours of the system around each of them are described. In particular, persistence, stability (local and global) and bifurcation (saddle-node, transcritical, Hopf-Andronov) analysis of this model are obtained. Relevant results from previous well known food chain models are compared with the current findings. Global stability analysis is also carried out by constructing appropriate Lyapunov functions. Numerical simulations show that the present system is capable enough to produce chaotic dynamics when the rate of self-interaction is very low. On the other hand such chaotic behaviour disappears for a certain value of the rate of self interaction. In addition, numerical simulations with experimented parameters values confirm the analytical results and shows that intra-specific competitions bears a potential role in controlling the chaotic dynamics of the system; and thus the role of self interactions in food chain model is illustrated first time. Finally, a discussion of the ecological applications of the analytical and numerical findings concludes the paper. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Charmonium-nucleon interactions from the time-dependent HAL QCD method

    Science.gov (United States)

    Sugiura, Takuya; Ikeda, Yoichi; Ishii, Noriyoshi

    2018-03-01

    The charmonium-nucleon effective central interactions have been computed by the time-dependent HAL QCD method. This gives an updated result of a previous study based on the time-independent method, which is now known to be problematic because of the difficulty in achieving the ground-state saturation. We discuss that the result is consistent with the heavy quark symmetry. No bound state is observed from the analysis of the scattering phase shift; however, this shall lead to a future search of the hidden-charm pentaquarks by considering channel-coupling effects.

  4. Frame dependence of world lines for directly interacting classical relativistic particles

    International Nuclear Information System (INIS)

    Molotkov, V.V.; Todorov, I.T.

    1979-06-01

    The motion of world lines is studied in the constraint Hamiltonian formulation of relativistic point particle dynamics. The particle world lines are shown to depend, in general (in the presence of interaction) on the choice of the equal time hyperplane (the only exception being the elastic scattering of rigid balls). However, the relative motion of a 2-particle system and the (classical) S-matrix are independent of this choice. This inferred that particle trajectories should not be regarded as frame independent observables in the classical theory of relativistic particles. (author)

  5. Cascading effects of predator-detritivore interactions depend on environmental context in a Tibetan alpine meadow.

    Science.gov (United States)

    Wu, Xinwei; Griffin, John N; Sun, Shucun

    2014-05-01

    Studies of grazing food webs show that species traits can interact with environmental factors to determine the strength of trophic cascades, but analogous context dependencies in detrital food webs remain poorly understood. In predator-detritivore-plant interaction chains, predators are expected to indirectly suppress plant biomass by reducing the density of plant-facilitating detritivores. However, this outcome can be reversed where above-ground predators drive burrowing detritivores to lower soil levels, strengthening their plant-facilitating effects. Here, we show that these trait-mediated indirect interactions further depend on environmental context in a Tibetan alpine meadow. In our study system, undulating topography generates higher (dry soil) patches interspersed with lower (wet soil) patches. Because the ability of detritivores to form deep burrows is likely to be limited by oxygen availability in low patches (wet soil), we hypothesized that (i) burrowing detritivores would undergo a vertical habitat shift, allowing them to more effectively avoid predation, in high - but not low - patches, and (ii) this shift would transmit positive effects of predators to plants in high patches by improving conditions in the lower soil layer. We tested these hypotheses using complementary field and glasshouse experiments examining whether the cascading effects of above-ground predatory beetles (presence/absence) on the density and behaviour of tunnel-forming detritivorous beetles, soil properties, and plant growth varied with patch type (low/high). Results revealed that predatory beetles did not reduce the density of detritivores in either patch type but had context-dependent trait-mediated effects, increasing the tunnelling depth of detritivores, improving soil conditions and ultimately increasing plant biomass in the high but not low patches. This study adds to an emerging predictive framework linking predators to plants in detritus food webs, demonstrating that these

  6. Emotion-Cognition Interactions; A Study on Coping Responses of Methamphetamine Dependent Women

    Directory of Open Access Journals (Sweden)

    Zahra Alam Mehrjerdi

    2011-09-01

    Full Text Available Introduction: Coping responses are complex dynamic behavioral reactions that involve reciprocal influences between emotion and cognition but cognitive studies in Iran have less emphasized coping responses of methamphetamine dependent individuals to distressing situations. To address this aim, the current study was designed to investigate the coping responses of a group of methamphetamine dependent women in comparison with a group of healthy women. Methods: 80 women with mean age 24(SD=6.8 years who met DSM.IV-TR criteria for methamphetamine dependence were recruited from the department of psychostimulant use treatment program of Rojan psychiatric center and 4 other local clinics in Tehran, Iran and were matched with a sample of 80 non-drug taking women. First, demographics and details of substance use were completed based on items elicited from Addiction Severity Index (ASI, then the Persian version of Billings and Moos Coping Checklist was completed by participants in each group. Data was further analyzed by performing independent sample t-test and logistic regression model in SPSS.v.16.0. Results: The study findings indicated that the methamphetamine dependent group applied less problem-solving response and had lower reliance on seeking social support and cognitive evaluation compared with the controls. In addition, the methamphetamine dependent group applied significantly more emotional and physical control oriented responses compared with the controls. Discussion: The study results yielded that coping responses of the methamphetamine dependent group were less problem-focused strategies which show an impaired aspect of cognitive functioning which is subject to clinical and treatment implications. Study in the context of identifying aspects that are fundamental to understanding the neural mechanisms underlying emotion-cognition interactions in the paradigm of coping responses is discussed.

  7. Emotion-Cognition Interactions A Study on Coping Responses of Methamphetamine Dependent Women

    Directory of Open Access Journals (Sweden)

    Zahra Alam Mehrjerdi

    2011-09-01

    Full Text Available Introduction: Coping responses are complex dynamic behavioral reactions that involve reciprocal influences between emotion and cognition but cognitive studies in Iran have less emphasized coping responses of methamphetamine dependent individuals to distressing situations. To address this aim, the current study was designed to investigate the coping responses of a group of methamphetamine dependent women in comparison with a group of healthy women. Methods: 80 women with mean age 24(SD=6.8 years who met DSM.IV-TR criteria for methamphetamine dependence were recruited from the department of psychostimulant use treatment program of Rojan psychiatric center and 4 other local clinics in Tehran, Iran and were matched with a sample of 80 non-drug taking women. First, demographics and details of substance use were completed based on items elicited from Addiction Severity Index (ASI, then the Persian version of Billings and Moos Coping Checklist was completed by participants in each group. Data was further analyzed by performing independent sample t-test and logistic regression model in SPSS.v.16.0. Results: The study findings indicated that the methamphetamine dependent group applied less problem-solving response and had lower reliance on seeking social support and cognitive evaluation compared with the controls. In addition, the methamphetamine dependent group applied significantly more emotional and physical control oriented responses compared with the controls. Discussion: The study results yielded that coping responses of the methamphetamine dependent group were less problem-focused strategies which show an impaired aspect of cognitive functioning which is subject to clinical and treatment implications. Study in the context of identifying aspects that are fundamental to understanding the neural mechanisms underlying emotion-cognition interactions in the paradigm of coping responses is discussed.

  8. Dependence of magnetization on crystal fields and exchange interactions in magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ouaissa, Mohamed, E-mail: m.ouaissa@yahoo.fr [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Benyoussef, Abdelilah [Laboratory of Magnetism and Physics of High Energy, Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Abo, Gavin S. [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ouaissa, Samia; Hafid, Mustapha [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Belaiche, Mohammed [Laboratoire de Magnétisme, Matériaux Magnétiques, Microonde et Céramique, Ecole Normale Supérieure, Université Mohammed V-Agdal, B.P. 9235, Océan, Rabat (Morocco)

    2015-11-15

    In this work, we study the magnetization of magnetite (Fe{sub 3}O{sub 4}) with different exchange interactions and crystal fields using variational method based on the Bogoliubov inequality for the Gibbs free energy within the mean field theory. The magnetic behavior was investigated in the absence and presence of crystal fields. The investigations also revealed that the transition temperature depends on the crystal fields of the octahedral and tetrahedral sites. Magnetite exhibits ferrimagnetic phase with second order transition to paramagnetic phase at 850 K. This result is confirmed using the mean field theory within the Heisenberg model. Important factors that can affect the magnetic behavior of the system are exchange interactions and crystal field. Indeed, a new magnetic behavior was observed depending on these parameters. A first order phase transition from ferrimagnetic to ferromagnetic was found at low temperature, and a second order transition from ferromagnetic to paramagnetic was observed at high temperature. - Highlights: • Magnetization of magnetite versus temperature was studied by mean field theory. • The critical temperature of magnetite (Fe{sub 3}O{sub 4}) was approximately obtained. • Effect of sublattice crystal fields on the magnetization of Fe{sub 3}O{sub 4} was investigated.

  9. Cell-substrate interaction with cell-membrane-stress dependent adhesion.

    Science.gov (United States)

    Jiang, H; Yang, B

    2012-01-10

    Cell-substrate interaction is examined in a two-dimensional mechanics model. The cell and substrate are treated as a shell and an elastic solid, respectively. Their interaction through adhesion is treated using nonlinear springs. Compared to previous cell mechanics models, the present model introduces a cohesive force law that is dependent not only on cell-substrate distance but also on internal cell-membrane stress. It is postulated that a living cell would establish focal adhesion sites with density dependent on the cell-membrane stress. The formulated mechanics problem is numerically solved using coupled finite elements and boundary elements for the cell and the substrate, respectively. The nodes in the adhesion zone from either side are linked by the cohesive springs. The specific cases of a cell adhering to a homogeneous substrate and a heterogeneous bimaterial substrate are examined. The analyses show that the substrate stiffness affects the adhesion behavior significantly and regulates the direction of cell adhesion, in good agreement with the experimental results in the literature. By introducing a reactive parameter (i.e., cell-membrane stress) linking biological responses of a living cell to a mechanical environment, the present model offers a unified mechanistic vehicle for characterization and prediction of living cell responses to various kinds of mechanical stimuli including local extracellular matrix and neighboring cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Magnetic history dependence of metastable states in thin films with dipolar interactions

    International Nuclear Information System (INIS)

    Iglesias, Oscar; Labarta, Amilcar

    2000-01-01

    We present the results of a Monte Carlo simulation of the ground state and magnetic relaxation of a model of a thin film consisting of a two-dimensional square lattice of Heisenberg spins with perpendicular anisotropy K, exchange J and long-range dipolar interactions g. We have studied the ground state configurations of this system for a wide range of the interaction parameters J/g, K/g by means of the simulated annealing procedure, showing that the model is able to reproduce the different magnetic configurations found in real samples. We have found the existence of a certain range of K/g, J/g values for which in-plane and out-of-plane configurations are quasi-degenerated in energy. We show that when a system in this region of parameters is perturbed by an external force that is subsequently removed, different kinds of ordering may be induced depending on the followed procedure. In particular, simulations of relaxations from saturation under an AC demagnetizing field or in zero field are in qualitative agreement with recent experiments on epitaxial and granular alloy thin films, which show a wide variety of magnetic patterns depending on their magnetic history

  11. Unraveling origins of the heterogeneous curvature dependence of polypeptide interactions with carbon nanostructures.

    Science.gov (United States)

    Jana, Asis K; Tiwari, Mrityunjay K; Vanka, Kumar; Sengupta, Neelanjana

    2016-02-17

    Emerging nanotechnology has rapidly broadened interfacial prospects of biological molecules with carbon nanomaterials (CNs). A prerequisite for effectively harnessing such hybrid materials is a multi-faceted understanding of their complex interfacial interactions as functions of the physico-chemical characteristics and the surface topography of the individual components. In this article, we address the origins of the curvature dependence of polypeptide adsorption on CN surfaces (CNSs), a phenomenon bearing an acute influence upon the behavior and activity of CN-protein conjugates. Our benchmark molecular dynamics (MD) simulations with the amphiphilic full-length amyloid beta (Aβ) peptide demonstrate that protein adsorption is strongest on the concave (inner) CN surface, weakest on the convex (outer) surface, and intermediary on the planar surface, in agreement with recent experimental reports. The curvature effects, however, are found to manifest non-uniformly between the amino acid subtypes. To understand the underlying interplay of the chemical nature of the amino acids and surface topography of the CNs, we performed high-level quantum chemical (QM) calculations with amino acid analogs (AAA) representing their five prominent classes, and convex, concave and planar CN fragments. Molecular electrostatic potential maps reveal pronounced curvature dependence in the mixing of electron densities, and a resulting variance in the stabilization of the non-covalently bound molecular complexes. Interestingly, our study revealed that the interaction trends of the high-level QM calculations were captured well by the empirical force field. The findings in this study have important bearing upon the design of carbon based bio-nanomaterials, and additionally, provide valuable insights into the accuracy of various computational techniques for probing non-bonded interfacial interactions.

  12. Predicting stimulation-dependent enhancer-promoter interactions from ChIP-Seq time course data

    Directory of Open Access Journals (Sweden)

    Tomasz Dzida

    2017-09-01

    Full Text Available We have developed a machine learning approach to predict stimulation-dependent enhancer-promoter interactions using evidence from changes in genomic protein occupancy over time. The occupancy of estrogen receptor alpha (ERα, RNA polymerase (Pol II and histone marks H2AZ and H3K4me3 were measured over time using ChIP-Seq experiments in MCF7 cells stimulated with estrogen. A Bayesian classifier was developed which uses the correlation of temporal binding patterns at enhancers and promoters and genomic proximity as features to predict interactions. This method was trained using experimentally determined interactions from the same system and was shown to achieve much higher precision than predictions based on the genomic proximity of nearest ERα binding. We use the method to identify a genome-wide confident set of ERα target genes and their regulatory enhancers genome-wide. Validation with publicly available GRO-Seq data demonstrates that our predicted targets are much more likely to show early nascent transcription than predictions based on genomic ERα binding proximity alone.

  13. Lepton Flavorful Fifth Force and Depth-Dependent Neutrino Matter Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Mark B. [Caltech; Zhang, Yue [Northwestern U.

    2018-03-01

    We consider a fifth force to be an interaction that couples to matter with a strength that grows with the number of atoms. In addition to competing with the strength of gravity a fifth force can give rise to violations of the equivalence principle. Current long range constraints on the strength and range of fifth forces are very impressive. Amongst possible fifth forces are those that couple to lepton flavorful charges $L_e-L_{\\mu}$ or $L_e-L_{\\tau}$. They have the property that their range and strength are also constrained by neutrino interactions with matter. In this brief note we review the existing constraints on the allowed parameter space in gauged $U(1)_{L_e-L_{\\mu}, L_{\\tau}}$. We find two regions where neutrino oscillation experiments are at the frontier of probing such a new force. In particular, there is an allowed range of parameter space where neutrino matter interactions relevant for long baseline oscillation experiments depend on the depth of the neutrino beam below the surface of the earth.

  14. An interactive graphical tool for exploring sequential dependencies in categorical data

    International Nuclear Information System (INIS)

    Fitzgerald, M.

    1997-01-01

    As monitoring and data storage devices have become cheaper and more readily available, it has become common practice to establish automated monitoring processes which collect enormous amounts of data. For example, in a waste storage facility, waste from several different sources may be combined and stored in a single storage container. Within this unit, many different types of chemical and microbiological reactions may take place over the course of time, not all of which are completely understood. Thus, it is important to monitor the levels of several different chemical compounds within the system, in order to ensure that the waste is being stored safely. The monitoring devices record any anomalous behavior of the system, such as when the presence of a certain chemical compound exceeds some prescribed expectation, the pressure within the container increases beyond a tolerance threshold, the temperature drops more than .5 degree, etc. These monitoring systems may thus collect large quantities of data in fairly short periods of time. The challenge is then to utilize these massive data sets to bring about an understanding of the process and discover potential avenues of intervention. This report describes an interactive graphical tool, written in XLISP-STAT, for exploratory data analysis of dependencies in sequences of categorical data. Both global and local views of the dependency structure can be insightful, and allowing the user the flexibility to change critical parameters and switch between views in a simple, interactive, point-and-click environment can make the task of exploring dependencies among a large number of categories feasible and lead to a better understanding of the sequential properties of the data

  15. Estimation of the temperature dependent interaction between uncharged point defects in Si

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama-ken 719-1197 (Japan); GlobalWafers Japan Co., Ltd., 30 Soya, Hadano, Kanagawa, 257-8566 (Japan); Vanhellemont, Jan [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, Ghent B-9000 (Belgium); Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama-ken 719-1197 (Japan)

    2015-01-15

    A method is described to estimate the temperature dependent interaction between two uncharged point defects in Si based on DFT calculations. As an illustration, the formation of the uncharged di-vacancy V{sub 2} is discussed, based on the temperature dependent attractive field between both vacancies. For that purpose, all irreducible configurations of two uncharged vacancies are determined, each with their weight given by the number of equivalent configurations. Using a standard 216-atoms supercell, nineteen irreducible configurations of two vacancies are obtained. The binding energies of all these configurations are calculated. Each vacancy is surrounded by several attractive sites for another vacancy. The obtained temperature dependent of total volume of these attractive sites has a radius that is closely related with the capture radius for the formation of a di-vacancy that is used in continuum theory. The presented methodology can in principle also be applied to estimate the capture radius for pair formation of any type of point defects.

  16. Condition-dependence, genotype-by-environment interactions and the lek paradox.

    Science.gov (United States)

    Kokko, Hanna; Heubel, Katja

    2008-09-01

    The lek paradox states that maintaining genetic variation necessary for 'indirect benefit' models of female choice is difficult, and two interrelated solutions have been proposed. 'Genic capture' assumes condition-dependence of sexual traits, while genotype-by-environment interactions (GEIs) offer an additional way to maintain diversity. However, condition-dependence, particularly with GEIs, implies that environmental variation can blur the relationship between male displays and offspring fitness. These issues have been treated separately in the past. Here we combine them in a population genetic model, and show that predictions change not only in magnitude but also in direction when the timing of dispersal between environments relative to the life cycle is changed. GEIs can dramatically improve the evolution of costly female preferences, but also hamper it if much dispersal occurs between the life history stage where condition is determined and mating. This situation also arises if selection or mutation rates are too high. In general, our results highlight that when evaluating any mechanism promoted as a potential resolution of the lek paradox, it is not sufficient to focus on its effects on genetic variation. It also has to be assessed to what extent the proposed mechanism blurs the association between male attractiveness and offspring fitness; the net balance of these two effects can be positive or negative, and often strongly context-dependent.

  17. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Directory of Open Access Journals (Sweden)

    Astrid Welk

    Full Text Available This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  18. A copper-methionine interaction controls the pH-dependent activation of peptidylglycine monooxygenase.

    Science.gov (United States)

    Bauman, Andrew T; Broers, Brenda A; Kline, Chelsey D; Blackburn, Ninian J

    2011-12-20

    The pH dependence of native peptidylglycine monooxygenase (PHM) and its M314H variant has been studied in detail. For wild-type (WT) PHM, the intensity of the Cu-S interaction visible in the Cu(I) extended X-ray absorption fine structure (EXAFS) data is inversely proportional to catalytic activity over the pH range of 3-8. A previous model based on more limited data was interpreted in terms of two protein conformations involving an inactive Met-on form and an active flexible Met-off form [Bauman, A. T., et al. (2006) Biochemistry 45, 11140-11150] that derived its catalytic activity from the ability to couple into vibrational modes critical for proton tunneling. The new studies comparing the WT and M314H variant have led to the evolution of this model, in which the Met-on form has been found to be derived from coordination of an additional Met residue, rather than a more rigid conformer of M314 as previously proposed. The catalytic activity of the mutant decreased by 96% because of effects on both k(cat) and K(M), but it displayed the same activity-pH profile with a maximum around pH 6. At pH 8, the reduced Cu(I) form gave spectra that could be simulated by replacement of the Cu(M) Cu-S(Met) interaction with a Cu-N/O interaction, but the data did not unambiguously assign the ligand to the imidazole side chain of H314. At pH 3.5, the EXAFS still showed the presence of a strong Cu-S interaction, establishing that the Met-on form observed at low pH in WT cannot be due to a strengthening of the Cu(M)-methionine interaction but must arise from a different Cu-S interaction. Therefore, lowering the pH causes a conformational change at one of the Cu centers that brings a new S donor residue into a favorable orientation for coordination to copper and generates an inactive form. Cys coordination is unlikely because all Cys residues in PHM are engaged in disulfide cross-links. Sequence comparison with the PHM homologues tyramine β-monooxygenase and dopamine

  19. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins

    Science.gov (United States)

    Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim

    2016-05-01

    The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be

  20. Spin-dependent level density in interacting Boson-Fermion-Fermion model of the Odd-Odd Nucleus 196Au

    International Nuclear Information System (INIS)

    Kabashi, S.; Bekteshi, S.; Ahmetaj, S.; Shaqiri, Z.

    2009-01-01

    The level density of the odd-odd nucleus 196 Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM spin-dependent level densities show high-spin reduction with respect to Bethe formula.This can be well accounted for by a modified spin-dependent level density formula. (authors)

  1. Spin-dependent exciton-exciton interaction potential in two- and three-dimensional structure semiconductors under excitation

    International Nuclear Information System (INIS)

    Nguyen Ba An; Hoang Ngoc Cam; Nguyen Trung Dan

    1990-08-01

    Analytical expressions of the exciton-exciton interaction potentials have been approximately derived in both 2D and 3D structure materials exhibiting explicit dependences on exciton momentum difference, momentum transfer, electron-hole effective mass ratio and two-exciton state spin symmetry. Numerical calculations show that the character of the exciton-exciton interaction is determined by all of the above-mentioned dependences. (author). 32 refs, 7 figs

  2. Quantum transfer energy in the framework of time-dependent dipole-dipole interaction

    Science.gov (United States)

    El-Shishtawy, Reda M.; Haddon, Robert C.; Al-Heniti, Saleh H.; Raffah, Bahaaudin M.; Berrada, K.; Abdel-Khalek, S.; Al-Hadeethi, Yas F.

    2018-03-01

    In this work, we examine the process of the quantum transfer of energy considering time-dependent dipole-dipole interaction in a dimer system characterized by two-level atom systems. By taking into account the effect of the acceleration and speed of the atoms in the dimer coupling, we demonstrate that the improvement of the probability for a single-excitation transfer energy extremely benefits from the incorporation of atomic motion effectiveness and the energy detuning. We explore the relevance between the population and entanglement during the time-evolution and show that this kind of nonlocal correlation may be generated during the process of the transfer of energy. Our work may provide optimal conditions to implement realistic experimental scenario in the transfer of the quantum energy.

  3. Interactions between parents of technology-dependent children and providers: an integrative review.

    Science.gov (United States)

    Jachimiec, Jennifer A; Obrecht, Jennifer; Kavanaugh, Karen

    2015-03-01

    This article is a review of the literature on the experiences of parents and their interactions with healthcare providers while caring for their technology-dependent child(ren) in their homes. Results are presented in the following themes: information needs, respect and partnership with healthcare providers, care coordination, and experiences with home healthcare nurses. Parents needed information and guidance and felt supported when providers recognized parents' expertise with the child's care, and offered reassurance and confirmation about their practices. Home healthcare clinicians provided supportive care in the home, but their presence created challenges for the family. By acknowledging and valuing the parents' expertise, healthcare providers can empower parents to confidently care for their child.

  4. Temperature-Dependent Species Interactions Shape Priority Effects and the Persistence of Unequal Competitors.

    Science.gov (United States)

    Grainger, Tess Nahanni; Rego, Adam Ivan; Gilbert, Benjamin

    2018-02-01

    The order of species arrival at a site can determine the outcome of competitive interactions when early arrivers alter the environment or deplete shared resources. These priority effects are predicted to be stronger at high temperatures, as higher vital rates caused by warming allow early arrivers to more rapidly impact a shared environment. We tested this prediction using a pair of congeneric aphid species that specialize on milkweed plants. We manipulated temperature and arrival order of the two aphid species and measured aphid population dynamics and milkweed survival and defensive traits. We found that warming increased the impact of aphids on the quantity and quality of milkweed, which amplified the importance of priority effects by increasing the competitive exclusion of the inferior competitor when it arrived late. Warming also enhanced interspecific differences in dispersal, which could alter relative arrival times at a regional scale. Our experiment provides a first link between temperature-dependent trophic interactions, priority effects, and dispersal. This study suggests that the indirect and cascading effects of temperature observed here may be important determinants of diversity in the temporally and spatially complex landscapes that characterize ecological communities.

  5. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context.

    Science.gov (United States)

    Terhorst, Casey P; Lennon, Jay T; Lau, Jennifer A

    2014-06-22

    Evolution can occur on ecological time-scales, affecting community and ecosystem processes. However, the importance of evolutionary change relative to ecological processes remains largely unknown. Here, we analyse data from a long-term experiment in which we allowed plant populations to evolve for three generations in dry or wet soils and used a reciprocal transplant to compare the ecological effect of drought and the effect of plant evolutionary responses to drought on soil microbial communities and nutrient availability. Plants that evolved under drought tended to support higher bacterial and fungal richness, and increased fungal : bacterial ratios in the soil. Overall, the magnitudes of ecological and evolutionary effects on microbial communities were similar; however, the strength and direction of these effects depended on the context in which they were measured. For example, plants that evolved in dry environments increased bacterial abundance in dry contemporary environments, but decreased bacterial abundance in wet contemporary environments. Our results suggest that interactions between recent evolutionary history and ecological context affect both the direction and magnitude of plant effects on soil microbes. Consequently, an eco-evolutionary perspective is required to fully understand plant-microbe interactions.

  6. Characterization of gas-aerosol interaction kinetics using morphology dependent stimulated Raman scattering

    International Nuclear Information System (INIS)

    Aker, P.M.

    1993-01-01

    This study is aimed at characterizing the influence of aerosol surface structure on the kinetics of gas-aerosol interactions. Changes in gas phase chemical reaction rates as a function of exposure to a specific aerosol are measured with aerosols having different surface properties due to the composition and/or temperature of the material making up the aerosol. The kinetic data generated can be used directly in atmospheric modeling calculations. The surface structure of the aerosol is using morphology-dependent enhancement of simulated Raman scattering (MDSRS). Detailed dynamics of gas-aerosol interactions can be obtained by correlating the change in the reaction rate with change in surface structure and by monitoring the change in aerosol surface structure during, the course of the reaction. This dynamics information can be used to generate kinetic data for systems which are similar in nature to those studied, but are not amenable to laboratory investigation. We show here that increased MDSRS sensitivity is achieved by using an excitation laser source that has a narrow linewidth and we have been able to detect sulfate anion concentrations much lower than previously reported. We have shown that the linewidth of the MDSRS mode excited in a droplet is limited by the laser linewidth. This is a positive result for it eases our ability to quantify the MDSRS gain equation. This result also suggests that MDSRS signal size should be independent of droplet size, and preliminary experiments confirm this hypothesis

  7. Treatment of system dependencies and human interactions in PRA studies: a review and sensitivity study

    International Nuclear Information System (INIS)

    Orvis, D.D.; Joksimovich, V.; Worledge, D.H.

    1985-01-01

    The Electric Power Research Institute sponsored the review and comparison of five PRA studies: Arkansas Nuclear One - Unit 1, Big Rock Point, Grand Gulf, Limerick, and Zion - Unit 1. The review has been conducted in two phases. The Phase I review may be characterized as a qualitative look into many aspects of a PRA study. The Phase II review was performed to quantify the extent that differences in analytical techniques or key assumptions in these areas affect the differences in study results. In each of the PRA studies reviewed, the general descriptions of analytical approaches and descriptions of the analyses of event tree, fault tree and human interaction analyses that affected the dominant core damage sequences were reviewed. When these descriptions aroused interest because of seeming inconsistencies within the study or with other studies, they were pursued in some depth. The approaches or assumptions were contrasted to similar elements from other studies, and sensitivity analyses were performed in many cases to test the significance of results to the analytical models or assumptions. Inferences were drawn from the results regarding significance of the item to plant-specific results and, where possible, were generalized to other PRAs. This paper describes the results of the review of system dependencies and human interactions

  8. Dependence of samarium-soil interaction on samarium concentration: Implications for environmental risk assessment.

    Science.gov (United States)

    Ramírez-Guinart, Oriol; Salaberria, Aitor; Vidal, Miquel; Rigol, Anna

    2018-03-01

    The sorption and desorption behaviour of samarium (Sm), an emerging contaminant, was examined in soil samples at varying Sm concentrations. The obtained sorption and desorption parameters revealed that soil possessed a high Sm retention capacity (sorption was higher than 99% and desorption lower than 2%) at low Sm concentrations, whereas at high Sm concentrations, the sorption-desorption behaviour varied among the soil samples tested. The fractionation of the Sm sorbed in soils, obtained by sequential extractions, allowed to suggest the soil properties (pH and organic matter solubility) and phases (organic matter, carbonates and clay minerals) governing the Sm-soil interaction. The sorption models constructed in the present work along with the sorption behaviour of Sm explained in terms of soil main characteristics will allow properly assessing the Sm-soil interaction depending on the contamination scenario under study. Moreover, the sorption and desorption K d values of radiosamarium in soils were strongly correlated with those of stable Sm at low concentrations (r = 0.98); indicating that the mobility of Sm radioisotopes and, thus, the risk of radioactive Sm contamination can be predicted using data from low concentrations of stable Sm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Concentration-dependent interactions of the organophosphates chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase

    International Nuclear Information System (INIS)

    Kaushik, R.; Rosenfeld, Clint A.; Sultatos, L.G.

    2007-01-01

    For many decades it has been thought that oxygen analogs (oxons) of organophosphorus insecticides phosphorylate the catalytic site of acetylcholinesterase by a mechanism that follows simple Michaelis-Menten kinetics. More recently, the interactions of at least some oxons have been shown to be far more complex and likely involve binding of oxons to a second site on acetylcholinesterase that modulates the inhibitory capacity of other oxon molecules at the catalytic site. The current study has investigated the interactions of chlorpyrifos oxon and methyl paraoxon with human recombinant acetylcholinesterase. Both chlorpyrifos oxon and methyl paraoxon were found to have k i 's that change as a function of oxon concentration. Furthermore, 10 nM chlorpyrifos oxon resulted in a transient increase in acetylthiocholine hydrolysis, followed by inhibition. Moreover, in the presence of 100 nM chlorpyrifos oxon, acetylthiocholine was found to influence both the K d (binding affinity) and k 2 (phosphorylation constant) of this oxon. Collectively, these results demonstrate that the interactions of chlorpyrifos oxon and methyl paraoxon with acetylcholinesterase cannot be described by simple Michaelis-Menten kinetics but instead support the hypothesis that these oxons bind to a secondary site on acetylcholinesterase, leading to activation/inhibition of the catalytic site, depending on the nature of the substrate and inhibitor. Additionally, these data raise questions regarding the adequacy of estimating risk of low levels of insecticide exposure from direct extrapolation of insecticide dose-response curves since the capacity of individual oxon molecules at low oxon levels could be greater than individual oxon molecules in vivo associated with the dose-response curve

  10. Applying Boundary Conditions Using a Time-Dependent Lagrangian for Modeling Laser-Plasma Interactions

    Science.gov (United States)

    Reyes, Jonathan; Shadwick, B. A.

    2016-10-01

    Modeling the evolution of a short, intense laser pulse propagating through an underdense plasma is of particular interest in the physics of laser-plasma interactions. Numerical models are typically created by first discretizing the equations of motion and then imposing boundary conditions. Using the variational principle of Chen and Sudan, we spatially discretize the Lagrangian density to obtain discrete equations of motion and a discrete energy conservation law which is exactly satisfied regardless of the spatial grid resolution. Modifying the derived equations of motion (e.g., enforcing boundary conditions) generally ruins energy conservation. However, time-dependent terms can be added to the Lagrangian which force the equations of motion to have the desired boundary conditions. Although some foresight is needed to choose these time-dependent terms, this approach provides a mechanism for energy to exit the closed system while allowing the conservation law to account for the loss. An appropriate time discretization scheme is selected based on stability analysis and resolution requirements. We present results using this variational approach in a co-moving coordinate system and compare such results to those using traditional second-order methods. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY- 1104683.

  11. Effects of nuclear structure in the spin-dependent scattering of weakly interacting massive particles

    Science.gov (United States)

    Nikolaev, M. A.; Klapdor-Kleingrothaus, H. V.

    1993-06-01

    We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from123Te and131Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucleon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in123Te to collective 2+ excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and the quenching effect disappears. The shape of the nuclear form factor for the131Xe isotope differs from the one obtained using an oscillator basis.

  12. Effects of nuclear structure in the spin-dependent scattering of weakly interacting massive particles

    International Nuclear Information System (INIS)

    Nikolaev, M.A.; Klapdor-Kleingrothaus, H.V.

    1993-01-01

    We present calculations of the nuclear from factors for spin-dependent elastic scattering of dark matter WIMPs from 123 Te and 131 Xe isotopes, proposed to be used for dark matter detection. A method based on the theory of finite Fermi systems was used to describe the reduction of the single-particle spin-dependent matrix elements in the nuclear medium. Nucelon single-particle states were calculated in a realistic shell model potential; pairing effects were treated within the BCS model. The coupling of the lowest single-particle levels in 123 Te to collective 2 + excitations of the core was taken into account phenomenologically. The calculated nuclear form factors are considerably less then the single-particle ones for low momentum transfer. At high momentum transfer some dynamical amplification takes place due to the pion exchange term in the effective nuclear interaction. But as the momentum transfer increases, the difference disappears, the momentum transfer increases and quenching effect disappears. The shape of the nuclear form factor for the 131 Xe isotope differs from the one obtained using an oscillator basis. (orig.)

  13. Molecular interactions involved in proton-dependent gating in KcsA potassium channels

    Science.gov (United States)

    Posson, David J.; Thompson, Ameer N.; McCoy, Jason G.

    2013-01-01

    The bacterial potassium channel KcsA is gated open by the binding of protons to amino acids on the intracellular side of the channel. We have identified, via channel mutagenesis and x-ray crystallography, two pH-sensing amino acids and a set of nearby residues involved in molecular interactions that influence gating. We found that the minimal mutation of one histidine (H25) and one glutamate (E118) near the cytoplasmic gate completely abolished pH-dependent gating. Mutation of nearby residues either alone or in pairs altered the channel’s response to pH. In addition, mutations of certain pairs of residues dramatically increased the energy barriers between the closed and open states. We proposed a Monod–Wyman–Changeux model for proton binding and pH-dependent gating in KcsA, where H25 is a “strong” sensor displaying a large shift in pKa between closed and open states, and E118 is a “weak” pH sensor. Modifying model parameters that are involved in either the intrinsic gating equilibrium or the pKa values of the pH-sensing residues was sufficient to capture the effects of all mutations. PMID:24218397

  14. Gauge-Invariant Formulation of Time-Dependent Configuration Interaction Singles Method

    Directory of Open Access Journals (Sweden)

    Takeshi Sato

    2018-03-01

    Full Text Available We propose a gauge-invariant formulation of the channel orbital-based time-dependent configuration interaction singles (TDCIS method [Phys. Rev. A, 74, 043420 (2006], one of the powerful ab initio methods to investigate electron dynamics in atoms and molecules subject to an external laser field. In the present formulation, we derive the equations of motion (EOMs in the velocity gauge using gauge-transformed time-dependent, not fixed, orbitals that are equivalent to the conventional EOMs in the length gauge using fixed orbitals. The new velocity-gauge EOMs avoid the use of the length-gauge dipole operator, which diverges at large distance, and allows us to exploit computational advantages of the velocity-gauge treatment over the length-gauge one, e.g., a faster convergence in simulations with intense and long-wavelength lasers, and the feasibility of exterior complex scaling as an absorbing boundary. The reformulated TDCIS method is applied to an exactly solvable model of one-dimensional helium atom in an intense laser field to numerically demonstrate the gauge invariance. We also discuss the consistent method for evaluating the time derivative of an observable, which is relevant, e.g., in simulating high-harmonic generation.

  15. Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes.

    Directory of Open Access Journals (Sweden)

    Przemysław eKaczor

    2015-04-01

    Full Text Available GABA is the major inhibitory neurotransmitter in the adult brain and mechanisms of GABAergic inhibition have been intensely investigated in the past decades. Recent studies provided evidence for an important role of astrocytes in shaping GABAergic currents. One of the most obvious, but yet poorly understood, mechanisms of the cross-talk between GABAergic currents and astrocytes is metabolism including neurotransmitter homeostasis. In particular, how modulation of GABAergic currents by astrocytes depends on key enzymes involved in cellular metabolism remains largely unknown. To address this issue, we have considered two simple models of neuronal cultures: nominally astrocyte-free neuronal culture (NC and neuronal-astrocytic co-cultures (ANCC and miniature Inhibitory Postsynaptic Currents (mIPSCs were recorded in control conditions and in the presence of respective enzyme blockers. We report that enrichment of neuronal culture with astrocytes results in a marked increase in mIPSC frequency. This enhancement of GABAergic activity was accompanied by increased number of GAD65 and vGAT puncta, indicating that at least a part of the frequency enhancement was due to increased number of synaptic contacts. Inhibition of glutamine synthetase (with MSO strongly reduced mIPSC frequency in ANCC but had no effect in NC. Moreover, treatment of ANCC with inhibitor of glycogen phosphorylase (BAYU6751 or with selective inhibitor of astrocytic Krebs cycle,fluoroacetate, resulted in a marked reduction of mIPSC frequency in ANCC having no effect in NC. We conclude that GABAergic synaptic transmission strongly depends on neuron-astrocyte interaction in a manner dependent on key metabolic enzymes as well as on the Krebs cycle.

  16. Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase

    Science.gov (United States)

    Werther, Tobias; Wahlefeld, Stefan; Salewski, Johannes; Kuhlmann, Uwe; Zebger, Ingo; Hildebrandt, Peter; Dobbek, Holger

    2017-07-01

    How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme-substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the Michaelis complex of the flavoenzyme xenobiotic reductase A with the reactive reduced cofactor bound to its substrates by X-ray crystallography and resonance Raman spectroscopy and compare it to the non-reactive oxidized Michaelis complex mimics. We find that substrates bind in different orientations to the oxidized and reduced flavin, in both cases flattening its structure. But only authentic Michaelis complexes display an unexpected rich vibrational band pattern uncovering a strong donor-acceptor complex between reduced flavin and substrate. This interaction likely activates the catalytic ground state of the reduced flavin, accelerating the reaction within a compressed cofactor-substrate complex.

  17. Impact of hydrodynamic interactions on protein folding rates depends on temperature

    Science.gov (United States)

    Zegarra, Fabio C.; Homouz, Dirar; Eliaz, Yossi; Gasic, Andrei G.; Cheung, Margaret S.

    2018-03-01

    We investigated the impact of hydrodynamic interactions (HI) on protein folding using a coarse-grained model. The extent of the impact of hydrodynamic interactions, whether it accelerates, retards, or has no effect on protein folding, has been controversial. Together with a theoretical framework of the energy landscape theory (ELT) for protein folding that describes the dynamics of the collective motion with a single reaction coordinate across a folding barrier, we compared the kinetic effects of HI on the folding rates of two protein models that use a chain of single beads with distinctive topologies: a 64-residue α /β chymotrypsin inhibitor 2 (CI2) protein, and a 57-residue β -barrel α -spectrin Src-homology 3 domain (SH3) protein. When comparing the protein folding kinetics simulated with Brownian dynamics in the presence of HI to that in the absence of HI, we find that the effect of HI on protein folding appears to have a "crossover" behavior about the folding temperature. This means that at a temperature greater than the folding temperature, the enhanced friction from the hydrodynamic solvents between the beads in an unfolded configuration results in lowered folding rate; conversely, at a temperature lower than the folding temperature, HI accelerates folding by the backflow of solvent toward the folded configuration of a protein. Additionally, the extent of acceleration depends on the topology of a protein: for a protein like CI2, where its folding nucleus is rather diffuse in a transition state, HI channels the formation of contacts by favoring a major folding pathway in a complex free energy landscape, thus accelerating folding. For a protein like SH3, where its folding nucleus is already specific and less diffuse, HI matters less at a temperature lower than the folding temperature. Our findings provide further theoretical insight to protein folding kinetic experiments and simulations.

  18. Pest control of aphids depends on landscape complexity and natural enemy interactions.

    Science.gov (United States)

    Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2015-01-01

    Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of

  19. Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes.

    Science.gov (United States)

    Tyler, Christina R; Zychowski, Katherine E; Sanchez, Bethany N; Rivero, Valeria; Lucas, Selita; Herbert, Guy; Liu, June; Irshad, Hammad; McDonald, Jacob D; Bleske, Barry E; Campen, Matthew J

    2016-12-01

    Deleterious consequences of exposure to traffic emissions may derive from interactions between carbonaceous particulate matter (PM) and gaseous components in a manner that is dependent on the surface area or complexity of the particles. To determine the validity of this hypothesis, we examined pulmonary and neurological inflammatory outcomes in C57BL/6 and apolipoprotein E knockout (ApoE -/- ) male mice after acute and chronic exposure to vehicle engine-derived particulate matter, generated as ultrafine (UFP) and fine (FP) sizes, with additional exposures using UFP or FP combined with gaseous copollutants derived from fresh gasoline and diesel emissions, labeled as UFP + G and FP + G. The UFP and UFP + G exposure groups resulted in the most profound pulmonary and neuroinflammatory effects. Phagocytosis of UFP + G particles via resident alveolar macrophages was substantial in both mouse strains, particularly after chronic exposure, with concurrent increased proinflammatory cytokine expression of CXCL1 and TNFα in the bronchial lavage fluid. In the acute exposure paradigm, only UFP and UFP + G induced significant changes in pulmonary inflammation and only in the ApoE -/- animals. Similarly, acute exposure to UFP and UFP + G increased the expression of several cytokines in the hippocampus of ApoE -/- mice including Il-1β, IL-6, Tgf-β and Tnf-α and in the hippocampus of C57BL/6 mice including Ccl5, Cxcl1, Il-1β, and Tnf-α. Interestingly, Il-6 and Tgf-β expression were decreased in the C57BL/6 hippocampus after acute exposure. Chronic exposure to UFP + G increased expression of Ccl5, Cxcl1, Il-6, and Tgf-β in the ApoE -/- hippocampus, but this effect was minimal in the C57BL/6 mice, suggesting compensatory mechanisms to manage neuroinflammation in this strain. Inflammatory responses the lung and brain were most substantial in ApoE -/- animals exposed to UFP + G, suggesting that the surface area-dependent interaction of gases and

  20. Fluorescent derivatives of nucleotides. Metal ion interactions and pH dependency.

    Science.gov (United States)

    Vanderkooi, J M; Weiss, C J; Woodrow, G V

    1979-02-01

    The fluorescence parameters of ethenoadenosine derivatives are influenced by metal cations and pH, as summarized here. The pH profile of ethenoadenosine determined by fluorescence intensity gives a normal titration curve and is not affected by ionic strength. In contrast, the pH titration curves of etheno-ATP, etheno ADP, and etheno AMP depend upon ionic strength. At high ionic strength normal curves are obtained, whereas at low ionic strength anomalies are obtained; this suggests that the phosphates can interact with the ring, possibly by hydrogen binding to the ring nitrogens. The room temperature fluorescence of ethenoadenosine occurs from the base form, although excitation of either the acid or base forms can contribute to the emission. This result can be explained if the excited state pK is lower than the ground state pK, and if deprotonation occurs within the time scale of the excited state. At low pH values the fluorescence lifetime of the base form is dependent upon the buffer concentration, indicating that the reverse reaction, protonation, occurs. The affinity constants for the binding of metals to the ethenoadenosine phosphates resemble those for the corresponding adenosine phosphates. Ni(II) and Co(II) are more effective than Mn(II) in quenching the fluorescence of ethenoadenosine phosphates; this result is predicted by Förster's theory for energy transfer based upon the overlap between donor emission spectrum and acceptor absorption spectrum. The diamagnetic ions Mg(II), Ca(II), and Zn(II) do not appear to affect the fluorescence of the ethenoadenosine phosphates directly, but rather to affect the conformation of the molecule, thereby affecting the quantum yield.

  1. The Interaction of Magnetizations with an External Electromagnetic Field and a Time-Dependent Magnetic Aharonov-Bohm Effect

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Stepanovskij, Yu.P.

    1994-01-01

    We investigate how the choice of the magnetization distribution inside the sample affects its interaction with the external electromagnetic field. The strong selectivity to the time dependence of the external electromagnetic field arises for the particular magnetizations. This can be used for the storage and ciphering of information. We propose a time-dependent Aharonov-Bohm-like experiment in which the phase of the wave function is changed by the time-dependent vector magnetic potential. The arising time-dependent interference picture may be viewed as a new channel for the information transfer. 15 refs., 4 figs

  2. Density matrix-based time-dependent configuration interaction approach to ultrafast spin-flip dynamics

    Science.gov (United States)

    Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver

    2017-08-01

    Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.

  3. A direct method for soil-structure interaction analysis based on frequency-dependent soil masses

    International Nuclear Information System (INIS)

    Danisch, R.; Delinic, K.; Marti, J.; Trbojevic, V.M.

    1993-01-01

    In a soil-structure interaction analysis, the soil, as a subsystem of the global vibrating system, exerts a strong influence on the response of the nuclear reactor building to the earthquake excitation. The volume of resources required for dealing with the soil have led to a number of different types of frequency-domain solutions, most of them based on the impedance function approach. These procedures require coupling the soil to the lumped-mass finite-element model of the reactor building. In most practical cases, the global vibrating system is analysed in the time domain (i.e. modal time history, linear or non-linear direct time-integration). Hence, it follows that the frequency domain solution for soil must be converted to an 'equivalent' soil model in the time domain. Over the past three decades, different approaches have been developed and used for earthquake analysis of nuclear power plants. In some cases, difficulties experienced in modelling the soil have affected the methods of global analysis, thus leading to approaches like the substructuring technique, e.g. 3-step method. In the practical applications, the limitations of each specific method must be taken into account in order to avoid unrealistic results. The aim of this paper is to present the recent development on an equivalent SDOF system for soil including frequency-dependent soil masses. The method will be compared with the classical 3-step method. (author)

  4. Probing velocity dependent self-interacting dark matter with neutrino telescopes

    Science.gov (United States)

    Robertson, Denis S.; Albuquerque, Ivone F. M.

    2018-02-01

    Self-interacting dark matter models constitute an attractive solution to problems in structure formation on small scales. A simple realization of these models considers the dark force mediated by a light particle which can couple to the Standard Model through mixings with the photon or the Z boson. Within this scenario we investigate the sensitivity of the IceCube-DeepCore and PINGU neutrino telescopes to the associated muon neutrino flux produced by dark matter annihilations in the Sun. Despite the model's simplicity, several effects naturally appear: momentum suppressed capture by nuclei, velocity dependent dark matter self-capture, Sommerfeld enhanced annihilation, as well as the enhancement on the neutrino flux due to mediator late decays. Taking all these effects into account, we find that most of the model relevant parameter space can be tested by the three years of data already collected by the IceCube-DeepCore. We show that indirect detection through neutrinos can compete with the strong existing limits from direct detection experiments, specially in the case of isospin violation.

  5. Curcumin: Synthesis optimization and in silico interaction with cyclin dependent kinase.

    Science.gov (United States)

    Ahmed, Mahmood; Abdul Qadir, Muhammad; Imtiaz Shafiq, Muhammad; Muddassar, Muhammad; Hameed, Abdul; Nadeem Arshad, Muhammad; Asiri, Abdullah M

    2017-09-01

    Curcumin is a natural product with enormous biological potential. In this study, curcumin synthesis was revisited using different reaction solvents, a catalyst (n-butylamine) and a water scavenger [(n-BuO)3B], to develop the optimal procedure for its rapid acquisition. During synthesis, solvent choice was found to be an important parameter for better curcumin yield and high purity. In a typical reaction, acetyl acetone was treated with boron trioxide, followed by condensation with vanillin in the presence of tri-n-butyl borate as water scavenger and n-butylamine as catalyst at 80 °C in ethyl acetate to afford curcumin. Moreover, curcumin was also extracted from turmeric powder and spectroscopic properties such as IR, MS, 1H NMR and 13C NMR with synthetic curcumin were established to identify any impurity. The purity of synthetic and extracted curcumin was also checked by TLC and HPLC-DAD. To computationally assess its therapeutic potential against cyclin dependent kinases (CDKs), curcumin was docked in different isoforms of CDKs. It was observed that it did not dock at the active sites of CDK2 and CDK6. However, it could enter into weak interactions with CDK4 protein.

  6. Mutual information and phase dependencies: measures of reduced nonlinear cardiorespiratory interactions after myocardial infarction.

    Science.gov (United States)

    Hoyer, Dirk; Leder, Uwe; Hoyer, Heike; Pompe, Bernd; Sommer, Michael; Zwiener, Ulrich

    2002-01-01

    The heart rate variability (HRV) is related to several mechanisms of the complex autonomic functioning such as respiratory heart rate modulation and phase dependencies between heart beat cycles and breathing cycles. The underlying processes are basically nonlinear. In order to understand and quantitatively assess those physiological interactions an adequate coupling analysis is necessary. We hypothesized that nonlinear measures of HRV and cardiorespiratory interdependencies are superior to the standard HRV measures in classifying patients after acute myocardial infarction. We introduced mutual information measures which provide access to nonlinear interdependencies as counterpart to the classically linear correlation analysis. The nonlinear statistical autodependencies of HRV were quantified by auto mutual information, the respiratory heart rate modulation by cardiorespiratory cross mutual information, respectively. The phase interdependencies between heart beat cycles and breathing cycles were assessed basing on the histograms of the frequency ratios of the instantaneous heart beat and respiratory cycles. Furthermore, the relative duration of phase synchronized intervals was acquired. We investigated 39 patients after acute myocardial infarction versus 24 controls. The discrimination of these groups was improved by cardiorespiratory cross mutual information measures and phase interdependencies measures in comparison to the linear standard HRV measures. This result was statistically confirmed by means of logistic regression models of particular variable subsets and their receiver operating characteristics.

  7. Direction dependence of the magneto-optical absorption in nanowires with Rashba interaction

    Energy Technology Data Exchange (ETDEWEB)

    Sakr, M.R., E-mail: msakr@alexu.edu.eg

    2016-09-16

    We study the directional dependence of the absorption spectrum of ballistic nanowires in the presence of gate-controlled Rashba spin–orbit interaction and an in-plane magnetic field. In the weak Rashba regime, our analytical and numerical results show that the absorption peaks associated with the first and third intersubband transitions exhibit frequency shifts and strong amplitude modulations as the direction of the magnetic field changes. If the field is parallel to the nanowire axis, these peaks disappear and the resonance frequencies of the whole absorption spectrum are given merely in terms of the Zeeman splitting and the energy scale characterizing the confinement potential. The second transition has an absorption peak that suffers an opposite frequency shift with amplitude that is largely direction independent. The amplitude modulation and frequency shift of the absorption spectrum is periodic in the angle that the magnetic field makes with the nanowire axis. - Highlights: • Absorption spectrum of the nanowire is calculated in the weak Rashba regime. • First and third absorption peaks show amplitude and frequency modulation. • They disappear if the magnetic field is along the wire axis, forbidden transitions. • The second transition peak shows frequency shift with minor amplitude modulation. • The frequency and amplitude modulations are periodic in the direction of the field.

  8. δ-Catenin Regulates Spine Architecture via Cadherin and PDZ-dependent Interactions*

    Science.gov (United States)

    Yuan, Li; Seong, Eunju; Beuscher, James L.; Arikkath, Jyothi

    2015-01-01

    The ability of neurons to maintain spine architecture and modulate it in response to synaptic activity is a crucial component of the cellular machinery that underlies information storage in pyramidal neurons of the hippocampus. Here we show a critical role for δ-catenin, a component of the cadherin-catenin cell adhesion complex, in regulating spine head width and length in pyramidal neurons of the hippocampus. The loss of Ctnnd2, the gene encoding δ-catenin, has been associated with the intellectual disability observed in the cri du chat syndrome, suggesting that the functional roles of δ-catenin are vital for neuronal integrity and higher order functions. We demonstrate that loss of δ-catenin in a mouse model or knockdown of δ-catenin in pyramidal neurons compromises spine head width and length, without altering spine dynamics. This is accompanied by a reduction in the levels of synaptic N-cadherin. The ability of δ-catenin to modulate spine architecture is critically dependent on its ability to interact with cadherin and PDZ domain-containing proteins. We propose that loss of δ-catenin during development perturbs synaptic architecture leading to developmental aberrations in neural circuit formation that contribute to the learning disabilities in a mouse model and humans with cri du chat syndrome. PMID:25724647

  9. δ-Catenin Regulates Spine Architecture via Cadherin and PDZ-dependent Interactions.

    Science.gov (United States)

    Yuan, Li; Seong, Eunju; Beuscher, James L; Arikkath, Jyothi

    2015-04-24

    The ability of neurons to maintain spine architecture and modulate it in response to synaptic activity is a crucial component of the cellular machinery that underlies information storage in pyramidal neurons of the hippocampus. Here we show a critical role for δ-catenin, a component of the cadherin-catenin cell adhesion complex, in regulating spine head width and length in pyramidal neurons of the hippocampus. The loss of Ctnnd2, the gene encoding δ-catenin, has been associated with the intellectual disability observed in the cri du chat syndrome, suggesting that the functional roles of δ-catenin are vital for neuronal integrity and higher order functions. We demonstrate that loss of δ-catenin in a mouse model or knockdown of δ-catenin in pyramidal neurons compromises spine head width and length, without altering spine dynamics. This is accompanied by a reduction in the levels of synaptic N-cadherin. The ability of δ-catenin to modulate spine architecture is critically dependent on its ability to interact with cadherin and PDZ domain-containing proteins. We propose that loss of δ-catenin during development perturbs synaptic architecture leading to developmental aberrations in neural circuit formation that contribute to the learning disabilities in a mouse model and humans with cri du chat syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The pH dependence of silicon-iron interaction in rats.

    Science.gov (United States)

    Jia, X; Emerick, R J; Kayongo-Male, H

    1997-01-01

    A 2 x 2 x 3 factorial experiment was conducted to study the pH dependence of a silicon-iron interaction in vivo. The dietary treatments used in the factorial design were the following (mg/kg of diet): silicon, 0 and 500; iron, 35 and 187; acid-base, ammonium chloride as 0.5% of total diet (acidic), sodium bicarbonate as 1.0% of total diet (basic), or no supplementation of acid or base (control). The supplementation of 500 mg silicon/kg of diet increased plasma-iron concentration in rats fed the acidic or control diets, but not in rats fed the basic diet. A high dietary-iron level suppressed copper absorption and utilization and subsequently imposed a negative effect on its own utilization. An increase in the plasma total-cholesterol concentration caused by high dietary-iron level was likely a consequence of the antagonistic effect of iron on copper absorption and utilization. The use of cupric sulfate pentahydrate as the dietary-copper source in this study resulted in plasma copper concentrations that were approximately twice those obtained in a related study using cupric carbonate. Also, a 42% coefficient of variation (C.V.) for plasma-copper concentrations of rats fed cupric sulfate in this study was greatly reduced from the C.V. = 108% previously associated with the dietary cupric carbonate.

  11. Cognitive endophenotypes, gene-environment interactions and experience-dependent plasticity in animal models of schizophrenia.

    Science.gov (United States)

    Burrows, Emma L; Hannan, Anthony J

    2016-04-01

    Schizophrenia is a devastating brain disorder caused by a complex and heterogeneous combination of genetic and environmental factors. In order to develop effective new strategies to prevent and treat schizophrenia, valid animal models are required which accurately model the disorder, and ideally provide construct, face and predictive validity. The cognitive deficits in schizophrenia represent some of the most debilitating symptoms and are also currently the most poorly treated. Therefore it is crucial that animal models are able to capture the cognitive dysfunction that characterizes schizophrenia, as well as the negative and psychotic symptoms. The genomes of mice have, prior to the recent gene-editing revolution, proven the most easily manipulable of mammalian laboratory species, and hence most genetic targeting has been performed using mouse models. Importantly, when key environmental factors of relevance to schizophrenia are experimentally manipulated, dramatic changes in the phenotypes of these animal models are often observed. We will review recent studies in rodent models which provide insight into gene-environment interactions in schizophrenia. We will focus specifically on environmental factors which modulate levels of experience-dependent plasticity, including environmental enrichment, cognitive stimulation, physical activity and stress. The insights provided by this research will not only help refine the establishment of optimally valid animal models which facilitate development of novel therapeutics, but will also provide insight into the pathogenesis of schizophrenia, thus identifying molecular and cellular targets for future preclinical and clinical investigations. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Schedule-dependent interaction between vinblastine and irradiation in experimental sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Cemazar, Maja [Institute of Oncology Ljubljana, Ljubljana (Slovenia); University of Primorska, Faculty of Health Sciences, Izola (Slovenia); Dolinsek, Tanja; Markelc, Bostjan; Sersa, Gregor; Kloboves, Veronika; Strojan, Primoz [Institute of Oncology Ljubljana, Ljubljana (Slovenia); Kosjek, Tina [J. Stefan Institute, Ljubljana (Slovenia)

    2014-07-15

    Prolonged vinblastine (VLB) infusion and irradiation (IR) lead to favourable results in certain tumours types; however the underlying biological mechanisms of interaction are not well known. The aim of our study was to evaluate the dose- and time-dependent interactions between split-dose VLB treatment (mimicking prolonged infusion) and IR of sarcoma SA-1 tumours in A/J mice. Antitumor effectiveness of different VLB-IR schedules was determined by a tumour growth delay assay, the VLB amount in the tumours by liquid chromatography coupled to mass spectrometry and DNA cell cycle analysis. A positive antitumor effect was obtained when tumours were irradiated immediately after the first (0 h) or second (4 h) injection of VLB treatment, despite the lower amount of VLB in the tumours as well as decreased number of cells in the IR-sensitive G2M phase at these times points as opposed to the second half of VLB split-dose scheduling. Preferential binding of VLB to microtubules (with consequent lack of available VLB to bind to DNA where it acts as a radioprotector) and the absence of radiobiologically relevant hypoxia are presumably leading to the observed therapeutic benefit of applying IR at the beginning of the prolonged VLB infusion. (orig.) [German] Eine Verlaengerung der Vinblastin-(VLB-)Infusion sowie der Bestrahlung (IR) fuehrt bei einigen Tumorarten zu vorteilhaften Ergebnissen, wobei aber die biologischen Grundelemente dieser Interaktion noch nicht genuegend aufgeklaert sind. Unsere Untersuchung setzte sich zum Ziel, an den SA-1-Sarkomen der A/J-Maeuse dosis- sowie zeitabhaengige Interaktionen zwischen der VLB-Teildosentherapie (d. h. einer Nachahmung der Infusionsverlaengerung) und der IR festzustellen. Die Antitumorwirkung verschiedener VLB-IR-Schemata wurde mit einem Tumorwachstumsverzoegerungs-Assay (''tumor growth delay assay''), durch Messung der in den Tumoren befindlichen VLB-Menge mittels Fluessigkeitschromatographie sowie anhand der DNA

  13. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    Science.gov (United States)

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at

  14. Incident energy and target dependence of interaction cross sections and density distribution of neutron drip-line nuclei

    International Nuclear Information System (INIS)

    Shimoura, S.

    1992-01-01

    The relation between nuclear density distribution and interaction cross section is discussed in terms of Glauber model. Based on the model, density distribution of neutron drip-line nucleus 11 Be and 11 Li is determined experimentally from incident energy dependence of interaction cross sections of 11 Be and 11 Li on light targets. The obtained distributions have long tails corresponding to neutron halos of loosely bound neutrons. (Author)

  15. Spin-orbit coupling effects, interactions and superconducting transport in nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Andreas

    2010-05-15

    In the present thesis we study the electronic properties of several low dimensional nanoscale systems. In the first part, we focus on the combined effect of spin-orbit coupling (SOI) and Coulomb interaction in carbon nanotubes (CNTs) as well as quantum wires. We derive low energy theories for both systems, using the bosonization technique and obtain analytic expressions for the correlation functions that allow us to compute basically all observables of interest. We first focus on CNTs and show that a four channel Luttinger liquid theory can still be applied when SOI effects are taken into account. Compared to previous formulations, the low-energy Hamiltonian is characterized by different Luttinger parameters and plasmon velocities. Notably, the charge and spin modes are coupled. Our theory allows us to compute an asymptotically exact expression for the spectral function of a metallic carbon nanotube. We find modifications to the previously predicted structure of the spectral function that can in principle be tested by photoemission spectroscopy experiments. We develop a very similar low energy description for an interacting quantum wire subject to Rashba spin-orbit coupling (RSOC). We derive a two component Luttinger liquid Hamiltonian in the presence of RSOC, taking into account all e-e interaction processes allowed by the conservation of total momentum. The effective low energy Hamiltonian includes an additional perturbation due to intraband backscattering processes with band flip. Within a one-loop RG scheme, this perturbation is marginally irrelevant. The fixed point model is then still a two channel Luttinger liquid, albeit with a non standard form due to SOI. Again, the charge and spin mode are coupled. Using our low energy theory, we address the problem of the RKKY interaction in an interacting Rashba wire. The coupling of spin and charge modes due to SO effects implies several modifications, e.g. the explicit dependence of the power-law decay exponent of

  16. Spin-orbit coupling effects, interactions and superconducting transport in nanostructures

    International Nuclear Information System (INIS)

    Schulz, Andreas

    2010-05-01

    In the present thesis we study the electronic properties of several low dimensional nanoscale systems. In the first part, we focus on the combined effect of spin-orbit coupling (SOI) and Coulomb interaction in carbon nanotubes (CNTs) as well as quantum wires. We derive low energy theories for both systems, using the bosonization technique and obtain analytic expressions for the correlation functions that allow us to compute basically all observables of interest. We first focus on CNTs and show that a four channel Luttinger liquid theory can still be applied when SOI effects are taken into account. Compared to previous formulations, the low-energy Hamiltonian is characterized by different Luttinger parameters and plasmon velocities. Notably, the charge and spin modes are coupled. Our theory allows us to compute an asymptotically exact expression for the spectral function of a metallic carbon nanotube. We find modifications to the previously predicted structure of the spectral function that can in principle be tested by photoemission spectroscopy experiments. We develop a very similar low energy description for an interacting quantum wire subject to Rashba spin-orbit coupling (RSOC). We derive a two component Luttinger liquid Hamiltonian in the presence of RSOC, taking into account all e-e interaction processes allowed by the conservation of total momentum. The effective low energy Hamiltonian includes an additional perturbation due to intraband backscattering processes with band flip. Within a one-loop RG scheme, this perturbation is marginally irrelevant. The fixed point model is then still a two channel Luttinger liquid, albeit with a non standard form due to SOI. Again, the charge and spin mode are coupled. Using our low energy theory, we address the problem of the RKKY interaction in an interacting Rashba wire. The coupling of spin and charge modes due to SO effects implies several modifications, e.g. the explicit dependence of the power-law decay exponent of

  17. Fermionic particles with positron-dependent mass in the presence of inversely quadratic Yukawa potential and tensor interaction

    International Nuclear Information System (INIS)

    Bahar, M.K.; Yasuk, F.

    2013-01-01

    Approximate solutions of the Dirac equation with positron-dependent mass are presented for the inversely quadratic Yukawa potential and Coulomb-like tensor interaction by using the asymptotic iteration method. The energy eigenvalues and the corresponding normalized eigenfunctions are obtained in the case of positron-dependent mass and arbitrary spin-orbit quantum number k state and approximation on the spin-orbit coupling term. (author)

  18. Seed harvesting by a generalist consumer is context-dependent: Interactive effects across multiple spatial scales

    Science.gov (United States)

    Ostoja, Steven M.; Schupp, Eugene W.; Klinger, Rob

    2013-01-01

    Granivore foraging decisions affect consumer success and determine the quantity and spatial pattern of seed survival. These decisions are influenced by environmental variation at spatial scales ranging from landscapes to local foraging patches. In a field experiment, the effects of seed patch variation across three spatial scales on seed removal by western harvester ants Pogonomyrmex occidentalis were evaluated. At the largest scale we assessed harvesting in different plant communities, at the intermediate scale we assessed harvesting at different distances from ant mounds, and at the smallest scale we assessed the effects of interactions among seed species in local seed neighborhoods on seed harvesting (i.e. resource–consumer interface). Selected seed species were presented alone (monospecific treatment) and in mixture with Bromus tectorum (cheatgrass; mixture treatment) at four distances from P. occidentalis mounds in adjacent intact sagebrush and non-native cheatgrass-dominated communities in the Great Basin, Utah, USA. Seed species differed in harvest, with B. tectorum being least preferred. Large and intermediate scale variation influenced harvest. More seeds were harvested in sagebrush than in cheatgrass-dominated communities (largest scale), and the quantity of seed harvested varied with distance from mounds (intermediate-scale), although the form of the distance effect differed between plant communities. At the smallest scale, seed neighborhood affected harvest, but the patterns differed among seed species considered. Ants harvested fewer seeds from mixed-seed neighborhoods than from monospecific neighborhoods, suggesting context dependence and potential associational resistance. Further, the effects of plant community and distance from mound on seed harvest in mixtures differed from their effects in monospecific treatments. Beyond the local seed neighborhood, selection of seed resources is better understood by simultaneously evaluating removal at

  19. Analysis of Context Dependence in Social Interaction Networks of a Massively Multiplayer Online Role-Playing Game

    Science.gov (United States)

    Son, Seokshin; Kang, Ah Reum; Kim, Hyun-chul; Kwon, Taekyoung; Park, Juyong; Kim, Huy Kang

    2012-01-01

    Rapid advances in modern computing and information technology have enabled millions of people to interact online via various social network and gaming services. The widespread adoption of such online services have made possible analysis of large-scale archival data containing detailed human interactions, presenting a very promising opportunity to understand the rich and complex human behavior. In collaboration with a leading global provider of Massively Multiplayer Online Role-Playing Games (MMORPGs), here we present a network science-based analysis of the interplay between distinct types of user interaction networks in the virtual world. We find that their properties depend critically on the nature of the context-interdependence of the interactions, highlighting the complex and multilayered nature of human interactions, a robust understanding of which we believe may prove instrumental in the designing of more realistic future virtual arenas as well as provide novel insights to the science of collective human behavior. PMID:22496771

  20. Analysis of context dependence in social interaction networks of a massively multiplayer online role-playing game.

    Science.gov (United States)

    Son, Seokshin; Kang, Ah Reum; Kim, Hyun-chul; Kwon, Taekyoung; Park, Juyong; Kim, Huy Kang

    2012-01-01

    Rapid advances in modern computing and information technology have enabled millions of people to interact online via various social network and gaming services. The widespread adoption of such online services have made possible analysis of large-scale archival data containing detailed human interactions, presenting a very promising opportunity to understand the rich and complex human behavior. In collaboration with a leading global provider of Massively Multiplayer Online Role-Playing Games (MMORPGs), here we present a network science-based analysis of the interplay between distinct types of user interaction networks in the virtual world. We find that their properties depend critically on the nature of the context-interdependence of the interactions, highlighting the complex and multilayered nature of human interactions, a robust understanding of which we believe may prove instrumental in the designing of more realistic future virtual arenas as well as provide novel insights to the science of collective human behavior.

  1. Analysis of context dependence in social interaction networks of a massively multiplayer online role-playing game.

    Directory of Open Access Journals (Sweden)

    Seokshin Son

    Full Text Available Rapid advances in modern computing and information technology have enabled millions of people to interact online via various social network and gaming services. The widespread adoption of such online services have made possible analysis of large-scale archival data containing detailed human interactions, presenting a very promising opportunity to understand the rich and complex human behavior. In collaboration with a leading global provider of Massively Multiplayer Online Role-Playing Games (MMORPGs, here we present a network science-based analysis of the interplay between distinct types of user interaction networks in the virtual world. We find that their properties depend critically on the nature of the context-interdependence of the interactions, highlighting the complex and multilayered nature of human interactions, a robust understanding of which we believe may prove instrumental in the designing of more realistic future virtual arenas as well as provide novel insights to the science of collective human behavior.

  2. Predator-Prey Interactions are Context Dependent in a Grassland Plant-Grasshopper-Wolf Spider Food Chain.

    Science.gov (United States)

    Laws, Angela N; Joern, Anthony

    2015-06-01

    Species interactions are often context dependent, where outcomes vary in response to one or more environmental factors. It remains unclear how abiotic conditions like temperature combine with biotic factors such as consumer density or food quality to affect resource availability or influence species interactions. Using the large grasshopper Melanoplus bivittatus (Say) and a common wolf spider [Rabidosa rabida (Walkenaer)], we conducted manipulative field experiments in tallgrass prairie to examine how spider-grasshopper interactions respond to manipulations of temperature, grasshopper density, and food quality. Grasshopper survival was density dependent, as were the effects of spider presence and food quality in context-dependent ways. In high grasshopper density treatments, predation resulted in increased grasshopper survival, likely as a result of reduced intraspecific competition in the presence of spiders. Spiders had no effect on grasshopper survival when grasshoppers were stocked at low densities. Effects of the experimental treatments were often interdependent so that effects were only observed when examined together with other treatments. The occurrence of trophic cascades was context dependent, where the effects of food quality and spider presence varied with temperature under high-density treatments. Temperature weakly affected the impact of spider presence on M. bivittatus survivorship when all treatments were considered simultaneously, but different context-dependent responses to spider presence and food quality were observed among the three temperature treatments under high-density conditions. Our results indicate that context-dependent species interactions are common and highlight the importance of understanding how key biotic and abiotic factors combine to influence species interactions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Equilibrium finite-frequency noise of an interacting mesoscopic capacitor studied in time-dependent density functional theory

    Science.gov (United States)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-03-01

    We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.

  4. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  5. Summary of measurements of the spin dependence in NN interactions from 2 to 12 GeV/c

    International Nuclear Information System (INIS)

    Rust, D.R.

    1975-01-01

    The status of experimental measurements of the spin dependence in NN interactions from 2 to 12 GeV/c as of June 1975 is summarized. Older data have been left out if more accurate or more complete results are available

  6. Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Roxbury, Daniel

    It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation

  7. Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions

    Directory of Open Access Journals (Sweden)

    Tellier Aurélien

    2011-11-01

    Full Text Available Abstract Background Genomic and pathology analysis has revealed enormous diversity in genes involved in disease, including those encoding host resistance and parasite effectors (also known in plant pathology as avirulence genes. It has been proposed that such variation may persist when an organism exists in a spatially structured metapopulation, following the geographic mosaic of coevolution. Here, we study gene-for-gene relationships governing the outcome of plant-parasite interactions in a spatially structured system and, in particular, investigate the population genetic processes which maintain balanced polymorphism in both species. Results Following previous theory on the effect of heterogeneous environments on maintenance of polymorphism, we analysed a model with two demes in which the demes have different environments and are coupled by gene flow. Environmental variation is manifested by different coefficients of natural selection, the costs to the host of resistance and to the parasite of virulence, the cost to the host of being diseased and the cost to an avirulent parasite of unsuccessfully attacking a resistant host. We show that migration generates negative direct frequency-dependent selection, a condition for maintenance of stable polymorphism in each deme. Balanced polymorphism occurs preferentially if there is heterogeneity for costs of resistance and virulence alleles among populations and to a lesser extent if there is variation in the cost to the host of being diseased. We show that the four fitness costs control the natural frequency of oscillation of host resistance and parasite avirulence alleles. If demes have different costs, their frequencies of oscillation differ and when coupled by gene flow, there is amplitude death of the oscillations in each deme. Numerical simulations show that for a multiple deme island model, costs of resistance and virulence need not to be present in each deme for stable polymorphism to occur

  8. Decomposition of the configuration-interaction coefficients in the multiconfiguration time-dependent Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Lötstedt, Erik, E-mail: lotstedt@chem.s.u-tokyo.ac.jp; Kato, Tsuyoshi; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-04-21

    An approximate implementation of the multiconfiguration time-dependent Hartree-Fock method is proposed, in which the matrix of configuration-interaction coefficients is decomposed into a product of matrices of smaller dimension. The applicability of this method in which all the configurations are kept in the expansion of the wave function, while the configuration-interaction coefficients are approximately calculated, is discussed by showing the results on three model systems: a one-dimensional model of a beryllium atom, a one-dimensional model of a carbon atom, and a one-dimensional model of a chain of four hydrogen atoms. The time-dependent electronic dynamics induced by a few-cycle, long-wavelength laser pulse is found to be well described at a lower computational cost compared to the standard multiconfiguration time-dependent Hartree-Fock treatment. Drawbacks of the method are also discussed.

  9. Capacitation dependent changes in the sperm plasma membrane influence porcine gamete interaction

    NARCIS (Netherlands)

    Flesch, F.M.

    2000-01-01

    Although the sperm cell was first seen through Van Leeuwenhoek’s microscope in the late seventieth century and despite much effort in the last 40 years in particular, we still do not know a great deal of the sperm cell and its interaction with the oocyte. Mammalian sperm-oocyte interaction is a

  10. Length dependence of staircase potentiation: interactions with caffeine and dantrolene sodium.

    Science.gov (United States)

    Rassier, D E; MacIntosh, B R

    2000-04-01

    In skeletal muscle, there is a length dependence of staircase potentiation for which the mechanism is unclear. In this study we tested the hypothesis that abolition of this length dependence by caffeine is effected by a mechanism independent of enhanced Ca2+ release. To test this hypothesis we have used caffeine, which abolishes length dependence of potentiation, and dantrolene sodium, which inhibits Ca2+ release. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 20 s of repetitive stimulation at 5 Hz were analyzed at optimal length (Lo), Lo - 10%, and Lo + 10%. Potentiation was observed to be length dependent, with an increase in developed tension (DT) of 78 +/- 12, 51 +/- 5, and 34 +/- 9% (mean +/- SEM), at Lo - 10%, Lo, and Lo + 10%, respectively. Caffeine diminished the length dependence of activation and suppressed the length dependence of staircase potentiation, giving increases in DT of 65+/-13, 53 +/- 11, and 45 +/- 12% for Lo - 10%, Lo, and Lo + 10%, respectively. Dantrolene administered after caffeine did not reverse this effect. Dantrolene alone depressed the potentiation response, but did not affect the length dependence of staircase potentiation, with increases in DT of 58 +/- 17, 26 +/- 8, and 18 +/- 7%, respectively. This study confirms that there is a length dependence of staircase potentiation in mammalian skeletal muscle which is suppressed by caffeine. Since dantrolene did not alter this suppression of the length dependence of potentiation by caffeine, it is apparently not directly modulated by Ca2+ availability in the myoplasm.

  11. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins.

    Science.gov (United States)

    Seong, Hyun-A; Jung, Haiyoung; Kim, Kyong-Tai; Ha, Hyunjung

    2007-04-20

    We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-beta signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-beta treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-beta-induced transcription, as well as TGF-beta-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-beta. Taken together, our results suggest that PDK1 negatively regulates TGF-beta-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.

  12. Diet-dependent modular dynamic interactions of the equine cecal microbiota

    DEFF Research Database (Denmark)

    Kristoffersen, Camilla; Jensen, Rasmus Bovbjerg; Avershina, Ekaterina

    2016-01-01

    Knowledge on dynamic interactions in microbiota is pivotal for understanding the role of bacteria in the gut. We herein present comprehensive dynamic models of the horse cecal microbiota, which include short-chained fatty acids, carbohydrate metabolic networks, and taxonomy. Dynamic models were...... diets. We observed marked differences in the microbial dynamic interaction patterns for Fibrobacter succinogenes, Lachnospiraceae, Streptococcus, Treponema, Anaerostipes, and Anaerovibrio between the two diet groups. Fluctuations and microbiota interactions were the most pronounced for the starch rich...... sugars for the starch-rich diet and monosaccharides for the fiber-rich diet. In conclusion, diet may not only affect the composition of the cecal microbiota, but also dynamic interactions and metabolic cross-feeding....

  13. ARA24/Ran enhances the androgen-dependent NH2- and COOH-terminal interaction of the androgen receptor

    International Nuclear Information System (INIS)

    Harada, Naoki; Ohmori, Yuji; Yamaji, Ryoichi; Higashimura, Yasuki; Okamoto, Kazuki; Isohashi, Fumihide; Nakano, Yoshihisa; Inui, Hiroshi

    2008-01-01

    The androgen receptor (AR) acts as an androgen-dependent transcription factor controlling the development of prostate tissue. Upon binding to androgen, AR undergoes a dynamic structural change leading to interaction between the NH 2 - and COOH-terminal regions of AR (N-C interaction). ARA24/Ran, which is a small GTPase, functions as an AR coactivator. Here, we report that ARA24/Ran enhances the N-C interaction of AR. The constitutively GTP- or GDP-bound form of ARA24/Ran repressed the AR N-C interaction. ARA24/Ran did not enhance the transcriptional activities of AR mutants that disrupt the N-C interaction. ARA24/Ran formed an endogenous protein complex with nuclear AR, but not cytoplasmic AR. Unlike SRC-1 with the positive activity for AR N-C interaction, ARA24/Ran did not enhance the transcriptional activity of the COOH-terminal domain-deleted AR mutant that is constitutively localized in the nucleus. These data demonstrate that ARA24/Ran increases AR transactivation by enhancing the AR N-C interaction in the nucleus

  14. Evidence for Gender-Dependent Genotype by Environment Interaction in Adult Depression.

    Science.gov (United States)

    Molenaar, Dylan; Middeldorp, Christel M; Willemsen, Gonneke; Ligthart, Lannie; Nivard, Michel G; Boomsma, Dorret I

    2015-10-14

    Depression in adults is heritable with about 40 % of the phenotypic variance due to additive genetic effects and the remaining phenotypic variance due to unique (unshared) environmental effects. Common environmental effects shared by family members are rarely found in adults. One possible explanation for this finding is that there is an interaction between genes and the environment which may mask effects of the common environment. To test this hypothesis, we investigated genotype by environment interaction in a large sample of female and male adult twins aged 18-70 years. The anxious depression subscale of the Adult Self Report from the Achenbach System of Empirically Based Assessment (Achenbach and Rescorla in Manual for the ASEBA adult: forms and profiles, 2003) was completed by 13,022 twins who participate in longitudinal studies of the Netherlands Twin Register. In a single group analysis, we found genotype by unique environment interaction, but no genotype by common environment interaction. However, when conditioning on gender, we observed genotype by common environment interaction in men, with larger common environmental variance in men who are genetically less at risk to develop depression. Although the effect size of the interaction is characterized by large uncertainty, the results show that there is at least some variance due to the common environment in adult depression in men.

  15. Interactions between bicarbonate, potassium, and magnesium, and sulfur-dependent induction of luminescence in Vibrio fischeri.

    Science.gov (United States)

    Tabei, Yosuke; Era, Mariko; Ogawa, Akane; Morita, Hiroshi

    2012-06-01

    In spite of its central importance in research efforts, the relationship between seawater compounds and bacterial luminescence has not previously been investigated in detail. Thus, in this study, we investigated the effect of cations (Na(+) , K(+) , NH(4) (+) , Mg(2+) , and Ca(2+) ) and anions (Cl(-) , HCO(3) (-) , CO(3) (2-) , and NO(3) (-) ) on the induction of both inorganic (sulfate, sulfite, and thiosulfate) and organic (L-cysteine and L-cystine) sulfur-dependent luminescence in Vibrio fischeri. We found that HCO(3) (-) (bicarbonate) and CO(3) (2-) (carbonate), in the form of various compounds, had a stimulatory effect on sulfur-dependent luminescence. The luminescence induced by bicarbonate was further promoted by the addition of magnesium. Potassium also increased sulfur-dependent luminescence when sulfate or thiosulfate was supplied as the sole sulfur source, but not when sulfite, L-cysteine, or L-cystine was supplied. The positive effect of potassium was accelerated by the addition of magnesium and/or calcium. Furthermore, the additional supply of magnesium improved the induction of sulfite- or L-cysteine-dependent luminescence, but not the l-cystine-dependent type. These results suggest that sulfur-dependent luminescence of V. fischeri under nutrient-starved conditions is mainly controlled by bicarbonate, carbonate, and potassium. In addition, our results indicate that an additional supply of magnesium is effective for increasing V. fischeri luminescence. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A novel twist on molecular interactions between thioredoxin and nicotinamide adenine dinucleotide phosphate-dependent thioredoxin reductase

    DEFF Research Database (Denmark)

    Kirkensgaard, Kristine Groth; Hägglund, Per; Shahpiri, Azar

    2013-01-01

    The ubiquitous disulfide reductase thioredoxin (Trx) regulates several important biological processes such as seed germination in plants. Oxidized cytosolic Trx is regenerated by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase (NTR) in a multistep transfer...... dinucleotide (FAD)-binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent...

  17. Dependences of the van der Waals atom-wall interaction on atomic and material properties

    International Nuclear Information System (INIS)

    Caride, A.O.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Zanette, S.I.

    2005-01-01

    The 1%-accurate calculations of the van der Waals interaction between an atom and a cavity wall are performed in the separation region from 3 nm to 150 nm. The cases of metastable He * and Na atoms near metal, semiconductor, and dielectric walls are considered. Different approximations to the description of wall material and atomic dynamic polarizability are carefully compared. The smooth transition to the Casimir-Polder interaction is verified. It is shown that to obtain accurate results for the atom-wall van der Waals interaction at short separations with an error less than 1% one should use the complete optical-tabulated data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. The obtained results may be useful for the theoretical interpretation of recent experiments on quantum reflection and Bose-Einstein condensation of ultracold atoms on or near surfaces of different kinds

  18. Quantum systems with position-dependent mass and spin-orbit interaction via Rashba and Dresselhaus terms

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Alexandre G. M., E-mail: agmschmidt@gmail.com; Portugal, L., E-mail: liciniolportugal@gmail.com; Jesus, Anderson L. de [Departamento de Física do polo universitário de Volta Redonda, Instituto de Ciências Exatas—Universidade Federal Fluminense, R. Des. Ellis Hermydio Figueira, 783, Volta Redonda, RJ CEP 27215-350 (Brazil)

    2015-01-15

    We consider a particle with spin 1/2 with position-dependent mass moving in a plane. Considering separately Rashba and Dresselhaus spin-orbit interactions, we write down the Hamiltonian for this problem and solve it for Dirichlet boundary conditions. Our radial wavefunctions have two contributions: homogeneous ones which are written as Bessel functions of non-integer orders—that depend on angular momentum m—and particular solutions which are obtained after decoupling the non-homogeneous system. In this process, we find non-homogeneous Bessel equation, Laguerre, as well as biconfluent Heun equation. We also present the probability densities for m = 0, 1, 2 in an annular quantum well. Our results indicate that the background as well as the spin-orbit interaction naturally splits the spinor components.

  19. Quantum systems with position-dependent mass and spin-orbit interaction via Rashba and Dresselhaus terms

    International Nuclear Information System (INIS)

    Schmidt, Alexandre G. M.; Portugal, L.; Jesus, Anderson L. de

    2015-01-01

    We consider a particle with spin 1/2 with position-dependent mass moving in a plane. Considering separately Rashba and Dresselhaus spin-orbit interactions, we write down the Hamiltonian for this problem and solve it for Dirichlet boundary conditions. Our radial wavefunctions have two contributions: homogeneous ones which are written as Bessel functions of non-integer orders—that depend on angular momentum m—and particular solutions which are obtained after decoupling the non-homogeneous system. In this process, we find non-homogeneous Bessel equation, Laguerre, as well as biconfluent Heun equation. We also present the probability densities for m = 0, 1, 2 in an annular quantum well. Our results indicate that the background as well as the spin-orbit interaction naturally splits the spinor components

  20. Temperature-dependent optical potential and mean free path based on Skyrme interactions

    International Nuclear Information System (INIS)

    Ge Lingxiao; Zhuo Yizhong; Noerenberg, W.; Technische Hochschule Darmstadt

    1986-03-01

    Optical potentials and mean free paths of nucleons at finite temperatures are studied by utilizing effective Skyrme interactions which yield 'good' optical potentials at zero temperature. The results for nuclear matter (symmetric and asymmetric) are applied within the local density approximation of finite nuclei at various temperatures. Because of the limitation due to zero-range forces used and the assumptions of temperature independent nuclear densities and effective Skyrme interactions made, the calculations are expected to be limited to nucleon energies between 10 and 50 MeV above the Fermi energy and to nuclear temperatures of less than 8 MeV. (orig.)

  1. Dynamically induced spin-dependent interaction in the elastic scattering of heavy-ions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1982-02-01

    Dynamical polarization effect in heavy-ion elastic scattering is investigated in the framework of the coupled-reaction-channel theory. By using the adiabatic approximation at low incident energies, this effect is expressed as a spin-orbit (L vector.S vector) interaction with a L vector and S vector independent radial function. The strength of the (L vector.S vector) interaction calculated for the 12 C + 13 C system is in the same order of magnitude as deduced from experiments and is about two orders of magnitude larger than that obtained from the folding model calculation. (author)

  2. Methylxanthines and drug dependence: a focus on interactions with substances of abuse.

    Science.gov (United States)

    Morelli, Micaela; Simola, Nicola

    2011-01-01

    This chapter examines the psychostimulant actions of methylxanthines, with a focus on the consequences of their excessive use. Consumption of methylxanthines is pervasive and their use is often associated with that of substances known to produce dependence and to have abuse potential. Therefore, the consequences of this combined use are taken into consideration in order to evaluate whether, and to what extent, methylxanthines could influence dependence on or abuse of other centrally active substances, leading to either amplification or attenuation of their effects. Since the methylxanthine that mostly influences mental processes and readily induces psychostimulation is caffeine, this review mainly focuses on caffeine as a prototype of methylxanthine-produced dependence, examining, at the same time, the risks related to caffeine use.

  3. Dependence of Xmax and multiplicity of electron and muon on different high energy interaction models

    Directory of Open Access Journals (Sweden)

    G Rastegarzadeh

    2010-06-01

    Full Text Available Different high energy interaction models are the applied in CORSIKA code to simulate Extensive Air Showers (EAS generated by Cosmic Rays (CR. In this work the effects of QGSJET01, QGSJETII, DPMJET, SIBYLL models on Xmax and multiplicity of secondary electrons and muons at observation level are studied.

  4. Genre-dependent interaction of coherence and lexical cohesion in written discourse

    NARCIS (Netherlands)

    Berzlánovich, I.; Redeker, G.

    2012-01-01

    We investigate the interaction between coherence and lexical cohesion in expository and persuasive texts using seven encyclopedia texts and seven fundraising letters. We describe genre structure in terms of genre-specific moves and coherence structure with Rhetorical Structure Theory. For lexical

  5. Density-dependent interactions in an Arctic char - brown trout system: competition, predation, or both?

    NARCIS (Netherlands)

    Persson, L.; Amundsen, P.A.; de Roos, A.M.; Knudsen, R.; Primicerio, R.; Klemetsen, A.

    2013-01-01

    In the study of mechanisms structuring fish communities, mixed competition-predation interactions where large predators feed on prey fish versus those in which small predators compete with prey fish for a shared prey have been the focus of substantial research. We used a long-term data set from a

  6. Basis Set Dependence of Interaction Energies Computed Using Composite Post-MP2 Methods

    Czech Academy of Sciences Publication Activity Database

    Platts, J. A.; Hill, J. G.; Riley, K. E.; Řezáč, Jan; Hobza, Pavel

    2013-01-01

    Roč. 9, č. 1 (2013), s. 330-337 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : plesset perturbation-theory * intermolecular interaction energies * density fitting approximations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  7. Interaction of PAMAM dendrimers with bovine insulin depends on nanoparticle end-groups

    International Nuclear Information System (INIS)

    Nowacka, Olga; Milowska, Katarzyna; Bryszewska, Maria

    2015-01-01

    We have looked at the interactions between polyamidoamine (PAMAM) dendrimers with different terminal groups (−COOH, −NH 2 , −OH) and bovine insulin. The influence of PAMAM dendrimers on insulin was tested by measuring zeta potential and fluorescence quenching. The secondary structure of insulin in the presence of dendrimers was examined by circular dichroism. The effect of dendrimers on dithiotreitol-induced aggregation of insulin was investigated by spectrophotometry. Dendrimers quenched the fluorescence of insulin, but did not change its secondary structure. Thus dendrimers neither induce hormone aggregation nor inhibit the aggregation process induced by dithiotreitol (DTT), except at 0.01 µmol/l. Dendrimers–insulin interactions are mainly electrostatic. - Highlight: • The interactions between PAMAM dendrimers and insulin were investigated. • The PAMAM dendrimers can quench the fluorescence of insulin. • The PAMAM dendrimers did not change the secondary structure of insulin. • Dendrimers did not induce aggregation of hormone. • Dendrimers–insulin interaction is mainly electrostatic

  8. Density dependence and microevolution interactively determine effects of phenology mismatch on population dynamics

    NARCIS (Netherlands)

    Reed, T.; Gienapp, P.; Visser, M.E.

    2015-01-01

    Life cycle events in plants and animals are typically adaptively tuned to anticipate predictable seasonal changes in environmental conditions or resources. Climate change is expected to affect the temporal component of species’ interactions, e.g. by creating a mismatch between a predator's breeding

  9. Er sensitization by a thin Si layer: Interaction-distance dependence

    DEFF Research Database (Denmark)

    Julsgaard, Brian; Lu, Ying-Wei; Jensen, Rasmus Vincentz Skougaard

    2011-01-01

    From photoluminescence measurements on sensitized erbium in a-Si/SiO2:Er/SiO2 multilayers, we determine the characteristic interaction length of the sensitization process from the silicon-layer sensitizer to the erbium-ion receiver to be 0.22±0.02 nm. By using sufficiently low temperatures in the...

  10. Macroeconomic policy interaction: State dependency and implications for financial stability in UK: A systemic review

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Nasir

    2016-12-01

    Full Text Available The association between economic and financial stabilities and influence of macroeconomic policies on the financial sector creates scope of active policy role in financial stability. As a contribution to the existing body of knowledge, this study has analysed the implications of macroeconomic policy interaction/coordination for financial stability, proxied by financial assets, i.e. equity and bonds price oscillation. The critical review and analysis of the existing literature on the subject suggests that there is also ample evidence of interdependence between monetary and fiscal policies and this interrelation necessitates coordination between them for the sake of financial stability. There is also a case for analysing the symmetry of financial markets responses to macroeconomic policy interaction. On methodological and empirical grounds, it is vital to test the robustness of policy recommendations to overcome the limitation of a single empirical approach (Jeffrey–Lindley’s paradox. Hence, the Frequentist and Bayesian approaches should be used in commentary manner. The policy interaction and optimal policy combination should also be analysed in the context of institutional design and major financial events to gain insight into the implications of policy interaction in the periods of stable economic and financial environments as well as period of financial and economic distress.

  11. Interaction of the phospholipid scramblase 1 with HIV-1 Tat results in the repression of Tat-dependent transcription

    International Nuclear Information System (INIS)

    Kusano, Shuichi; Eizuru, Yoshito

    2013-01-01

    Highlights: •PLSCR1 specifically interacted with HIV-1 Tat in vitro and in vivo. •PLSCR1 repressed Tat-dependent transactivation of the HIV-1 LTR. •Suppression of PLSCR1 expression enhanced the levels of HIV-1 transcripts. •PLSCR1 reduced the nuclear localization of Tat. -- Abstract: Human phospholipid scramblase 1 (PLSCR1) is an interferon (IFN)-stimulated gene and possesses an IFN-mediated antiviral function. We show here that PLSCR1 directly interacts with human immunodeficiency virus type-1 (HIV-1) Tat. This interaction occurs both in vitro and in vivo through amino acids 160–250 of PLSCR1. Overexpression of PLSCR1 efficiently represses the Tat-dependent transactivation of the HIV-1 long terminal repeat (LTR) and reduces the nuclear translocation of Tat. In addition, shRNA-mediated suppression of endogenous PLSCR1 expression enhances the levels of gag mRNA in an HIV-1-infected T-cell line. These findings indicate that PLSCR1 negatively regulates the Tat-dependent transactivation of the HIV-1 LTR during HIV-1 infection

  12. Density-Dependent Formulation of Dispersion-Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models.

    Science.gov (United States)

    Curutchet, Carles; Cupellini, Lorenzo; Kongsted, Jacob; Corni, Stefano; Frediani, Luca; Steindal, Arnfinn Hykkerud; Guido, Ciro A; Scalmani, Giovanni; Mennucci, Benedetta

    2018-03-13

    Mixed multiscale quantum/molecular mechanics (QM/MM) models are widely used to explore the structure, reactivity, and electronic properties of complex chemical systems. Whereas such models typically include electrostatics and potentially polarization in so-called electrostatic and polarizable embedding approaches, respectively, nonelectrostatic dispersion and repulsion interactions are instead commonly described through classical potentials despite their quantum mechanical origin. Here we present an extension of the Tkatchenko-Scheffler semiempirical van der Waals (vdW TS ) scheme aimed at describing dispersion and repulsion interactions between quantum and classical regions within a QM/MM polarizable embedding framework. Starting from the vdW TS expression, we define a dispersion and a repulsion term, both of them density-dependent and consistently based on a Lennard-Jones-like potential. We explore transferable atom type-based parametrization strategies for the MM parameters, based on either vdW TS calculations performed on isolated fragments or on a direct estimation of the parameters from atomic polarizabilities taken from a polarizable force field. We investigate the performance of the implementation by computing self-consistent interaction energies for the S22 benchmark set, designed to represent typical noncovalent interactions in biological systems, in both equilibrium and out-of-equilibrium geometries. Overall, our results suggest that the present implementation is a promising strategy to include dispersion and repulsion in multiscale QM/MM models incorporating their explicit dependence on the electronic density.

  13. Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin.

    Science.gov (United States)

    Delporte, Annelies; De Zaeytijd, Jeroen; De Storme, Nico; Azmi, Abdelkrim; Geelen, Danny; Smagghe, Guy; Guisez, Yves; Van Damme, Els J M

    2014-10-01

    The Nicotiana tabacum agglutinin or Nictaba is a nucleocytoplasmic lectin that is expressed in tobacco after the plants have been exposed to jasmonate treatment or insect herbivory. Nictaba specifically recognizes GlcNAc residues. Recently, it was shown that Nictaba is interacting in vitro with the core histone proteins from calf thymus. Assuming that plant histones - similar to their animal counterparts - undergo O-GlcNAcylation, this interaction presumably occurs through binding of the lectin to the O-GlcNAc modification present on the histones. Hereupon, the question was raised whether this modification also occurs in plants and if it is cell cycle dependent. To this end, histones were purified from tobacco BY-2 suspension cells and the presence of O-GlcNAc modifications was checked. Concomitantly, O-GlcNAcylation of histone proteins was studied. Our data show that similar to animal histones plant histones are modified by O-GlcNAc in a cell cycle-dependent fashion. In addition, the interaction between Nictaba and tobacco histones was confirmed using lectin chromatography and far Western blot analysis. Collectively these findings suggest that Nictaba can act as a modulator of gene transcription through its interaction with core histones. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    Science.gov (United States)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  15. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    Energy Technology Data Exchange (ETDEWEB)

    Klinkusch, Stefan; Tremblay, Jean Christophe [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  16. Neuron matters: electric activation of neuronal tissue is dependent on the interaction between the neuron and the electric field.

    Science.gov (United States)

    Ye, Hui; Steiger, Amanda

    2015-08-12

    In laboratory research and clinical practice, externally-applied electric fields have been widely used to control neuronal activity. It is generally accepted that neuronal excitability is controlled by electric current that depolarizes or hyperpolarizes the excitable cell membrane. What determines the amount of polarization? Research on the mechanisms of electric stimulation focus on the optimal control of the field properties (frequency, amplitude, and direction of the electric currents) to improve stimulation outcomes. Emerging evidence from modeling and experimental studies support the existence of interactions between the targeted neurons and the externally-applied electric fields. With cell-field interaction, we suggest a two-way process. When a neuron is positioned inside an electric field, the electric field will induce a change in the resting membrane potential by superimposing an electrically-induced transmembrane potential (ITP). At the same time, the electric field can be perturbed and re-distributed by the cell. This cell-field interaction may play a significant role in the overall effects of stimulation. The redistributed field can cause secondary effects to neighboring cells by altering their geometrical pattern and amount of membrane polarization. Neurons excited by the externally-applied electric field can also affect neighboring cells by ephaptic interaction. Both aspects of the cell-field interaction depend on the biophysical properties of the neuronal tissue, including geometric (i.e., size, shape, orientation to the field) and electric (i.e., conductivity and dielectricity) attributes of the cells. The biophysical basis of the cell-field interaction can be explained by the electromagnetism theory. Further experimental and simulation studies on electric stimulation of neuronal tissue should consider the prospect of a cell-field interaction, and a better understanding of tissue inhomogeneity and anisotropy is needed to fully appreciate the neural

  17. Osmolyte Effects on Monoclonal Antibody Stability and Concentration-Dependent Protein Interactions with Water and Common Osmolytes.

    Science.gov (United States)

    Barnett, Gregory V; Razinkov, Vladimir I; Kerwin, Bruce A; Blake, Steven; Qi, Wei; Curtis, Robin A; Roberts, Christopher J

    2016-04-07

    Preferential interactions of proteins with water and osmolytes play a major role in controlling the thermodynamics of protein solutions. While changes in protein stability and shifts in phase behavior are often reported with the addition of osmolytes, the underlying protein interactions with water and/or osmolytes are typically inferred rather than measured directly. In this work, Kirkwood-Buff integrals for protein-water interactions (G12) and protein-osmolyte interactions (G23) were determined as a function of osmolyte concentration from density measurements of antistreptavidin immunoglobulin gamma-1 (AS-IgG1) in ternary aqueous solutions for a set of common neutral osmolytes: sucrose, trehalose, sorbitol, and poly(ethylene glycol) (PEG). For sucrose and PEG solutions, both protein-water and protein-osmolyte interactions depend strongly on osmolyte concentrations (c3). Strikingly, both osmolytes change from being preferentially excluded to preferentially accumulated with increasing c3. In contrast, sorbitol and trehalose solutions do not show large enough preferential interactions to be detected by densimetry. G12 and G23 values are used to estimate the transfer free energy for native AS-IgG1 (Δμ2N) and compared with existing models. AS-IgG1 unfolding via calorimetry shows a linear increase in midpoint temperatures as a function of trehalose, sucrose, and sorbitol concentrations, but the opposite behavior for PEG. Together, the results highlight limitations of existing models and common assumptions regarding the mechanisms of protein stabilization by osmolytes. Finally, PEG preferential interactions destabilize the Fab regions of AS-IgG1 more so than the CH2 or CH3 domains, illustrating preferential interactions can be specific to different protein domains.

  18. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex.

    Science.gov (United States)

    Mejias, Jorge F; Murray, John D; Kennedy, Henry; Wang, Xiao-Jing

    2016-11-01

    Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.

  19. Porphyrin-phospholipid interaction and ring metallation depending on the phospholipid polar head type.

    Science.gov (United States)

    Ramos, Ana P; Pavani, Christiane; Iamamoto, Yassuko; Zaniquelli, Maria E D

    2010-10-01

    The interaction between a hydrophobically modified 5,10,15,20-tetrakis(4-N-tetradecyl-pyridyl) porphyrin and three phospholipids: two negatively charged, DMPA (the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid) and DMPG (the sodium salt of 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]) and a zwitterionic DMPC (dimyristoyl-sn-glycero-phosphatidylcholine), were studied by means of surface pressure isotherms and spectroscopic methods. The interaction results in partial or total metallation of the porphyrin with zinc ions in the presence of negatively charged phospholipids, as attested by UV-vis and luminescence spectroscopy of the transferred films. In the presence of the zwitterionic phospholipid no insertion of zinc ion in the porphyrin ring is detected. These results are relevant for the understanding of photosensitizer-lipid-carrier binding for use in photodynamic therapy. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Microbial interactions with the cyanobacterium Microcystis aeruginosa and their dependence on temperature

    DEFF Research Database (Denmark)

    Dziallas, Claudia; Grossart, Hans-Peter

    2012-01-01

    and their associated community often masked this temperature effect. Both macro- and microenvironment of active cyanobacterial strains were characterized by high pH and oxygen values creating a unique habitat that potentially affects microbial diversity and function. For example, archaea including ‘anaerobic......Associated heterotrophic bacteria alter the microenvironment of cyanobacteria and potentially influence cyanobacterial development. Therefore, we studied interactions of the unicellular freshwater cyanobacterium Microcystis aeruginosa with heterotrophic bacteria. The associated bacterial community...... was greatly driven by temperature as seen by DNA Wngerprinting. However, the associated microbes also closely interacted with the cyanobacteria indicating changing ecological consequence of the associated bacterial community with temperature. Whereas concentration of dissolved organic carbon in cyanobacterial...

  1. Perception of social interaction compresses subjective duration in an oxytocin-dependent manner.

    Science.gov (United States)

    Liu, Rui; Yuan, Xiangyong; Chen, Kepu; Jiang, Yi; Zhou, Wen

    2018-05-22

    Communication through body gestures permeates our daily life. Efficient perception of the message therein reflects one's social cognitive competency. Here we report that such competency is manifested temporally as shortened subjective duration of social interactions: motion sequences showing agents acting communicatively are perceived to be significantly shorter in duration as compared with those acting noncommunicatively. The strength of this effect is negatively correlated with one's autistic-like tendency. Critically, intranasal oxytocin administration restores the temporal compression effect in socially less proficient individuals, whereas the administration of atosiban, a competitive antagonist of oxytocin, diminishes the effect in socially proficient individuals. These findings indicate that perceived time, rather than being a faithful representation of physical time, is highly idiosyncratic and ingrained with one's personality trait. Moreover, they suggest that oxytocin is involved in mediating time perception of social interaction, further supporting the role of oxytocin in human social cognition. © 2018, Liu et al.

  2. Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket

    Science.gov (United States)

    Gover, Avraham; Pan, Yiming

    2018-06-01

    In the foundation of quantum mechanics, the spatial dimensions of electron wavepacket are understood only in terms of an expectation value - the probability distribution of the particle location. One can still inquire how the quantum electron wavepacket size affects a physical process. Here we address the fundamental physics problem of particle-wave duality and the measurability of a free electron quantum wavepacket. Our analysis of stimulated radiative interaction of an electron wavepacket, accompanied by numerical computations, reveals two limits. In the quantum regime of long wavepacket size relative to radiation wavelength, one obtains only quantum-recoil multiphoton sidebands in the electron energy spectrum. In the opposite regime, the wavepacket interaction approaches the limit of classical point-particle acceleration. The wavepacket features can be revealed in experiments carried out in the intermediate regime of wavepacket size commensurate with the radiation wavelength.

  3. Energy dependence of negatively charged pion production in proton-proton interactions at the CERN SPS

    CERN Document Server

    AUTHOR|(SzGeCERN)663936; Dominik, Wojciech; Gaździck, Marek

    2016-01-01

    This thesis presents inclusive spectra of the negatively charged pions produced in inelastic proton-proton interactions measured at five beam momenta: 20, 31, 40, 80 and 158 GeV/c. The measurements were conducted in the NA61/SHINE experiment at CERN using a system of five Time Projection Chambers. The negatively charged pion spectra were calculated based on the negatively charged hadron spectra. Contribution of hadrons other than the primary pions was removed using EPOS simulations. The results were corrected for effects related to detection, acceptance, reconstruction efficiency and the analysis technique. Two-dimensional spectra were derived as a function of rapidity and transverse momentum or transverse mass. The spectra were parametrised by widths of the rapidity distributions, inverse slope parameters of the transverse mass distributions, mean transverse masses and the total pion multiplicities. The negatively charged pion spectra in proton-proton interactions belong to a broad NA61/SHINE programme of se...

  4. Near or far? It depends on my impression: moral information and spatial behavior in virtual interactions.

    Science.gov (United States)

    Iachini, Tina; Pagliaro, Stefano; Ruggiero, Gennaro

    2015-10-01

    Near body distance is a key component of action and social interaction. Recent research has shown that peripersonal space (reachability-distance for acting with objects) and interpersonal space (comfort-distance for interacting with people) share common mechanisms and reflect the social valence of stimuli. The social psychological literature has demonstrated that information about morality is crucial because it affects impression formation and the intention to approach-avoid others. Here we explore whether peripersonal/interpersonal spaces are modulated by moral information. Thirty-six participants interacted with male/female virtual confederates described by moral/immoral/neutral sentences. The modulation of body space was measured by reachability-distance and comfort-distance while participants stood still or walked toward virtual confederates. Results showed that distance expanded with immorally described confederates and contracted with morally described confederates. This pattern was present in both spaces, although it was stronger in comfort-distance. Consistent with an embodied cognition approach, the findings suggest that high-level socio-cognitive processes are linked to sensorimotor-spatial processes. Copyright © 2015. Published by Elsevier B.V.

  5. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence.

    Science.gov (United States)

    Kroeker, Kristy J; Kordas, Rebecca L; Harley, Christopher D G

    2017-03-01

    Changes in the Earth's environment are now sufficiently complex that our ability to forecast the emergent ecological consequences of ocean acidification (OA) is limited. Such projections are challenging because the effects of OA may be enhanced, reduced or even reversed by other environmental stressors or interactions among species. Despite an increasing emphasis on multifactor and multispecies studies in global change biology, our ability to forecast outcomes at higher levels of organization remains low. Much of our failure lies in a poor mechanistic understanding of nonlinear responses, a lack of specificity regarding the levels of organization at which interactions can arise, and an incomplete appreciation for linkages across these levels. To move forward, we need to fully embrace interactions. Mechanistic studies on physiological processes and individual performance in response to OA must be complemented by work on population and community dynamics. We must also increase our understanding of how linkages and feedback among multiple environmental stressors and levels of organization can generate nonlinear responses to OA. This will not be a simple undertaking, but advances are of the utmost importance as we attempt to mitigate the effects of ongoing global change. © 2017 The Authors.

  6. Seasonal and scale-dependent variability in nutrient- and allelopathy-mediated macrophyte–phytoplankton interactions

    Directory of Open Access Journals (Sweden)

    Lombardo P.

    2013-08-01

    Full Text Available macrophyte–phytoplankton interactions were investigated using a dual laboratory and field approach during a growing season, with responses quantified as changes in biomass. Short-term, close-range interactions in laboratory microcosms always led to mutual exclusion of macrophytes (Elodea canadensis or Ceratophyllum demersum and algae (Raphidocelis subcapitata, Fistulifera pelliculosa or cyanobacteria (Synechococcus leopoliensis, suggesting regulation by positive feedback mechanisms, progressively establishing and reinforcing a “stable state”. Laboratory results suggest that close-range regulation of R. subcapitata and F. pelliculosa by macrophytes was primarily via nutrient (N, P mediation. Sprig-produced allelochemicals may have contributed to inhibition of S. leopoliensis in C. demersum presence, while S. leopoliensis was apparently enhanced by nutrients leaked by subhealthy (discolored leaves; biomass loss E. canadensis. Seasonal changes in algal growth suppression were correlated with sprig growth. Marginal differences in in situ phytoplankton patterns inside and outside monospecific macrophyte stands suggest that the nutrient- and/or allelopathy-mediated close-range mechanisms observed in the laboratory did not propagate at the macrophyte-stand scale. Factors operating at a larger scale (e.g., lake trophic state, extent of submerged vegetation coverage appear to override in situ macrophyte–phytoplankton close-range interactions.

  7. Time-dependent density functional theory for many-electron systems interacting with cavity photons.

    Science.gov (United States)

    Tokatly, I V

    2013-06-07

    Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.

  8. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1.

    Directory of Open Access Journals (Sweden)

    Xiao-Su Zhao

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC-interacting factor 1 (NIF-1, is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  9. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    Science.gov (United States)

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  10. Energy dependence of the 16O + 12C potential of interaction

    Directory of Open Access Journals (Sweden)

    O. A. Ponkratenko

    2013-09-01

    Full Text Available The 16O + 12C scattering data originating from various measurements in the energy range from 1 to 100 MeV/nucleon have been analyzed within optical model (OM. As a result the global energy dependent 16O + 12C - OM-potential has been obtained. Satisfactory description of experimental data is achieved. While analyzing differential cross sections of the elastic scattering and fusion cross sections were calculated using var-ious types of optical potentials.

  11. Information entropy of a time-dependent three-level trapped ion interacting with a laser field

    International Nuclear Information System (INIS)

    Abdel-Aty, Mahmoud

    2005-01-01

    Trapped and laser-cooled ions are increasingly used for a variety of modern high-precision experiments, frequency standard applications and quantum information processing. Therefore, in this communication we present a comprehensive analysis of the pattern of information entropy arising in the time evolution of an ion interacting with a laser field. A general analytic approach is proposed for a three-level trapped-ion system in the presence of the time-dependent couplings. By working out an exact analytic solution, we conclusively analyse the general properties of the von Neumann entropy and quantum information entropy. It is shown that the information entropy is affected strongly by the time-dependent coupling and exhibits long time periodic oscillations. This feature attributed to the fact that in the time-dependent region Rabi oscillation is time dependent. Using parameters corresponding to a specific three-level ionic system, a single beryllium ion in a RF-(Paul) trap, we obtain illustrative examples of some novel aspects of this system in the dynamical evolution. Our results establish an explicit relation between the exact information entropy and the entanglement between the multi-level ion and the laser field. We show that different nonclassical effects arise in the dynamics of the ionic population inversion, depending on the initial states of the vibrational motion/field and on the values of Lamb-Dicke parameter η

  12. Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction

    International Nuclear Information System (INIS)

    Xu, Jun; Ma, Hong-Ru; Chen, Lie-Wen; Li, Bao-An

    2007-01-01

    Within a self-consistent thermal model using an isospin and momentum dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, we investigate the temperature dependence of the symmetry energy E sym (ρ,T) and symmetry free energy F sym (ρ,T) for hot, isospin asymmetric nuclear matter. It is shown that the symmetry energy E sym (ρ,T) generally decreases with increasing temperature while the symmetry free energy F sym (ρ,T) exhibits opposite temperature dependence. The decrement of the symmetry energy with temperature is essentially due to the decrement of the potential energy part of the symmetry energy with temperature. The difference between the symmetry energy and symmetry free energy is found to be quite small around the saturation density of nuclear matter. While at very low densities, they differ significantly from each other. In comparison with the experimental data of temperature dependent symmetry energy extracted from the isotopic scaling analysis of intermediate mass fragments (IMF's) in heavy-ion collisions, the resulting density and temperature dependent symmetry energy E sym (ρ,T) is then used to estimate the average freeze-out density of the IMF's

  13. Rab3A Inhibition of Ca2+ -Dependent Dopamine Release From PC12 Cells Involves Interaction With Synaptotagmin I.

    Science.gov (United States)

    Dai, Zhipan; Tang, Xia; Chen, Jia; Tang, Xiaochao; Wang, Xianchun

    2017-11-01

    Rab3 and synaptotagmin have been suggested to play important roles in the regulation of neurotransmitter release and, however, the molecular mechanism has not been completely clear. Here, we studied the effects of Rab3A and synaptotagmin I (Syt I) on dopamine release using PC12 cells as a model system. Rab3A was demonstrated to have effects on both Ca 2+ -independent and Ca 2+ -dependent dopamine releases from the PC12 cells. Application of Rab3A (up to 2500 nM) gradually decreased the amount of Ca 2+ -dependently released dopamine, indicating that Rab3A is a negative modulator that was further supported by the increase in dopamine release caused by Rab3A knockdown. Syt I knockdown weakened the Ca 2+ -dependent dopamine release, suggesting that Syt I plays a positive regulatory role in the cellular process. Treatment of the Syt I-knocked down PC12 cells with Rab3A further decreased Ca 2+ -dependent dopamine release and, however, the decrease magnitude was significantly reduced compared with that before Syt I knockdown, thus for the first time demonstrating that the inhibitory effect of Rab3A on Ca 2+ -dependent dopamine release involves the interaction with Syt I. This work has shed new light on the molecular mechanism for Rab3 and synaptotamin regulation of neurotransmitter release. J. Cell. Biochem. 118: 3696-3705, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. A Generalized Form of Context-Dependent Psychophysiological Interactions (gPPI): A Comparison to Standard Approaches

    Science.gov (United States)

    McLaren, Donald G.; Ries, Michele L.; Xu, Guofan; Johnson, Sterling C.

    2012-01-01

    Functional MRI (fMRI) allows one to study task-related regional responses and task-dependent connectivity analysis using psychophysiological interaction (PPI) methods. The latter affords the additional opportunity to understand how brain regions interact in a task-dependent manner. The current implementation of PPI in Statistical Parametric Mapping (SPM8) is configured primarily to assess connectivity differences between two task conditions, when in practice fMRI tasks frequently employ more than two conditions. Here we evaluate how a generalized form of context-dependent PPI (gPPI; http://www.nitrc.org/projects/gppi), which is configured to automatically accommodate more than two task conditions in the same PPI model by spanning the entire experimental space, compares to the standard implementation in SPM8. These comparisons are made using both simulations and an empirical dataset. In the simulated dataset, we compare the interaction beta estimates to their expected values and model fit using the Akaike Information Criterion (AIC). We found that interaction beta estimates in gPPI were robust to different simulated data models, were not different from the expected beta value, and had better model fits than when using standard PPI (sPPI) methods. In the empirical dataset, we compare the model fit of the gPPI approach to sPPI. We found that the gPPI approach improved model fit compared to sPPI. There were several regions that became non-significant with gPPI. These regions all showed significantly better model fits with gPPI. Also, there were several regions where task-dependent connectivity was only detected using gPPI methods, also with improved model fit. Regions that were detected with all methods had more similar model fits. These results suggest that gPPI may have greater sensitivity and specificity than standard implementation in SPM. This notion is tempered slightly as there is no gold standard; however, data simulations with a known outcome support our

  15. Gene-environment interaction in Major Depression: focus on experience-dependent biological systems

    Directory of Open Access Journals (Sweden)

    Nicola eLopizzo

    2015-05-01

    Full Text Available Major Depressive Disorder (MDD is a multifactorial and polygenic disorder, where multiple and partially overlapping sets of susceptibility genes interact each other and with the environment, predisposing individuals to the development of the illness. Thus, MDD results from a complex interplay of vulnerability genes and environmental factors that act cumulatively throughout individual's lifetime. Among these environmental factors, stressful life experiences, especially those occurring early in life, have been suggested to exert a crucial impact on brain development, leading to permanent functional changes that may contribute to life long risk for mental health outcomes. In this review we will discuss how genetic variants (polymorphisms, SNPs within genes operating in neurobiological systems that mediate stress response and synaptic plasticity, can impact, by themselves, the vulnerability risk for MDD; we will also consider how this MDD risk can be further modulated when gene X environment interaction is taken into account. Finally, we will discuss the role of epigenetic mechanisms, and in particular of DNA methylation and miRNAs expression changes, in mediating the effect of the stress on the vulnerability risk to develop MDD. Taken together, in this review we aim to underlie the role of genetic and epigenetic processes involved in stress and neuroplasticity related biological systems on development of MDD after exposure to early life stress, thereby building the basis for future research and clinical interventions.

  16. Instabilities of bellows: Dependence on internal pressure, end supports, and interactions in accelerator magnet systems

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.

    1990-01-01

    For superconducting magnets, one needs many bellows for connection of various helium cooling transfer lines in addition to beam tube bellows. There could be approximately 10,000 magnet interconnection bellows in the SSC exposed to an internal pressure. When axially compressed or internally pressurized, bellows can become unstable, leading to gross distortion or complete failure. If several bellows are contained in an assembly, failure modes might interact. If designed properly, large bellows can be a very feasible possibility for connecting the large tubular shells that support the magnet iron yokes and superconducting coils and contain supercritical helium for magnet cooling. We present here (1) a spring-supported bellows model, in order to develop necessary design features for bellows and end supports so that instabilities will not occur in the bellows pressure operating region, including some margin, (2) a model of three superconducting accelerator magnets connected by two large bellows, in order to ascertain that support requirements are satisfied and in order to study interaction effects between the two bellows. Reliability of bellows for our application will be stressed. 3 refs., 4 figs

  17. Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function.

    Science.gov (United States)

    Cioni, Jean-Michel; Wong, Hovy Ho-Wai; Bressan, Dario; Kodama, Lay; Harris, William A; Holt, Christine E

    2018-03-07

    The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2's function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Strong Delayed Interactive Effects of Metal Exposure and Warming: Latitude-Dependent Synergisms Persist Across Metamorphosis.

    Science.gov (United States)

    Debecker, Sara; Dinh, Khuong V; Stoks, Robby

    2017-02-21

    As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species' ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and low-latitude populations. By integrating these mechanisms into a single study, we could identify two novel patterns. First, during exposure zinc did not affect survival, whereas it induced mild to moderate postexposure mortality in the larval stage and at metamorphosis, and very strongly reduced adult lifespan. This severe delayed effect across metamorphosis was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies. These results highlight that a more complete life-cycle approach that incorporates the possibility of delayed interactions between contaminants and warming in a geographical context is crucial for a more realistic risk assessment in a warming world.

  19. Protein kinase C interaction with calcium: a phospholipid-dependent process.

    LENUS (Irish Health Repository)

    Bazzi, M D

    1990-08-21

    The calcium-binding properties of calcium- and phospholipid-dependent protein kinase C (PKC) were investigated by equilibrium dialysis in the presence and the absence of phospholipids. Calcium binding to PKC displayed striking and unexpected behavior; the free proteins bound virtually no calcium at intracellular calcium concentrations and bound limited calcium (about 1 mol\\/mol of PKC) at 200 microM calcium. However, in the presence of membranes containing acidic phospholipids, PKC bound at least eight calcium ions per protein. The presence of 1 microM phorbol dibutyrate (PDBu) in the dialysis buffer had little effect on these calcium-binding properties. Analysis of PKC-calcium binding by gel filtration under equilibrium conditions gave similar results; only membrane-associated PKC bound significant amounts of calcium. Consequently, PKC is a member of what may be a large group of proteins that bind calcium in a phospholipid-dependent manner. The calcium concentrations needed to induce PKC-membrane binding were similar to those needed for calcium binding (about 40 microM calcium at the midpoint). However, the calcium concentration required for PKC-membrane binding was strongly influenced by the phosphatidylserine composition of the membranes. Membranes with higher percentages of phosphatidylserine required lower concentrations of calcium. These properties suggested that the calcium sites may be generated at the interface between PKC and the membrane. Calcium may function as a bridge between PKC and phospholipids. These studies also suggested that calcium-dependent PKC-membrane binding and PKC function could be regulated by a number of factors in addition to calcium levels and diacylglycerol content of the membrane.

  20. Palmitoylation-dependent CDKL5–PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development

    Science.gov (United States)

    Zhu, Yong-Chuan; Li, Dan; Wang, Lu; Lu, Bin; Zheng, Jing; Zhao, Shi-Lin; Zeng, Rong; Xiong, Zhi-Qi

    2013-01-01

    The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) is mutated in severe neurodevelopmental disorders, including some forms of atypical Rett syndrome, but the function and regulation of CDKL5 protein in neurons remain to be elucidated. Here, we show that CDKL5 binds to the scaffolding protein postsynaptic density (PSD)-95, and that this binding promotes the targeting of CDKL5 to excitatory synapses. Interestingly, this binding is not constitutive, but governed by palmitate cycling on PSD-95. Furthermore, pathogenic mutations that truncate the C-terminal tail of CDKL5 diminish its binding to PSD-95 and synaptic accumulation. Importantly, down-regulation of CDKL5 by RNA interference (RNAi) or interference with the CDKL5–PSD-95 interaction inhibits dendritic spine formation and growth. These results demonstrate a critical role of the palmitoylation-dependent CDKL5–PSD-95 interaction in localizing CDKL5 to synapses for normal spine development and suggest that disruption of this interaction by pathogenic mutations may be implicated in the pathogenesis of CDKL5-related disorders. PMID:23671101

  1. Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development.

    Science.gov (United States)

    Zhu, Yong-Chuan; Li, Dan; Wang, Lu; Lu, Bin; Zheng, Jing; Zhao, Shi-Lin; Zeng, Rong; Xiong, Zhi-Qi

    2013-05-28

    The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) is mutated in severe neurodevelopmental disorders, including some forms of atypical Rett syndrome, but the function and regulation of CDKL5 protein in neurons remain to be elucidated. Here, we show that CDKL5 binds to the scaffolding protein postsynaptic density (PSD)-95, and that this binding promotes the targeting of CDKL5 to excitatory synapses. Interestingly, this binding is not constitutive, but governed by palmitate cycling on PSD-95. Furthermore, pathogenic mutations that truncate the C-terminal tail of CDKL5 diminish its binding to PSD-95 and synaptic accumulation. Importantly, down-regulation of CDKL5 by RNA interference (RNAi) or interference with the CDKL5-PSD-95 interaction inhibits dendritic spine formation and growth. These results demonstrate a critical role of the palmitoylation-dependent CDKL5-PSD-95 interaction in localizing CDKL5 to synapses for normal spine development and suggest that disruption of this interaction by pathogenic mutations may be implicated in the pathogenesis of CDKL5-related disorders.

  2. pH-dependent Pu interaction of one bacterial isolate from Mont Terri Opalinus Clay

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Henry; Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Biogeochemistry

    2016-07-01

    Sporomusa sp. MT-2.99 cells displayed a strong pH dependent affinity for Pu. Relatively high maximal Pu loadings as for instance 230 mgPu/g{sub dry} {sub biomass} for Sporomusa sp. at pH 6.1 were achieved. A much slower abiotic reduction of Pu(VI) was observed at pH 4 compared to pH 6.1. Independent on pH an enrichment of Pu(V) in the supernatant and of Pu(IV)- polymers on the biomass was discovered.

  3. Conformist-contrarian interactions and amplitude dependence in the Kuramoto model

    Science.gov (United States)

    Lohe, M. A.

    2014-11-01

    We derive exact formulas for the frequency of synchronized oscillations in Kuramoto models with conformist-contrarian interactions, and determine necessary conditions for synchronization to occur. Numerical computations show that for certain parameters repulsive nodes behave as conformists, and that in other cases attractive nodes can display frustration, being neither conformist nor contrarian. The signs of repulsive couplings can be placed equivalently outside the sum, as proposed in Hong and Strogatz (2011 Phys. Rev. Lett. 106 054102), or inside the sum as in Hong and Strogatz (2012 Phys. Rev. E 85 056210), but the two models have different characteristics for small magnitudes of the coupling constants. In the latter case we show that the distributed coupling constants can be viewed as oscillator amplitudes which are constant in time, with the property that oscillators of small amplitude couple only weakly to connected nodes. Such models provide a means of investigating the effect of amplitude variations on synchronization properties.

  4. Conformist–contrarian interactions and amplitude dependence in the Kuramoto model

    International Nuclear Information System (INIS)

    Lohe, M A

    2014-01-01

    We derive exact formulas for the frequency of synchronized oscillations in Kuramoto models with conformist–contrarian interactions, and determine necessary conditions for synchronization to occur. Numerical computations show that for certain parameters repulsive nodes behave as conformists, and that in other cases attractive nodes can display frustration, being neither conformist nor contrarian. The signs of repulsive couplings can be placed equivalently outside the sum, as proposed in Hong and Strogatz (2011 Phys. Rev. Lett. 106 054102), or inside the sum as in Hong and Strogatz (2012 Phys. Rev. E 85 056210), but the two models have different characteristics for small magnitudes of the coupling constants. In the latter case we show that the distributed coupling constants can be viewed as oscillator amplitudes which are constant in time, with the property that oscillators of small amplitude couple only weakly to connected nodes. Such models provide a means of investigating the effect of amplitude variations on synchronization properties. (paper)

  5. Analysing context-dependent deviations in interacting with safety-critical systems

    International Nuclear Information System (INIS)

    Paterno, Fabio; Santoro, Carmen

    2006-01-01

    Mobile technology is penetrating many areas of human life. This implies that the context of use can vary in many respects. We present a method that aims to support designers in managing the complex design space when considering applications with varying contexts and help them to identify solutions that support users in performing their activities while preserving usability and safety. The method is a novel combination of an analysis of both potential deviations in task performance and most suitable information representations based on distributed cognition. The originality of the contribution is in providing a conceptual tool for better understanding the impact of context of use on user interaction in safety-critical domains. In order to present our approach we provide an example in which the implications of introducing new support through mobile devices in a safety-critical system are identified and analysed in terms of potential hazards

  6. Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction

    Science.gov (United States)

    Burns, Jorge S.; Kristiansen, Malthe; Kristensen, Lars P.; Larsen, Kenneth H.; Nielsen, Maria O.; Christiansen, Helle; Nehlin, Jan; Andersen, Jens S.; Kassem, Moustapha

    2011-01-01

    Background Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. Methodology/Principal Findings Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. Conclusions Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was

  7. Pressure dependence of effective Coulomb interaction parameters in BaFe2As2 by first-principle calculation

    Science.gov (United States)

    Aghajani, M.; Hadipour, H.; Akhavan, M.

    2018-05-01

    Pressure dependence of the onsite Coulomb interactions of the BaFe2As2 has been studied by employing the constrained random phase approximation within first-principle calculations. Analyzing total and projected density of states, a pseudogap is found for dxy band at the energy roughly 0.25 eV higher than the Fermi level. Also, by applying pressure the spectral weight of the dxy orbital vanishes while other orbitals remain metallic. The different screening channels, as discussed in four different models, affect significantly on the Hubbard U while the Hund J remains almost unchanged. The average onsite bare and partially and fully screened Coulomb interactions increase with different rates upon compression. These different rates can be explained by competition between the electronic screening and reduction of bond lengths.

  8. Density-Dependent Formulation of Dispersion-Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models

    DEFF Research Database (Denmark)

    Curutchet, Carles; Cupellini, Lorenzo; Kongsted, Jacob

    2018-01-01

    embedding approaches, respectively, nonelectrostatic dispersion and repulsion interactions are instead commonly described through classical potentials despite their quantum mechanical origin. Here we present an extension of the Tkatchenko-Scheffler semiempirical van der Waals (vdWTS) scheme aimed......Mixed multiscale quantum/molecular mechanics (QM/MM) models are widely used to explore the structure, reactivity, and electronic properties of complex chemical systems. Whereas such models typically include electrostatics and potentially polarization in so-called electrostatic and polarizable...... at describing dispersion and repulsion interactions between quantum and classical regions within a QM/MM polarizable embedding framework. Starting from the vdWTSexpression, we define a dispersion and a repulsion term, both of them density-dependent and consistently based on a Lennard-Jones-like potential. We...

  9. Theoretical study of band gap in CuAlO2: Pressure dependence and self-interaction correction

    International Nuclear Information System (INIS)

    Nakanishi, Akitaka; Katayama-Yoshida, Hiroshi

    2012-01-01

    By using first-principles calculations, we studied the energy gaps of delafossite CuAlO 2 : (1) pressure dependence and (2) self-interaction correction (SIC). Our simulation shows that CuAlO 2 transforms from a delafossite structure to a leaning delafossite structure at 60 GPa. The energy gap of CuAlO 2 increases through the structural transition due to the enhanced covalency of Cu 3d and O 2p states. We implemented a self-interaction correction (SIC) into first-principles calculation code to go beyond local density approximation and applied it to CuAlO 2 . The energy gap calculated within the SIC is close to experimental data while one calculated without the SIC is about 1 eV smaller than the experimental data.

  10. Comparative Aspects of Spin-Dependent Interaction Potentials for Spin-1/2 and Spin-1 Matter Fields

    Directory of Open Access Journals (Sweden)

    P. C. Malta

    2016-01-01

    Full Text Available This paper sets out to establish a comparative study between classes of spin- and velocity-dependent potentials for spin-1/2 and spin-1 matter currents/sources in the nonrelativistic regime. Both (neutral massive scalar and vector particles are considered to mediate the interactions between (pseudo-scalar sources or (pseudo-vector currents. Though our discussion is more general, we contemplate specific cases in which our results may describe the electromagnetic interaction with a massive (Proca-type photon exchanged between two spin-1/2 or two spin-1 carriers. We highlight the similarities and peculiarities of the potentials for the two different types of charged matter and also focus our attention on the comparison between the particular aspects of two different field representations for spin-1 matter particles. We believe that our results may contribute to a further discussion of the relation between charge, spin, and extensibility of elementary particles.

  11. Charge- and transverse momentum dependence of correlations in proton-proton interactions at very high energies

    International Nuclear Information System (INIS)

    Hofmann, W.

    1977-07-01

    The charge- and momentum dependence of correlations between secondaries emitted in pp-collisions at √s = 52 GeV was investigated using the Split-Field-Magnet spectrometer at the CERN Intersecting Storage Rings (ISR). For nondiffractive inelastic events the central particle production is characterized by local conservation of charge and global compensation of transverse momenta. Strong short range correlations due to cluster decay and Bose-Einstein effects are observed. A consistent description of the correlations is given in the framework of cluster models. Local conservation of charge is also detected in events, where a particle of high transverse momentum is produced. The observations are in good agreement with the predictions of a simple quark parton model. (orig.) [de

  12. In-plane angular dependence of the spin-wave nonreciprocity of an ultrathin film with Dzyaloshinskii-Moriya interaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Vanessa Li; Di, Kai; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau, E-mail: phykmh@nus.edu.sg [Department of Physics, National University of Singapore, Singapore 117551 (Singapore); Yu, Jiawei; Yoon, Jungbum; Qiu, Xuepeng; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2015-07-13

    The nonreciprocal propagation of spin waves in an ultrathin Pt/Co/Ni film has been measured by Brillouin light scattering. The frequency nonreciprocity, due to the interfacial Dzyaloshinskii-Moriya interaction (DMI), has a sinusoidal dependence on the in-plane angle between the magnon wavevector and the applied magnetic field. The results, which are in good agreement with analytical predictions reported earlier, yield a value of the DMI constant which is the same as that obtained previously from a study of the magnon dispersion relations. We have demonstrated that our magnon-dynamics based method can experimentally ascertain the DMI constant of multilayer thin films.

  13. Time-dependent occupation numbers in reduced-density-matrix-functional theory: Application to an interacting Landau-Zener model

    International Nuclear Information System (INIS)

    Requist, Ryan; Pankratov, Oleg

    2011-01-01

    We prove that if the two-body terms in the equation of motion for the one-body reduced density matrix are approximated by ground-state functionals, the eigenvalues of the one-body reduced density matrix (occupation numbers) remain constant in time. This deficiency is related to the inability of such an approximation to account for relative phases in the two-body reduced density matrix. We derive an exact differential equation giving the functional dependence of these phases in an interacting Landau-Zener model and study their behavior in short- and long-time regimes. The phases undergo resonances whenever the occupation numbers approach the boundaries of the interval [0,1]. In the long-time regime, the occupation numbers display correlation-induced oscillations and the memory dependence of the functionals assumes a simple form.

  14. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    Science.gov (United States)

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.

  15. The Q2 and Transverse Momentum Dependence of Jet Production in Photon-Photon Interactions

    International Nuclear Information System (INIS)

    Tylka, Allan Joseph

    1984-01-01

    An experimental study of jet production in photon-photon interactions is presented. The study is based on events collected with the PLUTO detector at the e + e - storage ring PETRA. The data sample, which corresponds to an integrated luminosity of ∼40 pb -1 taken at an e + e - center-of- mass energy of 34.6 GeV, consists of 1226 events in the so-called 'single-tagged' mode, in which only one of the scattered beam electrons is detected. The data sample extends over the kinematic ranges 0.1 < Q 2 < 18.0. GeV , where Q 2 is the squared invariant mass of the tagged virtual photon, and jet transverse momentum (p T ) up to ∼5 GeV/c, where p T is measured with respect to the photon-photon collision axis in the center-of-mass frame of the observed hadrons. At all Q 2 the data show a high p T tail characteristic of hard, point-like interactions, as exemplified by the fundamental reaction γγ → qq-bar. The jet production cross-section approaches the standard Quark Parton Model (QPM) expectation for fractionally-charged quarks of three colors from above as either Q 2 or jet p T increases. At Q 2 ≥ 10 GeV the observed cross-section is consistent with the standard QPM to within ∼20% statistical uncertainty at all values of p T . This result rules out the naive Han-Nambu integrally-charged quark model at a level of about five standard deviations. It is demonstrated that overall the data are consistent with the hypothesis of a two-jet final state. Moreover, the total jet production cross-section is shown to be well-described by an incoherent sum of the Generalized Vector Dominance Model (GVDM), for which the final state is hadronized as two oppositely-directed low p T jets, and the QPM, which accounts for final states consisting of two high p T jets. Some discrepancies between the data and the GVDM+QPM Ansatz are observed. At Q 2 ≤ 1 GeV 2 and 1.5 ≤ jet p T ≤ 4.0 GeV/c, the data lie systematically above the GVDM+QPM prediction. The thrust distribution

  16. Decellularized matrix from tumorigenic human mesenchymal stem cells promotes neovascularization with galectin-1 dependent endothelial interaction.

    Directory of Open Access Journals (Sweden)

    Jorge S Burns

    Full Text Available BACKGROUND: Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC strain (hMSC-TERT20 immortalized by retroviral vector mediated human telomerase (hTERT gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+ and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. CONCLUSIONS: Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1

  17. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    International Nuclear Information System (INIS)

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit

    2014-01-01

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH 2 + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH 2 ) considered are acetamide (CH 3 CONH 2 ), propionamide (CH 3 CH 2 CONH 2 ), and butyramide (CH 3 CH 2 CH 2 CONH 2 ); the electrolytes (LiX) are lithium perchlorate (LiClO 4 ), lithium bromide (LiBr), and lithium nitrate (LiNO 3 ). Differential scanning calorimetric measurements reveal glass transition temperatures (T g ) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T g s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH 3 CONH 2 + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in terms of temporal heterogeneity and amide clustering in these multi

  18. Sibiriline, a new small chemical inhibitor of receptor-interacting protein kinase 1, prevents immune-dependent hepatitis.

    Science.gov (United States)

    Le Cann, Fabienne; Delehouzé, Claire; Leverrier-Penna, Sabrina; Filliol, Aveline; Comte, Arnaud; Delalande, Olivier; Desban, Nathalie; Baratte, Blandine; Gallais, Isabelle; Piquet-Pellorce, Claire; Faurez, Florence; Bonnet, Marion; Mettey, Yvette; Goekjian, Peter; Samson, Michel; Vandenabeele, Peter; Bach, Stéphane; Dimanche-Boitrel, Marie-Thérèse

    2017-09-01

    Necroptosis is a regulated form of cell death involved in several disease models including in particular liver diseases. Receptor-interacting protein kinases, RIPK1 and RIPK3, are the main serine/threonine kinases driving this cell death pathway. We screened a noncommercial, kinase-focused chemical library which allowed us to identify Sibiriline as a new inhibitor of necroptosis induced by tumor necrosis factor (TNF) in Fas-associated protein with death domain (FADD)-deficient Jurkat cells. Moreover, Sib inhibits necroptotic cell death induced by various death ligands in human or mouse cells while not protecting from caspase-dependent apoptosis. By using competition binding assay and recombinant kinase assays, we demonstrated that Sib is a rather specific competitive RIPK1 inhibitor. Molecular docking analysis shows that Sib is trapped closed to human RIPK1 adenosine triphosphate-binding site in a relatively hydrophobic pocket locking RIPK1 in an inactive conformation. In agreement with its RIPK1 inhibitory property, Sib inhibits both TNF-induced RIPK1-dependent necroptosis and RIPK1-dependent apoptosis. Finally, Sib protects mice from concanavalin A-induced hepatitis. These results reveal the small-molecule Sib as a new RIPK1 inhibitor potentially of interest for the treatment of immune-dependent hepatitis. © 2017 Federation of European Biochemical Societies.

  19. The Atomic Mass Dependence of Massive Muon Pair Production in 225 GeV/c $\\pi$ - Nucleus Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Morris L. [Chicago U.

    1984-03-01

    The production of massive muon pairs in 225 GeV/c $\\pi^-$-nucleus interactions has been studied for four nuclear targets. The dependence of the integrated cross section on atomic mass A was measured by comparing the relative cross sections for the targets. If one assumes that the cross section is proportional to $A^{\\alpha}$, a value of a= 1.00±0.06 for muon pair masses between 4.0 GeV/$c^2$ and 8.5 GeV/$c^2$ was obtained. The Drell-Yan model predicts an additional dependence of the cross section on the proton fraction Z/A. If one parametizes the integrated cross I section as a(Z/A)$A^{\\alpha}$ where $\\sigma$(Z/A) is a function of the proton fraction that includes the effects of the Drell-Yan model, Fermi Motion, and secondary pion production, a value of $\\alpha$ = 0.97±0.06 was obtained. The dependence of the muon pair transverse momentum distribution on nuclear size was also investigated. The second moment of the distribution <$P^2_T$> was found to be consistent with being independent of nuclear size. If the dependence of <$P^2_T$> on nuclear size is parametized as <$P^2_T$> = a + b $A^{1/3}$ the coefficient b was found to be less than 0.015 $GeV^2$/$c^2$ with 90% confidence.

  20. pH dependence of steroid hormone-organic matter interactions at environmental concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Peta A. [School of Engineering and Electronics, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)], E-mail: p.neale@ed.ac.uk; Escher, Beate I. [Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Duebendorf (Switzerland); Schaefer, Andrea I. [School of Engineering and Electronics, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2009-01-15

    The interaction of estradiol, estrone, progesterone and testosterone with environmentally relevant concentrations of Aldrich humic acid, alginic acid and tannic acid was studied using solid-phase microextraction (SPME). Since bulk organic matter and certain hormones such as estradiol and estrone contain dissociable functional groups, the effect of pH on sorption was investigated as this will influence their fate and bioavailability. For humic acid and tannic acid, sorption was strongest at acidic pH when the bulk organic matter was in a non-dissociated form and decreased when they became partially negatively charged. At acidic and neutral pH the strength of partitioning was influenced by hormone functional groups content, with the strongest sorption observed for progesterone and estrone. At alkaline pH conditions, when the bulk organics were dissociated, sorption decreased considerably (up to a factor of 14), although the non-dissociated hormones testosterone and progesterone indicated greater sorption to humic acid at pH 10 compared to the partially deprotonated estradiol and estrone. This study demonstrates that SPME can be used to assess organic matter sorption behaviour of a selected range of micropollutants and at environmentally relevant organic matter concentrations.

  1. Time dependence of gases from plasma-wall interactions in ISX-A

    International Nuclear Information System (INIS)

    Simpkins, J.E.; Colchin, R.J.

    1979-01-01

    Numerous papers have been published concerning radiation damage and thermal properties of first walls in tokamak reactors. However vacuum properties are also important, particularly as regards the adsorption and release of gases during and immediately following tokamak discharges. We have studied the time evolution of working and impurity gases by means of a quadrupole mass spectrometer attached to the ISX-A tokamak. These results were compared with measurements in a similar (304L stainless steel) laboratory vacuum system, with no tokamak discharges. Laboratory tests were made with a 100-msec-long H 2 puff. The partial pressures of CH 4 , H 2 O, and CO all exhibited very small intermediate peaks followed by a second rise which began 25 to 50 msec after the beginning of the puff and peaked some 200 to 300 msec later. When Ar was substituted for the H 2 puff the partial pressures of these impurities behaved in a similar manner except that the magnitude of the increase was less. The pressure rise of the impurity gases following the H 2 puffs varied, depending on the vacuum system configuration, differences in wall preparation of the tokamak and the absence of a plasma in the laboratory systems

  2. Epizoochorous dispersal by ungulates depends on fur, grooming and social interactions.

    Science.gov (United States)

    Liehrmann, Océane; Jégoux, Flore; Guilbert, Marie-Alice; Isselin-Nondedeu, Francis; Saïd, Sonia; Locatelli, Yann; Baltzinger, Christophe

    2018-02-01

    The transport phase of the animal-mediated plant dispersal process is critical to dispersal effectiveness as it determines the spatial distribution of the diaspores released and their chance for further recruitment. Assessing this specific phase of the dispersal process generally requires combining diaspore retention times with the associated distances covered. Here, we specifically tested the effect of grooming behavior, interindividual contacts and ungulate fur on diaspore retention times and associated dispersal distances for the hooked diaspores of Xanthium strumarium L. experimentally attached to tamed individuals of three ungulate species. We used a comparative approach based on differing fur quality on different body zones of these three ungulates. During 6-hr sessions, we monitored for grooming and social interactions that may induce intended or inadvertent diaspore detachment. Additionally, we proposed innovative approaches to directly assessing diaspore dispersal distances by red deer in situ. Fat-tailed functions fitted diaspore retention time, highlighting the potential for long-distance dispersal events. The longer the hair, the higher the retention capacity of diaspores in the animal's fur. As predicted, donkey retained diaspores longer than red deer and dwarf goat; and we also confirmed that diaspores attached to the short hair of the head fell off more quickly than did those on the other body zones. Dwarf goat groomed more often than both red deer and donkey, but also when it carried diaspores. Up to 14% of the diaspores detached from animal fur after specific grooming behavior. We observed, in controlled conditions, for the first time and for each ungulate species, interindividual transfers of diaspores, representing 5% of the diaspores attached to animals' fur. Our results militate for incorporating animal behavior into plant dispersal modeling approaches.

  3. Interactions Between Wind Erosion, Vegetation Structure, and Soil Stability in Groundwater Dependent Plant Communities

    Science.gov (United States)

    Vest, K. R.; Elmore, A. J.; Okin, G. S.

    2009-12-01

    Desertification is a human induced global phenomenon causing a loss of biodiversity and ecosystem productivity. Semi-arid grasslands are vulnerable to anthropogenic impacts (i.e., groundwater pumping and surface water diversion) that decrease vegetation cover and increase bare soil area leading to a greater probability of soil erosion, potentially enhancing feedback processes associated with desertification. To enhance our understanding of interactions between anthropogenic, physical, and biological factors causing desertification, this study used a combination of modeling and field observations to examine the relationship between chronic groundwater pumping and vegetation cover change and its effects on soil erosion and stability. The work was conducted in Owens Valley California, where a long history of groundwater pumping and surface water diversion has lead to documented vegetation changes. The work examined hydrological, ecological and biogeochemical factors across thirteen sites in Owens Valley. We analyzed soil stability, vegetation and gap size, soil organic carbon, and we also installed Big Spring Number Eight (BSNE) catchers to calculate mass transport of aeolian sediment across sites. Mass transport calculations were used to validate a new wind erosion model that represents the effect of porous vegetation on surface windshear velocity. Results across two field seasons show that the model can be used to predict mass transport, and areas with increased groundwater pumping show a greater susceptibility to erosion. Sediment collected in BSNE catchers was positively correlated with site gap size. Additionally, areas with larger gap sizes have a greater threshold shear velocity and soil stability, yet mass transport was greater at these sites than at sites with smaller gap sizes. Although modeling is complicated by spatial variation in multiple model parameters (e.g., gap size, threshold shear velocity in gaps), our results support the hypothesis that soils

  4. Age-dependent effects on social interaction of NMDA GluN2A receptor subtype-selective antagonism.

    Science.gov (United States)

    Green, Torrian L; Burket, Jessica A; Deutsch, Stephen I

    2016-07-01

    NMDA receptor-mediated neurotransmission is implicated in the regulation of normal sociability in mice. The heterotetrameric NMDA receptor is composed of two obligatory GluN1 and either two "modulatory" GluN2A or GluN2B receptor subunits. GluN2A and GluN2B-containing receptors differ in terms of their developmental expression, distribution between synaptic and extrasynaptic locations, and channel kinetic properties, among other differences. Because age-dependent differences in disruptive effects of GluN2A and GluN2B subtype-selective antagonists on sociability and locomotor activity have been reported in rats, the current investigation explored age-dependent effects of PEAQX, a GluN2A subtype-selective antagonist, on sociability, stereotypic behaviors emerging during social interaction, and spatial working memory in 4- and 8-week old male Swiss Webster mice. The data implicate an age-dependent contribution of GluN2A-containing NMDA receptors to the regulation of normal social interaction in mice. Specifically, at a dose of PEAQX devoid of any effect on locomotor activity and mouse rotarod performance, the social interaction of 8-week old mice was disrupted without any effect on the social salience of a stimulus mouse. Moreover, PEAQX attenuated stereotypic behavior emerging during social interaction in 4- and 8-week old mice. However, PEAQX had no effect on spontaneous alternations, a measure of spatial working memory, suggesting that neural circuits mediating sociability and spatial working memory may be discrete and dissociable from each other. Also, the data suggest that the regulation of stereotypic behaviors and sociability may occur independently of each other. Because expression of GluN2A-containing NMDA receptors occurs at a later developmental stage, they may be more involved in mediating the pathogenesis of ASDs in patients with histories of "regression" after a period of normal development than GluN2B receptors. Copyright © 2016 Elsevier Inc. All rights

  5. Pore-Width-Dependent Preferential Interaction of sp2 Carbon Atoms in Cyclohexene with Graphitic Slit Pores by GCMC Simulation

    Directory of Open Access Journals (Sweden)

    Natsuko Kojima

    2011-01-01

    Full Text Available The adsorption of cyclohexene with two sp2 and four sp3 carbon atoms in graphitic slit pores was studied by performing grand canonical Monte Carlo simulation. The molecular arrangement of the cyclohexene on the graphitic carbon wall depends on the pore width. The distribution peak of the sp2 carbon is closer to the pore wall than that of the sp3 carbon except for the pore width of 0.7 nm, even though the Lennard-Jones size of the sp2 carbon is larger than that of the sp3 carbon. Thus, the difference in the interactions of the sp2 and sp3 carbon atoms of cyclohexene with the carbon pore walls is clearly observed in this study. The preferential interaction of sp2 carbon gives rise to a slight tilting of the cyclohexene molecule against the graphitic wall. This is suggestive of a π-π interaction between the sp2 carbon in the cyclohexene molecule and graphitic carbon.

  6. Schedule-dependent interaction of paclitaxel (taxol[reg]) and irradiation in vitro

    International Nuclear Information System (INIS)

    Plasswilm, Ludwig; Cordes, Nils

    1996-01-01

    /ethanol: 90%). No significant difference between concentrations varied from 2 to 50 nmol was observed. Single dose irradiation (1x10Gy) leads to clonogenic survival of 5%. Single dose paclitaxel (1x10nmol) plus single dose irradiation (1x10Gy) lead to clonogenic survival of 9% (cremophor/ethanol: 11%). Fractionated radiation (2 Gy/d, day 1-5) shows an average clonogenic survival of 41%. Fractionated Taxol[reg] treatment (2 nmol/d, day 1-5) leads to an average clonogenic survival of 57% (cremophor/ethanol: 58%). The combination of fractionated Taxol[reg] administration (2 nmol/day, day 1 to day 5) plus fractionated irradiation (2 Gy/day, day 1 to day 5) leads to an average clonogenic survival of 12% (cremophor/ethanol: 23%). Thus, the data of fractionated treatment schedule demonstrate an enhancement ratio of 2.0 compared to single dose schedule. No significant difference of a 1-hour or 9-hour interval between Taxol[reg] administration and irradiation was detected. Flow cytometric measurements did not indicate any significant alterations in cell cycle DNA distribution. Conclusion: The data demonstrate a potential beneficial effect by combining fractionated Taxol[reg] administration with fractionated irradiation without evidence for G 2 /M arrest in DNA analysis. In contrast, an antagonistic effect was observed with single dose administration of Taxol[reg] 1-hour or 9-hours delivered before irradiation. The detailed mechanism of this different paclitaxel-induced interaction is not clear. There was a remarkable cytotoxicity after the administration of the solvent cremophor/ethanol alone

  7. VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions.

    Science.gov (United States)

    Fearnley, Gareth W; Odell, Adam F; Latham, Antony M; Mughal, Nadeem A; Bruns, Alexander F; Burgoyne, Nicholas J; Homer-Vanniasinkam, Shervanthi; Zachary, Ian C; Hollstein, Monica C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2014-08-15

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways. © 2014 Fearnley et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    Energy Technology Data Exchange (ETDEWEB)

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit, E-mail: ranjit@bose.res.in [Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India)

    2014-03-14

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH{sub 2} + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH{sub 2}) considered are acetamide (CH{sub 3}CONH{sub 2}), propionamide (CH{sub 3}CH{sub 2}CONH{sub 2}), and butyramide (CH{sub 3}CH{sub 2}CH{sub 2}CONH{sub 2}); the electrolytes (LiX) are lithium perchlorate (LiClO{sub 4}), lithium bromide (LiBr), and lithium nitrate (LiNO{sub 3}). Differential scanning calorimetric measurements reveal glass transition temperatures (T{sub g}) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T{sub g}s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH{sub 3}CONH{sub 2} + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in

  9. Structure-function dependence and allopurinol inhibition of ratiosensitizer/nitroreductase interaction: approaches to improving therapeutic rations

    International Nuclear Information System (INIS)

    Raleigh, J.A.; Shum, F.Y.; Koziol, D.R.; Saunders, W.M.

    1980-01-01

    Normal tissue toxicity of nitroaromatic radiosensitizers may originate in radiosensitizer/nitroreductase interaction. A study of two mammalian cell nitroreductases, xanthine oxidase and NADH cytochrome c reductase, shows that the efficiency of electron transfer is dependent on sensitizer electron affinity and not lipid solubility. Misonidazole and its demethylated metabolite (RO-05-9963), for example, are equally efficient as electron acceptors from xanthine oxidase. The only exception to the electron affinity correlation is m-nitrobenzamidine hydrochloride xanthine oxidase from its cofactor, xanthine. Allopurinol inhibits electron transfer and might be a useful adjuvant to the nitroreductases in vivo is deduced from the observation that allopurinol significantly alters the serum lifetimes in mice of misonidazole and RO-05-9963

  10. Two-dimensional, time-dependent MHD description of interplanetary disturbances: simulation of high speed solar wind interactions

    International Nuclear Information System (INIS)

    Wu, S.T.; Han, S.M.; Dryer, M.

    1979-01-01

    A two-dimensional, time-dependent, magnetohydrodynamic, numerical model is used to investigate multiple, transient solar wind flows which start close to the Sun and then extend into interplanetary space. The initial conditions are assumed to be appropriate for steady, homogeneous solar wind conditions with an average, spiral magnetic field configuration. Because both radial and azimuthal dimensions are included, it is possible to place two or more temporally-developing streams side-by-side at the same time. Thus, the evolution of the ensuing stream interaction is simulated by this numerical code. Advantages of the present method are as follows: (1) the development and decay of asymmetric MHD shocks and their interactions are clearly indicated; and (2) the model allows flexibility in the specification of evolutionary initial conditions in the azimuthal direction, thereby making it possible to gain insight concerning the interplanetary consequences of real physical situations more accurately than by use of the one-dimensional approach. Examples of such situations are the occurrence of near-simultaneous solar flares in adjacent active regions and the sudden appearance of enlargement of coronal holes as a result of a transient re-arrangement from a closed to an open magnetic field topology. (author)

  11. Electric Dipole Transition Moments and Solvent-Dependent Interactions of Fluorescent Boron-Nitrogen Substituted Indole Derivatives.

    Science.gov (United States)

    Saif, Mari; Widom, Julia R; Xu, Senmiao; Abbey, Eric R; Liu, Shih-Yuan; Marcus, Andrew H

    2015-06-25

    Fluorescent analogues of the indole side chain of tryptophan can be useful spectroscopic probes of protein-protein and protein-DNA interactions. Here we present linear dichroism and solvent-dependent spectroscopic studies of two fluorescent analogues of indole, in which the organic C═C unit is substituted with the isosteric inorganic B-N unit. We studied the so-called "external" BN indole, which has C2v symmetry, and the "fused" BN indole with Cs symmetry. We performed a combination of absorption and fluorescence spectroscopy, ultraviolet linear dichroism (UV-LD) in stretched poly(ethylene) (PE) films, and quantum chemical calculations on both BN indole compounds. Our measurements allowed us to characterize the degree of alignment for both molecules in stretched PE films. We thus determined the orientations and magnitudes of the two lowest energy electric dipole transition moments (EDTMs) for external BN indole, and the two lowest energy EDTMs for fused BN indole within the 30 000-45 000 cm(-1) spectral range. We compared our experimental results to those of quantum chemical calculations using standard density functional theory (DFT). Our theoretical predictions for the low-energy EDTMs are in good agreement with our experimental data. The absorption and fluorescence spectra of the external and the fused BN indoles are sensitive to solvent polarity. Our results indicate that the fused BN indole experiences much greater solvation interactions with polar solvents than does the external BN indole.

  12. Structure dependent hydrophobic and hydrophilic interactions between nickel(II) Schiff base complexes and serum albumins: Spectroscopic and docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Koley Seth, Banabithi; Ray, Aurkie; Banerjee, Mousumi; Bhattacharyya, Teerna [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Bhattacharyya, Dhananjay [Computational Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Basu, Samita, E-mail: samita.basu@saha.ac.in [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2016-03-15

    A systematic and comparative binding study between serum-albumins (SA) and a series of monomeric nickel(II)-Schiff-base-complexes (NSCs), which might be imperative to investigate the function of SA behind nickel allergy, has been carried out through docking and different spectroscopic techniques. The initial docking studies indicate structure-dependent selective hydrophobic and hydrophilic interactions. The pyridine and phenyl containing NSCs, which are more aromatic, show better π–π staking compared to pyrrole one. Again all the NSCs bind with BSA though amino acid residues of IB domain affecting local environment of the Trp-134 surrounded by both hydrophobic and hydrophilic residues instead of the hydrophobically buried Trp-212. In HSA the hydophobically buried Trp-214 is influenced by NSCs. The experimental results nicely support the docking outcomes. The changes in Gibbs free energy, binding affinity and the nature of hydrophilic/hydrophobic interactions of NSC–SA systems indicate greater accessibility of N{sub 2}O{sub 2} donor set complex compared to N{sub 4} one towards SA. Quantum chemical structure optimizations support the better planarity of NSC with N{sub 2}O{sub 2} which provides better binding. Therefore the structural variation of N{sub 2}O{sub 2} donor set complexes becomes much more useful compared to N{sub 4} one to search out the most compatible NSC towards SAs.

  13. Time-dependent spectral analysis of interactions within groups of walking pedestrians and vertical structural motion using wavelets

    Science.gov (United States)

    Bocian, M.; Brownjohn, J. M. W.; Racic, V.; Hester, D.; Quattrone, A.; Gilbert, L.; Beasley, R.

    2018-05-01

    A multi-scale and multi-object interaction phenomena can arise when a group of walking pedestrians crosses a structure capable of exhibiting dynamic response. This is because each pedestrian is an autonomous dynamic system capable of displaying intricate behaviour affected by social, psychological, biomechanical and environmental factors, including adaptations to the structural motion. Despite a wealth of mathematical models attempting to describe and simulate coupled crowd-structure system, their applicability can generally be considered uncertain. This can be assigned to a number of assumptions made in their development and the scarcity or unavailability of data suitable for their validation, in particular those associated with pedestrian-pedestrian and pedestrian-structure interaction. To alleviate this problem, data on behaviour of individual pedestrians within groups of six walkers with different spatial arrangements are gathered simultaneously with data on dynamic structural response of a footbridge, from a series of measurements utilising wireless motion monitors. Unlike in previous studies on coordination of pedestrian behaviour, the collected data can serve as a proxy for pedestrian vertical force, which is of critical importance from the point of view of structural stability. A bivariate analysis framework is proposed and applied to these data, encompassing wavelet transform, synchronisation measures based on Shannon entropy and circular statistics. A topological pedestrian map is contrived showing the strength and directionality of between-subjects interactions. It is found that the coordination in pedestrians' vertical force depends on the spatial collocation within a group, but it is generally weak. The relationship between the bridge and pedestrian behaviour is also analysed, revealing stronger propensity for pedestrians to coordinate their force with the structural motion rather than with each other.

  14. Interaction of the regulatory subunit of the cAMP-dependent protein kinase with PATZ1 (ZNF278)

    International Nuclear Information System (INIS)

    Yang, Weng-Lang; Ravatn, Roald; Kudoh, Kazuya; Alabanza, Leah; Chin, Khew-Voon

    2010-01-01

    The effects of cAMP in cell are predominantly mediated by the cAMP-dependent protein kinase (PKA), which is composed of two genetically distinct subunits, catalytic (C) and regulatory (R), forming a tetrameric holoenzyme R 2 C 2 . The only known function for the R subunit is that of inhibiting the activity of the C subunit kinase. It has been shown that overexpression of RIα, but not the C subunit kinase, is associated with neoplastic transformation. In addition, it has also been demonstrated that mutation in the RIα, but not the C subunit is associated with increased resistance to the DNA-damaging anticancer drug cisplatin, thus suggesting that the RIα subunit of PKA may have functions independent of the kinase. We show here that the RIα subunit interacts with a BTB/POZ domain zinc-finger transcription factor, PATZ1 (ZNF278), and co-expression with RIα results in its sequestration in the cytoplasm. The cytoplasmic/nuclear translocation is inducible by cAMP. C-terminus deletion abolishes PATZ1 interaction with RIα and results in its localization in the nucleus. PATZ1 transactivates the cMyc promoter and the presence of cAMP and co-expression with RIα modulates its transactivation. Moreover, PATZ1 is aberrantly expressed in cancer. Taken together, our results showed a potentially novel mechanism of cAMP signaling mediated through the interaction of RIα with PATZ1 that is independent of the kinase activity of PKA, and the aberrant expression of PATZ1 in cancer point to its role in cell growth regulation.

  15. Interaction of the regulatory subunit of the cAMP-dependent protein kinase with PATZ1 (ZNF278)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weng-Lang [Long Island Jewish Medical Center, North Shore University Hospital, Manhasset, NY 11030 (United States); Ravatn, Roald [Department of Medicine, University of Toledo, College of Medicine, Toledo, OH 43614 (United States); Kudoh, Kazuya [Department of Medicine, University of Toledo, College of Medicine, Toledo, OH 43614 (United States); Department of Obstetrics and Gynecology, National Defense Medical College, Tokorozawa, Saitama (Japan); Alabanza, Leah [Department of Medicine, University of Toledo, College of Medicine, Toledo, OH 43614 (United States); Chin, Khew-Voon, E-mail: khew-voon.chin@utoledo.edu [Department of Medicine, University of Toledo, College of Medicine, Toledo, OH 43614 (United States)

    2010-01-15

    The effects of cAMP in cell are predominantly mediated by the cAMP-dependent protein kinase (PKA), which is composed of two genetically distinct subunits, catalytic (C) and regulatory (R), forming a tetrameric holoenzyme R{sub 2}C{sub 2}. The only known function for the R subunit is that of inhibiting the activity of the C subunit kinase. It has been shown that overexpression of RI{alpha}, but not the C subunit kinase, is associated with neoplastic transformation. In addition, it has also been demonstrated that mutation in the RI{alpha}, but not the C subunit is associated with increased resistance to the DNA-damaging anticancer drug cisplatin, thus suggesting that the RI{alpha} subunit of PKA may have functions independent of the kinase. We show here that the RI{alpha} subunit interacts with a BTB/POZ domain zinc-finger transcription factor, PATZ1 (ZNF278), and co-expression with RI{alpha} results in its sequestration in the cytoplasm. The cytoplasmic/nuclear translocation is inducible by cAMP. C-terminus deletion abolishes PATZ1 interaction with RI{alpha} and results in its localization in the nucleus. PATZ1 transactivates the cMyc promoter and the presence of cAMP and co-expression with RI{alpha} modulates its transactivation. Moreover, PATZ1 is aberrantly expressed in cancer. Taken together, our results showed a potentially novel mechanism of cAMP signaling mediated through the interaction of RI{alpha} with PATZ1 that is independent of the kinase activity of PKA, and the aberrant expression of PATZ1 in cancer point to its role in cell growth regulation.

  16. Temperature dependent electronic structure and magnetism of metallic systems with localized moments. Application on gadolinium; Temperaturabhaengige elektronische Struktur und Magnetismus von metallischen Systemen mit lokalisierten Momenten. Anwendung auf Gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C.A.M. dos

    2005-06-24

    This thesis focuses on the theoretical investigation of the temperature dependent electronic and magnetic properties of metallic 4f-systems with localized magnetic moments. The presented theory is based on the Kondo-lattice model, which describes the interaction between a system of 4f-localized magnetic moments and the itinerant conduction band electrons. This interaction is responsible for a remarkable temperature dependence of the electronic structure mainly induced by the subsystem of 4f-localized moments. The many-body problem provoked by the Kondo-lattice model is solved by using a moment conserving Green function technique, which takes care of several special limiting cases. This method reproduces the T=0-exact solvable limiting case of the ferromagnetically saturated semiconductor. The temperature dependent magnetic properties of the 4f-localized subsystem are evaluated by means of a modified Rudermann-Kittel-Kasuya-Yosida (RKKY) type procedure, which together with the solution of the electronic part allows for a self-consistent calculation of all the electronic and magnetic properties of the model. Results of model calculations allow to deduce the conditions for ferromagnetism in dependence of the electron density n, exchange coupling J and temperature T. The self-consistently calculated Curie temperature T{sub C} is presented and discussed in dependence of relevant parameters (J, n, and W) of the model. The second part of the thesis is concerned with the investigation of the temperature dependence of the electronic and magnetic properties of the rare-earth metal Gadolinium (Gd). The original Kondo-lattice model is extended to a multi-band Kondo-lattice model and combined with an ab-initio band structure calculation to take into account for the multi-bands in real systems. The single-particle energies of the model are taken from an augmented spherical wave (ASW) band structure calculation. The proposed method avoids the double counting of relevant

  17. Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1

    Science.gov (United States)

    Child, Matthew A.; Garland, Megan; Foe, Ian; Madzelan, Peter; Treeck, Moritz; van der Linden, Wouter A.; Oresic Bender, Kristina; Weerapana, Eranthie; Wilson, Mark A.; Boothroyd, John C.; Reese, Michael L.

    2017-01-01

    ABSTRACT Human DJ-1 is a highly conserved and yet functionally enigmatic protein associated with a heritable form of Parkinson’s disease. It has been suggested to be a redox-dependent regulatory scaffold, binding to proteins to modulate their function. Here we present the X-ray crystal structure of the Toxoplasma orthologue Toxoplasma gondii DJ-1 (TgDJ-1) at 2.1-Å resolution and show that it directly associates with calcium-dependent protein kinase 1 (CDPK1). The TgDJ-1 structure identifies an orthologously conserved arginine dyad that acts as a phospho-gatekeeper motif to control complex formation. We determined that the binding of TgDJ-1 to CDPK1 is sensitive to oxidation and calcium, and that this interaction potentiates CDPK1 kinase activity. Finally, we show that genetic deletion of TgDJ-1 results in upregulation of CDPK1 expression and that disruption of the CDPK1/TgDJ-1 complex in vivo prevents normal exocytosis of parasite virulence-associated organelles called micronemes. Overall, our data suggest that TgDJ-1 functions as a noncanonical kinase-regulatory scaffold that integrates multiple intracellular signals to tune microneme exocytosis in T. gondii. PMID:28246362

  18. Inhibitory Effects of Red Wine Extracts on Endothelial-Dependent Adhesive Interactions with Monocytes Induced by Oxysterols

    Directory of Open Access Journals (Sweden)

    Yuji Naito

    2004-01-01

    Full Text Available Red wine polyphenolic compounds have been demonstrated to possess antioxidant properties, and several studies have suggested that they might constitute a relevant dietary factor in the protection from coronary heart disease. The aim of the present study is to examine whether red wine extracts (RWE can ameliorate oxysterol-induced endothelial response, and whether inhibition of adhesion molecule expression is involved in monocyte adhesion to endothelial cells. Surface expression and mRNA levels of adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 were determined by ELISA and RT-PCR performed on human aortic endothelial cells (HAEC monolayers stimulated with 7b-hydroxycholesterol or 25-hydroxycholesterol. Incubation of HAEC with oxysterols (10 muM increased expression of adhesion molecules in a time-dependent manner. Pretreatment of HAEC with RWE at final concentrations of 1, 10, and 100 ng/ml significantly inhibited the increase of surface protein expression and mRNA levels. Adherence of monocytes to oxysterol-stimulated HAEC was increased compared to that of unstimulated cells. Treatment of HAEC with RWE significantly inhibited adherence of monocytes. These results suggest that RWE works as an anti-atherogenic agent through the inhibition of endothelial-dependent adhesive interactions with monocytes induced by oxysterols

  19. Unitary Dynamics of Strongly Interacting Bose Gases with the Time-Dependent Variational Monte Carlo Method in Continuous Space

    Science.gov (United States)

    Carleo, Giuseppe; Cevolani, Lorenzo; Sanchez-Palencia, Laurent; Holzmann, Markus

    2017-07-01

    We introduce the time-dependent variational Monte Carlo method for continuous-space Bose gases. Our approach is based on the systematic expansion of the many-body wave function in terms of multibody correlations and is essentially exact up to adaptive truncation. The method is benchmarked by comparison to an exact Bethe ansatz or existing numerical results for the integrable Lieb-Liniger model. We first show that the many-body wave function achieves high precision for ground-state properties, including energy and first-order as well as second-order correlation functions. Then, we study the out-of-equilibrium, unitary dynamics induced by a quantum quench in the interaction strength. Our time-dependent variational Monte Carlo results are benchmarked by comparison to exact Bethe ansatz results available for a small number of particles, and are also compared to quench action results available for noninteracting initial states. Moreover, our approach allows us to study large particle numbers and general quench protocols, previously inaccessible beyond the mean-field level. Our results suggest that it is possible to find correlated initial states for which the long-term dynamics of local density fluctuations is close to the predictions of a simple Boltzmann ensemble.

  20. Solvent Dependency of the UV-Vis Spectrum of Indenoisoquinolines: Role of Keto-Oxygens as Polarity Interaction Probes

    Science.gov (United States)

    Coletta, Andrea; Castelli, Silvia; Chillemi, Giovanni; Sanna, Nico; Cushman, Mark; Pommier, Yves; Desideri, Alessandro

    2013-01-01

    Indenoisoquinolines are the most promising non-campthotecins topoisomerase IB inhibitors. We present an integrated experimental/computational investigation of the UV-Vis spectra of the IQNs parental compound (NSC314622) and two of its derivatives (NSC724998 and NSC725776) currently undergoing Phase I clinical trials. In all the three compounds a similar dependence of the relative absorption intensities at 270 nm and 290 nm on solvent polarity is found. The keto-oxygens in positions 5 and 11 of the molecular scaffold of the molecule are the principal chromophores involved in this dependence. Protic interactions on these sites are also found to give rise to absorptions at wavelength <250 nm observed in water solution, due to the stabilization of highly polarized tautomers of the molecule. These results suggest that the keto-oxygens are important polarizable groups that can act as useful interactors with the molecular receptor, providing at the same time an useful fingerprint for the monitoring of the drug binding to topoisomerase IB. PMID:24086299

  1. Comparison of interacting boson-fermion model with spin-dependent generalized collective model for the j=3/2

    International Nuclear Information System (INIS)

    Baktybaev, K.; Koilyk, N.; Ramankulov, K.

    2006-01-01

    Full text: Collective Schrodinger equations are applied to describe low-energy spectra of even-even nuclei [1]. Spectra for even-odd nuclei are calculated by coupling the single particle degrees of freedom to the collective degree of freedom of the core nucleus, which is of even-even type. The collective spin has a value of 3/2. This leads to the assumption that the linearized equation may be applied to describe nuclei with spin 3/2 in the ground state. Good description of the low energy spectra and electromagnetic transition probabilities can be obtained only with introduction of spin-dependent potentials, which apart from coordinates and momenta also depend on the matrices of the Clifford algebra arising in the linearization,. The interacting boson-fermion models (IBFM) [2] represent another approach to describe spectra of even-odd nuclei. For even-odd nuclei with spin 3/2 in the ground state one uses so-called j=3/2 - IBFM, which is also denoted as the U B (6)xU F (4) IBFM. In this paper we establish the relation between the matrices of the Clifford algebra, which arise in the linearization procedure, and the fermion operators of the j=3/2 IBFM. This allows us to establish a connection between the j=3/2 IBFM and spin dependent generalized collective model (SGCM). The results of the SGCM for Ir and Au nuclei are presented and compared with the results of the j=3/2 IBFM with a dynamical spin symmetry [3] present. In this respect we could apply the linearized collective Schrodinger equation and IBFM with arbitrary spin to all other even-odd nuclei. (author)

  2. In vivo interactions between the proteins of infectious bursal disease virus: capsid protein VP3 interacts with the RNA dependent polymerase VP1

    NARCIS (Netherlands)

    Tacken, M.G.J.; Rottier, P.J.M.; Gielkens, A.L.J.; Peeters, B.P.H.

    2000-01-01

    Little is known about the intermolecular interactions between the viral proteins of infectious bursal disease virus (IBDV). By using the yeast two-hybrid system, which allows the detection of protein-protein interactions in vivo, all possible interactions were tested by fusing the viral proteins to

  3. Interactions in vivo between the proteins of infectious bursal disease virus: capsid protein VP3 interacts with the RNA-dependent polymerase, VP1

    NARCIS (Netherlands)

    Tacken, M.G.J.; Rottier, P.J.M.; Gielkens, A.L.J.; Peeters, B.P.H.

    2000-01-01

    Little is known about the intermolecular interactions between the viral proteins of infectious bursal disease virus (IBDV). By using the yeast two-hybrid system, which allows the detection of protein-protein interactions in vivo, all possible interactions were tested by fusing the viral proteins to

  4. Temperature-dependent, behavioural, and transcriptional variability of a tritrophic interaction consisting of bean, herbivorous mite, and predator.

    Science.gov (United States)

    Ozawa, Rika; Nishimura, Osamu; Yazawa, Shigenobu; Muroi, Atsushi; Takabayashi, Junji; Arimura, Gen-ichiro

    2012-11-01

    Different organisms compensate for, and adapt to, environmental changes in different ways. In this way, environmental changes affect animal-plant interactions. In this study, we assessed the effect of temperature on a tritrophic system of the lima bean, the herbivorous spider mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. In this system, the plant defends itself against T. urticae by emitting volatiles that attract P. persimilis. Over 20-40 °C, the emission of volatiles by infested plants and the subsequent attraction of P. persimilis peaked at 30 °C, but the number of eggs laid by T. urticae adults and the number of eggs consumed by P. persimilis peaked at 35 °C. This indicates that the spider mites and predatory mites performed best at a higher temperature than that at which most volatile attractants were produced. Our data from transcriptome pyrosequencing of the mites found that P. persimilis up-regulated gene families for heat shock proteins (HSPs) and ubiquitin-associated proteins, whereas T. urticae did not. RNA interference-mediated gene suppression in P. persimilis revealed differences in temperature responses. Predation on T. urticae eggs by P. persimilis that had been fed PpHsp70-1 dsRNA was low at 35 °C but not at 25 °C when PpHsp70-1 expression was very high. Overall, our molecular and behavioural approaches revealed that the mode and tolerance of lima bean, T. urticae and P. persimilis are distinctly affected by temperature variability, thereby making their tritrophic interactions temperature dependent. © 2012 Blackwell Publishing Ltd.

  5. Approaching tobacco dependence in youngsters: impact of an interactive smoking cessation program in a population of Romanian adolescents

    Directory of Open Access Journals (Sweden)

    Valentina Esanu

    2010-12-01

    Full Text Available Objectives: The main objective of this study was to investigate the effectiveness of an interactive smoking cessation program when first implemented in a naïve population of Romanian adolescents. The secondary objective was to assess youngsters’ attitudes and beliefs towards tobacco dependence, their compliance to smoking cessation interventions and success rate of a standard smoking cessation pilot program.Materials and methods: A total of 231 subjects 14-19 years old participated in the Adolescent Smoking Cessation (ASC pilot program in Romania in 2005. Subjects were evaluated based on the ASC questionnaire, a validated set of questions about smoking and cessation profile, whether current smoker or not. Smoking status was validated by carbon monoxide determination in exhaled air. Participants were delivered 6 interactive ASC sessions about smoking hazards and methods to quit smoking. A final evaluation was done to assess overall program’s impact and to reward quitters and reducers by prizes.Results: Study population was made of 52.4% every day smokers, 10.4% at least once/week but not every day smokers, 6% less than once/week smokers, 23.4% never smokers and 7.8% ex-smokers. Cessation rate was 12.3% in every day smokers and 16.6 % in at least once a week but not every day smokers. Also, 4.1% every day smokers and 30 % at least once/week not every day smokers reduced number of cigarettes smoked/day. The program registered a high attendance rate/sessions as 85.2 % of subjects were present in all sessions. Also, significant changes occurred in participant’s beliefs about smoking and cessation.Conclusions: Pilot ASC was an efficient program with 12.3% of daily smokers to quit smoking and its positive impact on personal smoking and cessation beliefs in 90 % of participants. J Clin Exp Invest 2010; 1(3: 150-155

  6. Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling.

    Science.gov (United States)

    Cajigas, Ivelisse; Leib, David E; Cochrane, Jesse; Luo, Hao; Swyter, Kelsey R; Chen, Sean; Clark, Brian S; Thompson, James; Yates, John R; Kingston, Robert E; Kohtz, Jhumku D

    2015-08-01

    Transcription-regulating long non-coding RNAs (lncRNAs) have the potential to control the site-specific expression of thousands of target genes. Previously, we showed that Evf2, the first described ultraconserved lncRNA, increases the association of transcriptional activators (DLX homeodomain proteins) with key DNA enhancers but represses gene expression. In this report, mass spectrometry shows that the Evf2-DLX1 ribonucleoprotein (RNP) contains the SWI/SNF-related chromatin remodelers Brahma-related gene 1 (BRG1, SMARCA4) and Brahma-associated factor (BAF170, SMARCC2) in the developing mouse forebrain. Evf2 RNA colocalizes with BRG1 in nuclear clouds and increases BRG1 association with key DNA regulatory enhancers in the developing forebrain. While BRG1 directly interacts with DLX1 and Evf2 through distinct binding sites, Evf2 directly inhibits BRG1 ATPase and chromatin remodeling activities. In vitro studies show that both RNA-BRG1 binding and RNA inhibition of BRG1 ATPase/remodeling activity are promiscuous, suggesting that context is a crucial factor in RNA-dependent chromatin remodeling inhibition. Together, these experiments support a model in which RNAs convert an active enhancer to a repressed enhancer by directly inhibiting chromatin remodeling activity, and address the apparent paradox of RNA-mediated stabilization of transcriptional activators at enhancers with a repressive outcome. The importance of BRG1/RNA and BRG1/homeodomain interactions in neurodevelopmental disorders is underscored by the finding that mutations in Coffin-Siris syndrome, a human intellectual disability disorder, localize to the BRG1 RNA-binding and DLX1-binding domains. © 2015. Published by The Company of Biologists Ltd.

  7. Water transport through the intestinal epithelial barrier under different osmotic conditions is dependent on LI-cadherin trans-interaction.

    Science.gov (United States)

    Weth, Agnes; Dippl, Carsten; Striedner, Yasmin; Tiemann-Boege, Irene; Vereshchaga, Yana; Golenhofen, Nikola; Bartelt-Kirbach, Britta; Baumgartner, Werner

    2017-04-03

    In the intestine water has to be reabsorbed from the chymus across the intestinal epithelium. The osmolarity within the lumen is subjected to high variations meaning that water transport often has to take place against osmotic gradients. It has been hypothesized that LI-cadherin is important in this process by keeping the intercellular cleft narrow facilitating the buildup of an osmotic gradient allowing water reabsorption. LI-cadherin is exceptional among the cadherin superfamily with respect to its localization along the lateral plasma membrane of epithelial cells being excluded from adherens junction. Furthermore it has 7 but not 5 extracellular cadherin repeats (EC1-EC7) and a small cytosolic domain. In this study we identified the peptide VAALD as an inhibitor of LI-cadherin trans-interaction by modeling the structure of LI-cadherin and comparison with the known adhesive interfaces of E-cadherin. This inhibitory peptide was used to measure LI-cadherin dependency of water transport through a monolayer of epithelial CACO2 cells under various osmotic conditions. If LI-cadherin trans-interaction was inhibited by use of the peptide, water transport from the luminal to the basolateral side was impaired and even reversed in the case of hypertonic conditions whereas no effect could be observed at isotonic conditions. These data are in line with a recently published model predicting LI-cadherin to keep the width of the lateral intercellular cleft small. In this narrow cleft a high osmolarity can be achieved due to ion pumps yielding a standing osmotic gradient allowing water absorption from the gut even if the faeces is highly hypertonic.

  8. Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species.

    Science.gov (United States)

    Allsopp, N; Stock, W D

    1992-08-01

    The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.

  9. Ribosome-dependent ATPase interacts with conserved membrane protein in Escherichia coli to modulate protein synthesis and oxidative phosphorylation.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    Full Text Available Elongation factor RbbA is required for ATP-dependent deacyl-tRNA release presumably after each peptide bond formation; however, there is no information about the cellular role. Proteomic analysis in Escherichia coli revealed that RbbA reciprocally co-purified with a conserved inner membrane protein of unknown function, YhjD. Both proteins are also physically associated with the 30S ribosome and with members of the lipopolysaccharide transport machinery. Genome-wide genetic screens of rbbA and yhjD deletion mutants revealed aggravating genetic interactions with mutants deficient in the electron transport chain. Cells lacking both rbbA and yhjD exhibited reduced cell division, respiration and global protein synthesis as well as increased sensitivity to antibiotics targeting the ETC and the accuracy of protein synthesis. Our results suggest that RbbA appears to function together with YhjD as part of a regulatory network that impacts bacterial oxidative phosphorylation and translation efficiency.

  10. Simple concentration-dependent pair interaction model for large-scale simulations of Fe-Cr alloys

    International Nuclear Information System (INIS)

    Levesque, Maximilien; Martinez, Enrique; Fu, Chu-Chun; Nastar, Maylise; Soisson, Frederic

    2011-01-01

    This work is motivated by the need for large-scale simulations to extract physical information on the iron-chromium system that is a binary model alloy for ferritic steels used or proposed in many nuclear applications. From first-principles calculations and the experimental critical temperature we build a new energetic rigid lattice model based on pair interactions with concentration and temperature dependence. Density functional theory calculations in both norm-conserving and projector augmented-wave approaches have been performed. A thorough comparison of these two different ab initio techniques leads to a robust parametrization of the Fe-Cr Hamiltonian. Mean-field approximations and Monte Carlo calculations are then used to account for temperature effects. The predictions of the model are in agreement with the most recent phase diagram at all temperatures and compositions. The solubility of Cr in Fe below 700 K remains in the range of about 6 to 12%. It reproduces the transition between the ordering and demixing tendency and the spinodal decomposition limits are also in agreement with the values given in the literature.

  11. Improved Predictions of Drug-Drug Interactions Mediated by Time-Dependent Inhibition of CYP3A.

    Science.gov (United States)

    Yadav, Jaydeep; Korzekwa, Ken; Nagar, Swati

    2018-05-07

    Time-dependent inactivation (TDI) of cytochrome P450s (CYPs) is a leading cause of clinical drug-drug interactions (DDIs). Current methods tend to overpredict DDIs. In this study, a numerical approach was used to model complex CYP3A TDI in human-liver microsomes. The inhibitors evaluated included troleandomycin (TAO), erythromycin (ERY), verapamil (VER), and diltiazem (DTZ) along with the primary metabolites N-demethyl erythromycin (NDE), norverapamil (NV), and N-desmethyl diltiazem (NDD). The complexities incorporated into the models included multiple-binding kinetics, quasi-irreversible inactivation, sequential metabolism, inhibitor depletion, and membrane partitioning. The resulting inactivation parameters were incorporated into static in vitro-in vivo correlation (IVIVC) models to predict clinical DDIs. For 77 clinically observed DDIs, with a hepatic-CYP3A-synthesis-rate constant of 0.000 146 min -1 , the average fold difference between the observed and predicted DDIs was 3.17 for the standard replot method and 1.45 for the numerical method. Similar results were obtained using a synthesis-rate constant of 0.000 32 min -1 . These results suggest that numerical methods can successfully model complex in vitro TDI kinetics and that the resulting DDI predictions are more accurate than those obtained with the standard replot approach.

  12. Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles

    International Nuclear Information System (INIS)

    Dufresne, Philippe J.; Thivierge, Karine; Cotton, Sophie; Beauchemin, Chantal; Ide, Christine; Ubalijoro, Eliane; Laliberte, Jean-Francois; Fortin, Marc G.

    2008-01-01

    Tandem affinity purification was used in Arabidopsis thaliana to identify cellular interactors of Turnip mosaic virus (TuMV) RNA-dependent RNA polymerase (RdRp). The heat shock cognate 70-3 (Hsc70-3) and poly(A)-binding (PABP) host proteins were recovered and shown to interact with the RdRp in vitro. As previously shown for PABP, Hsc70-3 was redistributed to nuclear and membranous fractions in infected plants and both RdRp interactors were co-immunoprecipitated from a membrane-enriched extract using RdRp-specific antibodies. Fluorescently tagged RdRp and Hsc70-3 localized to the cytoplasm and the nucleus when expressed alone or in combination in Nicotiana benthamiana. However, they were redistributed to large perinuclear ER-derived vesicles when co-expressed with the membrane binding 6K-VPg-Pro protein of TuMV. The association of Hsc70-3 with the RdRp could possibly take place in membrane-derived replication complexes. Thus, Hsc70-3 and PABP2 are potentially integral components of the replicase complex and could have important roles to play in the regulation of potyviral RdRp functions

  13. Time-dependent quantum transport through an interacting quantum dot beyond sequential tunneling: second-order quantum rate equations

    International Nuclear Information System (INIS)

    Dong, B; Ding, G H; Lei, X L

    2015-01-01

    A general theoretical formulation for the effect of a strong on-site Coulomb interaction on the time-dependent electron transport through a quantum dot under the influence of arbitrary time-varying bias voltages and/or external fields is presented, based on slave bosons and the Keldysh nonequilibrium Green's function (GF) techniques. To avoid the difficulties of computing double-time GFs, we generalize the propagation scheme recently developed by Croy and Saalmann to combine the auxiliary-mode expansion with the celebrated Lacroix's decoupling approximation in dealing with the second-order correlated GFs and then establish a closed set of coupled equations of motion, called second-order quantum rate equations (SOQREs), for an exact description of transient dynamics of electron correlated tunneling. We verify that the stationary solution of our SOQREs is able to correctly describe the Kondo effect on a qualitative level. Moreover, a comparison with other methods, such as the second-order von Neumann approach and Hubbard-I approximation, is performed. As illustrations, we investigate the transient current behaviors in response to a step voltage pulse and a harmonic driving voltage, and linear admittance as well, in the cotunneling regime. (paper)

  14. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory

    International Nuclear Information System (INIS)

    Zhang, Xing; Herbert, John M.

    2014-01-01

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H 3 near its D 3h geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state

  15. Ecological trade-offs between jasmonic acid-dependent direct and indirect plant defences in tritrophic interactions.

    Science.gov (United States)

    Wei, Jianing; Wang, Lizhong; Zhao, Jiuhai; Li, Chuanyou; Ge, Feng; Kang, Le

    2011-01-01

    Recent studies on plants genetically modified in jasmonic acid (JA) signalling support the hypothesis that the jasmonate family of oxylipins plays an important role in mediating direct and indirect plant defences. However, the interaction of two modes of defence in tritrophic systems is largely unknown. In this study, we examined the preference and performance of a herbivorous leafminer (Liriomyza huidobrensis) and its parasitic wasp (Opius dissitus) on three tomato genotypes: a wild-type (WT) plant, a JA biosynthesis (spr2) mutant, and a JA-overexpression 35S::prosys plant. Their proteinase inhibitor production and volatile emission were used as direct and indirect defence factors to evaluate the responses of leafminers and parasitoids. Here, we show that although spr2 mutant plants are compromised in direct defence against the larval leafminers and in attracting parasitoids, they are less attractive to adult flies compared with WT plants. Moreover, in comparison to other genotypes, the 35S::prosys plant displays greater direct and constitutive indirect defences, but reduced success of parasitism by parasitoids. Taken together, these results suggest that there are distinguished ecological trade-offs between JA-dependent direct and indirect defences in genetically modified plants whose fitness should be assessed in tritrophic systems and under natural conditions. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  16. Structure-dependent interactions between alkali feldspars and organic compounds: implications for reactions in geologic carbon sequestration.

    Science.gov (United States)

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2013-01-02

    Organic compounds in deep saline aquifers may change supercritical CO(2) (scCO(2))-induced geochemical processes by attacking specific components in a mineral's crystal structure. Here we investigate effects of acetate and oxalate on alkali feldspar-brine interactions in a simulated geologic carbon sequestration (GCS) environment at 100 atm of CO(2) and 90 °C. We show that both organics enhance the net extent of feldspar's dissolution, with oxalate showing a more prominent effect than acetate. Further, we demonstrate that the increased reactivity of Al-O-Si linkages due to the presence of oxalate results in the promotion of both Al and Si release from feldspars. As a consequence, the degree of Al-Si order may affect the effect of oxalate on feldspar dissolution: a promotion of ~500% in terms of cumulative Si concentration was observed after 75 h of dissolution for sanidine (a highly disordered feldspar) owing to oxalate, while the corresponding increase for albite (a highly ordered feldspar) was ~90%. These results provide new insights into the dependence of feldspar dissolution kinetics on the crystallographic properties of the mineral under GCS conditions.

  17. Spatial and thickness dependence of coupling interaction of surface states and influence on transport and optical properties of few-layer Bi2Se3

    Science.gov (United States)

    Li, Zhongjun; Chen, Shi; Sun, Jiuyu; Li, Xingxing; Qiu, Huaili; Yang, Jinlong

    2018-02-01

    Coupling interaction between the bottom and top surface electronic states and the influence on transport and optical properties of Bi2Se3 thin films with 1-8 quintuple layers (QLs) have been investigated by first principles calculations. Obvious spatial and thickness dependences of coupling interaction are found by analyzing hybridization of two surface states. In the thin film with a certain thickness, from the outer to inner atomic layers, the coupling interaction exhibits an increasing trend. On the other hand, as thickness increases, the coupling interaction shows a disproportionate decrease trend. Moreover, the system with 3 QLs exhibits stronger interaction than that with 2 QLs. The presence of coupling interaction would suppress destructive interference of surface states and enhance resistance in various degrees. In view of the inversely proportional relation to transport channel width, the resistance of thin films should show disproportionate thickness dependence. This prediction is qualitatively consistent with the transport measurements at low temperature. Furthermore, the optical properties also exhibit obvious thickness dependence. Especially as the thickness increases, the coupling interaction results in red and blue shifts of the multiple-peak structures in low and high energy regions of imaginary dielectric function, respectively. The red shift trend is in agreement with the recent experimental observation and the blue shift is firstly predicted by the present calculation. The present results give a concrete understanding of transport and optical properties in devices based on Bi2Se3 thin films with few QLs.

  18. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions ...

  19. Energy spectra in $p$-shell $\\Lambda$ hypernuclei and $^{19}_{\\Lambda}\\textrm{F}$ and spin-dependent $\\Lambda N$ interactions

    OpenAIRE

    Kanada-En'yo, Yoshiko; Isaka, Masahiro; Motoba, Toshio

    2018-01-01

    Energy spectra of $0s$-orbit $\\Lambda$ states in $p$-shell $\\Lambda$ hypernuclei ($^{A}_\\Lambda Z$) and those in $^{19}_{\\Lambda}\\textrm{F}$ are studied with the microscopic cluster model and antisymmetrized molecular dynamics using the $G$-matrix effective $\\Lambda N$ ($\\Lambda NG$) interactions. Spin-dependent terms of the ESC08a version of the $\\Lambda NG$ interactions are tested and phenomenologically tuned to reproduce observed energy spectra in $p$-shell $^{A}_\\Lambda Z$. Spin-dependent...

  20. Interactive toxicity of chlorpyrifos and parathion in neonatal rats: Role of esterases in exposure sequence-dependent toxicity

    International Nuclear Information System (INIS)

    Kacham, R.; Karanth, S.; Baireddy, P.; Liu, J.; Pope, C.

    2006-01-01

    We previously reported that sequence of exposure to chlorpyrifos and parathion in adult rats can markedly influence toxic outcome. In the present study, we evaluated the interactive toxicity of chlorpyrifos (8 mg/kg, po) and parathion (0.5 mg/kg, po) in neonatal (7 days old) rats. Rats were exposed to the insecticides either concurrently or sequentially (separated by 4 h) and sacrificed at 4, 8, and 24 h after the first exposure for biochemical measurements (cholinesterase activity in brain, plasma, and diaphragm and carboxylesterase activity in plasma and liver). The concurrently-exposed group showed more cumulative lethality (15/24) than either of the sequential dosing groups. With sequential dosing, rats treated initially with chlorpyrifos prior to parathion (C/P) exhibited higher lethality (7/23) compared to those treated with parathion before chlorpyrifos (P/C; 1/24). At 8 h after initial dosing, brain cholinesterase inhibition was significantly greater in the C/P group (59%) compared to the P/C group (28%). Diaphragm and plasma cholinesterase activity also followed a relatively similar pattern of inhibition. Carboxylesterase inhibition in plasma and liver was relatively similar among the treatment groups across time-points. Similar sequence-dependent differences in brain cholinesterase inhibition were also noted with lower binary exposures to chlorpyrifos (2 mg/kg) and parathion (0.35 mg/kg). In vitro and ex vivo studies compared relative oxon detoxification of carboxylesterases (calcium-insensitive) and A-esterases (calcium-sensitive) in liver homogenates from untreated and insecticide pretreated rats. Using tissues from untreated rats, carboxylesterases detoxified both chlorpyrifos oxon and paraoxon, while A-esterases only detoxified chlorpyrifos oxon. With parathion pretreatment, A-esterases still detoxified chlorpyrifos oxon while liver from chlorpyrifos pretreated rats had little apparent effect on paraoxon. We conclude that while neonatal rats are less

  1. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.

    Science.gov (United States)

    Farjami, Elaheh; Clima, Lilia; Gothelf, Kurt V; Ferapontova, Elena E

    2010-06-01

    A DNA molecular beacon approach was used for the analysis of interactions between DNA and Methylene Blue (MB) as a redox indicator of a hybridization event. DNA hairpin structures of different length and guanine (G) content were immobilized onto gold electrodes in their folded states through the alkanethiol linker at the 5'-end. Binding of MB to the folded hairpin DNA was electrochemically studied and compared with binding to the duplex structure formed by hybridization of the hairpin DNA to a complementary DNA strand. Variation of the electrochemical signal from the DNA-MB complex was shown to depend primarily on the DNA length and sequence used: the G-C base pairs were the preferential sites of MB binding in the duplex. For short 20 nts long DNA sequences, the increased electrochemical response from MB bound to the duplex structure was consistent with the increased amount of bound and electrochemically readable MB molecules (i.e. MB molecules that are available for the electron transfer (ET) reaction with the electrode). With longer DNA sequences, the balance between the amounts of the electrochemically readable MB molecules bound to the hairpin DNA and to the hybrid was opposite: a part of the MB molecules bound to the long-sequence DNA duplex seem to be electrochemically mute due to long ET distance. The increasing electrochemical response from MB bound to the short-length DNA hybrid contrasts with the decreasing signal from MB bound to the long-length DNA hybrid and allows an "off"-"on" genosensor development.

  2. A high sensitive ion pairing probe (the interaction of pyrenetetrasulphonate and methyl viologen): Salt and temperature dependences and applications

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Jeferson [Departamento de Bioquímica e Departamento de Química, Instituto de Química, Universidade de São Paulo, SP (Brazil); Perez, Katia R. [Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo-SP (Brazil); Pisco, Thiago B.; Pavanelli, David D.; Briotto Filho, Décio; Rezende, Daisy [Departamento de Bioquímica e Departamento de Química, Instituto de Química, Universidade de São Paulo, SP (Brazil); Rezende Triboni, Eduardo [Universidade Nove de Julho, São Paulo, São Paulo-SP (Brazil); Chagas Alves Lima, Francisco das [Coordenação de Química, Universidade Estadual do Piauí, Teresina-PI (Brazil); Lopes Magalhães, Janildo [Departamento de Química, Centro de Ciências da Natureza, Universidade Federal do Piauí, Centro de Ciências da Natureza, Teresina, PI (Brazil); Midea Cuccovia, Iolanda [Departamento de Bioquímica e Departamento de Química, Instituto de Química, Universidade de São Paulo, SP (Brazil); and others

    2014-07-01

    The interaction between pyrenetetrasulphonate (PTS) and methyl viologen (MV{sup 2+}) leads to a 1:1 charge transfer complex (CTC) in the concentration range below mmol L{sup −1} of the ligands. Quantum mechanical calculations show the 1:1 complex having the planar moiety of PTS and the charges of the sulfonate groups stabilized by the twisted rings of the positively charged MV{sup 2+} species. The peculiar nature of PTS includes high fluorescence quantum yield (∼1), clear specular UV–vis spectra and fluorescence emission images, as well similar S{sub 2}←S{sub 0} and S{sub 3}←S{sub 0} transitions as those of S{sub 1}←S{sub 0,} all of them exhibiting well resolved vibrational structure. MV{sup 2+} has well known electron-accepting properties that favor the complexation. These features were studied as a function of salt concentration and temperature dependences allowing a detailed comprehension of static and dynamic association processes. Quantum mechanical calculations show the 1:1 stabilization of PTS/MV{sup 2+}. In addition the effect of urea on the CTC equilibrium is presented, as expected the additive acts towards the non-complexed species (solvated free ions). The fluorescence quenching of MV{sup 2+}over PTS highlights is one of the applications of this effect for giant vesicles characterization. - Highlights: • We determined the details of PTS/MV{sup 2+} 1:1 complex formation. • Ground and excited states formation is operative. • Ion pairing effects due to urea effect are shown. • Vesicle formation is illustrated by the pair.

  3. BioC-compatible full-text passage detection for protein-protein interactions using extended dependency graph.

    Science.gov (United States)

    Peng, Yifan; Arighi, Cecilia; Wu, Cathy H; Vijay-Shanker, K

    2016-01-01

    There has been a large growth in the number of biomedical publications that report experimental results. Many of these results concern detection of protein-protein interactions (PPI). In BioCreative V, we participated in the BioC task and developed a PPI system to detect text passages with PPIs in the full-text articles. By adopting the BioC format, the output of the system can be seamlessly added to the biocuration pipeline with little effort required for the system integration. A distinctive feature of our PPI system is that it utilizes extended dependency graph, an intermediate level of representation that attempts to abstract away syntactic variations in text. As a result, we are able to use only a limited set of rules to extract PPI pairs in the sentences, and additional rules to detect additional passages for PPI pairs. For evaluation, we used the 95 articles that were provided for the BioC annotation task. We retrieved the unique PPIs from the BioGRID database for these articles and show that our system achieves a recall of 83.5%. In order to evaluate the detection of passages with PPIs, we further annotated Abstract and Results sections of 20 documents from the dataset and show that an f-value of 80.5% was obtained. To evaluate the generalizability of the system, we also conducted experiments on AIMed, a well-known PPI corpus. We achieved an f-value of 76.1% for sentence detection and an f-value of 64.7% for unique PPI detection.Database URL: http://proteininformationresource.org/iprolink/corpora. © The Author(s) 2016. Published by Oxford University Press.

  4. Sequence-dependent separation of trinucleotides by ion-interaction reversed-phase liquid chromatography A structure-retention study assisted by soft-modelling and molecular dynamics

    Czech Academy of Sciences Publication Activity Database

    Mikulášek, K.; Jaroň, Kamil S.; Kulhánek, P.; Bittová, M.; Havliš, J.

    2016-01-01

    Roč. 1469, October (2016), s. 88-95 ISSN 0021-9673 Institutional support: RVO:68081766 Keywords : Sequence-dependent separation * Ion-interaction reversed-phase liquid chromatography * Trinucleotides * Oligonucleotide sequence isomers * QSRR * Molecular dynamics Subject RIV: CE - Biochemistry Impact factor: 3.981, year: 2016

  5. Testing the time-scale dependence of delayed interactions: A heat wave during the egg stage shapes how a pesticide interacts with a successive heat wave in the larval stage.

    Science.gov (United States)

    Janssens, Lizanne; Tüzün, Nedim; Stoks, Robby

    2017-11-01

    Under global change organisms are exposed to multiple, potentially interacting stressors. Especially interactions between successive stressors are poorly understood and recently suggested to depend on their timing of exposure. We particularly need studies assessing the impact of exposure to relevant stressors at various life stages and how these interact. We investigated the single and combined impacts of a heat wave (mild [25 °C] and extreme [30 °C]) during the egg stage, followed by successive exposure to esfenvalerate (ESF) and a heat wave during the larval stage in damselflies. Each stressor caused mortality. The egg heat wave and larval ESF exposure had delayed effects on survival, growth and lipid peroxidation (MDA). This resulted in deviations from the prediction that stressors separated by a long time interval would not interact: the egg heat wave modulated the interaction between the stressors in the larval stage. Firstly, ESF caused delayed mortality only in larvae that had been exposed to the extreme egg heat wave and this strongly depended upon the larval heat wave treatment. Secondly, ESF only increased MDA in larvae not exposed to the egg heat wave. We found little support for the prediction that when there is limited time between stressors, synergistic interactions should occur. The intermediate ESF concentration only caused delayed mortality when combined with the larval heat wave, and the lowest ESF concentrations only increased oxidative damage when followed by the mild larval heat wave. Survival selection mitigated the interaction patterns between successive stressors that are individually lethal, and therefore should be included in a predictive framework for the time-scale dependence of the outcome of multistressor studies with pollutants. The egg heat wave shaping the interaction pattern between successive pesticide exposure and a larval heat wave highlights the connectivity between the concepts of 'heat-induced pesticide sensitivity' and

  6. pH dependence of the interaction between immunogenic peptides and MHC class II molecules. Evidence for an acidic intracellular compartment being the organelle of interaction

    DEFF Research Database (Denmark)

    Mouritsen, S; Buus, Anette Stryhn; Petersen, B L

    1992-01-01

    and most notably in the endosome-lysosome compartment in which Ag processing is thought to occur. Thus, Ag processing and interaction with MHC class II molecules can potentially happen in the very same compartment. This yet undefined acidic compartment would have to contain proteolytic enzymes and MHC...

  7. Human I-mfa domain proteins specifically interact with KSHV LANA and affect its regulation of Wnt signaling-dependent transcription

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Eizuru, Yoshito [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2010-06-04

    Kaposi's sarcoma-associated herpes virus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein has been reported to interact with glycogen synthase kinase 3{beta} (GSK-3{beta}) and to negatively regulate its activity, leading to stimulation of GSK-3{beta}-dependent {beta}-catenin degradation. We show here that the I-mfa domain proteins, HIC (human I-mfa domain-containing protein) and I-mfa (inhibitor of MyoD family a), interacted in vivo with LANA through their C-terminal I-mfa domains. This interaction affected the intracellular localization of HIC, inhibited the LANA-dependent transactivation of a {beta}-catenin-regulated reporter construct, and decreased the level of the LANA.GSK-3{beta} complex. These data reveal for the first time that I-mfa domain proteins interact with LANA and negatively regulate LANA-mediated activation of Wnt signaling-dependent transcription by inhibiting the formation of the LANA.GSK-3{beta} complex.

  8. Glucocorticoid Effects on Memory Consolidation Depend on Functional Interactions between the Medial Prefrontal Cortex and Basolateral Amygdala

    NARCIS (Netherlands)

    Roozendaal, Benno; McReynolds, Jayme R.; Van der Zee, Eddy A.; Lee, Sangkwan; McGaugh, James L.; McIntyre, Christa K.

    2009-01-01

    Considerable evidence indicates that the basolateral complex of the amygdala (BLA) interacts with efferent brain regions in mediating glucocorticoid effects on memory consolidation. Here, we investigated whether glucocorticoid influences on the consolidation of memory for emotionally arousing

  9. Analysis of Context Dependence in Social Interaction Networks of a Massively Multiplayer Online Role-Playing Game

    OpenAIRE

    Son, Seokshin; Kang, Ah Reum; Kim, Hyun-chul; Kwon, Taekyoung; Park, Juyong; Kim, Huy Kang

    2012-01-01

    Rapid advances in modern computing and information technology have enabled millions of people to interact online via various social network and gaming services. The widespread adoption of such online services have made possible analysis of large-scale archival data containing detailed human interactions, presenting a very promising opportunity to understand the rich and complex human behavior. In collaboration with a leading global provider of Massively Multiplayer Online Role-Playing Games (...

  10. A QCM-D study of the concentration- and time-dependent interactions of human LL37 with model mammalian lipid bilayers.

    Science.gov (United States)

    Lozeau, Lindsay D; Rolle, Marsha W; Camesano, Terri A

    2018-07-01

    The human antimicrobial peptide LL37 is promising as an alternative to antibiotics due to its biophysical interactions with charged bacterial lipids. However, its clinical potential is limited due to its interactions with zwitterionic mammalian lipids leading to cytotoxicity. Mechanistic insight into the LL37 interactions with mammalian lipids may enable rational design of less toxic LL37-based therapeutics. To this end, we studied concentration- and time-dependent interactions of LL37 with zwitterionic model phosphatidylcholine (PC) bilayers with quartz crystal microbalance with dissipation (QCM-D). LL37 mass adsorption and PC bilayer viscoelasticity changes were monitored by measuring changes in frequency (Δf) and dissipation (ΔD), respectively. The Voigt-Kelvin viscoelastic model was applied to Δf and ΔD to study changes in bilayer thickness and density with LL37 concentration. At low concentrations (0.10-1.00 μM), LL37 adsorbed onto bilayers in a concentration-dependent manner. Further analyses of Δf, ΔD and thickness revealed that peptide saturation on the bilayers was a threshold for interactions observed above 2.00 μM, interactions that were rapid, multi-step, and reached equilibrium in a concentration- and time-dependent manner. Based on these data, we proposed a model of stable transmembrane pore formation at 2.00-10.0 μM, or transition from a primarily lipid to a primarily protein film with a transmembrane pore formation intermediate state at concentrations of LL37 > 10 μM. The concentration-dependent interactions between LL37 and PC bilayers correlated with the observed concentration-dependent biological activities of LL37 (antimicrobial, immunomodulatory and non-cytotoxic at 0.1-1.0 μM, hemolytic and some cytotoxicity at 2.0-13 μM and cytotoxic at >13 μM). Copyright © 2018 Elsevier B.V. All rights reserved.

  11. How asymmetrical task dependence and task interdependence interact:an individual level study into the effects on affective reactions

    OpenAIRE

    Jong, Simon B. De; Bal, P. Matthijs

    2014-01-01

    Purpose – This study investigates whether research and practice on task design and work teams could benefit from a more nuanced perspective on task (inter)dependencies among team members. Prior research often overlooked that task interdependence captures the average exchange of resources, while asymmetrical task dependence captures the inequalities within an individual's work relationships. To date, no study on work teams has combined the two aspects. Design/methodology/approach – Data was ob...

  12. Protein interacting with C kinase 1 (PICK1) reduces reinsertion rates of interaction partners sorted to Rab11-dependent slow recycling pathway

    DEFF Research Database (Denmark)

    Madsen, Kenneth Lindegaard; Thorsen, Thor Seneca; Rahbek-Clemmensen, Troels

    2012-01-01

    The scaffolding protein PICK1 (protein interacting with C kinase 1) contains an N-terminal PSD-95/Discs large/ZO-1 (PDZ) domain and a central lipid-binding Bin/amphiphysin/Rvs (BAR) domain. PICK1 is thought to regulate trafficking of its PDZ binding partners but different and even opposing...... functions have been suggested. Here, we apply ELISA-based assays and confocal microscopy in HEK293 cells with inducible PICK1 expression to assess in an isolated system the ability of PICK1 to regulate trafficking of natural and engineered PDZ binding partners. The dopamine transporter (DAT), which...

  13. Interaction domains in die-upset NdFeB magnets in dependence on the degree of deformation

    International Nuclear Information System (INIS)

    Khlopkov, K.; Gutfleisch, O.; Schaefer, R.; Hinz, D.; Mueller, K.-H.; Schultz, L.

    2004-01-01

    The magnetic domain structure of NdFeB magnets has been studied using high resolution, digitally enhanced Kerr-microscopy. Melt-spun NdFeB powder (MQU-F TM ) was hot pressed into fully dense samples and then hot deformed to axially textured magnets. Various degrees of deformation (height reduction) up to 76% have been realized. Pronounced interaction domains have been observed only in magnets, which were deformed to a degree of deformation of at least 52%. With increasing alignment of the grains the interaction domains become more and more visible and their size increases

  14. Time and dose-dependent risk of pneumococcal pneumonia following influenza: a model for within-host interaction between influenza and Streptococcus pneumoniae

    OpenAIRE

    Shrestha, Sourya; Foxman, Betsy; Dawid, Suzanne; Aiello, Allison E.; Davis, Brian M.; Berus, Joshua; Rohani, Pejman

    2013-01-01

    A significant fraction of seasonal and in particular pandemic influenza deaths are attributed to secondary bacterial infections. In animal models, influenza virus predisposes hosts to severe infection with both Streptococcus pneumoniae and Staphylococcus aureus. Despite its importance, the mechanistic nature of the interaction between influenza and pneumococci, its dependence on the timing and sequence of infections as well as the clinical and epidemiological consequences remain unclear. We e...

  15. The impact of individualized interaction on the quality of life of elderly dependent on care as a result of dementia: a study with a pre-post design.

    Science.gov (United States)

    de Vocht, Hilde M; Hoogeboom, A M G Marcella; van Niekerk, Bob; den Ouden, Marjolein E M

    2015-01-01

    The aim was to assess the impact of a one-to-one 30-min individualized interaction per day on the behavior and quality of life of care-dependent residents with dementia. In a pre-/post-test study, 15 care-dependent residents with dementia (mean age 88.8 years, 86.7% women) were included. Resident behavior was measured using video observation and quality of life using Qualidem. Health care professionals (n = 13) and direct relatives (n = 4) were interviewed about the effect of the intervention. The effect of the intervention was analyzed using the Friedman analysis of variance. The video observation showed that maintaining eye contact, touching, responding to speaking, tracking observable stimuli and asking questions about the activity significantly increased during the intervention. These findings were supported by interviews with nurses who described experiences of making human-to-human contact with the residents. No significant overall changes were found in quality of life. These findings were partially supported by interviews with health care professionals and relatives as some perceived effects beyond the 30-min intervention. Interaction offered on a one-to-one basis tailored to individual preferences significantly improved positive interactive behavior of care-dependent residents with dementia during the intervention. Surveys revealed no significant overall effect of the intervention. The interviews indicated there might be effects beyond the intervention for some residents.

  16. Energy dependence of the ratio of isovector effective interaction strengths |JστJτ| from 0° (p,n) cross sections

    Science.gov (United States)

    Taddeucci, T. N.; Rapaport, J.; Bainum, D. E.; Goodman, C. D.; Foster, C. C.; Gaarde, C.; Larsen, J.; Goulding, C. A.; Horen, D. J.; Masterson, T.; Sugarbaker, E.

    1982-02-01

    Information concerning the ratio of the isovector effective interaction strengths |JστJτ| may be obtained from the ratio of (p,n) Gamow-Teller and isobaric analog state 0° differential cross sections. We have examined 0° (p,n) data for the energy range 5-200 MeV and find that for energies larger than 50 MeV and for targets with A=7-42 the product of the interaction-strength and distortion-factor ratios |JστJτ|(NστNτ)12 appears to be mass independent and linear as a function of bombarding energy. NUCLEAR REACTIONS 7Li, 13, 14C, 26Mg, 37Cl, 41Ca(p,n), measured σ(θ=0°), GT, IAS transitions, Ep=60-200 MeV. Deduced energy dependence, interaction strength ratio |JστJτ|.

  17. Cellular interaction of a layer-by-layer based drug delivery system depending on material properties and cell types.

    Science.gov (United States)

    Brueckner, Mandy; Jankuhn, Steffen; Jülke, Eva-Maria; Reibetanz, Uta

    2018-01-01

    Drug delivery systems (DDS) and their interaction with cells are a controversial topic in the development of therapeutic concepts and approaches. On one hand, DDS are very useful for protected and targeted transport of defined dosages of active agents. On the other hand, their physicochemical properties such as material, size, shape, charge, or stiffness have a huge impact on cellular uptake and intracellular processing. Additionally, even identical DDS can undergo a completely diverse interaction with different cell types. However, quite often in in vitro DDS/cell interaction experiments, those aspects are not considered and DDS and cells are randomly chosen. Hence, our investigations provide an insight into layer-by-layer designed microcarriers with modifications of only some of the most important parameters (surface charge, stiffness, and applied microcarrier/cell ratio) and their influence on cellular uptake and viability. We also considered the interaction of these differently equipped DDS with several cell types and investigated professional phagocytes (neutrophil granulocytes; macrophages) as well as non-professional phagocytes (epithelial cells) under comparable conditions. We found that even small modifications such as layer-by-layer (LbL)-microcarriers with positive or negative surface charge, or LbL-microcarriers with solid core or as hollow capsules but equipped with the same surface properties, show significant differences in interaction and viability, and several cell types react very differently to the offered DDS. As a consequence, the properties of the DDS have to be carefully chosen with respect to the addressed cell type with the aim to efficiently transport a desired agent.

  18. Ordering and Fluctuation of Quantum Multipoles in CeB6

    International Nuclear Information System (INIS)

    Shiina, R.

    2003-01-01

    The effect of multipolar fluctuations on the quadrupolar phase transition in CeB 6 is investigated theoretically. It is shown that the fluctuations become strong and field-dependent, reflecting the competition of coupled multipolar interactions. Some unusual phenomena around the transition in CeB 6 are shown to be reasonably explained within the RKKY model. (author)

  19. Three-factor models versus time series models: quantifying time-dependencies of interactions between stimuli in cell biology and psychobiology for short longitudinal data.

    Science.gov (United States)

    Frank, Till D; Kiyatkin, Anatoly; Cheong, Alex; Kholodenko, Boris N

    2017-06-01

    Signal integration determines cell fate on the cellular level, affects cognitive processes and affective responses on the behavioural level, and is likely to be involved in psychoneurobiological processes underlying mood disorders. Interactions between stimuli may subjected to time effects. Time-dependencies of interactions between stimuli typically lead to complex cell responses and complex responses on the behavioural level. We show that both three-factor models and time series models can be used to uncover such time-dependencies. However, we argue that for short longitudinal data the three factor modelling approach is more suitable. In order to illustrate both approaches, we re-analysed previously published short longitudinal data sets. We found that in human embryonic kidney 293 cells cells the interaction effect in the regulation of extracellular signal-regulated kinase (ERK) 1 signalling activation by insulin and epidermal growth factor is subjected to a time effect and dramatically decays at peak values of ERK activation. In contrast, we found that the interaction effect induced by hypoxia and tumour necrosis factor-alpha for the transcriptional activity of the human cyclo-oxygenase-2 promoter in HEK293 cells is time invariant at least in the first 12-h time window after stimulation. Furthermore, we applied the three-factor model to previously reported animal studies. In these studies, memory storage was found to be subjected to an interaction effect of the beta-adrenoceptor agonist clenbuterol and certain antagonists acting on the alpha-1-adrenoceptor / glucocorticoid-receptor system. Our model-based analysis suggests that only if the antagonist drug is administer in a critical time window, then the interaction effect is relevant. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  20. Research Paper: Cross State-dependent Learning Interaction Between Scopolamine and Morphine in Mice: The Role of Dorsal Hippocampus

    Directory of Open Access Journals (Sweden)

    Morteza Maleki

    2017-05-01

    Conclusion: The current study findings indicated a cross state-dependent learning between SCO and morphine at CA1 level. Therefore, it seems that muscarinic and opioid receptors may act reciprocally on modulation of passive avoidance memory retrieval, at the level of dorsal hippocampus, in mice.

  1. Emission switching in carbon dots coated CdTe quantum dots driving by pH dependent hetero-interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xiao; Wang, Hao; Yi, Qinghua; Wang, Yun; Cong, Shan; Zhao, Jie; Sun, Yinghui; Zou, Guifu, E-mail: zouguifu@suda.edu.cn, E-mail: jiexiong@uestc.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Qian, Zhicheng [School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, Jianwen; Xiong, Jie, E-mail: zouguifu@suda.edu.cn, E-mail: jiexiong@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Luo, Hongmei [Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States)

    2015-11-16

    Due to the different emission mechanism between fluorescent carbon dots and semiconductor quantum dots (QDs), it is of interest to explore the potential emission in hetero-structured carbon dots/semiconducting QDs. Herein, we design carbon dots coated CdTe QDs (CDQDs) and investigate their inherent emission. We demonstrate switchable emission for the hetero-interactions of the CDQDs. Optical analyses indicate electron transfer between the carbon dots and the CdTe QDs. A heterojunction electron process is proposed as the driving mechanism based on N atom protonation of the carbon dots. This work advances our understanding of the interaction mechanism of the heterostructured CDQDs and benefits the future development of optoelectronic nanodevices with new functionalities.

  2. On the effect of coverage-dependent adsorbate-adsorbate interactions for CO methanation on transition metal surfaces

    DEFF Research Database (Denmark)

    Lausche, Adam C.; Medford, Andrew J.; Khan, Tuhin Suvra

    2013-01-01

    with a high coverage of CO. At these high coverages, reaction intermediates experience interaction effects that typically reduce their adsorption energies. Herein, the effect of these interactions on the activities of transition metals for CO methanation is investigated. For transition metals that have low...... coverages of reactants, the effect is minimal. But for materials with high coverages under reaction conditions, rates can change by several orders of magnitude. Nevertheless, the position of the maximum of the activity volcano does not shift significantly, and the rates at the maximum are only slightly......Heterogeneously catalyzed reactions involving the dissociation of strongly bonded molecules typically need quite reactive catalysts with high coverages of intermediate molecules. Methanation of carbon monoxide is one example, where CO dissociation has been reported to take place on step sites...

  3. Dependence of the Casimir-Polder interaction between an atom and a cavity wall on atomic and material properties

    International Nuclear Information System (INIS)

    Mostepanenko, V M; Babb, J F; Caride, A O; Klimchitskaya, G L; Zanette, S I

    2006-01-01

    The Casimir-Polder and van der Waals interactions between an atom and a flat cavity wall are investigated under the influence of real conditions including the dynamic polarizability of the atom, actual conductivity of the wall material and nonzero temperature of the wall. The cases of different atoms near metal and dielectric walls are considered. It is shown that to obtain accurate results for the atom-wall interaction at short separations, one should use the complete tabulated optical data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. At relatively large separations in the case of a metal wall, one may use the plasma model dielectric function to describe the dielectric properties of the wall material. The obtained results are important for the theoretical interpretation of experiments on quantum reflection and Bose-Einstein condensation

  4. Variations in periplasmic loop interactions determine the pH-dependent activity of the hexameric urea transporter UreI from Helicobacter pylori: a molecular dynamics study.

    Science.gov (United States)

    Cáceres-Delpiano, Javier; Teneb, Jaime; Mansilla, Rodrigo; García, Apolinaria; Salas-Burgos, Alexis

    2015-06-26

    Helicobacter pylori is an important factor in the development of diseases such as ulcer and gastric cancer. This bacterium uses a periplasmic transporter, UreI, to deliver urea to the intracelullar space, where later it is transformed into ammonia by the cytoplasmic enzyme urease to survive the acidic condition of the human stomach. The UreI transporter presents a pH-dependent activity, where this pH-dependence remains unknown at a structural level. Althought the existance of several protonable residues in the periplasmic loops are related to the pH-dependent activity, we find interesting to have a clear view of the conformational changes involved in this phenomena through a molecular dynamic study. Molecular dynamic simulations of the UreI transporter at three different pH conditions were performed, revealing two main pH-dependent conformations, which we present as the open and close states. We find that salt bridges between the periplasmic loops are crucial interactions that stabilize these conformations. Besides, a cooperative behaviour exists between the six subunits of the system that is necessary to fulfill the activity of this transporter. We found different pH-dependent conformations of the urea transporter UreI from Helicobacter pylori, which are related to salt-bridge interactions in the periplasmic regions. The behaviour of every channel in the system is not independent, given the existance of a cooperative behaviour through the formation of salt-bridges between the subunits of the hexameric system. We believe that our results will be related to the generation of new eradication therapies using this transporter as an attractive target, denoting that the knowledge of the possible pH-dependent conformations adopted for this transporter are important for the development of rational drug design approximations.

  5. Structural Basis of the Interaction of Cyclin-Dependent Kinase 2 with Roscovitine and Its Analogues Having Bioisosteric Central Heterocycles

    Czech Academy of Sciences Publication Activity Database

    Nekardová, Michaela; Vymětalová, Ladislava; Khirsariya, P.; Kováčová, S.; Hylsová, M.; Jorda, Radek; Kryštof, Vladimír; Fanfrlík, Jindřich; Hobza, Pavel; Paruch, K.

    2017-01-01

    Roč. 18, č. 7 (2017), s. 785-795 ISSN 1439-4235 R&D Projects: GA ČR(CZ) GBP208/12/G016; GA ČR(CZ) GA15-15264S Institutional support: RVO:61388963 ; RVO:61389030 Keywords : computational chemistry * enzymes * protein-inhibitor interactions * purine bioisosteres * scaffold hopping Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.075, year: 2016

  6. Energy, target, projectile and multiplicity dependences of intermittency behaviour in high energy O(Si,S) induced interactions

    International Nuclear Information System (INIS)

    Adamovich, M.I.; Alexandrov, Y.A.; Chernyavski, M.M.; Gerassimov, S.G.; Kharlamov, S.P.; Larionova, V.G.; Maslennikova, N.V.; Orlova, G.I.; Peresadko, N.G.; Salmanova, N.A.; Tretyakova, M.I.; Ameeva, Z.U.; Andreeva, N.P.; Anzon, Z.V.; Bubnov, V.I.; Chasnikov, I.Y.; Eligbaeva, G.Z.; Eremenko, G.Z.; Gaitinov, A.S.; Kalyachkina, G.S.; Kanygina, E.K.; Skakhova, C.I.; Bhalla, K.B.; Kumar, V.; Lal, P.; Lokanathan, S.; Mookerjee, S.; Raniwala, R.; Raniwala, S.; Burnett, T.H.; Grote, J.; Koss, T.; Lord, J.; Skelding, D.; Strausz, S.C.; Wilkes, R.J.; Cai, X.; Huang, H.; Liu, L.S.; Qian, W.Y.; Wang, H.Q.; Zhou, D.C.; Zhou, J.C.; Chernova, L.P.; Gadzhieva, S.I.; Gulamov, K.G.; Kadyrov, F.G.; Lukicheva, N.S.; Navotny, V.S.; Svechnikova, L.N.; Friedlander, E.M.; Heckman, H.H.; Lindstrom, P.J.; Garpman, S.; Jakobsson, B.; Otterlund, I.; Persson, S.; Soederstroem, K.; Stenlund, E.; Judek, B.; Nasyrov, S.H.; Petrov, N.V.; Xu, G.F.; Zheng, P.Y.

    1991-01-01

    Fluctuations of charged particles in high energy oxygen, silicon and sulphur induced interactions are investigated with the method of scaled factorial moments. It is found that for decreasing bin size down to δη∝0.1 the EMU01 data exhibits intermittent behaviour. The intermittency indexes are found to decrease with increasing incident energy and multiplicity and to increase with increasing target mass. It seems also to increase as the projectile mass increases. (orig.)

  7. On the dependance of the ''normalized multiplicity'' of particles produced in proton-nucleus interactions on the primary energy

    International Nuclear Information System (INIS)

    Babecki, J.

    1975-01-01

    The mean ''normalized multiplicities'' of particles produced in p-nucleus interactions: with the leading particles (R 1 ) and without them (R 2 ) were calculated from the emulsion data. The independence of R 2 of the primary energy E 0 were stated in very wide interval of E 0 from 6.2 to thousands of GeV. R 2 is approximately equal to the mean number of collisions of the primary particle in the nucleus. (author)

  8. Peer effects on self-regulation in adolescence depend on the nature and quality of the peer interaction.

    Science.gov (United States)

    King, Kevin M; McLaughlin, Katie A; Silk, Jennifer; Monahan, Kathryn C

    2017-11-21

    Adolescence is a critical period for the development of self-regulation, and peer interactions are thought to strongly influence regulation ability. Simple exposure to peers has been found to alter decisions about risky behaviors and increase sensitivity to rewards. The link between peer exposure and self-regulation is likely to vary as a function of the type and quality of peer interaction (e.g., rejection or acceptance). Little is known about how the nature of interactions with peers influences different dimensions of self-regulation. We examined how randomization to acceptance or rejection by online "virtual" peers influenced multiple dimensions of self-regulation in a multisite community sample of 273 adolescents aged 16-17 years. Compared to a neutral condition, exposure to peers produced increases in cold cognitive control, but decreased hot cognitive control. Relative to peer acceptance, peer rejection reduced distress tolerance and increased sensitivity to losses. These findings suggest that different dimensions of adolescent self-regulation are influenced by the nature of the peer context: basic cognitive functions are altered by mere exposure to peers, whereas more complex decision making and emotion regulation processes are influenced primarily by the quality of that exposure.

  9. pH-dependent differential interacting mechanisms of sodium dodecyl sulfate with bovine serum fetuin: a biophysical insight.

    Science.gov (United States)

    Zaidi, Nida; Nusrat, Saima; Zaidi, Fatima Kamal; Khan, Rizwan H

    2014-11-20

    Sodium dodecyl sulfate (SDS)-glycoprotein interaction serves as a model for a biological membrane. To get mechanistic insight into the interaction of SDS and glycoprotein, the effect of SDS on bovine serum fetuin (BSF) was studied in subcritical micellar concentrations at pH 7.4 and pH 2 using multiple approaches. SDS interacts electrostatically with BSF through its negatively charged head groups at pH 2 and hydrophobically via its alkyl chains at pH 7.4 up to a 1:20 molar ratio of BSF to SDS. However, at higher concentrations of SDS, BSF undergoes amyloid fibril formation at pH 2, as confirmed by enhanced ThT fluorescence, β-sheet formation, and TEM microscopy, whereas BSF undergoes induction of an α-helical structure in the presence of higher SDS concentration at pH 7.4. The increase in α-helical content with increasing SDS concentrations constrains the environment around tryptophan. As a consequence, the interconversion of tryptophan conformers decreases, resulting in a decrement of the fluorescence lifetime for BSF in the presence of SDS at pH 7.4.

  10. Interactions between the phase stress and the grain-orientation-dependent stress in duplex stainless steel during deformation

    International Nuclear Information System (INIS)

    Jia, N.; Peng, R. Lin; Wang, Y.D.; Chai, G.C.; Johansson, S.; Wang, G.; Liaw, P.K.

    2006-01-01

    The development of phase stress and grain-orientation-dependent stress under uniaxial compression was investigated in a duplex stainless steel consisting of austenite and ferrite. Using in situ neutron diffraction measurements, the strain response of several h k l planes to the applied compressive stress was mapped as a function of applied stress and sample direction. Analysis based on the experimental results and elastoplastic self-consistent simulations shows that phase stresses of thermal origin further increase during elastic loading but decrease with increased plastic deformation. Grain-orientation-dependent stresses become significant in both austenite and ferrite after loading into the plastic region. After unloading from the plastic regime, a considerable intergranular stress remains in the austenitic phase and dominates over the phase stress. This study provides fundamental experimental inputs for future micromechanical modeling aiming at the evaluation and prediction of the mechanical performance of multiphase materials

  11. Charge dependence and charge asymmetry in the nucleon-nucleon interaction due to processes involving Δ's

    International Nuclear Information System (INIS)

    Wells, T.B.

    1978-01-01

    The charge dependence and charge asymmetry of the nucleon-nucleon force arising from the exchange of a pion and a photon with the excitation of a nucleon resonance [Δ(1236)] is calculated. This charge dependence and asymmetry is studied through its effects on the 1 S nucleon-nucleon scattering lengths. The complexity of the calculation forces the use of approximations. The calculation is performed first with a pole approximation for the resonance and a second time with a Chew-Low description of the resonance. Both calculations neglect nuclear recoil. Estimates of this effect are made. The changes in the scattering lengths are small ( +- / 2 = 1.0225 G/sub π 0 / 2 will explain the proton-neutron scattering length

  12. Characteristic interpersonal behavior in dependent and avoidant personality disorder can be observed within very short interaction sequences.

    Science.gov (United States)

    Leising, Daniel; Sporberg, Doreen; Rehbein, Diana

    2006-08-01

    We present a behavior observation study of interpersonal behavior in 96 female subjects, who had been screened for the presence of dependent, avoidant, narcissistic and histrionic personality disorder features. Each subject took part in three short role-plays, taken from assertiveness training. Afterwards, both the subject and her role-play partner judged, how assertive the subject had been. Although observation time was very short, dependent and avoidant subjects could be easily identified from their overly submissive behavior in the role-plays. Histrionic and narcissistic subjects did not show distinctive interpersonal behavior. Contrary to a common belief, higher scores on some personality disorder (PD) scales were positively related to cross-situational variability of behavior. Results are discussed with regard to their implications for clinical diagnostics, therapy and the methodology of personality disorder research in general.

  13. DNA requirements for interaction of the C-terminal region of Ku80 with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs).

    Science.gov (United States)

    Radhakrishnan, Sarvan Kumar; Lees-Miller, Susan P

    2017-09-01

    Non-homologous end joining (NHEJ) is the major pathway for the repair of ionizing radiation induced DNA double strand breaks (DSBs) in human cells. Critical to NHEJ is the DNA-dependent interaction of the Ku70/80 heterodimer with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to form the DNA-PK holoenzyme. However, precisely how Ku recruits DNA-PKcs to DSBs ends to enhance its kinase activity has remained enigmatic, with contradictory findings reported in the literature. Here we address the role of the Ku80 C-terminal region (CTR) in the DNA-dependent interaction of Ku70/80 with DNA-PKcs using purified components and defined DNA structures. Our results show that the Ku80 CTR is required for interaction with DNA-PKcs on short segments of blunt ended 25bp dsDNA or 25bp dsDNA with a 15-base poly dA single stranded (ss) DNA extension, but this requirement is less stringent on longer dsDNA molecules (35bp blunt ended dsDNA) or 25bp duplex DNA with either a 15-base poly dT or poly dC ssDNA extension. Moreover, the DNA-PKcs-Ku complex preferentially forms on 25 bp DNA with a poly-pyrimidine ssDNA extension.Our work clarifies the role of the Ku80 CTR and dsDNA ends on the interaction of DNA-PKcs with Ku and provides key information to guide assembly and biology of NHEJ complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Palmitoylation-dependent CDKL5–PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development

    OpenAIRE

    Zhu, Yong-Chuan; Li, Dan; Wang, Lu; Lu, Bin; Zheng, Jing; Zhao, Shi-Lin; Zeng, Rong; Xiong, Zhi-Qi

    2013-01-01

    The X-linked gene cyclin-dependent kinase-like 5 (CDKL5) is mutated in severe neurodevelopmental disorders, including some forms of atypical Rett syndrome, but the function and regulation of CDKL5 protein in neurons remain to be elucidated. Here, we show that CDKL5 binds to the scaffolding protein postsynaptic density (PSD)-95, and that this binding promotes the targeting of CDKL5 to excitatory synapses. Interestingly, this binding is not constitutive, but governed by palmitate cycling on PSD...

  15. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    Science.gov (United States)

    Kneitel, Jamie M

    2012-01-01

    Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales

  16. Context-dependent interactive effects of non-lethal predation on larvae impact adult longevity and body composition.

    Science.gov (United States)

    Chandrasegaran, Karthikeyan; Kandregula, Samyuktha Rao; Quader, Suhel; Juliano, Steven A

    2018-01-01

    Predation impacts development, behavior and morphology of prey species thereby shaping their abundances, distribution and community structure. Non-lethal threat of predation, specifically, can have a strong influence on prey lifehistory characteristics. While investigations often focus on the impact of predation threat on prey in isolation, tests of its interactive effects with food availability and resource competition on prey survival and fitness can improve understanding of costs, benefits and trade-offs of anti-predator strategies. This study, involving Aedes aegypti mosquitoes as a model organism, investigates both simple and interactive effects of predation threat during the larval stage on survival, size at and time to maturity, stored teneral reserves of glycogen, protein and lipid in adults, and adult longevity. Our results show that development times of mosquito larvae were increased (by 14.84% in males and by 97.63% in females), and size of eclosing adults decreased (by 62.30% in males and by 58.33% in females) when exposed to lowered nutrition and elevated intraspecific competition, but that predation had no detectable effect on these simple traits. Teneral reserves of glycogen, protein and lipid and adult longevity were positively correlated with adult body size. Non-lethal predation threat had significant interactive effects with nutrition and larval competition on teneral reserves in males and adult longevity in males and females. The sexes responded differently to conditions encountered as larvae, with the larval environment affecting development and adult characteristics more acutely for females than for males. The outcome of this study shows how threat of predation on juveniles can have long-lasting effects on adults that are likely to impact mosquito population dynamics and that may impact disease transmission.

  17. On-Beads Digestion in Conjunction with Data-Dependent Mass Spectrometry: A Shortcut to Quantitative and Dynamic Interaction Proteomics

    Directory of Open Access Journals (Sweden)

    Benedetta Turriziani

    2014-04-01

    Full Text Available With the advent of the “-omics” era, biological research has shifted from functionally analyzing single proteins to understanding how entire protein networks connect and adapt to environmental cues. Frequently, pathological processes are initiated by a malfunctioning protein network rather than a single protein. It is therefore crucial to investigate the regulation of proteins in the context of a pathway first and signaling network second. In this study, we demonstrate that a quantitative interaction proteomic approach, combining immunoprecipitation, in-solution digestion and label-free quantification mass spectrometry, provides data of high accuracy and depth. This protocol is applicable, both to tagged, exogenous and untagged, endogenous proteins. Furthermore, it is fast, reliable and, due to a label-free quantitation approach, allows the comparison of multiple conditions. We further show that we are able to generate data in a medium throughput fashion and that we can quantify dynamic interaction changes in signaling pathways in response to mitogenic stimuli, making our approach a suitable method to generate data for system biology approaches.

  18. SDF-1alpha concentration dependent modulation of RhoA and Rac1 modifies breast cancer and stromal cells interaction

    International Nuclear Information System (INIS)

    Pasquier, Jennifer; Abu-Kaoud, Nadine; Abdesselem, Houari; Madani, Aisha; Hoarau-Véchot, Jessica; Thawadi, Hamda Al.; Vidal, Fabien; Couderc, Bettina; Favre, Gilles; Rafii, Arash

    2015-01-01

    The interaction of SDF-1alpha with its receptor CXCR4 plays a role in the occurrence of distant metastasis in many solid tumors. This interaction increases migration from primary sites as well as homing at distant sites. Here we investigated how SDF-1α could modulate both migration and adhesion of cancer cells through the modulation of RhoGTPases. We show that different concentrations of SDF-1α modulate the balance of adhesion and migration in cancer cells. Increased migration was obtained at 50 and 100 ng/ml of SDF-1α; however migration was reduced at 200 ng/ml. The adhesion between breast cancer cells and BMHC was significantly increased by SDF-1α treatment at 200 ng/ml and reduced using a blocking monoclonal antibody against CXCR4. We showed that at low SDF-1α concentration, RhoA was activated and overexpressed, while at high concentration Rac1 was promoting SDF-1α mediating-cell adhesion. We conclude that SDF-1α concentration modulates migration and adhesion of breast cancer cells, by controlling expression and activation of RhoGTPases. The online version of this article (doi:10.1186/s12885-015-1556-7) contains supplementary material, which is available to authorized users

  19. Strain amplitude-dependent anelasticity in Cu-Ni solid solution due to thermally activated and athermal dislocation-point obstacle interactions

    Science.gov (United States)

    Kustov, S.; Gremaud, G.; Benoit, W.; Golyandin, S.; Sapozhnikov, K.; Nishino, Y.; Asano, S.

    1999-02-01

    Experimental investigations of the internal friction and the Young's modulus defect in single crystals of Cu-(1.3-7.6) at. % Ni have been performed for 7-300 K over a wide range of oscillatory strain amplitudes. Extensive data have been obtained at a frequency of vibrations around 100 kHz and compared with the results obtained for the same crystals at a frequency of ˜1 kHz. The strain amplitude dependence of the anelastic strain amplitude and the average friction stress acting on a dislocation due to solute atoms are also analyzed. Several stages in the strain amplitude dependence of the internal friction and the Young's modulus defect are revealed for all of the alloy compositions, at different temperatures and in different frequency ranges. For the 100 kHz frequency, low temperatures and low strain amplitudes (˜10-7-10-5), the amplitude-dependent internal friction and the Young's modulus defect are essentially temperature independent, and are ascribed to a purely hysteretic internal friction component. At higher strain amplitudes, a transition stage and a steep strain amplitude dependence of the internal friction and the Young's modulus defect are observed, followed by saturation at the highest strain amplitudes employed. These stages are temperature and frequency dependent and are assumed to be due to thermally activated motion of dislocations. We suggest that the observed regularities in the entire strain amplitude, temperature and frequency ranges correspond to a motion of dislocations in a two-component system of obstacles: weak but long-range ones, due to the elastic interaction of dislocations with solute atoms distributed in the bulk of the crystal; and strong short-range ones, due to the interaction of dislocations with solute atoms distributed close to dislocation glide planes. Based on these assumptions, a qualitative explanation is given for the variety of experimental observations.

  20. IGF-1-dependent subunit communication of the IGF-1 holoreceptor: Interactions between αβ heterodimeric receptor halves

    International Nuclear Information System (INIS)

    Wilden, P.A.; Treadway, J.L.; Morrison, B.D.; Pessin, J.E.

    1989-01-01

    Examination of 125 I-IGF-1 affinity cross-linking and β-subunit autophosphorylation has indicated that IGF-1 induces a covalent association of isolated αβ heterodimeric IGF-1 receptors into an α 2 β 2 heterotetrameric state, in a similar manner to that observed for the insulin receptor. The formation of the α 2 β 2 heterotetrameric IGF-1 receptor complex from the partially purified αβ heterodimers was time dependent with half-maximal formation in approximately 30 min at saturating IGF-1 concentrations. The IGF-1-dependent association of the partially purified αβ heterodimers into an α 2 β 2 heterotetrameric state was specific for the IGF-1 receptors since IGF-1 was unable to stimulate the protein kinase activity of the purified αβ heterodimeric insulin receptor complex. Incubation of the α 2 β 2 heterotetrameric IGF-1 holoreceptor with the specific sulfhydryl agent iodoacetamide (IAN) did not alter 125 I-IGF-1 binding or IGF-1 stimulation of protein kinase activity. However, IAN treatment of the αβ heterodimeric IGF-1 receptors inhibited the IGF-1 dependent covalent formation of the disulfide-linked α 2 β 2 heterotetrameric complex. These data indicate that IGF-1 induces the covalent association of isolated αβ heterodimeric IGF-1 receptor complexes into a disulfide-linked α 2 β 2 heterotetrameric state whereas Mn/MgATP induces a noncovalent association. Therefore, unlike the insulin receptor in which noncovalent association is sufficient for kinase activation, only the covalent assembly of the IGF-1 receptor αβ heterodimers into the α 2 β 2 heterotetrameric holoreceptor complex is associated with ligand-stimulated protein kinase activation

  1. PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with Mediator subunit MED1.

    Science.gov (United States)

    Iida, Satoshi; Chen, Wei; Nakadai, Tomoyoshi; Ohkuma, Yoshiaki; Roeder, Robert G

    2015-02-01

    PR domain-containing 16 (PRDM16) induces expression of brown fat-specific genes in brown and beige adipocytes, although the underlying transcription-related mechanisms remain largely unknown. Here, in vitro studies show that PRDM16, through its zinc finger domains, directly interacts with the MED1 subunit of the Mediator complex, is recruited to the enhancer of the brown fat-specific uncoupling protein 1 (Ucp1) gene through this interaction, and enhances thyroid hormone receptor (TR)-driven transcription in a biochemically defined system in a Mediator-dependent manner, thus providing a direct link to the general transcription machinery. Complementary cell-based studies show that upon forskolin treatment, PRDM16 induces Ucp1 expression in undifferentiated murine embryonic fibroblasts, that this induction depends on MED1 and TR, and, consistent with a direct effect, that PRDM16 is recruited to the Ucp1 enhancer. Related studies have defined MED1 and PRDM16 interaction domains important for Ucp1 versus Ppargc1a induction by PRDM16. These results reveal novel mechanisms for PRDM16 function through the Mediator complex. © 2015 Iida et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Influence of the density dependence factor in effective nucleon-nucleon forces and interaction of 4He-particles with stable nuclei

    International Nuclear Information System (INIS)

    Kuterbekov, K.A.; Zholdybayev, T.K.; Muchamedzhan, A.; Penionzhkevich, Yu.E.; Kukhtina, I.N.

    2004-01-01

    Full text: The most popular method for join analysis of experimental angular distributions (AD) and total cross sections (TCS) at low and moderate energies is semimicroscopic folding model (SFM) [1]. Since 4 He-particle is a core of exotic nuclei 6,8 He, it is topical to continue systematic investigations at various effective nucleon-nucleon forces. In [2] we investigated for the first time energy and mass dependencies of the parameters SFM at low and moderate energies. At that, as effective forces between nucleons of the colliding nuclei were used total M3Y-interaction [3] and nucleon densities calculated by the method of density functional [4]. In the present work based on SFM there were investigated influences of the density dependence factor in effective nucleon-nucleon forces (4 force options considered) on calculation of ADs and TCSs at interaction of 4 He-particles with stable nuclei (A = 12 - 208) at α-particle energies 21 - 141.5 MeV. Corresponding experimental AD and TCS data used for model verification are of high quality with low error both for angular and energy diapason. Therefore, conclusions made in the performed investigation contain important quantitative information and are valuable for consequent comparative analysis of experimental data on interaction of light exotic nuclei with stable nuclei

  3. Role of the chemical bonding for the time-dependent electron transport through an interacting quantum dot

    KAUST Repository

    Goker, Ali

    2011-06-01

    A combination of ab initio and many-body calculations is utilized to determine the effects of the bonding in Au electrodes on the time dependent current through a quantum dot suddenly shifted into the Kondo regime by a gate voltage. For an asymmetrically coupled system the instantaneous conductance exhibits fluctuations. The frequencies of the fluctuations turn out to be proportional to the energetic separation between the dominating peaks in the density of states and the Fermi level. The chemical bonding in the electrodes, thus, drastically alters the transient current, which can be accessed by ultrafast pump-probe techniques. © 2011 Elsevier B.V. All rights reserved.

  4. Role of the chemical bonding for the time-dependent electron transport through an interacting quantum dot

    KAUST Repository

    Goker, Ali; Zhu, Zhiyong; Manchon, Aurelien; Schwingenschlö gl, Udo

    2011-01-01

    A combination of ab initio and many-body calculations is utilized to determine the effects of the bonding in Au electrodes on the time dependent current through a quantum dot suddenly shifted into the Kondo regime by a gate voltage. For an asymmetrically coupled system the instantaneous conductance exhibits fluctuations. The frequencies of the fluctuations turn out to be proportional to the energetic separation between the dominating peaks in the density of states and the Fermi level. The chemical bonding in the electrodes, thus, drastically alters the transient current, which can be accessed by ultrafast pump-probe techniques. © 2011 Elsevier B.V. All rights reserved.

  5. Optimal packaging of FIV genomic RNA depends upon a conserved long-range interaction and a palindromic sequence within gag.

    Science.gov (United States)

    Rizvi, Tahir A; Kenyon, Julia C; Ali, Jahabar; Aktar, Suriya J; Phillip, Pretty S; Ghazawi, Akela; Mustafa, Farah; Lever, Andrew M L

    2010-10-15

    The feline immunodeficiency virus (FIV) is a lentivirus that is related to human immunodeficiency virus (HIV), causing a similar pathology in cats. It is a potential small animal model for AIDS and the FIV-based vectors are also being pursued for human gene therapy. Previous studies have mapped the FIV packaging signal (ψ) to two or more discontinuous regions within the 5' 511 nt of the genomic RNA and structural analyses have determined its secondary structure. The 5' and 3' sequences within ψ region interact through extensive long-range interactions (LRIs), including a conserved heptanucleotide interaction between R/U5 and gag. Other secondary structural elements identified include a conserved 150 nt stem-loop (SL2) and a small palindromic stem-loop within gag open reading frame that might act as a viral dimerization initiation site. We have performed extensive mutational analysis of these sequences and structures and ascertained their importance in FIV packaging using a trans-complementation assay. Disrupting the conserved heptanucleotide LRI to prevent base pairing between R/U5 and gag reduced packaging by 2.8-5.5 fold. Restoration of pairing using an alternative, non-wild type (wt) LRI sequence restored RNA packaging and propagation to wt levels, suggesting that it is the structure of the LRI, rather than its sequence, that is important for FIV packaging. Disrupting the palindrome within gag reduced packaging by 1.5-3-fold, but substitution with a different palindromic sequence did not restore packaging completely, suggesting that the sequence of this region as well as its palindromic nature is important. Mutation of individual regions of SL2 did not have a pronounced effect on FIV packaging, suggesting that either it is the structure of SL2 as a whole that is necessary for optimal packaging, or that there is redundancy within this structure. The mutational analysis presented here has further validated the previously predicted RNA secondary structure of FIV

  6. Analysis of electrical-field-dependent Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer

    Science.gov (United States)

    Liu, Jie; Shi, Mengchao; Lu, Jiwu; Anantram, M. P.

    2018-02-01

    We analyze the impacts of the electric field on the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, and intrinsic ferromagnetism of the recently discovered two-dimensional ferromagnetic chromium tri-iodide (Cr I3 ) monolayer, by combining density functional theory and Monte Carlo simulations. By taking advantage of the counterbalancing effects of anisotropic symmetric exchange energy and antisymmetric exchange energy, it is shown that the intrinsic ferromagnetism can be manipulated by externally applied off-plane electric fields. The results quantitatively reveal the impacts of off-plane electric field on the lattice structure, magnetic anisotropy energy, symmetric and antisymmetric exchange energies, Curie temperature, magnetic hysteresis, and coercive field. The physical mechanism of all-electrical control of magnetism proposed here is useful for creating next-generation magnetic device technologies based on the recently discovered two-dimensional ferromagnetic crystals.

  7. Histone H1 chaperone activity of TAF-I is regulated by its subtype-dependent intramolecular interaction.

    Science.gov (United States)

    Kajitani, Kaori; Kato, Kohsuke; Nagata, Kyosuke

    2017-04-01

    Linker histone H1 is involved in the regulation of gene activity through the maintenance of higher-order chromatin structure. Previously, we have shown that template activating factor-I (TAF-I or protein SET) is involved in linker histone H1 dynamics as a histone H1 chaperone. In human and murine cells, two TAF-I subtypes exist, namely TAF-Iα and TAF-Iβ. TAF-I has a highly acidic amino acid cluster in its C-terminal region and forms homo- or heterodimers through its dimerization domain. Both dimer formation and the C-terminal region of TAF-I are essential for the histone chaperone activity. TAF-Iα exhibits less histone chaperone activity compared with TAF-Iβ even though TAF-Iα and β differ only in their N-terminal regions. However, it is unclear how subtype-specific TAF-I activities are regulated. Here, we have shown that the N-terminal region of TAF-Iα autoinhibits its histone chaperone activity via intramolecular interaction with its C-terminal region. When the interaction between the N- and C-terminal regions of TAF-Iα is disrupted, TAF-Iα shows a histone chaperone activity similar to that of TAF-Iβ. Taken together, these results provide mechanistic insights into the concept that fine tuning of TAF-I histone H1 chaperone activity relies on the subtype compositions of the TAF-I dimer. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  8. Consumptive and nonconsumptive effect ratios depend on interaction between plant quality and hunting behavior of omnivorous predators.

    Science.gov (United States)

    Stephan, Jörg G; Stenberg, Johan A; Björkman, Christer

    2017-04-01

    Predators not only consume prey but exert nonconsumptive effects in form of scaring, consequently disturbing feeding or reproduction. However, how alternative food sources and hunting mode interactively affect consumptive and nonconsumptive effects with implications for prey fitness have not been addressed, impending functional understanding of such tritrophic interactions. With a herbivorous beetle, two omnivorous predatory bugs (plant sap as alternative food, contrasting hunting modes), and four willow genotypes (contrasting suitability for beetle/omnivore), we investigated direct and indirect effects of plant quality on the beetles key reproductive traits (oviposition rate, clutch size). Using combinations of either or both omnivores on different plant genotypes, we calculated the contribution of consumptive (eggs predated) and nonconsumptive (fewer eggs laid) effect on beetle fitness, including a prey density-independent measure (c:nc ratio). We found that larger clutches increase egg survival in presence of the omnivore not immediately consuming all eggs. However, rather than lowering mean, the beetles generally responded with a frequency shift toward smaller clutches. However, female beetles decreased mean and changed clutch size frequency with decreasing plant quality, therefore reducing intraspecific exploitative competition among larvae. More importantly, variation in host plant quality (to omnivore) led to nonconsumptive effects between one-third and twice as strong as the consumptive effects. Increased egg consumption on plants less suitable to the omnivore may therefore be accompanied by less searching and disturbing the beetle, representing a "cost" to the indirect plant defense in the form of a lower nonconsumptive effect. Many predators are omnivores and altering c:nc ratios (with egg retention as the most direct link to prey fitness) via plant quality and hunting behavior should be fundamental to advance ecological theory and applications

  9. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin.

    Science.gov (United States)

    Vishvakarma, Vijay K; Kumari, Kamlesh; Patel, Rajan; Dixit, V S; Singh, Prashant; Mehrotra, Gopal K; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-15

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A strategy for early-risk predictions of clinical drug-drug interactions involving the GastroPlusTM DDI module for time-dependent CYP inhibitors.

    Science.gov (United States)

    Sohlenius-Sternbeck, Anna-Karin; Meyerson, Gabrielle; Hagbjörk, Ann-Louise; Juric, Sanja; Terelius, Ylva

    2018-04-01

    1. A set of reference compounds for time-dependent inhibition (TDI) of cytochrome P450 with available literature data for k inact and K I was used to predict clinical implications using the GastroPlus TM software. Comparisons were made to in vivo literature interaction data. 2. The predicted AUC ratios (AUC +inhibitor /AUC control ) could be compared with the observed ratios from literature for all compounds with detailed information about in vivo administration, pharmacokinetics and in vivo interactions (N = 21). For this dataset, the difference between predicted and observed AUC ratios for interactions with midazolam was within twofold for all compounds except one (telaprevir, for which non-CYP-mediated metabolism likely plays a role after multiple dosing). 3. The sensitivity, specificity and accuracy of the GastroPlus TM predictions using a binary classification as no-to-weak interaction versus moderate-to-strong interaction for all compounds with available in vivo interaction data, were 80%, 82% and 81%, respectively (N = 31). 4. As a result of our evaluations of the DDI module in GastroPlus TM , we have implemented an early TDI risk assessment decision tree for our drug discovery projects involving in vitro screening and early GastroPlus TM predictions. Shifted IC 50 values are determined and k inact /K I estimated (by using a regression line established with in house-shifted IC 50 values and literature k inact /K I ratios), followed by GastroPlus TM predictions.

  11. The Interaction of a N-Type Four Level Atom with the Electromagnetic Field for a Kerr Medium Induced Intensity-Dependent Coupling

    Science.gov (United States)

    Othman, Anas; Yevick, David

    2018-01-01

    The interaction of a N-type four-level atom with a single field in the presence of an intensity-dependent coupling in a nonlinear Kerr medium is investigated. The exact analytic solution is obtained in the case that the atom and electromagnetic field are initially in a higher excited state and a coherent state, respectively. It is then demonstrated that effects such as nonclassical light generation, degree of entanglement stabilization, Kerr medium nonclassical control, and squeezed light are can be more efficiently implemented within this four-level framework than in many competing procedures. Additionally, inversion, linear entropy, Mandel Q-parameter and normal squeezing dynamics are examined.

  12. Spin dependence of intra-ground-state-band E2 transitions in the SU(3) limit of the sdg interacting boson model

    Science.gov (United States)

    Long, G. L.; Ji, H. Y.

    1998-04-01

    B(E2, L+2-->L) transitions in the sdg interacting boson model SU(3) limit are studied with a general E2 transition operator. Analytical expressions are obtained using a group theoretic method. It is found that when using transition operators of the form (d†g~+g†d~)2 or (g†g~)2, the B(E2, L+2-->L) values in the ground-state band have an L(L+3) dependent term. As L increases, the B(E2) values can be larger than the rigid rotor model value. Application to 236,238U is discussed.

  13. Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment

    Science.gov (United States)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bradley, A.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; de Viveiros, L.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Ott, R. A.; Palladino, K. J.; Pangilinan, M.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2016-04-01

    We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4 ×104 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=9.4 ×10-41 cm2 (σp=2.9 ×10-39 cm2 ) at 33 GeV /c2 . The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

  14. pH dependent interaction of biofunctionalized CdS nanoparticles with nucleobases and nucleotides: A fluorimetric study

    International Nuclear Information System (INIS)

    Chatterjee, Anindita; Priyam, Amiya; Bhattacharya, Subhash C.; Saha, Abhijit

    2007-01-01

    The interaction of DNA bases and corresponding nucleotides with CdS nanoparticles (NPs), biofunctionalized by cysteine, has been investigated by absorption and fluorescence spectroscopy. Unique enhancement effect of adenine, in contrast to other nucleobases, on the luminescence of cysteine capped CdS (cys-CdS) NPs at both pH 7.5 and 10.5 was found, the extent of enhancement being much higher at pH 10.5. At the latter pH, the difference optical absorption spectra show development of new peak at 278 nm with corresponding decrease in the absorption of adenine at 260 nm, which is attributed to binding of adenine anion to the CdS surface through N7 of the purine ring. Appearance of a new band at 478 cm -1 and concomitant shift in the C 8 -N 7 vibrations to 1610 cm -1 in the FTIR spectra of cys-CdS NPs with adenine also suggest Cd-N7 binding on the particle surface. Amongst various nucleotides, ATP exhibited maximum luminescence enhancement on CdS NPs for a given change in concentration in the micro-molar range at physiological pH. A quantitative correlation between ATP concentration and PL enhancement of CdS NPs has been established, a step which in future might assist in developing new protocols for fluorescence sensing of adenine nucleotides under certain pathological conditions

  15. Antiproton-nucleus inelastic scattering and the spin-isospin dependence of the N anti N interaction

    International Nuclear Information System (INIS)

    Dover, C.B.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ΔT=0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments at LEAR, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 34 refs

  16. Constraining Path-Dependent Processes During Basalt-CO2 Interactions with Observations From Flow-Through and Batch Experiments

    Science.gov (United States)

    Thomas, D.; Garing, C.; Zahasky, C.; Harrison, A. L.; Bird, D. K.; Benson, S. M.; Oelkers, E. H.; Maher, K.

    2017-12-01

    Predicting the timing and magnitude of CO2 storage in basaltic rocks relies partly on quantifying the dependence of reactivity on flow path and mineral distribution. Flow-through experiments that use intact cores are advantageous because the spatial heterogeneity of pore space and reactive phases is preserved. Combining aqueous geochemical analyses and petrologic characterization with non-destructive imaging techniques (e.g. micro-computed tomography) constrains the relationship between irreversible reactions, pore connectivity and accessible surface area. Our work enhances these capabilities by dynamically imaging flow through vesicular basalts with Positron Emission Tomography (PET) scanning. PET highlights the path a fluid takes by detecting photons produced during radioactive decay of an injected radiotracer (FDG). We have performed single-phase, CO2-saturated flow-through experiments with basaltic core from Iceland at CO2 sequestration conditions (50 °C; 76-90 bar Ptot). Constant flow rate and continuous pressure measurements at the inlet and outlet of the core constrain permeability. We monitor geochemical evolution through cation and anion analysis of outlet fluid sampled periodically. Before and after reaction, we perform PET scans and characterize the core using micro-CT. The PET scans indicate a discrete, localized flow path that appears to be a micro-crack connecting vesicles, suggesting that vesicle-lining minerals are immediately accessible and important reactants. Rapid increases in aqueous cation concentration, pH and HCO3- indicate that the rock reacts nearly immediately after CO2 injection. After 24 hours the solute release decreases, which may reflect a transition to reaction with phases with slower kinetic dissolution rates (e.g. zeolites and glasses to feldspar), a decrease in available reactive surface area or precipitation. We have performed batch experiments using crushed material of the same rock to elucidate the effect of flow path

  17. Redox-dependent interaction between thaumatin-like protein and β-glucan influences malting quality of barley.

    Science.gov (United States)

    Singh, Surinder; Tripathi, Rajiv K; Lemaux, Peggy G; Buchanan, Bob B; Singh, Jaswinder

    2017-07-18

    Barley is the cornerstone of the malting and brewing industry. It is known that 250 quantitative trait loci (QTLs) of the grain are associated with 19 malting-quality phenotypes. However, only a few of the contributing genetic components have been identified. One of these, on chromosome 4H, contains a major malting QTL, QTL2, located near the telomeric region that accounts, respectively, for 28.9% and 37.6% of the variation in the β-glucan and extract fractions of malt. In the current study, we dissected the QTL2 region using an expression- and microsynteny-based approach. From a set of 22 expressed sequence tags expressed in seeds at the malting stage, we identified a candidate gene, TLP8 ( thaumatin-like protein 8 ), which was differentially expressed and influenced malting quality. Transcript abundance and protein profiles of TLP8 were studied in different malt and feed varieties using quantitative PCR, immunoblotting, and enzyme-linked immunosorbent assay (ELISA). The experiments demonstrated that TLP8 binds to insoluble (1, 3, 1, 4)-β-D glucan in grain extracts, thereby facilitating the removal of this undesirable polysaccharide during malting. Further, the binding of TLP8 to β-glucan was dependent on redox. These findings represent a stride forward in our understanding of the malting process and provide a foundation for future improvements in the final beer-making process.

  18. State-dependent interaction in the antihistamine-induced disruption of a radiation-induced conditioned taste aversion

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1982-01-01

    Two experiments were run to evaluate the possibility that injection of antihistamine can produce a state-dependent acquisition of a radiation-induced conditioned taste aversion. In the first experiment, pretreating rats with the antihistamine chlorpheniramine maleate prior to their initial exposure to sucrose and to low-level irradiation on the conditioning day did not prevent the acquisition of a taste aversion to sucrose when the antihistamine was also administered prior to a subsequent preference test. In the second experiment, rats were both conditioned and tested for a radiation-induced aversion in a drug-free state. Under these condtions, the rats continued to show an aversion to sucrose despite pretreating them with chlorpheniramine prior to irradiation. Since rats conditioned under the antihistamine do not show the radiation-induced conditioned taste aversion when tested for sucrose preference in a nondrug state, it would seem that pretreating rats with an antihistamine prior to conditioning affects only the retrieval of the previously learned response and not its acquisition

  19. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens.

    Science.gov (United States)

    Rybakova, Daria; Mancinelli, Riccardo; Wikström, Mariann; Birch-Jensen, Ann-Sofie; Postma, Joeke; Ehlers, Ralf-Udo; Goertz, Simon; Berg, Gabriele

    2017-09-01

    Although the plant microbiome is crucial for plant health, little is known about the significance of the seed microbiome. Here, we studied indigenous bacterial communities associated with the seeds in different cultivars of oilseed rape and their interactions with symbiotic and pathogenic microorganisms. We found a high bacterial diversity expressed by tight bacterial co-occurrence networks within the rape seed microbiome, as identified by llumina MiSeq amplicon sequencing. In total, 8362 operational taxonomic units (OTUs) of 40 bacterial phyla with a predominance of Proteobacteria (56%) were found. The three cultivars that were analyzed shared only one third of the OTUs. The shared core of OTUs consisted mainly of Alphaproteobacteria (33%). Each cultivar was characterized by having its own unique bacterial structure, diversity, and proportion of unique microorganisms (25%). The cultivar with the lowest bacterial abundance, diversity, and the highest predicted bacterial metabolic activity rate contained the highest abundance of potential pathogens within the seed. This data corresponded with the observation that seedlings belonging to this cultivar responded more strongly to the seed treatments with bacterial inoculants than other cultivars. Cultivars containing higher indigenous diversity were characterized as having a higher colonization resistance against beneficial and pathogenic microorganisms. Our results were confirmed by microscopic images of the seed microbiota. The structure of the seed microbiome is an important factor in the development of colonization resistance against pathogens. It also has a strong influence on the response of seedlings to biological seed treatments. These novel insights into seed microbiome structure will enable the development of next generation strategies combining both biocontrol and breeding approaches to address world agricultural challenges.

  20. Slotted rotatable target assembly and systematic error analysis for a search for long range spin dependent interactions from exotic vector boson exchange using neutron spin rotation

    Science.gov (United States)

    Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.

    2018-03-01

    We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.

  1. Large-Scale Uncertainty and Error Analysis for Time-dependent Fluid/Structure Interactions in Wind Turbine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Juan J. [Stanford University; Iaccarino, Gianluca [Stanford University

    2013-08-25

    solution to the long-time integration problem of spectral chaos approaches; 4. A rigorous methodology to account for aleatory and epistemic uncertainties, to emphasize the most important variables via dimension reduction and dimension-adaptive refinement, and to support fusion with experimental data using Bayesian inference; 5. The application of novel methodologies to time-dependent reliability studies in wind turbine applications including a number of efforts relating to the uncertainty quantification in vertical-axis wind turbine applications. In this report, we summarize all accomplishments in the project (during the time period specified) focusing on advances in UQ algorithms and deployment efforts to the wind turbine application area. Detailed publications in each of these areas have also been completed and are available from the respective conference proceedings and journals as detailed in a later section.

  2. Calcium modulates calmodulin/α-actinin 1 interaction with and agonist-dependent internalization of the adenosine A2A receptor.

    Science.gov (United States)

    Piirainen, Henni; Taura, Jaume; Kursula, Petri; Ciruela, Francisco; Jaakola, Veli-Pekka

    2017-04-01

    Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A 2A receptor (A 2A R), has an exceptionally long intracellular C terminus (A 2A R-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A 2A R and the role of Ca 2+ in this process. First, we studied the A 2A R-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A 2A R-ct through its distal calmodulin-like domain in a Ca 2+ -independent manner with a dissociation constant of 5-12μM, thus showing an ~100 times lower affinity compared to the A 2A R-calmodulin/Ca 2+ complex. Importantly, calmodulin displaced α-actinin 1 from the A 2A R-ct in a Ca 2+ -dependent fashion, disrupting the A 2A R-α-actinin 1 complex. Finally, we assessed the impact of Ca 2+ on A 2A R internalization in living cells, a function operated by the A 2A R-α-actinin 1 complex. Interestingly, while Ca 2+ influx did not affect constitutive A 2A R endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A 2A R/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A 2A R with calmodulin and α-actinin 1 is fine-tuned by Ca 2+ , a fact that might power agonist-mediated receptor internalization and function. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The binary response of the GAL/MEL genetic switch of Saccharomyces cerevisiae is critically dependent on Gal80p-Gal4p interaction.

    Science.gov (United States)

    Das Adhikari, Akshay Kumar; Bhat, Paike Jayadeva

    2016-09-01

    Studies on the Saccharomyces cerevisiae GAL/MEL genetic switch have revealed that its bistability is dependent on ultrasensitivity that can be altered or abolished by disabling different combinations of nested feedback loops. In contrast, we have previously demonstrated that weakening of the interaction between Gal80p and Gal4p alone is sufficient to abolish the ultrasensitivity (Das Adhikari et al. 2014). Here, we demonstrate that altering the epistatic interaction between Gal80p and Gal4p also abolishes the bistability, and the switch response to galactose becomes graded instead of binary. However, the GAL/MEL switch of wild-type and epistatically altered strains responded in a graded fashion to melibiose. The properties of the epistatically altered strain resemble Kluyveromyces lactis, which separated from the Saccharomyces lineage 100 mya before whole-genome duplication (WGD). Based on the results reported here, we propose that epistatic interactions played a crucial role in the evolution of the fine regulation of S. cerevisiae GAL/MEL switch following WGD. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – a synthesis

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-07-01

    Full Text Available During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and water temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 90% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analysed from the relationship between the Normalized Difference Vegetation Index (NDVI and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana and poplar (Populus simonii, bushes (salix – Salix psammophila, and agricultural crops (maize – Zea mays, depend largely on groundwater as the source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying the water demand for socio-economical development and to prevent desertification and ecological impacts on streams, more water-use-efficient crops such as sorghum, barley or millet should be promoted to reduce the consumptive water use. Willow trees should be used as wind-breaks in croplands and along roads, and drought-resistant and less water-use intensive plants (for instance native bushes should be used to vegetate sand dunes.

  5. Auditory observation of infant-directed speech by mothers: Experience-dependent interaction between language and emotion in the basal ganglia

    Directory of Open Access Journals (Sweden)

    Yoshi-Taka eMatsuda

    2014-11-01

    Full Text Available Adults address infants with a special speech register known as infant-directed speech (IDS, which conveys both linguistic and emotional information through its characteristic lexicon and exaggerated prosody (e.g., higher pitched, slower, and hyperarticulated. Although caregivers are known to regulate the usage of IDS (linguistic and emotional components depending on their child’s development, the underlying neural substrates of this flexible modification are largely unknown. Here, using an auditory observation method and functional magnetic resonance imaging (fMRI of four different groups of females, we revealed the experience-dependent influence of the emotional component on linguistic processing in the right caudate nucleus when mothers process IDS: (1 non-mothers, who do not use IDS regularly, showed no significant difference between IDS and adult-directed speech (ADS; (2 mothers with preverbal infants, who primarily use the emotional component of IDS, showed the main effect of the emotional component of IDS; (3 mothers with toddlers at the two-word stage, who use both linguistic and emotional components of IDS, showed an interaction between the linguistic and emotional components of IDS; and (4 mothers with school-age children, who use ADS rather than IDS toward their children, showed a tendency toward the main effect of ADS. The task that was most comparable to the naturalistic categories of IDS (i.e., explicit-language and implicit-emotion processing recruited the right caudate nucleus, but it was not recruited in the control, less naturalistic condition (explicit-emotion and implicit-language processing. Our results indicate that the right caudate nucleus processes experience- and task-dependent interactions between language and emotion in mothers’ IDS.

  6. IL-21 May Promote Granzyme B-Dependent NK/Plasmacytoid Dendritic Cell Functional Interaction in Cutaneous Lupus Erythematosus.

    Science.gov (United States)

    Salvi, Valentina; Vermi, William; Cavani, Andrea; Lonardi, Silvia; Carbone, Teresa; Facchetti, Fabio; Bosisio, Daniela; Sozzani, Silvano

    2017-07-01

    Autoimmune skin lesions are characterized by a complex cytokine milieu and by the accumulation of plasmacytoid dendritic cells (pDCs). Granzyme B (GrB) transcript is abundant in activated pDCs, though its mechanisms of regulation and biological role are largely unknown. Here we report that IL-21 was the only T helper 1/T helper 17 cytokine able to induce the expression and secretion of GrB by pDCs and that this action was counteracted by the autocrine production of type I IFNs. In lupus erythematosus skin lesions, the percentage of GrB + pDCs directly correlated with the IL-21/MxA ratio, indicating that the interplay between these two cytokines finely tunes the levels of pDC-dependent GrB also in vivo. In lupus erythematosus, pDCs colocalized with professional cytotoxic cells at sites of epithelial damage, suggesting a role in keratinocyte killing. Accordingly, we demonstrate that supernatants of IL-21-activated pDCs promoted autologous keratinocyte killing by natural killer cells and this action was dependent on GrB. These results propose a GrB-dependent functional interaction between pDCs and natural killer cells and highlight a negative feedback regulation by type I IFNs in vitro and in vivo that may function to limit excessive tissue damage. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Interaction between x-irradiated plateau-phase bone marrow stromal cell lines and co-cultivated factor-dependent cell lines leading to leukemogenesis in vitro

    International Nuclear Information System (INIS)

    Naparstek, E.; Anklesaria, P.; FitzGerald, T.J.; Sakakeeny, M.A.; Greenberger, J.S.

    1987-01-01

    Plateau-phase mouse clonal bone marrow stromal cell lines D2XRII and C3H cl 11 produce decreasing levels of M-CSF (CSF-1), a specific macrophage progenitor cell humoral regulator, following X-irradiation in vitro. The decrease did not go below 40% of control levels, even after irradiation doses of 50,000 rad (500 Gy). In contrast, a distinct humoral regulator stimulating growth of GM-CSF/IL-3 factor-dependent (FD) hematopoietic progenitor cell lines was detected following radiation to doses above 2000 rad. This humoral factor was not detectable in conditioned medium from irradiated cells, weakly detected using factor-dependent target cell populations in agar overlay, and was prominently detected by liquid co-cultivation of factor-dependent cells with irradiated stromal cell cultures. Subclonal lines of FD cells, derived after co-cultivation revealed karyotypic abnormalities and induced myeloblastic tumors in syngeneic mice. Five-eight weeks co-cultivation was required for induction of factor independence and malignancy and was associated with dense cell to cell contact between FD cells and stromal cells demonstrated by light and electron microscopy. Increases in hematopoietic to stromal cell surface area, total number of adherent cells per flask, total non-adherent cell colonies per flask, and cumulative non-adherent cell production were observed after irradiation. The present data may prove very relevant to an understanding of the cell to cell interactions during X-irradiation-induced leukemia

  8. A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II.

    Directory of Open Access Journals (Sweden)

    Shirley Pepke

    2010-02-01

    Full Text Available During the acquisition of memories, influx of Ca2+ into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca2+influx during the first few seconds of activity is interpreted within the Ca2+-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity,including Ca2+/calmodulin-dependent protein kinase II (CaMKII, are regulated by calmodulin, a small protein that can bindup to 4 Ca2+ ions. As a first step toward clarifying how the Ca2+-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca2+, calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca2+ play a significant role in activation of CaMKII in the physiological regime,supporting the notion that processing of Ca2+ signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca2+ is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca2+ transients arises from the kinetics of interaction of fluctuating Ca2+with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic

  9. Temperature dependency of the interaction between xanthan gum and sage seed gum: An interpretation of dynamic rheology and thixotropy based on creep test.

    Science.gov (United States)

    Razavi, Seyed M A; Behrouzian, Fataneh; Alghooneh, Ali

    2017-10-01

    The viscoelastic (transient and dynamic) and time-dependent rheological behaviors of XG (xanthan gum), SSG (sage seed gum) and their blends at various ratios (1-3, 1-1, and 3-1 SSG-XG) and temperatures (10, 30, and 50C) were investigated using creep and recovery analyses. The creep compliance was converted to stress relaxation data; then, the structural kinetic model satisfactorily fitted the time-dependent relaxation modulus. Furthermore, dynamic rheology of mixtures was investigated using creep analyses. The most important contribution of the Maxwell spring to deformation (53.51%), was that corresponding to the SSG at 50C and the most important contribution of the Maxwell dashpot to the maximum deformation, were those corresponding to the XG (61.44%) and 1-3 SSG-XG (58.91%) samples both at 50C. The breakdown rate constant ( α) of the crosslinked gum structure in SSG and 3-1 SSG-XG under the application of external shear stress increases with temperature from 10 to 50C in the range of 0.14-0.32 (1/s) and 0.14-0.24 (1/s), respectively, whereas other dispersions showed the reverse trend. Among all dispersions, only XG and 1-3 SSG-XG demonstrated crossover frequency at 9.95 and 31.47 rad/s, respectively, at 50C, indicative of the lowest entanglement density for 1-3 SSG-XG. The greatest interaction between SSG and XG occurred for 3-1 ratio at 50C, which was confirmed by the Han curves. Hydrocolloid blends, particularly those consisting of xanthan gum and a galactomannan from new source can provide a range of attractive textural properties. Rheological studies contribute to the description of the molecular structure and prediction of the structural changes during their manufacturing processes. Sage seed gum (SSG), as a polyelectrolyte galactomannan, has a great potential to exert stabilizing, thickening, gelling and binding properties in food, cosmetics, and pharmaceutical systems. Therefore, we elaborate the interactions between SSG and xanthan gum and also the

  10. Association and interaction analyses of 5-HT3 receptor and serotonin transporter genes with alcohol, cocaine, and nicotine dependence using the SAGE data.

    Science.gov (United States)

    Yang, Jiekun; Li, Ming D

    2014-07-01

    Previous studies have implicated genes encoding the 5-HT3AB receptors (HTR3A and HTR3B) and the serotonin transporter (SLC6A4), both independently and interactively, in alcohol (AD), cocaine (CD), and nicotine dependence (ND). However, whether these genetic effects also exist in subjects with comorbidities remains largely unknown. We used 1,136 African-American (AA) and 2,428 European-American (EA) subjects from the Study of Addiction: Genetics and Environment (SAGE) to determine associations between 88 genotyped or imputed variants within HTR3A, HTR3B, and SLC6A4 and three types of addictions, which were measured by DSM-IV diagnoses of AD, CD, and ND and the Fagerström Test for Nicotine Dependence (FTND), an independent measure of ND commonly used in tobacco research. Individual SNP-based association analysis revealed a significant association of rs2066713 in SLC6A4 with FTND in AA (β = -1.39; P = 1.6E - 04). Haplotype-based association analysis found one major haplotype formed by SNPs rs3891484 and rs3758987 in HTR3B that was significantly associated with AD in the AA sample, and another major haplotype T-T-G, formed by SNPs rs7118530, rs12221649, and rs2085421 in HTR3A, which showed significant association with FTND in the EA sample. Considering the biologic roles of the three genes and their functional relations, we used the GPU-based Generalized Multifactor Dimensionality Reduction (GMDR-GPU) program to test SNP-by-SNP interactions within the three genes and discovered two- to five-variant models that have significant impacts on AD, CD, ND, or FTND. Interestingly, most of the SNPs included in the genetic interaction model(s) for each addictive phenotype are either overlapped or in high linkage disequilibrium for both AA and EA samples, suggesting these detected variants in HTR3A, HTR3B, and SLC6A4 are interactively contributing to etiology of the three addictive phenotypes examined in this study.

  11. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design.

    Science.gov (United States)

    Kato, Ryuji; Kaga, Chiaki; Kunimatsu, Mitoshi; Kobayashi, Takeshi; Honda, Hiroyuki

    2006-06-01

    Peptide array, the designable peptide library covalently synthesized on cellulose support, was applied to assay peptide-cell interaction, between solid-bound peptides and anchorage-dependant cells, to study objective peptide design. As a model case, cell-adhesive peptides that could enhance cell growth as tissue engineering scaffold material, was studied. On the peptide array, the relative cell-adhesion ratio of NIH/3T3 cells was 2.5-fold higher on the RGDS (Arg-Gly-Asp-Ser) peptide spot as compared to the spot with no peptide, thus indicating integrin-mediated peptide-cell interaction. Such strong cell adhesion mediated by the RGDS peptide was easily disrupted by single residue substitution on the peptide array, thus indicating that the sequence recognition accuracy of cells was strictly conserved in our optimized scheme. The observed cellular morphological extension with active actin stress-fiber on the RGD motif-containing peptide supported our strategy that peptide array-based interaction assay of solid-bound peptide and anchorage-dependant cells (PIASPAC) could provide quantitative data on biological peptide-cell interaction. The analysis of 180 peptides obtained from fibronectin type III domain (no. 1447-1629) yielded 18 novel cell-adhesive peptides without the RGD motif. Taken together with the novel candidates, representative rules of ineffective amino acid usage were obtained from non-effective candidate sequences for the effective designing of cell-adhesive peptides. On comparing the amino acid usage of the top 20 and last 20 peptides from the 180 peptides, the following four brief design rules were indicated: (i) Arg or Lys of positively charged amino acids (except His) could enhance cell adhesion, (ii) small hydrophilic amino acids are favored in cell-adhesion peptides, (iii) negatively charged amino acids and small amino acids (except Gly) could reduce cell adhesion, and (iv) Cys and Met could be excluded from the sequence combination since they have

  12. Dimers at Ge/Si(001) surfaces: Ge coverage dependent quenching, reactivation of flip-flop motion, and interaction with dimer vacancy lines

    International Nuclear Information System (INIS)

    Hirayama, H.; Mizuno, H.; Yoshida, R.

    2002-01-01

    We studied Ge coverage (θ Ge ) dependent quenching, reactivation of the flip-flop motion, and interaction with dimer vacancy lines (DVLs) of dimers on Ge/Si(001) surfaces using a scanning tunneling microscope (STM) combined with a molecular beam epitaxy apparatus. Deposition of ∼0.3 ML (monolayer) Ge quenched the flip-flop motion, making all dimers asymmetric. Further deposition introduced DVLs at θ Ge ≥∼0.5 ML, and symmetric dimer domains appeared again locally at θ≥1.5 ML. High-resolution STM images indicated that asymmetric dimer rows always invert their phase in alternation with buckled dimer's up-end at the DVLs. Low-temperature STM images indicated that the symmetric dimer domains were due to flip-flopping of asymmetric dimers activated by large θ Ge at room temperature. The symmetric dimer domains extended along the dimer rows over the DVLs due to the phase correlation

  13. Vibration dependence of the tensor spin-spin and scalar spin-spin hyperfine interactions by precision measurement of hyperfine structures of 127I2 near 532 nm

    International Nuclear Information System (INIS)

    Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu

    2002-01-01

    Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region

  14. Folding model analyses of 12C-12C and 16O-16O elastic scattering using the density-dependent LOCV-averaged effective interaction

    Science.gov (United States)

    Rahmat, M.; Modarres, M.

    2018-03-01

    The averaged effective two-body interaction (AEI), which can be generated through the lowest order constrained variational (LOCV) method for symmetric nuclear matter (SNM) with the input [Reid68, Ann. Phys. 50, 411 (1968), 10.1016/0003-4916(68)90126-7] nucleon-nucleon potential, is used as the effective nucleon-nucleon potential in the folding model to describe the heavy-ion (HI) elastic scattering cross sections. The elastic scattering cross sections of 12C-12C and 16O-16O systems are calculated in the above framework. The results are compared with the corresponding calculations coming from the fitting procedures with the input finite range D D M 3 Y 1 -Reid potential and the available experimental data at different incident energies. It is shown that a reasonable description of the elastic 12C-12C and 16O-16O scattering data at the low and medium energies can be obtained by using the above LOCV AEI, without any need to define a parametrized density-dependent function in the effective nucleon-nucleon potential, which is formally considered in the typical D D M 3 Y 1 -Reid interactions.

  15. Symptomless endophytic fungi suppress endogenous levels of salicylic acid and interact with the jasmonate-dependent indirect defense traits of their host, lima bean (Phaseolus lunatus).

    Science.gov (United States)

    Navarro-Meléndez, Ariana L; Heil, Martin

    2014-07-01

    Symptomless ‘type II’ fungal endophytes colonize their plant host horizontally and exert diverse effects on its resistance phenotype. Here, we used wild Lima bean (Phaseolus lunatus) plants that were experimentally colonized with one of three strains of natural endophytes (Bartalinia pondoensis, Fusarium sp., or Cochliobolus lunatus) to investigate the effects of fungal colonization on the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) and on two JA-dependent indirect defense traits. Colonization with Fusarium sp. enhanced JA levels in intact leaves, whereas B. pondoensis suppressed the induction of endogenous JA in mechanically damaged leaves. Endogenous SA levels in intact leaves were significantly decreased by all strains and B. pondoensis and Fusarium sp. decreased SA levels after mechanical damage. Colonization with Fusarium sp. or C. lunatus enhanced the number of detectable volatile organic compounds (VOCs) emitted from intact leaves, and all three strains enhanced the relative amount of several VOCs emitted from intact leaves as well as the number of detectable VOCs emitted from slightly damaged leaves. All three strains completely suppressed the induced secretion of extrafloral nectar (EFN) after the exogenous application of JA. Symptomless endophytes interact in complex and strain-specific ways with the endogenous levels of SA and JA and with the defense traits that are controlled by these hormones. These interactions can occur both upstream and downstream of the defense hormones.

  16. Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system

    Science.gov (United States)

    Tozzi, Alessandro; de Iure, Antonio; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Giampà, Carmela; Di Mauro, Michela; Mazzocchetti, Petra; Costa, Cinzia; Di Filippo, Massimiliano; Grassi, Silvarosa; Pettorossi, Vito Enrico; Calabresi, Paolo

    2015-01-01

    17β-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs). Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson’s disease. PMID:26074768

  17. Identification of mud crab reovirus VP12 and its interaction with the voltage-dependent anion-selective channel protein of mud crab Scylla paramamosain.

    Science.gov (United States)

    Xu, Hai-Dong; Su, Hong-Jun; Zou, Wei-Bin; Liu, Shan-Shan; Yan, Wen-Rui; Wang, Qian-Qian; Yuan, Li-Li; Chan, Siuming Francis; Yu, Xiao-Qiang; He, Jian-Guo; Weng, Shao-Ping

    2015-05-01

    Mud crab reovirus (MCRV) is the causative agent of a severe disease in cultured mud crab (Scylla paramamosain), which has caused huge economic losses in China. MCRV is a double-stranded RNA virus with 12 genomic segments. In this paper, SDS-PAGE, mass spectrometry and Western blot analyses revealed that the VP12 protein encoded by S12 gene is a structural protein of MCRV. Immune electron microscopy assay indicated that MCRV VP12 is a component of MCRV outer shell capsid. Yeast two hybrid cDNA library of mud crab was constructed and mud crab voltage-dependent anion-selective channel (mcVDAC) was obtained by MCRV VP12 screening. The full length of mcVDAC was 1180 bp with an open reading frame (ORF) of 849 bp encoding a 282 amino acid protein. The mcVDAC had a constitutive expression pattern in different tissues of mud crab. The interaction between MCRV VP12 and mcVDAC was determined by co-immunoprecipitation assay. The results of this study have provided an insight on the mechanisms of MCRV infection and the interactions between the virus and mud crab. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system.

    Science.gov (United States)

    Tozzi, Alessandro; de Iure, Antonio; Tantucci, Michela; Durante, Valentina; Quiroga-Varela, Ana; Giampà, Carmela; Di Mauro, Michela; Mazzocchetti, Petra; Costa, Cinzia; Di Filippo, Massimiliano; Grassi, Silvarosa; Pettorossi, Vito Enrico; Calabresi, Paolo

    2015-01-01

    17β-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs). Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson's disease.

  19. Accounting for interactions and complex inter-subject dependency in estimating treatment effect in cluster-randomized trials with missing outcomes.

    Science.gov (United States)

    Prague, Melanie; Wang, Rui; Stephens, Alisa; Tchetgen Tchetgen, Eric; DeGruttola, Victor

    2016-12-01

    Semi-parametric methods are often used for the estimation of intervention effects on correlated outcomes in cluster-randomized trials (CRTs). When outcomes are missing at random (MAR), Inverse Probability Weighted (IPW) methods incorporating baseline covariates can be used to deal with informative missingness. Also, augmented generalized estimating equations (AUG) correct for imbalance in baseline covariates but need to be extended for MAR outcomes. However, in the presence of interactions between treatment and baseline covariates, neither method alone produces consistent estimates for the marginal treatment effect if the model for interaction is not correctly specified. We propose an AUG-IPW estimator that weights by the inverse of the probability of being a complete case and allows different outcome models in each intervention arm. This estimator is doubly robust (DR); it gives correct estimates whether the missing data process or the outcome model is correctly specified. We consider the problem of covariate interference which arises when the outcome of an individual may depend on covariates of other individuals. When interfering covariates are not modeled, the DR property prevents bias as long as covariate interference is not present simultaneously for the outcome and the missingness. An R package is developed implementing the proposed method. An extensive simulation study and an application to a CRT of HIV risk reduction-intervention in South Africa illustrate the method. © 2016, The International Biometric Society.

  20. Dose-dependent interaction between gemfibrozil and repaglinide in humans: strong inhibition of CYP2C8 with subtherapeutic gemfibrozil doses.

    Science.gov (United States)

    Honkalammi, Johanna; Niemi, Mikko; Neuvonen, Pertti J; Backman, Janne T

    2011-10-01

    Gemfibrozil 1-O-β-glucuronide inactivates CYP2C8 irreversibly. We investigated the effect of gemfibrozil dose on CYP2C8 activity in humans using repaglinide as a probe drug. In a randomized, five-phase crossover study, 10 healthy volunteers ingested 0.25 mg of repaglinide 1 h after different doses of gemfibrozil or placebo. Concentrations of plasma repaglinide, gemfibrozil, their metabolites, and blood glucose were measured. A single gemfibrozil dose of 30, 100, 300, and 900 mg increased the area under the concentration-time curve of repaglinide 1.8-, 4.5-, 6.7-, and 8.3-fold (P Gemfibrozil pharmacokinetics was characterized by a slightly more than dose-proportional increase in the area under the curve of gemfibrozil and its glucuronide. The gemfibrozil-repaglinide interaction could be mainly explained by gemfibrozil 1-O-β-glucuronide concentration-dependent, mechanism-based inhibition of CYP2C8, with a minor contribution by competitive inhibition of organic anion-transporting polypeptide 1B1 at the highest gemfibrozil dose. The findings are consistent with ∼50% inhibition of CYP2C8 already with a single 30-mg dose of gemfibrozil and >95% inhibition with 900 mg. In clinical drug-drug interaction studies, a single 900-mg dose of gemfibrozil can be used to achieve nearly complete inactivation of CYP2C8.

  1. Chronic exposure of mutant DISC1 mice to lead produces sex-dependent abnormalities consistent with schizophrenia and related mental disorders: a gene-environment interaction study.

    Science.gov (United States)

    Abazyan, Bagrat; Dziedzic, Jenifer; Hua, Kegang; Abazyan, Sofya; Yang, Chunxia; Mori, Susumu; Pletnikov, Mikhail V; Guilarte, Tomas R

    2014-05-01

    The glutamatergic hypothesis of schizophrenia suggests that hypoactivity of the N-methyl-D-aspartate receptor (NMDAR) is an important factor in the pathophysiology of schizophrenia and related mental disorders. The environmental neurotoxicant, lead (Pb(2+)), is a potent and selective antagonist of the NMDAR. Recent human studies have suggested an association between prenatal Pb(2+) exposure and the increased likelihood of schizophrenia later in life, possibly via interacting with genetic risk factors. In order to test this hypothesis, we examined the neurobehavioral consequences of interaction between Pb(2+) exposure and mutant disrupted in schizophrenia 1 (mDISC1), a risk factor for major psychiatric disorders. Mutant DISC1 and control mice born by the same dams were raised and maintained on a regular diet or a diet containing moderate levels of Pb(2+). Chronic, lifelong exposure of mDISC1 mice to Pb(2+) was not associated with gross developmental abnormalities but produced sex-dependent hyperactivity, exaggerated responses to the NMDAR antagonist, MK-801, mildly impaired prepulse inhibition of the acoustic startle, and enlarged lateral ventricles. Together, these findings support the hypothesis that environmental toxins could contribute to the pathogenesis of mental disease in susceptible individuals.

  2. Endogenous 17ß-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system

    Directory of Open Access Journals (Sweden)

    Alessandro eTozzi

    2015-05-01

    Full Text Available 17β-estradiol (E2, a neurosteroid synthesized by P450-aromatase (ARO, modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs and dopamine (DA receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP in both medium spiny neurons (MSNs and cholinergic interneurons (ChIs. Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson's disease.

  3. The Chloroplastic Protein THF1 Interacts with the Coiled-Coil Domain of the Disease Resistance Protein N′ and Regulates Light-Dependent Cell Death1[OPEN

    Science.gov (United States)

    Sekine, Ken-Taro; Wallon, Thérèse; Sugiwaka, Yuji; Kobayashi, Kappei

    2016-01-01

    One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N′, which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N′ results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N′ is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins. PMID:26951433

  4. The Chloroplastic Protein THF1 Interacts with the Coiled-Coil Domain of the Disease Resistance Protein N' and Regulates Light-Dependent Cell Death.

    Science.gov (United States)

    Hamel, Louis-Philippe; Sekine, Ken-Taro; Wallon, Thérèse; Sugiwaka, Yuji; Kobayashi, Kappei; Moffett, Peter

    2016-05-01

    One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N', which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N' results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N' is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.

    Science.gov (United States)

    Armentrout, P B; Yang, Bo; Rodgers, M T

    2014-04-24

    Metal cation-amino acid interactions are key components controlling the secondary structure and biological function of proteins, enzymes, and macromolecular complexes comprising these species. Determination of pairwise interactions of alkali metal cations with amino acids provides a thermodynamic vocabulary that begins to quantify these fundamental processes. In the present work, we expand a systematic study of such interactions by examining rubidium and cesium cations binding with the acidic amino acids (AA), aspartic acid (Asp) and glutamic acid (Glu), and their amide derivatives, asparagine (Asn) and glutamine (Gln). These eight complexes are formed using electrospray ionization and their bond dissociation energies (BDEs) are determined experimentally using threshold collision-induced dissociation with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations are conducted at the B3LYP, MP2(full), and M06 levels of theory using def2-TZVPPD basis sets, with results showing reasonable agreement with experiment. At 0 and 298 K, most levels of theory predict that the ground-state conformers for M(+)(Asp) and M(+)(Asn) involve tridentate binding of the metal cation to the backbone carbonyl, amino, and side-chain carbonyl groups, although tridentate binding to the carboxylic acid group and side-chain carbonyl is competitive for M(+)(Asn). For the two longer side-chain amino acids, Glu and Gln, multiple structures are competitive. A comparison of these results to those for the smaller alkali cations, Na(+) and K(+), provides insight into the trends in binding energies associated with the molecular polarizability and dipole moment of the side chain. For all four metal cations, the BDEs are inversely correlated with the size of the metal cation and follow the order Asp < Glu

  6. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner.

    Science.gov (United States)

    Nomura, Kazumi; Hayakawa, Kimihide; Tatsumi, Hitoshi; Ono, Shoichiro

    2016-03-04

    Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. W 2 and Q 2 dependence of charged hadron and pion multiplicities in vp andbar vp charged current interactionscharged current interactions

    Science.gov (United States)

    Jones, G. T.; Jones, R. W. L.; Morrison, D. R. O.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Hoffmann, E.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Allport, P.; Borner, H. P.; Myatt, G.; Radojicic, D.; Bullock, F. W.; Burke, S.

    1990-03-01

    Using data on vp andbar vp charged current interactions from a bubble chamber experiment with BEBC at CERN, the average multiplicities of charged hadrons and pions are determined as functions of W 2 and Q 2. The analysis is based on ˜20000 events with incident v and ˜10000 events with incidentbar v. In addition to the known dependence of the average multiplicity on W 2 a weak dependence on Q 2 for fixed intervals of W is observed. For W>2 GeV and Q 2>0.1 GeV2 the average multiplicity of charged hadrons is well described by =a 1+ a 2ln( W 2/GeV2)+ a 3ln( Q 2/GeV2) with a 1=0.465±0.053, a 2=1.211±0.021, a 3=0.103±0.014 for the vp and a 1=-0.372±0.073, a 2=1.245±0.028, a 3=0.093±0.015 for thebar vp reaction.

  8. W2 and Q2 dependence of charged hadron and pion multiplicities in νp and anti νp charged current interactions

    International Nuclear Information System (INIS)

    Jones, G.T.; Jones, R.W.L.; Allport, P.; Borner, H.P.; Myatt, G.; Radojicic, D.; Bullock, F.W.; Burke, S.

    1990-01-01

    Using data on νp and anti νp charged current interactions from a bubble chamber experiment with BEBC at CERN, the average multiplicities of charged hadrons and pions are determined as functions of W 2 and Q 2 . The analysis is based on ∝20000 events with incident ν and ∝10000 events with incident anti ν. In addition to the known dependence of the average multiplicity on W 2 a weak dependence on Q 2 for fixed intervals of W is observed. For W>2 Gev and Q 2 >0.1 GeV 2 the average multiplicity of charged hadrons is well described by =a 1 +a 2 ln(W 2 /GeV 2 )+a 3 ln(Q 2 /GeV 2 ) with a 1 =0.465±0.053, a 2 =1.211±0.021, a 3 =0.103±0.014 for the νp and a 1 =-0.372±0.073, a 2 =1.245±0.028, a=30.093±0.015 for the anti νp reaction. (orig.)

  9. Thickness Dependence of the Dzyaloshinskii-Moriya Interaction in Co2 FeAl Ultrathin Films: Effects of Annealing Temperature and Heavy-Metal Material

    Science.gov (United States)

    Belmeguenai, M.; Roussigné, Y.; Bouloussa, H.; Chérif, S. M.; Stashkevich, A.; Nasui, M.; Gabor, M. S.; Mora-Hernández, A.; Nicholson, B.; Inyang, O.-O.; Hindmarch, A. T.; Bouchenoire, L.

    2018-04-01

    The interfacial Dzyaloshinskii-Moriya interaction (IDMI) is investigated in Co2FeAl (CFA) ultrathin films of various thicknesses (0.8 nm ≤tCFA≤2 nm ) grown by sputtering on Si substrates, using Pt, W, Ir, and MgO buffer or/and capping layers. Vibrating sample magnetometry reveals that the magnetization at saturation (Ms ) for the Pt- and Ir-buffered films is higher than the usual Ms of CFA due to the proximity-induced magnetization (PIM) in Ir and Pt estimated to be 19% and 27%, respectively. The presence of PIM in these materials is confirmed using x-ray resonant magnetic reflectivity. Moreover, while no PIM is induced in W, higher PIM is obtained with Pt when it is used as a buffer layer rather than a capping layer. Brillouin light scattering in the Damon-Eshbach geometry is used to investigate the thickness dependences of the IDMI constants from the spin-wave nonreciprocity and the perpendicular anisotropy field versus the annealing temperature. The IDMI sign is found to be negative for Pt /CFA and Ir /CFA , while it is positive for W /CFA . The thickness dependence of the effective IDMI constant for stacks involving Pt and W shows the existence of two regimes similar to that of the perpendicular anisotropy constant due to the degradation of the interfaces as the CFA thickness approaches a critical thickness. The surface IDMI and anisotropy constants of each stack are determined for the thickest samples where a linear thickness dependence of the effective IDMI constant and the effective magnetization are observed. The interface anisotropy and IDMI constants investigated for the Pt /CFA /MgO system show different trends with the annealing temperature. The decrease of the IDMI constant with increasing annealing temperature is probably due to the electronic structure changes at the interfaces, while the increase of the interface anisotropy constant is coherent with the interface quality and disorder enhancement.

  10. Corticotropin-releasing factor in the basolateral amygdala enhances memory consolidation via an interaction with the beta-adrenoceptor-cAMP pathway: dependence on glucocorticoid receptor activation.

    Science.gov (United States)

    Roozendaal, Benno; Schelling, Gustav; McGaugh, James L

    2008-06-25

    Extensive evidence indicates that stress hormone effects on the consolidation of emotionally influenced memory involve noradrenergic activation of the basolateral complex of the amygdala (BLA). The present experiments examined whether corticotropin-releasing factor (CRF) modulates memory consolidation via an interaction with the beta-adrenoceptor-cAMP system in the BLA. In a first experiment, male Sprague Dawley rats received bilateral infusions of the CRF-binding protein ligand inhibitor CRF(6-33) into the BLA either alone or together with the CRF receptor antagonist alpha-helical CRF(9-41) immediately after inhibitory avoidance training. CRF(6-33) induced dose-dependent enhancement of 48 h retention latencies, which was blocked by coadministration of alpha-helical CRF(9-41), suggesting that CRF(6-33) enhances memory consolidation by displacing CRF from its binding protein, thereby increasing "free" endogenous CRF concentrations. In a second experiment, intra-BLA infusions of atenolol (beta-adrenoceptor antagonist) and Rp-cAMPS (cAMP inhibitor), but not prazosin (alpha(1)-adrenoceptor antagonist), blocked CRF(6-33)-induced retention enhancement. In a third experiment, the CRF receptor antagonist alpha-helical CRF(9-41) administered into the BLA immediately after training attenuated the dose-response effects of concurrent intra-BLA infusions of clenbuterol (beta-adrenoceptor agonist). In contrast, alpha-helical CRF(9-41) did not alter retention enhancement induced by posttraining intra-BLA infusions of either cirazoline (alpha(1)-adrenoceptor agonist) or 8-br-cAMP (cAMP analog). These findings suggest that CRF facilitates the memory-modulatory effects of noradrenergic stimulation in the BLA via an interaction with the beta-adrenoceptor-cAMP cascade, at a locus between the membrane-bound beta-adrenoceptor and the intracellular cAMP formation site. Moreover, consistent with evidence that glucocorticoids enhance memory consolidation via a similar interaction with the

  11. SUN1 Regulates HIV-1 Nuclear Import in a Manner Dependent on the Interaction between the Viral Capsid and Cellular Cyclophilin A.

    Science.gov (United States)

    Luo, Xinlong; Yang, Wei; Gao, Guangxia

    2018-07-01

    Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells via passing through the nuclear pore complex. The nuclear membrane-imbedded protein SUN2 was recently reported to be involved in the nuclear import of HIV-1. Whether SUN1, which shares many functional similarities with SUN2, is involved in this process remained to be explored. Here we report that overexpression of SUN1 specifically inhibited infection by HIV-1 but not that by simian immunodeficiency virus (SIV) or murine leukemia virus (MLV). Overexpression of SUN1 did not affect reverse transcription but led to reduced accumulation of the 2-long-terminal-repeat (2-LTR) circular DNA and integrated viral DNA, suggesting a block in the process of nuclear import. HIV-1 CA was mapped as a determinant for viral sensitivity to SUN1. Treatment of SUN1-expressing cells with cyclosporine (CsA) significantly reduced the sensitivity of the virus to SUN1, and an HIV-1 mutant containing CA-G89A, which does not interact with cyclophilin A (CypA), was resistant to SUN1 overexpression. Downregulation of endogenous SUN1 inhibited the nuclear entry of the wild-type virus but not that of the G89A mutant. These results indicate that SUN1 participates in the HIV-1 nuclear entry process in a manner dependent on the interaction of CA with CypA. IMPORTANCE HIV-1 infects both dividing and nondividing cells. The viral preintegration complex (PIC) can enter the nucleus through the nuclear pore complex. It has been well known that the viral protein CA plays an important role in determining the pathways by which the PIC enters the nucleus. In addition, the interaction between CA and the cellular protein CypA has been reported to be important in the selection of nuclear entry pathways, though the underlying mechanisms are not very clear. Here we show that both SUN1 overexpression and downregulation inhibited HIV-1 nuclear entry. CA played an important role in determining the sensitivity of the virus to SUN1: the regulatory

  12. Proton NMR studies of Cucurbita maxima trypsin inhibitors: evidence for pH-dependent conformational change and His25-Tyr27 interaction.

    Science.gov (United States)

    Krishnamoorthi, R; Lin, C L; Gong, Y X; VanderVelde, D; Hahn, K

    1992-01-28

    A pH-dependent His25-Tyr27 interaction was demonstrated in the case of Cucurbita maxima trypsin inhibitors (CMTI-I and CMTI-III) by means of nuclear magnetic resonance (NMR) spectroscopy. pH titration, line widths, peak shapes, deuterium exchange kinetics, and two-dimensional nuclear Overhauser effect spectroscopy (NOESY) were employed to characterize a conformational change involving Tyr27, which was shown to be triggered by deprotonation of His25 around pH 6. A hydrogen bond is proposed to be formed between N epsilon of His25 and OH of Tyr27, as a distance between the atoms, His25 N epsilon and Tyr27 OH, of 3.02 A is consistent with a model built with NOE-derived distance constraints. Both the X-ray [Bode, W., Greyling, J.H., Huber, R., Otlewski, J., & Wilusz, T. (1989) FEBS Lett. 242, 282-292] and NMR [Holak, T.A., Gondol, D., Otlewski, J., & Wilusz, T. (1989) J. Mol. Biol. 210, 635-648] structures of CMTI-I at low pH (4.7-5.3) rule out such an interaction between the two aromatic rings, as the ring planes are oriented about 10 A away from each other. The presently characterized relative orientations of His25 and Tyr27 are of functional significance, as these residues make contact with the enzyme in the enzyme-inhibitor complex. Furthermore, trypsin assay and inhibitor-binding studies showed that conformations of trypsin and the squash inhibitor were functionally relevant only in the pH range 6-8. The pKa of His25 was determined and found to be influenced by Glu9/Lys substitution and by the hydrolysis of the reactive-site peptide bond between Arg5 and Ile6.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. CCR9 interactions support ovarian cancer cell survival and resistance to cisplatin-induced apoptosis in a PI3K-dependent and FAK-independent fashion

    Directory of Open Access Journals (Sweden)

    Johnson Erica L

    2010-06-01

    Full Text Available Abstract Background Cisplatin is more often used to treat ovarian cancer (OvCa, which provides modest survival advantage primarily due to chemo-resistance and up regulated anti-apoptotic machineries in OvCa cells. Therefore, targeting the mechanisms responsible for cisplatin resistance in OvCa cell may improve therapeutic outcomes. We have shown that ovarian cancer cells express CC chemokine receptor-9 (CCR9. Others have also shown that CCL25, the only natural ligand for CCR9, up regulates anti-apoptotic proteins in immature T lymphocytes. Hence, it is plausible that CCR9-mediated cell signals might be involved in OvCa cell survival and inhibition of cisplatin-induced apoptosis. In this study, we investigated the potential role and molecular mechanisms of CCR9-mediated inhibition of cisplatin-induced apoptosis in OvCa cells. Methods Cell proliferation, vibrant apoptosis, and TUNEL assays were performed with or without cisplatin treatment in presence or absence of CCL25 to determine the role of the CCR9-CCL25 axis in cisplatin resistance. In situ Fast Activated cell-based ELISA (FACE assays were performed to determine anti-apoptotic signaling molecules responsible for CCL25-CCR9 mediated survival. Results Our results show interactions between CCR9 and CCL25 increased anti-apoptotic signaling cascades in OvCa cells, which rescued cells from cisplatin-induced cell death. Specifically, CCL25-CCR9 interactions mediated Akt, activation as well as GSK-3β and FKHR phosphorylation in a PI3K-dependent and FAK-independent fashion. Conclusions Our results suggest the CCR9-CCL25 axis plays an important role in reducing cisplatin-induced apoptosis of OvCa cells.

  14. Change in cap rock porosity triggered by pressure and temperature dependent CO2–water–rock interactions in CO2 storage systems

    Directory of Open Access Journals (Sweden)

    Christina Hemme

    2017-03-01

    Full Text Available Carbon capture and storage in deep geological formations is a method to reduce greenhouse gas emissions. Supercritical CO2 is injected into a reservoir and dissolves in the brine. Under the impact of pressure and temperature (P–T the aqueous species of the CO2-acidified brine diffuse through the cap rock where they trigger CO2–water–rock interactions. These geochemical reactions result in mineral dissolution and precipitation along the CO2 migration path and are responsible for a change in porosity and therefore for the sealing capacity of the cap rock. This study focuses on the diffusive mass transport of CO2 along a gradient of decreasing P–T conditions. The process is retraced with a one-dimensional hydrogeochemical reactive mass transport model. The semi-generic hydrogeochemical model is based on chemical equilibrium thermodynamics. Based on a broad variety of scenarios, including different initial mineralogical, chemical and physical parameters, the hydrogeochemical parameters that are most sensitive for safe long-term CO2 storage are identified. The results demonstrate that P–T conditions have the strongest effect on the change in porosity and the effect of both is stronger at high P–T conditions because the solubility of the mineral phases involved depends on P–T conditions. Furthermore, modeling results indicate that the change in porosity depends strongly on the initial mineralogical composition of the reservoir and cap rock as well as on the brine compositions. Nevertheless, a wide range of conditions for safe CO2 storage is identified.

  15. Entanglement and Other Nonclassical Properties of Two Two-Level Atoms Interacting with a Two-Mode Binomial Field: Constant and Intensity-Dependent Coupling Regimes

    International Nuclear Information System (INIS)

    Tavassoly, M.K.; Hekmatara, H.

    2015-01-01

    In this paper, we consider the interaction between two two-level atoms and a two-mode binomial field with a general intensity-dependent coupling regime. The outlined dynamical problem has explicit analytical solution, by which we can evaluate a few of its physical features of interest. To achieve the purpose of the paper, after choosing a particular nonlinearity function, we investigate the quantum statistics, atomic population inversion and at last the linear entropy of the atom-field system which is a good measure for the degree of entanglement. In detail, the effects of binomial field parameters, in addition to different initial atomic states on the temporal behavior of the mentioned quantities have been analyzed. The results show that, the values of binomial field parameters and the initial state of the two atoms influence on the nonclassical effects in the obtained states through which one can tune the nonclassicality criteria appropriately. Setting intensity-dependent coupling function equal to 1 reduces the results to the constant coupling case. By comparing the latter case with the nonlinear regime, we will observe that the nonlinearity disappears the pattern of collapse-revival phenomenon in the evolution of Mandel parameter and population inversion (which can be seen in the linear case with constant coupling), however, more typical collapse-revivals will be appeared for the cross-correlation function in the nonlinear case. Finally, in both linear and nonlinear regime, the entropy remains less than (but close to) 0.5. In other words the particular chosen nonlinearity does not critically affect on the entropy of the system. (paper)

  16. CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion

    Directory of Open Access Journals (Sweden)

    Lillard James W

    2011-05-01

    Full Text Available Abstract Background Chemotherapy heavily relies on apoptosis to kill breast cancer (BrCa cells. Many breast tumors respond to chemotherapy, but cells that survive this initial response gain resistance to subsequent treatments. This leads to aggressive cell variants with an enhanced ability to migrate, invade and survive at secondary sites. Metastasis and chemoresistance are responsible for most cancer-related deaths; hence, therapies designed to minimize both are greatly needed. We have recently shown that CCR9-CCL25 interactions promote BrCa cell migration and invasion, while others have shown that this axis play important role in T cell survival. In this study we have shown potential role of CCR9-CCL25 axis in breast cancer cell survival and therapeutic efficacy of cisplatin. Methods Bromodeoxyuridine (BrdU incorporation, Vybrant apoptosis and TUNEL assays were performed to ascertain the role of CCR9-CCL25 axis in cisplatin-induced apoptosis of BrCa cells. Fast Activated Cell-based ELISA (FACE assay was used to quantify In situ activation of PI3Kp85, AktSer473, GSK-3βSer9 and FKHRThr24 in breast cancer cells with or without cisplatin treatment in presence or absence of CCL25. Results CCR9-CCL25 axis provides survival advantage to BrCa cells and inhibits cisplatin-induced apoptosis in a PI3K-dependent and focal adhesion kinase (FAK-independent fashion. Furthermore, CCR9-CCL25 axis activates cell-survival signals through Akt and subsequent glycogen synthase kinase-3 beta (GSK-3β and forkhead in human rhabdomyosarcoma (FKHR inactivation. These results show that CCR9-CCL25 axis play important role in BrCa cell survival and low chemotherapeutic efficacy of cisplatin primarily through PI3K/Akt dependent fashion.

  17. Plasma membrane Ca2+-ATPase 4: interaction with constitutive nitric oxide synthases in human sperm and prostasomes which carry Ca2+/CaM-dependent serine kinase.

    Science.gov (United States)

    Andrews, Rachel E; Galileo, Deni S; Martin-DeLeon, Patricia A

    2015-11-01

    Deletion of the gene encoding the widely conserved plasma membrane calcium ATPase 4 (PMCA4), a major Ca(2+) efflux pump, leads to loss of sperm motility and male infertility in mice. PMCA4's partners in sperm and how its absence exerts its effect on fertility are unknown. We hypothesize that in sperm PMCA4 interacts with endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) which are rapidly activated by Ca(2+), and that these fertility-modulating proteins are present in prostasomes, which deliver them to sperm. We show that in human sperm PMCA4 is present on the acrosome, inner acrosomal membrane, posterior head, neck, midpiece and the proximal principal piece. PMCA4 localization showed inter- and intra-individual variation and was most abundant at the posterior head/neck junction, co-localizing with NOSs. Co-immunoprecipitations (Co-IP) revealed a close association of PMCA4 and the NOSs in Ca(2+) ionophore-treated sperm but much less so in uncapacitated untreated sperm. Fluorescence resonance energy transfer (FRET) showed a similar Ca(2+)-related association: PMCA4 and the NOSs are within 10 nm apart, and preferentially so in capacitated, compared with uncapacitated, sperm. FRET efficiencies varied, being significantly (P < 0.001) higher at high cytosolic Ca(2+) concentration ([Ca(2+)]c) in capacitated sperm than at low [Ca(2+)]c in uncapacitated sperm for the PMCA4-eNOS complex. These dynamic interactions were not seen for PMCA4-nNOS complexes, which had the highest FRET efficiencies. Further, along with Ca(2+)/CaM-dependent serine kinase (CASK), PMCA4 and the NOSs are present in the seminal plasma, specifically in prostasomes where Co-IP showed complexes similar to those in sperm. Finally, flow cytometry demonstrated that following co-incubation of sperm and seminal plasma, PMCA4 and the NOSs can be delivered in vitro to sperm via prostasomes. Our findings indicate that PMCA4 interacts simultaneously with the NOSs preferentially at

  18. The Gcn2 Regulator Yih1 Interacts with the Cyclin Dependent Kinase Cdc28 and Promotes Cell Cycle Progression through G2/M in Budding Yeast.

    Directory of Open Access Journals (Sweden)

    Richard C Silva

    Full Text Available The Saccharomyces cerevisiae protein Yih1, when overexpressed, inhibits the eIF2 alpha kinase Gcn2 by competing for Gcn1 binding. However, deletion of YIH1 has no detectable effect on Gcn2 activity, suggesting that Yih1 is not a general inhibitor of Gcn2, and has no phenotypic defect identified so far. Thus, its physiological role is largely unknown. Here, we show that Yih1 is involved in the cell cycle. Yeast lacking Yih1 displays morphological patterns and DNA content indicative of a delay in the G2/M phases of the cell cycle, and this phenotype is independent of Gcn1 and Gcn2. Accordingly, the levels of phosphorylated eIF2α, which show a cell cycle-dependent fluctuation, are not altered in cells devoid of Yih1. We present several lines of evidence indicating that Yih1 is in a complex with Cdc28. Yih1 pulls down endogenous Cdc28 in vivo and this interaction is enhanced when Cdc28 is active, suggesting that Yih1 modulates the function of Cdc28 in specific stages of the cell cycle. We also demonstrate, by Bimolecular Fluorescence Complementation, that endogenous Yih1 and Cdc28 interact with each other, confirming Yih1 as a bona fide Cdc28 binding partner. Amino acid substitutions within helix H2 of the RWD domain of Yih1 enhance Yih1-Cdc28 association. Overexpression of this mutant, but not of wild type Yih1, leads to a phenotype similar to that of YIH1 deletion, supporting the view that Yih1 is involved through Cdc28 in the regulation of the cell cycle. We further show that IMPACT, the mammalian homologue of Yih1, interacts with CDK1, the mammalian counterpart of Cdc28, indicating that the involvement with the cell cycle is conserved. Together, these data provide insights into the cellular function of Yih1/IMPACT, and provide the basis for future studies on the role of this protein in the cell cycle.

  19. Iron phthalocyanine on Cu(111): Coverage-dependent assembly and symmetry breaking, temperature-induced homocoupling, and modification of the adsorbate-surface interaction by annealing.

    Science.gov (United States)

    Snezhkova, Olesia; Bischoff, Felix; He, Yuanqin; Wiengarten, Alissa; Chaudhary, Shilpi; Johansson, Niclas; Schulte, Karina; Knudsen, Jan; Barth, Johannes V; Seufert, Knud; Auwärter, Willi; Schnadt, Joachim

    2016-03-07

    We have examined the geometric and electronic structures of iron phthalocyanine assemblies on a Cu(111) surface at different sub- to mono-layer coverages and the changes induced by thermal annealing at temperatures between 250 and 320 °C by scanning tunneling microscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy. The symmetry breaking observed in scanning tunneling microscopy images is found to be coverage dependent and to persist upon annealing. Further, we find that annealing to temperatures between 300 and 320 °C leads to both desorption of iron phthalocyanine molecules from the surface and their agglomeration. We see clear evidence of temperature-induced homocoupling reactions of the iron phthalocyanine molecules following dehydrogenation of their isoindole rings, similar to what has been observed for related tetrapyrroles on transition metal surfaces. Finally, spectroscopy indicates a modified substrate-adsorbate interaction upon annealing with a shortened bond distance. This finding could potentially explain a changed reactivity of Cu-supported iron phthalocyanine in comparison to that of the pristine compound.

  20. PDILT, a divergent testis-specific protein disulfide isomerase with a non-classical SXXC motif that engages in disulfide-dependent interactions in the endoplasmic reticulum.

    Science.gov (United States)

    van Lith, Marcel; Hartigan, Nichola; Hatch, Jennifer; Benham, Adam M

    2005-01-14

    Protein disulfide isomerase (PDI) is the archetypal enzyme involved in the formation and reshuffling of disulfide bonds in the endoplasmic reticulum (ER). PDI achieves its redox function through two highly conserved thioredoxin domains, and PDI can also operate as an ER chaperone. The substrate specificities and the exact functions of most other PDI family proteins remain important unsolved questions in biology. Here, we characterize a new and striking member of the PDI family, which we have named protein disulfide isomerase-like protein of the testis (PDILT). PDILT is the first eukaryotic SXXC protein to be characterized in the ER. Our experiments have unveiled a novel, glycosylated PDI-like protein whose tissue-specific expression and unusual motifs have implications for the evolution, catalytic function, and substrate selection of thioredoxin family proteins. We show that PDILT is an ER resident glycoprotein that liaises with partner proteins in disulfide-dependent complexes within the testis. PDILT interacts with the oxidoreductase Ero1alpha, demonstrating that the N-terminal cysteine of the CXXC sequence is not required for binding of PDI family proteins to ER oxidoreductases. The expression of PDILT, in addition to PDI in the testis, suggests that PDILT performs a specialized chaperone function in testicular cells. PDILT is an unusual PDI relative that highlights the adaptability of chaperone and redox function in enzymes of the endoplasmic reticulum.

  1. Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ruijie Ji

    Full Text Available Although arsenite [As(III] is non-essential and toxic for plants, it is effectively absorbed through various transporters into the roots. Here we identified a calcium-dependent protein kinase (CPK31 response for As(III tolerance in Arabidopsis. We identified CPK31 as an interacting protein of a nodulin 26-like intrinsic protein (NIP1;1, an aquaporin involved in As(III uptake. Similarly to the nip1;1 mutants, the loss-of-function mutants of CPK31 improved the tolerance against As(III but not As(V, and accumulated less As(III in roots than that of the wild-type plants. The promoter-β-glucuronidase and quantitative Real-Time PCR analysis revealed that CPK31 displayed overlapping expression profiles with NIP1;1 in the roots, suggesting that they might function together in roots. Indeed, the cpk31 nip1;1 double mutants exhibited stronger As(III tolerance than cpk31 mutants, but similar to nip1;1 mutants, supporting the idea that CPK31 might serve as an upstream regulator of NIP1;1. Furthermore, transient CPK31 overexpression induced by dexamethasone caused the decrease in As(III tolerance of transgenic Arabidopsis lines. These findings reveal that CPK31 is a key factor in As(III response in plants.

  2. Controlling the high frequency response of H{sub 2} by ultra-short tailored laser pulses: A time-dependent configuration interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann, E-mail: klamroth@uni-potsdam.de [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm (Germany)

    2016-01-28

    We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H{sub 2} treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a “non-harmonic” response of H{sub 2} to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.

  3. Interaction between an ADCY3 Genetic Variant and Two Weight-Lowering Diets Affecting Body Fatness and Body Composition Outcomes Depending on Macronutrient Distribution: A Randomized Trial

    Directory of Open Access Journals (Sweden)

    Leticia Goni

    2018-06-01

    Full Text Available The adenylate cyclase 3 (ADCY3 gene is involved in the regulation of several metabolic processes including the development and function of adipose tissue. The effects of the ADCY3 rs10182181 genetic variant on changes in body composition depending on the macronutrient distribution intake after 16 weeks of the dietary intervention were tested. The ADCY3 genetic variant was genotyped in 147 overweight or obese subjects, who were randomly assigned to one of the two diets varying in macronutrient content: a moderately-high-protein diet and a low-fat diet. Anthropometric and body composition measurements (DEXA scan were recorded. Significant interactions between the ADCY3 genotype and dietary intervention on changes in weight, waist circumference, and body composition were found after adjustment for covariates. Thus, in the moderately-high-protein diet group, the G allele was associated with a lower decrease of fat mass, trunk and android fat, and a greater decrease in lean mass. Conversely, in the low-fat diet group carrying the G allele was associated with a greater decrease in trunk, android, gynoid, and visceral fat. Subjects carrying the G allele of the rs10182181 polymorphism may benefit more in terms of weight loss and improvement of body composition measurements when undertaking a hypocaloric low-fat diet as compared to a moderately-high-protein diet.

  4. The frequency-dependent elements in the code SASSI: A bridge between civil engineers and the soil-structure interaction specialists

    International Nuclear Information System (INIS)

    Tyapin, Alexander

    2007-01-01

    After four decades of the intensive studies of the soil-structure interaction (SSI) effects in the field of the NPP seismic analysis there is a certain gap between the SSI specialists and civil engineers. The results obtained using the advanced SSI codes like SASSI are often rather far from the results obtained using general codes (though match the experimental and field data). The reasons for the discrepancies are not clear because none of the parties can recall the results of the 'other party' and investigate the influence of various factors causing the difference step by step. As a result, civil engineers neither feel the SSI effects, nor control them. The author believes that the SSI specialists should do the first step forward (a) recalling 'viscous' damping in the structures versus the 'material' one and (b) convoluting all the SSI wave effects into the format of 'soil springs and dashpots', more or less clear for civil engineers. The tool for both tasks could be a special finite element with frequency-dependent stiffness developed by the author for the code SASSI. This element can represent both soil and structure in the SSI model and help to split various factors influencing seismic response. In the paper the theory and some practical issues concerning the new element are presented

  5. Conformational temperature-dependent behavior of a histone H2AX: a coarse-grained Monte Carlo approach via knowledge-based interaction potentials.

    Directory of Open Access Journals (Sweden)

    Miriam Fritsche

    Full Text Available Histone proteins are not only important due to their vital role in cellular processes such as DNA compaction, replication and repair but also show intriguing structural properties that might be exploited for bioengineering purposes such as the development of nano-materials. Based on their biological and technological implications, it is interesting to investigate the structural properties of proteins as a function of temperature. In this work, we study the spatial response dynamics of the histone H2AX, consisting of 143 residues, by a coarse-grained bond fluctuating model for a broad range of normalized temperatures. A knowledge-based interaction matrix is used as input for the residue-residue Lennard-Jones potential.We find a variety of equilibrium structures including global globular configurations at low normalized temperature (T* = 0.014, combination of segmental globules and elongated chains (T* = 0.016,0.017, predominantly elongated chains (T* = 0.019,0.020, as well as universal SAW conformations at high normalized temperature (T* ≥ 0.023. The radius of gyration of the protein exhibits a non-monotonic temperature dependence with a maximum at a characteristic temperature (T(c* = 0.019 where a crossover occurs from a positive (stretching at T* ≤ T(c* to negative (contraction at T* ≥ T(c* thermal response on increasing T*.

  6. Size-dependent plastic deformation characteristics in He-irradiated nanostructured Cu/Mo multilayers: Competition between dislocation-boundary and dislocation-bubble interactions

    International Nuclear Information System (INIS)

    Zhang, J.Y.; Zeng, F.L.; Wu, K.; Wang, Y.Q.; Liang, X.Q.; Liu, G.; Zhang, G.J.; Sun, J.

    2016-01-01

    Nanoindentation methodology was used to investigate the plastic deformation characteristics, including the hardness (H), strain rate sensitivity (SRS, m) and activation volume (V * ), of Cu/Mo nanostructured metallic multilayers (NMMs) with equal layer thickness (h) spanning from 10 to 200 nm before and after He-implantation at room temperature. Compared with the as-deposited Cu/Mo NMMs, the irradiated Cu/Mo samples exhibited the enhanced hardness particularly at great h, which is caused by the bubble-hardening effect. Unlike the as-deposited Cu/Mo NMMs displayed a monotonic increase in SRS (or a monotonic decrease in activation volume) with reducing h, the irradiated Cu/Mo samples manifested an unexpected non-monotonic variation in SRS as well as in activation volume. It was clearly unveiled that the SRS of irradiated Cu/Mo firstly decreased with reducing h down to a critical size of ~50 nm and subsequently increased with further reducing h, leaving a minimum value at the critical h. These phenomena are rationalized by considering a competition between dislocation-boundary and dislocation-bubble interactions. A thermally activated model based on the depinning process of bowed-out partial dislocations was employed to quantitatively account for the size-dependent SRS of Cu/Mo NMMs before and after irradiation. Our findings not only provide fundamental understanding of the effects of radiation-induced defects on plastic characteristics of NMMs, but also offer guidance for their microstructure sensitive design for performance optimization at extremes.

  7. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS: challenges for brain-state dependent tDCS

    Directory of Open Access Journals (Sweden)

    Anirban eDutta

    2015-08-01

    Full Text Available Transcranial direct current stimulation (tDCS has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG. Respective neural activity (energy demand has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF that supplies glucose (energy supply via neurovascular coupling. The hemodynamic response can be captured by near-infrared spectroscopy (NIRS, which enables continuous monitoring of cerebral oxygenation and blood volume. This neurovascular coupling phenomenon led to the concept of neurovascular unit (NVU that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Here, recent works suggest NVU as an integrated system working in concert using feedback mechanisms to enable proper brain homeostasis and function where the challenge remains in capturing these mostly nonlinear spatiotemporal interactions within NVU during tDCS. Therefore, we propose EEG-NIRS-based whole-head monitoring of tDCS-induced neuronal and hemodynamic alterations for brain-state dependent tDCS.

  8. Temperature-dependent transitions between normal and inverse isotope effects pertaining to the interaction of H-H and C-H bonds with transition metal centers.

    Science.gov (United States)

    Parkin, Gerard

    2009-02-17

    Deuterium kinetic isotope effects (KIEs) serve as versatile tools to infer details about reaction mechanisms and the nature of transition states, while equilibrium isotope effects (EIEs) associated with the site preferences of hydrogen and deuterium enable researchers to study aspects of molecular structure. Researchers typically interpret primary deuterium isotope effects based on two simple guidelines: (i) the KIE for an elementary reaction is normal (k(H)/k(D) > 1) and (ii) the EIE is dictated by deuterium preferring to be located in the site corresponding to the highest frequency oscillator. In this Account, we evaluate the applicability of these rules to the interactions of H-H and C-H bonds with a transition metal center. Significantly, experimental and computational studies question the predictability of primary EIEs in these systems based on the notion that deuterium prefers to occupy the highest frequency oscillator. In particular, the EIEs for (i) formation of sigma-complexes by coordination of H-H and C-H bonds and (ii) oxidative addition of dihydrogen exhibit unusual temperature dependencies, such that the same system may demonstrate both normal (i.e., K(H)/K(D) > 1) and inverse (i.e., K(H)/K(D) ZPE (where SYM is the symmetry factor, MMI is the mass-moment of inertia term, EXC is the excitation term, and ZPE is the zero-point energy term), and the distinctive temperature profile results from the inverse ZPE (enthalpy) and normal [SYM x MMI x EXC] (entropy) components opposing each other and having different temperature dependencies. At low temperatures, the ZPE component dominates and the EIE is inverse, while at high temperatures, the [SYM x MMI x EXC] component dominates and the EIE is normal. The inverse nature of the ZPE term is a consequence of the rotational and translational degrees of freedom of RH (R = H, CH(3)) becoming low-energy isotopically sensitive vibrations in the product, while the normal nature of the [SYM x MMI x EXC] component

  9. Role of Interaction and Nucleoside Diphosphate Kinase B in Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Function by cAMP-Dependent Protein Kinase A.

    Directory of Open Access Journals (Sweden)

    Lee A Borthwick

    Full Text Available Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-dependent protein kinase A (PKA and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2 forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation. Furthermore, an NDPK-B derived peptide (but not its NDPK-A equivalent disrupts the NDPK-B/CFTR complex in vitro (19-mers comprising amino acids 36-54 from NDPK-B or NDPK-A. Overlay (Far-Western and Surface Plasmon Resonance (SPR analysis both demonstrate that NDPK-B binds CFTR within its first nucleotide binding domain (NBD1, CFTR amino acids 351-727. Analysis of chloride currents reflective of CFTR or outwardly rectifying chloride channels (ORCC, DIDS-sensitive showed that the 19-mer NDPK-B peptide (but not its NDPK-A equivalent reduced both chloride conductances. Additionally, the NDPK-B (but not NDPK-A peptide also attenuated acetylcholine-induced intestinal short circuit currents. In silico analysis of the NBD1/NDPK-B complex reveals an extended interaction surface between the two proteins. This binding zone is also target of the 19-mer NDPK-B peptide, thus confirming its capability to disrupt NDPK-B/CFTR complex. We propose that NDPK-B forms part of the complex that controls chloride currents in epithelia.

  10. Proton NMR studies of Cucurbita maxima trypsin inhibitors: Evidence for pH-dependent conformational change and his25 - try27 interaction

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthi, R.; Chanlan Sun Lin; Yuxi Gong (Kansas State Univ., Manhattan (United States)); VanderVelde, D. (Univ. of Kansas, Lawrence (United States)); Hahn, K. (Univ. of Colorado, Denver (United States))

    1992-01-28

    A pH-dependent His25-Tyr27 interaction was demonstrated in the case of Cucurbita maxima trypsin inhibitors (CMTI-I and CMTI-III) by means of nuclear magnetic resonance (NMR) spectroscopy. pH titration, line widths, peak shapes, deuterium exchange kinetics, and two-dimensional nuclear Overhauser effect spectroscopy (NOESY) were employed to characterize a conformational change involving Tyr27, which was shown to be triggered by deprotonation of His25 around pH 6. A hydrogen bond is proposed to be formed between N{sub {epsilon}} of His25 and OH of Tyr27, as a distance between the atoms, His25 N{epsilon} and Tyr25 OH, of 3.02 {angstrom} is consistent with a model built with NOE-derived distance constraints. The presently characterized relative orientations of His25 and Tyr27 are of functional significance, as these residues make contact with the enzyme in the enzyme-inhibitor complex. Furthermore, trypsin assay and inhibitor-binding studies showed that conformations of trypsin and the squash inhibitor complex. Furthermore, trypsin assay and inhibitor-binding studies showed that conformations of trypsin and the squash inhibitor were functionally relevant only in the pH range 6-8. The pK{sub a} of His25 was determined and found to be influenced by Glu9/Lys substitution and by the hydrolysis of the reactive-site peptide bond between Arg5 and Ile6. As these sites are located far (>10 {angstrom}) from His25, the results point out conformational changes that are propagated to a distant site in the protein molecule.

  11. The role of Rydberg and continuum levels in computing high harmonic generation spectra of the hydrogen atom using time-dependent configuration interaction

    International Nuclear Information System (INIS)

    Luppi, Eleonora; Head-Gordon, Martin

    2013-01-01

    We study the role of Rydberg bound-states and continuum levels in the field-induced electronic dynamics associated with the High-Harmonic Generation (HHG) spectroscopy of the hydrogen atom. Time-dependent configuration-interaction (TD-CI) is used with very large atomic orbital (AO) expansions (up to L= 4 with sextuple augmentation and off-center functions) to describe the bound Rydberg levels, and some continuum levels. To address the lack of ionization losses in TD-CI with finite AO basis sets, we employed a heuristic lifetime for energy levels above the ionization potential. The heuristic lifetime model is compared against the conventional atomic orbital treatment (infinite lifetimes), and a third approximation which is TD-CI using only the bound levels (continuum lifetimes go to zero). The results suggest that spectra calculated using conventional TD-CI do not converge with increasing AO basis set size, while the zero lifetime and heuristic lifetime models converge to qualitatively similar spectra, with implications for how best to apply bound state electronic structure methods to simulate HHG. The origin of HHG spectral features including the cutoff and extent of interference between peaks is uncovered by separating field-induced coupling between different types of levels (ground state, bound Rydberg levels, and continuum) in the simulated electronic dynamics. Thus the origin of deviations between the predictions of the semi-classical three step model and the full simulation can be associated with particular physical contributions, which helps to explain both the successes and the limitations of the three step model

  12. Size-dependent plastic deformation characteristics in He-irradiated nanostructured Cu/Mo multilayers: Competition between dislocation-boundary and dislocation-bubble interactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.Y.; Zeng, F.L.; Wu, K.; Wang, Y.Q.; Liang, X.Q.; Liu, G., E-mail: lgsammer@mail.xjtu.edu.cn; Zhang, G.J.; Sun, J., E-mail: junsun@mail.xjtu.edu.cn

    2016-09-15

    Nanoindentation methodology was used to investigate the plastic deformation characteristics, including the hardness (H), strain rate sensitivity (SRS, m) and activation volume (V{sup *}), of Cu/Mo nanostructured metallic multilayers (NMMs) with equal layer thickness (h) spanning from 10 to 200 nm before and after He-implantation at room temperature. Compared with the as-deposited Cu/Mo NMMs, the irradiated Cu/Mo samples exhibited the enhanced hardness particularly at great h, which is caused by the bubble-hardening effect. Unlike the as-deposited Cu/Mo NMMs displayed a monotonic increase in SRS (or a monotonic decrease in activation volume) with reducing h, the irradiated Cu/Mo samples manifested an unexpected non-monotonic variation in SRS as well as in activation volume. It was clearly unveiled that the SRS of irradiated Cu/Mo firstly decreased with reducing h down to a critical size of ~50 nm and subsequently increased with further reducing h, leaving a minimum value at the critical h. These phenomena are rationalized by considering a competition between dislocation-boundary and dislocation-bubble interactions. A thermally activated model based on the depinning process of bowed-out partial dislocations was employed to quantitatively account for the size-dependent SRS of Cu/Mo NMMs before and after irradiation. Our findings not only provide fundamental understanding of the effects of radiation-induced defects on plastic characteristics of NMMs, but also offer guidance for their microstructure sensitive design for performance optimization at extremes.

  13. Scale Dependence of Land Atmosphere Interactions in Wet and Dry Regions as Simulated with NU-WRF over the Southwestern and Southeast US

    Science.gov (United States)

    Zhou, Yaping; Wu, Di; Lau, K.- M.; Tao, Wei-Kuo

    2016-01-01

    Large-scale forcing and land-atmosphere interactions on precipitation are investigated with NASA-Unified WRF (NU-WRF) simulations during fast transitions of ENSO phases from spring to early summer of 2010 and 2011. The model is found to capture major precipitation episodes in the 3-month simulations without resorting to nudging. However, the mean intensity of the simulated precipitation is underestimated by 46% and 57% compared with the observations in dry and wet regions in the southwestern and south-central United States, respectively. Sensitivity studies show that large-scale atmospheric forcing plays a major role in producing regional precipitation. A methodology to account for moisture contributions to individual precipitation events, as well as total precipitation, is presented under the same moisture budget framework. The analysis shows that the relative contributions of local evaporation and large-scale moisture convergence depend on the dry/wet regions and are a function of temporal and spatial scales. While the ratio of local and large-scale moisture contributions vary with domain size and weather system, evaporation provides a major moisture source in the dry region and during light rain events, which leads to greater sensitivity to soil moisture in the dry region and during light rain events. The feedback of land surface processes to large-scale forcing is well simulated, as indicated by changes in atmospheric circulation and moisture convergence. Overall, the results reveal an asymmetrical response of precipitation events to soil moisture, with higher sensitivity under dry than wet conditions. Drier soil moisture tends to suppress further existing below-normal precipitation conditions via a positive soil moisture-land surface flux feedback that could worsen drought conditions in the southwestern United States.

  14. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1)

    DEFF Research Database (Denmark)

    Dettori, Rosalia; Sonzogni, Silvina; Meyer, Lucas

    2009-01-01

    of numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites......, the activation loop and the Z/TM in the C-terminal extension. We provide evidence that phosphorylation of the Z/TM site of PRK2 inhibits its interaction with PDK1. Our studies further provide a mechanistic model to explain different steps in the docking interaction and regulation. Interestingly, we found...... that the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2 and do...

  15. A multi-angular mass spectrometric view at cyclic nucleotide signaling proteins : Structure/function and protein interactions of cAMP- and cGMP-dependent protein kinase

    NARCIS (Netherlands)

    Scholten, A.

    2006-01-01

    The primary focus of this thesis is the two kinases PKA and PKG, cAMP and cGMP dependent protein kinase respectively. PKA and PKG are studied both at structure/function level as well as at the level of interaction with other proteins in tissue. Our primary methods are all based on mass spectrometry.

  16. Temperature Dependence of the Spin-Hall Conductivity of a Two-Dimensional Impure Rashba Electron Gas in the Presence of Electron-Phonon and Electron-Electron Interactions

    Science.gov (United States)

    Yavari, H.; Mokhtari, M.; Bayervand, A.

    2015-03-01

    Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.

  17. Effective interactions

    International Nuclear Information System (INIS)

    Elliott, J.P.

    1981-01-01

    This chapter attempts to describe and compare some of the more important nucleon-nucleon interactions that have been used in nuclear structure calculations, and to relate them where possible to the real nucleon-nucleon interaction. Explains that different interactions have been used depending on whether one is fitting to total binding energies and densities with a Hartree Fock (HF) calculation or fitting to spectra and spectroscopic data in a shell model calculation. Examines both types of calculation after two preliminary sections concerned with notation and with the philosophy underlying the use of model spaces and effective interactions. Discusses Skyrme interactions, finite range interactions, small model space, large model space, and the Sussex potential matrix elements. Focuses on the more empirical approaches in which a simple form is chosen for the effective interaction in a given model space and the parameters are deduced from fitting many-body data

  18. Why most flavor-dependence predictions for nonleptonic charm decays are wrong: flavor symmetry and final-state interactions in nonleptonic decays of charmed hadrons

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1980-09-01

    Nonleptonic weak decays of strange hadrons are complicated by the interplay of weak and strong interactions. Models based either on symmetry properties or on the selection of certain types of diagrams are both open to criticism. The symmetries used are all broken in strong interactions, and the selection of some diagrams and neglect of others is never seriously justified. Furthermore, the number of related decays of strange hadrons is small, so that experimental data are insufficient for singificant tests of phenomenological models with a few free parameters. The discovery of charmed particles with many open channels for nonleptonic decays has provided a new impetus for a theoretical understanding of these processes. The GIM current provides a well defined weak hamiltonian, which can justifiably be used to first order. The QCD approach to strong interactions gives flavor-indpendent couplings and flavor symmetry broken only by quark masses. In a model with n generations of quarks and 2n flavors, a flavor symmetry group SU(2n) can be defined which is broken only by H/sub weak/ and the quark masses.Here again, the same two approaches by symmetry and dynamics have been used. But both types of treatment tend to consider only the symmetry properties or dominant diagrams of the weak interaction, including some subtle effects, while overlooking rather obvious effects of strong interactions

  19. Induction of Apoptosis by the Severe Acute Respiratory Syndrome Coronavirus 7a Protein Is Dependent on Its Interaction with the Bcl-XL Protein▿

    Science.gov (United States)

    Tan, Ying-Xim; Tan, Timothy H. P.; Lee, Marvin J.-R.; Tham, Puay-Yoke; Gunalan, Vithiagaran; Druce, Julian; Birch, Chris; Catton, Mike; Fu, Nai Yang; Yu, Victor C.; Tan, Yee-Joo

    2007-01-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) 7a protein, which is not expressed by other known coronaviruses, can induce apoptosis in various cell lines. In this study, we show that the overexpression of Bcl-XL, a prosurvival member of the Bcl-2 family, blocks 7a-induced apoptosis, suggesting that the mechanism for apoptosis induction by 7a is at the level of or upstream from the Bcl-2 family. Coimmunoprecipitation experiments showed that 7a interacts with Bcl-XL and other prosurvival proteins (Bcl-2, Bcl-w, Mcl-1, and A1) but not with the proapoptotic proteins (Bax, Bak, Bad, and Bid). A good correlation between the abilities of 7a deletion mutants to induce apoptosis and to interact with Bcl-XL was observed, suggesting that 7a triggers apoptosis by interfering directly with the prosurvival function of Bcl-XL. Interestingly, amino acids 224 and 225 within the C-terminal transmembrane domain of Bcl-XL are essential for the interaction with the 7a protein, although the BH3 domain of Bcl-XL also contributes to this interaction. In addition, fractionation experiments showed that 7a colocalized with Bcl-XL at the endoplasmic reticulum as well as the mitochondria, suggesting that they may form complexes in different membranous compartments. PMID:17428862

  20. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence.

    Science.gov (United States)

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P; Lichtman, Aron H; Carroll, F Ivy; Greenwald, Mark; Miles, Michael F; Damaj, M Imad

    2017-05-15

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U RNA.

    Directory of Open Access Journals (Sweden)

    Tiago Antonio de Souza

    Full Text Available Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC, a translin-associated factor X (CsTRAX, a VirE2-interacting protein (CsVIP2, a high mobility group (CsHMG and two poly(A-binding proteins (CsPABP1 and 2, interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control.

  2. Atomistic simulation of femtosecond laser pulse interactions with a copper film: Effect of dependency of penetration depth and reflectivity on electron temperature

    Science.gov (United States)

    Amouye Foumani, A.; Niknam, A. R.

    2018-01-01

    The response of copper films to irradiation with laser pulses of fluences in the range of 100-6000 J/m2 is simulated by using a modified combination of a two-temperature model (TTM) and molecular dynamics (MD). In this model, the dependency of the pulse penetration depth and the reflectivity of the target on electron temperature are taken into account. Also, the temperature-dependent electron-phonon coupling factor, electron thermal conductivity, and electron heat capacity are used in the simulations. Based on this model, the dependence of the integral reflectivity on pulse fluence, the changes in the film thickness, and the evolution of density and electron and lattice temperatures are obtained. Moreover, snapshots that show the melting and disintegration processes are presented. The disintegration starts at a fluence of 4200 J/m2, which corresponds with an absorbed fluence of 616 J/m2. The calculated values of integral reflectivity are in good agreement with the experimental data. The inclusion of such temperature-dependent absorption models in the TTM-MD method would facilitate the comparison of experimental data with simulation results.

  3. Competition between heavy fermion and Kondo interaction in isoelectronic A-site-ordered perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, D.; Middey, S.; Cheng, J. -G.; Mukherjee, Swarnakamal; Gray, B. A.; Cao, Yanwei; Zhou, J. -S.; Goodenough, J. B.; Choi, Yongseong; Haskel, D.; Freeland, J. W.; Saha-Dasgupta, T.; Chakhalian, J.

    2014-12-17

    With current research efforts shifting towards the 4d and 5d transition metal oxides, understanding the evolution of the electronic and magnetic structure as one moves away from 3d materials is of critical importance. Here we perform X-ray spectroscopy and electronic structure calculations on A-site-ordered perovskites with Cu in the A-site and the B-sites descending along the ninth group of the periodic table to elucidate the emerging properties as d-orbitals change from partially filled 3d to 4d to 5d. The results show that when descending from Co to Ir, the charge transfers from the cuprate-like Zhang-Rice state on Cu to the t2g orbital of the B site. As the Cu d-orbital occupation approaches the Cu2þ limit, a mixed valence state in CaCu3Rh4O12 and heavy fermion state in CaCu3Ir4O12 are obtained. The investigated d-electron compounds are mapped onto the Doniach phase diagram of the competing RKKY and Kondo interactions developed for the f-electron systems.

  4. Interactions of beta-blockers with model lipid membranes: Molecular view of the interaction of acebutolol, oxprenolol, and propranolol with phosphatidylcholine vesicles by time-dependent fluorescence shift and molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Först, G.; Cwiklik, Lukasz; Jurkiewicz, Piotr; Schubert, R.; Hof, Martin

    2014-01-01

    Roč. 87, č. 3 (2014), s. 559-569 ISSN 0939-6411 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : Drug-membrane interaction s * Dtmac * Generalized polarization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.383, year: 2014

  5. The interaction between the iron-responsive element binding protein and its cognate RNA is highly dependent upon both RNA sequence and structure.

    Science.gov (United States)

    Jaffrey, S R; Haile, D J; Klausner, R D; Harford, J B

    1993-09-25

    To assess the influence of RNA sequence/structure on the interaction RNAs with the iron-responsive element binding protein (IRE-BP), twenty eight altered RNAs were tested as competitors for an RNA corresponding to the ferritin H chain IRE. All changes in the loop of the predicted IRE hairpin and in the unpaired cytosine residue characteristically found in IRE stems significantly decreased the apparent affinity of the RNA for the IRE-BP. Similarly, alteration in the spacing and/or orientation of the loop and the unpaired cytosine of the stem by either increasing or decreasing the number of base pairs separating them significantly reduced efficacy as a competitor. It is inferred that the IRE-BP forms multiple contacts with its cognate RNA, and that these contacts, acting in concert, provide the basis for the high affinity of this interaction.

  6. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Berbís, M. Álvaro [Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid (Spain); André, Sabine [Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539 Munich (Germany); Cañada, F. Javier [Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid (Spain); Pipkorn, Rüdiger [Central Peptide Synthesis Unit, German Cancer Research Center, 69120 Heidelberg (Germany); Ippel, Hans [Department of Biochemistry, CARIM, University of Maastricht, Maastricht (Netherlands); Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Mayo, Kevin H. [Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Kübler, Dieter [Biomolecular Interactions, German Cancer Research Center, 69120 Heidelberg (Germany); Gabius, Hans-Joachim [Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians University, 80539 Munich (Germany); Jiménez-Barbero, Jesús, E-mail: jjbarbero@cib.csic.es [Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid (Spain)

    2014-01-03

    Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence unique in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with {sup 15}N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein.

  7. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner

    International Nuclear Information System (INIS)

    Berbís, M. Álvaro; André, Sabine; Cañada, F. Javier; Pipkorn, Rüdiger; Ippel, Hans; Mayo, Kevin H.; Kübler, Dieter; Gabius, Hans-Joachim; Jiménez-Barbero, Jesús

    2014-01-01

    Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence unique in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with 15 N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein

  8. On the existence of weak solution to the coupled fluid-structure interaction problem for non-Newtonian shear-dependent fluid

    Czech Academy of Sciences Publication Activity Database

    Hundertmark-Zaušková, A.; Lukáčová-Medviďová, M.; Nečasová, Šárka

    2016-01-01

    Roč. 68, č. 1 (2016), s. 193-243 ISSN 0025-5645 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : non-Newtonian fluids * fluid-structure interaction * shear-thinning fluids Subject RIV: BA - General Mathematics Impact factor: 0.592, year: 2016 http://projecteuclid.org/euclid.jmsj/1453731541

  9. Testosterone-Dependent Interaction between Androgen Receptor and Aryl Hydrocarbon Receptor Induces Liver Receptor Homolog 1 Expression in Rat Granulosa Cells

    Science.gov (United States)

    Wu, Yanguang; Baumgarten, Sarah C.; Zhou, Ping

    2013-01-01

    Androgens play a major role in the regulation of normal ovarian function; however, they are also involved in the development of ovarian pathologies. These contrasting effects may involve a differential response of granulosa cells to the androgens testosterone (T) and dihydrotestosterone (DHT). To determine the molecular pathways that mediate the distinct effects of T and DHT, we studied the expression of the liver receptor homolog 1 (LRH-1) gene, which is differentially regulated by these steroids. We found that although both T and DHT stimulate androgen receptor (AR) binding to the LRH-1 promoter, DHT prevents T-mediated stimulation of LRH-1 expression. T stimulated the expression of aryl hydrocarbon receptor (AHR) and its interaction with the AR. T also promoted the recruitment of the AR/AHR complex to the LRH-1 promoter. These effects were not mimicked by DHT. We also observed that the activation of extracellular regulated kinases by T is required for AR and AHR interaction. In summary, T, but not DHT, stimulates AHR expression and the interaction between AHR and AR, leading to the stimulation of LRH-1 expression. These findings could explain the distinct response of granulosa cells to T and DHT and provide a molecular mechanism by which DHT negatively affects ovarian function. PMID:23689136

  10. GANP regulates the choice of DNA repair pathway by DNA-PKcs interaction in AID-dependent IgV region diversification.

    Science.gov (United States)

    Eid, Mohammed Mansour Abbas; Maeda, Kazuhiko; Almofty, Sarah Ameen; Singh, Shailendra Kumar; Shimoda, Mayuko; Sakaguchi, Nobuo

    2014-06-15

    RNA export factor germinal center-associated nuclear protein (GANP) interacts with activation-induced cytidine deaminase (AID) and shepherds it from the cytoplasm to the nucleus and toward the IgV region loci in B cells. In this study, we demonstrate a role for GANP in the repair of AID-initiated DNA damage in chicken DT40 B cells to generate IgV region diversity by gene conversion and somatic hypermutation. GANP plays a positive role in IgV region diversification of DT40 B cells in a nonhomologous end joining-proficient state. DNA-PKcs physically interacts with GANP, and this interaction is dissociated by dsDNA breaks induced by a topoisomerase II inhibitor, etoposide, or AID overexpression. GANP affects the choice of DNA repair mechanism in B cells toward homologous recombination rather than nonhomologous end joining repair. Thus, GANP presumably plays a critical role in protection of the rearranged IgV loci by favoring homologous recombination of the DNA breaks under accelerated AID recruitment. Copyright © 2014 by The American Association of Immunologists, Inc.

  11. Evaluations of in vitro metabolism, drug-drug interactions mediated by reversible and time-dependent inhibition of CYPs, and plasma protein binding of MMB4 DMS.

    Science.gov (United States)

    Hong, S Peter; Lusiak, Bozena D; Burback, Brian L; Johnson, Jerry D

    2013-01-01

    1,1'-Methylenebis[4-[(hydroxyimino)methyl]-pyridinium] (MMB4) dimethanesulfonate (DMS) is a bisquaternary pyridinium aldoxime that reactivates acetylcholinesterase inhibited by organophosphorus nerve agent. Drug metabolism and plasma protein binding for MMB4 DMS were examined using various techniques and a wide range of species. When (14)C-MMB4 DMS was incubated in liver microsomes, 4-pyridine aldoxime (4-PA) and an additional metabolite were detected in all species tested. Identity of the additional metabolite was postulated to be isonicotinic acid (INA) based on liquid chromatography with a tandem mass spectrometry analysis, which was confirmed by comparison with authentic INA. Formation of INA was dependent on species, with the highest level found in monkey liver microsomes. The MMB4 DMS exhibited reversible inhibition in a concentration-dependent manner toward cytochrome P450 1A2 (CYP1A2), CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in human liver microsomes showing the highest inhibition for CYP2D6. Human recombinant CYPs were used to evaluate inhibitory curves more adequately and determine detailed kinetic constants for reversible inhibition and potential time-dependent inhibition (TDI). The MMB4 DMS exhibited reversible inhibition toward human-recombinant CYP2D6 with an inhibition constant (K i) value of 66.6 µmol/L. Based on the k inact/K I values, MMB4 DMS was found to exhibit the most potent TDI toward CYP2D6. The MMB4 DMS at 5 different concentrations was incubated in plasma for 5 hours using an equilibrium dialysis device. For all species tested, there were no concentration-dependent changes in plasma protein binding, ranging from 10% to 17%. These results suggest that MMB4 was not extensively bound to plasma protein, and there were no overt species-related differences in the extent of MMB4 bound to plasma protein.

  12. Computational Investigation of Environment-Noise Interaction in Single-Cell Organisms: The Merit of Expression Stochasticity Depends on the Quality of Environmental Fluctuations.

    Science.gov (United States)

    Lück, Anja; Klimmasch, Lukas; Großmann, Peter; Germerodt, Sebastian; Kaleta, Christoph

    2018-01-10

    Organisms need to adapt to changing environments and they do so by using a broad spectrum of strategies. These strategies include finding the right balance between expressing genes before or when they are needed, and adjusting the degree of noise inherent in gene expression. We investigated the interplay between different nutritional environments and the inhabiting organisms' metabolic and genetic adaptations by applying an evolutionary algorithm to an agent-based model of a concise bacterial metabolism. Our results show that constant environments and rapidly fluctuating environments produce similar adaptations in the organisms, making the predictability of the environment a major factor in determining optimal adaptation. We show that exploitation of expression noise occurs only in some types of fluctuating environment and is strongly dependent on the quality and availability of nutrients: stochasticity is generally detrimental in fluctuating environments and beneficial only at equal periods of nutrient availability and above a threshold environmental richness. Moreover, depending on the availability and nutritional value of nutrients, nutrient-dependent and stochastic expression are both strategies used to deal with environmental changes. Overall, we comprehensively characterize the interplay between the quality and periodicity of an environment and the resulting optimal deterministic and stochastic regulation strategies of nutrient-catabolizing pathways.

  13. An inelastic neutron scattering determination of the temperature dependence of the 3d-4f exchange interaction in Sm2Fe17

    International Nuclear Information System (INIS)

    Solodovnikov, Anton; Loewenhaupt, Michael; Moze, Oscar; Kuz'min, Michael D.; Bewley, Robert

    2002-01-01

    High energy transfer inelastic neutron scattering has been used to investigate the temperature dependence in the range from 20 to 450 K of the intermultiplet transition E inter in the intermetallic compound Sm 2 Fe 17 . The peak due to this transition, observed in the inelastic neutron spectrum, shifts to lower energies with increasing temperature. From the temperature dependence of E inter , the temperature dependence of the exchange field B ex acting on the Sm ion has been established experimentally, as the energy of the intermultiplet transition provides a direct value for the exchange field. At the highest measured temperature T=450 K, which is above the Curie point of 389 K for this compound, the transition energy is situated just above the bare spin-orbit splitting for Sm 3+ . The method utilized in the present investigation offers a rather easy and direct way to determine B ex in a large range of Sm intermetallics, which form an interesting class of hard magnetic materials

  14. The Vitamin B12-Dependent Photoreceptor AerR Relieves Photosystem Gene Repression by Extending the Interaction of CrtJ with Photosystem Promoters

    Directory of Open Access Journals (Sweden)

    Mingxu Fang

    2017-03-01

    Full Text Available Purple nonsulfur bacteria adapt their physiology to a wide variety of environmental conditions often through the control of transcription. One of the main transcription factors involved in controlling expression of the Rhodobacter capsulatus photosystem is CrtJ, which functions as an aerobic repressor of photosystem genes. Recently, we reported that a vitamin B12 binding antirepressor of CrtJ called AerR is required for anaerobic expression of the photosystem. However, the mechanism whereby AerR regulates CrtJ activity is unclear. In this study, we used a combination of next-generation sequencing and biochemical methods to globally identify genes under control of CrtJ and the role of AerR in controlling this regulation. Our results indicate that CrtJ has a much larger regulon than previously known, with a surprising regulatory function under both aerobic and anaerobic photosynthetic growth conditions. A combination of in vivo chromatin immunoprecipitation-DNA sequencing (ChIP-seq and ChIP-seq and exonuclease digestion (ChIP-exo studies and in vitro biochemical studies demonstrate that AerR forms a 1:2 complex with CrtJ (AerR-CrtJ2 and that this complex binds to many promoters under photosynthetic conditions. The results of in vitro and in vivo DNA binding studies indicate that AerR-CrtJ2 anaerobically forms an extended interaction with the bacteriochlorophyll bchC promoter to relieve repression by CrtJ. This is contrasted by aerobic growth conditions where CrtJ alone functions as an aerobic repressor of bchC expression. These results indicate that the DNA binding activity of CrtJ is modified by interacting with AerR in a redox-regulated manner and that this interaction alters CrtJ’s function.

  15. The phosphomimetic mutation of syndecan-4 binds and inhibits Tiam1 modulating Rac1 activity in PDZ interaction-dependent manner.

    Directory of Open Access Journals (Sweden)

    Aniko Keller-Pinter

    Full Text Available The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs. Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu mutant of syndecan-4 (SDC4. SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1 to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1-RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways.

  16. The phosphomimetic mutation of syndecan-4 binds and inhibits Tiam1 modulating Rac1 activity in PDZ interaction-dependent manner.

    Science.gov (United States)

    Keller-Pinter, Aniko; Ughy, Bettina; Domoki, Monika; Pettko-Szandtner, Aladar; Letoha, Tamas; Tovari, Jozsef; Timar, Jozsef; Szilak, Laszlo

    2017-01-01

    The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs). Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu) mutant of syndecan-4 (SDC4). SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1) to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1-RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s) reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways.

  17. Intracellular interactions between APOBEC3G, RNA, and HIV-1 Gag: APOBEC3G multimerization is dependent on its association with RNA

    OpenAIRE

    Friew, Yeshitila N; Boyko, Vitaly; Hu, Wei-Shau; Pathak, Vinay K

    2009-01-01

    Abstract Background Host restriction factor APOBEC3G (A3G) blocks human immunodeficiency virus type 1 (HIV-1) replication by G-to-A hypermutation, and by inhibiting DNA synthesis and provirus formation. Previous reports have suggested that A3G is a dimer and its virion incorporation is mediated through interactions with viral or nonviral RNAs and/or HIV-1 Gag. We have now employed a bimolecular fluorescence complementation assay (BiFC) to analyze the intracellular A3G-A3G, A3G-RNA, and A3G-Ga...

  18. Temperature dependence of magnetotransport behavior and its correlation with inter-particle interaction in Cu100−xCox granular films

    International Nuclear Information System (INIS)

    Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2013-01-01

    Granular Cu 100−x Co x (x=15.1-30.9) films were deposited by magnetron co-sputtering and their magnetotransport properties were investigated as a function of temperature. We observed that with increasing cobalt content the room temperature magnetoresistance (MR) shows a maximum at x=20.9. With decreasing temperature, it is observed that the cobalt concentration at which the maximum MR occurs shifts progressively towards lower Co concentration. This behavior has been discussed in terms of the inter-particle magnetic interactions.

  19. Plasma membrane Ca2+-ATPase 4: interaction with constitutive nitric oxide synthases in human sperm and prostasomes which carry Ca2+/CaM-dependent serine kinase

    OpenAIRE

    Andrews, Rachel E.; Galileo, Deni S.; Martin-DeLeon, Patricia A.

    2015-01-01

    Deletion of the gene encoding the widely conserved plasma membrane calcium ATPase 4 (PMCA4), a major Ca2+ efflux pump, leads to loss of sperm motility and male infertility in mice. PMCA4's partners in sperm and how its absence exerts its effect on fertility are unknown. We hypothesize that in sperm PMCA4 interacts with endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) which are rapidly activated by Ca2+, and that these fertility-modulating proteins are present...

  20. Promotion of DNA strand breaks in cocultured mononuclear leukocytes by protein kinase C-dependent prooxidative interactions of benoxaprofen, human polymorphonuclear leukocytes, and ultraviolet radiation

    International Nuclear Information System (INIS)

    Schwalb, G.; Beyers, A.D.; Anderson, R.; Nel, A.E.

    1988-01-01

    At concentrations of 5 micrograms/ml and greater the nonsteroidal antiinflammatory drug benoxaprofen caused dose-related activation of lucigenin-enhanced chemiluminescence in human polymorphonuclear leukocytes (PMNL). Benoxaprofen-mediated activation of lucigenin-enhanced chemiluminescence by PMNL was increased by UV radiation and was particularly sensitive to inhibition by the selective protein kinase C inhibitor H-7. To identify the molecular mechanism of the prooxidative activity of benoxaprofen, the effects of the nonsteroidal antiinflammatory drug on the activity of purified protein kinase C in a cell-free system were investigated. Benoxaprofen caused a dose-related activation of protein kinase C by interaction with the binding site for the physiological activator phosphatidylserine, but could not replace diacylglycerol. When autologous mononuclear leukocytes (MNL) were cocultured with PMNL and benoxaprofen in combination, but not individually, the frequency of DNA strand breaks in MNL was markedly increased. UV radiation significantly potentiated damage to DNA mediated by benoxaprofen and PMNL. Inclusion of superoxide dismutase, H-7, and, to a much lesser extent, catalase during exposure of MNL to benoxaprofen-activated PMNL prevented oxidant damage to DNA. These results clearly demonstrate that potentially carcinogenic prooxidative interactions, which are unlikely to be detected by conventional assays of mutagenicity, may occur between phagocytes, UV radiation, and certain pharmacological agents

  1. Energy dependence of identified hadron spectra and event-by-event fluctuations in p+p interactions from NA61/SHINE at the CERN SPS

    CERN Document Server

    Rybczynski, Maciej; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Argyriades, J.; Baatar, B.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bravar, A.; Brooks, W.; Brzychczyk, J.; Bubak, A.; Bunyatov, S.A.; Busygina, O.; Christakoglou, P.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Esposito, L.S.; Feofilov, G.A.; Fodor, Z.; Ferrero, A.; Fulop, A.; Gazdzicki, M.; Golubeva, M.; Grabez, B.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Hakobyan, H.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivanov, Y.; Ivashkin, A.; Jakovic, D.; Kadija, K.; Kapoyannis, A.; Katrynska, N.; Kaptur, E.; Kielczewska, D.; Kikola, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kowalski, S.; Krasnoperov, A.; Kuleshov, S.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lyubushkin, V.V.; Mackowiak-Pawlowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A.I.; Maletic, D.; Marchionni, A.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.J.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Mrowczynski, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A.D.; Paul, T.; Pistillo, C.; Redij, A.; Peryt, W.; Petukhov, O.; Planeta, R.; Pluta, J.; Popov, B.A.; Posiadala, M.; Pulawski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Renfordt, R.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Sekiguchi, T.; Seyboth, P.; Shibata, M.; Sipos, M.; Skrzypczak, E.; Slodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Stroebele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V.V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Wlodarczyk, Z.; Wojtaszek, A.; Wyszynski, O.; Zambelli, L.; Zipper, W.

    2013-01-01

    NA61/SHINE at the CERN SPS is a fixed-target experiment pursuing a rich physics program including measurements for heavy ion, neutrino and cosmic ray physics. The main goal of the ion program is to explore the most interesting $T, mu_{B}$ region of the phase diagram of strongly interacting matter. We plan to study the properties of the onset of deconfinement and to search for the signatures of the critical point. The search is performed by varying collision energy (13A-158A GeV/c) and system size (p+p, Be+Be, Ar+Ca, Xe+La). Thanks to its large acceptance and excellent particle identification capability NA61/SHINE is well suited for performing high-precision particle production measurements as well as for studying event-by-event fluctuations in p+p, p+nucleus and nucleus+nucleus collisions. Preliminary results on p+p interactions at 20, 31, 40, 80 and 158 GeV/c are presented. They include inclusive spectra of pi+, pi-, K- and protons as a function of transverse momentum/mass and rapidity as well as event-by-ev...

  2. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    Science.gov (United States)

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  3. Atomic Mass Dependence of $\\Xi^{-}$ Baryon and $\\bar \\Xi^+$ Baryon Production in Central 250-GeV/c $\\pi^-$ - Nucleon Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dagenhart, William David [Tufts U.

    2000-02-01

    We present the first measurement of the atomic mass dependence of central $\\Xi^-$ and $\\overline{\\Xi}^+$ production. It is measured using a sample of 22,459 $\\Xi^-$'s and $\\overline{\\Xi}^+$'s produced in collisions between a 250 GeV/c $\\pi^-$ beam and targets of beryllium, aluminum, copper, and tungsten. The relative cross sections are fit to the two parameter function $\\sigma_0 A^{\\alpha}$, where A is the atomic mass. We measure $\\alpha$ = 0:924 $\\pm$ 0:020 $\\pm$ 0:025, for Feynman-x in the range $\\pm$ 0:09 < $x_F$ < 0:15.

  4. Dependency of multiplicity characteristics of charged secondaries in 12C-nucleus interactions at 4.5 A GeV

    International Nuclear Information System (INIS)

    Saleem Khan, M.; Shukla, Praveen Prakash; Khushnood, H.

    2017-01-01

    The noncentral events of ultrarelativistic heavy ion collisions (URHIC) might produce extremely strong magnetic field, which, depending on the transport properties of the medium, may be still strong and homogeneous during the lifetime of partonic medium. Therefore, the strong magnetic field could have affected the properties of QCD medium, hence the e ect of magnetic field may be probed via the hydrodynamic expansion of the medium by calculating the equation of state. However, we intend to study the magnetic property also, such as magnetization, which determines the response of produced QCD matter in URHIC to the strong magnetic field

  5. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    International Nuclear Information System (INIS)

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-01-01

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  6. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain.

    Science.gov (United States)

    Koch, Miriam; Willi, Jessica; Pradère, Ugo; Hall, Jonathan; Polacek, Norbert

    2017-06-20

    The nascent peptide exit tunnel has recently been identified as a functional region of ribosomes contributing to translation regulation and co-translational protein folding. Inducible expression of the erm resistance genes depends on ribosome stalling at specific codons of an upstream open reading frame in the presence of an exit tunnel-bound macrolide antibiotic. The molecular basis for this translation arrest is still not fully understood. Here, we used a nucleotide analog interference approach to unravel important functional groups on 23S rRNA residues in the ribosomal exit tunnel for ribosome stalling on the ErmC leader peptide. By replacing single nucleobase functional groups or even single atoms we were able to demonstrate the importance of A2062, A2503 and U2586 for drug-dependent ribosome stalling. Our data show that the universally conserved A2062 and A2503 are capable of forming a non-Watson-Crick base pair that is critical for sensing and transmitting the stalling signal from the exit tunnel back to the peptidyl transferase center of the ribosome. The nucleobases of A2062, A2503 as well as U2586 do not contribute significantly to the overall mechanism of protein biosynthesis, yet their elaborate role for co-translational monitoring of nascent peptide chains inside the exit tunnel can explain their evolutionary conservation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kinefuchi, K. [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Funaki, I.; Shimada, T.; Abe, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2012-10-15

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  8. CROSS DRIVE: A New Interactive and Immersive Approach for Exploring 3D Time-Dependent Mars Atmospheric Data in Distributed Teams

    Science.gov (United States)

    Gerndt, Andreas M.; Engelke, Wito; Giuranna, Marco; Vandaele, Ann C.; Neary, Lori; Aoki, Shohei; Kasaba, Yasumasa; Garcia, Arturo; Fernando, Terrence; Roberts, David; CROSS DRIVE Team

    2016-10-01

    Atmospheric phenomena of Mars can be highly dynamic and have daily and seasonal variations. Planetary-scale wavelike disturbances, for example, are frequently observed in Mars' polar winter atmosphere. Possible sources of the wave activity were suggested to be dynamical instabilities and quasi-stationary planetary waves, i.e. waves that arise predominantly via zonally asymmetric surface properties. For a comprehensive understanding of these phenomena, single layers of altitude have to be analyzed carefully and relations between different atmospheric quantities and interaction with the surface of Mars have to be considered. The CROSS DRIVE project tries to address the presentation of those data with a global view by means of virtual reality techniques. Complex orbiter data from spectrometer and observation data from Earth are combined with global circulation models and high-resolution terrain data and images available from Mars Express or MRO instruments. Scientists can interactively extract features from those dataset and can change visualization parameters in real-time in order to emphasize findings. Stereoscopic views allow for perception of the actual 3D behavior of Mars's atmosphere. A very important feature of the visualization system is the possibility to connect distributed workspaces together. This enables discussions between distributed working groups. The workspace can scale from virtual reality systems to expert desktop applications to web-based project portals. If multiple virtual environments are connected, the 3D position of each individual user is captured and used to depict the scientist as an avatar in the virtual world. The appearance of the avatar can also scale from simple annotations to complex avatars using tele-presence technology to reconstruct the users in 3D. Any change of the feature set (annotations, cutplanes, volume rendering, etc.) within the VR is immediately exchanged between all connected users. This allows that everybody is always

  9. Manipulating adenovirus hexon hypervariable loops dictates immune neutralisation and coagulation factor X-dependent cell interaction in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jiangtao Ma

    2015-02-01

    Full Text Available Adenoviruses are common pathogens, mostly targeting ocular, gastrointestinal and respiratory cells, but in some cases infection disseminates, presenting in severe clinical outcomes. Upon dissemination and contact with blood, coagulation factor X (FX interacts directly with the adenovirus type 5 (Ad5 hexon. FX can act as a bridge to bind heparan sulphate proteoglycans, leading to substantial Ad5 hepatocyte uptake. FX "coating" also protects the virus from host IgM and complement-mediated neutralisation. However, the contribution of FX in determining Ad liver transduction whilst simultaneously shielding the virus from immune attack remains unclear. In this study, we demonstrate that the FX protection mechanism is not conserved amongst Ad types, and identify the hexon hypervariable regions (HVR of Ad5 as the capsid proteins targeted by this host defense pathway. Using genetic and pharmacological approaches, we manipulate Ad5 HVR interactions to interrogate the interplay between viral cell transduction and immune neutralisation. We show that FX and inhibitory serum components can co-compete and virus neutralisation is influenced by both the location and extent of modifications to the Ad5 HVRs. We engineered Ad5-derived HVRs into the rare, native non FX-binding Ad26 to create Ad26.HVR5C. This enabled the virus to interact with FX at high affinity, as quantified by surface plasmon resonance, FX-mediated cell binding and transduction assays. Concomitantly, Ad26.HVR5C was also sensitised to immune attack in the absence of FX, a direct consequence of the engineered HVRs from Ad5. In both immune competent and deficient animals, Ad26.HVR5C hepatic gene transfer was mediated by FX following intravenous delivery. This study gives mechanistic insight into the pivotal role of the Ad5 HVRs in conferring sensitivity to virus neutralisation by IgM and classical complement-mediated attack. Furthermore, through this gain-of-function approach we demonstrate the dual

  10. Assessment of power deposition dependence on the antenna poloidal extension in the fast waves-plasma interaction in pre-heated spherical tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Komoshvili, K [Tel Aviv University, Ramat Aviv (Israel); Cuperman, S [Tel Aviv University, Ramat Aviv (Israel); Bruma, C [Tel Aviv University, Ramat Aviv (Israel)

    2007-09-15

    To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined.

  11. Assessment of power deposition dependence on the antenna poloidal extension in the fast waves-plasma interaction in pre-heated spherical tokamaks

    International Nuclear Information System (INIS)

    Komoshvili, K; Cuperman, S; Bruma, C

    2007-01-01

    To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined

  12. Ultrasound-assisted interaction between chlorin-e6 and human serum albumin: pH dependence, singlet oxygen production, and formulation effect

    Science.gov (United States)

    Mocanu, Mihaela N.; Yan, Fei

    2018-02-01

    The interaction between chlorin e6 (Ce6) and human serum albumin (HSA) in the presence and absence of ultrasound have been investigated by ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy. Ce6 is found to bind strongly to HSA at or near physiological pH conditions, but the strength of the binding is significantly weakened at lower pHs. The intrinsic fluorescence of HSA is incrementally quenched with increasing concentration of Ce6, and the quenching is enhanced after exposure to high-frequency ultrasound. Our experimental results suggest that Ce6-induced sonodynamic oxidation of HSA is mainly mediated by singlet oxygen. The formulation of Ce6 by high molecular weight polyvinylpyrrolidone (PVP) increased its stability in aqueous solutions and its quantum yield of singlet oxygen under ultrasound irradiation.

  13. Plasmodium falciparum Hop (PfHop Interacts with the Hsp70 Chaperone in a Nucleotide-Dependent Fashion and Exhibits Ligand Selectivity.

    Directory of Open Access Journals (Sweden)

    Tawanda Zininga

    Full Text Available Heat shock proteins (Hsps play an important role in the development and pathogenicity of malaria parasites. One of the most prominent functions of Hsps is to facilitate the folding of other proteins. Hsps are thought to play a crucial role when malaria parasites invade their host cells and during their subsequent development in hepatocytes and red blood cells. It is thought that Hsps maintain proteostasis under the unfavourable conditions that malaria parasites encounter in the host environment. Although heat shock protein 70 (Hsp70 is capable of independent folding of some proteins, its functional cooperation with heat shock protein 90 (Hsp90 facilitates folding of some proteins such as kinases and steroid hormone receptors into their fully functional forms. The cooperation of Hsp70 and Hsp90 occurs through an adaptor protein called Hsp70-Hsp90 organising protein (Hop. We previously characterised the Hop protein from Plasmodium falciparum (PfHop. We observed that the protein co-localised with the cytosol-localised chaperones, PfHsp70-1 and PfHsp90 at the blood stages of the malaria parasite. In the current study, we demonstrated that PfHop is a stress-inducible protein. We further explored the direct interaction between PfHop and PfHsp70-1 using far Western and surface plasmon resonance (SPR analyses. The interaction of the two proteins was further validated by co-immunoprecipitation studies. We observed that PfHop and PfHsp70-1 associate in the absence and presence of either ATP or ADP. However, ADP appears to promote the association of the two proteins better than ATP. In addition, we investigated the specific interaction between PfHop TPR subdomains and PfHsp70-1/ PfHsp90, using a split-GFP approach. This method allowed us to observe that TPR1 and TPR2B subdomains of PfHop bind preferentially to the C-terminus of PfHsp70-1 compared to PfHsp90. Conversely, the TPR2A motif preferentially interacted with the C-terminus of PfHsp90. Finally, we

  14. T-cell synapse formation depends on antigen recognition but not CD3 interaction: studies with TCR:ζ, a candidate transgene for TCR gene therapy.

    Science.gov (United States)

    Roszik, János; Sebestyén, Zsolt; Govers, Coen; Guri, Yakir; Szöor, Arpád; Pályi-Krekk, Zsuzsanna; Vereb, György; Nagy, Peter; Szöllosi, János; Debets, Reno

    2011-05-01

    T-cell receptors (TCRs) can be genetically modified to improve gene-engineered T-cell responses, a strategy considered critical for the success of clinical TCR gene therapy to treat cancers. TCR:ζ, which is a heterodimer of TCRα and β chains each coupled to complete human CD3ζ, overcomes issues of mis-pairing with endogenous TCR chains, shows high surface expression and mediates antigen-specific T-cell functions in vitro. In the current study, we further characterized TCR:ζ in gene-engineered T cells and assessed whether this receptor is able to interact with surface molecules and drive correct synapse formation in Jurkat T cells. The results showed that TCR:ζ mediates the formation of synaptic areas with antigen-positive target cells, interacts closely with CD8α and MHC class I (MHCI), and co-localizes with CD28, CD45 and lipid rafts, similar to WT TCR. TCR:ζ did not closely associate with endogenous CD3ε, despite its co-presence in immune synapses, and TCR:ζ showed enhanced synaptic accumulation in T cells negative for surface-expressed TCR molecules. Notably, synaptic TCR:ζ demonstrated lowered densities when compared with TCR in dual TCR T cells, a phenomenon that was related to both extracellular and intracellular CD3ζ domains present in the TCR:ζ molecule and responsible for enlarged synapse areas. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Soft interactions and volume exclusion by polymeric crowders can stabilize or destabilize transient structure in disordered proteins depending on polymer concentration.

    Science.gov (United States)

    Rusinga, Farai I; Weis, David D

    2017-08-01

    The effects of macromolecular crowding on the transient structure of intrinsically disordered proteins is not well-understood. Crowding by biological molecules inside cells could modulate transient structure and alter IDP function. Volume exclusion theory and observations of structured proteins suggest that IDP transient structure would be stabilized by macromolecular crowding. Amide hydrogen exchange (HX) of IDPs in highly concentrated polymer solutions would provide valuable insights into IDP transient structure under crowded conditions. Here, we have used mass spectrometry to measure HX by a transiently helical random coil domain of the activator of thyroid and retinoid receptor (ACTR) in solutions containing 300 g L -1 and 400 g L -1 of Ficoll, a synthetic polysaccharide, using a recently-developed strong cation exchange-based cleanup method [Rusinga, et al., Anal Chem 2017;89:1275-1282]. Transiently helical regions of ACTR exchanged faster in 300 g L -1 Ficoll than in dilute buffer. In contrast, one transient helix exchanged more slowly in 400 g L -1 Ficoll. Nonspecific interactions destabilize ACTR helicity in 300 g L -1 Ficoll because ACTR engages with the Ficoll polymer mesh. In contrast, 400 g L -1 Ficoll is a semi-dilute solution where ACTR cannot engage the Ficoll mesh. At this higher concentration, volume exclusion stabilizes ACTR helicity because ACTR is compacted in interstitial spaces between Ficoll molecules. Our results suggest that the interplay between nonspecific interactions and volume exclusion in different cellular compartments could modulate IDP function by altering the stability of IDP transient structures. Proteins 2017; 85:1468-1479. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. The host-dependent interaction of alpha-importins with influenza PB2 polymerase subunit is required for virus RNA replication.

    Directory of Open Access Journals (Sweden)

    Patricia Resa-Infante

    Full Text Available The influenza virus polymerase is formed by the PB1, PB2 and PA subunits and is required for virus transcription and replication in the nucleus of infected cells. As PB2 is a relevant host-range determinant we expressed a TAP-tagged PB2 in human cells and isolated intracellular complexes. Alpha-importin was identified as a PB2-associated factor by proteomic analyses. To study the relevance of this interaction for virus replication we mutated the PB2 NLS and analysed the phenotype of mutant subunits, polymerase complexes and RNPs. While mutant PB2 proteins showed reduced nuclear accumulation, they formed polymerase complexes normally when co expressed with PB1 and PA. However, mutant RNPs generated with a viral CAT replicon showed up to hundred-fold reduced CAT accumulation. Rescue of nuclear localisation of mutant PB2 by insertion of an additional SV40 TAg-derived NLS did not revert the mutant phenotype of RNPs. Furthermore, determination of recombinant RNP accumulation in vivo indicated that PB2 NLS mutations drastically reduced virus RNA replication. These results indicate that, above and beyond its role in nuclear accumulation, PB2 interaction with alpha-importins is required for virus RNA replication. To ascertain whether PB2-alpha-importin binding could contribute to the adaptation of H5N1 avian viruses to man, their association in vivo was determined. Human alpha importin isoforms associated efficiently to PB2 protein of an H3N2 human virus but bound to diminished and variable extents to PB2 from H5N1 avian or human strains, suggesting that the function of alpha importin during RNA replication is important for the adaptation of avian viruses to the human host.

  17. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K+ Rather than Glutamate.

    Science.gov (United States)

    DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia

    2017-01-01

    Brain activity involves essential functional and metabolic interactions between neurons and astrocytes. The importance of astrocytic functions to neuronal signaling is supported by many experiments reporting high rates of energy consumption and oxidative metabolism in these glial cells. In the brain, almost all energy is consumed by the Na + /K + ATPase, which hydrolyzes 1 ATP to move 3 Na + outside and 2 K + inside the cells. Astrocytes are commonly thought to be primarily involved in transmitter glutamate cycling, a mechanism that however only accounts for few % of brain energy utilization. In order to examine the participation of astrocytic energy metabolism in brain ion homeostasis, here we attempted to devise a simple stoichiometric relation linking glutamatergic neurotransmission to Na + and K + ionic currents. To this end, we took into account ion pumps and voltage/ligand-gated channels using the stoichiometry derived from available energy budget for neocortical signaling and incorporated this stoichiometric relation into a computational metabolic model of neuron-astrocyte interactions. We aimed at reproducing the experimental observations about rates of metabolic pathways obtained by 13 C-NMR spectroscopy in rodent brain. When simulated data matched experiments as well as biophysical calculations, the stoichiometry for voltage/ligand-gated Na + and K + fluxes generated by neuronal activity was close to a 1:1 relationship, and specifically 63/58 Na + /K + ions per glutamate released. We found that astrocytes are stimulated by the extracellular K + exiting neurons in excess of the 3/2 Na + /K + ratio underlying Na + /K + ATPase-catalyzed reaction. Analysis of correlations between neuronal and astrocytic processes indicated that astrocytic K + uptake, but not astrocytic Na + -coupled glutamate uptake, is instrumental for the establishment of neuron-astrocytic metabolic partnership. Our results emphasize the importance of K + in stimulating the activation of

  18. Photomorphogenesis in Sinningia speciosa, cv. Queen Victoria II. Stem Elongation: Interaction of a Phytochrome Controlled Process and a Red-requiring, Energy Dependent Reaction.

    Science.gov (United States)

    Satter, R L; Wetherell, D F

    1968-06-01

    When Sinningia plants were grown with fluorescent light of photosynthetic intensity for 8 hours each day, stems became abnormally elongated when the P(FR) level was lowered by far red light given during the last half of several consecutive nights. However, plants were even taller if the source also emitted red light. Elongation was independent of the red/far red energy ratio if it was lower than one, but dependent upon irradiance at all values tested.Elongation of plants irradiated by a well filtered far red source was presumed to be limited by a shortage of respiratory substrate. Enhancement by radiation shorter than 700 mmu was attributed to promotion of processes leading to increased substrate supply. Protochlorophyllide was regarded as the primary photoreceptor. Its photoreduction promoted chlorophyll synthesis which, in turn, increased photosynthetic capacity and thus substrate supply.

  19. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    Energy Technology Data Exchange (ETDEWEB)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602 (Japan)

    2016-09-07

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

  20. Translation initiation on mRNAs bound by nuclear cap-binding protein complex CBP80/20 requires interaction between CBP80/20-dependent translation initiation factor and eukaryotic translation initiation factor 3g.

    Science.gov (United States)

    Choe, Junho; Oh, Nara; Park, Sungjin; Lee, Ye Kyung; Song, Ok-Kyu; Locker, Nicolas; Chi, Sung-Gil; Kim, Yoon Ki

    2012-05-25

    In the cytoplasm of mammalian cells, either cap-binding proteins 80 and 20 (CBP80/20) or eukaryotic translation initiation factor (eIF) 4E can direct the initiation of translation. Although the recruitment of ribosomes to mRNAs during eIF4E-dependent translation (ET) is well characterized, the molecular mechanism for CBP80/20-dependent translation (CT) remains obscure. Here, we show that CBP80/20-dependent translation initiation factor (CTIF), which has been shown to be preferentially involved in CT but not ET, specifically interacts with eIF3g, a component of the eIF3 complex involved in ribosome recruitment. By interacting with eIF3g, CTIF serves as an adaptor protein to bridge the CBP80/20 and the eIF3 complex, leading to efficient ribosome recruitment during CT. Accordingly, down-regulation of CTIF using a small interfering RNA causes a redistribution of CBP80 from polysome fractions to subpolysome fractions, without significant consequence to eIF4E distribution. In addition, down-regulation of eIF3g inhibits the efficiency of nonsense-mediated mRNA decay, which is tightly coupled to CT but not to ET. Moreover, the artificial tethering of CTIF to an intercistronic region of dicistronic mRNA results in translation of the downstream cistron in an eIF3-dependent manner. These findings support the idea that CT mechanistically differs from ET.

  1. Dependence of the fast waves-plasma interactions in pre-heated spherical tokamaks on the antenna location and poloidal extension

    International Nuclear Information System (INIS)

    Komoshvili, K.; Bruma, C.; Cuperman, S.

    2004-01-01

    Full Text:In the magnetically confined fusion devices, externally launched e.m. waves are used, e.g., for heating, non-inductive current drive and turbulent transport suppression barriers. In view of the complexity of these processes, it is desirable to assist the planning of the actual experiments by reliable theoretical (computational) studies. This work aims to (i) assess the effect of antenna position and extension on the fast waves-plasma interactions in pre-heated spherical tokamaks and consequently, (ii) to further the physical understanding as well as to determine optimal conditions in order to achieve the imposed goals. Thus, using as a study case the spherical tokamak START, we considered the following antenna positions and extensions: (a) low field side location and i T ±π/4 poloidal extension; (b) above and below middle-plane locations (two separate sections) and extending (each) π/2; (c) (hypothetical) circular, 2π-extension. We solved the full wave equations in order to consistently determine the global e.m. field for Alfvinic modes in inhomogeneous, non-uniformly magnetized, resistive, small aspect ratio tokamak plasma in the presence of externally launched fast waves. The global approach consists of simultaneous treatment of the plasma-vacuum-external RF source-vacuum-metal wall configuration with the appropriate consideration of wave propagation, transmission, absorption and mode conversion; in this, no simplifying approximations or small parameter extension are used. Illustrative results of these investigations will be presented and discussed

  2. Calculation of the RPA response function of nuclei to quasi-elastic electron scattering with a density-dependent NN interaction

    International Nuclear Information System (INIS)

    Caillon, J-C.; Labarsouque, J.

    1997-01-01

    So far, the non-relativistic longitudinal and transverse functions in electron quasi-elastic scattering on the nuclei failed in reproducing satisfactorily the existent experimental data. The calculations including relativistic RPA correlations utilize until now the relativistic Hartree approximation to describe the nuclear matter. But, this provides an incompressibility module two times higher than its experimental value what is an important drawback for the calculation of realistic relativistic RPA correlations. Hence, we have determined the RPA response functions of nuclei by utilising a description of the relativistic nuclear matter leading to an incompressibility module in agreement with the empirical value. To do that we have utilized an interaction in the relativistic Hartree approximation in which we have determined the coupling constants σ-N and ω-N as a function of the density in order to reproduce the saturation curve obtained by a Dirac-Brueckner calculation. The results which we have obtained show that the longitudinal response function and the Coulomb sum generally overestimated when one utilizes the pure relativistic Hartree approximation, are here in good agreement with the experimental data for several nuclei

  3. Tacticity-Dependent Interchain Interactions of Poly(N-Isopropylacrylamide in Water: Toward the Molecular Dynamics Simulation of a Thermoresponsive Microgel

    Directory of Open Access Journals (Sweden)

    Gaio Paradossi

    2017-04-01

    Full Text Available The discovery that the lower critical solution temperature (LCST of poly(N-Isopropylacrylamide (PNIPAM in water is affected by the tacticity opens the perspective to tune the volume phase transition temperature of PNIPAM microgels by changing the content of meso dyads in the polymer network. The increased hydrophobicity of isotactic-rich PNIPAM originates from self-assembly processes in aqueous solutions also below the LCST. The present work aims to detect the characteristics of the pair interaction between polymer chains, occurring in a concentration regime close to the chain overlap concentration, by comparing atactic and isotactic-rich PNIPAM solutions. Using atomistic molecular dynamics simulations, we successfully modelled the increased association ability of the meso-dyad-rich polymer in water below the LCST, and gain information on the features of the interchain junctions as a function of tacticity. Simulations carried out above the LCST display the PNIPAM transition to the insoluble state and do not detect a relevant influence of stereochemistry on the structure of the polymer ensemble. The results obtained at 323 K provide an estimate of the swelling ratio of non-stereocontrolled PNIPAM microgels which is in agreement with experimental findings for microgels prepared with low cross-linker/monomer feed ratios. This study represents the first step toward the atomistic modelling of PNIPAM microgels with a controlled tacticity.

  4. Size-dependent physicochemical and mechanical interactions in battery paste anodes of Si-microwires revealed by Fast-Fourier-Transform Impedance Spectroscopy

    Science.gov (United States)

    Hansen, Sandra; Quiroga-González, Enrique; Carstensen, Jürgen; Adelung, Rainer; Föll, Helmut

    2017-05-01

    Perfectly aligned silicon microwire arrays show exceptionally high cycling stability with record setting (high) areal capacities of 4.25 mAh cm-2. Those wires have a special, modified length and thickness in order to perform this good. Geometry and sizes are the most important parameters of an anode to obtain batteries with high cycling stability without irreversible losses. The wires are prepared with a unique etching fabrication method, which allows to fabricate wires of very precise sizes. In order to investigate how good randomly oriented silicon wires perform in contrast to the perfect order of the array, the wires are embedded in a paste. This study reveals the fundamental correlation between geometry, mechanics and charge transfer kinetics of silicon electrodes. Using a suitable RC equivalent circuit allows to evaluate data from cyclic voltammetry and simultaneous FFT-Impedance Spectroscopy (FFT-IS), yielding in time-resolved resistances, time constants, and their direct correlation to the phase transformations. The change of the resistances during lithiation and delithiation correlates to kinetics and charge transfer mechanisms. This study demonstrates how the mechanical and physiochemical interactions at the silicon/paste interface inside the paste electrodes lead to void formation around silicon and with it to material loss and capacity fading.

  5. Molecular Interaction between Lipoteichoic Acids and Lactobacillus delbrueckii Phages Depends on d-Alanyl and α-Glucose Substitution of Poly(Glycerophosphate) Backbones▿

    Science.gov (United States)

    Räisänen, Liisa; Draing, Christian; Pfitzenmaier, Markus; Schubert, Karin; Jaakonsaari, Tiina; von Aulock, Sonja; Hartung, Thomas; Alatossava, Tapani

    2007-01-01

    Lipoteichoic acids (LTAs) have been shown to act as bacterial counterparts to the receptor binding proteins of LL-H, LL-H host range mutant LL-H-a21, and JCL1032. Here we have used LTAs purified by hydrophobic interaction chromatography from different phage-resistant and -sensitive strains of Lactobacillus delbrueckii subsp. lactis. Nuclear magnetic resonance analyses revealed variation in the degree of α-glucosyl and d-alanyl substitution of the 1,3-linked poly(glycerophosphate) LTAs between the phage-sensitive and phage-resistant strains. Inactivation of phages was less effective if there was a high level of d-alanine residues in the LTA backbones. Prior incubation of the LTAs with α-glucose-specific lectin inhibited the LL-H phage inactivation. The overall level of decoration or the specific spatial combination of α-glucosyl-substituted, d-alanyl-substituted, and nonsubstituted glycerol residues may also affect phage adsorption. PMID:17416656

  6. Trans-Channel Interactions in Batrachotoxin-Modified Skeletal Muscle Sodium Channels: Voltage-Dependent Block by Cytoplasmic Amines, and the Influence of μ-Conotoxin GIIIA Derivatives and Permeant Ions

    Science.gov (United States)

    Pavlov, Evgeny; Britvina, Tatiana; McArthur, Jeff R.; Ma, Quanli; Sierralta, Iván; Zamponi, Gerald W.; French, Robert J.

    2008-01-01

    External μ-conotoxins and internal amine blockers inhibit each other's block of voltage-gated sodium channels. We explore the basis of this interaction by measuring the shifts in voltage-dependence of channel inhibition by internal amines induced by two μ-conotoxin derivatives with different charge distributions and net charges. Charge changes on the toxin were made at residue 13, which is thought to penetrate most deeply into the channel, making it likely to have the strongest individual interaction with an internal charged ligand. When an R13Q or R13E molecule was bound to the channel, the voltage dependence of diethylammonium (DEA)-block shifted toward more depolarized potentials (23 mV for R13Q, and 16 mV for R13E). An electrostatic model of the repulsion between DEA and the toxin simulated these data, with a distance between residue 13 of the μ-conotoxin and the DEA-binding site of ∼15 Å. Surprisingly, for tetrapropylammonium, the shifts were only 9 mV for R13Q, and 7 mV for R13E. The smaller shifts associated with R13E, the toxin with a smaller net charge, are generally consistent with an electrostatic interaction. However, the smaller shifts observed for tetrapropylammonium than for DEA suggest that other factors must be involved. Two observations indicate that the coupling of permeant ion occupancy of the channel to blocker binding may contribute to the overall amine-toxin interaction: 1), R13Q binding decreases the apparent affinity of sodium for the conducting pore by ∼4-fold; and 2), increasing external [Na+] decreases block by DEA at constant voltage. Thus, even though a number of studies suggest that sodium channels are occupied by no more than one ion most of the time, measurable coupling occurs between permeant ions and toxin or amine blockers. Such interactions likely determine, in part, the strength of trans-channel, amine-conotoxin interactions. PMID:18658222

  7. Trans-channel interactions in batrachotoxin-modified skeletal muscle sodium channels: voltage-dependent block by cytoplasmic amines, and the influence of mu-conotoxin GIIIA derivatives and permeant ions.

    Science.gov (United States)

    Pavlov, Evgeny; Britvina, Tatiana; McArthur, Jeff R; Ma, Quanli; Sierralta, Iván; Zamponi, Gerald W; French, Robert J

    2008-11-01

    External mu-conotoxins and internal amine blockers inhibit each other's block of voltage-gated sodium channels. We explore the basis of this interaction by measuring the shifts in voltage-dependence of channel inhibition by internal amines induced by two mu-conotoxin derivatives with different charge distributions and net charges. Charge changes on the toxin were made at residue 13, which is thought to penetrate most deeply into the channel, making it likely to have the strongest individual interaction with an internal charged ligand. When an R13Q or R13E molecule was bound to the channel, the voltage dependence of diethylammonium (DEA)-block shifted toward more depolarized potentials (23 mV for R13Q, and 16 mV for R13E). An electrostatic model of the repulsion between DEA and the toxin simulated these data, with a distance between residue 13 of the mu-conotoxin and the DEA-binding site of approximately 15 A. Surprisingly, for tetrapropylammonium, the shifts were only 9 mV for R13Q, and 7 mV for R13E. The smaller shifts associated with R13E, the toxin with a smaller net charge, are generally consistent with an electrostatic interaction. However, the smaller shifts observed for tetrapropylammonium than for DEA suggest that other factors must be involved. Two observations indicate that the coupling of permeant ion occupancy of the channel to blocker binding may contribute to the overall amine-toxin interaction: 1), R13Q binding decreases the apparent affinity of sodium for the conducting pore by approximately 4-fold; and 2), increasing external [Na(+)] decreases block by DEA at constant voltage. Thus, even though a number of studies suggest that sodium channels are occupied by no more than one ion most of the time, measurable coupling occurs between permeant ions and toxin or amine blockers. Such interactions likely determine, in part, the strength of trans-channel, amine-conotoxin interactions.

  8. Dia-Interacting Protein (DIP) Imposes Migratory Plasticity in mDia2-Dependent Tumor Cells in Three-Dimensional Matrices

    Science.gov (United States)

    Wyse, Meghan M.; Lei, Jun; Nestor-Kalinoski, Andrea L.; Eisenmann, Kathryn M.

    2012-01-01

    Tumor cells rely upon membrane pliancy to escape primary lesions and invade secondary metastatic sites. This process relies upon localized assembly and disassembly cycles of F-actin that support and underlie the plasma membrane. Dynamic actin generates both spear-like and bleb structures respectively characterizing mesenchymal and amoeboid motility programs utilized by metastatic cells in three-dimensional matrices. The molecular mechanism and physiological trigger(s) driving membrane plasticity are poorly understood. mDia formins are F-actin assembly factors directing membrane pliancy in motile cells. mDia2 is functionally coupled with its binding partner DIP, regulating cortical actin and inducing membrane blebbing in amoeboid cells. Here we show that mDia2 and DIP co-tether to nascent blebs and this linkage is required for bleb formation. DIP controls mesenchymal/amoeboid cell interconvertability, while CXCL12 induces assembly of mDia2:DIP complexes to bleb cortices in 3D matrices. These results demonstrate how DIP-directed mDia2-dependent F-actin dynamics regulate morphological plasticity in motile cancer cells. PMID:23024796

  9. Dia-interacting protein (DIP imposes migratory plasticity in mDia2-dependent tumor cells in three-dimensional matrices.

    Directory of Open Access Journals (Sweden)

    Meghan M Wyse

    Full Text Available Tumor cells rely upon membrane pliancy to escape primary lesions and invade secondary metastatic sites. This process relies upon localized assembly and disassembly cycles of F-actin that support and underlie the plasma membrane. Dynamic actin generates both spear-like and bleb structures respectively characterizing mesenchymal and amoeboid motility programs utilized by metastatic cells in three-dimensional matrices. The molecular mechanism and physiological trigger(s driving membrane plasticity are poorly understood. mDia formins are F-actin assembly factors directing membrane pliancy in motile cells. mDia2 is functionally coupled with its binding partner DIP, regulating cortical actin and inducing membrane blebbing in amoeboid cells. Here we show that mDia2 and DIP co-tether to nascent blebs and this linkage is required for bleb formation. DIP controls mesenchymal/amoeboid cell interconvertability, while CXCL12 induces assembly of mDia2:DIP complexes to bleb cortices in 3D matrices. These results demonstrate how DIP-directed mDia2-dependent F-actin dynamics regulate morphological plasticity in motile cancer cells.

  10. A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy.

    Directory of Open Access Journals (Sweden)

    Nathaniel D Maynard

    2010-07-01

    Full Text Available Latently infecting viruses are an important class of virus that plays a key role in viral evolution and human health. Here we report a genome-scale forward-genetics screen for host-dependencies of the latently-infecting bacteriophage lambda. This screen identified 57 Escherichia coli (E. coli genes--over half of which have not been previously associated with infection--that when knocked out inhibited lambda phage's ability to replicate. Our results demonstrate a highly integrated network between lambda and its host, in striking contrast to the results from a similar screen using the lytic-only infecting T7 virus. We then measured the growth of E. coli under normal and infected conditions, using wild-type and knockout strains deficient in one of the identified host genes, and found that genes from the same pathway often exhibited similar growth dynamics. This observation, combined with further computational and experimental analysis, led us to identify a previously unannotated gene, yneJ, as a novel regulator of lamB gene expression. A surprising result of this work was the identification of two highly conserved pathways involved in tRNA thiolation-one pathway is required for efficient lambda replication, while the other has anti-viral properties inhibiting lambda replication. Based on our data, it appears that 2-thiouridine modification of tRNAGlu, tRNAGln, and tRNALys is particularly important for the efficient production of infectious lambda phage particles.

  11. Packaging of Mason-Pfizer monkey virus (MPMV) genomic RNA depends upon conserved long-range interactions (LRIs) between U5 and gag sequences.

    Science.gov (United States)

    Kalloush, Rawan M; Vivet-Boudou, Valérie; Ali, Lizna M; Mustafa, Farah; Marquet, Roland; Rizvi, Tahir A

    2016-06-01

    MPMV has great potential for development as a vector for gene therapy. In this respect, precisely defining the sequences and structural motifs that are important for dimerization and packaging of its genomic RNA (gRNA) are of utmost importance. A distinguishing feature of the MPMV gRNA packaging signal is two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences, LRI-I and LRI-II. To test their biological significance in the MPMV life cycle, we introduced mutations into these structural motifs and tested their effects on MPMV gRNA packaging and propagation. Furthermore, we probed the structure of key mutants using SHAPE (selective 2'hydroxyl acylation analyzed by primer extension). Disrupting base-pairing of the LRIs affected gRNA packaging and propagation, demonstrating their significance to the MPMV life cycle. A double mutant restoring a heterologous LRI-I was fully functional, whereas a similar LRI-II mutant failed to restore gRNA packaging and propagation. These results demonstrate that while LRI-I acts at the structural level, maintaining base-pairing is not sufficient for LRI-II function. In addition, in vitro RNA dimerization assays indicated that the loss of RNA packaging in LRI mutants could not be attributed to the defects in dimerization. Our findings suggest that U5-gag LRIs play an important architectural role in maintaining the structure of the 5' region of the MPMV gRNA, expanding the crucial role of LRIs to the nonlentiviral group of retroviruses. © 2016 Kalloush et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. Path Dependency

    OpenAIRE

    Mark Setterfield

    2015-01-01

    Path dependency is defined, and three different specific concepts of path dependency – cumulative causation, lock in, and hysteresis – are analyzed. The relationships between path dependency and equilibrium, and path dependency and fundamental uncertainty are also discussed. Finally, a typology of dynamical systems is developed to clarify these relationships.

  13. Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) interacts with neurofilament L and inhibits its filament association

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Hana [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Katoh, Tsuyoshi [Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510 (Japan); Nakagawa, Ryoko; Ishihara, Yasuhiro [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Sueyoshi, Noriyuki; Kameshita, Isamu [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795 (Japan); Taniguchi, Takanobu [Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510 (Japan); Hirano, Tetsuo; Yamazaki, Takeshi [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Ishida, Atsuhiko, E-mail: aishida@hiroshima-u.ac.jp [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan)

    2016-09-02

    Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr phosphatase that belongs to the PPM family. Growing evidence suggests that PPM phosphatases including CaMKP act as a complex with other proteins to regulate cellular functions. In this study, using the two-dimensional far-western blotting technique with digoxigenin-labeled CaMKP as a probe, in conjunction with peptide mass fingerprinting analysis, we identified neurofilament L (NFL) as a CaMKP-binding protein in a Triton-insoluble fraction of rat brain. We confirmed binding of fluorescein-labeled CaMKP (F-CaMKP) to NFL in solution by fluorescence polarization. The analysis showed that the dissociation constant of F-CaMKP for NFL is 73 ± 17 nM (n = 3). Co-immunoprecipitation assay using a cytosolic fraction of NGF-differentiated PC12 cells showed that endogenous CaMKP and NFL form a complex in cells. Furthermore, the effect of CaMKP on self-assembly of NFL was examined. Electron microscopy revealed that CaMKP markedly prevented NFL from forming large filamentous aggregates, suggesting that CaMKP-binding to NFL inhibits its filament association. These findings may provide new insights into a novel mechanism for regulating network formation of neurofilaments during neuronal differentiation. - Highlights: • NFL was identified as a CaMKP-binding protein in an insoluble fraction of rat brain. • CaMKP bound to NFL in solution with a K{sub d} value of 73 ± 17 nM. • A CaMKP-NFL complex was found in NGF-differentiated PC12 cells. • CaMKP-binding to NFL inhibited its filament association. • CaMKP may regulate network formation of neurofilaments in neurons.

  14. Interactions of TLR4 and PPARγ, Dependent on AMPK Signalling Pathway Contribute to Anti-Inflammatory Effects of Vaccariae Hypaphorine in Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Haijian Sun

    2017-07-01

    Full Text Available Background /Aims: Accumulating evidence indicates that endothelial inflammation is one of the critical determinants in pathogenesis of atherosclerotic cardiovascular disease. Our previous studies had demonstrated that Vaccariae prevented high glucose or oxidative stress-triggered endothelial dysfunction in vitro. Very little is known about the potential effects of hypaphorine from Vaccariae seed on inflammatory response in endothelial cells. Methods: In the present study, we evaluated the anti-inflammatory effects of Vaccariae hypaphorine (VH on lipopolysaccharide (LPS-challenged endothelial EA.hy926 cells. The inflammatory cytokines including tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, monocyte chemoattractant protein 1 (MCP-1 and vascular cellular adhesion molecule-1 (VCAM-1 were measured by real-time PCR (RT-PCR. The expressions of adenosine monophosphate-activated protein kinase (AMPK, acetyl-CoA carboxylase (ACC, toll-like receptor 4 (TLR4, peroxisome proliferator-activated receptor γ (PPARγ were detected by Western blotting or immunofluorescence. Results: We showed that LPS stimulated the expressions of TNF-α, IL-1β, MCP-1, VCAM-1 and TLR4, but attenuated the phosphorylation of AMPK and ACC as well as PPARγ protein levels, which were reversed by VH pretreatment. Moreover, we observed that LPS-upregulated TLR4 protein expressions were inhibited by PPARγ agonist pioglitazone, and the downregulated PPARγ expressions in response to LPS were partially restored by knockdown of TLR4. The negative regulation loop between TLR4 and PPARγ response to LPS was modulated by AMPK agonist AICAR (5-Aminoimidazole-4-carboxamide riboside or acadesine or A769662. Conclusions: Taken together, our results suggested that VH ameliorated LPS-induced inflammatory cytokines production in endothelial cells via inhibition of TLR4 and activation of PPARγ, dependent on AMPK signalling pathway.

  15. Plasmodium falciparum Hsp70-z, an Hsp110 homologue, exhibits independent chaperone activity and interacts with Hsp70-1 in a nucleotide-dependent fashion.

    Science.gov (United States)

    Zininga, Tawanda; Achilonu, Ikechukwu; Hoppe, Heinrich; Prinsloo, Earl; Dirr, Heini W; Shonhai, Addmore

    2016-05-01

    The role of molecular chaperones, among them heat shock proteins (Hsps), in the development of malaria parasites has been well documented. Hsp70s are molecular chaperones that facilitate protein folding. Hsp70 proteins are composed of an N-terminal nucleotide binding domain (NBD), which confers them with ATPase activity and a C-terminal substrate binding domain (SBD). In the ADP-bound state, Hsp70 possesses high affinity for substrate and releases the folded substrate when it is bound to ATP. The two domains are connected by a conserved linker segment. Hsp110 proteins possess an extended lid segment, a feature that distinguishes them from canonical Hsp70s. Plasmodium falciparum Hsp70-z (PfHsp70-z) is a member of the Hsp110 family of Hsp70-like proteins. PfHsp70-z is essential for survival of malaria parasites and is thought to play an important role as a molecular chaperone and nucleotide exchange factor of its cytosolic canonical Hsp70 counterpart, PfHsp70-1. Unlike PfHsp70-1 whose functions are fairly well established, the structure-function features of PfHsp70-z remain to be fully elucidated. In the current study, we established that PfHsp70-z possesses independent chaperone activity. In fact, PfHsp70-z appears to be marginally more effective in suppressing protein aggregation than its cytosol-localized partner, PfHsp70-1. Furthermore, based on coimmunoaffinity chromatography and surface plasmon resonance analyses, PfHsp70-z associated with PfHsp70-1 in a nucleotide-dependent fashion. Our findings suggest that besides serving as a molecular chaperone, PfHsp70-z could facilitate the nucleotide exchange function of PfHsp70-1. These dual functions explain why it is essential for parasite survival.

  16. Age-dependent interaction of apolipoprotein E gene with eastern birthplace in Finland affects severity of coronary atherosclerosis and risk of fatal myocardial infarction--Helsinki Sudden Death Study.

    Science.gov (United States)

    Tyynelä, Petri; Goebeler, Sirkka; Ilveskoski, Erkki; Mikkelsson, Jussi; Perola, Markus; Lehtimäki, Terho; Karhunen, Pekka J

    2013-05-01

    Mortality from coronary heart disease (CHD) has been constantly higher in eastern late settlement regions compared to western early settlements in Finland, unrelated to classical risk factors. In line with this, eastern birthplace was an age-dependent predictor of severe coronary atherosclerosis and pre-hospital sudden coronary death among male residents of Helsinki. We investigated a possible interaction of apolipoprotein E (APOE) gene with birthplace on the risk of myocardial infarction (MI) and coronary atherosclerosis. APOE genotypes were analyzed in the Helsinki Sudden Death Study series comprising out-of-hospital deaths among males aged 33-70 years (n = 577), who were born in high (east, n = 273) or low (west, n = 304) CHD mortality area. Eastern-born men ≤ 55 years carried 30% more often (P = 0.017) and older men 40% less often (P = 0.022) the APOE ϵ4 allele compared to western-born men (P = 0.003 for birthplace-by-age interaction). In multivariate analysis, the ϵ4 allele associated with the risk of out-of-hospital MI (odds ratio 2.58; 95% CI 1.20-5.55; P = 0.016) only in eastern-born men and with advanced atherosclerosis in both regions of origin, respectively. Birthplace-bound risk of CHD was age-dependently modified by APOE ϵ4 allele, suggesting genetic differences in CHD susceptibility between early and late settlement regions in Finland and providing one explanation for the eastern high mortality.

  17. The involvement of DNA repair genes in the hypoxia-dependent NLCQ-1 (NSC 709257) toxicity and its synergistic interaction with cisplatin or melphalan

    International Nuclear Information System (INIS)

    Papadopoulou, M.V.; Xue, C.-J.; Bloomer, W.D.

    2003-01-01

    4-[3-(2-Nitro-1-imidazolyl)-propylamino]-7-chloro-quinoline hydrochloride (NLCQ-1) is a weakly DNA-intercalating hypoxia selective cytotoxin, which synergistically enhances the antitumor effect of several chemotherapeutic agents or radiation against mouse tumors or human xenografts. Synergy with melphalan (L-PAM) or cisplatin (cisPt) requires hypoxic pre-exposure of cells to NLCQ-1 or, in mice, administration of NLCQ-1 about 1 h before L-PAM or cisPt. This suggests that NLCQ-1 may cause DNA lesions upon reductive metabolism. To indirectly identify such lesions, rodent cell lines defective in specific DNA repair genes (EM9 and UV41) and their repair-proficient parental AA8, were exposed to NLCQ-1 alone and in combination with L-PAM or cisPt under hypoxic/aerobic conditions and appropriate routes, and assessed for clonogenicity. Selected comparisons with tirapazamine (TPZ) were also performed. DNA ssbs were identified by using the alkaline comet assay. Synergism was assessed by isobologramic analysis. EM9, which lack the functional XRCC1 gene and are unable to efficiently repair DNA ssbs, were 3.7x and 4.5x more sensitive to NLCQ-1 and TPZ, respectively, than the parental AA8 cells. Similarly, UV41, which are defective in the ERCC4/XPF gene and thus, hypersensitive to DNA cross-linking agents, were 4.1x more sensitive than AA8 cells to NLCQ-1. Equitoxic concentrations of NLCQ-1 and TPZ gave similar numbers of ssbs in AA8 and EM9 cells exposed to each compound for 1 h under hypoxic conditions. In combination with L-PAM or cisPt, synergy was observed in AA8 but not in EM9 or UV41 cells, with either NLCQ-1 or TPZ. These results suggest that NLCQ-1 is involved in the formation of DNA ssbs and interstrand crosslinks, with the latter being most likely responsible for NLCQ-1 hypoxic toxicity. The synergistic interaction of NLCQ-1 with L-PAM or cisPt is probably due to an enhancement in the L-PAM/cisPt-induced DNA interstrand crosslinks, possibly as a result of an inhibited

  18. Herpes simplex virus 1 regulatory protein ICP22 interacts with a new cell cycle-regulated factor and accumulates in a cell cycle-dependent fashion in infected cells.

    Science.gov (United States)

    Bruni, R; Roizman, B

    1998-11-01

    The herpes simplex virus 1 infected cell protein 22 (ICP22), the product of the alpha22 gene, is a nucleotidylylated and phosphorylated nuclear protein with properties of a transcriptional factor required for the expression of a subset of viral genes. Here, we report the following. (i) ICP22 interacts with a previously unknown cellular factor designated p78 in the yeast two-hybrid system. The p78 cDNA encodes a polypeptide with a distribution of leucines reminiscent of a leucine zipper. (ii) In uninfected and infected cells, antibody to p78 reacts with two major bands with an apparent Mr of 78,000 and two minor bands with apparent Mrs of 62, 000 and 55,000. (ii) p78 also interacts with ICP22 in vitro. (iii) In uninfected cells, p78 was dispersed largely in the nucleoplasm in HeLa cells and in the nucleoplasm and cytoplasm in HEp-2 cells. After infection, p78 formed large dense bodies which did not colocalize with the viral regulatory protein ICP0. (iv) Accumulation of p78 was cell cycle dependent, being highest very early in S phase. (v) The accumulation of ICP22 in synchronized cells was highest in early S phase, in contrast to the accumulation of another protein, ICP27, which was relatively independent of the cell cycle. (vi) In the course of the cell cycle, ICP22 was transiently modified in an aberrant fashion, and this modification coincided with expression of p78. The results suggest that ICP22 interacts with and may be stabilized by cell cycle-dependent proteins.

  19. Energy dependence of the supralinearity (f(D)max) of peaks 7 and 8 in the high temperature thermoluminescence of LiF:Mg,Ti (TLD-100) : Interpretation using the Unified Interaction Model

    International Nuclear Information System (INIS)

    Datz, H.; Horowitz, Y.S.; Epstein, L.; Oster, L.; Livingstone, J.; Horowitz, A.; Kol, M.; Margaliot, M.

    2011-01-01

    It is demonstrated that the supralinearity of the dose response of glow peaks 7, 8 in the glow curve of LiF:Mg,Ti (TLD-100) are very strongly dependent on photon/electron energy. Previously published data on f(D) max at photon energies of 1.25 MeV, 100 keV and 8.1 keV effective energy coupled with new data at ∼ 540 keV using 90 Sr/ 90 Y beta rays reveals that the maximum supralinearity f(D) max decreases from values of ∼200 and ∼30 at 1.25 MeV, through intermediate values at 540 keV and 100 keV, to values of ∼ 30 and ∼3 at 8.1 keV effective energy. The normalized dose response f(D) for all energies is modeled using the Unified Interaction Model and the dependence of f(D) max on energy is interpreted as arising from strong dependence of the relative intensity of localized recombination on particle energy (ionization density).

  20. Dependent Classes

    DEFF Research Database (Denmark)

    Gasiunas, Vaidas; Mezini, Mira; Ostermann, Klaus

    2007-01-01

    of dependent classes and a machine-checked type soundness proof in Isabelle/HOL [29], the first of this kind for a language with virtual classes and path-dependent types. [29] T.Nipkow, L.C. Poulson, and M. Wenzel. Isabelle/HOL -- A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS, Springer, 2002......Virtual classes allow nested classes to be refined in subclasses. In this way nested classes can be seen as dependent abstractions of the objects of the enclosing classes. Expressing dependency via nesting, however, has two limitations: Abstractions that depend on more than one object cannot...... be modeled and a class must know all classes that depend on its objects. This paper presents dependent classes, a generalization of virtual classes that expresses similar semantics by parameterization rather than by nesting. This increases expressivity of class variations as well as the flexibility...