WorldWideScience

Sample records for dependent ethanol oxidation

  1. Cytochrome P-450 dependent ethanol oxidation. Kinetic isotope effects and absence of stereoselectivity

    International Nuclear Information System (INIS)

    Ekstroem, G.; Norsten, C.; Cronholm, T.; Ingelman-Sundberg, M.

    1987-01-01

    Deuterium isotope effects [/sup D/(V/K)] and stereoselectivity of ethanol oxidation in cytochrome P-450 containing systems and in the xanthine-xanthine oxidase system were compared with those of yeast alcohol dehydrogenase. The isotope effects were determined by using both a noncompetitive method, including incubation of unlabeled of [1,1- 2 H 2 ] ethanol at various concentrations, and a competitive method, where 1:1 mixtures of [1- 13 C]- and [ 2 H 6 ] ethanol or [2,2,2- 2 H 3 ]- and [1,1- 2 H 2 ] ethanol were incubated and the acetaldehyde formed was analyzed by gas chromatography/mass spectrometry. The /sup D/(V/K) isotope effects of the cytochrome P-450 dependent ethanol oxidation were about 4 with liver microsomes from imidazole-, phenobarbital- or acetone-treated rabbits or with microsomes from acetone- or ethanol-treated rats. Similar isotope effects were reached with reconstituted membranes containing the rabbit ethanol-inducible cytochrome P-450 (LMeb), whereas control rat microsomes and membranes containing rabbit phenobarbital-inducible P-450 LM 2 oxidized the alcohol with /sup D/(V/K) of about 2.8 and 1.8, respectively. Addition of Fe/sup III/EDTA either to microsomes from phenobarbital-treated rabbits or to membranes containing P-450 LMeb significantly lowered the isotope effect. Incubations of all cytochrome P-450 containing systems of the xanthine-xanthine oxidase systems with (1R)- and (1S)-[1- 2 H] ethanol, revealed, taking the isotope effects into account, that 44-66% of the ethanol oxidized had lost the 1-pro-R hydrogen. The data indicate that cytochrome P-450 dependent ethanol oxidation is not stereospecific and that cleavage of the C 1 -H bond appears to be a rate-determining step in the catalysis by the ethanol-inducible form of P-450. The contribution of hydroxyl radicals in ethanol oxidation by the various enzymic systems is discussed

  2. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles

    International Nuclear Information System (INIS)

    Zhou Weiping; Li Meng; Koenigsmann, Christopher; Ma Chao; Wong, Stanislaus S.; Adzic, Radoslav R.

    2011-01-01

    Highlights: → We demonstrate the morphology effect of Pt catalysts in electrooxidation of ethanol and CO in an acidic solution. → Pt nanowires and nanoparticles were used as catalysts. → Pt nanowires display a higher catalytic activity by a factor of at least two relative to those nanoparticles for ethanol oxidation. → The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. - Abstract: The morphology of nanostructured Pt catalysts is known to affect significantly the kinetics of various reactions. Herein, we report on a pronounced morphology effect in the electrooxidation of ethanol and carbon monoxide (CO) on Pt nanowires and nanoparticles in an acidic solution. The high resolution transmission electron microscopy analysis showed the inherent morphology difference between these two nanostructured catalysts. Voltammetric and chronoamperometric studies of the ethanol electrooxidation revealed that these nanowires had a higher catalytic activity by a factor of two relative to these nanoparticles. The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. In situ infrared reflection-absorption spectroscopy measurements revealed a different trend for chemisorbed CO formation and CO 2 -to-acetic acid reaction product ratios on these two nanostructures. The morphology-induced change in catalytic activity and selectivity in ethanol electrocatalysis is discussed in detail.

  3. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Weiping, E-mail: wpzhou@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Li Meng [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Koenigsmann, Christopher [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794 (United States); Ma Chao [Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Building 480, Upton, NY 11973 (United States); Wong, Stanislaus S. [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794 (United States); Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Building 480, Upton, NY 11973 (United States); Adzic, Radoslav R. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-11-30

    Highlights: > We demonstrate the morphology effect of Pt catalysts in electrooxidation of ethanol and CO in an acidic solution. > Pt nanowires and nanoparticles were used as catalysts. > Pt nanowires display a higher catalytic activity by a factor of at least two relative to those nanoparticles for ethanol oxidation. > The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. - Abstract: The morphology of nanostructured Pt catalysts is known to affect significantly the kinetics of various reactions. Herein, we report on a pronounced morphology effect in the electrooxidation of ethanol and carbon monoxide (CO) on Pt nanowires and nanoparticles in an acidic solution. The high resolution transmission electron microscopy analysis showed the inherent morphology difference between these two nanostructured catalysts. Voltammetric and chronoamperometric studies of the ethanol electrooxidation revealed that these nanowires had a higher catalytic activity by a factor of two relative to these nanoparticles. The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. In situ infrared reflection-absorption spectroscopy measurements revealed a different trend for chemisorbed CO formation and CO{sub 2}-to-acetic acid reaction product ratios on these two nanostructures. The morphology-induced change in catalytic activity and selectivity in ethanol electrocatalysis is discussed in detail.

  4. Operant ethanol self-administration in ethanol dependent mice.

    Science.gov (United States)

    Lopez, Marcelo F; Becker, Howard C

    2014-05-01

    While rats have been predominantly used to study operant ethanol self-administration behavior in the context of dependence, several studies have employed operant conditioning procedures to examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure and withdrawal experience in mice. This review highlights some of the advantages of using operant conditioning procedures for examining the motivational effects of ethanol in animals with a history of dependence. As reported in rats, studies using various operant conditioning procedures in mice have demonstrated significant escalation of ethanol self-administration behavior in mice rendered dependent via forced chronic ethanol exposure in comparison to nondependent mice. This paper also presents a summary of these findings, as well as suggestions for future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Size-dependent electronic structure controls activity for ethanol electro-oxidation at Ptn/indium tin oxide (n = 1 to 14).

    Science.gov (United States)

    von Weber, Alexander; Baxter, Eric T; Proch, Sebastian; Kane, Matthew D; Rosenfelder, Michael; White, Henry S; Anderson, Scott L

    2015-07-21

    Understanding the factors that control electrochemical catalysis is essential to improving performance. We report a study of electrocatalytic ethanol oxidation - a process important for direct ethanol fuel cells - over size-selected Pt centers ranging from single atoms to Pt14. Model electrodes were prepared by soft-landing of mass-selected Ptn(+) on indium tin oxide (ITO) supports in ultrahigh vacuum, and transferred to an in situ electrochemical cell without exposure to air. Each electrode had identical Pt coverage, and differed only in the size of Pt clusters deposited. The small Ptn have activities that vary strongly, and non-monotonically with deposited size. Activity per gram Pt ranges up to ten times higher than that of 5 to 10 nm Pt particles dispersed on ITO. Activity is anti-correlated with the Pt 4d core orbital binding energy, indicating that electron rich clusters are essential for high activity.

  6. The combined effects of developmental lead and ethanol exposure on hippocampus dependent spatial learning and memory in rats: Role of oxidative stress.

    Science.gov (United States)

    Soleimani, Elham; Goudarzi, Iran; Abrari, Kataneh; Lashkarbolouki, Taghi

    2016-10-01

    Either developmental lead or ethanol exposure can impair learning and memory via induction of oxidative stress, which results in neuronal damage. we examined the effect of combined exposure with lead and ethanol on spatial learning and memory in offspring and oxidative stress in hippocampus. Rats were exposed to lead (0.2% in drinking water) or ethanol (4 g/kg) either individually or in combination in 5th day gestation through weaning. On postnatal days (PD) 30, rats were trained with six trials per day for 6 consecutive days in the water maze. On day 37, a probe test was done. Also, oxidative stress markers in the hippocampus were also evaluated. Results demonstrated that lead + ethanol co-exposed rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency and average proximity in probe trial test. There was significant decrease in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities and increase of malondialdehyde (MDA) levels in hippocampus of animals co-exposed to lead and ethanol compared with their individual exposures. We suggest that maternal consumption of ethanol during lead exposure has pronounced detrimental effects on memory, which may be mediated by oxidative stress. Copyright © 2016. Published by Elsevier Ltd.

  7. Electrocatalysis of anodic oxidation of ethanol

    Science.gov (United States)

    Tarasevich, M. R.; Korchagin, O. V.; Kuzov, A. V.

    2013-11-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references.

  8. Electrocatalysis of anodic oxidation of ethanol

    International Nuclear Information System (INIS)

    Tarasevich, M R; Korchagin, O V; Kuzov, A V

    2013-01-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references

  9. Tiliacora triandra, an Anti-Intoxication Plant, Improves Memory Impairment, Neurodegeneration, Cholinergic Function, and Oxidative Stress in Hippocampus of Ethanol Dependence Rats

    Directory of Open Access Journals (Sweden)

    Nattaporn Phunchago

    2015-01-01

    Full Text Available Oxidative stress plays an important role in brain dysfunctions induced by alcohol. Since less therapeutic agent against cognitive deficit and brain damage induced by chronic alcohol consumption is less available, we aimed to assess the effect of Tiliacora triandra extract, a plant possessing antioxidant activity, on memory impairment, neuron density, cholinergic function, and oxidative stress in hippocampus of alcoholic rats. Male Wistar rats were induced ethanol dependence condition by semivoluntary intake of alcohol for 15 weeks. Alcoholic rats were orally given T. triandra at doses of 100, 200, and 400 mg·kg−1BW for 14 days. Memory assessment was performed every 7 days while neuron density, activities of AChE, SOD, CAT, and GSH-Px and, MDA level in hippocampus were assessed at the end of study. Interestingly, the extract mitigated the increased escape latency, AChE and MDA level. The extract also mitigated the decreased retention time, SOD, CAT, and GSH-Px activities, and neurons density in hippocampus induced by alcohol. These data suggested that the extract improved memory deficit in alcoholic rats partly via the decreased oxidative stress and the suppression of AChE. Therefore, T. triandra is the potential reagent for treating brain dysfunction induced by alcohol. However, further researches are necessary to understand the detail mechanism and possible active ingredient.

  10. Ethanol dehydration on doped cadmium oxide

    International Nuclear Information System (INIS)

    Abd El-Salaam, K.M.

    1975-01-01

    The vapour phase catalytic dehydration of ethanol over Fe impregnated cadmium oxide was investigated between 200-450 0 C in atmospheric pressure. Electron transfer mechanisms involved in adsorption and catalytic dehydration reaction were investigated. The change in electrical conductivity of the catalyst resulting from calcination, adsorption and surface reaction processes were studied. Adsorption conductivity at low temperature ( 0 C) indicates that ethanol adsorbs as an electron donor. A mechanism of creation of interstitial Cd atoms responsible for the catalytic dehydration of ethanol on the catalyst surface was suggested. (orig.) [de

  11. Nanocatalysts for Ethanol Oxidation: Synthesis and Characterisation

    OpenAIRE

    Bonesi, A.; Triaca, W. E.; Luna, A. M. Castro

    2009-01-01

    Carb on-supported binary PtSn/C and ternary PtSnNi/C catalysts were prepared for the electro-oxidation of ethanol. The carbon-supported nanoparticles were synthesised by employing a modified polyol methodology and characterised in terms of structure, morphology and composition by using XRD, EDX and TEM techniques. Their electro-catalytic behaviour for ethanol oxidation (EO) was investigated by employing a disc-composite electrode covered by a thin layer of catalyst imbedded in a Nafion polyme...

  12. Oxidative and Non-Oxidative Metabolomics of Ethanol.

    Science.gov (United States)

    Dinis-Oliveira, Ricardo Jorge

    2016-01-01

    It is well known that ethanol can cause significant morbidity and mortality, and much of the related toxic effects can be explained by its metabolic profile. This work performs a complete review of the metabolism of ethanol focusing on both major and minor metabolites. An exhaustive literature search was carried out using textual and structural queries for ethanol and related known metabolizing enzymes and metabolites. The main pathway of metabolism is catalyzed by cytosolic alcohol dehydrogenase, which exhibits multiple isoenzymes and genetic polymorphisms with clinical and forensic implications. Another two oxidative routes, the highly inducible CYP2E1 system and peroxisomal catalase may acquire relevance under specific circumstances. In addition to oxidative metabolism, ethanol also originates minor metabolites such as ethyl glucuronide, ethyl sulfate, ethyl phosphate, ethyl nitrite, phosphatidylethanol and fatty acid ethyl esters. These metabolites represent alternative biomarkers since they can be detected several hours or days after ethanol exposure. It is expected that knowing the metabolomics of ethanol may provide additional insights to better understand the toxicological effects and the variability of dose response.

  13. Modifications in adrenal hormones response to ethanol by prior ethanol dependence.

    Science.gov (United States)

    Guaza, C; Borrell, S

    1985-03-01

    Ethanol was administered to rats by means of a liquid diet for 16 days; after an ethanol-free interval of four weeks, animals received a test (IP) dose of ethanol (2 g/kg), and the adrenocortical and adrenomedullary responses were evaluated. Chronically ethanol-exposed animals showed tolerance to the stimulatory effect of ethanol in the pituitary-adrenal axis. Likewise, previously dependent rats showed tolerance to the increase in the activity of the adrenomedullary function induced by acute administration of the drug. Our results indicate that chronic ethanol ingestion can induce persistent changes after complete alcohol abstinence.

  14. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    Science.gov (United States)

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  15. Temperature dependence of heat sensitization and thermotolerance induction with ethanol

    International Nuclear Information System (INIS)

    Henle, K.J.; Nagle, W.A.; Moss, A.J.

    1987-01-01

    Cytoxicity of 1 M ethanol was strongly temperature dependent; survival curves between 34 0 and 39 0 C were similar to heat survival curves between 40 and 45 0 without ethanol. Ethanol was non-toxic at 22 0 ; at 34.5 0 and 35.5 0 ethanol survival curves were biphasic. The major effect of 1 M ethanol was an effective temperature shift of 6.4 Celsius degrees, although temperatures between 34 0 and 36 0 caused additional sensitization reminiscent of the stepdown heating phenomenon. Induction of thermotolerance with equitoxic ethanol exposures at 35.5 0 and 37 0 or with heat alone (10 min, 45 0 ) resulted in tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance to hyperthermia. These data provide a rationale for conflicting reports in the literature regarding thermotolerance induction by ethanol and suggest that ethanol causes ''heat'' stress at temperatures that are generally considered to be physiological. This interpretation predicts that the use of ethanol and other organic solvents in high concentrations will cause effects at 37 0 that normally occur only at hyperthermic temperatures, including membrane perturbations and HSP synthesis, and that ''physiological'' temperatures must be precisely controlled under those conditions

  16. Determination of the efficiency of ethanol oxidation in a proton exchange membrane electrolysis cell

    Science.gov (United States)

    Altarawneh, Rakan M.; Majidi, Pasha; Pickup, Peter G.

    2017-05-01

    Products and residual ethanol in the anode and cathode exhausts of an ethanol electrolysis cell (EEC) have been analyzed by proton NMR and infrared spectrometry under a variety of operating conditions. This provides a full accounting of the fate of ethanol entering the cell, including the stoichiometry of the ethanol oxidation reaction (i.e. the average number of electrons transferred per ethanol molecule), product distribution and the crossover of ethanol and products through the membrane. The reaction stoichiometry (nav) is the key parameter that determines the faradaic efficiency of both EECs and direct ethanol fuel cells. Values determined independently from the product distribution, amount of ethanol consumed, and a simple electrochemical method based on the dependence of the current on the flow rate of the ethanol solution are compared. It is shown that the electrochemical method yields results that are consistent with those based on the product distribution, and based on the consumption of ethanol when crossover is accounted for. Since quantitative analysis of the cathode exhaust is challenging, the electrochemical method provides a valuable alternative for routine determination of nav, and hence the faradaic efficiency of the cell.

  17. Phenolic Compounds Protect Cultured Hippocampal Neurons against Ethanol-Withdrawal Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Marianna E. Jung

    2009-04-01

    Full Text Available Ethanol withdrawal is linked to elevated oxidative damage to neurons. Here we report our findings on the contribution of phenolic antioxidants (17β-estradiol, p-octyl-phenol and 2,6-di-tert-butyl-4-methylphenol to counterbalance sudden ethanol withdrawal-initiated oxidative events in hippocampus-derived cultured HT-22 cells. We showed that ethanol withdrawal for 4 h after 24-h ethanol treatment provoked greater levels of oxidative damage than the preceding ethanol exposure. Phenolic antioxidant treatment either during ethanol exposure or ethanol withdrawal only, however, dose-dependently reversed cellular oxidative damage, as demonstrated by the significantly enhanced cell viability, reduced malondialdehyde production and protein carbonylation, compared to untreated cells. Interestingly, the antioxidant treatment schedule had no significant impact on the observed neuroprotection. In addition, the efficacy of the three phenolic compounds was practically equipotent in protecting HT-22 cells in spite of predictions based on an in silico study and a cell free assay of lipid peroxidation. This finding implies that free-radical scavenging may not be the sole factor responsible for the observed neuroprotection and warrants further studies to establish, whether the HT-22 line is indeed a suitable model for in vitro screening of antioxidants against EW-related neuronal damage.

  18. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    International Nuclear Information System (INIS)

    Labidi, A.; Bejaoui, A.; Ouali, H.; Akkari, F. Chaffar; Hajjaji, A.; Gaidi, M.; Kanzari, M.; Bessais, B.; Maaref, M.

    2011-01-01

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  19. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, A., E-mail: Ahmed_laabidi@yahoo.fr [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Bejaoui, A.; Ouali, H. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Akkari, F. Chaffar [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Hajjaji, A.; Gaidi, M. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Maaref, M. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia)

    2011-09-15

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  20. Catalase increases ethanol oxidation through the purine catabolism in rat liver.

    Science.gov (United States)

    Villalobos-García, Daniel; Hernández-Muñoz, Rolando

    2017-08-01

    Hepatic ethanol oxidation increases according to its concentration and is raised to near-saturation levels of alcohol dehydrogenase (ADH); therefore, re-oxidation of NADH becomes rate limiting in ethanol metabolism by the liver. Adenosine is able to increase liver ethanol oxidation in both in vivo and in vitro conditions; the enhancement being related with the capacity of the nucleoside to accelerate the transport of cytoplasmic reducing equivalents to mitochondria, by modifying the subcellular distribution of the malate-aspartate shuttle components. In the present study, we explored the putative effects of adenosine and other purines on liver ethanol oxidation mediated by non-ADH pathways. Using the model of high precision-cut rat liver slices, a pronounced increase of ethanol oxidation was found in liver slices incubated with various intermediates of the purine degradation pathway, from adenosine to uric acid (175-230%, over controls). Of these, urate had the strongest (230%), whereas xanthine had the less pronounced effect (178% over controls). The enhancement was not abolished by 4-methylpyrazole, indicating that the effect was independent of alcohol dehydrogenase. Conversely, aminotriazole, a catalase inhibitor, completely abolished the effect, pointing out that this enhanced ethanol oxidation is mediated by catalase activity. It is concluded that the H 2 O 2 needed for catalase activity is derived from the oxidation of (hypo)xanthine by xanthine oxidase and the oxidation of urate by uricase. The present and previous data led us to propose that, depending on the metabolic conditions, adenosine might be able to stimulate the metabolism of ethanol through different pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Acute but not chronic ethanol exposure impairs retinol oxidation in the small and large intestine of the rat

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Ellendt, K.; Lindros, K.

    2005-01-01

    BACKGROUND AND AIM: Ethanol has been shown to inhibit retinol oxidation at the level of alcohol dehydrogenase in liver and colon but not previously in the small intestine. In the present study we investigated how chronic alcohol feeding and acute ethanol exposure affects retinol dehydrogenase...... higher, respectively). While chronic alcohol feeding did not affect these parameters, acute ethanol exposure reduced V(max) and V(max)/K(m) dose-dependently (p

  2. Stereospecificity (ST) of the microsomal ethanol oxidizing system (MEOS)

    International Nuclear Information System (INIS)

    Alderman, J.; Kato, S.; Lasker, J.; Lieber, C.S.

    1987-01-01

    The ST of MEOS for the ethanol 1R hydrogen has been variously reported as absolute, partial or absent, with free radical involvement postulated in the latter case. To determine both the ST of MEOS and the participation of free radicals in the reaction, they investigated MEOS ST using 1R[1- 3 H] ethanol as substrate. ST is expressed as the fraction of 3 H labeling in acetaldehyde formed, relative to that in ethanol, and ranges from 0.5 to 0. Partial ST was observed using liver microsomes from both rats and hamsters; it significantly decreased after ethanol feeding. 0.1 mM desferrioxamine (dfx) did not increase ST in any of these microsomal preparations while ferric EDTA decreased it, suggesting that ethanol treatment induces a cytochrome P-450 with lower ST rather than increasing free radical involvement. This is supported by a virtual absence of ST observed in a reconstituted system containing purified hamster P-450/sub ALC/, a liver cytochrome P-450 isozyme induced in hamsters by ethanol treatment. Their results indicate that, unlike other enzymes that oxidize ethanol, MEOS has only partial ST. Thus, ST alone cannot be used as an index of free radical involvement but, when evaluated with the response of ST to dfx, it indicated that MEOS is unlikely to involve free radical attack on ethanol in solution

  3. A role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of wnt/beta-catenin signaling

    Science.gov (United States)

    The mechanisms by which chronic ethanol intake induces bone loss remain unclear. In females, the skeletal response to ethanol varies depending on physiologic status (viz. cycling, pregnancy, lactation). Ethanol-induced oxidative stress appears to be a key event leading to skeletal toxicity. In the c...

  4. Oxidative and Non-Oxidative Metabolomics of Ethanol

    OpenAIRE

    Ricardo Jorge Dinis Oliveira

    2016-01-01

    Background: It is well known that ethanol can cause significant morbidity and mortality, and much of the related toxic effects can be explained by its metabolic profile. Objective: This work performs a complete review of the metabolism of ethanol focusing on both major and minor metabolites. Method: An exhaustive literature search was carried out using textual and structural queries for ethanol and related known metabolizing enzymes and metabolites. Results: The main pathway of metabolism is ...

  5. Palladium-based electrocatalysts for ethanol oxidation reaction in alkaline direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Leticia Poras Reis de; Amico, Sandro Campos; Malfatti, Celia de Fraga, E-mail: leticiamoraes@usp.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil); Matos, Bruno R.; Santiago, Elisabete Inacio; Fonseca, Fabio Coral [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: Direct ethanol fuel cells require adequate electrocatalysts to promote the carbon carbon cleavage of ethanol molecule. Typical electrocatalysts are based on platinum, which have shown improved activity in acidic media. However, Pt-based catalysts have high cost and are easily deactivated by CO poisoning. Therefore, novel catalysts have been developed, and among then, palladium-based materials have shown promising results for the oxidation of ethanol in alkaline media. The present study reports on the performance of alkaline direct ethanol fuel cell (ADEFC) by using carbon-supported Pd, PdSn, PdNi, and PdNiSn produced by impregnation-reduction of the metallic precursors. The effect of chemical functionalization by acid treatment of the carbon support (Vulcan) was investigated. The electrocatalysts were studied by thermogravimetric analysis (TGA), X-rays diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV), and ADEFC tests. TGA measurements of functionalized Vulcan evidenced the characteristic weight losses attributed to the presence of surface functional groups due to the acid treatment. A high degree of alloying between Pd and Sn was inferred from XRD data, whereas in both PdNi and PdNiSn, Ni occurs mostly segregated in the oxide form. TEM analyses indicated agglomeration of Pd and PdSn particles, whereas a more uniform particle distribution was observed for PdNi and PdNiSn samples. CV curves showed that the peak potential for the oxidation of ethanol shifts towards negative values for all samples supported on functionalized Vulcan indicating that ethanol oxidation is facilitated. Microstructural and electrochemical features were confirmed by ADEFC tests, which revealed that the highest open circuit voltage and maximum power density were achieved for PdNiSn electrocatalysts supported on functionalized Vulcan with uniform particle distribution and improved triple phase boundaries. (author)

  6. Palladium-based electrocatalysts for ethanol oxidation reaction in alkaline direct ethanol fuel cell

    International Nuclear Information System (INIS)

    Moraes, Leticia Poras Reis de; Amico, Sandro Campos; Malfatti, Celia de Fraga; Matos, Bruno R.; Santiago, Elisabete Inacio; Fonseca, Fabio Coral

    2016-01-01

    Full text: Direct ethanol fuel cells require adequate electrocatalysts to promote the carbon carbon cleavage of ethanol molecule. Typical electrocatalysts are based on platinum, which have shown improved activity in acidic media. However, Pt-based catalysts have high cost and are easily deactivated by CO poisoning. Therefore, novel catalysts have been developed, and among then, palladium-based materials have shown promising results for the oxidation of ethanol in alkaline media. The present study reports on the performance of alkaline direct ethanol fuel cell (ADEFC) by using carbon-supported Pd, PdSn, PdNi, and PdNiSn produced by impregnation-reduction of the metallic precursors. The effect of chemical functionalization by acid treatment of the carbon support (Vulcan) was investigated. The electrocatalysts were studied by thermogravimetric analysis (TGA), X-rays diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV), and ADEFC tests. TGA measurements of functionalized Vulcan evidenced the characteristic weight losses attributed to the presence of surface functional groups due to the acid treatment. A high degree of alloying between Pd and Sn was inferred from XRD data, whereas in both PdNi and PdNiSn, Ni occurs mostly segregated in the oxide form. TEM analyses indicated agglomeration of Pd and PdSn particles, whereas a more uniform particle distribution was observed for PdNi and PdNiSn samples. CV curves showed that the peak potential for the oxidation of ethanol shifts towards negative values for all samples supported on functionalized Vulcan indicating that ethanol oxidation is facilitated. Microstructural and electrochemical features were confirmed by ADEFC tests, which revealed that the highest open circuit voltage and maximum power density were achieved for PdNiSn electrocatalysts supported on functionalized Vulcan with uniform particle distribution and improved triple phase boundaries. (author)

  7. Effects of ethanol extract of Bersama engleriana leaves on oxidative ...

    African Journals Online (AJOL)

    Pesticides are used to improve agricultural yields; meanwhile they have detrimental effects on human and animal reproduction. This study aimed at evaluating the protective effects of ethanol extract of Bersama engleriana leaves against cypermethrin-induced oxidative stress and reproductive toxicity. Fifty male guinea.

  8. Wet oxidation pretreatment of rape straw for ethanol production

    International Nuclear Information System (INIS)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin. The highest ethanol yield obtained was 67% after fermenting the whole slurry produced by WO at 205 °C for 3 min with 12 bar of oxygen gas pressure and featured with presoaking in water. At these conditions after pre-treatment, cellulose and hemicellulose was recovered quantitatively (100%) together with 86% of the lignin. WO treatments of 2–3 min at 205–210 °C with 12 bar of oxygen gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid formation in SSF. -- Highlights: ► Wet Oxidation pretreatment on rape straw for sugar and ethanol production. ► Variables were reaction time, temperature, and oxygen gas pressure. ► Also, other configurations for increase of water and energy efficiency. ► Short Wet oxidation pretreatment (2–3 min) produced highest ethanol yield. ► After these pretreatment conditions recovery of lignin in solids was 86%.

  9. Palladium-based electrocatalysts for ethanol oxidation reaction in DEFC

    International Nuclear Information System (INIS)

    Moraes, L.P.R. de; Elsheikh, A.; Silva, E. L. da; Radtke, C.; Amico, S.C.; Malfatti, C.F.

    2014-01-01

    Direct ethanol fuel cells require the use of electrocatalysts to promote bond cleavage of the ethanol molecule in an efficient way. Currently, most electrocatalysts contain platinum, which enables improved catalytic activity and stability in acidic media. However platinum presents high cost and low availability. Based on that, novel catalysts have been developed, such as those based on palladium and its alloys, which have attained excellent results in the oxidation of ethanol in alkaline media. In this work, Pd, PdSn and PdNiSn catalysts supported on Vulcan XC72R carbon were synthesized via impregnation/reduction. The electrocatalysts were characterized by RBS, XRD and cyclic voltammetry. The X-ray diffraction results showed the formation of an alloy and not the deposition of isolated elements. The synthesized catalysts displayed good catalytic activity, as observed by cyclic voltammetry, being the best electrochemical performance achieved by the ternary alloy. (author)

  10. Ecklonia cava Polyphenol Has a Protective Effect against Ethanol-Induced Liver Injury in a Cyclic AMP-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Haruka Yamashita

    2015-06-01

    Full Text Available Previously, we showed that Ecklonia cava polyphenol (ECP treatment suppressed ethanol-induced increases in hepatocyte death by scavenging intracellular reactive oxygen species (ROS and maintaining intracellular glutathione levels. Here, we examined the effects of ECP on the activities of alcohol-metabolizing enzymes and their regulating mechanisms in ethanol-treated hepatocytes. Isolated hepatocytes were incubated with or without 100 mM ethanol. ECP was dissolved in dimethylsulfoxide. ECP was added to cultured cells that had been incubated with or without ethanol. The cells were incubated for 0–24 h. In cultured hepatocytes, the ECP treatment with ethanol inhibited cytochrome P450 2E1 (CYP2E1 expression and activity, which is related to the production of ROS when large quantities of ethanol are oxidized. On the other hand, ECP treatment with ethanol increased the activity of alcohol dehydrogenase (ADH and aldehyde dehydrogenase. These changes in activities of CYP2E1 and ADH were suppressed by treatment with H89, an inhibitor of protein kinase A. ECP treatment with ethanol enhanced cyclic AMP concentrations compared with those of control cells. ECP may be a candidate for preventing ethanol-induced liver injury via regulating alcohol metabolic enzymes in a cyclic AMP-dependent manner.

  11. A highly sensitive and durable electrical sensor for liquid ethanol using thermally-oxidized mesoporous silicon

    Science.gov (United States)

    Harraz, Farid A.; Ismail, Adel A.; Al-Sayari, S. A.; Al-Hajry, A.; Al-Assiri, M. S.

    2016-12-01

    A capacitive detection of liquid ethanol using reactive, thermally oxidized films constructed from electrochemically synthesized porous silicon (PSi) is demonstrated. The sensor elements are fabricated as meso-PSi (pore sizes hydrophobic PSi surface exhibited almost a half sensitivity of the thermal oxide sensor. The response to water is achieved only at the oxidized surface and found to be ∼one quarter of the ethanol sensitivity, dependent on parameters such as vapor pressure and surface tension. The capacitance response retains ∼92% of its initial value after continuous nine cyclic runs and the sensors presumably keep long-term stability after three weeks storage, demonstrating excellent durability and storage stability. The observed behavior in current system is likely explained by the interface interaction due to dipole moment effect. The results suggest that the current sensor structure and design can be easily made to produce notably higher sensitivities for reversible detection of various analytes.

  12. Inhibition of retinol oxidation by ethanol in the rat liver and colon

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Menzl, Ina; Feuchter, Anette

    2000-01-01

    the efficiency in the small intestine was negligible (0.20). In the presence of increasing ethanol concentrations (9, 17, and 34 mM), V(max)/K(m) for retinol oxidation decreased in a dose dependent manner to 7.8% of the initial value in the large intestine and to 12% in the liver. The V(max)/K(m) of retinoic...

  13. Inhibition of rat mammary microsomal oxidation of ethanol to acetaldehyde by plant polyphenols.

    Science.gov (United States)

    Maciel, María Eugenia; Castro, José Alberto; Castro, Gerardo Daniel

    2011-07-01

    We previously reported that the microsomal fraction from rat mammary tissue is able to oxidize ethanol to acetaldehyde, a mutagenic-carcinogenic metabolite, depending on the presence of NADPH and oxygen but not inhibited by carbon monoxide or other cytochrome P450 inhibitors. The process was strongly inhibited by diphenyleneiodonium, a known inhibitor of NADPH oxidase, and by nordihydroguaiaretic acid, an inhibitor of lipoxygenases. This led us to suggest that both enzymes could be involved. With the purpose of identifying natural compounds present in food with the ability to decrease the production of acetaldehyde in mammary tissue, in the present studies, several plant polyphenols having inhibitory effects on lipoxygenases and of antioxidant nature were tested as potential inhibitors of the rat mammary tissue microsomal pathway of ethanol oxidation. We included in the present screening study 32 polyphenols having ready availability and that were also tested against the rat mammary tissue cytosolic metabolism of ethanol to acetaldehyde. Several polyphenols were also able to inhibit the microsomal ethanol oxidation at concentrations as low was 10-50 μM. The results of these screening experiments suggest the potential of several plant polyphenols to prevent in vivo production and accumulation of acetaldehyde in mammary tissue.

  14. The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice.

    Science.gov (United States)

    Lopez, Marcelo F; Moorman, David E; Aston-Jones, Gary; Becker, Howard C

    2016-04-01

    The orexin/hypocretin (ORX) system plays a major role in motivation for natural and drug rewards. In particular, a number of studies have shown that ORX signaling through the orexin 1 receptor (OX1R) regulates alcohol seeking and consumption. Despite the association between ORX signaling and motivation for alcohol, no study to date has investigated what role the ORX system plays in alcohol dependence, an understanding of which would have significant clinical relevance. This study was designed to evaluate the effect of the highly selective OX1R antagonist GSK1059865 on voluntary ethanol intake in ethanol-dependent and control non-dependent mice. Mice were subjected to a protocol in which they were evaluated for baseline ethanol intake and then exposed to intermittent ethanol or air exposure in inhalation chambers. Each cycle of chronic intermittent ethanol (CIE), or air, exposure was followed by a test of ethanol intake. Once the expected effect of increased voluntary ethanol intake was obtained in ethanol dependent mice, mice were tested for the effect of GSK1059865 on ethanol and sucrose intake. Treatment with GSK1059865 significantly decreased ethanol drinking in a dose-dependent manner in CIE-exposed mice. In contrast GSK1059865 decreased drinking in air-exposed mice only at the highest dose used. There was no effect of GSK1059865 on sucrose intake. Thus, ORX signaling through the OX1R, using a highly-selective antagonist, has a profound influence on high levels of alcohol drinking induced in a dependence paradigm, but limited or no influence on moderate alcohol drinking or sucrose drinking. These results indicate that the ORX system may be an important target system for treating disorders of compulsive reward seeking such as alcoholism and other addictions in which motivation is strongly elevated. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation

    Science.gov (United States)

    Miao, Bei; Wu, Zhipeng; Xu, Han; Zhang, Minhua; Chen, Yifei; Wang, Lichang

    2017-11-01

    Current catalysts used for ethanol oxidation reaction (EOR) cannot effectively prevent CH3COOH formation, and thus become a major hindrance for direct ethanol fuel cell applications. We report an Ir catalyst that shows great promise for a complete EOR based on density functional theory calculations using PBE functional. The reaction barrier on Ir(1 0 0) was found to be 2.10 eV for CH3COOH formation, which is much higher than currently used Pd and Pt, and 0.57 eV for Csbnd C bond cleavage in CHCO species, which are comparable to Pd and Pt. The result suggests future directions for studying optimal complete EOR catalysts.

  16. Wet oxidation pretreatment of rape straw for ethanol production

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via...... Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole...... gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid...

  17. High-pressure pyrolysis and oxidation of ethanol

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob M.; Glarborg, Peter

    2018-01-01

    against the present data as well as ignition delay times and flame speed measurements from literature. The model predicted the onset of fuel conversion and the composition of products from the flow reactor experiments fairly well. It also predicted well ignition delays above 900 K whereas it overpredicted...... reported flame speeds slightly. The results of sensitivity analyses revealed the importance of the reaction between ethanol and the hydroperoxyl radical for ignition at high pressure and intermediate temperatures. An accurate determination of the rate coefficients for this reaction is important to improve......The pyrolysis and oxidation of ethanol has been investigated at temperatures of 600–900 K, a pressure of 50 bar and residence times of 4.3–6.8 s in a laminar flow reactor. The experiments, conducted with mixtures highly diluted in nitrogen, covered fuel-air equivalence ratios (Φ) of 0.1, 1.0, 43...

  18. Effect of different stressors on voluntary ethanol intake in ethanol-dependent and nondependent C57BL/6J mice.

    Science.gov (United States)

    Lopez, Marcelo F; Anderson, Rachel I; Becker, Howard C

    2016-03-01

    Several animal models have evaluated the effect of stress on voluntary ethanol intake with mixed results. The experiments reported here examined the effects of different stressors on voluntary ethanol consumption in dependent and nondependent adult male C57BL/6J mice. In Experiment 1, restraint, forced swim, and social defeat stress procedures all tended to reduce ethanol intake in nondependent mice regardless of whether the stress experience occurred 1 h or 4 h prior to ethanol access. The reduction in ethanol consumption was most robust following restraint stress. Experiment 2 examined the effects of forced swim stress and social defeat stress on drinking in a dependence model that involved repeated cycles of chronic intermittent ethanol (CIE) exposure. Repeated exposure to forced swim stress prior to intervening test drinking periods that followed repeated cycles of CIE exposure further increased ethanol consumption in CIE-exposed mice while not altering intake in nondependent mice. In contrast, repeated exposure to the social defeat stressor in a similar manner reduced ethanol consumption in CIE-exposed mice while not altering drinking in nondependent mice. Results from Experiment 3 confirmed this selective effect of forced swim stress increasing ethanol consumption in mice with a history of CIE exposure, and also demonstrated that enhanced drinking is only observed when the forced swim stressor is administered during each test drinking week, but not if it is applied only during the final test week. Collectively, these studies point to a unique interaction between repeated stress experience and CIE exposure, and also suggest that such an effect depends on the nature of the stressor. Future studies will need to further explore the generalizability of these results, as well as mechanisms underlying the ability of forced swim stress to selectively further enhance ethanol consumption in dependent (CIE-exposed) mice but not alter intake in nondependent animals

  19. A crucial role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of wnt/beta-catenin signaling

    Science.gov (United States)

    Female skeletal responses to ethanol may vary depending on the physiologic status (viz. cycling, pregnancy, lactation). Nonetheless, ethanol-induced oxidative stress appears to be the key event leading to skeletal toxicity. In the current study, we chronically infused EtOH-containing liquid diets ...

  20. Determination of the average number of electrons released during the oxidation of ethanol in a direct ethanol fuel cell

    International Nuclear Information System (INIS)

    Majidi, Pasha; Pickup, Peter G.

    2015-01-01

    The energy efficiency of a direct ethanol fuel cell (DEFC) is directly proportional to the average number of electrons released per ethanol molecule (n-value) at the anode. An approach to measuring n-values in DEFC hardware is presented, validated for the oxidation of methanol, and shown to provide n-values for ethanol oxidation that are consistent with trends and estimates from full product analysis. The method is based on quantitative oxidation of fuel that crosses through the membrane to avoid the errors that would otherwise result from crossover. It will be useful for rapid screening of catalysts, and allows performances (polarization curves) and n-values to be determined simultaneously under well controlled transport conditions.

  1. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Shen, Pei kang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China)

    2007-02-10

    This research aims to investigate Pd-based catalysts as a replacement for Pt-based catalysts for ethanol electrooxidation in alkaline media. The results show that Pd/C has a higher catalytic activity and better steady-state behaviour for ethanol oxidation than that of Pt/C. The effect of the addition of CeO{sub 2} and NiO to the Pt/C and Pd/C electrocatalysts on ethanol oxidation is also studied in alkaline media. The electrocatalysts with a weight ratio of noble metal (Pt, Pd) to CeO{sub 2} of 2:1 and a noble metal to NiO ration 6:1 show the highest catalytic activity for ethanol oxidation. The oxide promoted Pt/C and Pd/C electrocatalysts show a higher activity than the commercial E-TEK PtRu/C electrocatalyst for ethanol oxidation in alkaline media. (author)

  2. Inducible nitric oxide synthase catalyzes ethanol oxidation to α-hydroxyethyl radical and acetaldehyde

    International Nuclear Information System (INIS)

    Porasuphatana, Supatra; Weaver, John; Rosen, Gerald M.

    2006-01-01

    The physiologic function of nitric oxide synthases, independent of the isozyme, is well established, metabolizing L-arginine to L-citrulline and nitric oxide (NO). This enzyme can also transfer electrons to O 2 , affording superoxide (O 2 · - ) and hydrogen peroxide (H 2 O 2 ). We have demonstrated that NOS1, in the presence of L-arginine, can biotransform ethanol (EtOH) to α-hydroxyethyl radical (CH 3 ·CHOH). We now report that a competent NOS2 with L-arginine can, like NOS1, oxidize EtOH to CH 3 ·CHOH. Once this free radical is formed, it is metabolized to acetaldehyde as shown by LC-ESI-MS/MS and HPLC analysis. These observations suggest that NOS2 can behave similarly to cytochrome P-450 in the catalysis of acetaldehyde formation from ethanol via the generation of α-hydroxyethyl radical when L-arginine is present

  3. Ethanol-Induced Upregulation of 10-Formyltetrahydrofolate Dehydrogenase Helps Relieve Ethanol-Induced Oxidative Stress

    OpenAIRE

    Hsiao, Tsun-Hsien; Lin, Chia-Jen; Chung, Yi-Shao; Lee, Gang-Hui; Kao, Tseng-Ting; Chang, Wen-Ni; Chen, Bing-Hung; Hung, Jan-Jong; Fu, Tzu-Fun

    2014-01-01

    Alcoholism induces folate deficiency and increases the risk for embryonic anomalies. However, the interplay between ethanol exposure and embryonic folate status remains unclear. To investigate how ethanol exposure affects embryonic folate status and one-carbon homeostasis, we incubated zebrafish embryos in ethanol and analyzed embryonic folate content and folate enzyme expression. Exposure to 2% ethanol did not change embryonic total folate content but increased the tetrahydrofolate level app...

  4. Evaluating Pt-Ru/C mixtures as ethanol electro-oxidation catalysers

    Directory of Open Access Journals (Sweden)

    Bibian Alonso Hoyos

    2004-09-01

    Full Text Available This work studies ethanol electro-catalytic oxidation by cyclic voltametry in sulphuric acid solutions at different temperatures and concetrations, using platinum.rutenium mixtures supported in vitreous carbon as catalysers. The results indicate that ethanol oxidation in theses electrodes is irreversible, has slow kinetics, is controlled by charge transfer and is brought about by a bi-functional reaction mechanism, this being ethanol adsorption on platinum atoms and additional oxidation of specties adsorbed in the presence of platinum and retenium oxides. Experimental results show increased catalytic activity with electrodes, followed by reduced activity for electrodes having a greater quantity of rutenium.

  5. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses.

    Science.gov (United States)

    Charoenbhakdi, Sirikarn; Dokpikul, Thanittra; Burphan, Thanawat; Techo, Todsapol; Auesukaree, Choowong

    2016-05-15

    During fermentation, increased ethanol concentration is a major stress for yeast cells. Vacuolar H(+)-ATPase (V-ATPase), which plays an important role in the maintenance of intracellular pH homeostasis through vacuolar acidification, has been shown to be required for tolerance to straight-chain alcohols, including ethanol. Since ethanol is known to increase membrane permeability to protons, which then promotes intracellular acidification, it is possible that the V-ATPase is required for recovery from alcohol-induced intracellular acidification. In this study, we show that the effects of straight-chain alcohols on membrane permeabilization and acidification of the cytosol and vacuole are strongly dependent on their lipophilicity. These findings suggest that the membrane-permeabilizing effect of straight-chain alcohols induces cytosolic and vacuolar acidification in a lipophilicity-dependent manner. Surprisingly, after ethanol challenge, the cytosolic pH in Δvma2 and Δvma3 mutants lacking V-ATPase activity was similar to that of the wild-type strain. It is therefore unlikely that the ethanol-sensitive phenotype of vma mutants resulted from severe cytosolic acidification. Interestingly, the vma mutants exposed to ethanol exhibited a delay in cell wall remodeling and a significant increase in intracellular reactive oxygen species (ROS). These findings suggest a role for V-ATPase in the regulation of the cell wall stress response and the prevention of endogenous oxidative stress in response to ethanol. The yeast Saccharomyces cerevisiae has been widely used in the alcoholic fermentation industry. Among the environmental stresses that yeast cells encounter during the process of alcoholic fermentation, ethanol is a major stress factor that inhibits yeast growth and viability, eventually leading to fermentation arrest. This study provides evidence for the molecular mechanisms of ethanol tolerance, which is a desirable characteristic for yeast strains used in alcoholic

  6. In situ FTIRS study of ethanol electro-oxidation on anode catalysts in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Sun, G.; Jiang, L.; Zhu, M.; Yan, S.; Wang, G.; Xin, Q. [Chinese Academy of Sciences, Dalian (China). Dalian Inst. of Chemical Physics; Chen, Q.; Li, J.; Jiang, Y.; Sun, S. [Xiamen Univ., Xiamen (China). State Key Lab. for Physical Chemistry of Solid Surfaces

    2006-07-01

    The low activation of ethanol oxidation at lower temperatures is an obstacle to the development of cost-effective direct ethanol fuel cells (DEFCs). This study used a modified polyol method to prepare carbon-supported platinum (Pt) based catalysts. Carbon supported Pt-based catalysts were fabricated by a modified polyol method and characterized through transmission electron spectroscopy (TEM) and X-ray diffraction (XRD). Results of the study showed that the particles in the Pt/C and PtRu/C and PtSn/C catalysts were distributed on the carbon support uniformly. Diffraction peaks of the Pt shifted positively in the PtRu/C catalysts and negatively in the PtSn/C catalysts. In situ Fourier Transform Infra-red spectroscopy (FTIR) was used to investigate the adsorption and oxidation process of ethanol on the catalysts. Results showed that the electrocatalytic activity of ethanol oxidation on the materials was enhanced. Linear bonded carbon monoxide (CO) was the most strongly absorbed species, and the main products produced by the catalysts were carbon dioxide (CO{sub 2}), acetaldehyde, and acetic acid. Results showed that the PtRu/C catalyst broke the C-C bond more easily than the Pt/C and PtSn/C compounds. However, the results of a linear sweep voltammogram analysis showed that ethanol oxidation of the PtSn/C was enhanced. Bands observed on the compound indicated the formation of acetic acid and acetaldehyde. It was concluded that the enhancement of PtSn/C for ethanol oxidation was due to the formation of acetic acid and acetaldehyde at lower potentials. 4 refs., 1 fig.

  7. Incubation of ethanol reinstatement depends on test conditions and how ethanol consumption is reduced

    Science.gov (United States)

    Ginsburg, Brett C.; Lamb, R. J.

    2015-01-01

    In reinstatement studies (a common preclinical procedure for studying relapse), incubation occurs (longer abstinence periods result in more responding). This finding is discordant with the clinical literature. Identifying determinants of incubation could aid in interpreting reinstatement and identifying processes involved in relapse. Reinstated responding was examined in rats trained to respond for ethanol and food under a multiple concurrent schedule (Component 1: ethanol FR5, food FR150; Component 2: ethanol FR5, food FR5–alternating across the 30-min session). Ethanol consumption was then reduced for 1 or 16 sessions either by suspending training (rats remained in home cage) or by providing alternative reinforcement (only Component 2 stimuli and contingencies were presented throughout the session). In the next session, stimuli associated with Component 1 were presented and responses recorded but ethanol and food were never delivered. Two test conditions were studied: fixed-ratio completion either produced ethanol- or food-associated stimuli (signaled) or had no programmed consequence (unsignaled). Incubation of ethanol responding was observed only after suspended training during signaled test sessions. Incubation of food responding was also observed after suspended training. These results are most consistent with incubation resulting from a degradation of feedback functions limiting extinction responding, rather than an increased motivation. PMID:25595114

  8. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells.

    Science.gov (United States)

    Yang, Eun Sun; Lee, Su-Min; Park, Jeen-Woo

    2010-07-01

    It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.

  9. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, C.W. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, H. [Departement of Applied Chemistry, Dongguan University of Technology, Dongguan 523106 (China); Shen, P.K. [School of Physics and Engineering, Sun Yet-Sen University, Guangzhou 510275 (China); Jiang, S.P.

    2007-12-03

    Pd nanowire arrays (NWAs) with high electrochemically active surface area are successfully fabricated using anodized aluminum oxide electrodeposition. The electrocatalytic activity and stability of the Pd NWAs for ethanol electrooxidation are not only significantly higher that of conventional Pd film electrodes, but also higher than that of well-established commercial PtRu/C electrocatalysts. The Pd NWAs show great potential as electrocatalysts for ethanol electrooxidation in alkaline media in direct ethanol fuel cells. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  10. Hydrogen production by ethanol partial oxidation over nano-iron oxide catalysts produced by chemical vapour synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael Ahmed Abou Taleb Sayed

    2011-01-13

    stability was reported for a reaction time of 10 hours. The results showed that the reaction route, the product distribution and hydrogen selectivity strongly depend on the iron oxide phase. The {alpha}-Fe{sub 2}O{sub 3} phase showed high hydrogen selectivity with the highest stability. Over {alpha}-Fe{sub 2}O{sub 3}/SiC supported catalysts acetaldehyde, water and CO{sub 2} were the main products. The product distributions strongly depended on the catalyst iron content. With increasing sample iron content, more CO{sub 2} and water was produced. The catalyst with an iron content of 1.9% showed the highest acetaldehyde yield. This is attributed to the low iron oxide content at active sites which lead to a dehydrogenation of ethanol to acetaldehyde. In contrast, at higher iron content more active sites were provided hence the acetaldehyde re-adsorbed and further oxidised to CO{sub 2}. All supported catalysts showed a good stability for 10 hours. In this time, the ethanol conversion was decreased by 9% with constant acetaldehyde yield. These results provide evidence that the reaction occurs over the iron oxide surface and iron oxide-support interface but not over the SiC particles. These results were supported by carrying out the ethanol oxidation over pure {alpha}-Fe{sub 2}O{sub 3} nanoparticles with different surface areas. Those surface areas were chosen depending on the surface areas measured for the pure {alpha}-Fe{sub 2}O{sub 3} and surface area calculated for iron oxide in the supported samples. The investigation showed that with a large catalyst surface areas hydrogen with a high selectivity may be produced, whereas with a small surface area only acetaldehyde, water and CO{sub 2} can be produced. The characterisation of the used catalyst showed a small variation of the iron oxide particle size and large surface area. This proved that the SiC support avoids a hot spot formation and prevents iron oxide particles from being sintered. (orig.)

  11. Mechanistic insight into oxide-promoted palladium catalysts for the electro-oxidation of ethanol.

    Science.gov (United States)

    Martinez, Ulises; Serov, Alexey; Padilla, Monica; Atanassov, Plamen

    2014-08-01

    Recent advancements in the development of alternatives to proton exchange membrane fuel cells utilizing less-expensive catalysts and renewable liquid fuels, such as alcohols, has been observed for alkaline fuel cell systems. Alcohol fuels present the advantage of not facing the challenge of storage and transportation encountered with hydrogen fuel. Oxidation of alcohols has been improved by the promotion of alloyed or secondary phases. Nevertheless, currently, there is no experimental understanding of the difference between an intrinsic and a synergistic promotion effect in high-pH environments. This report shows evidence of different types of promotion effects on palladium electrocatalysts obtained from the presence of an oxide phase for the oxidation of ethanol. The correlation of mechanistic in situ IR spectroscopic studies with electrochemical voltammetry studies on two similar electrocatalytic systems allow the role of either an alloyed or a secondary phase on the mechanism of oxidation of ethanol to be elucidated. Evidence is presented for the difference between an intrinsic effect obtained from an alloyed system and a synergistic effect produced by the presence of an oxide phase. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Intrinsic Activity of MnOx-CeO2 Catalysts in Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Dimitrios Delimaris

    2017-11-01

    Full Text Available MnOx-CeO2 mixed oxides are considered efficient oxidation catalysts superior to the corresponding single oxides. Although these oxides have been the subject of numerous studies, their fundamental performance indicators, such as turnover frequency (TOF or specific activity, are scarcely reported. The purpose of the present work is to investigate the effect of catalyst composition on the concentration of active sites and intrinsic activity in ethanol oxidation by the employment of temperature-programmed desorption and oxidation of isotopically-labelled ethanol, 12CH313CH2OH. The transformation pathways of preadsorbed ethanol in the absence of gaseous oxygen refer to dehydrogenation to acetaldehyde followed by its dissociation combined with oxidation by lattice oxygen. In the presence of gaseous oxygen, lattice oxygen is rapidly restored and the main products are acetaldehyde, CO2, and water. CO2 forms less easily on mixed oxides than on pure MnOx. The TOF of ethanol oxidation has been calculated assuming that the amount of adsorbed ethanol and CO2 produced during temperature-programmed oxidation (TPO is a reliable indicator of the concentration of the active sites.

  13. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2.

    Science.gov (United States)

    Kowal, A; Li, M; Shao, M; Sasaki, K; Vukmirovic, M B; Zhang, J; Marinkovic, N S; Liu, P; Frenkel, A I; Adzic, R R

    2009-04-01

    Ethanol, with its high energy density, likely production from renewable sources and ease of storage and transportation, is almost the ideal combustible for fuel cells wherein its chemical energy can be converted directly into electrical energy. However, commercialization of direct ethanol fuel cells has been impeded by ethanol's slow, inefficient oxidation even at the best electrocatalysts. We synthesized a ternary PtRhSnO(2)/C electrocatalyst by depositing platinum and rhodium atoms on carbon-supported tin dioxide nanoparticles that is capable of oxidizing ethanol with high efficiency and holds great promise for resolving the impediments to developing practical direct ethanol fuel cells. This electrocatalyst effectively splits the C-C bond in ethanol at room temperature in acid solutions, facilitating its oxidation at low potentials to CO(2), which has not been achieved with existing catalysts. Our experiments and density functional theory calculations indicate that the electrocatalyst's activity is due to the specific property of each of its constituents, induced by their interactions. These findings help explain the high activity of Pt-Ru for methanol oxidation and the lack of it for ethanol oxidation, and point to the way to accomplishing the C-C bond splitting in other catalytic processes.

  14. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.

    Science.gov (United States)

    Wang, Hui-Fang; Liu, Zhi-Pan

    2008-08-20

    Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.

  15. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    KAUST Repository

    Nagaraju, Doddahalli H.; Devaraj, Sappani; Balaya, Palani

    2014-01-01

    nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient

  16. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    Directory of Open Access Journals (Sweden)

    José A. Hernández

    2016-01-01

    Full Text Available The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.

  17. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Boroumand, Nahal [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Hyunsu, Ju [Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Calhoun, William J. [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States)

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  18. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    International Nuclear Information System (INIS)

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  19. Effect of temperature on the electro-oxidation of ethanol on platinum

    OpenAIRE

    Camargo, Ana Paula M.; Previdello, Bruno A. F.; Varela, Hamilton; Gonzalez, Ernesto R.

    2010-01-01

    We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, an...

  20. Lignans from Opuntia ficus-indica seeds protect rat primary hepatocytes and HepG2 cells against ethanol-induced oxidative stress.

    Science.gov (United States)

    Kim, Jung Wha; Yang, Heejung; Kim, Hyeon Woo; Kim, Hong Pyo; Sung, Sang Hyun

    2017-01-01

    Bioactivity-guided isolation of Opuntia ficus-indica (Cactaceae) seeds against ethanol-treated primary rat hepatocytes yielded six lignan compounds. Among the isolates, furofuran lignans 4-6, significantly protected rat hepatocytes against ethanol-induced oxidative stress by reducing intracellular reactive oxygen species levels, preserving antioxidative defense enzyme activities, and maintaining the glutathione content. Moreover, 4 dose-dependently induced the heme oxygenase-1 expression in HepG2 cells.

  1. Time-dependent negative reinforcement of ethanol intake by alleviation of acute withdrawal.

    Science.gov (United States)

    Cunningham, Christopher L; Fidler, Tara L; Murphy, Kevin V; Mulgrew, Jennifer A; Smitasin, Phoebe J

    2013-02-01

    Drinking to alleviate the symptoms of acute withdrawal is included in diagnostic criteria for alcoholism, but the contribution of acute withdrawal relief to high alcohol intake has been difficult to model in animals. Ethanol dependence was induced by passive intragastric ethanol infusions in C57BL/6J (B6) and DBA/2J (D2) mice; nondependent control animals received water infusions. Mice were then allowed to self-administer ethanol or water intragastrically. The time course of acute withdrawal was similar to that produced by chronic ethanol vapor exposure in mice, reaching a peak at 7 to 9 hours and returning to baseline within 24 hours; withdrawal severity was greater in D2 than in B6 mice (experiment 1). Postwithdrawal delays in initial ethanol access (1, 3, or 5 days) reduced the enhancement in later ethanol intake normally seen in D2 (but not B6) mice allowed to self-infuse ethanol during acute withdrawal (experiment 2). The postwithdrawal enhancement of ethanol intake persisted over a 5-day abstinence period in D2 mice (experiment 3). D2 mice allowed to drink ethanol during acute withdrawal drank more ethanol and self-infused more ethanol than nondependent mice (experiment 4). Alcohol access during acute withdrawal increased later alcohol intake in a time-dependent manner, an effect that may be related to a genetic difference in sensitivity to acute withdrawal. This promising model of negative reinforcement encourages additional research on the mechanisms underlying acute withdrawal relief and its role in determining risk for alcoholism. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Tailoring the properties of Platinum supported catalysts by irreversible adsorbed adatoms toward ethanol oxidation for direct ethanol fuel cells

    OpenAIRE

    Costa Figueiredo, Marta; Santasalo-Aarnio, A.; Vidal-Iglesias, F.J.; Solla-Gullón, J.; Feliu, J.M.; Kontturi, K.; Kallio, T.

    2013-01-01

    In this work ethanol oxidation on carbon supported Pt catalysts modified with irreversibly adsorbed adatoms is reported. This study concerns understanding of the effect of a second metal on real catalysts in conditions as close as possible to those applied in fuel cells systems. The results were acquired using cyclic voltammetry, chronoamperometry and in situ infra-red techniques always taking into account the future application of the electrocatalyst materials in fuel cells. Foreign adatoms,...

  3. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation.

    Science.gov (United States)

    Tian, Xi-Ke; Zhao, Xiao-Yu; Zhang, Li-de; Yang, Chao; Pi, Zhen-Bang; Zhang, Su-Xin

    2008-05-28

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one.

  4. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation

    International Nuclear Information System (INIS)

    Tian Xike; Zhao Xiaoyu; Yang Chao; Pi Zhenbang; Zhang Lide; Zhang Suxin

    2008-01-01

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one

  5. Pseudoliquid behavior of heteropoly compound catalysts. Unusual pressure dependencies of the rate and selectivity for ethanol dehydration

    International Nuclear Information System (INIS)

    Misono, M.; Okuhara, T.; Ichiki, T.; Arai, T.; Kanda, Y.

    1987-01-01

    Heteropoly compounds arenow utilized as industrial catalysts for olefin hydration and aldehyde oxidation and as interesting cluster models of mixed oxide catalysts. Certain heteropoly acids, like H 3 PW 12 O 40 and H 3 PMo 12 O 40 , easily absorb a large amount of water, alchols, and ethers in the solid state, although their surface areas are very low. This is not adsorption in micropores; rather molecules are absorbed between the lattice polyanions, sometimes expanding the lattice. The expansion can be seen visually as well as by x-ray diffraction. The authors showed that in some cases catalytic reactions take place in this novel bulk phase. Presumably due to this behavior, very high catalytic activity and unique selectivity as well as unusual reactivity order have been observed. They called this state the pseudoliquid phase. However, in only one case was the amount of absorbed reactant measured under the working conditions. They report here unusual pressure dependencies of the rate and selectivity of ethanol dehydration over heteropoly compounds. The dependency can only be explained by the formation of a pseudoliquid phase, i.e., a phase where the amount of absorbed ethanol has changed as a function of ethanol pressure

  6. Development of mechanical hypersensitivity in rats during heroin and ethanol dependence: alleviation by CRF₁ receptor antagonism.

    Science.gov (United States)

    Edwards, Scott; Vendruscolo, Leandro F; Schlosburg, Joel E; Misra, Kaushik K; Wee, Sunmee; Park, Paula E; Schulteis, Gery; Koob, George F

    2012-02-01

    Animal models of drug dependence have described both reductions in brain reward processes and potentiation of stress-like (or anti-reward) mechanisms, including a recruitment of corticotropin-releasing factor (CRF) signaling. Accordingly, chronic exposure to opiates often leads to the development of mechanical hypersensitivity. We measured paw withdrawal thresholds (PWTs) in male Wistar rats allowed limited (short access group: ShA) or extended (long access group: LgA) access to heroin or cocaine self-administration, or in rats made dependent on ethanol via ethanol vapor exposure (ethanol-dependent group). In heroin self-administering animals, after transition to LgA conditions, thresholds were reduced to around 50% of levels observed at baseline, and were also significantly lower than thresholds measured in animals remaining on the ShA schedule. In contrast, thresholds in animals self-administering cocaine under either ShA (1 h) or LgA (6 h) conditions were unaltered. Similar to heroin LgA rats, ethanol-dependent rats also developed mechanical hypersensitivity after eight weeks of ethanol vapor exposure compared to non-dependent animals. Systemic administration of the CRF1R antagonist MPZP significantly alleviated the hypersensitivity observed in rats dependent on heroin or ethanol. The emergence of mechanical hypersensitivity with heroin and ethanol dependence may thus represent one critical drug-associated negative emotional state driving dependence on these substances. These results also suggest a recruitment of CRF-regulated nociceptive pathways associated with escalation of intake and dependence. A greater understanding of relationships between chronic drug exposure and pain-related states may provide insight into mechanisms underlying the transition to drug addiction, as well as reveal new treatment opportunities. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effect of temperature on the electro-oxidation of ethanol on platinum

    Directory of Open Access Journals (Sweden)

    Ana Paula M. Camargo

    2010-01-01

    Full Text Available We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.

  8. Yield optimization in a cycled trickle-bed reactor: ethanol catalytic oxidation as a case study

    Energy Technology Data Exchange (ETDEWEB)

    Ayude, A.; Haure, P. [INTEMA, CONICET, Mar del Plata (Argentina); Cassanello, M. [Universidad de Buenos Aires, PINMATE, Departamento de Industrias, FCEyN, Buenos Aires (Argentina); Martinez, O. [Departamento de Ingenieria Quimica, FI-UNLP-CINDECA, La Plata (Argentina)

    2012-05-15

    The effect of slow ON-OFF liquid flow modulation on the yield of consecutive reactions is investigated for oxidation of aqueous ethanol solutions using a 0.5 % Pd/Al{sub 2}O{sub 3} commercial catalyst in a laboratory trickle-bed reactor. Experiments with modulated liquid flow rate (MLFR) were performed under the same hydrodynamic conditions (degree of wetting, liquid holdup) as experiments with constant liquid flow rate (CLFR). Thus, the impact of the duration of wet and dry cycles as well as the period can be independently investigated. Depending on cycling conditions, acetaldehyde or acetic acid production is favored with MLFR compared to CLFR. Results suggest both the opportunity and challenge of finding a way to tune the cycling parameters for producing the most appropriate product. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Electro-catalytic oxidation of ethanol on platinum-iridium mixtures supported on glassy carbon

    International Nuclear Information System (INIS)

    Rodriguez, Henry; Hoyos Bibian

    2004-01-01

    Electro-catalytic oxidation of ethanol on platinum-iridium mixtures supported on glassy carbon was studied, in acid media at different temperatures and concentrations. During the maturation time of deposited iridium, the surface is covered by an irreversible oxide formation, which affects the behavior of the catalytic mixture. The Pt 7 0 Ir 3 0 and Pt 9 0 Ir 1 0 mixtures seem to be a little more active than the Pt/C electrode at potentials below 800 mV (vs. HRE). In all electrodes appears two reactions: partial ethanol oxidation to produce acetaldehyde (main path of reaction at low temperatures and high electrode coverage with ethanol adsorption residues) and the total oxidation to carbon dioxide which is considerable at potential above 800 mV and it is increased with increasing temperature

  10. Role of Cu-Mg-Al mixed oxide catalysts in lignin depolymerization in supercritical ethanol

    NARCIS (Netherlands)

    Huang, X.; Ceylanpinar, A.; Koranyi, T.I.; Boot, M.D.; Hensen, E.J.M.

    2015-01-01

    We investigate the role of Cu-Mg-Al mixed oxides in depolymerization of soda lignin in supercritical ethanol. A series of mixed oxides with varying Cu content and (Cu+Mg)/Al ratio were prepared. The optimum catalyst containing 20 wt% Cu and having a (Cu+Mg)/Al ratio of 4 yielded 36 wt% monomers

  11. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells

    Science.gov (United States)

    Ma, Liang; He, Hui; Hsu, Andrew; Chen, Rongrong

    2013-11-01

    Carbon supported PdRu catalysts with various Pd:Ru atomic ratios were synthesized by impregnation method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), electrochemical half-cell tests, and the anion-exchange membrane direct ethanol fuel cell (AEM-DEFC) tests. XRD results suggest that the PdRu metal exists on carbon support in an alloy form. TEM study shows that the bimetallic PdRu/C catalysts have slightly smaller average particle size than the single metal Pd/C catalyst. Lower onset potential and peak potential and much higher steady state current for ethanol oxidation in alkaline media were observed on the bimetallic catalysts (PdxRuy/C) than on the Pd/C, while the activity for ethanol oxidation on the pure Ru/C was not noticeable. By using Pd/C anode catalysts and MnO2 cathode catalysts, AEM-DEFCs free from the expensive Pt catalyst were assembled. The AEM DEFC using the bimetallic Pd3Ru/C anode catalyst showed a peak power density as high as 176 mW cm-2 at 80 °C, about 1.8 times higher than that using the single metal Pd/C catalyst. The role of Ru for enhancing the EOR activity of Pd/C catalysts is discussed.

  12. Morphological Effect of Pd Catalyst on Ethanol Electro-Oxidation Reaction

    Directory of Open Access Journals (Sweden)

    Rosalba Fuentes Ramírez

    2012-09-01

    Full Text Available In the present study, three different structures with preferentially exposed crystal faces were supported on commercial carbon black by the polyol method (nanoparticles (NP/C, nanobars (NB/C and nanorods (NR/C. The electrocatalysts were characterized by XRD, TEM, TGA and cyclic voltammetry at three different ethanol concentrations. Considerable differences were found in terms of catalytic electroactivity. At all ethanol concentrations, the trend observed for the ethanol oxidation peak potential was preserved as follows: NB/C < NP/C< NR/C < commercial Pd/C. This result indicates that, from a thermodynamics point of view, the NB/C catalyst enclosed by Pd(100 facets presented the highest activity with respect to ethanol electro-oxidation among all of the catalysts studied.

  13. Ginger extract protects rat's kidneys against oxidative damage after chronic ethanol administration.

    Science.gov (United States)

    Shirpoor, Aireza; Rezaei, Farzaneh; Fard, Amin Abdollahzade; Afshari, Ali Taghizadeh; Gharalari, Farzaneh Hosseini; Rasmi, Yousef

    2016-12-01

    Chronic alcohol ingestion is associated with pronounced detrimental effects on the renal system. In the current study, the protective effect of ginger extract on ethanol-induced damage was evaluated through determining 8-OHdG, cystatin C, glomerular filtration rate, and pathological changes such as cell proliferation and fibrosis in rats' kidneys. Male wistar rats were randomly divided into three groups and were treated as follows: (1) control, (2) ethanol and (3) ginger extract treated ethanolic (GETE) groups. After a six weeks period of treatment, the results revealed proliferation of glomerular and tubular cells, fibrosis in glomerular and peritubular and a significant rise in the level of 8-OHdG, cystatin C, plasma urea and creatinine. Moreover, compared to the control group, the ethanol group showed a significant decrease in the urine creatinine and creatinine clearance. In addition, significant amelioration of changes in the structure of kidneys, along with restoration of the biochemical alterations were found in the ginger extract treated ethanolic group, compared to the ethanol group. These findings indicate that ethanol induces kidneys abnormality by oxidative DNA damage and oxidative stress, and that these effects can be alleviated using ginger as an antioxidant and anti-inflammatory agent. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Pretreatment of Reed by Wet Oxidation and Subsequent Utilization of the Pretreated Fibers for Ethanol Production

    DEFF Research Database (Denmark)

    Szijarto, Nora; Kádár, Zsófia; Varga, Eniko

    2009-01-01

    lignocelluloses usually do. In the present study, wet oxidation was investigated as the pretreatment method to enhance the enzymatic digestibility of reed cellulose to soluble sugars and thus improve the convertibility of reed to ethanol. The most effective treatment increased the digestibility of reed cellulose...... of cellulose to glucose was 82.4%. Simultaneous saccharification and fermentation of pretreated solids resulted in a final ethanol concentration as high as 8.7 g/L, yielding 73% of the theoretical....

  15. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr; Lisiecki, P.; Holm-Nielsen, J.B.

    2008-01-01

    was investigated using 2 1 bioreactors. Wet oxidation performed for 20 min at 121 degrees C was found as the most suitable pretreatment conditions for AD manure. High ammonia concentration and significant amount of macro- and micro-nutrients in the AD manure had a positive influence on the ethanol fermentation....... No extra nitrogen source was needed in the fermentation broth. It was shown that the AD manure could successfully substitute process water in SSF of pretreated lignocellulosic fibres. Theoretical ethanol yields of 82% were achieved, giving 30.8 kg ethanol per 100 kg dry mass of maize silage. (C) 2007...

  16. Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases.

    Science.gov (United States)

    Li, Qunrui; Metthew Lam, L K; Xun, Luying

    2011-11-01

    Lignocellulosic biomass is usually converted to hydrolysates, which consist of sugars and sugar derivatives, such as furfural. Before yeast ferments sugars to ethanol, it reduces toxic furfural to non-inhibitory furfuryl alcohol in a prolonged lag phase. Bioreduction of furfural may shorten the lag phase. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase (FurX) at the expense of ethanol (Li et al. 2011). The mechanism of the ethanol-dependent reduction of furfural by FurX and three homologous alcohol dehydrogenases was investigated. The reduction consisted of two individual reactions: ethanol-dependent reduction of NAD(+) to NADH and then NADH-dependent reduction of furfural to furfuryl alcohol. The kinetic parameters of the coupled reaction and the individual reactions were determined for the four enzymes. The data indicated that limited NADH was released in the coupled reaction. The enzymes had high affinities for NADH (e.g., K ( d ) of 0.043 μM for the FurX-NADH complex) and relatively low affinities for NAD(+) (e.g., K ( d ) of 87 μM for FurX-NAD(+)). The kinetic data suggest that the four enzymes are efficient "furfural reductases" with either ethanol or NADH as the reducing power. The standard free energy change (ΔG°') for ethanol-dependent reduction of furfural was determined to be -1.1 kJ mol(-1). The physiological benefit for ethanol-dependent reduction of furfural is likely to replace toxic and recalcitrant furfural with less toxic and more biodegradable acetaldehyde.

  17. Study of the electrocatalytic oxidation of Ethanol over platinum in medium acid

    International Nuclear Information System (INIS)

    Hoyos, Bibian; Gonzalez, Javier; Sanchez, Carlos

    2002-01-01

    Electro-catalytic oxidation of ethanol on platinum surfaces in sulfuric acid solutions at different temperatures and concentrations was studied by cyclic voltammetry. The results shown that there is ethanol adsorption at potentials below 0.4V (vs. RHE) with electrode coverage fraction for residues of 0.3 or less. There are also, two irreversible oxidation reactions. Former reaction seems be catalyzed by Pt(OH) species with electronic charge transfer control and the second reaction seems be catalyzed by Pt(OH) 4 with diffusion control while Pt(OH) 2 does not have catalytic activity. The activity and selectivity for total oxidation increases with ethanol concentration and temperature. Finally, a reaction mechanism, which explains the obtained data, is proposed

  18. ETHANOL OXIDATION OVER AU/TIO2 CATALYSTS

    African Journals Online (AJOL)

    DR. AMINU

    The adsorption and reaction of ethanol over Au/TiO2 catalysts was investigated using pulse ... the surface disappears, so the mechanism reverts to a decomposition pathway, producing methane, ... allowed to flow at a rate of 30 ml per minutes.

  19. Ameliorative effect of Opuntia ficus indica juice on ethanol-induced oxidative stress in rat erythrocytes.

    Science.gov (United States)

    Alimi, Hichem; Hfaeidh, Najla; Bouoni, Zouhour; Sakly, Mohsen; Rhouma, Khémais Ben

    2013-05-01

    The aim of the present study was to investigate the efficacy of Opuntia ficus indica f. inermis fruit juice (OFIj) on reversing oxidative damages induced by chronic ethanol intake in rat erythrocytes. OFIj was firstly analyzed with HPLC for phenolic and flavonoids content. Secondly, 40 adult male Wistar rats were equally divided into five groups and treated for 90 days as follows: control (C), ethanol-only 3 g/kg body weight (b.w) (E), low dose of OFIj 2 ml/100 g b.w+ethanol (Ldj+E), high dose of OFIj 4 ml/100 g b.w+ethanol (Hdj+E), and only a high dose of OFIj 4 ml/100g b.w (Hdj). HPLC analysis indicated high concentrations of phenolic acids and flavonoids in OFIj. Ethanol treatment markedly decreased the activities of erythrocyte superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and the level of reduced glutathione (GSH). Changes in the erythrocyte's antioxidant ability were accompanied by enhanced oxidative modification of lipids (increase of malondialdeyde level) and proteins (increase in carbonyl groups). Interestingly, pre-administration of either 2 ml/100 g b.w or 4 ml/100 g b.w of OFIj to ethanol-intoxicated rats significantly reversed decreases in enzymatic as well as non enzymatic antioxidants parameters in erythrocytes. Also, the administration of OFIj significantly protected lipids and proteins against ethanol-induced oxidative modifications in rat erythrocytes. The beneficial effect of OFIj can result from the inhibition of ethanol-induced free radicals chain reactions in rat erythrocytes or from the enhancement of the endogenous antioxidants activities. Copyright © 2011 Elsevier GmbH. All rights reserved.

  20. Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction

    Science.gov (United States)

    Gac, Wojciech; Greluk, Magdalena; Słowik, Grzegorz; Turczyniak-Surdacka, Sylwia

    2018-05-01

    Surface and structural changes of unmodified manganese and cobalt-manganese oxide during activation and ethanol steam reforming reaction conditions (ESR) were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction/oxidation (TPR/TPO) and transmission electron microscopy. It was shown that synthesis of cobalt manganese oxide by the redox precipitation method led to the formation of strongly dispersed cobalt ionic species within cryptomelane-based manganese oxide structure. Development of large cube-like MnO nanoparticles with spherical cobalt metallic crystallites decorated by manganese oxide on the high oxidation state and potassium species was observed during reduction. Cobalt manganese catalyst showed high initial activity and selectivity to H2 and CO2 in ethanol stem reforming reaction in the range of 390-480 °C. The drop of ethanol conversion and changes of selectivity with the time-on-stream were observed. An increase of reaction temperature led to intensification of deactivation phenomena. TEM studies evidenced coexistence of Co and CoOx nanoparticles formed under ethanol steam reforming conditions, partially covered by filamentous and encapsulating carbonaceous deposits.

  1. Direct ethanol solid oxide fuel cell operating in gradual internal reforming

    Science.gov (United States)

    Nobrega, S. D.; Galesco, M. V.; Girona, K.; de Florio, D. Z.; Steil, M. C.; Georges, S.; Fonseca, F. C.

    2012-09-01

    An electrolyte supported solid oxide fuel cell (SOFC) using standard electrodes, doped-lanthanum manganite cathode and Ni-cermet anode, was operated with direct (anhydrous) ethanol for more than 100 h, delivering essentially the same power output as running on hydrogen. A ceria-based layer provides the catalytic activity for the gradual internal reforming, which uses the steam formed by the electrochemical oxidation of hydrogen for the decomposition of ethanol. Such a concept opens up the way for multi-fuel SOFCs using standard components and a catalytic layer.

  2. Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleão; Furtunato da Silva, Dionisio; Pino, Eddy Segura; Martins da Silva, Júlio César; Brambilla de Souza, Rodrigo Fernando; Hammer, Peter; Spinacé, Estevam Vitório; Neto, Almir Oliveira; Linardi, Marcelo; Coelho dos Santos, Mauro

    2013-01-01

    Carbon-supported Pd, Au and bimetallic PdAu (Pd:Au 90:10, 50:50 and 30:70 atomic ratios) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their catalytic activities toward ethanol electro-oxidation were evaluated in an alkaline medium using electrochemical techniques, in situ attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) analysis and a single alkaline direct ethanol fuel cell (ADEFC). EDX analyses showed that the actual Pd:Au atomic ratios were very similar to the nominal ones. X-ray diffractograms of PdAu/C electrocatalysts evidenced the presence of Pd-rich (fcc) and Au-rich (fcc) phases. TEM analysis showed a homogeneous dispersion of nanoparticles on the carbon support, with an average size in the range of 3–5 nm and broad size distributions. Cyclic voltammetry (CV) and chronoamperometry (CA) experiments revealed the superior ambient activity toward ethanol electro-oxidation of PdAu/C electrocatalysts with Pd:Au ratios of 90:10 and 50:50. In situ ATR-FTIR spectroscopy measurements have shown that the mechanism for ethanol electro-oxidation is dependent on catalyst composition, leading to different reaction products, such as acetaldehyde and acetate, depending on the number of electrons transferred. Experiments on a single ADEFC were conducted between 50 and 90 °C, and the best performance of 44 mW cm −2 in 2.0 mol L −1 ethanol was obtained at 85 °C for the Pd:Au 90:10 catalysts. This superior performance is most likely associated with enhancement of ethanol adsorption on Pd, oxidation of the intermediates, the presence of gold oxide-hydroxyl species, low mean particle diameters and better distribution of particles on the support

  3. Acetic Acid Formation by Selective Aerobic Oxidation of Aqueous Ethanol over Heterogeneous Ruthenium Catalysts

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Hanning, Christopher William

    2012-01-01

    Heterogeneous catalyst systems comprising ruthenium hydroxide supported on different carrier materials, titania, alumina, ceria, and spinel (MgAl2O4), were applied in selective aerobic oxidation ethanol to form acetic acid, an important bulk chemical and food ingredient. The catalysts were...

  4. Oxidative dehydrogenation of aqueous ethanol on a carbon supported platinum catalyst

    NARCIS (Netherlands)

    Tillaart, van den J.A.A.; Kuster, B.F.M.; Marin, G.B.M.M.

    1994-01-01

    The kinetics of the selective oxidative dehydrogenation of ethanol to ethanal over a platinum on graphite catalyst with oxygen in water was investigated in a three-phase continuous stirred tank reactor by variation of temp., pH and reactant concns. No effect of the pH on the disappearance rate of

  5. Gas-Phase Oxidation of Aqueous Ethanol by Nanoparticle Vanadia/Anatase Catalysts

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas

    2009-01-01

    The gas-phase oxidation of aqueous ethanol with dioxygen has been examined with a new nanoparticle V2O5/TiO2 catalyst. Product selectivity could to a large extent be controlled by small alterations of reaction parameters, allowing production of acetaldehyde at a selectivity higher than 90%, near...

  6. Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system.

    Science.gov (United States)

    Pagnoncelli, Kamila C; Pereira, Andressa R; Sedenho, Graziela C; Bertaglia, Thiago; Crespilho, Frank N

    2018-08-01

    Integrating in situ biofuel production and energy conversion into a single system ensures the production of more robust networks as well as more renewable technologies. For this purpose, identifying and developing new biocatalysts is crucial. Herein, is reported a bioelectrochemical system consisting of alcohol dehydrogenase (ADH) and Saccharomyces cerevisiae, wherein both function cooperatively for ethanol production and its bioelectrochemical oxidation. Here, it is shown that it is possible to produce ethanol and use it as a biofuel in a tandem manner. The strategy is to employ flexible carbon fibres (FCF) electrode that could adsorb both the enzyme and the yeast cells. Glucose is used as a substrate for the yeast for the production of ethanol, while the enzyme is used to catalyse the oxidation of ethanol to acetaldehyde. Regarding the generation of reliable electricity based on electrochemical systems, the biosystem proposed in this study operates at a low temperature and ethanol production is proportional to the generated current. With further optimisation of electrode design, we envision the use of the cooperative biofuel cell for energy conversion and management of organic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.

    Science.gov (United States)

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2014-04-01

    The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Electro-oxidation of ethanol at Pt electrodes with the use of a Dynamic Electrochemical Impedance Spectroscopy (DEIS) technique

    OpenAIRE

    Døssland, Line Teigen

    2012-01-01

    Electro-oxidation of ethanol on smooth platinum surfaces was studied in thetemperature range 21C to 140C for 0.2 M ethanol in 0.5 M sulphuric acid.This was done by use of cyclic voltammetry and electrochemical impedancespectroscopy. In addition cyclic voltammetry with different ethanol concentrationsfrom 0.1 M to 1 M, in 0.5 M sulphuric acid was done at room temperature.Cyclic voltammetry with different ethanol concentrations showed a shift to morepositive potentials for the first oxidation p...

  9. Non-electrolytic synthesis of copper oxide/carbon nanocomposite by surface plasma in super-dehydrated ethanol

    Science.gov (United States)

    Kozak, Dmytro S.; Sergiienko, Ruslan A.; Shibata, Etsuro; Iizuka, Atsushi; Nakamura, Takashi

    2016-02-01

    Electrolytic processes are widely used to synthesize different nanomaterials and it does not depend on what kind of the method has been applied (wet-chemistry, sonochemistry, plasma chemistry, electrolysis and so on). Generally, the reactions in the electrolyte are considered to be reduction/oxidation (REDOX) reactions between chemical reagents or the deposition of matter on the electrodes, in line with Faraday’s law. Due to the presence of electroconductive additives in any electrolyte, the polarization effect of polar molecules conducting an electrical current disappears, when external high-strength electric field is induced. Because initially of the charge transfer always belongs of electroconductive additive and it does not depend on applied voltage. The polarization of ethanol molecules has been applied to conduct an electric current by surface plasma interaction for the synthesis of a copper oxide/carbon nanocomposite material.

  10. Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress.

    Science.gov (United States)

    Ozel Turkcu, Ummuhani; Bilgihan, Ayşe; Biberoglu, Gursel; Mertoglu Caglar, Oznur

    2010-06-01

    Ethanol causes oxidative stress and tissue damage. The aim of this study was to investigate the effect of antioxidant carnosine on the oxidative stress induced by ethanol in the rat brain tissue. Forty male rats were divided equally into four groups as control, carnosine (CAR), ethanol (EtOH), and ethanol plus carnosine (EtOH + CAR). Rats in the control group (n = 10) were injected intraperitoneally (i.p.) with 0.9% saline; EtOH group (n = 10) with 2 g/kg/day ethanol, CAR group (n = 10) received carnosine at a dose of 1 mg/kg/day and EtOH + CAR group (n = 10) received carnosine (orally) and ethanol (i.p.). All animals were sacrificed using ketamine and brain tissues were removed. Malondialdehyde (MDA), protein carbonyl (PCO) and tissue carnosine levels, and superoxide dismutase (SOD) activities were measured. Endogenous CAR levels in the rat brain tissue specimens were significantly increased in the CAR and EtOH groups when compared to the control animals. MDA and PCO levels in the EtOH group were significantly increased as compared to the other groups (P < 0.05). CAR treatment also decreased MDA levels in the CAR group as compared to the control group. Increased SOD activities were obtained in the EtOH + CAR group as compared to the control (P < 0.05). CAR levels in the rat brain were significantly increased in the CAR, EtOH and CAR + EtOH groups when compared to the control animals. These findings indicated that carnosine may appear as a protective agent against ethanol-induced brain damage.

  11. Facial synthesis of porous hematite supported Pt catalyst and its photo enhanced electrocatalytic ethanol oxidation performance

    International Nuclear Information System (INIS)

    Kang, Shuai; Shen, Pei Kang

    2015-01-01

    Graphical Abstract: A porous α-Fe 2 O 3 supported Pt catalyst has been synthesized by a facial thermal treatment assisted precipitation method and the materials show a illumination enhanced performance for ethanol oxidation. Display Omitted -- Highlights: •A porous α-Fe 2 O 3 supported Pt catalyst has been synthesized for the first time. •With the addition of α-Fe 2 O 3 , the current density of Pt/C grows about 51% under illumination and 32% in the dark compared with unsupported catalyst. •The current increases under illuminationin chronoamperometric experiments at a given potential of 0.7 V due to the photons from light provide energy for CO stripping. •This work demostrates an optical strategy to accelerate electrode reactions towards ethanol oxidation reaction. -- Abstract: The porous α-Fe 2 O 3 supported Pt catalyst is synthesized by a facial thermal treatment assisted precipitation method. The particle size of Pt is less than 3 nm. The pore diameters of α-Fe 2 O 3 particles are concentrated to 2.46 nm in a mesooporous scale. Its electrochemical performance is tested. The ethanol oxidation current of the Pt/Fe 2 O 3 catalsyt obviously improves under illumination, compared with that in the dark, during the optical switching operation. Moreover, with the addition of α-Fe 2 O 3 , the ethanol oxidation current of Pt/C grows about 51% under illumination and 32% in the dark; the onset potential shifts negtively for about 20 mV. This work demostrates an optical strategy which can be a potential alternative to accelerate electrode reactions towards ethanol oxidation reaction

  12. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure.

    Science.gov (United States)

    Susick, Laura L; Lowing, Jennifer L; Bosse, Kelly E; Hildebrandt, Clara C; Chrumka, Alexandria C; Conti, Alana C

    2014-08-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  13. Promotion effect of H2 on ethanol oxidation and NOx reduction with ethanol over Ag/Al2O3 catalyst.

    Science.gov (United States)

    Yu, Yunbo; Li, Yi; Zhang, Xiuli; Deng, Hua; He, Hong; Li, Yuyang

    2015-01-06

    The catalytic partial oxidation of ethanol and selective catalytic reduction of NOx with ethanol (ethanol-SCR) over Ag/Al2O3 were studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). The intermediates were identified by PIMS and their photoionization efficiency (PIE) spectra. The results indicate that H2 promotes the partial oxidation of ethanol to acetaldehyde over Ag/Al2O3, while the simultaneously occurring processes of dehydration and dehydrogenation were inhibited. H2 addition favors the formation of ammonia during ethanol-SCR over Ag/Al2O3, the occurrence of which creates an effective pathway for NOx reduction by direct reaction with NH3. Simultaneously, the enhancement of the formation of ammonia benefits its reaction with surface enolic species, resulting in producing -NCO species again, leading to enhancement of ethanol-SCR over Ag/Al2O3 by H2. Using VUV-PIMS, the reactive vinyloxy radical was observed in the gas phase during the NOx reduction by ethanol for the first time, particularly in the presence of H2. Identification of such a reaction occurring in the gas phase may be crucial for understanding the reaction pathway of HC-SCR over Ag/Al2O3.

  14. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Y., E-mail: ono-y@kanagawa-iri.go.jp [Mechanical and Material Engineering Division, Kanagawa Industrial Technology Center, Ebina, Kanagawa 243-0435 (Japan); Rachi, T.; Yokouchi, M.; Kamimoto, Y. [Mechanical and Material Engineering Division, Kanagawa Industrial Technology Center, Ebina, Kanagawa 243-0435 (Japan); Nakajima, A. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Meguro, Tokyo 152-8552 (Japan); Okada, K. [Materials and Structures Laboratory, Tokyo Institute of Technology, Midori, Yokohama, Kanagawa 226-8503 (Japan)

    2013-06-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO{sub 2}/apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO{sub 2})/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO{sub 2}/HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO{sub 2} particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO{sub 2} powder, Degussa P25. The highest rate was obtained in the TiO{sub 2}/HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO{sub 2} photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO{sub 2}/HAp composites compared with the TiO{sub 2} powders.

  15. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    International Nuclear Information System (INIS)

    Ono, Y.; Rachi, T.; Yokouchi, M.; Kamimoto, Y.; Nakajima, A.; Okada, K.

    2013-01-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO 2 /apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO 2 )/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO 2 /HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO 2 particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO 2 powder, Degussa P25. The highest rate was obtained in the TiO 2 /HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO 2 photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO 2 /HAp composites compared with the TiO 2 powders

  16. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol

    DEFF Research Database (Denmark)

    Varga, E.; Klinke, H.B.; Reczey, K.

    2004-01-01

    In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degreesC, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50...... increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2. (C) 2004 Wiley Periodicals, Inc....

  17. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  18. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    Science.gov (United States)

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Ethanol Oxidation Reaction Using PtSn/C+Ce/C Electrocatalysts: Aspects of Ceria Contribution

    International Nuclear Information System (INIS)

    De Souza, R.F.B.; Silva, J.C.M.; Assumpção, M.H.M.T.; Neto, A.O.; Santos, M.C.

    2014-01-01

    The ethanol oxidation reaction (EOR) was investigated using PtSn/C + Ce/C electrocatalysts in different mass ratios (58:42, 53:47, and 42:58) prepared using the polymeric precursor method. Transmission electron microscopy (TEM) experiments showed particles sizes in the range of 3 to 7 nm. Changes in the net parameters observed for Pt suggest the incorporation of Sn into the Pt crystalline network with the formation of an alloy mixture with the SnO 2 phase. Among the PtSn/C + Ce/C catalysts investigated, the 53:47 composition showed the highest activity towards the EOR. In this case, the j versus t curves obtained in the presence of ethanol in acidic media exhibited a current density 90% higher than that observed with the commercial PtSn/C (ETEK). Correspondingly, during the experiments performed on single direct ethanol fuel cells, the maximum power density obtained using PtSn/C + Ce/C (53:47) as the anode was approximately 60% higher than that obtained using the commercial catalyst. FTIR data showed that the observed behavior for ethanol oxidation may be explained in terms of a synergic effect of bifunctional mechanism with electronic effects, in addition to a chemical effect of ceria that provides oxygen-containing species to oxidize acetaldehyde to acetic acid

  20. Fabrication of Te@Au core-shell hybrids for efficient ethanol oxidation

    Science.gov (United States)

    Jin, Huile; Wang, Demeng; Zhao, Yuewu; Zhou, Huan; Wang, Shun; Wang, Jichang

    2012-10-01

    Using Au nanoparticles to catalyze the oxidation of alcohols has garnered increasing attention due to its potential application in direct alcohol fuel cells. In this research Te@Au core-shell hybrids were fabricated for the catalytic oxidation of ethanol, where the preparation procedure involved the initial production of Te crystals with different microstructures and the subsequent utilization of the Te crystal as a template and reducing agent for the production of Te@Au hybrids. The as-prepared core-shell hybrids were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. Electrochemical measurements illustrate that the hybrids have great electrocatalytic activity and stability toward ethanol oxidation in alkaline media. The enhanced electrocatalytic property may be attributed to the cooperative effects between the metal and semiconductor and the presence of a large number of active sites on the hybrids surface.

  1. Oxidation of ethanol on NaX zeolite modified with transition metals

    Science.gov (United States)

    Mirzai, J. I.; Nadirov, P. A.; Velieva, A. D.; Muradkhanli, V. G.

    2017-06-01

    NaLaX, NaX + Co, and NaPdX catalysts are synthesized by modification of NaX zeolite with transition metals (La, Co, Pd). The activity of the prepared materials in catalytic ethanol oxidation is studied in the temperature range of 423-723 K. It is shown that NaPdX and NaX + Co accelerate the reactions of partial and complete oxidation of ethanol as the temperature rises. NaLaX accelerates both intramolecular and intermolecular dehydration of alcohol. It is shown that the NaPdX (1.0% Pd) sample has the highest activity in the complete oxidation of alcohol with the formation of CO2.

  2. Platinum-Niobium(V Oxide/Carbon Nanocomposites Prepared By Microwave Synthesis For Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Virginija KEPENIENĖ

    2016-05-01

    Full Text Available In the present work, Pt nanoparticles were deposited by means of microwave synthesis on the primary carbon supported Nb2O5 composite which was prepared in two different ways: (A by dispersion of Nb2O5 and carbon with the mass ratio equal to 1:1 in a 2-propanol solution by ultrasonication for 30 min. with further desiccation of the mixture and (B by heating the Nb2O5/C composite obtained according to the procedure (A at 500 °C for 2 h. The transmission electron microscopy was used to determine the shape and the size of catalyst particles. X-ray diffraction and inductively coupled plasma optical emission spectroscopy were employed to characterize the structure and composition of the synthesized catalysts. The electrocatalytic activity of the synthesized catalysts towards the oxidation of ethanol in an alkaline medium was investigated by means of cyclic voltammetry.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.8609

  3. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  4. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Osterndorff-Kahanek

    Full Text Available Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY, nucleus accumbens (NAC, prefrontal cortex (PFC, and liver after four weekly cycles of chronic intermittent ethanol (CIE vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000 at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600. Within each region, there was little gene overlap across time (~20%. All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.

  5. Protective effect of treatment with thiamine or benfotiamine on liver oxidative damage in rat model of acute ethanol intoxication.

    Science.gov (United States)

    Portari, Guilherme Vannucchi; Ovidio, Paula Payão; Deminice, Rafael; Jordão, Alceu Afonso

    2016-10-01

    The aim of this study was to evaluate possible beneficial effects of treatment with thiamine or benfotiamine in an animal model of acute ethanol intoxication. Thirty male Wistar rats were separated at random into three groups of 10 animals each: Ethanol (E), Ethanol treated with thiamine (T) and Ethanol treated with benfotiamine (BE). Rats were gavaged with single dose of ethanol (5g/kg, 40% v:v). After 30min of ethanol gavage the animals were treated with thiamine or benfotiamine. Six hours after first gavage, the animals were euthanized and blood and liver samples were collected for ethanol and oxidative stress biomarkers quantification. Serum ethanol levels were higher in animals treated with thiamine or benfotiamine while hepatic alcohol levels were higher in animals of the group treated with benfotiamine comparing to controls or thiamine treated groups. The lipid peroxidation biomarkers were diminished for the groups treated with thiamine or benfotiamine comparing to E animals. Concerning protein oxidative damage parameters, they were enhanced for animals treated with benfotiamine in relation to other groups. In conclusion, the treatment with thiamine or benfotiamine even 30min after the massive dose of ethanol has proven to be beneficial against liver damage. Improved results were obtained with benfotiamine in relation to oxidative damage from aqueous compartments. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Monodispersed porous flowerlike PtAu nanocrystals as effective electrocatalysts for ethanol oxidation

    Science.gov (United States)

    Li, Shumin; Xu, Hui; Xiong, Zhiping; Zhang, Ke; Wang, Caiqin; Yan, Bo; Guo, Jun; Du, Yukou

    2017-11-01

    Designing and tuning the bimetallic nanoparticles with desirable morphology and structure can embody them with greatly enhanced electrocatalytic activity and stability towards liquid fuel oxidation. We herein reported a facile one-pot method for the controlled synthesis of monodispersed binary PtAu nanoflowers with abundant exposed surface area. Owing to its fantastic structure, synergistic and electronic effect, such as-prepared PtAu nanoflowers exhibited outstandingly high electrocatalytic activity with the mass activity of 6482 mA mg-1 towards ethanol oxidation, which is 28.3 times higher than that of commercial Pt/C (227 mA mg-1). More interesting, the present PtAu nanoflower catalysts are more stable for the ethanol oxidation reaction in the alkaline with lower current density decay and retained a much higher current density after successive CVs of 500 cycles than that of commercial Pt/C. This work may open a new way for maximizing the catalytic performance of electrocatalysts towards ethanol oxidation by synthesizing shape-controlled alloy nanoparticles with more surface active sites to enhance the performances of direct fuel cells reaction, chemical conversion, and beyond.

  7. One - Step synthesis of nitrogen doped reduced graphene oxide with NiCo nanoparticles for ethanol oxidation in alkaline media.

    Science.gov (United States)

    Kakaei, Karim; Marzang, Kamaran

    2016-01-15

    Development of anode catalysts and catalyst supporting carbonaceous material containing non-precious metal have attracted tremendous attention in the field of direct ethanol fuel cells (DEFCs). Herein, we report the synthesis and electrochemical properties of nitrogen-doped reduced graphene oxide (NRGO) supported Co, Ni and NiCo nanocomposites. The metal NRGO nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped graphene matrix, have been synthesized by simply and one-pot method at a mild temperature using GO, urea choline chloride and urea as reducing and doping agent. The fabricated NiCo/NRGO exhibit remarkable electrocatalytic activity (with Tafel slope of 159.1mVdec(-1)) and high stability for the ethanol oxidation reaction (EOR). The superior performance of the alloy based NRGO is attributed to high surface area, well uniform distribution of high-density nitrogen, metal active sites and synergistic effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection

    Directory of Open Access Journals (Sweden)

    Miguel Hernaez

    2017-12-01

    Full Text Available The influence of graphene oxide (GO over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO2 thin film. Layer by layer (LbL coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

  9. Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection.

    Science.gov (United States)

    Hernaez, Miguel; Mayes, Andrew G; Melendi-Espina, Sonia

    2017-12-27

    The influence of graphene oxide (GO) over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR) has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO₂ thin film. Layer by layer (LbL) coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI) and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

  10. Single-Step Electrophoretic Deposition of Non-noble Metal Catalyst Layer with Low Onset Voltage for Ethanol Electro-oxidation.

    Science.gov (United States)

    Ahmadi Daryakenari, Ahmad; Hosseini, Davood; Ho, Ya-Lun; Saito, Takumi; Apostoluk, Aleksandra; Müller, Christoph R; Delaunay, Jean-Jacques

    2016-06-29

    A single-step electrophoretic deposition (EPD) process is used to fabricate catalyst layers which consist of nickel oxide nanoparticles attached on the surface of nanographitic flakes. Magnesium ions present in the colloid charge positively the flake's surface as they attach on it and are also used to bind nanographitic flakes together. The fabricated catalyst layers showed a very low onset voltage (-0.2 V vs Ag/AgCl) in the electro-oxidation of ethanol. To clarify the occurring catalytic mechanism, we performed annealing treatment to produce samples having a different electrochemical behavior with a large onset voltage. Temperature dependence measurements of the layer conductivity pointed toward a charge transport mechanism based on hopping for the nonannealed layers, while the drift transport is observed in the annealed layers. The hopping charge transport is responsible for the appearance of the low onset voltage in ethanol electro-oxidation.

  11. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Hsu, Ryan S; Higgins, Drew; Chen Zhongwei

    2010-01-01

    Novel tin-oxide (SnO 2 )-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO 2 -coated SWNT (SnO 2 -SWNT) bundles were synthesized by a simple chemical-solution route. SnO 2 -SWNT bundles supporting Pt (Pt/SnO 2 -SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO 2 -SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO 2 loading of Pt/SnO 2 -SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  12. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells.

    Science.gov (United States)

    Hsu, Ryan S; Higgins, Drew; Chen, Zhongwei

    2010-04-23

    Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  13. Heat recovery investigation from dryer–thermal oxidizer system in corn-ethanol plants

    International Nuclear Information System (INIS)

    Olszewski, Pawel

    2015-01-01

    In recent years, annual corn ethanol production in the U.S. has exceeded 13,298,000,000 gallons. However, net energy balance for this sector became a subject of controversy in many discussions. The aim of the presented research is an investigation of thermal improvement opportunities in a corn ethanol plant. For this purpose, a complex mathematical model was developed for a dryer–thermal oxidizer system. Three variants were subjected thermodynamic analyses: one state of the art system and two proposed system modifications. The properties of humid gas, a mixture of combustion products and moisture evaporated from distiller's grain, were updated based on the steam properties according to the formulation proposed by the International Association for the Properties of Water and Steam. All calculations were performed by uniquely-developed C++ code. The results indicate major potential for improvement in the following areas: (i) water recovery from humid gas; (ii) heat recovery from moisture condensation – max. 44% of total primary energy usage (TPEU); and (iii) fuel savings by reduction of humid gas flow through a thermal oxidizer – max. 1.4% of TPEU. Also the presented analysis can be a starting point for further modifications in real corn ethanol manufacturing applications, leading towards pilot system implementation. - Highlights: • Mathematical model for dryer–oxidizer system in a corn ethanol plant was proposed. • Three configurations were discussed: with intercooler, regenerator, and recuperator. • Recovery rate of water condensed at various conditions and locations was quantified. • Heat recovery possibilities at various temperatures and locations have been assessed. • Energy savings in thermal oxidizer due to preliminary condensation were calculated

  14. Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation

    Science.gov (United States)

    Wang, Wei; Yang, Yan; Liu, Yanqin; Zhang, Zhe; Dong, Wenkui; Lei, Ziqiang

    2015-01-01

    To improve the electrocatalytic activity of Pd for ethanol oxidation, hybrid NiCoOx adjacent to Pd catalyst (Pd-NiCoOx/C) is successfully synthesized. Physical characterization shows NiCoOx is closely adjacent to Pd nanoparticles in Pd-NiCoOx/C catalyst, which leads to Strong Metal-Support Interactions (SMSI) between the NiCoOx and Pd nanoparticles, in favor of the electrocatalytic properties. The Pd-NiCoOx/C catalyst is estimated to own larger electrochemically active surface area than Pd/C and Pd-NiO/C catalysts. Moreover, compared to Pd/C catalyst, the onset potential of Pd-NiCoOx/C catalyst is negative 40 mV for ethanol oxidation. Noticeably, the current density of Pd-NiCoOx/C catalyst is 2.05 and 1.43 times higher contrasted to Pd/C and Pd-NiO/C catalysts accordingly. Importantly, the Pd-NiCoOx/C catalyst exhibits better stability during ethanol oxidation, which is a promising electrocatalyst for application in direct alkaline alcohol fuel cells.

  15. Copper based anodes for bio-ethanol fueled low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.R.; Karan, K. [Queen' s Univ., Kingston, ON (Canada)

    2003-07-01

    Laboratory studies have been conducted to develop a low-temperature solid oxide fuel cell (SOFC) fueled by bio-ethanol. SOFCs are considered to be a potential source for clean and efficient electricity. The use of bio-ethanol to power the SOFC contributes even further to reducing CO{sub 2} emissions. The main barrier towards the development of the proposed SOFC is the identification of a suitable anode catalyst that prevents coking during electro-oxidation of ethanol while yielding good electrical performance. Copper was selected as the catalyst for this study. Composite anodes consisting of copper catalysts and gadolinium-doped ceria (GDC) electrolytes were prepared using screen printing of GDC and copper oxide on dense GDC electrolytes and by wet impregnation of copper nitrate in porous GDC electrolytes followed by calcination and sintering. The electrical conductivity of the prepared anodes was characterized to determine the percolation threshold. Temperature-programmed reduction and the Brunner Emmett Teller (BET) methods were used to quantify the catalyst dispersion and surface area. Electrochemical performance of the single-cell SOFC with a hydrogen-air system was used to assess the catalytic activities. Electrochemical Impedance Spectroscopy was used to probe the electrode kinetics.

  16. Thermodynamic assessment of hydrogen production and cobalt oxidation susceptibility under ethanol reforming conditions

    International Nuclear Information System (INIS)

    Avila, C.N. de; Hori, C.E.; Assis, A.J. de

    2011-01-01

    A comparative thermodynamic analysis of ethanol reforming reactions was conducted using an in-house code. Equilibrium compositions were estimated using the Lagrange multipliers method, which generated systems of non-linear algebraic equations, solved numerically. Effects of temperature, pressure and steam to ethanol, O 2 to ethanol and CO 2 to ethanol ratios on the equilibrium compositions were evaluated. The validation was done by comparing these data with experimental literature. The results of this work proved to be useful to foresee whether the experimental results follow the stoichiometry of the reactions involved in each process. Mole fractions of H 2 and CO 2 proved to be the most reliable variables to make this type of validation. Maximization of H 2 mole fraction was attained between 773 and 873 K, but maximum net mole production of H 2 was only achieved at higher temperatures (>1123 K). This work also advances in the thermodynamics of solid-gas phase interactions. A solid phase thermodynamic analysis was performed to confirm that Co 0 formation from CoO is spontaneous under steam reforming conditions. The results showed that this reduction process occurs only for temperatures higher than 430 K. It was also found that once reduced, Co based catalysts will never oxidize back to Co 3 O 4 . -- Highlights: → Thermodynamic analysis of ethanol reforming reactions using an in-house code. → Analysis performed by solving systems of non-linear algebraic equations. → H 2 and CO 2 equilibrium data are useful to validate catalytic tests. → Maximization of H 2 mole fraction achieved between 773 and 873 K → CoO reduction is spontaneous under steam reforming of ethanol conditions.

  17. An ethanol extract of Artemisia iwayomogi activates PPARδ leading to activation of fatty acid oxidation in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Si Young Cho

    Full Text Available Although Artemisia iwayomogi (AI has been shown to improve the lipid metabolism, its mode of action is poorly understood. In this study, a 95% ethanol extract of AI (95EEAI was identified as a potent ligand of peroxisome proliferator-activated receptorδ (PPARδ using ligand binding analysis and cell-based reporter assay. In cultured primary human skeletal muscle cells, treatment of 95EEAI increased expression of two important PPARδ-regulated genes, carnitine palmitoyl-transferase-1 (CPT1 and pyruvate dehydrogenase kinase isozyme 4 (PDK4, and several genes acting in lipid efflux and energy expenditure. Furthermore, 95EEAI stimulated fatty acid oxidation in a PPARδ-dependent manner. High-fat diet-induced obese mice model further indicated that administration of 95EEAI attenuated diet-induced obesity through the activation of fatty acid oxidation in skeletal muscle. These results suggest that a 95% ethanol extract of AI may have a role as a new functional food material for the prevention and/or treatment of hyperlipidermia and obesity.

  18. Induction of brain CYP2E1 by chronic ethanol treatment and related oxidative stress in hippocampus, cerebellum, and brainstem

    International Nuclear Information System (INIS)

    Zhong, Yanjun; Dong, Guicheng; Luo, Haiguang; Cao, Jie; Wang, Chang; Wu, Jianyuan; Feng, Yu-Qi; Yue, Jiang

    2012-01-01

    Ethanol is one of the most commonly abused substances, and oxidative stress is an important causative factor in ethanol-induced neurotoxicity. Cytochrome P450 2E1 (CYP2E1) is involved in ethanol metabolism in the brain. This study investigates the role of brain CYP2E1 in the susceptibility of certain brain regions to ethanol neurotoxicity. Male Wistar rats were intragastrically treated with ethanol (3.0 g/kg, 30 days). CYP2E1 protein, mRNA expression, and catalytic activity in various brain regions were respectively assessed by immunoblotting, quantitative quantum dot immunohistochemistry, real-time RT-PCR, and LC–MS. The generation of reactive oxygen species (ROS) was analyzed using a laser confocal scanning microscope. The hippocampus, cerebellum, and brainstem were selectively damaged after ethanol treatment, indicated by both lactate dehydrogenase (LDH) activity and histopathological analysis. Ethanol markedly increased the levels of CYP2E1 protein, mRNA expression, and activity in the hippocampus and cerebellum. CYP2E1 protein and activity were significantly increased by ethanol in the brainstem, with no change in mRNA expression. ROS levels induced by ethanol paralleled the enhanced CYP2E1 proteins in the hippocampus, granular layer and white matter of cerebellum as well as brainstem. Brain CYP2E1 activity was positively correlated with the damage to the hippocampus, cerebellum, and brainstem. These results suggest that the selective sensitivity of brain regions to ethanol neurodegeneration may be attributed to the regional and cellular-specific induction of CYP2E1 by ethanol. The inhibition of CYP2E1 levels may attenuate ethanol-induced oxidative stress via ROS generation.

  19. In vivo roles of alcohol dehydrogenase (ADH), catalase and the microsomal ethanol oxidizing system (MEOS) in deermice

    International Nuclear Information System (INIS)

    Takagi, T.; Alderman, J.; Lieber, C.S.

    1985-01-01

    The relative importance of ADH and MEOS for ethanol oxidation in the liver has yet to be elucidated. The discovery of a strain of deermice genetically lacking ADH (ADH-) which can consume ethanol at greater than 50% of the rates seen in deermice having ADH (ADH+) suggested a significant role for non-ADH pathways in vivo. To quantitate contributions of the various pathways, the authors examined first the ethanol oxidation rates with or without 4-methylpyrazole in isolated deermice hepatocytes. 4-Methylpyrazole significantly reduced the ethanol oxidation in both ADH+ and ADH- hepatocytes. The reduction seen in ADH- cells can be applied to correct for the effect of 4-methylpyrazole on non-ADH pathways of ADH+ deermouse hepatocytes. After correction, non-ADH pathways were found to contribute 28% of ethanol metabolism at 10 mM and 52% at 50 mM. When using a different approach namely measurement of the isotope effect, MEOS was calculated to account for 35% at low and about 70% at high blood ethanol concentrations. Thus, they found that two different complementary approaches yielded similar results, namely that non-ADH pathways play a significant role in ethanol oxidation even in the presence of ADH

  20. Nanostructured carbon-supported Pd electrocatalysts for ethanol oxidation: synthesis and characterization

    International Nuclear Information System (INIS)

    Gacutan, E M; Tongol, B J; Climaco, M I; Telan, G J; Malijan, F; Hsu, H Y; Garcia, J; Fulo, H

    2012-01-01

    The need to lower the construction cost of fuel cells calls for the development of non-Pt based electrocatalysts. Among others, Pd has emerged as a promising alternative to Pt for fuel cell catalysis. This research aims to investigate the synthesis and characterization of nanostructured Pd-based catalysts dispersed on carbon support as anode materials in direct ethanol fuel cells. For the preparation of the first Pd-based electrocatalyst, palladium nanoparticles (NPs) were synthesized via oleylamine (OAm)-mediated synthesis and precursor method with a mean particle size of 3.63 ± 0.59 nm as revealed by transmission electron microscopy (TEM). Carbon black was used as a supporting matrix for the OAm-capped Pd NPs. Thermal annealing and acetic acid washing were used to remove the OAm capping agent. To evaluate the electrocatalytic activity of the prepared electrocatalyst towards ethanol oxidation, cyclic voltammetry (CV) studies were performed using 1.0 M ethanol in basic medium. The CV data revealed the highest peak current density of 11.05 mA cm −2 for the acetic acid-washed Pd/C electrocatalyst. Meanwhile, the fabrication of the second Pd-based electrocatalyst was done by functionalization of the carbon black support using 3:1 (v/v) H 2 SO 4 :HNO 3 . The metal oxide, NiO, was deposited using precipitation method while polyol method was used for the deposition of Pd NPs. X-ray diffraction (XRD) analysis revealed that the estimated particle size of the synthesized catalysts was at around 9.0–15.0 nm. CV results demonstrated a 36.7% increase in the catalytic activity of Pd–NiO/C (functionalized) catalyst towards ethanol oxidation compared to the non-functionalized catalyst. (paper)

  1. Nanostructured carbon-supported Pd electrocatalysts for ethanol oxidation: synthesis and characterization

    Science.gov (United States)

    Gacutan, E. M.; Climaco, M. I.; Telan, G. J.; Malijan, F.; Hsu, H. Y.; Garcia, J.; Fulo, H.; Tongol, B. J.

    2012-12-01

    The need to lower the construction cost of fuel cells calls for the development of non-Pt based electrocatalysts. Among others, Pd has emerged as a promising alternative to Pt for fuel cell catalysis. This research aims to investigate the synthesis and characterization of nanostructured Pd-based catalysts dispersed on carbon support as anode materials in direct ethanol fuel cells. For the preparation of the first Pd-based electrocatalyst, palladium nanoparticles (NPs) were synthesized via oleylamine (OAm)-mediated synthesis and precursor method with a mean particle size of 3.63 ± 0.59 nm as revealed by transmission electron microscopy (TEM). Carbon black was used as a supporting matrix for the OAm-capped Pd NPs. Thermal annealing and acetic acid washing were used to remove the OAm capping agent. To evaluate the electrocatalytic activity of the prepared electrocatalyst towards ethanol oxidation, cyclic voltammetry (CV) studies were performed using 1.0 M ethanol in basic medium. The CV data revealed the highest peak current density of 11.05 mA cm-2 for the acetic acid-washed Pd/C electrocatalyst. Meanwhile, the fabrication of the second Pd-based electrocatalyst was done by functionalization of the carbon black support using 3:1 (v/v) H2SO4:HNO3. The metal oxide, NiO, was deposited using precipitation method while polyol method was used for the deposition of Pd NPs. X-ray diffraction (XRD) analysis revealed that the estimated particle size of the synthesized catalysts was at around 9.0-15.0 nm. CV results demonstrated a 36.7% increase in the catalytic activity of Pd-NiO/C (functionalized) catalyst towards ethanol oxidation compared to the non-functionalized catalyst.

  2. Carbon supported ultrafine gold phosphorus nanoparticles as highly efficient electrocatalyst for alkaline ethanol oxidation reaction

    International Nuclear Information System (INIS)

    Li, Tongfei; Fu, Gengtao; Su, Jiahui; Wang, Yi; Lv, Yinjie; Zou, Xiuyong; Zhu, Xiaoshu; Xu, Lin; Sun, Dongmei; Tang, Yawen

    2017-01-01

    Graphical abstract: We develop a new kind of carbon supported gold-phosphorus (Au-P/C) electrocatalyst by a facile and novel phosphorus reduction method, and demonstrate the Au-P/C is a highly active and stable electrocatalyst for the ethanol oxidation reaction. - Highlights: • Au-P/C catalyst is synthesized by a facile and novel white-phosphorus reduce method. • AuP particles with ultrafine particle-size are uniformly dispersed on carbon support. • Au-P/C catalyst exhibits much higher content of P 0 than reported metal/P catalysts. • Au-P/C catalysts show excellent catalytic properties for ethanol oxidation reaction. - Abstract: Herein, we develop a new kind of carbon supported gold-phosphorus (Au-P/C) electrocatalyst for the alkaline ethanol oxidation reaction (EOR). The Au-P/C catalysts with different Au/P ratio (i.e., AuP/C, Au 3 P 2 /C and Au 4 P 3 /C) can be obtained by a facile and novel hot-reflux method with white phosphorus (P 4 ) as reductant and ethanol as solvent. The crystal structure, composition and particle-size of the Au-P/C catalysts are investigated by X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), etc. The results demonstrate that Au-P/C catalysts present an alloy phase with the high content of P, ultrafine particle-size and high dispersity on carbon support, which results in excellent electrocatalytic activity and stability towards the EOR compared with that of the free-phosphorus Au/C catalyst. In addition, among the various Au-P/C catalysts with different Au/P ratio, the AuP/C sample exhibits the best electrocatalytic performance in comparison with other Au 3 P 2 /C and Au 4 P 3 /C samples.

  3. Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning

    Science.gov (United States)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.

  4. Influence of Gold on Ce-Zr-Co Fluorite-Type Mixed Oxide Catalysts for Ethanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Véronique Pitchon

    2012-02-01

    Full Text Available The effect of gold presence on carbon monoxide oxidation and ethanol steam reforming catalytic behavior of two Ce-Zr-Co mixed oxides catalysts with a constant Co charge and different Ce/Zr ratios was investigated. The Ce-Zr-Co mixed oxides were obtained by the pseudo sol-gel like method, based on metallic propionates polymerization and thermal decomposition, whereas the gold-supported Ce-Zr-Co mixed oxides catalysts were prepared using the direct anionic exchange. The catalysts were characterized using XRD, TPR, and EDXS-TEM. The presence of Au in doped Ce-Zr-Co oxide catalyst decreases the temperature necessary to reduce the cobalt and the cerium loaded in the catalyst and favors a different reaction pathway, improving the acetaldehyde route by ethanol dehydrogenation, instead of the ethylene route by ethanol dehydration or methane re-adsorption, thus increasing the catalytic activity and selectivity into hydrogen.

  5. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    Science.gov (United States)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  6. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes

    Science.gov (United States)

    Choudhury, Mahua; Park, Pil-Hoon; Jackson, Daniel; Shukla, Shivendra D.

    2010-01-01

    The relationship between ethanol induced oxidative stress and acetylation of histone H3 at lysine 9 (H3AcK9) remains unknown and was therefore investigated in primary cultures of rat hepatocytes. Cells were treated with ethanol and a select group of pharmacological agents and the status of H3AcK9 and reactive oxygen species (ROS) were monitored. When hepatocytes were exposed to ethanol (50 mM, 24 hr) in the presence of N-acetyl cystein (ROS reducer) or dietary antioxidants (quercetin, resveratrol), or NADPH oxidase inhibitor apocynin, ethanol induced increases in ROS and H3AcK9, both were significantly reduced. On the other hand, l-buthionine-sulfoximine (ROS inducer) and inhibitor of mitochondrial complex I (rotenone) and III (antimycin) increased ethanol induced H3AcK9 (p<0.01). Oxidative stress also affected ethanol induced alcohol dehydrogenase 1 (ADH1) mRNA expression. These results demonstrate for the first time that oxidative stress is involved in the ethanol induced histone H3 acetylation in hepatocytes. PMID:20705415

  7. Ethanol oxidation on a nichrome-supported spherical platinum microparticle electrocatalyst prepared by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen-Hui; Li, Jing; Dong, Xiaoya; Wang, Dong; Chen, Tiwei; Qiao, Haiyan; Huang, Aiping [College of Chemistry and Environmental Science, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Jianshe Road, Xinxiang 453007 (China)

    2008-11-15

    A novel electrode was rapidly prepared by depositing microparticle platinum onto a nichrome substrate in dilute chloroplatinic acid solution by cyclic voltammetry. The SEM results revealed that the deposits were composed of spherical Pt microparticles. Cyclic voltammetry and chronoamperometry were used for the characterization of the electrodes. Results of the electrochemical measurements showed that the spherical Pt microparticle electrodes retained the properties of metal platinum, increased the catalytic activity and promoted the electrocatalytic oxidation of ethanol. Moreover, the deposited Pt microparticles improved the electrochemical properties of the support material and reduced the dosage of noble metal platinum remarkably. The cost could be reduced dramatically by decreasing the contents of platinum. The spherical Pt microparticles deposited on the nichrome supports are likely a potential electrocatalyst for ethanol electrooxidation. (author)

  8. Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 1: Development of a new reduced ethanol oxidation mechanism

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2016-01-01

    Highlights: • Stochastic reactor model used for numerical study of HCCI engine. • New reduced oxidation mechanism with NOx developed (47 species and 272 reactions). • Mechanism predicts cylinder pressure and heat release with sufficient accuracy. • Mechanism was able to capture the trend in NO x emission with sufficient accuracy. - Abstract: Ethanol is considered a potential biofuel for internal combustion engines. In this study, homogeneous charge compression ignition (HCCI) simulations of ethanol engine experiments were performed using stochastic reactor model (SRM). Detailed ethanol oxidation mechanism is developed by including NO x reaction in existing detailed oxidation mechanism with 57 species and 383 reactions. Detailed ethanol mechanism with NO x used in this study contains 76 species and 495 reactions. This mechanism was reduced by direct relation graph (DRG) method, which was validated with the experimental results. Existing Lu’s 40-species skeletal mechanism with NO formation were also compared with detailed and reduced mechanisms for predicting maximum cylinder pressure, maximum heat release rate and crank angle position of maximum cylinder pressure in HCCI engine. Reduced mechanism developed in this study exhibited the best resemblance with the experimental data. This reduced mechanism was also validated by measured engine cylinder pressure curves and measured ignition delays in constant volume reactors. The results showed that reduced mechanism is capable of predicting HCCI engine performance parameters with sufficient accuracy. Sensitivity analysis was conducted to determine the influential reactions in ethanol oxidation. Results also show that detailed and reduced mechanism was able to predict NO x emission in good agreement with the corresponding experimental data.

  9. An ethanol extract of Piper betle Linn. mediates its anti-inflammatory activity via down-regulation of nitric oxide.

    Science.gov (United States)

    Ganguly, Sudipto; Mula, Soumyaditya; Chattopadhyay, Subrata; Chatterjee, Mitali

    2007-05-01

    The leaves of Piper betle (locally known as Paan) have long been in use in the Indian indigenous system of medicine for the relief of pain; however, the underlying molecular mechanisms of this effect have not been elucidated. The anti-inflammatory and immunomodulatory effects of an ethanolic extract of the leaves of P. betle (100 mg kg(-1); PB) were demonstrated in a complete Freund's adjuvant-induced model of arthritis in rats with dexamethasone (0.1 mg kg(-1)) as the positive control. At non-toxic concentrations of PB (5-25 microg mL(-1)), a dose-dependent decrease in extracellular production of nitric oxide in murine peritoneal macrophages was measured by the Griess assay and corroborated by flow cytometry using the nitric oxide specific probe, 4,5-diaminofluorescein-2 diacetate. This decreased generation of reactive nitrogen species was mediated by PB progressively down-regulating transcription of inducible nitric oxide synthase in macrophages, and concomitantly causing a dose-dependent decrease in the expression of interleukin-12 p40, indicating the ability of PB to down-regulate T-helper 1 pro-inflammatory responses. Taken together, the anti-inflammatory and anti-arthrotic activity of PB is attributable to its ability to down-regulate the generation of reactive nitrogen species, thus meriting further pharmacological investigation.

  10. Synthesis of Uranium-di-Oxide nano-particles by pulsed laser ablation in ethanol and their characterisation

    International Nuclear Information System (INIS)

    Kumar, Aniruddha; Prasad, Manisha; Shail, Shailini

    2015-01-01

    The importance of actinide based nano-structures is well known in the area of biology, nuclear medicine, and nuclear industry. Pulsed laser ablation in liquid is recognised as an attractive technique for production of nano-structures of different metals and metal oxides with high purity. In this paper, we report synthesis of uranium-di-oxide nano particles by pulsed laser ablation in ethanol. The second harmonic emission of an electro- optically Q-switched nano-second Nd-YAG laser was used as the coherent source here. The structural and optical properties of the fabricated Uranium-di-oxide nano- particles were investigated by XRD, SEM, TEM, EDX and UV- Vis-NIR spectrophotometry. The mean size of the particles was found to be dependent on the laser ablation parameters. XRD and TEM analysis confirmed the phase of the synthesised material as pure crystalline Uranium-di- oxide with Face Centred Cubic structure. UV- Vis- NIR absorption spectra of the colloidal solution show high absorption in the UV regime. (author)

  11. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    International Nuclear Information System (INIS)

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-01-01

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD

  12. Quetiapine mitigates the ethanol-induced oxidative stress in brain tissue, but not in the liver, of the rat

    Directory of Open Access Journals (Sweden)

    Han JH

    2015-06-01

    Full Text Available Jin-hong Han,1,2 Hong-zhao Tian,2 Yang-yang Lian,1 Yi Yu,1 Cheng-biao Lu,2 Xin-min Li,3 Rui-ling Zhang,1 Haiyun Xu4 1The Second Affiliated Hospital of Xinxiang Medical University, 2School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China; 3Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; 4The Mental Health Center, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China Abstract: Quetiapine, an atypical antipsychotic, has been employed to treat alcoholic patients with comorbid psychopathology. It was shown to scavenge hydroxyl radicals and to protect cultured cells from noxious effects of oxidative stress, a pathophysiological mechanism involved in the toxicity of alcohol. This study compared the redox status of the liver and the brain regions of prefrontal cortex, hippocampus, and cerebellum of rats treated with or without ethanol and quetiapine. Ethanol administration for 1 week induced oxidative stress in the liver and decreased the activity of glutathione peroxidase and total antioxidant capacity (TAC there. Coadministration of quetiapine did not protect glutathione peroxidase and TAC in the liver against the noxious effect of ethanol, thus was unable to mitigate the ethanol-induced oxidative stress there. The ethanol-induced alteration in the redox status in the prefrontal cortex is mild, whereas the hippocampus and cerebellum are more susceptible to ethanol intoxication. For all the examined brain regions, coadministration of quetiapine exerted effective protection on the antioxidants catalase and total superoxide dismutase and on the TAC, thus completely blocking the ethanol-induced oxidative stress in these brain regions. These protective effects may explain the clinical observations that quetiapine reduced psychiatric symptoms intensity and maintained a good level of tolerability in chronic alcoholism with

  13. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Xing, Mingyou [Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Liu, Liegang [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Yao, Ping, E-mail: yaoping@mails.tjmu.edu.cn [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China)

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  14. Impairment of Akt activity by CYP2E1 mediated oxidative stress is involved in chronic ethanol-induced fatty liver

    Directory of Open Access Journals (Sweden)

    Tao Zeng

    2018-04-01

    Full Text Available Protein kinase B (PKB/Akt plays important roles in the regulation of lipid homeostasis, and impairment of Akt activity has been demonstrated to be involved in the development of non-alcoholic fatty liver disease (NAFLD. Previous studies suggest that cytochrome P4502E1 (CYP2E1 plays causal roles in the pathogenesis of alcoholic fatty liver (AFL. We hypothesized that Akt activity might be impaired due to CYP2E1-induced oxidative stress in chronic ethanol-induced hepatic steatosis. In this study, we found that chronic ethanol-induced hepatic steatosis was accompanied with reduced phosphorylation of Akt at Thr308 in mice liver. Chronic ethanol exposure had no effects on the protein levels of phosphatidylinositol 3 kinase (PI3K and phosphatase and tensin homologue deleted on chromosome ten (PTEN, and led to a slight decrease of phosphoinositide-dependent protein kinase 1 (PDK-1 protein level. Ethanol exposure resulted in increased levels of malondialdehyde (MDA and 4-hydroxynonenal (4-HNE-Akt adducts, which was significantly inhibited by chlormethiazole (CMZ, an efficient CYP2E1 inhibitor. Interestingly, N-acetyl-L-cysteine (NAC significantly attenuated chronic ethanol-induced hepatic fat accumulation and the decline of Akt phosphorylation at Thr308. In the in vitro studies, Akt phosphorylation was suppressed in CYP2E1-expressing HepG2 (CYP2E1-HepG2 cells compared with the negative control HepG2 (NC-HepG2 cells, and 4-HNE treatment led to significant decrease of Akt phosphorylation at Thr308 in wild type HepG2 cells. Lastly, pharmacological activation of Akt by insulin-like growth factor-1 (IGF-1 significantly alleviated chronic ethanol-induced fatty liver in mice. Collectively, these results indicate that CYP2E1-induced oxidative stress may be responsible for ethanol-induced suppression of Akt phosphorylation and pharmacological modulation of Akt in liver may be an effective strategy for the treatment of ethanol-induced fatty liver. Keywords

  15. Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing

    Energy Technology Data Exchange (ETDEWEB)

    Touihri, S., E-mail: s_touihri@yahoo.fr [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Arfaoui, A.; Tarchouna, Y. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Labidi, A. [Laboratoire Matériaux, Molécules et Applications, IPEST, BP 51 La Marsa 2070, Tunis (Tunisia); Amlouk, M. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Bernede, J.C. [LUNAM, Universite de Nantes, Moltech Anjou, CNRS, UMR 6200, FSTN, 2 Rue de la houssiniere, BP 92208, Nantes F-44322 (France)

    2017-02-01

    Highlights: • Thermally grown molybdenum oxide films are amorphous, oxygen deficient and gas sensing. • Air or vacuum annealing transforms them into a sub-stoichiometric MoO{sub 3−x} phase. • The samples annealed at 500 °C in oxygen were crystallized and identified as pure orthorhombic MoO{sub 3} phase. • The conduction process and sensing mechanism of MoO{sub 3-x} to ethanol have been studied. - Abstract: This paper deals with some physical investigations on molybdenum oxide thin films growing on glass substrates by the thermal evaporation method. These films have been subjected to an annealing process under vacuum, air and oxygen at various temperatures 673, 723 and 773 K. First, the physical properties of these layers were analyzed by means of X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM) and optical measurements. These techniques have been used to investigate the oxygen index in MoO{sub x} properties during the heat treatment. Second, from the reflectance and transmittance optical measurements, it was found that the direct band gap energy value increased from 3.16 to 3.90 eV. Finally, the heat treatments reveal that the oxygen index varies in such molybdenum oxides showing noticeably sensitivity toward ethanol gas.

  16. The ethanol-induced stimulation of rat duodenal mucosal bicarbonate secretion in vivo is critically dependent on luminal Cl-.

    Directory of Open Access Journals (Sweden)

    Anna Sommansson

    Full Text Available Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v. did not change the secretory response to ethanol, while removing Cl- from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v. but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl- and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms.

  17. Acute Ethanol Gavage Attenuates Hemorrhage/Resuscitation-Induced Hepatic Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    B. Relja

    2012-01-01

    Full Text Available Acute ethanol intoxication increases the production of reactive oxygen species (ROS. Hemorrhagic shock with subsequent resuscitation (H/R also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.. Then, rats were hemorrhaged to a mean arterial blood pressure of 30±2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.. Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE and nitrosative (3-nitrotyrosine, 3-NT stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.

  18. Radiolysis study of the oxidation of a vitamin K model compound in ethanolic solution

    International Nuclear Information System (INIS)

    Fackir, L.; Jore, D.; Gardes-Albert, M.; Ferradini, C.; Acher, F.; Azerad, R.

    1993-01-01

    It seems that the biological action of vitamin K (with its important role in carboxylating processes) may involve monoelectronic exchanges. Therefore radical mechanisms of a vitamin K model molecule KHp have been studied in ethanolic solution by mean of steady state radiolysis method. The oxidation of KHp by H 3 C-CH(OH)OO . model peroxyl radicals leads to the formation of a 'dimeric' form of vitamin K. The superoxide anions seem not to be reactive towards KHp in the chosen irradiation conditions

  19. CO and ethanol electro-oxidation on Pt-Rh/C

    OpenAIRE

    Calderón-Cárdenas, Alfredo; Ortiz-Restrepo, John E.; Mancilla-Valencia, Nelson D.; Torres-Rodriguez, Gerardo A.; Lima, Fabio H. B.; Bolaños-Rivera, Alberto; Gonzalez, Ernesto R.; Lizcano-Valbuena, William H.

    2014-01-01

    In this work we studied the effect of the composition and thermal treatment in H2 of Pt-Rh/C materials with atomic ratios close to Pt:Rh 3:1, 1:1 and 1:3 and metal loading of 40 wt. %, for the COads and ethanol oxidation. Catalysts were prepared by chemical reduction with formic acid and physically characterized by energy dispersive X-rays spectroscopy (EDX), electron backscattering (EBS) and transmission electron microscopy (TEM), showing Pt:Rh ratios close to the nominals values, similar av...

  20. Improved coking resistance of direct ethanol solid oxide fuel cells with a Ni-Sx anode

    Science.gov (United States)

    Yan, Ning; Luo, Jing-Li; Chuang, Karl T.

    2014-03-01

    In this study, the coking resistance of anode supported direct ethanol solid oxide fuel cell with a Ni-Sx anode was investigated comparatively with the conventional cell using pure Ni catalyst. The surface catalytic properties of Ni were manipulated via depositing a layer of S atoms. It was confirmed that on the surface of Ni, a combination of S monolayer and elemental S was formed without producing Ni3S2 phase. The developed Ni-Sx cell exhibited a significantly improved coke resistivity in ethanol feed while maintaining an adequately high performance. The S species on Ni enabled the suppression of the coke formation as well as the alleviation of the metal dusting effect of the anode structure. After operating in ethanol fuel for identical period of time at 850 °C, a maximum power density of 400 mW cm-2 was sustained whereas the conventional cell performance decreased to less than 40 mW cm-2 from the original 704 mW cm-2. In an optimized stability test, the Ni-Sx cell operated at 750 °C for more than 22 h until the fuel drained without any degradation.

  1. Electrocatalytic activity of Pt nanoparticles on bamboo shaped carbon nanotubes for ethanol oxidation

    International Nuclear Information System (INIS)

    Zhu Zanzan; Wang Jianlong; Munir, Ahsan; Zhou, H. Susan

    2010-01-01

    Recently, bamboo shaped carbon nanotubes (BCNTs) have received increased attention for its bamboo shaped structure associated properties and its application in direct methanol/ethanol fuel cell. In this work, the potential to use BCNTs as the support material of high loaded Pt nanoparticles for improving the efficiency of ethanol/methanol fuel cell is explored. The structure and nature of the resulting Pt-BCNTS composite were characterized by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) spectrum, it was found that Pt nanoparticles were homogeneously dispersed on the BCNTs surfaces with 23.5% by weight. Cyclic voltammogram (CV) indicated that the Pt-BCNTs catalyst displayed excellent electrocatalytic activity and long-term stability toward ethanol oxidation. The excellent performance may be attributed to the high dispersion of nanoscale Pt catalysts and the unique nature of BCNTs. The results imply that doping N atom introduces some defective sites and active sites onto the surface of CNTs. In general, this paper demonstrates that BCNTs are promising support material for Pt-nanoparticles catalyst and can be used to enhance the efficiency of fuel cell.

  2. Effects of SO2 oxidation on ambient aerosol growth in water and ethanol vapours

    Directory of Open Access Journals (Sweden)

    T. Petäjä

    2005-01-01

    Full Text Available Hygroscopicity (i.e. water vapour affinity of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafine aerosol particles in the Arctic air masses with a different exposure to anthropogenic sulfur pollution were examined. The main discovery was that Aitken mode particles having been exposed to polluted air were more hygroscopic and less soluble to ethanol than after transport in clean air. This aging process was attributed to sulphur dioxide oxidation and subsequent condensation during the transport of these particle to our measurement site. The hygroscopicity of nucleation mode aerosol particles, on the other hand, was approximately the same in all the cases, being indicative of a relatively similar chemical composition despite the differences in air mass transport routes. These particles had also been produced closer to the observation site typically 3–8 h prior to sampling. Apparently, these particles did not have an opportunity to accumulate sulphuric acid on their way to the site, but instead their chemical composition (hygroscopicity and ethanol solubility resembled that of particles produced in the local or semi-regional ambient conditions.

  3. Pd- and Ca-doped iron oxide for ethanol vapor sensing

    International Nuclear Information System (INIS)

    Neri, G.; Bonavita, A.; Ipsale, S.; Rizzo, G.; Baratto, C.; Faglia, G.; Sberveglieri, G.

    2007-01-01

    Iron oxide thin films doped with Ca and Pd, prepared by a liquid-phase deposition method (LPD) from aqueous solution, have been investigated as potential ethanol gas sensors. SEM and XRD analyses were used to characterize Fe 2 O 3 LPD films. Hematite (α-Fe 2 O 3 ), having an average crystallite size in the range between 20 and 30 nm, was the only crystalline phase detected on all undoped and doped films. The electrical response towards ethanol (100-500 ppm) has been studied in the temperature range of 300-500 deg. C. Both Ca and Pd promoters have shown a positive effect on the sensitivity of Fe 2 O 3 films at the lower temperature investigated, whereas at higher temperature the undoped Fe 2 O 3 film has shown better performances. The sensing properties of undoped and doped Fe 2 O 3 thin films towards different interfering gases like NO 2 , CO and NH 3 have been also investigated, showing that the selectivity to ethanol benefits of the Ca addition

  4. Electrode kinetics of ethanol oxidation on novel CuNi alloy supported catalysts synthesized from PTFE suspension

    Science.gov (United States)

    Sen Gupta, S.; Datta, J.

    An understanding of the kinetics and mechanism of the electrochemical oxidation of ethanol is of considerable interest for the optimization of the direct ethanol fuel cell. In this paper, the electro-oxidation of ethanol in sodium hydroxide solution has been studied over 70:30 CuNi alloy supported binary platinum electrocatalysts. These comprised mixed deposits of Pt with Ru or Mo. The electrodepositions were carried out under galvanostatic condition from a dilute suspension of polytetrafluoroethylene (PTFE) containing the respective metal salts. Characterization of the catalyst layers by scanning electron microscope (SEM)-energy dispersive X-ray (EDX) indicated that this preparation technique yields well-dispersed catalyst particles on the CuNi alloy substrate. Cyclic voltammetry, polarization study and electrochemical impedance spectroscopy were used to investigate the kinetics and mechanism of ethanol electro-oxidation over a range of NaOH and ethanol concentrations. The relevant parameters such as Tafel slope, charge transfer resistance and the reaction orders in respect of OH - ions and ethanol were determined.

  5. An Investigation of Methyl Viologen Functionalized Reduced Graphene Oxide: Chitosan as a Support for Pt Nanoparticles Towards Ethanol Electrooxidation

    Science.gov (United States)

    Ekrami-Kakhki, Mehri-Saddat; Farzaneh, Nahid; Abbasi, Sedigheh; Beitollahi, Hadi; Ekrami-Kakhki, Seyed Ali

    2018-05-01

    In this research, graphene oxide was prepared by a modified Hummers' method, and then functionalized with 1, 1'-dimethyl-4, 4'-bipyridinium dichloride (MV), and chitosan (CH) to get a MV-RGO-CH support. Pt nanoparticles were prepared on this support to get Pt/MV-RGO-CH catalyst. The morphology and microstructure of Pt/MV-RGO-CH catalyst were characterized with transmission electron microscopy image and X-ray diffraction analysis. The electrocatalytic activity of the prepared catalyst towards ethanol oxidation was investigated by carbon monoxide stripping voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy techniques. The effects of some experimental parameters such as scan rate, ethanol concentration, and temperature were investigated for ethanol electrooxidation at Pt/MV-RGO-CH catalyst. Durability of the catalyst was also investigated. The electrocatalytic performance of Pt/MV-RGO-CH catalyst for ethanol oxidation was compared with those of Pt/CH and Pt/MV-RGO catalysts. The higher electrocatalytic performance of Pt/MV-RGO-CH than Pt/CH and Pt/MV-RGO catalysts towards ethanol electrooxidation indicated that Pt/MV-RGO-CH could be a promising catalyst for application in direct ethanol fuel cells.

  6. Laser-saturated fluorescence of nitric oxide and chemiluminescence measurements in premixed ethanol flames

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Carla S.T.; Barreta, Luiz G.; Sbampato, Maria E.; dos Santos, Alberto M. [Aerothermodynamic and Hypersonic Division, Institute of Advanced Studies - General Command of Aerospatial Technology, Rodovia dos Tamoios, km 5.5, 12228-001 Sao Jose dos Campos - SP (Brazil)

    2010-11-15

    In this study, nitric oxide laser-saturated fluorescence (LSF) measurements were acquired from premixed ethanol flames at atmospheric pressure in a burner. NO-LSF experimental profiles for fuel-rich premixed ethanol flames ({phi} = 1.34 and {phi} = 1.66) were determined through the excitation/detection scheme of the Q{sub 2}(26.5) rotational line in the A{sup 2}{sigma}{sup +} - X{sup 2}{pi} (0,0) vibronic band and {gamma}(0,1) emission band. A calibration procedure by NO doping into the flame was applied to establish the NO concentration profiles in these flames. Chemiluminescent emission measurements in the (0, 0) vibronic emission bands of the OH{sup *} (A{sup 2}{sigma}{sup +} - X{sup 2}{pi}) and CH{sup *}(A{sup 2}{delta} - X{sup 2}{pi}) radicals were also obtained with high spatial and spectral resolution for fuel-rich premixed ethanol flames to correlate them with NO concentrations. Experimental chemiluminescence profiles and the ratios of the integrated areas under emission spectra (A{sub CH*}/A{sub CH*}(max.) and A{sub CH*}/A{sub OH*}) were determined. The relationships between chemiluminescence and NO concentrations were established along the premixed ethanol flames. There was a strong connection between CH{sup *} radical chemiluminescence and NO formation and the prompt-NO was identified as the governing mechanism for NO production. The results suggest the optimum ratio of the chemiluminescence of two radicals (A{sub CH*}/A{sub OH*}) for NO diagnostic purposes. (author)

  7. A nanoflower shaped gold-palladium alloy on graphene oxide nanosheets with exceptional activity for electrochemical oxidation of ethanol

    International Nuclear Information System (INIS)

    Wang, Qiyu; Cui, Xiaoqiang; Zhang, Xiaoming; Liu, Chang; Xue, Tianyu; Wang, Haitao; Zheng, Weitao; Guan, Weiming

    2014-01-01

    We report on a new and facile method for the preparation of well-dispersed gold-palladium (AuPd) flower-shaped nanostructures on sheets of graphene oxide (GO). Transmission electron microscopy and high angle annular dark field STEM were used to characterize the morphology and composition of the new nanohybrids. The AuPd/GO composites display high electrocatalytic activity for the oxidation of ethanol in strongly alkaline medium as examined by cyclic voltammetry and chronoamperometry. Both the current density (13.16 mA · cm −2 at a working potential of −0.12 V) and the long-time stability are superior to a commercial Pd-on-carbon catalyst which is attributed to the cooperative action of the catalytic activities of Au and Pd, and the good dispersion of the alloy on the nanosheets. (author)

  8. Cobalt Oxides Supported Over Ceria–Zirconia Coated Cordierite Monoliths as Catalysts for Deep Oxidation of Ethanol and N2O Decomposition.

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Balabánová, Jana; Kovanda, F.; Klegová, A.; Obalová, L.; Fajgar, Radek

    2017-01-01

    Roč. 147, č. 6 (2017), s. 1379-1391 ISSN 1011-372X R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : cobalt oxide * ceria-zirconia monoliths * ethanol oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.799, year: 2016

  9. Co-Mn-Al Mixed Oxides on Anodized Aluminum Supports and Their Use as Catalysts in the Total Oxidation of Ethanol

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Jirátová, Květa; Ludvíková, Jana; Raabová, H.

    2013-01-01

    Roč. 464, AUG 15 (2013), s. 181-190 ISSN 0926-860X R&D Projects: GA ČR GAP106/10/1762 Institutional support: RVO:67985858 Keywords : layered double hydroxides * hydrothermal reaction * mixed oxides * supported catalysts * ethanol total oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.674, year: 2013

  10. Facile synthesis of dendritic gold nanostructures with hyperbranched architectures and their electrocatalytic activity toward ethanol oxidation.

    Science.gov (United States)

    Huang, Jianshe; Han, Xinyi; Wang, Dawei; Liu, Dong; You, Tianyan

    2013-09-25

    Gold dendritic nanostructures with hyperbranched architectures were synthesized by the galvanic replacement reaction between nickel wire and HAuCl4 in aqueous solution. The study revealed that the morphology of the obtained nanostructures strongly depended on experimental parameters such as the HAuCl4 solution concentration, reaction temperature, and time, as well as stirring or not. According to the investigation of the growth process, it was proposed that gold nanoparticles with rough surfaces were first deposited on the nickel substrate and that subsequent growth preferentially occurred on the preformed gold nanoparticles, finally leading to the formation of hyperbranched gold dendrites via a self-organization process under nonequilibrium conditions. The electrochemical experiment results demonstrated that the as-obtained gold dendrites exhibited high catalytic activity toward ethanol electrooxidation in alkaline solution, indicating that this nanomaterial may be a potential catalyst for direct ethanol fuel cells.

  11. Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel

    International Nuclear Information System (INIS)

    Luo, Yueqi; Zhu, Lei; Fang, Junhua; Zhuang, Zhuyue; Guan, Chun; Xia, Chen; Xie, Xiaomin; Huang, Zhen

    2015-01-01

    Ethanol-gasoline blended fuels have been widely applied in markets recently, as ethanol reduces life-cycle greenhouse gas emissions and improves anti-knock performance. However, its effects on particulate matter (PM) emissions from gasoline direct injection (GDI) engine still need further investigation. In this study, the effects of ethanol-gasoline blended fuels on particle size distributions, number concentrations, chemical composition and soot oxidation activity of GDI engine were investigated. It was found that ethanol-gasoline blended fuels increased the particle number concentration in low-load operating conditions. In higher load conditions, the ethanol-gasoline was effective for reducing the particle number concentration, indicating that the chemical benefits of ethanol become dominant, which could reduce soot precursors such as large n-alkanes and aromatics in gasoline. The volatile organic mass fraction in ethanol-gasoline particulates matter was higher than that in gasoline particulate matter because ethanol reduced the amount of soot precursors during combustion and thereby reduced the elemental carbon proportions in PM. Ethanol addition also increased the proportion of small particles, which confirmed the effects of ethanol on organic composition. Ethanol-gasoline reduced the concentrations of most PAH species, except those with small aromatic rings, e.g., naphthalene. Soot from ethanol-gasoline has lower activation energy of oxidation than that from gasoline. The results in this study indicate that ethanol-gasoline has positive effects on PM emissions control, as the soot oxidation activity is improved and the particle number concentrations are reduced at moderate and high engine loads. - Highlights: • Ethanol-gasoline reduces elemental carbon in PM. • Ethanol-gasoline increases volatile organic fraction in PM. • Soot generated from ethanol-gasoline has higher oxidation activity.

  12. Ethanol Electrooxidation on Pt with Lanthanum Oxide as Cocatalyst in a DAFC

    Directory of Open Access Journals (Sweden)

    T. A. B. Santoro

    2012-01-01

    Full Text Available Electrocatalytic activity toward ethanol electrooxidation of Pt particles in PtLa/C catalysts with different Pt : La ratios has been studied with different electrochemical and spectroscopic techniques, and the results were compared to those of Pt/C catalyst. Significant enhancement in the electrocatalytic activity has been achieved by depositing the Pt particles with lanthanum oxides/hydroxides using an alcohol reduction method. Compared to Pt/C catalyst, PtLa/C materials exhibit a lower onset potential and a higher electron-transfer rate constant for the investigated reaction. These studies illustrate the possibility of utilizing Pt/C with La oxides/hidroxides as electrocatalyst for direct alcohol fuel cells (DAFCs.

  13. Indium Tin Oxide thin film gas sensors for detection of ethanol vapours

    International Nuclear Information System (INIS)

    Vaishnav, V.S.; Patel, P.D.; Patel, N.G.

    2005-01-01

    Indium Tin Oxide (ITO: In 2 O 3 + 17% SnO 2 ) thin films grown on alumina substrate at 648 K temperatures using direct evaporation method with two gold pads deposited on the top for electrical contacts were exposed to ethanol vapours (200-2500 ppm). The operating temperature of the sensor was optimized. The sensitivity variation of films having different thickness was studied. The sensitivity of the films deposited on Si substrates was studied. The response of the film with MgO catalytic layer on sensitivity and selectivity was observed. A novel approach of depositing thin stimulating layer of various metals/oxides below the ITO film was tried and tested

  14. Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium

    Science.gov (United States)

    Maiyalagan, T.; Scott, Keith

    Carbon nanofibers (CNF) supported Pd-Ni nanoparticles have been prepared by chemical reduction with NaBH 4 as a reducing agent. The Pd-Ni/CNF catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical voltammetry analysis. TEM showed that the Pd-Ni particles were quite uniformly distributed on the surface of the carbon nanofiber with an average particle size of 4.0 nm. The electro-catalytic activity of the Pd-Ni/CNF for oxidation of ethanol was examined by cyclic voltammetry (CV). The onset potential was 200 mV lower and the peak current density four times higher for ethanol oxidation for Pd-Ni/CNF compared to that for Pd/C. The effect of an increase in temperature from 20 to 60 °C had a great effect on increasing the ethanol oxidation activity.

  15. Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Maiyalagan, T.; Scott, Keith [School of Chemical Engineering and Advanced Materials, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2010-08-15

    Carbon nanofibers (CNF) supported Pd-Ni nanoparticles have been prepared by chemical reduction with NaBH{sub 4} as a reducing agent. The Pd-Ni/CNF catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical voltammetry analysis. TEM showed that the Pd-Ni particles were quite uniformly distributed on the surface of the carbon nanofiber with an average particle size of 4.0 nm. The electro-catalytic activity of the Pd-Ni/CNF for oxidation of ethanol was examined by cyclic voltammetry (CV). The onset potential was 200 mV lower and the peak current density four times higher for ethanol oxidation for Pd-Ni/CNF compared to that for Pd/C. The effect of an increase in temperature from 20 to 60 C had a great effect on increasing the ethanol oxidation activity. (author)

  16. Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 2: Parametric study of performance and emissions characteristics using new reduced ethanol oxidation mechanism

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2016-01-01

    Highlights: • Newly developed reduced ethanol mechanism (47 species and 272 reactions) used. • Engine maps over wide range are developed for performance and emissions parameters. • HCCI operating range increases with compression ratio & decreases with engine speed. • Maximum combustion efficiency up to 99% and thermal efficiency up to 50% is achieved. • Maximum N_2O emission found up to 2.7 ppm and lower load have higher N_2O emission. - Abstract: Ethanol fuelled homogenous charge compression ignition engine offers a better alternative to tackle the problems of achieving higher engine efficiency and lower emissions using renewable fuel. Present study computationally investigates the HCCI operating range of ethanol at different compression ratios by varying inlet air temperature and engine speed using stochastic reactor model. A newly developed reduced ethanol oxidation mechanism with NO_x having 47 species and 272 reactions is used for simulation. HCCI operating range for compression ratios 17, 19 and 21 are investigated and found to be increasing with compression ratio. Simulations are conducted for engine speeds ranging from 1000 to 3000 rpm at different intake temperatures (range 365–465 K). Parametric study of combustion and emission characteristics is conducted and engine maps are developed at most efficient inlet temperatures. HCCI operating range is defined using combustion efficiency (>85%) and maximum pressure rise rate (<5 MPa/ms). In HCCI operating range, higher efficiency is found at higher engine loads and lower engine speeds. Emission characteristics of species (NO_x, N_2O, CO, CH_4, C_2H_4, C_2H_6, CH_3CHO, and HCHO) found in significant amount is also analysed for ethanol fulled HCCI engine. Emission maps for different species are presented and discussed for wide range of speed and load conditions. Some of unregulated species such as aldehydes are emitted in significantly higher quantities from ethanol fuelled HCCI engine at higher load

  17. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Beaudoin, Trevor; Zhang, Li; Hinz, Aaron J; Parr, Christopher J; Mah, Thien-Fah

    2012-06-01

    Bacteria growing in biofilms are responsible for a large number of persistent infections and are often more resistant to antibiotics than are free-floating bacteria. In a previous study, we identified a Pseudomonas aeruginosa gene, ndvB, which is important for the formation of periplasmic glucans. We established that these glucans function in biofilm-specific antibiotic resistance by sequestering antibiotic molecules away from their cellular targets. In this study, we investigate another function of ndvB in biofilm-specific antibiotic resistance. DNA microarray analysis identified 24 genes that were responsive to the presence of ndvB. A subset of 20 genes, including 8 ethanol oxidation genes (ercS', erbR, exaA, exaB, eraR, pqqB, pqqC, and pqqE), was highly expressed in wild-type biofilm cells but not in ΔndvB biofilms, while 4 genes displayed the reciprocal expression pattern. Using quantitative real-time PCR, we confirmed the ndvB-dependent expression of the ethanol oxidation genes and additionally demonstrated that these genes were more highly expressed in biofilms than in planktonic cultures. Expression of erbR in ΔndvB biofilms was restored after the treatment of the biofilm with periplasmic extracts derived from wild-type biofilm cells. Inactivation of ethanol oxidation genes increased the sensitivity of biofilms to tobramycin. Together, these results reveal that ndvB affects the expression of multiple genes in biofilms and that ethanol oxidation genes are linked to biofilm-specific antibiotic resistance.

  18. The influence of surface microstructure and chemical composition on corrosion behaviour in fuel-grade bio-ethanol of low-alloy steel modified by plasma nitro-carburizing and post-oxidizing

    Science.gov (United States)

    Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J. R.; Figueroa, Carlos A.

    2013-09-01

    The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.

  19. The influence of surface microstructure and chemical composition on corrosion behaviour in fuel-grade bio-ethanol of low-alloy steel modified by plasma nitro-carburizing and post-oxidizing

    International Nuclear Information System (INIS)

    Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J.R.; Figueroa, Carlos A.

    2013-01-01

    The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.

  20. A novel binary Pt 3Te x/C nanocatalyst for ethanol electro-oxidation

    Science.gov (United States)

    Huang, Meihua; Wang, Fei; Li, Lirong; Guo, Yonglang

    The Pt 3Te x/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt 3Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt 3Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt 3Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt 3Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g -1, respectively. On the current-time curve, the anodic current on the Pt 3Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt 3Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature.

  1. The neuroprotective effects of an ethanolic turmeric (Curcuma longa L.) extract against trimethyltin-induced oxidative stress in rats.

    Science.gov (United States)

    Yuliani, Sapto; Mustofa; Partadiredja, Ginus

    2018-03-07

    Oxidative stress is known to contribute to the pathogenesis of neurodegenerative disorders. An ethanolic turmeric (Curcuma longa L.) extract containing curcumin has been reported to produce antioxidant effects. The present study aims to investigate the possible neuroprotective effects of the ethanolic turmeric extract against trimethyltin (TMT)-induced oxidative stress in Sprague Dawley rats. The ethanolic turmeric extract and citicoline were administered to the TMT exposed rats from day 1 to day 28 of the experiment. The TMT injection was administered on day 8 of the experiment. The plasma and brain malondialdehyde (MDA) and reduced glutathione (GSH) levels, and the activities of the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) enzymes in the brain were examined at the end of the experiment. The administration of 200 mg/kg bw of the ethanolic turmeric extract prevented oxidative stress by decreasing the plasma and brain MDA levels and increasing the SOD, CAT, and GPx enzyme activities and GSH levels in the brain. These effects seem to be comparable to those of citicoline. The ethanolic turmeric extract at a dose of 200 mg/kg bw may exert neuroprotective effects on TMT-exposed Sprague Dawley rats by preventing them from oxidative stress.

  2. How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Leger, J.-M.; Rousseau, S.; Coutanceau, C.; Hahn, F.; Lamy, C. [UMR 6503, Electrocatalysis Group, CNRS - University of Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex (France)

    2005-09-05

    Carbon-supported Pt-based nanosized electrocatalysts can be synthesized for methanol and ethanol electrooxidation. The electrocatalytic activity of Pt can be greatly enhanced by using Pt-Ru/C for methanol oxidation or Pt-Sn/C for ethanol oxidation. In situ IR reflectance spectroscopy is a convenient tool to better understand the importance of the different adsorption steps involved in the mechanisms of electrooxidation. With Pt/C, it appears clearly that linearly adsorbed CO is the poisoning species formed during methanol and ethanol oxidation. In the case of methanol, even with Pt-Ru/C (the most active catalyst), adsorbed CO is also a reactive intermediate. The enhancement of activity observed in such a case is due to the possibility to activate water at lower potentials in the presence of Ru. With Pt-Sn/C, the mechanism of the electrooxidation of ethanol is strongly modified. If at low potentials, poisoning with adsorbed CO still exists (as with Pt/C), the oxidation of ethanol at potentials greater than 0.4 V versus RHE occurs through an adsorbed acetyl species which can lead to the formation of acetaldehyde and acetic acid as final products in addition to carbon dioxide. (author)

  3. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    International Nuclear Information System (INIS)

    Nagaraju, D.H.; Devaraj, S.; Balaya, P.

    2014-01-01

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd 2+ ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl 2 . X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells

  4. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraju, D.H., E-mail: dhnagu@gmail.com [Department of Mechanical Engineering, 117 576 (Singapore); Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Saudi Arabia); Devaraj, S. [Department of Mechanical Engineering, 117 576 (Singapore); School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401 (India); Balaya, P., E-mail: mpepb@nus.edu.sg [Department of Mechanical Engineering, 117 576 (Singapore); Engineering Science Program, National University of Singapore, 117 576 (Singapore)

    2014-12-15

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd{sup 2+} ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl{sub 2}. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells.

  5. Carbon supported Pt-NiO nanoparticles for ethanol electro-oxidation in acid media

    Science.gov (United States)

    Comignani, Vanina; Sieben, Juan Manuel; Brigante, Maximiliano E.; Duarte, Marta M. E.

    2015-03-01

    In the present work, the influence of nickel oxide as a co-catalyst of Pt nanoparticles for the electro-oxidation of ethanol in the temperature range of 23-60 °C was investigated. The carbon supported nickel oxide and platinum nanoparticles were prepared by hydrothermal synthesis and microwave-assisted polyol process respectively, and characterized by XRD, EDX, TEM and ICP analysis. The electrocatalytic activity of the as-prepared materials was studied by cyclic voltammetry and chronoamperometry. Small metal nanoparticles with sizes in the range of 3.5-4.5 nm were obtained. The nickel content in the as-prepared Pt-NiO/C catalysts was between 19 and 35 at.%. The electrochemical experiments showed that the electrocatalytic activity of the Pt-NiO/C materials increase with NiO content in the entire temperature range. The apparent activation energy (Ea,app) for the overall ethanol oxidation reaction was found to decrease with NiO content (24-32 kJ mol-1 at 0.3 V), while for Pt/C the activation energy exceeds 48 kJ mol-1. The better performance of the Pt-NiO/C catalysts compared to Pt/C sample is ascribed to the activation of both the C-H and O-H bonds via oxygen-containing species adsorbed on NiO molecules and the modification of the surface electronic structure (changes in the density of states near the Fermi level).

  6. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts

    Directory of Open Access Journals (Sweden)

    Nur Hidayati

    2016-03-01

    Full Text Available Even though platinum is known as an active electro-catalyst for ethanol oxidation at low temperatures (< 100 oC, choosing the electrode material for ethanol electro-oxidation is a crucial issue. It is due to its property which easily poisoned by a strong adsorbed species such as CO. PtSn-based electro-catalysts have been identified as better catalysts for ethanol electro-oxidation. The third material is supposed to improved binary catalysts performance. This work presents a study of the ethanol electro-oxidation on carbon supported Pt-Sn and Pt-Sn-Ni catalysts. These catalysts were prepared by alcohol reduction. Nano-particles with diameters between 2.5-5.0 nm were obtained. The peak of (220 crystalline face centred cubic (fcc Pt phase for PtSn and PtSnNi alloys was repositioned due to the presence of Sn and/or Ni in the alloy. Furthermore, the modification of Pt with Sn and SnNi improved ethanol and CO electro-oxidation. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 1st February 2016; Accepted: 1st February 2016 How to Cite: Hidayati, N., Scott, K. (2016. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 10-20. (doi:10.9767/bcrec.11.1.394.10-20 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.394.10-20

  7. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    Science.gov (United States)

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-06

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway.

  8. Hepato- and neuro-protective effects of watermelon juice on acute ethanol-induced oxidative stress in rats

    Directory of Open Access Journals (Sweden)

    Omolola R. Oyenihi

    Full Text Available Chronic and acute alcohol exposure has been extensively reported to cause oxidative stress in hepatic and extra-hepatic tissues. Watermelon (Citrullus lanatus is known to possess various beneficial properties including; antioxidant, anti-inflammatory, analgesic, anti-diabetic, anti-ulcerogenic effects. However, there is a lack of pertinent information on its importance in acute alcohol-induced hepato- and neuro-toxicity. The present study evaluated the potential protective effects of watermelon juice on ethanol-induced oxidative stress in the liver and brain of male Wistar rats. Rats were pre-treated with the watermelon juice at a dose of 4 ml/kg body weight for a period of fifteen days prior to a single dose of ethanol (50%; 12 ml/kg body weight. Ethanol treatment reduced body weight gain and significantly altered antioxidant status in the liver and brain. This is evidenced by the significant elevation of malondialdehyde (MDA concentration; depletion in reduced glutathione (GSH levels and an increased catalase (CAT activity in the brain and liver. There was no significant difference in the activity of glutathione peroxidase (GPX in the liver and brain.Oral administration of watermelon juice for fifteen (15 days prior to ethanol intoxication, significantly reduced the concentration of MDA in the liver and brain of rats. In addition, water melon pre-treatment increased the concentration of GSH and normalized catalase activity in both tissues in comparison to the ethanol control group. Phytochemical analysis revealed the presence of phenol, alkaloids, saponins, tannins and steroids in watermelon juice. Our findings indicate that watermelon juice demonstrate anti-oxidative effects in ethanol-induced oxidation in the liver and brain of rats; which could be associated with the plethora of antioxidant phyto-constituents present there-in. Keywords: Watermelon, Neuro-protective, Hepatoprotective, Ethanol intoxication

  9. Effect of alpha-tocopherol supplementation on renal oxidative stress and Na+/K+ -adenosine triphosphatase in ethanol treated Wistar rats.

    Science.gov (United States)

    Mailankot, Maneesh; Jayalekshmi, H; Chakrabarti, Amit; Alang, Neha; Vasudevan, D M

    2009-07-01

    Ethanol intoxication resulted in high extent of lipid peroxidation, and reduction in antioxidant defenses (decreased GSH, GSH/GSSG ratio, and catalase, SOD and GPx activities) and (Na+/K+)-ATPase activity in kidney. Alpha-tocopherol treatment effectively protected kidney from ethanol induced oxidative challenge and improved renal (Na+/K+)-ATPase activity. Ethanol induced oxidative stress in the kidney and decreased (Na+/K+)-ATPase activity could be reversed by treatment with ascorbic acid.

  10. Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation

    International Nuclear Information System (INIS)

    Jiang Luhua; Sun Gongquan; Sun Shiguo; Liu Jianguo; Tang Shuihua; Li Huanqiao; Zhou Bing; Xin Qin

    2005-01-01

    Carbon supported PtSn alloy and PtSnO x particles with nominal Pt:Sn ratios of 3:1 were prepared by a modified polyol method. High resolution transmission electron microscopy (HRTEM) and X-ray microchemical analysis were used to characterize the composition, size, distribution, and morphology of PtSn particles. The particles are predominantly single nanocrystals with diameters in the order of 2.0-3.0 nm. According to the XRD results, the lattice constant of Pt in the PtSn alloy is dilated due to Sn atoms penetrating into the Pt crystalline lattice. While for PtSnO x nanoparticles, the lattice constant of Pt only changed a little. HRTEM micrograph of PtSnO x clearly shows that the change of the spacing of Pt (1 1 1) plane is neglectable, meanwhile, SnO 2 nanoparticles, characterized with the nominal 0.264 nm spacing of SnO 2 (1 0 1) plane, were found in the vicinity of Pt particles. In contrast, the HRTEM micrograph of PtSn alloy shows that the spacing of Pt (1 1 1) plane extends to 0.234 nm from the original 0.226 nm. High resolution energy dispersive X-ray spectroscopy (HR-EDS) analyses show that all investigated particles in the two PtSn catalysts represent uniform Pt/Sn compositions very close to the nominal one. Cyclic voltammograms (CV) in sulfuric acid show that the hydrogen ad/desorption was inhibited on the surface of PtSn alloy compared to that on the surface of the PtSnO x catalyst. PtSnO x catalyst showed higher catalytic activity for ethanol electro-oxidation than PtSn alloy from the results of chronoamperometry (CA) analysis and the performance of direct ethanol fuel cells (DEFCs). It is deduced that the unchanged lattice parameter of Pt in the PtSnO x catalyst is favorable to ethanol adsorption and meanwhile, tin oxide in the vicinity of Pt nanoparticles could offer oxygen species conveniently to remove the CO-like species of ethanolic residues to free Pt active sites

  11. Proteasome- and Ethanol-Dependent Regulation of HCV-Infection Pathogenesis

    Directory of Open Access Journals (Sweden)

    Natalia A. Osna

    2014-09-01

    Full Text Available This paper reviews the role of the catabolism of HCV and signaling proteins in HCV protection and the involvement of ethanol in HCV-proteasome interactions. HCV specifically infects hepatocytes, and intracellularly expressed HCV proteins generate oxidative stress, which is further exacerbated by heavy drinking. The proteasome is the principal proteolytic system in cells, and its activity is sensitive to the level of cellular oxidative stress. Not only host proteins, but some HCV proteins are degraded by the proteasome, which, in turn, controls HCV propagation and is crucial for the elimination of the virus. Ubiquitylation of HCV proteins usually leads to the prevention of HCV propagation, while accumulation of undegraded viral proteins in the nuclear compartment exacerbates infection pathogenesis. Proteasome activity also regulates both innate and adaptive immunity in HCV-infected cells. In addition, the proteasome/immunoproteasome is activated by interferons, which also induce “early” and “late” interferon-sensitive genes (ISGs with anti-viral properties. Cleaving viral proteins to peptides in professional immune antigen presenting cells and infected (“target” hepatocytes that express the MHC class I-antigenic peptide complex, the proteasome regulates the clearance of infected hepatocytes by the immune system. Alcohol exposure prevents peptide cleavage by generating metabolites that impair proteasome activity, thereby providing escape mechanisms that interfere with efficient viral clearance to promote the persistence of HCV-infection.

  12. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    Science.gov (United States)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  13. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    KAUST Repository

    Nagaraju, Doddahalli H.

    2014-12-01

    Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd2+ ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl2. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells. © 2014 Elsevier Ltd.

  14. Expression of protein engineered NADP{sup +}-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Matsushika, Akinori; Inoue, Hiroyuki; Murakami, Katsuji; Takimura, Osamu; Sawayama, Shigeki [National Institute of Advanced Industrial Science and Technology, Hiroshima (Japan). Biomass Technology Research Center; Watanabe, Seiya; Kodaki, Tsutomu; Makino, Keisuke [Kyoto Univ. (Japan). Inst. of Advanced Energy

    2008-11-15

    A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD{sup +}-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP{sup +}. In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP{sup +}-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP{sup +}-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain. (orig.)

  15. Titania Supported Co-Mn-Al Oxide Catalysts in Total Oxidation of Ethanol

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jirátová, Květa; Klempa, Jan; Böhmová, Vlasta; Obalová, L.

    2012-01-01

    Roč. 179, č. 1 (2012), s. 164-169 ISSN 0920-5861 R&D Projects: GA ČR GAP106/10/1762; GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z30130516 Keywords : mixed oxide catalysts * voc oxidation * titania Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.980, year: 2012

  16. Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.

    2004-01-01

    Organic municipal solid waste enriched with wheat straw was subjected to wet-oxidation as a pre-treatment for subsequent enzymatic conversion and fermentation into bio-ethanol. The effect of tempera (185-195degrees C), oxygen pressure (3-12) and sodium carbonate (0-2 g l(-1)) addition on enzymatic...... in the treated waste could be converted into respectively hexose and pentose sugars compared to 46% for cellulose and 36% for hemicellulose in the raw waste. For all wet oxidation conditions tested, total carbohydrate recoveries were high (> 89%) and 44-66% of the original lignin could be converted into non......-toxic carboxylic acids mainly (2.2-4.5 % on DS basis). Simultaneous saccharification and fermentation (SSF) of the treated waste at 10% DS by Saccharomyces cerevisae yielded average ethanol concentrations of 16.5 to 22 g l(-1) for enzyme loadings of 5 and 25 FPU g(-1) DS, respectively. The cellulose to ethanol...

  17. Effects of ethanol on CYP2E1 levels and related oxidative stress using a standard balanced diet.

    Science.gov (United States)

    Azzalis, Ligia A; Fonseca, Fernando L A; Simon, Karin A; Schindler, Fernanda; Giavarotti, Leandro; Monteiro, Hugo P; Videla, Luis A; Junqueira, Virgínia B C

    2012-07-01

    Expression of cytochrome P4502E1 (CYP2E1) is very much influenced by nutritional factors, especially carbohydrate consumption, and various results concerning the expression of CYP2E1 were obtained with a low-carbohydrate diet. This study describes the effects of ethanol treatment on CYP2E1 levels and its relationship with oxidative stress using a balanced standard diet to avoid low or high carbohydrate consumption. Rats were fed for 1, 2, 3, or 4 weeks a commercial diet plus an ethanol-sucrose solution. The results have shown that ethanol administration was associated with CYP2E1 induction and stabilization without related oxidative stress. Our findings suggest that experimental models with a low-carbohydrate/high-fat diet produce some undesirable CYP2E1 changes that are not present when a balanced standard diet is given.

  18. Gold Decorated Graphene for Rapid Dye Reduction and Efficient Electro Catalytic Oxidation of Ethanol

    Science.gov (United States)

    Siddhardha, R. S.; Kumar v, Lakshman; Kaniyoor, A.; Podila, R.; Kumar, V. S.; Venkataramaniah, K.; Ramaprabhu, S.; Rao, A.; Ramamurthy, S. S.; Clemson University Team; Sri Sathya Sai Institute of Higher Learning Team; IITMadras Team

    2013-03-01

    A well known disadvantage in fabrication of metal-graphene composite is the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. Here, we demonstrate a novel one pot synthesis of gold nanoparticles (AuNPs) by laser ablation of gold strip and simultaneous decoration of these on functionalized graphene derivatives. Not only the impregnation of AuNPs was linker free, but also the synthesis by itself was surfactant free. This resulted in in-situ decoration of pristine AuNPs on functionalized graphene derivatives. These materials were well characterized and tested for catalytic applications pertaining to dye reduction and electrooxidation. The catalytic reduction rates are 1.4 x 102 and 9.4x102 times faster for Rhodamine B and Methylene Blue dyes respectively, compared to earlier reports. The enhanced rate involves synergistic interplay of electronic relay between AuNPs and the dye, also charge transfer between the graphene system and dye. In addition, the onset potential for ethanol oxidation was found to be more negative ~ 100 mV, an indication of its promising application in direct ethanol fuel cells.

  19. Gastrointestinal protective effect of dietary spices during ethanol-induced oxidant stress in experimental rats.

    Science.gov (United States)

    Prakash, Usha N S; Srinivasan, Krishnapura

    2010-04-01

    Spices are traditionally known to have digestive stimulant action and to cure digestive disorders. In this study, the protective effect of dietary spices with respect to activities of antioxidant enzymes in gastric and intestinal mucosa was examined. Groups of Wistar rats were fed for 8 weeks with diets containing black pepper (0.5%), piperine (0.02%), red pepper (3.0%), capsaicin (0.01%), and ginger (0.05%). All these spices significantly enhanced the activities of antioxidant enzymes--superoxide dismutase, catalase, glutathione reductase, and glutathione-S-transferase--in both gastric and intestinal mucosa, suggesting a gastrointestinal protective role for these spices. In a separate study, these dietary spices were found to alleviate the diminished activities of antioxidant enzymes in gastric and intestinal mucosa under conditions of ethanol-induced oxidative stress. The gastroprotective effect of the spices was also reflected in their positive effect on mucosal glycoproteins, thereby lowering mucosal injury. The amelioration of the ethanol-induced decrease in the activities of antioxidant enzymes in gastric and intestinal mucosa by dietary spices suggests their beneficial gastrointestinal protective role. This is the first report on the gastrointestinal protective potential of dietary spices.

  20. Preparation and characterization of micro-arc-induced Pd/TM(TM = Ni, Co and Ti) catalysts and comparison of their electrocatalytic activities toward ethanol oxidation

    International Nuclear Information System (INIS)

    Wang, Xiaoguang; Ma, Guanshui; Zhu, Fuchun; Lin, Naiming; Tang, Bin; Zhang, Zhonghua

    2013-01-01

    Using the electro-spark deposition technique, a novel kind of Pd/TM (TM = Ni, Co and Ti) electrode was successfully prepared by arc-depositing Pd on the transition metal substrates. The structure, morphology and chemical composition of the arc-deposited films were investigated using thin-film X-ray diffraction (TF-XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results show that, a coarsening topographical morphology can be obtained, being composed of numerous craters/spots with sizes ranging from nano-scales to several microns. The electrochemical measurements indicate that the arc-deposited Pd/TM electrodes exhibit distinct electrochemical behaviors and the catalytic activity toward ethanol electro-oxidation reaction (EOR) is highly dependent upon the nature of substrate. Among the Pd/TM electrodes investigated, the arc-deposited Pd/Co reveals the best activity and superior poisoning tolerance towards ethanol oxidation and will find promising applications as a candidate for the anode catalyst of direct ethanol fuel cells (DEFCs)

  1. Effects of alcohol consumption on biomarkers of oxidative damage to DNA and lipids in ethanol-fed pigs.

    Science.gov (United States)

    Petitpas, F; Sichel, F; Hébert, B; Lagadu, S; Beljean, M; Pottier, D; Laurentie, M; Prevost, V

    2013-03-01

    Chronic alcohol consumption is known to result in tissue injury, particularly in the liver, and is considered a major risk factor for cancers of the upper respiratory tract. Here we assessed the oxidative effects of subchronic ethanol consumption on DNA and lipids by measuring biomarkers 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and malondialdehyde (MDA), respectively. Physiological responses of pigs (n = 4) administered ethanol in drinking water for 39 days were compared with those of water-fed pigs (n = 4). Alcoholisation resulted in serum ethanol concentration of 1.90 g L(-1) and in a moderate but significant increase in alanine aminotransferase activity, an index of liver injury. However, between the alcoholised and control groups there were no significant differences in the levels of 8-oxodG (8-oxodG per 10(6) 2'deoxyguanosine) from leucocytes (2.52 ± 0.42 Vs 2.39 ± 0.34) or from target organs, liver, cardia and oesophagus. Serum MDA levels were also similar in ethanol-fed pigs (0.33 ± 0.04 μM) and controls (0.28 ± 0.03 μM). Interestingly, levels of 8-oxodG in cardia were positively correlated with those in oesophagus (Spearman correlation coefficient R = 1, P alcohol consumption may not cause oxidative damage to DNA and lipids as measured by 8-oxodG and MDA, respectively. The duration of alcoholisation and the potential alcohol-induced nutritional deficiency may be critical determinants of ethanol toxicity. Relevant biomarkers, such as factors involved in sensitization to ethanol-induced oxidative stress are required to better elucidate the relationship between alcohol consumption, oxidative stress and carcinogenesis. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. The impact of water concentration on the catalytic oxidation of ethanol on platinum electrode in concentrated phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, A.P.M.; Previdello, B.A.F.; Varela, H.; Gonzalez, E.R. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, C.P. 780, CEP 13560-970 Sao Carlos, SP (Brazil)

    2010-01-15

    The electro-oxidation of ethanol on platinum in phosphoric acid opens the door to promote the oxidation reaction at higher temperatures. However, the effect of the presence of water is not well understood. In this work, the electro-oxidation of ethanol on platinum was studied in concentrated phosphoric acid containing different concentrations of water at room temperature. The results show that effect of bulk water on the rate electro-oxidation is highest at 0.60 V and decreases for increasing potentials. This was suggested as due to the increasing formation of oxygenated species on the electrode surface with potential, which in turn is more efficient than the increase of water content in the electrolyte. Altogether, these results were interpreted as an evidence of a Langmuir-Hinshelwood step involving oxygenated species as one of the adsorbed partners. (author)

  3. Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: Efficient routes to acetic acid and ethyl acetate

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Christiansen, Sofie Egholm; Thomsen, M.L.D.

    2007-01-01

    The aerobic oxidation of aqueous ethanol to produce acetic acid and ethyl acetate was studied using heterogeneous gold catalysts. Comparing the performance of Au/MgAl2O4 and Au/TiO2 showed that these two catalysts exhibited similar performance in the reaction. By proper selection of the reaction...

  4. Co-catalytic effect of Rh and Ru for the ethanol electro-oxidation in amorphous microparticulated alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Tamara C.; Pierna, Angel R.; Barroso, Javier [Dpto. de Ingenieria Quimica y del Medio Ambiente, Universidad del Pais Vasco, San Sebastian (Spain)

    2011-11-15

    The ethanol electro-oxidation on platinum catalyst in acid media leads to the formation of acetaldehyde and acetic acid as main products. Another problem is the poisoning of the electro-catalyst surface with CO formed during the fuel oxidation reaction. To increase the performance of Direct Ethanol Fuel Cells (DEFCs) it is necessary to develop new electrode materials or modification of the existing Pt catalysts. This work presents the electrochemical response to ethanol and CO oxidation of different compositional amorphous alloys obtained by ball milling technique, used as electrodes. Alloys with Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.4} and Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.2}Ru{sub 0.2} composi-tions were studied. The current density towards ethanol oxidation decreases with the presence of ruthenium; however, this electrode shows the best tolerance to CO, with lower surface coverage (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts for ethanol electro-oxidation in alkaline medium

    CSIR Research Space (South Africa)

    Modibedi, RM

    2011-04-01

    Full Text Available Carbon supported Pd-Sn and Pd-Ru-Sn nanocatalysts were prepared by the chemical reduction method, using sodium borohydride and ethylene glycol mixture as the reducing agent. The catalytic activity towards ethanol electro-oxidation in alkaline medium...

  6. One-step synthesis of N-doped activated carbon with controllable Ni nanorods for ethanol oxidation

    International Nuclear Information System (INIS)

    Shi, Wenjuan; Gao, Haiyan; Yu, Jianguo; Jia, Miaomiao; Dai, Tangming; Zhao, Yongnan; Xu, Jingjing; Li, Guodong

    2016-01-01

    N-doped activated carbons with controllable Ni nanorods (NiNC) catalysts were fabricated by a facile one-pot method for electrocatalytic oxidation of ethanol. The effects of carbon source and Ni precursor for the different microstructures of the forming Ni are discussed in this work. The sucrose and chloride ion are the key factors for forming nanorod-like nickel catalyst. The sizes of Ni nanorods can be controlled by the reactant ratios and influence the catalytic performance for ethanol oxidation. The doped N atoms are also used to improve the catalytic performance for ethanol oxidation. The NiNC–3 catalyst with the proper content and size of Ni exhibits an improved catalytic activity toward ethanol oxidation with a 5 times current density and 16 times rate constant in comparison with the NiNC–1 catalysts. A current density of 47.5 mA cm −2 is generated on NiNC–3 electrode. Furthermore, current density retention of 80.7% suggests an excellent cyclic stability after 1500 cycle on the NiNC–3 electrode. All of these elevated performances can be attributed to the relatively uniform nanorods size, as well as the excellent electrical conductivity and stability of the carbon support.

  7. Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper

    DEFF Research Database (Denmark)

    Bertheussen, Erlend; Verdaguer Casadevall, Arnau; Ravasio, Davide

    2016-01-01

    Oxide-derived copper (OD-Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at −0.3 V (vs. RHE). By using static headspace-gas chromatography for liquid phase analysis, we identify acetaldehyde as a minor...

  8. Thiophene Conversion and Ethanol Oxidation on SiO2-Supported 12-PMoV-Mixed Heteropoly Compounds

    Czech Academy of Sciences Publication Activity Database

    Spojakina, A. A.; Kostova, N. G.; Sow, Bineta; Stamenova, M. W.; Jirátová, Květa

    2001-01-01

    Roč. 65, 2-4 (2001), s. 315-321 ISSN 0920-5861 Institutional research plan: CEZ:AV0Z4072921 Keywords : thiophene conversion * ethanol oxidation * mixed heteropoly compounds Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.333, year: 2001

  9. Co-catalytic effect of Rh and Ru for the ethanol electro-oxidation in amorphous microparticulated alloys

    International Nuclear Information System (INIS)

    Blanco, Tamara C.; Pierna, Angel R.; Barroso, Javier

    2011-01-01

    The ethanol electro-oxidation on platinum catalyst in acid media leads to the formation of acetaldehyde and acetic acid as main products. Another problem is the poisoning of the electro-catalyst surface with CO formed during the fuel oxidation reaction. To increase the performance of Direct Ethanol Fuel Cells (DEFCs) it is necessary to develop new electrode materials or modification of the existing Pt catalysts. This work presents the electrochemical response to ethanol and CO oxidation of different compositional amorphous alloys obtained by ball milling technique, used as electrodes. Alloys with Ni 59 Nb 40 Pt 0.6 Rh 0.4 and Ni 59 Nb 40 Pt 0.6 Rh 0.2 Ru 0.2 composi-tions were studied. The current density towards ethanol oxidation decreases with the presence of ruthenium; however, this electrode shows the best tolerance to CO, with lower surface coverage (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Rapid synthesis of platinum-ruthenium bimetallic nanoparticles dispersed on carbon support as improved electrocatalysts for ethanol oxidation.

    Science.gov (United States)

    Gu, Zhulan; Li, Shumin; Xiong, Zhiping; Xu, Hui; Gao, Fei; Du, Yukou

    2018-07-01

    Bimetallic nanocatalysts with small particle size benefit from markedly enhanced electrocatalytic activity and stability during small molecule oxidation. Herein, we report a facile method to synthesize binary Pt-Ru nanoparticles dispersed on a carbon support at an optimum temperature. Because of its monodispersed nanostructure, synergistic effects were observed between Pt and Ru and the PtRu/C electrocatalysts showed remarkably enhanced electrocatalytic activity towards ethanol oxidation. The peak current density of the Pt 1 Ru 1 /C electrocatalyst is 3731 mA mg -1 , which is 9.3 times higher than that of commercial Pt/C (401 mA mg -1 ). Furthermore, the synthesized Pt 1 Ru 1 /C catalyst exhibited higher stability during ethanol oxidation in an alkaline medium and maintained a significantly higher current density after successive cyclic voltammograms (CVs) of 500 cycles than commercial Pt/C. Our work highlights the significance of the reaction temperature during electrocatalyst synthesis, leading to enhanced catalytic performance towards ethanol oxidation. The Pt 1 Ru 1 /C electrocatalyst has great potential for application in direct ethanol fuel cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats.

    Science.gov (United States)

    Spiga, Saturnino; Talani, Giuseppe; Mulas, Giovanna; Licheri, Valentina; Fois, Giulia R; Muggironi, Giulia; Masala, Nicola; Cannizzaro, Carla; Biggio, Giovanni; Sanna, Enrico; Diana, Marco

    2014-09-02

    Alcoholism involves long-term cognitive deficits, including memory impairment, resulting in substantial cost to society. Neuronal refinement and stabilization are hypothesized to confer resilience to poor decision making and addictive-like behaviors, such as excessive ethanol drinking and dependence. Accordingly, structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing the use of alcohol after chronic ingestion. Here we show that ethanol-dependent rats display a loss of dendritic spines in medium spiny neurons of the nucleus accumbens (Nacc) shell, accompanied by a reduction of tyrosine hydroxylase immunostaining and postsynaptic density 95-positive elements. Further analysis indicates that "long thin" but not "mushroom" spines are selectively affected. In addition, patch-clamp experiments from Nacc slices reveal that long-term depression (LTD) formation is hampered, with parallel changes in field potential recordings and reductions in NMDA-mediated synaptic currents. These changes are restricted to the withdrawal phase of ethanol dependence, suggesting their relevance in the genesis of signs and/or symptoms affecting ethanol withdrawal and thus the whole addictive cycle. Overall, these results highlight the key role of dynamic alterations in dendritic spines and their presynaptic afferents in the evolution of alcohol dependence. Furthermore, they suggest that the selective loss of long thin spines together with a reduced NMDA receptor function may affect learning. Disruption of this LTD could contribute to the rigid emotional and motivational state observed in alcohol dependence.

  12. Enhanced Electrocatalytic Activity of Pt Particles Supported on Reduced Graphene Oxide/Poly(3,4-ethylenedioxythiophene RGO/PEDOT Composite towards Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Juanito Raphael F. Foronda

    2013-01-01

    Full Text Available Catalysts in fuel cells are normally platinum based because platinum exhibits high electrocatalytic activity towards ethanol oxidation in acidic medium. However, bulk Pt is expensive and rare in nature. To reduce the consumption of Pt, a support material or matrix is needed to disperse Pt on its surface as micro- or nanoparticles with potential application as anode material in direct ethanol fuel cells (DEFCs. In this study, a composite material consisting of platinum particles dispersed on reduced graphene oxide/poly(3,4-ethylenedioxythiophene (RGO/PEDOT support was electrochemically prepared for ethanol oxidation in sulfuric acid electrolyte. PEDOT, a conductive polymer, was potentiodynamically polymerized from the corresponding monomer, 0.10 M EDOT in 0.10 M HClO4 electrolyte. The PEDOT-modified electrode was used as a substrate for exfoliated graphene oxide (EGO which was prepared by electrochemical exfoliation of graphite from carbon rod of spent batteries and subsequently reduced to form RGO. The Pt/RGO/PEDOT composite gave the highest electrocatalytic activity with an anodic current density of 2688.7 mA·cm−2 at E = 0.70 V (versus Ag/AgCl towards ethanol oxidation compared to bare Pt electrode and other composites. Scanning electron microscopy (SEM revealed the surface morphology of the hybrid composites while energy dispersive X-ray (EDX confirmed the presence of all the elements for the Pt/RGO/PEDOT composite.

  13. Direct internal steam reforming of ethanol in a solid oxide fuel cell (SOFC) - A thermodynamic analysis

    International Nuclear Information System (INIS)

    Lima da Silva, Aline; De Fraga Malfatti, Celia; Heck, Nestor Cesar; Melo Halmenschlager, Cibele

    2003-01-01

    Among the various types of fuel cells, the solid oxide fuel cell (SOFC) has attracted considerable interest due to the possibility for operation with an internal reformer and higher system efficiency. In SOFC, high operative temperature allows the direct conversion of ethanol into H 2 and CO to take place in the electrochemical cell. Ethanol is considered to be an attractive fuel because it is a renewable energy source and presents some advantages over other green fuels such as safety in storage and handling. Direct internal reforming of ethanol, however, can produce undesirable products that diminish system efficiency and, in the case of carbon deposition over the anode, promote the growth of carbon filaments attached to the anode crystallites which generate massive forces within the electrode structure leading to its rapid breakdown. In this context, a thermodynamic analysis is fundamental to predict the product distribution as well as the conditions favorable for carbon to precipitate inside the cell. Despite of such importance, there are few works in literature dealing with thermodynamic analysis of the direct internal steam reforming of ethanol in fuel cell systems. Hence, the aim of this work is to find appropriate ranges for operating conditions where carbon deposition in SOFC with direct internal reforming operation is not feasible, in temperature range of 500- 1200K. The calculation here is more complicated than that for a reformer because the disappearance of hydrogen and the generation of H 2 O from electrochemical reaction must be taken into account. In the present study, the effects of hydrogen consumption on anode components and on carbon formation are investigated. Equilibrium determinations are performed by the Gibbs energy minimization method, considering the following species: H 2 , H 2 O, CH 4 , CO, CO 2 and C gr . (graphite). The effect of the type of solid electrolyte (oxygen-conducting and hydrogen-conducting) on carbon formation is also

  14. Effect of ethanolic flax (Linum usitatissimum L.) extracts on lipid oxidation and changes in nutritive value of frozen-stored meat products.

    Science.gov (United States)

    Waszkowiak, Katarzyna; Szymandera-Buszka, Krystyna; Hęś, Marzanna

    2014-01-01

    Flaxseed (Linum usitatissimum L.) is an important source of phenolic compounds, mainly lignans. Antioxidant capacities of flaxseed extracts that contain the compounds have been reported earlier. However, there is a lack of accessible information about their activity against lipid oxidation in meat products. Therefore, the effect of ethanolic flaxseed extracts (EFEs) on lipid stability and changes in nutritive value of frozen-stored meat products (pork meatballs and burgers) was determined. EFEs from three Polish flax varieties (Szafir, Oliwin, Jantarol) were applied in the study. During 150-day storage of meat products, the lipid oxidation (peroxide and TBARS value) and thiamine retention were periodically monitored, alongside with methionine and lysine availability and protein digestibility. The addition of EFEs significantly limited lipid oxidation in stored meatballs and burgers. EFE from brown seeds of Szafir var. was superior to the others from golden seeds of Jantarol and Oliwin. Moreover, the extracts reduced changes in thiamine and available lysine content, as well as protein digestibility, during storage time. The effect of EFE addition on available methionine retention was limited. The ethanolic flaxseed extracts exhibit antioxidant activity during frozen storage of meat products. They can be utilized to prolong shelf-life of the products by protecting them against lipid oxidation and deterioration of their nutritional quality. However, antioxidant efficiency of the extracts seems to depend on chemical composition of raw material (flax variety). Further investigations should be carried on to explain the issue.

  15. Studies of catalyst material for the electro-oxidation of methanol, ethanol, formaldehyde and formic acid

    International Nuclear Information System (INIS)

    Bajwa, S.Z.; Ahmed, R.

    2007-01-01

    Fuel cell is an electrochemical device that converts the chemical energy of reaction directly into the electrical energy. It is highly efficient and environment friendly device. Normally used fuel in fuel cells is hydrogen, but due to the convenience in handling some other liquid fuels are also used and now direct methanol fuel cells are available in the market. Rapid electro-oxidation of the fuel at the fuel cell electrode is necessary for its optimum use. In addition to the methanol, other liquid fuels can also be used in the fuel cell. In this work, cyclic voltammetric studies have been done for the electro-oxidation of the methanol, ethanol, formic acid and formaldehyde on fuel cell catalyst. Platinum electrode is characterized by the measurement of active surface area and roughness factor. Classical electrochemical equations have been employed to find out rate constants for electro-oxidation of methanol fuel and calculations have been carried out to find out thermodynamic parameters. Exchange current density has been evaluated with reference to catalyst by drawing polarization curves. (author)

  16. Microwave sinthesys and characterization of Pt and Pt-Rh-Sn electrocatalysts for ethanol oxidation

    Directory of Open Access Journals (Sweden)

    Jovanović Vladislava M.

    2011-01-01

    Full Text Available Carbon supported Pt and Pt-Rh-Sn catalysts were synthesized by microwave-polyol method in ethylene glycol solution and investigated for the ethanol electro-oxidation reaction. The catalysts were characterized in terms of structure, morphology and composition by employing XRD, STM and EDX techniques. STM analysis indicated rather uniform particles and particle size of below 2 nm for both catalysts. XRD analysis of the Pt/C catalyst revealed two phases, one with the main characteristic peaks of face centered cubic crystal structure (fcc of platinum and another related to graphite like structure of carbon support Vulcan XC-72R. However, in XRD pattern of the Pt-Rh-Sn/C catalyst diffraction peaks for Pt, Rh or Sn cannot be resolved, indicating an extremely low crystallinity. The small particle sizes and homogeneous size distributions of both catalysts should be attributed to the advantages of microwave assisted modified polyol process in ethylene glycol solution. Pt-Rh- Sn/C catalyst is highly active for the ethanol oxidation with the onset potential shifted for more than 150 mV to negative values and with currents nearly 5 times higher in comparison to Pt/C catalyst. The stability tests of the catalysts, as studied by the chronoamperometric experiments, reveal that the Pt-Rh-Sn/C catalyst is evidently less poisoned then Pt/C catalyst. The increased activity of Pt-Rh-Sn/C in comparison to Pt/C catalyst is most probably promoted by bifunctional mechanism and the electronic effect of alloyed metals.

  17. Ethanol Electro-oxidation on Novel Electrocatalyst PtVSnO2/C in Acidic Media

    International Nuclear Information System (INIS)

    Jin, Biyao; Sun, Hongyan; Huang, Minghui; Zhao, Lianhua

    2014-01-01

    Graphical abstract: - Highlights: • Novel electrocatalyst PtVSnO 2 /C is synthesized by a modified Bönnemann method. • Adding Sn and V changes the geometric and electronic structure of Pt. • PtVSnO 2 /C improved catalytic activity and the ability of resisting CO poisoning. - Abstract: A novel carbon-supported Pt-V-SnO 2 catalyst is prepared by a modified Bönnemann method. Pt/C, PtV/C, and PtSnO 2 /C are used for comparative analysis to study PtVSnO 2 /C in terms of its structure and electrocatalytic activity for the ethanol oxidation reaction (EOR). Characterization of its structural properties by X-ray diffraction (XRD) and transmission electron microscopy (TEM) is described. It is shown that the Pt lattice parameter decreases with the addition of V but increases with the addition of Sn in the PtVSn/C catalyst. TEM analysis reveals that the prepared catalyst particles are in the nanosize range (2-4 nm). EDS confirms the atomic compositions of the synthesized catalysts to be similar to the nominal values. The electrocatalytic activities are characterized by cyclic voltammetry (CV) and amperometric i-t curve measurement (i-t) techniques. The incorporation of a small amount of V in the PtSnO 2 /C electrocatalyst leads to higher activity for the ethanol oxidation reaction at room temperature. According to the Arrhenius equation, the apparent activation energy of PtVSnO 2 /C (3:1:3) for EOR is the lowest among the studied catalysts, which may be attributed to a synergistic effect between Sn and V

  18. Electrochemical behavior of ruthenium-hexacyanoferrate modified glassy carbon electrode and catalytic activity towards ethanol electro oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wendell M.; Marques, Aldalea L.B., E-mail: aldalea.ufma@hotmail.com [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Quimica Tecnologica; Cardoso, William S.; Marques, Edmar P.; Bezerra, Cicero W.B. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Qumica; Ferreira, Antonio Ap. P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Song, Chaojie; Zhang, Jiujun [Energy, Mining and Environment Portfolio, National Research Council of Canada, Vancouver, BC (Canada)

    2013-04-15

    Ruthenium-based hexacyanoferrate (RuHCF) thin film modified glassy carbon electrode was prepared by drop evaporation method. The RuHCF modified electrode exhibited four redox couples in strong acidic solution (pH 1.5) attributed to Fe(CN){sub 6}{sup 3-} ion and three ruthenium forms (Ru(II), Ru(III) and Ru(IV)), characteristic of ruthenium oxide compounds. The modified electrode displayed excellent electrocatalytic activity towards ethanol oxidation in the potential region where electrochemical processes Ru(III)-O-Ru(IV) and Ru(IV)-O-Ru(VI) occur. Impedance spectroscopy data indicated that the charge transfer resistance decreased with the increase of the applied potential and ethanol concentration, indicating the use of the RuHCF modified electrode as an ethanol sensor. Under optimized conditions, the sensor responded linearly and rapidly to ethanol concentration between 0.03 and 0.4 mol L{sup -1} with a limit of detection of 0.76 mmol L{sup -1}, suggesting an adequate sensitivity in ethanol analyses. (author)

  19. “Drinking in the Dark” (DID) Procedures: A Model of Binge-Like Ethanol Drinking in Non-Dependent Mice

    Science.gov (United States)

    Thiele, Todd E.; Navarro, Montserrat

    2013-01-01

    This review provides an overview of an animal model of binge-like ethanol drinking that has come to be called “drinking in the dark” (DID), a procedure that promotes high levels of ethanol drinking and pharmacologically relevant blood ethanol concentrations (BECs) in ethanol-preferring strains of mice. Originally described by Rhodes et al. (2005), the most common variation of the DID procedure, using singly housed mice, involves replacing the water bottle with a bottle containing 20% ethanol for 2 to 4 hours, beginning 3 hours into the dark cycle. Using this procedure, high ethanol drinking strains of mice (e.g., C57BL/6J) typically consume enough ethanol to achieve BECs greater than 100 mg/dL and to exhibit behavioral evidence of intoxication. This limited access procedure takes advantage of the time in the animal’s dark cycle in which the levels of ingestive behaviors are high, yet high ethanol intake does not appear to stem from caloric need. Mice have the choice of drinking or avoiding the ethanol solution, eliminating the stressful conditions that are inherent in other models of binge-like ethanol exposure in which ethanol is administered by the experimenter, and in some cases, potentially painful. The DID procedure is a high throughput approach that does not require extensive training or the inclusion of sweet compounds to motivate high levels of ethanol intake. The high throughput nature of the DID procedure makes it useful for rapid screening of pharmacological targets that are protective against binge-like drinking and for identifying strains of mice that exhibit binge-like drinking behavior. Additionally, the simplicity of DID procedures allows for easy integration into other paradigms, such as prenatal ethanol exposure and adolescent ethanol drinking. It is suggested that the DID model is a useful tool for studying the neurobiology and genetics underlying binge-like ethanol drinking, and may be useful for studying the transition to ethanol

  20. A genetically optimized kinetic model for ethanol electro-oxidation on Pt-based binary catalysts used in direct ethanol fuel cells

    Science.gov (United States)

    Sánchez-Monreal, Juan; García-Salaberri, Pablo A.; Vera, Marcos

    2017-09-01

    A one-dimensional model is proposed for the anode of a liquid-feed direct ethanol fuel cell. The complex kinetics of the ethanol electro-oxidation reaction is described using a multi-step reaction mechanism that considers free and adsorbed intermediate species on Pt-based binary catalysts. The adsorbed species are modeled using coverage factors to account for the blockage of the active reaction sites on the catalyst surface. The reaction rates are described by Butler-Volmer equations that are coupled to a one-dimensional mass transport model, which incorporates the effect of ethanol and acetaldehyde crossover. The proposed kinetic model circumvents the acetaldehyde bottleneck effect observed in previous studies by incorporating CH3CHOHads among the adsorbed intermediates. A multi-objetive genetic algorithm is used to determine the reaction constants using anode polarization and product selectivity data obtained from the literature. By adjusting the reaction constants using the methodology developed here, different catalyst layers could be modeled and their selectivities could be successfully reproduced.

  1. Temperature dependence on mutual solubility of binary (methanol + limonene) mixture and (liquid + liquid) equilibria of ternary (methanol + ethanol + limonene) mixture

    International Nuclear Information System (INIS)

    Tamura, Kazuhiro; Li Xiaoli; Li Hengde

    2009-01-01

    Mutual solubility data of the binary (methanol + limonene) mixture at the temperatures ranging from 288.15 K close to upper critical solution temperature, and ternary (liquid + liquid) equilibrium (tie-lines) of the (methanol + ethanol + limonene) mixture at the temperatures (288.15, 298.15, and 308.15) K have been obtained. The experimental results have been represented accurately in terms of the extended and modified UNIQUAC models with binary parameters, compared with the UNIQUAC model. The temperature dependence of binary and ternary (liquid + liquid) equilibrium for the binary (methanol + limonene) and ternary (methanol + ethanol + limonene) mixtures could be calculated successfully using the extended and modified UNIQUAC model

  2. Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation.

    Science.gov (United States)

    Hu, Chuangang; Zhai, Xiangquan; Zhao, Yang; Bian, Ke; Zhang, Jing; Qu, Liangti; Zhang, Huimin; Luo, Hongxia

    2014-03-07

    A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.

  3. Intrauterine ethanol exposure results in hypothalamic oxidative stress and neuroendocrine alterations in adult rat offspring.

    Science.gov (United States)

    Dembele, Korami; Yao, Xing-Hai; Chen, Li; Nyomba, B L Grégoire

    2006-09-01

    Prenatal ethanol (EtOH) exposure is associated with low birth weight, followed by increased appetite, catch-up growth, insulin resistance, and impaired glucose tolerance in the rat offspring. Because EtOH can induce oxidative stress, which is a putative mechanism of insulin resistance, and because of the central role of the hypothalamus in the regulation of energy homeostasis and insulin action, we investigated whether prenatal EtOH exposure causes oxidative damage to the hypothalamus, which may alter its function. Female rats were given EtOH by gavage throughout pregnancy. At birth, their offspring were smaller than those of non-EtOH rats. Markers of oxidative stress and expression of neuropeptide Y and proopiomelanocortin (POMC) were determined in hypothalami of postnatal day 7 (PD7) and 3-mo-old (adult) rat offspring. In both PD7 and adult rats, prenatal EtOH exposure was associated with decreased levels of glutathione and increased expression of MnSOD. The concentrations of lipid peroxides and protein carbonyls were normal in PD7 EtOH-exposed offspring, but were increased in adult EtOH-exposed offspring. Both PD7 and adult EtOH-exposed offspring had normal neuropeptide Y and POMC mRNA levels, but the adult offspring had reduced POMC protein concentration. Thus only adult offspring preexposed to EtOH had increased hypothalamic tissue damage and decreased levels of POMC, which could impair melanocortin signaling. We conclude that prenatal EtOH exposure causes hypothalamic oxidative stress, which persists into adult life and alters melanocortin action during adulthood. These neuroendocrine alterations may explain weight gain and insulin resistance in rats exposed to EtOH early in life.

  4. Cobalt Oxide Catalysts Supported on CeO2–TiO2 for Ethanol Oxidation and N2O Decomposition.

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Kovanda, F.; Balabánová, Jana; Koloušek, D.; Klegová, A.; Pacultová, K.; Obalová, L.

    2017-01-01

    Roč. 12, č. 1 (2017), s. 121-139 ISSN 1878-5190. [Pannonian Symposium on Catalysis. Siófok, 19.09.2016-23.09.2016] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : cobalt oxide catalysts * ethanol total oxidation * N2O decomposition Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 1.264, year: 2016

  5. Electrocatalytic activity and operational stability of electrodeposited Pd-Co films towards ethanol oxidation in alkaline electrolytes

    Science.gov (United States)

    Tsui, Lok-kun; Zafferoni, Claudio; Lavacchi, Alessandro; Innocenti, Massimo; Vizza, Francesco; Zangari, Giovanni

    2015-10-01

    Direct alkaline ethanol fuel cells (DEFCs) are usually run with Pd anodic catalysts, but their performance can be improved by utilizing alloys of Pd and Co. The oxyphilic Co serves to supply ample -OH to the ethanol oxidation reaction, accelerating the rate limiting step at low overpotential under alkaline conditions. Pd-Co films with compositions between 20 and 80 at% Co can be prepared by electrodeposition from a NH3 complexing electrolyte. Cyclic voltammetry studies show that the ethanol oxidation peak exhibits increasing current density with increasing Co content, reaching a maximum at 77% Co. In contrast, potentiostatic measurements under conditions closer to fuel cell operating conditions show that a 50 at% Co alloy has the highest performance. Importantly, the Co-Pd film is also found to undergo phase and morphological transformations during ethanol oxidation, resulting in a change from a compact film to high surface area flake-like structures containing Co3O4 and CoOOH; such a transformation instead is not observed when operating at a constant potential of 0.7 VRHE.

  6. The role of folic acid and selenium against oxidative damage from ethanol in early life programming: a review.

    Science.gov (United States)

    Ojeda, Luisa; Nogales, Fátima; Murillo, Luisa; Carreras, Olimpia

    2018-04-01

    There are disorders in children, covered by the umbrella term "fetal alcohol spectrum disorder" (FASD), that occur as result of alcohol consumption during pregnancy and lactation. They appear, at least in part, to be related to the oxidative stress generated by ethanol. Ethanol metabolism generates reactive oxygen species and depletes the antioxidant molecule glutathione (GSH), leading to oxidative stress and lipid and protein damage, which are related to growth retardation and neurotoxicity, thereby increasing the incidence of FASD. Furthermore, prenatal and postnatal exposure to ethanol in dams, as well as increasing oxidation in offspring, causes malnutrition of several micronutrients such as the antioxidant folic acid and selenium (Se), affecting their metabolism and bodily distribution. Although abstinence from alcohol is the only way to prevent FASD, it is possible to reduce its harmful effects with a maternal dietary antioxidant therapy. In this review, folic acid and Se have been chosen to be analyzed as antioxidant intervention systems related to FASD because, like ethanol, they act on the methionine metabolic cycle, being related to the endogenous antioxidants GSH and glutathione peroxidase. Moreover, several birth defects are related to poor folate and Se status.

  7. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-10-15

    Nanoporous palladium (NPPd) with ultrafine ligament size of 3-6 nm was fabricated by dealloying of an Al-Pd alloy in an alkaline solution. Electrochemical measurements indicate that NPPd exhibits significantly high electrochemical active specific surface area (23 m{sup 2} g{sup -1}), and high catalytic activity for electro-oxidation of methanol, ethanol, and formic acid. Mass activities can reach 149, 148, 262 mA mg{sup -1} for the oxidation of methanol, ethanol and formic acid, respectively. Moreover, superior steady-state activities can be observed for all the electro-oxidation processes. NPPd will be a promising candidate for the anode catalyst for direct alcohol or formic acid fuel cells. (author)

  8. Co/Zr substitution in a cerium-zirconium oxide by catalytic steam reforming of bio-ethanol

    International Nuclear Information System (INIS)

    Vargas, J.C.; Thomas, S.; Roger, A.C.; Kiennemann, A.; Vargas, J.C.

    2006-01-01

    This work deals with the production of hydrogen by bio-ethanol catalytic steam reforming. The aim is to develop a catalyst active in ethanol conversion, selective in hydrogen and resistant to deactivation, particularly those induced by the formation of carbon deposition. The metal-support interaction being one of the keys of this challenge, catalysts in which a transition metal is inserted into an oxide by a liquid synthesis method (by the precursor method) have been developed. The initial insertion of cobalt into a cerium oxide-zirconia structure presents the advantages to increase the redox properties of the host oxide and to allow a stable reduction of a cobalt part while favoring the metal-support interaction. (O.M.)

  9. Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol

    Directory of Open Access Journals (Sweden)

    Peterson GP

    2011-01-01

    Full Text Available Abstract An experimental investigation of the combustion behavior of nano-aluminum (n-Al and nano-aluminum oxide (n-Al2O3 particles stably suspended in biofuel (ethanol as a secondary energy carrier was conducted. The heat of combustion (HoC was studied using a modified static bomb calorimeter system. Combustion element composition and surface morphology were evaluated using a SEM/EDS system. N-Al and n-Al2O3 particles of 50- and 36-nm diameters, respectively, were utilized in this investigation. Combustion experiments were performed with volume fractions of 1, 3, 5, 7, and 10% for n-Al, and 0.5, 1, 3, and 5% for n-Al2O3. The results indicate that the amount of heat released from ethanol combustion increases almost linearly with n-Al concentration. N-Al volume fractions of 1 and 3% did not show enhancement in the average volumetric HoC, but higher volume fractions of 5, 7, and 10% increased the volumetric HoC by 5.82, 8.65, and 15.31%, respectively. N-Al2O3 and heavily passivated n-Al additives did not participate in combustion reactively, and there was no contribution from Al2O3 to the HoC in the tests. A combustion model that utilized Chemical Equilibrium with Applications was conducted as well and was shown to be in good agreement with the experimental results.

  10. Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacter oxydans.

    Science.gov (United States)

    Zhang, Hongsen; Han, Xushen; Wei, Chengxiang; Bao, Jie

    2017-01-01

    An oxidative production process of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth was designed, experimentally investigated, and evaluated. Dry dilute acid pretreated and biodetoxified corn stover was simultaneously saccharified and fermented into 59.80g/L of ethanol (no xylose utilization). 65.39g/L of xylose was obtained in the distillation stillage without any concentrating step after ethanol was distillated. Then the xylose was completely converted into 66.42g/L of xylonic acid by Gluconobacter oxydans. The rigorous Aspen Plus modeling shows that the wastewater generation and energy consumption was significantly reduced comparing to the previous xylonic acid production process using xylose in pretreatment liquid. This study provided a practical process option for xylonic acid production from lignocellulose feedstock with significant reduction of wastewater and energy consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments.

    Science.gov (United States)

    Cai, Ling-Yan; Ma, Yu-Long; Ma, Xiao-Xia; Lv, Jun-Min

    2016-07-01

    A combinative technology of alkali and N-methylmorpholine-N-oxide (NMMO) was used to pretreat corn stalk (CS) for improving the efficiencies of subsequent enzymatic hydrolysis and ethanol fermentation. The results showed that this strategy could not only remove hemicellulose and lignin but also decrease the crystallinity of cellulose. About 98.0% of enzymatic hydrolysis yield was obtained from the pretreated CS as compared with 46.9% from the untreated sample. The yield for corresponding ethanol yield was 64.6% while untreated CS was only 18.8%. Besides, xylose yield obtained from the untreated CS was only 11.1%, while this value was 93.8% for alkali with NMMO pretreated sample. These results suggest that a combination of alkali with 50% (wt/wt) NMMO solution may be a promising alternative for pretreatment of lignocellulose, which can increase the productions of subsequent enzymatic hydrolysis and ethanol fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Electrooxidation of ethanol on novel multi-walled carbon nanotube supported platinum-antimony tin oxide nanoparticle catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dao-Jun [School of Chemistry and Chemical Engineering, The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong 273165 (China)

    2011-01-15

    We synthesize the new Pt based catalyst for direct ethanol fuel cells using novel multi-walled carbon nanotubes supported platinum-antimony tin oxide (Pt-ATO/MWCNT) nanoparticle as new catalyst support for the first time. The structure of Pt-ATO/MWCNT catalyst is characterized by transmission electron micrograph (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt-ATO/MWCNT catalyst for ethanol electrooxidation reactions are investigated by cyclic voltammetry (CV) and chronoamperometric experiments in acidic medium. The electrocatalytic activity for ethanol electrooxidation reaction shows that high carbon monoxide tolerance and good stability of Pt-ATO/MWCNT catalyst compared with Pt-SnO{sub 2}/MWCNT and commercial Pt/C are observed. These results imply that Pt-ATO/MWCNT catalyst has promising potential applications in direct alcohol fuel cells. (author)

  13. One-Pot Synthesis of Hierarchical Flower-Like Pd-Cu Alloy Support on Graphene Towards Ethanol Oxidation

    Science.gov (United States)

    Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan

    2017-09-01

    The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu(F)/RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu(F)/RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.

  14. Weekend ethanol consumption and high-sucrose diet: resveratrol effects on energy expenditure, substrate oxidation, lipid profile, oxidative stress and hepatic energy metabolism.

    Science.gov (United States)

    Rocha, Katiucha Karolina Honório Ribeiro; Souza, Gisele Aparecida; Seiva, Fábio Rodrigues Ferreira; Ebaid, Geovana Xavier; Novelli, Ethel Lourenzi Barbosa

    2011-01-01

    The present study analyzed the association between weekend ethanol and high-sucrose diet on oxygen consumption, lipid profile, oxidative stress and hepatic energy metabolism. Because resveratrol (RS, 3,5,4'-trans-trihydroxystilbene) has been implicated as a modulator of alcohol-independent cardiovascular protection attributed to red wine, we also determined whether RS could change the damage done by this lifestyle. Male Wistar 24 rats receiving standard chow were divided into four groups (n = 6/group): (C) water throughout the experimental period; (E) 30% ethanol 3 days/week, water 4 days/week; (ES) a mixture of 30% ethanol and 30% sucrose 3 days/week, drinking 30% sucrose 4 days/week; (ESR) 30% ethanol and 30% sucrose containing 6 mg/l RS 3 days/week, drinking 30% sucrose 4 days/week. After 70 days the body weight was highest in ESR rats. E rats had higher energy expenditure (resting metabolic rate), oxygen consumption (VO(2)), fat oxidation, serum triacylglycerol (TG) and very low-density lipoprotein (VLDL) than C. ES rats normalized calorimetric parameters and enhanced carbohydrate oxidation. ESR ameliorated calorimetric parameters, reduced TG, VLDL and lipid hydroperoxide/total antioxidant substances, as well enhanced high-density lipoprotein (HDL) and HDL/TG ratio. Hepatic hydroxyacyl coenzyme-A dehydrogenase (OHADH)/citrate synthase ratio was lower in E and ES rats than in C. OHADH was highest in ESR rats. The present study brought new insights on weekend alcohol consumption, demonstrating for the first time, that this pattern of ethanol exposure induced dyslipidemic profile, calorimetric and hepatic metabolic changes which resemble that of the alcoholism. No synergistic effects were found with weekend ethanol and high-sucrose intake. RS was advantageous in weekend drinking and high-sucrose intake condition ameliorating hepatic metabolism and improving risk factors for cardiovascular damage.

  15. Protective effect of Allium neapolitanum Cyr. versus Allium sativum L. on acute ethanol-induced oxidative stress in rat liver.

    Science.gov (United States)

    Nencini, Cristina; Franchi, Gian Gabriele; Cavallo, Federica; Micheli, Lucia

    2010-04-01

    This study investigated the protective effect of Allium neapolitanum Cyr., a spontaneous species of the Italian flora, compared with garlic (Allium sativum L.) on liver injury induced by ethanol in rats. Male albino Wistar rats were orally treated with fresh Allium homogenates (leaves or bulbs, 250 mg/kg) daily for 5 days, whereas controls received vehicle only. At the end of the experimental 5-day period, the animals received an acute ethanol dose (6 mL/kg, i.p.) 2 hours before the last Allium administration and were sacrificed 6 hours after ethanol administration. The activities of catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) and the levels of malondialdehyde (MDA), ascorbic acid (AA), and reduced (GSH) and oxidized glutathione in liver tissue were determined. Administration of both Allium species for 5 days (leaves or bulbs) led to no statistical variation of nonenzymatic parameters versus the control group; otherwise Allium treatment caused an increase of GSH and AA levels compared with the ethanol group and a diminution of MDA levels, showing in addition that A. neapolitanum bulb had the best protective effect. Regarding to enzymatic parameters, GR and CAT activities were enhanced significantly compared with the ethanol group, whereas SOD activity showed a trend different from other parameters estimated. However, the treatment with both Allium species followed by acute ethanol administration reestablished the nonenzymatic parameters similar to control values and enhanced the activities of the enzymes measured. These results suggest that fresh Allium homogenates (leaves or bulbs) possess antioxidant properties and provide protection against ethanol-induced liver injury.

  16. Ginger extract mitigates ethanol-induced changes of alpha and beta - myosin heavy chain isoforms gene expression and oxidative stress in the heart of male wistar rats.

    Science.gov (United States)

    Shirpoor, Alireza; Zerehpoosh, Mitra; Ansari, Mohammad Hasan Khadem; Kheradmand, Fatemeh; Rasmi, Yousef

    2017-09-01

    The association between ethanol consumption and heart abnormalities, such as chamber dilation, myocyte damage, ventricular hypertrophy, and hypertension is well known. However, underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. The aim of this study was to investigate the effect of chronic ethanol exposure on alpha and beta - myosin heavy chain (MHC) isoforms gene expression transition and oxidative stress in rats' heart. It was also planned to find out whether ginger extract mitigated the abnormalities induced by ethanol in rats' heart. Male wistar rats were divided into three groups of eight animals as follows: Control, ethanol, and ginger extract treated ethanolic (GETE) groups. After six weeks of treatment, the results revealed a significant increase in the β-MHC gene expression, 8- OHdG amount, and NADPH oxidase level. Furthermore, a significant decrease in the ratio of α-MHC/β-MHC gene expression to the amount of paraoxonase enzyme in the ethanol group compared to the control group was found. The consumption of Ginger extract along with ethanol ameliorated the changes in MHC isoforms gene expression and reduced the elevated amount of 8-OHdG and NADPH oxidase. Moreover, compared to the consumption of ethanol alone, it increased the paraoxonase level significantly. These findings indicate that ethanol-induced heart abnormalities may in part be associated with MHC isoforms changes mediated by oxidative stress, and that these effects can be alleviated by using ginger extract as an antioxidant molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis.

    Science.gov (United States)

    Matyas, Csaba; Varga, Zoltan V; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T; Nan, Mintong; Hasko, Gyorgy; Gao, Bin; Pacher, Pal

    2016-06-01

    Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative

  18. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress.

    Science.gov (United States)

    Teixeira, Francisco Bruno; Santana, Luana Nazaré da Silva; Bezerra, Fernando Romualdo; De Carvalho, Sabrina; Fontes-Júnior, Enéas Andrade; Prediger, Rui Daniel; Crespo-López, Maria Elena; Maia, Cristiane Socorro Ferraz; Lima, Rafael Rodrigues

    2014-01-01

    Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies), GFAP (a marker of astrocytes) and Iba1 (microglia marker) in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.

  19. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    Energy Technology Data Exchange (ETDEWEB)

    Seetha, M., E-mail: seetha.phy@gmail.com [Department of Physics, SRM University, Kattankulathur, Kancheepuram Dt 603 203 (India); Meena, P. [Department of Physics, PSGR Krishnammal College for Women, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore (India); Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 014 (India); Masuda, Yoshitake [National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Senthil, K. [School of Advanced Materials Science and Engineering, Sungkyunkwan University (Suwon Campus), Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer For the first time HMT is used in the preparation of indium oxide. Black-Right-Pointing-Pointer HMT itself acts as base for the precursor and results in cubic indium hydroxide. Black-Right-Pointing-Pointer Modified hydrothermal route used for the preparation of cubic indium oxide crystals. Black-Right-Pointing-Pointer As a new approach a composite film synthesized with prepared indium oxide. Black-Right-Pointing-Pointer Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  20. Use of gas-phase ethanol to mitigate extreme UV/water oxidation of extreme UV optics

    Science.gov (United States)

    Klebanoff, L. E.; Malinowski, M. E.; Clift, W. M.; Steinhaus, C.; Grunow, P.

    2004-03-01

    A technique is described that uses a gas-phase species to mitigate the oxidation of a Mo/Si multilayer optic caused by either extreme UV (EUV) or electron-induced dissociation of adsorbed water vapor. It is found that introduction of ethanol (EtOH) into a water-rich gas-phase environment inhibits oxidation of the outermost Si layer of the Mo/Si EUV reflective coating. Auger electron spectroscopy, sputter Auger depth profiling, EUV reflectivity, and photocurrent measurements are presented that reveal the EUV/water- and electron/water-derived optic oxidation can be suppressed at the water partial pressures used in the tests (~2×10-7-2×10-5 Torr). The ethanol appears to function differently in two time regimes. At early times, ethanol decomposes on the optic surface, providing reactive carbon atoms that scavenge reactive oxygen atoms before they can oxidize the outermost Si layer. At later times, the reactive carbon atoms form a thin (~5 Å), possibly self-limited, graphitic layer that inhibits water adsorption on the optic surface. .

  1. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    International Nuclear Information System (INIS)

    Seetha, M.; Meena, P.; Mangalaraj, D.; Masuda, Yoshitake; Senthil, K.

    2012-01-01

    Highlights: ► For the first time HMT is used in the preparation of indium oxide. ► HMT itself acts as base for the precursor and results in cubic indium hydroxide. ► Modified hydrothermal route used for the preparation of cubic indium oxide crystals. ► As a new approach a composite film synthesized with prepared indium oxide. ► Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  2. Vanillin abrogates ethanol induced gastric injury in rats via modulation of gastric secretion, oxidative stress and inflammation

    Directory of Open Access Journals (Sweden)

    Abdulrahman Al Asmari

    Full Text Available Vanillin is commonly used as an additive in food, medicine and cosmetics, but its effect has not yet been studied in gastric injury. Therefore the effect of vanillin was studied in experimental gastric ulcer. Gastric secretion and acidity were studied in pylorus ligated rats. Ulcer index, levels of gastric mucus, malondialdehyde (MDA, myeloperoxidase activity (MPO, expression of nuclear factor kappa B (NF-κB p65, and histopathological changes were determined in ethanol induced gastric ulcer. Pre treatment with vanillin significantly reduced gastric secretion (P < 0.001 and acidity (P < 0.0001 and gastric ulcer index scores (P < 0.001. and augmented the gastric mucosal defense. Vanillin significantly restored the depleted gastric wall mucus levels (P < 0.0001 induced by ethanol and also significantly attenuated ethanol induced inflammation and oxidative stress by the suppression of gastric MPO activity (P < 0.001, reducing the expression of NF-κB p65 and the increased MDA levels (P < 0.001. Vanillin was also effective in alleviating the damage to the histological architecture and the activation of mast cells induced by ethanol.Together the results of this study highlight the gastroprotective activity of vanillin in gastric ulcers of rats through multiple actions that include inhibition of gastric secretion and acidity, reduction of inflammation and oxidative stress, suppression of expression of NF-κB, and restoration of the histological architecture. Keywords: Gastric ulcers, Pylorus ligation, Ethanol, Vanillin, Inflammation, Oxidative stress

  3. Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation

    Science.gov (United States)

    HuThese Authors Contributed Equally To This Work., Chuangang; Zhai, Xiangquan; Zhao, Yang; Bian, Ke; Zhang, Jing; Qu, Liangti; Zhang, Huimin; Luo, Hongxia

    2014-02-01

    A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05722d

  4. Enhancement of ethanol oxidation at Pt and PtRu nanoparticles dispersed over hybrid zirconia-rhodium supports

    Science.gov (United States)

    Rutkowska, Iwona A.; Koster, Margaretta D.; Blanchard, Gary J.; Kulesza, Pawel J.

    2014-12-01

    A catalytic material for electrooxidation of ethanol that utilizes PtRu nanoparticles dispersed over thin films of rhodium-free and rhodium-containing zirconia (ZrO2) supports is described here. The enhancement of electrocatalytic activity (particularly in the potential range as low as 0.25-0.5 V vs. RHE), that has been achieved by dispersing PtRu nanoparticles (loading, 100 μg cm-2) over the hybrid Rh-ZrO2 support composed of nanostructured zirconia and metallic rhodium particles, is clearly evident from comparison of the respective voltammetric and chronoamperometric current densities recorded at room temperature (22 °C) in 0.5 mol dm-3 H2SO4 containing 0.5 mol dm-3 ethanol. Porous ZrO2 nanostructures, that provide a large population of hydroxyl groups in acidic medium in the vicinity of PtRu sites, are expected to facilitate the ruthenium-induced removal of passivating CO adsorbates from platinum, as is apparent from the diagnostic experiments with a small organic molecule such as methanol. Although Rh itself does not show directly any activity toward ethanol oxidation, the metal is expected to facilitate C-C bond splitting in C2H5OH. It has also been found during parallel voltammetric and chronoamperometric measurements that the hybrid Rh-ZrO2 support increases activity of the platinum component itself toward ethanol oxidation in the low potential range.

  5. Photocatalytic Ethanol Oxidative Dehydrogenation over Pt/TiO2: Effect of the Addition of Blue Phosphors

    Directory of Open Access Journals (Sweden)

    J. J. Murcia

    2012-01-01

    Full Text Available Ethanol oxidative dehydrogenation over Pt/TiO2 photocatalyst, in the presence and absence of blue phosphors, was performed. The catalyst was prepared by photodeposition of Pt on sulphated TiO2. This material was tested in a gas-solid photocatalytic fluidized bed reactor at high illumination efficiency. The effect of the addition of blue phosphors into the fluidized bed has been evaluated. The synthesized catalysts were extensively characterized by different techniques. Pt/TiO2 with a loading of 0.5 wt% of Pt appeared to be an active photocatalyst in the selective partial oxidation of ethanol to acetaldehyde improving its activity and selectivity compared to pure TiO2. In the same way, a notable enhancement of ethanol conversion in the presence of the blue phosphors has been obtained. The blue phosphors produced an increase in the level of ethanol conversion over the Pt/TiO2 catalyst, keeping at the same time the high selectivity to acetaldehyde.

  6. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    Science.gov (United States)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  7. Radiochemical synthesis of a carbon-supported Pt–SnO2 bicomponent nanostructure exhibiting enhanced catalysis of ethanol oxidation

    International Nuclear Information System (INIS)

    Okazaki, Tomohisa; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro; Ohkubo, Yuji; Akita, Tomoki; Nitani, Hiroaki; Yamamoto, Takao A.

    2015-01-01

    Carbon-supported Pt–SnO 2 electrocatalysts with various Sn/Pt molar ratios were prepared by an electron beam irradiation method. These catalysts were composed of metallic Pt particles approximately 5 nm in diameter together with low crystalline SnO 2 . The contact between the Pt and SnO 2 in these materials varied with the amount of dissolved oxygen in the precursor solutions and it was determined that intimate contact between the Pt and SnO 2 significantly enhanced the catalytic activity of these materials during the ethanol oxidation reaction. The mechanism by which the contact varies is discussed based on the radiochemical reduction process. - Highlights: • Ethanol oxidation catalysis was enhanced by Sn-addition, far less than ever reported. • Pt–SnO 2 contact is crucial to the catalysis enhancement, alloying of Sn is not necessary. • Nano-scaled intimate contact between Pt and SnO 2 was directly observed

  8. Two dimensional visible-light-active Pt-BiOI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media

    Science.gov (United States)

    Zhai, Chunyang; Hu, Jiayue; Sun, Mingjuan; Zhu, Mingshan

    2018-02-01

    Two dimensional (2D) BiOI nanoplates were synthesized and used as support for the deposition of Pt nanoparticles. Owing to broad visible light absorption (up to 660 nm), the as-obtained Pt-BiOI electrode was used as effective photoelectrocatalyst in the application of catalytic ethanol oxidation in alkaline media under visible light irradiation. Compared to dark condition, the Pt-BiOI modified electrode displayed 3 times improved catalytic activity towards ethanol oxidation under visible light irradiation. The synergistic effect of electrocatalytic and photocatalytic, and the unique of 2D structures contribute to the improvement of catalytic activity. The mechanism of enhanced photoelectrocatalytic process is proposed. The present results suggest that 2D visible-light-activated BiOI can be served as promising support for the decoration of Pt and applied in the fields of photoelectrochemical and photo-assisted fuel cell applications

  9. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.

    Science.gov (United States)

    Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-05-09

    Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper

    DEFF Research Database (Denmark)

    Bertheussen, Erlend; Verdaguer Casadevall, Arnau; Ravasio, Davide

    2016-01-01

    Oxide-derived copper (OD-Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at −0.3 V (vs. RHE). By using static headspace-gas chromatography for liquid phase analysis, we identify acetaldehyde as a mino...... solutions using NMR spectroscopy, requiring alternative methods for detection and quantification. Our results represent an important step towards understanding the CO reduction mechanism on OD-Cu electrodes....

  11. Pd-Au/C catalysts with different alloying degrees for ethanol oxidation in alkaline media

    International Nuclear Information System (INIS)

    Qin, Yuan-Hang; Li, Yunfeng; Lv, Ren-Liang; Wang, Tie-Lin; Wang, Wei-Guo; Wang, Cun-Wen

    2014-01-01

    High alloyed Pd-Au/C catalyst is prepared through a rate-limiting strategy in water/ethylene glycol solution. Pd/C and low alloyed Pd-Au/C catalysts are prepared with trisodium citrate and sodium borohydride as stabilizing and reducing agents, respectively. Transmission electron microscopy (TEM) shows that the synthesized Pd(Au) particles are well dispersed on the catalysts. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) show that the high alloyed Pd-Au/C catalyst presents a relatively homogenous structure while the low alloyed Pd-Au/C catalyst presents a Pd-rich shell/Au-rich core structure. Electrochemical characterization shows that the low alloyed Pd-Au/C catalyst exhibits the best catalytic activity for ethanol oxidation reaction (EOR) in alkaline media, which could be attributed to its relatively large exposed Pd surface area as compared with the high alloyed Pd-Au/C catalyst due to its Pd-rich shell structure and its enhanced adsorption of OH ads as compared with Pd/C catalyst due to its core-shell structure

  12. Concentration Dependences of the Surface Tension and Density of Solutions of Acetone-Ethanol-Water Systems at 293 K

    Science.gov (United States)

    Dadashev, R. Kh.; Dzhambulatov, R. S.; Mezhidov, V. Kh.; Elimkhanov, D. Z.

    2018-05-01

    Concentration dependences of the surface tension and density of solutions of three-component acetone-ethanol-water systems and the bounding binary systems at 273 K are studied. The molar volume, adsorption, and composition of surface layers are calculated. Experimental data and calculations show that three-component solutions are close to ideal ones. The surface tensions of these solutions are calculated using semi-empirical and theoretical equations. Theoretical equations qualitatively convey the concentration dependence of surface tension. A semi-empirical method based on the Köhler equation allows us to predict the concentration dependence of surface tension within the experimental error.

  13. Antimicrobial photodynamic therapy with photosensitizer in ethanol improves oxidative status and gingival collagen in a short-term in periodontitis.

    Science.gov (United States)

    Pillusky, Fernanda Maia; Barcelos, Raquel Cristine Silva; Vey, Luciana Taschetto; Barin, Luisa Machado; de Mello Palma, Victor; Maciel, Roberto Marinho; Kantorski, Karla Zanini; Bürger, Marilise Escobar; Danesi, Cristiane Cademartori

    2017-09-01

    This study evaluated the antimicrobial photodynamic therapy (aPDT) effects using the methylene blue (MB) in ethanol 20% on systemic oxidative status and collagen content from gingiva of rats with periodontitis. Rats were divided into five experimental groups: NC (negative control; no periodontitis); PC (positive control; periodontitis without any treatment); SRP (periodontitis and scaling and root planing), aPDT I (periodontitis and SRP+aPDT+MB solubilized in water), and aPDT II (periodontitis and SRP+aPDT+MB solubilized in ethanol 20%). After 7days of removal of the ligature, the periodontal treatments were performed. At 7/15/30days, gingival tissue was removed for morphometric analysis. The erythrocytes were used to evaluate systemic oxidative status. PC group showed higher lipoperoxidation levels at 7/15/30days. aPDT indicated a protective influence in erythrocytes at 15days observed by the elevation in levels of systemic antioxidant defense. aPDT II group was the only one that restored the total collagen area in 15days, and recovered the type I collagen area at the same time point. aPDT as an adjunct to the SRP can induce the systemic protective response against oxidative stress periodontitis-induced and recover the gingival collagen, thus promoting the healing periodontal, particularly when the MB is dissolved in ethanol 20%. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions

    Energy Technology Data Exchange (ETDEWEB)

    G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

    2011-12-31

    The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

  15. Simultaneous determination of ethanol's four types of non-oxidative metabolites in human whole blood by liquid chromatography tandem mass spectrometry

    DEFF Research Database (Denmark)

    Zhang, Xinyu; Zheng, Feng; Lin, Zebin

    2017-01-01

    The importance of ethanol non-oxidative metabolites as the specific biomarkers of alcohol consumption in clinical and forensic settings is increasingly acknowledged. Simultaneous determination of these metabolites can provide a wealth of information like drinking habit and history, but it was dif......The importance of ethanol non-oxidative metabolites as the specific biomarkers of alcohol consumption in clinical and forensic settings is increasingly acknowledged. Simultaneous determination of these metabolites can provide a wealth of information like drinking habit and history...

  16. Hepatoprotective potential of Lavandula coronopifolia extracts against ethanol induced oxidative stress-mediated cytotoxicity in HepG2 cells.

    Science.gov (United States)

    Farshori, Nida Nayyar; Al-Sheddi, Ebtsam S; Al-Oqail, Mai M; Hassan, Wafaa H B; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Siddiqui, Maqsood A

    2015-08-01

    The present investigations were carried out to study the protective potential of four extracts (namely petroleum ether extract (LCR), chloroform extract (LCM), ethyl acetate extract (LCE), and alcoholic extract (LCL)) of Lavandula coronopifolia on oxidative stress-mediated cell death induced by ethanol, a known hepatotoxin in human hapatocellular carcinoma (HepG2) cells. Cells were pretreated with LCR, LCM, LCE, and LCL extracts (10-50 μg/ml) of L. coronopifolia for 24 h and then ethanol was added and incubated further for 24 h. After the exposure, cell viability using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red uptake assays and morphological changes in HepG2 cells were studied. Pretreatment with various extracts of L. coronpifolia was found to be significantly effective in countering the cytotoxic responses of ethanol. Antioxidant properties of these L. coronopifolia extracts against reactive oxygen species (ROS) generation, lipid peroxidation (LPO), and glutathione (GSH) levels induced by ethanol were investigated. Results show that pretreatment with these extracts for 24 h significantly inhibited ROS generation and LPO induced and increased the GSH levels reduced by ethanol. The data from the study suggests that LCR, LCM, LCE, and LCL extracts of L. coronopifolia showed hepatoprotective activity against ethanol-induced damage in HepG2 cells. However, a comparative study revealed that the LCE extract was found to be the most effective and LCL the least effective. The hepatoprotective effects observed in the study could be associated with the antioxidant properties of these extracts of L. coronopifolia. © The Author(s) 2013.

  17. Protective effects of Lactuca sativa ethanolic extract on carbon tetrachloride induced oxidative damage in rats

    Directory of Open Access Journals (Sweden)

    Hefnawy Taha M. Hefnawy

    2013-08-01

    Full Text Available Objective: To study the protective effects of the ethanolic extract of lettuce (Lactuca sativa L. var. longifolia leaves against the toxicity caused by carbon tetrachloride (CCl4 in reproductive system of rats. Methods: Lettuce leaves were dried and extracted with ethanol (plant: solvent, 1:10, w/v. The extract was filtered and evaporated to yield dried lettuce extract. Animals were divided into seven groups and treated with CCl4 and different concentrations of lettuce extract. At the end of the experimental period, the animals were sacrificed and blood was collected and centrifuged for serum separation. Body weights, testis size, histopathology of testis and liver, catalase (CAT activity, superoxide dismutase (SOD activity, peroxidase (POD activity, reduced glutathione (GSH, glutathione peroxidase activity (GSH-Px, thiobarbituric acid reactive substances (TBARS, nitrite level, and serum hormones were determined. Results: Oxidative stress induced by CCl4 (2 mL/kg body weight in rat decreases the increase in body weight and relative testis weight. It also markedly increases the level of TBARS and nitrites along with corresponding decrease in reduced glutathione and various antioxidant enzymes in testis (i.e., CAT, POD, SOD and GSH-Px. Serum level of testosterone, luteinizing hormone and follicle stimulating hormone was decreased while estradiol and prolactin were increased during CCl 4 treatment. Histopathology of CCl4-treated rats indicated the partial degeneration of germ and leydig cells along with deformities in spermatogenesis. Supplementation of lettuce extract (100, 150, 200 mg/kg body weight orally once a week for 10 weeks results in decrease of TBARS and nitrite, while increase in antioxidant enzymes; CAT, POD, SOD, GSH-Px and GSH contents. Serum level of testosterone, luteinizing hormone, follicle stimulating hormone, estradiol, prolactin, histology, body weight and relative testis weight was also concomitantly restored to near normal

  18. Protective effects of Lactuca sativa ethanolic extract on carbon tetrachloride induced oxidative damage in rats

    Science.gov (United States)

    Hefnawy, Hefnawy Taha M.; Ramadan, Mohamed Fawzy

    2013-01-01

    Objective To study the protective effects of the ethanolic extract of lettuce (Lactuca sativa L. var. longifolia) leaves against the toxicity caused by carbon tetrachloride (CCl4) in reproductive system of rats. Methods Lettuce leaves were dried and extracted with ethanol (plant: solvent, 1:10, w/v). The extract was filtered and evaporated to yield dried lettuce extract. Animals were divided into seven groups and treated with CCl4 and different concentrations of lettuce extract. At the end of the experimental period, the animals were sacrificed and blood was collected and centrifuged for serum separation. Body weights, testis size, histopathology of testis and liver, catalase (CAT) activity, superoxide dismutase (SOD) activity, peroxidase (POD) activity, reduced glutathione (GSH), glutathione peroxidase activity (GSH-Px), thiobarbituric acid reactive substances (TBARS), nitrite level, and serum hormones were determined. Results Oxidative stress induced by CCl4 (2 mL/kg body weight) in rat decreases the increase in body weight and relative testis weight. It also markedly increases the level of TBARS and nitrites along with corresponding decrease in reduced glutathione and various antioxidant enzymes in testis (i.e., CAT, POD, SOD and GSH-Px). Serum level of testosterone, luteinizing hormone and follicle stimulating hormone was decreased while estradiol and prolactin were increased during CCl4 treatment. Histopathology of CCl4-treated rats indicated the partial degeneration of germ and leydig cells along with deformities in spermatogenesis. Supplementation of lettuce extract (100, 150, 200 mg/kg body weight orally) once a week for 10 weeks results in decrease of TBARS and nitrite, while increase in antioxidant enzymes; CAT, POD, SOD, GSH-Px and GSH contents. Serum level of testosterone, luteinizing hormone, follicle stimulating hormone, estradiol, prolactin, histology, body weight and relative testis weight was also concomitantly restored to near normal level by

  19. Synthesis and characterisation of binary electrocatalysts for electrochemical oxidation of ethanol in PEMFC

    CSIR Research Space (South Africa)

    Masombuka, T

    2008-06-01

    Full Text Available Ethanol is an alternative choice fuel for polymer electrolyte membrane fuel cells (PEMFC), due to its nontoxicity and its availability from biomass resources advocates its use in direct ethanol fuel cells. In this study PtSn/C and Pt...

  20. Radio reduction of the vitamin K in ethanolic solution: Contribution to radical oxidation study of a glutamic residue

    International Nuclear Information System (INIS)

    Fackir, L.

    1995-01-01

    The biological action of vitamin K may involve mono electronic exchanges. Therefore, in this work we achieved a radiolytical study on one land, of mono electronic reduction of vitamin K hydroquinone symbolized by KHsubn pp. We also studied the vitamin K2 model of glutamic residue( B - Glu ) by radiolytic mean. The study of radical mechanisms of vitamin K1 reduction in ethanolic solution showed that vitamin K1 is a good sensor of free radicals alpha - hydroxyethyles ( R sup . ) issued from the radiolysis of vitamin K1 ethanolic solutions, saturated with N sub2 O. The final product is hydroquinone K sub 1 H sub 2. It has been demonstrated that mono electronic reduction can be also initiated by solvated electrons. The mono electronic oxidation of K H sub p has been studied in ethanolic solution.The results showed that K H sub p is a good sensor of peroxyl radicals model (RO sub2) sup . issues from ethanol. The oxidation leads to the formation a dimeric from of the quinone K. All these results showed that the free radicals R sup . centred on carbon are efficient reducing agents of vitamin K1, and that the peroxyl radicals R Osub2 centred on oxygen are possible oxidants of KH sub p. At the end and for modeling the eventual interaction of semi quinonic radical with glutamic acid. We have irradiated mixture of vitamin K1 and a compound having a glutamic residue, the concentration ratio (B-Glu) sub 0/ (K sub 1) sub 0 varying for 0,03 to 1. The obtained results showed that the yield of vitamin K sub 1 disappearance is superior to G (R sup .)/R for low concentration of B-Glu. 80 figs., 5 tabs., 105 refs. (F. M.)

  1. Ethyl nitrite is produced in the human stomach from dietary nitrate and ethanol, releasing nitric oxide at physiological pH: potential impact on gastric motility.

    Science.gov (United States)

    Rocha, Bárbara S; Gago, Bruno; Barbosa, Rui M; Cavaleiro, Carlos; Laranjinha, João

    2015-05-01

    Nitric oxide ((∙)NO), a ubiquitous molecule involved in a plethora of signaling pathways, is produced from dietary nitrate in the gut through the so-called nitrate-nitrite-NO pathway. In the stomach, nitrite derived from dietary nitrate triggers a network of chemical reactions targeting endogenous and exogenous biomolecules, thereby producing new compounds with physiological activity. The aim of this study was to ascertain whether compounds with physiological relevance are produced in the stomach upon consumption of nitrate- and ethanol-rich foods. Human volunteers consumed a serving of lettuce (source of nitrate) and alcoholic beverages (source of ethanol). After 15 min, samples of the gastric headspace were collected and ethyl nitrite was identified by GC-MS. Wistar rats were used to study the impact of ethyl nitrite on gastric smooth muscle relaxation at physiological pH. Nitrogen oxides, produced from nitrite in the stomach, induce nitrosation of ethanol from alcoholic beverages in the human stomach yielding ethyl nitrite. Ethyl nitrite, a potent vasodilator, is produced in vivo upon the consumption of lettuce with either red wine or whisky. Moreover, at physiological pH, ethyl nitrite induces gastric smooth muscle relaxation through a cGMP-dependent pathway. Overall, these results suggest that ethyl nitrite is produced in the gastric lumen and releases (∙)NO at physiological pH, which ultimately may have an impact on gastric motility. Systemic effects may also be expected if ethyl nitrite diffuses through the gastric mucosa reaching blood vessels, therefore operating as a (∙)NO carrier throughout the body. These data pinpoint posttranslational modifications as an underappreciated mechanism for the production of novel molecules with physiological impact locally in the gut and highlight the notion that diet may fuel compounds with the potential to modulate gastrointestinal welfare. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Significance of β-dehydrogenation in ethanol electro-oxidation on platinum doped with Ru, Rh, Pd, Os and Ir.

    Science.gov (United States)

    Sheng, Tian; Lin, Wen-Feng; Hardacre, Christopher; Hu, P

    2014-07-14

    In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using the first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations, are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs.

  3. Catalytic activity of tungsten carbide-carbon (WC@C) core-shell structured for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Gourav, E-mail: gsinghla@gmail.com; Singh, K., E-mail: kusingh@thapar.edu; Pandey, O.P., E-mail: oppandey@thapar.edu

    2017-01-15

    In this study, carbon coated WC (WC@C) was synthesized through solvothermal reactions in the presence of reducing agent magnesium (Mg) by employing tungsten oxide (WO{sub 3}) as a precursor, acetone (C{sub 3}H{sub 6}O) as a carbon source. The formation of WC@C nano particles is confirmed by X-ray diffraction and Transmission electron microscopy. The thermal stability of the synthesized powder examined in air shows its stability up to 550 °C. In this method, in-situ produced outer carbon layer increase the surface area of materials which is 52.6 m{sup 2} g{sup −1} with pore volume 0.213 cm{sup 3} g{sup −1}. The Electrocatalytic activity of ethanol oxidation on a synthesized sample with and without Pt nano particles have been investigated using cyclic voltammetry (CV). The CV results show the enhancement in oxidation stability of WC@C in acidic media as well as better CO-tolerance for ethanol oxidation after the deposition of Pt nanoparticles as compared to without Pt nano particles. - Highlights: • Tungsten carbide nano powder was synthesized using acetone as carbon source. • In-situ produced outer carbon layer increase the surface area of materials. • Mesoporous WC with surface areas 52.6 m{sup 2}/g obtained. • Pt modified WC powder showed higher electrochemical stability. • Better CO-tolerance for ethanol oxidation after the deposition of Pt nanoparticles.

  4. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanqiao; Cao, Lei [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy Sciences, Beijing 100039 (China); Sun, Gongquan; Jiang, Luhua [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Xin, Qin [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2007-08-01

    Well dispersed PtSn/C, PtRu/C and Pt/C electrocatalysts were synthesized by a modified polyol process and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and inductively coupled plasma-atomic emission spectrometry techniques. XRD patterns show that Ru induces the contraction of Pt lattice parameter while Sn makes the Pt crystal lattice extended. Ethanol oxidation activities on the catalysts were studied via cyclic voltammetry (CV) and chronoamperometry (CA) methods at room temperature. It is found that the electrode potential plays an important role in the electrochemical behavior of ethanol oxidation on PtRu/C and PtSn/C catalysts. In the lower potential region, PtSn/C possesses higher performance for ethanol oxidation, while in the higher potential region PtRu/C is more active. The different promotion effects of PtSn/C and PtRu/C to ethanol oxidation can be explained by the structural effect and modified bi-functional mechanism in different potential region. Single cell test of a direct ethanol fuel cell (DEFC) was also carried out to elucidate the promotion effect of PtRu/C and PtSn/C catalysts on the ethanol oxidation at 90 C. (author)

  5. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation

    International Nuclear Information System (INIS)

    Li, Huanqiao; Sun, Gongquan; Cao, Lei; Jiang, Luhua; Xin, Qin

    2007-01-01

    Well dispersed PtSn/C, PtRu/C and Pt/C electrocatalysts were synthesized by a modified polyol process and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and inductively coupled plasma-atomic emission spectrometry techniques. XRD patterns show that Ru induces the contraction of Pt lattice parameter while Sn makes the Pt crystal lattice extended. Ethanol oxidation activities on the catalysts were studied via cyclic voltammetry (CV) and chronoamperometry (CA) methods at room temperature. It is found that the electrode potential plays an important role in the electrochemical behavior of ethanol oxidation on PtRu/C and PtSn/C catalysts. In the lower potential region, PtSn/C possesses higher performance for ethanol oxidation, while in the higher potential region PtRu/C is more active. The different promotion effects of PtSn/C and PtRu/C to ethanol oxidation can be explained by the structural effect and modified bi-functional mechanism in different potential region. Single cell test of a direct ethanol fuel cell (DEFC) was also carried out to elucidate the promotion effect of PtRu/C and PtSn/C catalysts on the ethanol oxidation at 90 o C

  6. Improved reaction kinetics and selectivity by the TiO2-embedded carbon nanofiber support for electro-oxidation of ethanol on PtRu nanoparticles

    Science.gov (United States)

    Nakagawa, Nobuyoshi; Ito, Yudai; Tsujiguchi, Takuya; Ishitobi, Hirokazu

    2014-02-01

    The electro-oxidation of ethanol by the catalyst of PtRu nanoparticles supported on a TiO2-embedded carbon nanofiber (PtRu/TECNF), which has recently been proposed by the authors as a highly active catalyst for methanol oxidation, is investigated by cyclic voltammetry using a glassy carbon electrode and by operating a direct ethanol fuel cell (DEFC) with the catalyst. The mass activity obtained from the cyclic voltammogram for the ethanol oxidation is compared to that for the methanol oxidation reported in our recent paper. The mass activity for the ethanol oxidation is comparable or slightly higher than that for the methanol oxidation, and the relationship between the TECNF composition, i.e., the Ti/C mass ratio, and the activity are also similar to that for the methanol oxidation. A DEFC fabricated with the PtRu/TECNF shows a higher power output compared to that with the commercial PtRu/C catalyst. An analysis of the reaction products by a simple two-step reaction model reveals that the PtRu/TECNF increases the rate constant for the reaction steps from ethanol to acetaldehyde and subsequently to CO2, but decreases that from acetaldehyde to acetic acid. This means that the PtRu/TECNF improves not only the kinetics, but also the selectivity to acetaldehyde.

  7. Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress.

    Science.gov (United States)

    Kalishwaralal, Kalimuthu; Jeyabharathi, Subhaschandrabose; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2015-10-01

    Alcoholic cardiomyopathy is the damage caused to the heart muscles due to high level of alcohol consumption resulting in enlargement and inflammation of the heart. Selenium is an important trace element that is beneficial to human health. Selenium protects the cells by preventing the formation of free radicals in the body. In the present study, protein mediated synthesis of SeNPs was investigated. Two different sizes of SeNPs were synthesized using BSA and keratin. The synthesized SeNPs were characterized by scanning electron microscopy (SEM) with elemental composition analysis Energy Dispersive X-ray spectroscopy(EDX) and X-ray diffraction (XRD). This study demonstrates the in vitro and in vivo antioxidative effects of sodium selenite and SeNPs. Further selenium and SeNPs were evaluated for their ability to protect against 1% ethanol induced oxidative stress in H9C2 cell line. The selenium and SeNPs were found to reduce the 1% ethanol-induced oxidative damage through scavenging intracellular reactive oxygen species. The selenium and SeNPs could also prevent pericardial edema induced ethanol treatment and reduced apoptosis and cell death in zebrafish embryos. The results indicate that selenium and SeNPs could potentially be used as an additive in alcoholic beverage industry to control the cardiomyopathy. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin

    Directory of Open Access Journals (Sweden)

    Yanyan Li

    2016-01-01

    Full Text Available Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD. As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories were cotreated by quercetin or deferoxamine (DFO for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD.

  9. High-Efficiency Palladium Nanoparticles Supported on Hydroxypropyl-β-Cyclodextrin Modified Fullerene [60] for Ethanol Oxidation

    International Nuclear Information System (INIS)

    Zhang, Qing; Bai, Zhengyu; Shi, Min; Yang, Lin; Qiao, Jinli; Jiang, Kai

    2015-01-01

    Highlights: • C 60 support provides new ways to develop catalyst materials for its distorted structure. • Pd nanoparticles with uniform size and high dispersion have been successfully assembled on HP-β-CD-C 60 in aqueous solution. • Pd/HP-β-CD-C 60 shows very promising catalytic activity for ethanol oxidation. - Abstract: In this paper, Palladium nanoparticles with uniform size and high dispersion have been successfully assembled on hydroxypropyl-β-Cyclodextrin (HP-β-CD) modified C 60 (abbreviated as HP-β-CD-C 60 ) via a sodium borohydride reduction process. According to the transmission electron microscopy (TEM) measurements, the average particle size of the as-prepared Pd nanoparticles dispersed on HP-β-CD modified C 60 is 2.7 nm. Electrochemical studies reveal that the Pd/HP-β-CD-C 60 modified electrode shows a significantly high electrocatalytic activity, much more negative onset potentials and better stability than electrodes modified by other electrocatalysts for ethanol oxidation, which indicates that it is a better potential candidate for application in a direct ethanol fuel cell (DEFC)

  10. Preparation of SnO{sub 2}-CNTs supported Pt catalysts and their electrocatalytic properties for ethanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Pang, H.L.; Lu, J.P. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Chen, J.H. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)], E-mail: chenjinhua@hnu.cn; Huang, C.T.; Liu, B.; Zhang, X.H. [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2009-03-30

    SnO{sub 2}-carbon nanotubes (CNTs) composites were prepared by sol-gel method, and characterized by scanning electron microscopy and X-ray diffraction. Due to high stability in diluted acidic solution, SnO{sub 2}-CNTs composites were selected as the catalyst support and second catalyst for ethanol electrooxidation. The electrocatalytic properties of the SnO{sub 2}-CNTs supported platinum (Pt) catalyst (Pt/SnO{sub 2}-CNTs) for ethanol oxidation have been investigated by typical electrochemical methods. Under the same mass loading of Pt, the Pt/SnO{sub 2}-CNTs catalyst shows higher electrocatalytic activity and better long-term cycle stability than Pt/SnO{sub 2} catalyst. Additionally, the effect of the mass ratio of CNTs to SnO{sub 2} on the electrocatalytic activity of the electrode for ethanol oxidation was investigated, and the optimum mass ratio of CNTs to SnO{sub 2} in the Pt/SnO{sub 2}-CNTs catalyst is 1/6.3.

  11. A facile self-assembly approach to prepare palladium/carbon nanotubes catalyst for the electro-oxidation of ethanol

    Science.gov (United States)

    Wen, Cuilian; Zhang, Xinyuan; Wei, Ying; Zhang, Teng; Chen, Changxin

    2018-02-01

    A facile self-assembly approach is reported to prepare palladium/carbon nanotubes (Pd/CNTs) catalyst for the electro-oxidation of ethanol. In this method, the Pd-oleate/CNTs was decomposed into the Pd/CNTs at an optimal temperature of 195 °C in air, in which no inert gas is needed for the thermal decomposition process due to the low temperature used and the decomposed products are also environmental friendly. The prepared Pd/CNTs catalyst has a high metallic Pd0 content and the Pd particles in the catalyst are disperse, uniform-sized with an average size of ˜2.1 nm, and evenly distributed on the CNTs. By employing our strategy, the problems including the exfoliation of the metal particles from the CNTs and the aggregation of the metal particles can be solved. Comparing with the commercial Pd/C one, the prepared Pd/CNTs catalyst exhibits a much higher electrochemical activity and stability for the electro-oxidation of ethanol in the direct ethanol fuel cells.

  12. Ethanol induction of laccase depends on nitrogen conditions of Pycnoporus sanguineus

    Directory of Open Access Journals (Sweden)

    Christian A. Hernández

    2015-07-01

    Conclusions: We suggest that laccase in P. sanguineus is regulated by a catabolic nitrogen repression mechanism; laccase activity is strongly inhibited by urea used as nitrogen source and it decreases when the amount of urea increases; contrarily, a synergic positive effect was observed between yeast extract and ethanol on laccase production.

  13. Preparation and evaluation of a multi-component catalyst by using a co-sputtering system for anodic oxidation of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S.; Usui, Y.; Kimura, O. [Environmental Technology R and D Center, Ricoh Company, Ltd., 16-1 Shinei-cho, Tsuzuki-ku, Yokohama 224-0035 (Japan); Umeda, M. [Department of Chemistry, Faculty of Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188 (Japan); Ojima, H.; Uchida, I. [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aramaki-Aoba 07, Aoba-ku, Sendai 980-8579 (Japan)

    2005-12-01

    In this study, a remarkable promotion of ethanol electrooxidation by a Pt--Ru-W alloy is reported for an improvement of the anodic reaction of a direct ethanol fuel cell (DEFC). Pt-based binary and ternary electrocatalysts including Pt-Ru-W deposited onto a Au substrate were prepared by co-sputtering process. By using this process, several metals can be arranged simultaneously and uniformly. The catalysts deposited onto Au were evaluated for anodic electrode in 1moldm{sup -3} ethanol+0.5 moldm{sup -3} sulfuric acid by electrochemical measurements. The performance of Pt-Ru-W was desirable in comparison to that of binary alloys, such as Pt-W, Pt-Sn and Pt-Ru, which exhibit higher catalytic activity than single Pt metal layer electrode. Ethanol electrooxidation on Pt-Ru-W alloy showed a cathodic shift in the onset potential and a higher current density than the binary alloy electrodes. It was found that Pt-Ru-W ternary catalyst effects to not only methanol oxidation reaction but also ethanol oxidation reaction and that the current density of ethanol oxidation with Pt-Ru-W is about 2/3 to that of methanol at 0.5V versus Ag/AgCl. The onset potentials for the ethanol oxidation reaction matched well the anodic peak potentials of the background volutammograms, i.e., 0.15V versus Ag/AgCl for Pt-Ru-W and 0.35V versus Ag/AgCl for Pt-W and Pt-Ru electrodes. That is, it was postulated that the background peak current indicates the generation of oxide species like metal-OH necessary to complete the ethanol oxidation to CO{sub 2}. (author)

  14. The burnup dependence of light water reactor spent fuel oxidation

    International Nuclear Information System (INIS)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO 2 is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO 2 to higher oxides. The oxidation of UO 2 has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO 2 oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO 2 to UO 2.4 was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO 2.4 to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO 2 oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO 2 and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5)

  15. Ethanol affects acylated and total ghrelin levels in peripheral blood of alcohol-dependent rats.

    Science.gov (United States)

    Szulc, Michal; Mikolajczak, Przemyslaw L; Geppert, Bogna; Wachowiak, Roman; Dyr, Wanda; Bobkiewicz-Kozlowska, Teresa

    2013-07-01

    There is a hypothesis that ghrelin could take part in the central effects of alcohol as well as function as a peripheral indicator of the changes which occur during long-term alcohol consumption. The aim of this study was to determine a correlation between alcohol concentration and acylated and total form of ghrelin after a single administration of alcohol (intraperitoneal, i.p.) (experiment 1) and prolonged ethanol consumption (experiment 2). The study was performed using Wistar alcohol preferring (PR) and non-preferring (NP) rats and rats from inbred line (Warsaw High Preferring, WHP; Warsaw Low Preferring, WLP). It was found that ghrelin in ethanol-naive WHP animals showed a significantly lower level when compared with the ethanol-naive WLP or Wistar rats. After acute ethanol administration in doses of 1.0; 2.0 and 4.0 g/kg, i.p., the simple (WHP) or inverse (WLP and Wistar) relationship between alcohol concentration and both form of ghrelin levels in plasma were found. Chronic alcohol intake in all groups of rats led to decrease of acylated ghrelin concentration. PR and WHP rats, after chronic alcohol drinking, had lower levels of both form of ghrelin in comparison with NP and WLP rats, respectively, and the observed differences in ghrelin levels were in inverse relationship with their alcohol intake. In conclusion, it is suggested that there is a strong relationship between alcohol administration or intake, ethanol concentration in blood and both active and total ghrelin level in the experimental animals, and that ghrelin plasma concentration can be a marker of alcohol drinking predisposition. © 2013 The Authors, Addiction Biology © 2013 Society for the Study of Addiction.

  16. Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing.

    Science.gov (United States)

    Zhang, Dongzhi; Fan, Xin; Yang, Aijun; Zong, Xiaoqi

    2018-08-01

    In this paper, we fabricated a high-performance ethanol sensor using layer-by-layer self-assembled urchin-like alpha-iron oxide (α-Fe 2 O 3 ) hollow microspheres/molybdenum disulphide (MoS 2 ) nanosheets heterostructure as sensitive materials. The nanostructural, morphological, and compositional properties of the as-prepared α-Fe 2 O 3 /MoS 2 heterostructure were characterized by X-ray diffraction (XRD), energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS), which confirmed its successful preparation and rationality. The α-Fe 2 O 3 /MoS 2 nanocomposite sensor shows good selectivity, excellent reproducibility, fast response/recovery time and low detection limit towards ethanol gas at room temperature, which is superior to the single component of α-Fe 2 O 3 hollow microspheres and MoS 2 nanosheets. Furthermore, the response of the α-Fe 2 O 3 /MoS 2 nanocomposite sensor as a function of ethanol gas concentration was also demonstrated. The enhanced ethanol sensing properties of the α-Fe 2 O 3 /MoS 2 nanocomposite sensor were ascribed to the synergistic effect and heterojunction between the urchin-Like α-Fe 2 O 3 hollow microspheres and MoS 2 nanosheets. This work verifies that the hierarchical α-Fe 2 O 3 /MoS 2 nanoheterostructure is a potential candidate for fabricating room-temperature ethanol gas sensor. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Mesoporous Silica-Supported Metal Oxide-Promoted Rh Nanocatalyst for Selective Production of Ethanol from Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, George

    2010-09-30

    The objective is to develop a process that will convert synthesis gas from coal into ethanol and then transform the ethanol into hydrogen. Principal investigators from Iowa State University include Dr. George Kraus, Dr. Victor Lin, Marek Pruski, and Dr. Robert Brown. Task 1 involves catalyst development and catalyst scale up. Mesoporous manganese silicate mixed oxide materials will be synthesized, characterized and evaluated. The first-and secondgeneration catalysts have been prepared and scaled up for use in Task 2. The construction of a high-pressure reactor system for producing synthetic liquid fuel from simulated synthesis gas stream has been completed as the first step in Task 2. Using the first- and second generation catalysts, the reactor has demonstrated the production of synthetic liquid fuel from a simulated synthesis gas stream.

  18. Slow photon amplification of gas-phase ethanol photo-oxidation in titania inverse opal photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jovic, Vedran, E-mail: vjov001@aucklanduni.ac.nz [School of Chemical Sciences, Science Centre, Building 301, 23 Symonds Street, Auckland 92019 (New Zealand); Idriss, Hicham, E-mail: IdrissH@sabic.com [Corporate Research and Development (CRD), Saudi Basic Industries Corporation (SABIC) at KAUST (Saudi Arabia); Waterhouse, Geoffrey I.N., E-mail: g.waterhouse@auckland.ac.nz [School of Chemical Sciences, Science Centre, Building 301, 23 Symonds Street, Auckland 92019 (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Dodd Walls Centre for Photonic and Quantum Technologies (New Zealand)

    2016-11-10

    Here we describe the successful fabrication of six titania inverse opal (TiO{sub 2} IO) photocatalysts with fcc[1 1 1] pseudo photonic band gaps (PBGs) tuned to span the UV–vis region. Photocatalysts were fabricated by a colloidal crystal templating and sol-gel approach – a robust and highly applicable bottom-up scheme which allowed for precise control over the geometric and optical properties of the TiO{sub 2} IO photocatalysts. Optical properties of the TiO{sub 2} IO thin films were investigated in detail by UV–vis transmittance and reflectance measurements. The PBG along the fcc[1 1 1] direction in the TiO{sub 2} IOs was dependent on the inter-planar spacing in the [1 1 1] direction, the incident angle of light and the refractive index of the medium filling the macropores in the IOs, in agreement with a modified Bragg’s law expression. Calculated photonic band structures for the photocatalysts revealed a PBG along the Γ → L direction at a/λ ∼ 0.74, in agreement with the experimental optical data. By coupling the low frequency edge of the PBG along the [1 1 1] direction with the electronic absorption edge of anatase TiO{sub 2}, a two-fold enhancement in the rate of gas phase ethanol photo-oxidation in air was achieved. This enhancement appears to be associated with a ‘slow photon’ effect that acts to both enhance TiO{sub 2} absorption and inhibit spontaneous emission (i.e. suppress electron-hole pair recombination).

  19. Influence of * OH adsorbates on the potentiodynamics of the CO 2 generation during the electro-oxidation of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guangxing; Namin, Lida M.; Aaron Deskins, N.; Teng, Xiaowei

    2017-09-01

    Direct ethanol fuel cells (DEFCs) are a promising technology for the generation of electricity via the direct conversion of ethanol into CO2, showing higher thermodynamic efficiency and volumetric energy density than hydrogen fuel cells. However, implementation of DEFCs is hampered by the low CO2 selectivity during the ethanol oxidation reaction (EOR). Comprehensive understanding of the electro-kinetics and reaction pathways of CO2 generation via CC bond-breaking is not only a fundamental question for electro-catalysis, but also a key technological challenge since practical implementation of DEFC technology is contingent on its ability to selectively oxidize ethanol into CO2 to achieve exceptional energy density through 12-electron transfer reaction. Here, we present comprehensive in situ potentiodynamics studies of CO2 generation during the EOR on Pt, Pt/SnO2 and Pt/Rh/SnO2 catalysts using a house-made electrochemical cell equipped with a CO2 microelectrode. Highly sensitive CO2 measurements enable the real time detection of the partial pressure of CO2 during linear sweep voltammetry measurements, through which electro-kinetics details of CO2 generation can be obtained. In situ CO2 measurements provide the mechanistic understanding of potentiodynamics of the EOR, particularly the influence of *OH adsorbates on CO2 generation rate and selectivity. Density functional theory (DFT) simulations of Pt, Pt/SnO2, and Pt/Rh/SnO2 surfaces clarify reaction details over these catalysts. Our results show that at low potentials, inadequate *OH adsorbates impair the removal of reaction intermediates, and thus Pt/Rh/SnO2 exhibited the best performance toward CO2 generation, while at high potentials, Rh sites were overwhelmingly occupied (poisoned) by *OH adsorbates, and thus Pt/SnO2 exhibited the best performance toward CO2 generation.

  20. Preparation of ternary Pt/Rh/SnO2 anode catalysts for use in direct ethanol fuel cells and their electrocatalytic activity for ethanol oxidation reaction

    Science.gov (United States)

    Higuchi, Eiji; Takase, Tomonori; Chiku, Masanobu; Inoue, Hiroshi

    2014-10-01

    Pt, Rh and SnO2 nanoparticle-loaded carbon black (Pt/Rh/SnO2/CB) catalysts with different contents of Pt and Rh were prepared by the modified Bönnemann method. The mean size and size distribution of Pt, Rh and SnO2 for Pt-71/Rh-4/SnO2/CB (Pt : Rh : Sn = 71 at.%: 4 at.%: 25 at.%) were 3.8 ± 0.7, 3.2 ± 0.7 and 2.6 ± 0.5 nm, respectively, indicating that Pt, Rh and SnO2 were all nanoparticles. The onset potential of ethanol oxidation current for the Pt-65/Rh-10/SnO2/CB and Pt-56/Rh-19/SnO2/CB electrodes was ca. 0.2 V vs. RHE which was ca. 0.2 V less positive than that for the Pt/CB electrode. The oxidation current at 0.6 V for the Pt/Rh/SnO2/CB electrode (ca. 2% h-1) decayed more slowly than that at the Pt/SnO2/CB electrode (ca. 5% h-1), indicating that the former was superior in durability to the latter. The main product of EOR in potentiostatic electrolysis at 0.6 V for the Pt-71/Rh-4/SnO2/CB electrode was acetic acid.

  1. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains.

    Science.gov (United States)

    Bleoanca, Iulia; Silva, Ana Rita Courelas; Pimentel, Catarina; Rodrigues-Pousada, Claudina; Menezes, Regina de Andrade

    2013-12-01

    Ethanol is a chemical stress factor that inhibits cellular growth and determines metabolic changes leading to reduction of cell viability during fermentation and yeast storage. To determine the effect of time, temperature and ethanol during storage of brewing yeasts we have monitored viability of cells stored for 72 h, at 6 °C or 12 °C, in the presence of various ethanol concentrations. Under the conditions tested, 6 °C is the most favourable temperature to store brewing yeast creams emphasizing the importance of a tight temperature control in the storage vessels. Because W210 is less resistant to storage in the presence of ethanol than W34/70, the optimal storage parameters obtained under our laboratory conditions vary significantly. The ale strain is sensitive to storage under ethanol concentrations higher than 5% (v/v) for more than 48 h at 6 °C whereas at the same temperature the lager strain tolerates ethanol up to 7.5% (v/v) for 72 h. Also, the viability assays indicate that the antioxidant protein Yap1 is an important factor to storage resistance of BY4741 laboratory strain. To investigate the molecular mechanisms underlying tolerance of brewing yeast strains to ethanol, we have performed phenotypic analysis, localization studies and have monitored the activation of antioxidant and protection genes as well as the intracellular contents of glycogen and trehalose. Overall, our data suggest that the ale strain W210 has a defective antioxidant defence system and that ethanol may induce the antioxidant defences as well as glycogen and trehalose protection mechanisms in laboratory and brewing yeast strains. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  3. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  4. Conversion of Methane into Methanol and Ethanol over Nickel Oxide on Ceria-Zirconia Catalysts in a Single Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Okolie, Chukwuemeka [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA; Belhseine, Yasmeen F. [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA; Lyu, Yimeng [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA; Yung, Matthew M. [National Renewable Energy Laboratory, Golden CO 80401 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Lab, Richland WA 99354 USA; Kovarik, Libor [Environmental Molecular Sciences Laboratory, Pacific Northwest National Lab, Richland WA 99354 USA; Stavitski, Eli [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton NY 11973 USA; Sievers, Carsten [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA

    2017-09-26

    Direct conversion of methane into alcohols is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can selectively oxidize methane to methanol and ethanol in a single, steady-state process at 723 K using O2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to the synergy between the small Lewis acidic NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.

  5. A DRIFTS study of the partial oxidation of ethanol on Rh catalysts; Estudo da oxidacao parcial do etanol em catalisadores de Rh por DRIFTS

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Raquel Lima; Passos, Fabio Barboza, E-mail: fbpassos@vm.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Departamento de Engenharia Quimica e de Petroleo

    2013-09-01

    The partial oxidation of ethanol on {gamma}-Al{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2} and Ce{sub x}Zr{sub 1-x}O{sub 2} supported rhodium catalysts was investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The catalysts were characterized by temperature-programmed reduction (TPR) and cyclohexane dehydrogenation. DRIFTS studies on the partial oxidation of ethanol showed that ethanol is adsorbed dissociatively, through O-H bond breaking, with the formation of ethoxy species, followed by successive dehydrogenation to acetaldehyde and acetyl species. Further oxidation to acetate and carbonate species lead to the formation of CO, CH{sub 4} and H{sub 2} by decomposition. The presence of CeO{sub 2} in the catalysts favored the oxidation steps due to its oxygen storage capacity. (author)

  6. Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Jørgensen, Betina; Hansen, Jeppe Rass

    2006-01-01

    Wine into vinegar: It is possible to selectively oxidize ethanol into acetic acid in aqueous solution with air as the oxidant and a heterogeneous gold catalyst (see TEM image of supported gold particles) at temperatures of about 423 K and O2 pressures of 0.6 MPa. This reaction proceeds readily...

  7. Preparation and characterization of Pt-Sn/C and Pt-Ir/C catalysts for the electrochemical oxidation of ethanol in polymer electrolyte membrane fuel cell

    CSIR Research Space (South Africa)

    Masombuka, T

    2007-11-01

    Full Text Available oxidation is still low. Development of new active catalysts able to break C-C bond and complete oxidation of ethanol into CO 2 is of fundamental importance. Generally, a third metal is added to the best binary Pt-Sn catalyst to improve CO tolerance...

  8. Low-Temperature Oxidation of H2/CH4/C2H6/Ethanol/DME: Experiments and Modelling at High Pressures

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob M.; Glarborg, Peter

    2015-01-01

    The main aim of this work was to measure the oxidation characteristics of H2, CH4, C2H6, DME,and ethanol at high pressures (20—100 bar) and low to intermediate temperatures (450—900K) in a laminar flow reactor. Furthermore, a detailed chemical kinetic model was sought to address the oxidation of ...

  9. Facile synthesis of palladium–graphene nanocomposites and their catalysis for electro-oxidation of methanol and ethanol

    International Nuclear Information System (INIS)

    Zhang, Yuting; Shu, Honghui; Chang, Gang; Ji, Kai; Oyama, Munetaka; Liu, Xiong; He, Yunbin

    2013-01-01

    Highlights: • Pd nanoparticles/graphene (PdNPs/graphene) was synthesized within one-step process. • Environment friendly ascorbic acid was chosen as the reductant. • The synthesized PdNPs/graphene shows superior electrocatalytic activity to both methanol and ethanol. • PdNPs/graphene shows superior electrocatalytic stability in methanol and ethanol electro-oxidation. -- Abstract: Well-dispersed Pd nanoparticles (PdNPs) supported on graphene sheets were successfully prepared by a simple one-pot process, in which the reduction of Poly Vingl Pyrrolidone-functionalized graphite oxide and Pd precursor was carried out simultaneously using ascorbic acid as a soft reductant. The Pd nanoparticles decorated graphene composite (PdNPs/PVP-graphene) was characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. Morphology and structure characterizations directly showed that Pd nanoparticles with crystallite size of about 8.5 nm were evenly formed on graphene. Catalysis activity as in fuel cells was investigated by further electrochemical experiments including cyclic voltammograms and chronoamperometric measurements. Compared to the commercial Vulcan XC-72 supported Pd nanoparticles, PdNPs/PVP-graphene exhibits superior electrocatalytic activity and stability toward electro-oxidation of alcohols, showing its potential use as new electrode material for direct alcohol fuel cells (DAFCs)

  10. Influence of chronic ethanol intake on mouse synaptosomal aspartyl aminopeptidase and aminopeptidase A: relationship with oxidative stress indicators.

    Science.gov (United States)

    Mayas, María Dolores; Ramírez-Expósito, María Jesús; García, María Jesús; Carrera, María Pilar; Martínez-Martos, José Manuel

    2012-08-01

    Aminopeptidase A (APA) and aspartyl aminopeptidase (ASAP) not only act as neuromodulators in the regional brain renin-angiotensin system, but also release N-terminal acidic amino acids (glutamate and aspartate). The hyperexcitability of amino acid neurotransmitters is responsible for several neurodegenerative processes affecting the central nervous system. The purpose of the present work was to study the influence of chronic ethanol intake, a well known neurotoxic compound, on APA and ASAP activity under resting and K(+)-stimulated conditions at the synapse level. APA and ASAP activity were determined against glutamate- and aspartate-β-naphthylamide respectively in mouse frontal cortex synaptosomes and in their incubation supernatant in a Ca(2+)-containing or Ca(2+)-free artificial cerebrospinal fluid. The neurotoxic effects were analyzed by determining free radical generation, peroxidation of membrane lipids and the oxidation of synaptosomal proteins. In addition, the bioenergetic behavior of synaptosomes was analyzed under different experimental protocols. We obtained several modifications in oxidative stress parameters and a preferential inhibitor effect of chronic ethanol intake on APA and ASAP activities. Although previous in vitro studies failed to show signs of neurodegeneration, these in vivo modifications in oxidative stress parameters do not seem to be related to changes in APA and ASAP, invalidating the idea that an excess of free acidic amino acids released by APA and ASAP induces neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Cai, Jindi; Huang, Yiyin; Guo, Yonglang

    2013-01-01

    Highlights: • Pd-Bi/C catalysts were easily prepared by irreversible adsorption of Bi on Pd/C surface. • The adsorption of Bi increases the oxygen-containing species obviously on Pd-Bi/C surface. • Only a little amount of Bi on Pd-Bi/C can play a significant role in ethanol oxidation reaction (EOR). • Current density of EOR on Pd-Bi/C (20:1) is 2.4 times higher than that on Pd/C. • Anti-poisoning ability and durability of Pd-Bi/C (20:1) is greatly enhanced. -- Abstract: A facile approach to promote ethanol electro-oxidation on Pd-based catalysts is presented by the modification of Bi on Pd/C catalyst via irreversible adsorption. X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) measurements show that the modification of Bi has no significant effect on the Pd morphology and particle size distribution. Bi(III) and Pd(0) are the dominant forms in Pd-Bi/C catalyst. Electrochemical tests show that the modification of the appropriate amount of Bi on Pd/C catalyst can remarkably enhance activity toward ethanol oxidation reaction (EOR) up to about 2.4 times higher compared to Pd/C catalyst. The Pd-Bi/C (20:1) catalyst exhibits excellent stability and enhances CO tolerance. The enhanced electrochemical performance of Pd-Bi/C catalyst is attributed to the electronic effect and the bifunctional mechanism. The high exchange current density and the low apparent activation energy on Pd-Bi/C (20:1) catalyst reveal its faster kinetics and higher intrinsic activity compared to Pd/C catalyst

  12. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    Science.gov (United States)

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.

  13. Low temperature and surfactant-free synthesis of Pd2Sn intermetallic nanoparticles for ethanol electro-oxidation

    International Nuclear Information System (INIS)

    Wang, Congmin; Wu, Yurong; Wang, Xin; Zou, Liangliang; Zou, Zhiqing; Yang, Hui

    2016-01-01

    Many intermetallic compounds have a predictable structure, interesting electronic effects, and useful catalytic properties. In this work, a low temperature, surfactant-free, and one-pot method is used to synthesize carbon supported Pd 2 Sn intermetallic nanoparticles. The superlattice of the product was then characterized using X-ray diffraction and transmission electron microscopy. These synthesized intermetallic nanoparticles were found to exhibit a higher activity and stability for electrocatalysis of the ethanol oxidation reaction in an alkaline media than has been achieved using a traditional Pd/C catalyst, which could be attributed to the structural and compositional stabilities of ordered Pd 2 Sn intermetallic nanoparticles.

  14. Cellular inactivation of nitric oxide induces p53-dependent ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research August 2016; 15 (8): 1595-1603 ... Cellular inactivation of nitric oxide induces p53-dependent apoptosis in ... apoptosis induced by a selective iNOS inhibitor, N-[(3-aminomethyl) benzyl] acetamidine (1400W), .... and nitrate. ... Nitrite production was measured in culture media.

  15. Layer Dependence of Graphene for Oxidation Resistance of Cu Surface

    Institute of Scientific and Technical Information of China (English)

    Yu-qing Song; Xiao-ping Wang

    2017-01-01

    We studied the oxidation resistance of graphene-coated Cu surface and its layer dependence by directly growing monolayer graphene with different multilayer structures coexisted,diminishing the influence induced by residue and transfer technology.It is found that the Cu surface coated with the monolayer graphene demonstrate tremendous difference in oxidation pattern and oxidation rate,compared to that coated with the bilayer graphene,which is considered to be originated from the strain-induced linear oxidation channel in monolayer graphene and the intersection of easily-oxidized directions in each layer of bilayer graphene,respectively.We reveal that the defects on the graphene basal plane but not the boundaries are the main oxidation channel for Cu surface under graphene protection.Our finding indicates that compared to putting forth efforts to improve the quality of monolayer graphene by reducing defects,depositing multilayer graphene directly on metal is a simple and effective way to enhance the oxidation resistance of graphene-coated metals.

  16. Enhanced anti-oxidative activity and lignocellulosic ethanol production by biotin addition to medium in Pichia guilliermondii fermentation.

    Science.gov (United States)

    Qi, Kai; Xia, Xiao-Xia; Zhong, Jian-Jiang

    2015-01-01

    Commercialization of lignocellulosic ethanol fermentation requires its high titer, but the reactive oxygen species (ROS) accumulation during the bioprocess damaged the cells and compromised this goal. To improve the cellular anti-oxidative activity during non-detoxified corncob residue hydrolysate fermentation, seed cells were prepared to possess a higher level of intracellular biotin pool (IBP), which facilitated the biosyntheses of catalase and porphyrin. As a result, the catalase activity increased by 1.3-folds compared to control while the ROS level reduced by 50%. Cell viability in high-IBP cells was 1.7-folds of control and the final ethanol titer increased from 31.2 to 41.8 g L(-1) in batch fermentation. The high-IBP cells were further used for repeated-batch fermentation in the non-detoxified lignocellulosic hydrolysate, and the highest titer and average productivity of ethanol reached 63.7 g L(-1) and 1.2 g L(-1)h(-1). The results were favorable to future industrial application of this lignocellulosic bioethanol process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats

    International Nuclear Information System (INIS)

    El-Mas, Mahmoud M.; Abdel-Rahman, Abdel A.

    2015-01-01

    Evidence suggests that male rats are protected against the hypotensive and myocardial depressant effects of ethanol compared with females. We investigated whether E 2 modifies the myocardial and oxidative effects of ethanol in male rats. Conscious male rats received ethanol (0.5, 1 or 1.5 g/kg i.v.) 30-min after E 2 (1 μg/kg i.v.) or its vehicle (saline), and hearts were collected at the conclusion of hemodynamic measurements for ex vivo molecular studies. Ethanol had no effect in vehicle-treated rats, but it caused dose-related reductions in LV developed pressure (LVDP), end-diastolic pressure (LVEDP), rate of rise in LV pressure (dP/dt max ) and systolic (SBP) and diastolic (DBP) blood pressures in E 2 -pretreated rats. These effects were associated with elevated (i) indices of reactive oxygen species (ROS), (ii) malondialdehyde (MDA) protein adducts, and (iii) phosphorylated death-associated protein kinase-3 (DAPK3), Akt, and extracellular signal-regulated kinases (ERK1/2). Enhanced myocardial anti-oxidant enzymes (heme oxygenase-1, catalase and aldehyde dehydrogenase 2) activities were also demonstrated. In conclusion, E 2 promotes ethanol-evoked myocardial oxidative stress and dysfunction in male rats. The present findings highlight the risk of developing myocardial dysfunction in men who consume alcohol while receiving E 2 for specific medical conditions. - Highlights: • Ethanol lowers blood pressure and causes LV dysfunction in E 2 -treated rats. • E 2 /ethanol aggravates cardiac oxidative state via of DAPK3/Akt/ERK activation. • E 2 /ethanol causes a feedback increase in cardiac HO-1, catalase and ALDH2. • Alcohol might increase risk of myocardial dysfunction in men treated with E 2

  18. Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats

    Energy Technology Data Exchange (ETDEWEB)

    El-Mas, Mahmoud M., E-mail: mahelm@hotmail.com; Abdel-Rahman, Abdel A., E-mail: abdelrahmana@ecu.edu

    2015-09-15

    Evidence suggests that male rats are protected against the hypotensive and myocardial depressant effects of ethanol compared with females. We investigated whether E{sub 2} modifies the myocardial and oxidative effects of ethanol in male rats. Conscious male rats received ethanol (0.5, 1 or 1.5 g/kg i.v.) 30-min after E{sub 2} (1 μg/kg i.v.) or its vehicle (saline), and hearts were collected at the conclusion of hemodynamic measurements for ex vivo molecular studies. Ethanol had no effect in vehicle-treated rats, but it caused dose-related reductions in LV developed pressure (LVDP), end-diastolic pressure (LVEDP), rate of rise in LV pressure (dP/dt{sub max}) and systolic (SBP) and diastolic (DBP) blood pressures in E{sub 2}-pretreated rats. These effects were associated with elevated (i) indices of reactive oxygen species (ROS), (ii) malondialdehyde (MDA) protein adducts, and (iii) phosphorylated death-associated protein kinase-3 (DAPK3), Akt, and extracellular signal-regulated kinases (ERK1/2). Enhanced myocardial anti-oxidant enzymes (heme oxygenase-1, catalase and aldehyde dehydrogenase 2) activities were also demonstrated. In conclusion, E{sub 2} promotes ethanol-evoked myocardial oxidative stress and dysfunction in male rats. The present findings highlight the risk of developing myocardial dysfunction in men who consume alcohol while receiving E{sub 2} for specific medical conditions. - Highlights: • Ethanol lowers blood pressure and causes LV dysfunction in E{sub 2}-treated rats. • E{sub 2}/ethanol aggravates cardiac oxidative state via of DAPK3/Akt/ERK activation. • E{sub 2}/ethanol causes a feedback increase in cardiac HO-1, catalase and ALDH2. • Alcohol might increase risk of myocardial dysfunction in men treated with E{sub 2}.

  19. Ethanol extract of seeds of Oenothera odorata induces vasorelaxation via endothelium-dependent NO-cGMP signaling through activation of Akt-eNOS-sGC pathway.

    Science.gov (United States)

    Kim, Hye Yoom; Oh, Hyuncheol; Li, Xiang; Cho, Kyung Woo; Kang, Dae Gill; Lee, Ho Sub

    2011-01-27

    The vasorelaxant effect of ethanol extract of seeds of Oenothera odorata (Onagraceae) (one species of evening primroses) (ESOO) and its mechanisms involved were defined. Changes in vascular tension, guanosine 3',5'-cyclic monophosphate (cGMP) levels, and Akt expression were measured in carotid arterial rings from rats. Seeds of Oenothera odorata were extracted with ethanol (94%) and the extract was filtered, concentrated and stored at -70°C. ESOO relaxed endothelium-intact, but not endothelium-denuded, carotid arterial rings in a concentration-dependent manner. Similarly, ESOO increased cGMP levels of the carotid arterial rings. Pretreatment of endothelium-intact arterial rings with L-NAME, an inhibitor of nitric oxide synthase (NOS), or ODQ, an inhibitor of soluble guanylyl cyclase (sGC), blocked the ESOO-induced vasorelaxation and increase in cGMP levels. Nominally Ca(2+)-free but not L-typed Ca(2+) channel inhibition attenuated the ESOO-induced vasorelaxation. Thapsigargin, Gd(3+), and 2-aminoethyl diphenylborinate, modulators of store-operated Ca(2+) entry (SOCE), significantly attenuated the ESOO-induced vasorelaxation and increase in cGMP levels. Further, wortmannin, an inhibitor of Akt, attenuated the ESOO-induced vasorelaxation and increases in cGMP levels and phosphorylated Akt2 expression. K(+) channel blockade with TEA, 4-aminopyridine, and glibenclamide attenuated the ESOO-induced vascular relaxation. Taken together, the present study demonstrates that ESOO relaxes vascular smooth muscle via endothelium-dependent NO-cGMP signaling through activation of the Akt-eNOS-sGC pathway. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Nitric oxide-dependent vasorelaxation induced by extractive solutions and fractions of Maytenus ilicifolia Mart ex Reissek (Celastraceae) leaves.

    Science.gov (United States)

    Rattmann, Yanna D; Cipriani, Thales R; Sassaki, Guilherme L; Iacomini, Marcello; Rieck, Lia; Marques, Maria C A; da Silva-Santos, José E

    2006-04-06

    This study reveals that an ethanolic supernatant obtained from an aqueous extractive solution prepared from residues of methanolic extracts of ground leaves of Maytenus ilicifolia is able to cause a concentration- and endothelium-dependent relaxation in pre-contract rat aorta rings, with EC(50) of 199.7 (190-210) microg/ml. The non-selective nitric oxide synthase inhibitors l-NAME and l-NMMA abolished this effect, while superoxide dismutase and MnTBAP (a non-enzymatic superoxide dismutase mimetic) enhanced it. Further, relaxation induced by this ethanolic supernatant have been strongly inhibited by the guanylate cyclase inhibitors methylene blue and ODQ, as well as by the potassium channel blockers 4-aminopyridine and tetraethylammonium, but was unchanged by the cyclooxygenase inhibitor indomethacin and the membrane receptor antagonists atropine, HOE-140 and pirilamine. Partition of the ethanolic supernatant between H(2)O and EtOAc generated a fraction several times more potent, able to fully relax endothelium-intact aorta rings with an EC(50) of 4.3 (3.9-4.8) microg/ml. (13)C NMR spectrum of this fraction showed signals typical of catechin. This study reveals that the leaves of M. ilicifolia possess one or more potent substances able to relax endothelium-intact rat aorta rings, an event that appears to involve nitric oxide production, guanylate cyclase activation and potassium channel opening.

  1. Microarray study of temperature-dependent sensitivity and selectivity of metal/oxide sensing interfaces

    Science.gov (United States)

    Tiffany, Jason; Cavicchi, Richard E.; Semancik, Stephen

    2001-02-01

    Conductometric gas microsensors offer the benefits of ppm-level sensitivity, real-time data, simple interfacing to electronics hardware, and low power consumption. The type of device we have been exploring consists of a sensor film deposited on a "microhotplate"- a 100 micron platform with built-in heating (to activate reactions on the sensing surface) and thermometry. We have been using combinatorial studies of 36-element arrays to characterize the relationship between sensor film composition, operating temperature, and response, as measured by the device's sensitivity and selectivity. Gases that have been tested on these arrays include methanol, ethanol, dichloromethane, propane, methane, acetone, benzene, hydrogen, and carbon monoxide, and are of interest in the management of environmental waste sites. These experiments compare tin oxide films modified by catalyst overlayers, and ultrathin metal seed layers. The seed layers are used as part of a chemical vapor deposition process that uses each array element's microheater to activate the deposition of SnO2, and control its microstructure. Low coverage (20 Ê) catalytic metals (Pd, Cu, Cr, In, Au) are deposited on the oxides by masked evaporation or sputtering. This presentation demonstrates the value of an array-based approach for developing film processing methods, measuring performance characteristics, and establishing reproducibility. It also illustrates how temperature-dependent response data for varied metal/oxide compositions can be used to tailor a microsensor array for a given application.

  2. High-sensitive nitrogen dioxide and ethanol gas sensor using a reduced graphene oxide-loaded double split ring resonator

    Science.gov (United States)

    Singh, Sandeep Kumar; Azad, Prakrati; Akhtar, M. J.; Kar, Kamal K.

    2017-08-01

    A reduced graphene oxide (rGO) incorporated double split ring resonator (DSRR) portable microwave gas sensor is proposed in this work. The sensor is fabricated using two major steps: the DSRR is fabricated on the FR-4 substrate, which is excited by a high impedance microstrip line. The rGO is synthesized via a chemical route and coated inside the smaller ring of the DSRR. The SEM micrographs reveal crumpled sheets of rGO that provide a large surface area, and the XRD patterns of the as-synthesized rGO reveal the two-dimensional structure of the rGO nanosheets. The sensor performance is measured at room temperature using 100-400 ppm of ethanol and NO2 target gases. At 400 ppm, the sensor reveals a shift of 420 and 390 MHz in the S 21 frequency for NO2 and ethanol gases, respectively. The frequency shifts of 130 and 120 MHz in the S 21 resonance frequency are obtained for NO2 and ethanol gases, respectively, at a very low concentration of 100 ppm. The high sensitivity of the proposed rGO gas sensor is achieved due to the combined effect of the large surface area of the rGO responsible for accommodating more gas molecules, and its increased conductivity due to the transfer of the electron from the rGO. Moreover, an exceedingly short response time is observed for NO2 in comparison to ethanol, which allows the proposed sensor to be used for the selective detection of NO2 in a harsh environment. The overall approach used in this study is quite simple, and has great potential to enhance the gas detection behaviour of rGO.

  3. Facile synthesis of a platinum-lead oxide nanocomposite catalyst with high activity and durability for ethanol electrooxidation.

    Science.gov (United States)

    Yang, Wei-Hua; Wang, Hong-Hui; Chen, De-Hao; Zhou, Zhi-You; Sun, Shi-Gang

    2012-12-21

    Aimed at searching for highly active and stable nano-scale Pt-based catalysts that can improve significantly the energy conversion efficiency of direct ethanol fuel cells (DEFCs), a novel Pt-PbO(x) nanocomposite (Pt-PbO(x) NC) catalyst with a mean size of 3.23 nm was synthesized through a simple wet chemistry method without using a surfactant, organometallic precursors and high temperature. Electrocatalytic tests demonstrated that the as-prepared Pt-PbO(x) NC catalyst possesses a much higher catalytic activity and a longer durability than Pt nanoparticles (nm-Pt) and commercial Pt black catalysts for ethanol electrooxidation. For instance, Pt-PbO(x) NC showed an onset potential that was 30 mV and 44 mV less positive, together with a peak current density 1.7 and 2.6 times higher than those observed for nm-Pt and Pt black catalysts in the cyclic voltammogram tests. The ratio of current densities per unit Pt mass on Pt-PbO(x) NC, nm-Pt and Pt black catalysts is 27.3 : 3.4 : 1 for the long-term (2 hours) chronoamperometric experiments measured at -0.4 V (vs. SCE). In situ FTIR spectroscopic studies revealed that the activity of breaking C-C bonds of ethanol of the Pt-PbO(x) NC is as high as 5.17 times that of the nm-Pt, which illustrates a high efficiency of ethanol oxidation to CO(2) on the as-prepared Pt-PbO(x) NC catalyst.

  4. Highly improved ethanol gas-sensing performance of mesoporous nickel oxides nanowires with the stannum donor doping

    Science.gov (United States)

    Wei, Junqi; Li, Xiaoqing; Han, Yanbing; Xu, Jingcai; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Jing; Yang, Yanting; Ge, Hongliang; Wang, Xinqing

    2018-06-01

    Mesoporous nickel oxides (NiO) and stannum(Sn)-doped NiO nanowires (NWs) were synthesized by using SBA-15 templates with the nanocasting method. X-ray diffraction, transmission electron microscope, energy dispersive spectrometry, nitrogen adsorption/desorption isotherm and UV–vis spectrum were used to characterize the phase structure, components and microstructure of the as-prepared samples. The gas-sensing analysis indicated that the Sn-doping could greatly improve the ethanol sensitivity for mesoporous NiO NWs. With the increasing Sn content, the ethanol sensitivity increased from 2.16 for NiO NWs up to the maximum of 15.60 for Ni0.962Sn0.038O1.038, and then decreased to 12.24 for Ni0.946Sn0.054O1.054 to 100 ppm ethanol gas at 340 °C. The high surface area from the Sn-doping improved the adsorption of oxygen on the surface of NiO NWs, resulting in the smaller surface resistance in air. Furthermore, owing to the recombination of the holes in hole-accumulation lay with the electrons from the donor impurity level and the increasing the body defects for Sn-doping, the total resistance in ethanol gas enhanced greatly. It was concluded that the sensitivity of Sn-doped NiO NWs based sensor could be greatly improved by the higher surface area and high-valence donor substitution from Sn-doping.

  5. Temperature effect on the electrode kinetics of ethanol oxidation on Pd modified Pt electrodes and the estimation of intermediates formed in alkali medium

    International Nuclear Information System (INIS)

    Mahapatra, S.S.; Dutta, A.; Datta, J.

    2010-01-01

    Ethanol has been recognized as the ideal fuel for direct alcohol fuel cell (DAFC) systems due to its high energy density, non-toxicity and its bio-generation. However the complete conversion of ethanol to CO 2 is still met with challenges, due to dearth of suitable catalysts for the electro-oxidation. In the present work the effect of temperature on the catalytic oxidation of ethanol in alkaline medium over electrodeposited Pt and Pt-Pd alloyed nano particles on carbon support and also on the product formation during the course of reaction have been studied within the temperature range of 20-80 o C. The information on surface morphology, structural characteristics and bulk composition of the catalyst was obtained using SEM, XRD and EDX. BET surface area and pore widths of the catalyst particles were calculated by applying the BET equation to the adsorption isotherms. The electrochemical techniques like cyclic voltammetry, chronoamperometry and impedance spectroscopy were employed to investigate the electrochemical parameters related to electro-oxidation of ethanol in alkaline pH on the catalyst surfaces under the influence of temperature. The results show that the oxidation kinetics of ethanol on the alloyed Pt-Pd/C catalysts is significantly improved compared to that on Pt alone. The observations were interpreted in terms of the synergistic effect of higher electrochemical surface area, preferred OH - adsorption on the surface and the ad-atom contribution of the alloyed matrix. A pronounced influence of temperature on the reaction kinetics was manifested in the diminution of charge transfer resistance and activation energy of the ethanol oxidation with Pd incorporation into the Pt matrix, ensuring greater tolerance of the alloyed catalyst towards ethanolic residues. The higher yield of the reaction products like acetate and CO 3 -2 on the alloyed catalyst compared to Pt alone in alkaline medium, as estimated by ion chromatography, further substantiates the

  6. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures.

    Science.gov (United States)

    Wang, Renhu; Li, Junhua

    2010-06-01

    Volatile organic compounds (VOCs) emitted from many industrial processes and transportation activities are major organic pollutants in the atmosphere and toxic to human health. Octahedral molecular sieve (OMS-2) catalysts with different precursors and sulfate-acidified OMS-2 catalysts were synthesized using refluxing methods. The catalysts were investigated on complete oxidation of ethanol and acetaldehyde, and both demonstrated good reactivity. However, acidification resulted in a decrease in activity. OMS-2 catalyst using MnSO(4) as precursor exhibited the best catalytic performance and, thus, was selected for catalyst deactivation by sulfur dioxide. The results of this study suggested that the Mn-O bond of OMS-2 catalysts was the main determinant of the catalytic activity toward oxygenated VOC oxidation and weaker acid sites benefited higher acetaldehyde selectivity. Catalyst deactivation resulted from a strong but slow chemical interaction between the Mn-O bond and sulfur dioxide, probably forming manganese sulfate.

  7. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Thomsen, A.B.; Ahring, Birgitte Kiær

    2001-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degreesC) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g....../l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present...

  8. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Olsson, Lisbeth; Thomsen, A.B.

    2003-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/L sodium carbonate and 12 bar oxygen at 195degreesC) was used as pretreatment method for wheat straw (60 g/L), resulting in a hydrolysate and a cellulosic solid fraction. The hydrolysate consisted of soluble hemicellulose (8 g/L), low......-molecular-weight carboxylic acids (3.9 g/L), phenols (0.27 g/L = 1.7 mM) and 2-furoic acid (0.007 g/L). The wet oxidized wheat straw hydrolysate caused no inhibition of ethanol production by Saccharomyces cerevisiae ATCC 96581. Nine phenols and 2-furoic acid, identified to be present in the hydrolysate, were each tested...

  9. Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol

    Directory of Open Access Journals (Sweden)

    Fotini Tzorbatzoglou

    2012-10-01

    Full Text Available In the present work, an ethanol fed Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT system has been parametrically analyzed in terms of exergy and compared with a single SOFC system. The solid oxide fuel cell was fed with hydrogen produced from ethanol steam reforming. The hydrogen utilization factor values were kept between 0.7 and 1. The SOFC’s Current-Volt performance was considered in the range of 0.1–3 A/cm2 at 0.9–0.3 V, respectively, and at the intermediate operating temperatures of 550 and 600 °C, respectively. The curves used represent experimental results obtained from the available bibliography. Results indicated that for low current density values the single SOFC system prevails over the SOFC-GT hybrid system in terms of exergy efficiency, while at higher current density values the latter is more efficient. It was found that as the value of the utilization factor increases the SOFC system becomes more efficient than the SOFC-GT system over a wider range of current density values. It was also revealed that at high current density values the increase of SOFC operation temperature leads in both cases to higher system efficiency values.

  10. A novel binary Pt{sub 3}Te{sub x}/C nanocatalyst for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Meihua; Wang, Fei; Li, Lirong; Guo, Yonglang [College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China)

    2008-03-15

    The Pt{sub 3}Te{sub x}/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt{sub 3}Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt{sub 3}Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt{sub 3}Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt{sub 3}Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g{sup -1}, respectively. On the current-time curve, the anodic current on the Pt{sub 3}Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt{sub 3}Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature. (author)

  11. Pt and PtRu catalyst bilayers increase efficiencies for ethanol oxidation in proton exchange membrane electrolysis and fuel cells

    Science.gov (United States)

    Altarawneh, Rakan M.; Pickup, Peter G.

    2017-10-01

    Polarization curves, product distributions, and reaction stoichiometries have been measured for the oxidation of ethanol at anodes consisting of Pt and PtRu bilayers and a homogeneous mixture of the two catalysts. These anode structures all show synergies between the two catalysts that can be attributed to the oxidation of acetaldehyde produced at the PtRu catalyst by the Pt catalyst. The use of a PtRu layer over a Pt layer produces the strongest effect, with higher currents than a Pt on PtRu bilayer, mixed layer, or either catalyst alone, except for Pt at high potentials. Reaction stoichiometries (average number of electrons transferred per ethanol molecule) were closer to the values for Pt alone for both of the bilayer configurations but much lower for PtRu and mixed anodes. Although Pt alone would provide the highest overall fuel cell efficiency at low power densities, the PtRu on Pt bilayer would provide higher power densities without a significant loss of efficiency. The origin of the synergy between the Pt and PtRu catalysts was elucidated by separation of the total current into the individual components for generation of carbon dioxide and the acetaldehyde and acetic acid byproducts.

  12. Facile fabrication of palladium-ionic liquids-nitrogen-doped graphene nanocomposites as enhanced electro-catalyst for ethanol oxidation

    Science.gov (United States)

    Li, Shuwen; Yang, Honglei; Ren, Ren; Ma, Jianxin; Jin, Jun; Ma, Jiantai

    2015-10-01

    The palladium-ionic liquids-nitrogen-doped graphene nanocomposites are facile fabricated as enhanced electro-catalyst for ethanol oxidation. First, the ionic liquids functionalized nitrogen-doping graphene nanosheets (PDIL-NGS) with few layers is synthesized through a facile and effective one-pot hydrothermal method with graphene oxide as raw material, urea as reducing-doping agents and ionic liquids (ILs) derived from 3,4,9,10-perylene tetracarboxylic acid as functional molecules. The results of systematic characterization reveal that the PDIL molecules not only can functionalize NGS by π-π stacking with no affecting the nitrogen doping but also prevent the agglomeration of NGS. More importantly, the processing performance and the property of electron transfer are remarkably enhanced duo to introducing a large number of ILs groups. Then, the enhanced electrocatalytic Pd nanoparticles are successfully anchored on PDIL-NGS by a facile and surfactant-free synthetic technique. As an anode catalyst, the novel catalyst exhibits better kinetics, more superior electrocatalytic performance, higher tolerance and electrochemical stability than the other catalysts toward ethanol electrooxidation, owing to the role of PDIL molecules. Therefore, the new catalyst is believed to have the potential use for direct alcohol fuel cells in the future and the functionalized NGS is promising useful materials applied in other fields.

  13. Ethanol production from wet oxidized corn straw by simultaneous saccharification and fermentation

    DEFF Research Database (Denmark)

    Zhang, Q.; Yin, Y.; Thygesen, Anders

    2010-01-01

    remained in the solid fraction and recovery of cellulose was 95.87% after pretreatment. After 24 h hydrolysis at 50°C using cellulase, the achieved conversion of cellulose to glucose was about 67.6%. After 142 h of SSF with substrate concentration of 8%, ethanol yield of 79.0% of the theoretical...

  14. Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation

    Science.gov (United States)

    Soares, Layciane A.; Morais, Claudia; Napporn, Teko W.; Kokoh, K. Boniface; Olivi, Paulo

    2016-05-01

    This work investigates ethanol electrooxidation on Pt/C, PtxRhy/C, Pt-SnO2/C, and PtxRhy-SnO2/C catalysts synthesized by the Pechini and microwave-assisted polyol methods. The catalysts are characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. The electrochemical properties of these electrode materials are examined by cyclic voltammetry and chronoamperometry experiments in acid medium. The products obtained during ethanol electrolysis are identified by high performance liquid chromatography (HPLC). The adsorbed intermediates are evaluated by an in situ reflectance Infrared Spectroscopy technique combined with cyclic voltammetry. Catalysts performance in a direct ethanol fuel cell (DEFC) is also assessed. The electrical performance of the electrocatalysts in a single DEFC at 80 °C decreases in the following order Pt70Rh30SnO2 > Pt80Rh20SnO2 > Pt60Rh40SnO2 ∼ PtSnO2 > PtxRhy ∼ Pt, showing that the presence of SnO2 enhances the ability of Pt to catalyze ethanol electrooxidation.

  15. Ethanol internal steam reforming in intermediate temperature solid oxide fuel cell

    Science.gov (United States)

    Diethelm, Stefan; Van herle, Jan

    This study investigates the performance of a standard Ni-YSZ anode supported cell under ethanol steam reforming operating conditions. Therefore, the fuel cell was directly operated with a steam/ethanol mixture (3 to 1 molar). Other gas mixtures were also used for comparison to check the conversion of ethanol and of reformate gases (H 2, CO) in the fuel cell. The electrochemical properties of the fuel cell fed with four different fuel compositions were characterized between 710 and 860 °C by I- V and EIS measurements at OCV and under polarization. In order to elucidate the limiting processes, impedance spectra obtained with different gas compositions were compared using the derivative of the real part of the impedance with respect of the natural logarithm of the frequency. Results show that internal steam reforming of ethanol takes place significantly on Ni-YSZ anode only above 760 °C. Comparisons of results obtained with reformate gas showed that the electrochemical cell performance is dominated by the conversion of hydrogen. The conversion of CO also occurs either directly or indirectly through the water-gas shift reaction but has a significant impact on the electrochemical performance only above 760 °C.

  16. The Effect of Photon Source on Heterogeneous Photocatalytic Oxidation of Ethanol by a Silica-Titania Composite

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Mazyck, David W.

    2011-01-01

    The objective of this study was to distinguish the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the silica-titania composite (STC)-catalyzed degradation of ethanol in the gas phase. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp ((gamma)max=365 nm) at its maximum light intensity or a UV-C germicidal lamp ((gamma)max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM/s) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol CO2 (mu)mol/photons). UV-C irradiation also led to decreased intermediate concentration in the effluent . compared to UV-A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy.

  17. Highly Ordered Periodic Au/TiO₂ Hetero-Nanostructures for Plasmon-Induced Enhancement of the Activity and Stability for Ethanol Electro-oxidation.

    Science.gov (United States)

    Jin, Zhao; Wang, Qiyu; Zheng, Weitao; Cui, Xiaoqiang

    2016-03-02

    The catalytic electro-oxidation of ethanol is the essential technique for direct alcohol fuel cells (DAFCs) in the area of alternative energy for the ability of converting the chemical energy of alcohol into the electric energy directly. Developing highly efficient and stable electrode materials with antipoisoning ability for ethanol electro-oxidation remains a challenge. A highly ordered periodic Au-nanoparticle (NP)-decorated bilayer TiO2 nanotube (BTNT) heteronanostructure was fabricated by a two-step anodic oxidation of Ti foil and the subsequent photoreduction of HAuCl4. The plasmon-induced charge separation on the heterointerface of Au/TiO2 electrode enhances the electrocatalytic activity and stability for the ethanol oxidation under visible light irradiation. The highly ordered periodic heterostructure on the electrode surface enhanced the light harvesting and led to the greater performance of ethanol electro-oxidation under irradiation compared with the ordinary Au NPs-decorated monolayer TiO2 nanotube (MTNT). This novel Au/TiO2 electrode also performed a self-cleaning property under visible light attributed to the enhanced electro-oxidation of the adsorbed intermediates. This light-driven enhancement of the electrochemical performances provides a development strategy for the design and construction of DAFCs.

  18. Epitaxial growth of zigzag PtAu alloy surface on Au nano-pentagrams with enhanced Pt utilization and electrocatalytic performance toward ethanol oxidation reaction

    International Nuclear Information System (INIS)

    Du, Cheng; Gao, Xiaohui; Zhuang, Zhihua; Cheng, Chunfeng; Zheng, Fuqin; Li, Xiaokun; Chen, Wei

    2017-01-01

    Highlights: • PtAu nanoalloy surface is heteroepitaxially grown on the pre-synthesized Au nano-pentagrams. • The PtAu/Au nano-pentagrams exhibit excellent electrocatalytic activity for ethanol oxidation. • The charge transfer resistance of PtAu/Au is lower than that of commercial Pt/C. • The durability and anti-poisoning ability of PtAu/Au is much better than those of commercial Pt/C - Abstract: Improving Pt utilization is of fundamental importance for many significant processes in energy conversion, which is strongly dependent on the surface structure of used catalysts. Based on the traditional Pt-on-Au system which has been proved to be an ideal nanostructure for improving the catalytic activity and stability of Pt, and the recent follow-up studies on this system, we introduce here a new strategy for fabricating Pt surface with high-index facets over the Pt-on-Au system. To achieve this goal, we elaborately designed and fabricated a unique zigzag PtAu alloy nanosurface on Au nano-pentagrams (PtAu/Au NPs) through epitaxial growth of Pt along the high-index facets on the pre-synthesized Au nano-pentagrams. Owing to the surface electronic interaction between Au and Pt and the exposed high-index facets from the unique morphology of zigzag PtAu alloy nanosurface, the as-prepared PtAu/Au NPs exhibited excellent electrocatalytic performance toward ethanol oxidation reaction (EOR) in alkaline condition. The specific activity (8.3 mA cm"−"2) and mass activity (4.4 A mg"−"1) obtained from PtAu/Au NPs are about 5.2 and 5.5 times, respectively, higher than those from commercial Pt/C for EOR.

  19. Identification of a cytochrome P4502E1/Bid/C1q-dependent axis mediating inflammation in adipose tissue after chronic ethanol feeding to mice.

    Science.gov (United States)

    Sebastian, Becky M; Roychowdhury, Sanjoy; Tang, Hui; Hillian, Antoinette D; Feldstein, Ariel E; Stahl, Gregory L; Takahashi, Kazue; Nagy, Laura E

    2011-10-14

    Chronic, heavy alcohol exposure results in inflammation in adipose tissue, insulin resistance, and liver injury. Here we have identified a CYP2E1/Bid/C1q-dependent pathway that is activated in response to chronic ethanol and is required for the development of inflammation in adipose tissue. Ethanol feeding for 25 days to wild-type (C57BL/6J) mice increased expression of multiple markers of adipose tissue inflammation relative to pair-fed controls independent of increased body weight or adipocyte size. Ethanol feeding increased the expression of CYP2E1 in adipocytes, but not stromal vascular cells, in adipose tissue and Cyp2e1(-/-) mice were protected from adipose tissue inflammation in response to ethanol. Ethanol feeding also increased the number of TUNEL-positive nuclei in adipose tissue of wild-type mice but not in Cyp2e1(-/-) or Bid (-/-) mice. Apoptosis contributed to adipose inflammation, as the expression of multiple inflammatory markers was decreased in mice lacking the Bid-dependent apoptotic pathway. The complement protein C1q binds to apoptotic cells, facilitating their clearance and activating complement. Making use of C1q-deficient mice, we found that activation of complement via C1q provided the critical link between CYP2E1/Bid-dependent apoptosis and onset of adipose tissue inflammation in response to chronic ethanol. In summary, chronic ethanol increases CYP2E1 activity in adipose, leading to Bid-mediated apoptosis and activation of complement via C1q, finally resulting in adipose tissue inflammation. Taken together, these data identify a novel mechanism for the development of adipose tissue inflammation that likely contributes to the pathophysiological effects of ethanol.

  20. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    Science.gov (United States)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  1. Study of total oxidation of ethanol using the perovskite-type oxides LaBO{sub 3} (B= Mn, Ni, Fe); Estudo da oxidacao total do etanol usando oxidos tipo perovskita LaBO{sub 3} (B= Mn, Ni, Fe)

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Ana Brigida [Centro Federal de Educacao Tecnologica do Espirito Santo, Vitoria, ES (Brazil). Centro de Ciencias e Tecnologias Quimicas]. E-mail: brigida@cefetes.br; Silva, Paulo Roberto Nagipe da [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias e Tecnologia; Freitas, Jair C.C. [Universidade Federal do Espirito Santo, Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Fisica; Almeida, Clara Muniz de [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Fisica

    2007-09-15

    The present work investigated the effect of coprecipitation-oxidant synthesis on the specific surface area of perovskite-type oxides LaBO{sub 3} (BMn, Ni, Fe) for total oxidation of ethanol. The perovskite-type oxides were characterized by X-ray diffraction, nitrogen adsorption (BET method), thermogravimetric analysis (TGA-DTA), TPR and X-ray photoelectron spectroscopy (XPS). Through method involving the coprecipitation-oxidant was possible to obtain catalysts with different BET specific surface areas, of 33-51 m{sup 2}/g. The results of the catalytic test confirmed that all oxides investigated in this work have specific catalytic activity for total oxidation of ethanol, though the temperatures for total conversion change for each transition metal. (author)

  2. Growing Platinum-Ruthenium-Tin ternary alloy nanoparticles on reduced graphene oxide for strong ligand effect toward enhanced ethanol oxidation reaction.

    Science.gov (United States)

    Xia, Qing Qing; Zhang, Lian Ying; Zhao, Zhi Liang; Li, Chang Ming

    2017-11-15

    Uniform Pt 1 Ru 0.5 Sn 0.5 ternary alloy nanoparticles are in situ deposited on reduced graphene oxide (Pt 1 Ru 0.5 Sn 0.5 -RGO) through its functional groups and defects as nucleation sites to greatly electrocatalyze ethanol oxidation reaction for much higher mass current densities, larger apparent specific current densities and better stability than commercial Pt-C catalyst (Pt-C(commer)). Mechanistic studies indicate that the excellent electrocatalytic activity and anti-poisoning are resulted from a strong ligand effect of the ternary alloy components, in which the charge transfer is boosted while decreasing the density of states close to the Fermi level of Pt to reduce bond energy between Pt and CO-like adsorbates for greatly improved anti-poisoning ability. This work holds a great promise to fabricate a high performance anode catalyst with a low Pt loading for direct ethanol fuel cells. Copyright © 2017. Published by Elsevier Inc.

  3. Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol

    Science.gov (United States)

    Jana, Rajkumar; Subbarao, Udumula; Peter, Sebastian C.

    2016-01-01

    Ordered intermetallic nanocrystals with high surface area are highly promising as efficient catalysts for fuel cell applications because of their unique electrocatalytic properties. The present work discusses about the controlled synthesis of ordered intermetallic Pd3Pb nanocrystals in different morphologies at relatively low temperature for the first time by polyol and hydrothermal methods both in presence and absence of surfactant. Here for the first time we report surfactant free synthesis of ordered flower-like intermetallic Pd3Pb nanocrystals in 10 s. The structural characteristics of the nanocrystals are confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. The as synthesized ordered Pd3Pb nanocrystals exhibit far superior electrocatalytic activity and durability towards formic acid and ethanol oxidation over commercially available Pd black (Pd/C). The morphological variation of nanocrystals plays a crucial role in the electrocatalytic oxidation of formic acid and ethanol. Among the catalysts, the flower-like Pd3Pb shows enhanced activity and stability in electrocatalytic formic acid and ethanol oxidation. The current density and mass activity of flower-like Pd3Pb catalyst are higher by 2.5 and 2.4 times than that of Pd/C for the formic acid oxidation and 1.5 times each for ethanol oxidation.

  4. Gastroprotective Effect of Geopropolis from Melipona scutellaris Is Dependent on Production of Nitric Oxide and Prostaglandin

    Directory of Open Access Journals (Sweden)

    Jerônimo Aparecido Ribeiro-Junior

    2015-01-01

    Full Text Available The aim of this study was to evaluate the gastroprotective activity of ethanolic extract of geopropolis (EEGP from Melipona scutellaris and to investigate the possible mechanisms of action. The gastroprotective activity of the EEGP was evaluated using model ulcer induced by ethanol. To elucidate the possible mechanisms of action, we investigated the involvement of the nonprotein sulfhydryl (NP-SH groups, nitric oxide and prostaglandins. In addition, the antisecretory activity of EEGP was also evaluated by pylorus ligated model. The EEGP orally administrated (300 mg/kg reduced the ulcerative lesions induced by the ethanol (P0.05. These results support the alternative medicine use of geopropolis as gastroprotective and the activities observed show to be related to nitric oxide and prostaglandins production.

  5. Gastroprotective Effect of Geopropolis from Melipona scutellaris Is Dependent on Production of Nitric Oxide and Prostaglandin.

    Science.gov (United States)

    Ribeiro-Junior, Jerônimo Aparecido; Franchin, Marcelo; Cavallini, Miriam Elias; Denny, Carina; de Alencar, Severino Matias; Ikegaki, Masaharu; Rosalen, Pedro Luiz

    2015-01-01

    The aim of this study was to evaluate the gastroprotective activity of ethanolic extract of geopropolis (EEGP) from Melipona scutellaris and to investigate the possible mechanisms of action. The gastroprotective activity of the EEGP was evaluated using model ulcer induced by ethanol. To elucidate the possible mechanisms of action, we investigated the involvement of the nonprotein sulfhydryl (NP-SH) groups, nitric oxide and prostaglandins. In addition, the antisecretory activity of EEGP was also evaluated by pylorus ligated model. The EEGP orally administrated (300 mg/kg) reduced the ulcerative lesions induced by the ethanol (P 0.05). These results support the alternative medicine use of geopropolis as gastroprotective and the activities observed show to be related to nitric oxide and prostaglandins production.

  6. Enhanced electro-oxidation of ethanol using PtSn/CeO{sub 2}-C electrocatalyst prepared by an alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Almir Oliveira; Farias, Luciana A.; Dias, Ricardo R.; Brandalise, Michelle; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 - Cidade Universitaria, CEP 05508-900 Sao Paulo-SP (Brazil)

    2008-09-15

    PtSn/CeO{sub 2}-C electrocatalysts were prepared by an alcohol-reduction process using ethylene glycol as solvent and reduction agent and CeO{sub 2} and Vulcan Carbon XC72 as supports. The electrocatalysts were characterized by EDX and XRD. The electro-oxidation of ethanol was studied at room temperature by chronoamperometry. PtSn/CeO{sub 2}-C electrocatalyst with 15 wt% of CeO{sub 2} showed a significant increase of performance for ethanol oxidation compared to PtSn/C catalyst. Preliminary tests at 100C on a single cell of a direct ethanol fuel cell (DEFC) also confirm the results obtained by chronoamperometry. (author)

  7. Temperature-dependent electrical property transition of graphene oxide paper

    International Nuclear Information System (INIS)

    Huang Xingyi; Jiang Pingkai; Zhi Chunyi; Golberg, Dmitri; Bando, Yoshio; Tanaka, Toshikatsu

    2012-01-01

    Reduction of graphene oxide is primarily important because different reduction methods may result in graphene with totally different properties. For systematically exploring the reduction of graphene oxide, studies of the temperature-dependent electrical properties of graphene oxide (GO) are urgently required. In this work, for the first time, broadband dielectric spectroscopy was used to carry out an in situ investigation on the transition of the electrical properties of GO paper from −40 to 150 °C. The results clearly reveal a very interesting four-stage transition of electrical properties of GO paper with increasing temperature: insulator below 10 °C (stage 1), semiconductor at between 10 and 90 °C (stage 2), insulator at between 90 and 100 °C (stage 3), and semiconductor again at above 100 °C (stage 4). Subsequently, the transition mechanism was discussed in combination with detailed dielectric properties, microstructure and thermogravimetric analyses. It is suggested that the temperature-dependent transition of electronic properties of GO is closely associated with the ion mobility, water molecules removal and the reduction of GO in the GO paper. Most importantly, the present work clearly demonstrates the reduction of GO paper starts at above 100 °C. (paper)

  8. Dose-Dependent Change in Elimination Kinetics of Ethanol due to Shift of Dominant Metabolizing Enzyme from ADH 1 (Class I to ADH 3 (Class III in Mouse

    Directory of Open Access Journals (Sweden)

    Takeshi Haseba

    2012-01-01

    Full Text Available ADH 1 and ADH 3 are major two ADH isozymes in the liver, which participate in systemic alcohol metabolism, mainly distributing in parenchymal and in sinusoidal endothelial cells of the liver, respectively. We investigated how these two ADHs contribute to the elimination kinetics of blood ethanol by administering ethanol to mice at various doses, and by measuring liver ADH activity and liver contents of both ADHs. The normalized AUC (AUC/dose showed a concave increase with an increase in ethanol dose, inversely correlating with β. CLT (dose/AUC linearly correlated with liver ADH activity and also with both the ADH-1 and -3 contents (mg/kg B.W.. When ADH-1 activity was calculated by multiplying ADH-1 content by its Vmax⁡/mg (4.0 and normalized by the ratio of liver ADH activity of each ethanol dose to that of the control, the theoretical ADH-1 activity decreased dose-dependently, correlating with β. On the other hand, the theoretical ADH-3 activity, which was calculated by subtracting ADH-1 activity from liver ADH activity and normalized, increased dose-dependently, correlating with the normalized AUC. These results suggested that the elimination kinetics of blood ethanol in mice was dose-dependently changed, accompanied by a shift of the dominant metabolizing enzyme from ADH 1 to ADH 3.

  9. Pt-Richcore/Sn-Richsubsurface/Ptskin Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction.

    Science.gov (United States)

    Rizo, Rubén; Arán-Ais, Rosa M; Padgett, Elliot; Muller, David A; Lázaro, Ma Jesús; Solla-Gullón, José; Feliu, Juan M; Pastor, Elena; Abruña, Héctor D

    2018-03-14

    Direct ethanol fuel cells are one of the most promising electrochemical energy conversion devices for portable, mobile and stationary power applications. However, more efficient and stable and less expensive electrocatalysts are still required. Interestingly, the electrochemical performance of the electrocatalysts toward the ethanol oxidation reaction can be remarkably enhanced by exploiting the benefits of structural and compositional sensitivity and control. Here, we describe the synthesis, characterization, and electrochemical behavior of cubic Pt-Sn nanoparticles. The electrochemical activity of the cubic Pt-Sn nanoparticles was found to be about three times higher than that obtained with unshaped Pt-Sn nanoparticles and six times higher than that of Pt nanocubes. In addition, stability tests indicated the electrocatalyst preserves its morphology and remains well-dispersed on the carbon support after 5000 potential cycles, while a cubic (pure) Pt catalyst exhibited severe agglomeration of the nanoparticles after a similar stability testing protocol. A detailed analysis of the elemental distribution in the nanoparticles by STEM-EELS indicated that Sn dissolves from the outer part of the shell after potential cycling, forming a ∼0.5 nm Pt skin. This particular atomic composition profile having a Pt-rich core, a Sn-rich subsurface layer, and a Pt-skin surface structure is responsible for the high activity and stability.

  10. Vanillin abrogates ethanol induced gastric injury in rats via modulation of gastric secretion, oxidative stress and inflammation.

    Science.gov (United States)

    Al Asmari, Abdulrahman; Al Shahrani, Hamoud; Al Masri, Nasser; Al Faraidi, Ahmed; Elfaki, Ibrahim; Arshaduddin, Mohammed

    2016-01-01

    Vanillin is commonly used as an additive in food, medicine and cosmetics, but its effect has not yet been studied in gastric injury. Therefore the effect of vanillin was studied in experimental gastric ulcer. Gastric secretion and acidity were studied in pylorus ligated rats. Ulcer index, levels of gastric mucus, malondialdehyde (MDA), myeloperoxidase activity (MPO), expression of nuclear factor kappa B (NF-κB) p65, and histopathological changes were determined in ethanol induced gastric ulcer. Pre treatment with vanillin significantly reduced gastric secretion ( P  Vanillin significantly restored the depleted gastric wall mucus levels ( P  Vanillin was also effective in alleviating the damage to the histological architecture and the activation of mast cells induced by ethanol. Together the results of this study highlight the gastroprotective activity of vanillin in gastric ulcers of rats through multiple actions that include inhibition of gastric secretion and acidity, reduction of inflammation and oxidative stress, suppression of expression of NF-κB, and restoration of the histological architecture.

  11. Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: making ir capable of splitting C-C bond.

    Science.gov (United States)

    Li, Meng; Cullen, David A; Sasaki, Kotaro; Marinkovic, Nebojsa S; More, Karren; Adzic, Radoslav R

    2013-01-09

    Splitting the C-C bond is the main obstacle to electrooxidation of ethanol (EOR) to CO(2). We recently demonstrated that the ternary PtRhSnO(2) electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article, we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We characterized and compared the properties of several carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO(2) NP core decorated with multimetallic nanoislands (MM' = PtIr, PtRh, IrRh, PtIrRh) prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM'/SnO(2) NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity toward CO(2) formation of several of these MM'/SnO(2)/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO(2)/C catalysts. We demonstrate that the PtIr/SnO(2)/C catalyst with high Ir content shows outstanding catalytic properties with the most negative EOR onset potential and reasonably good selectivity toward ethanol complete oxidation to CO(2).

  12. Spontaneous deposition of Ru on Pt (100: morphological and electrochemical studies. Preliminary results of ethanol oxidation at Pt(100/Ru

    Directory of Open Access Journals (Sweden)

    Colle Vinicius D.

    2003-01-01

    Full Text Available In the present work ruthenium was deposited in submonolayer amounts on Pt(100 by spontaneous deposition at several deposition times. The Pt (100/Ru surfaces were analyzed using ex-situ STM to image the deposits characteristic of ruthenium on Pt (100. It was observed the formation of ruthenium islands with diameters between 1.0 and 4.5 nm with bi-atomic thickness in the center of the islands. A homogeneous distribution of the ruthenium islands on the platinum terraces was found, with no preferential deposition on steps or surface defect sites. The ruthenium coverage degree had been calculated by the decrease of charge of the hydrogen adsorption-desorption peaks in the cyclic voltammograms of the Pt(100/Ru electrodes. The Pt(100/Ru electrodes with a ruthenium coverage degree of ca. 0.3 showed a high activity for the ethanol electrooxidation. The electrochemical experimental results support strongly the bifunctional mechanism for the enhanced ethanol oxidation.

  13. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.

    Science.gov (United States)

    Wang, Wei; Su, Chao; Ran, Ran; Zhao, Bote; Shao, Zongping; Tade, Moses O; Liu, Shaomin

    2014-06-01

    The potential to use ethanol as a fuel places solid oxide fuel cells (SOFCs) as a sustainable technology for clean energy delivery because of the renewable features of ethanol versus hydrogen. In this work, we developed a new class of anode catalyst exemplified by Ni+BaZr0.4Ce0.4Y0.2O3 (Ni+BZCY) with a water storage capability to overcome the persistent problem of carbon deposition. Ni+BZCY performed very well in catalytic efficiency, water storage capability and coking resistance tests. A stable and high power output was well maintained with a peak power density of 750 mW cm(-2) at 750 °C. The SOFC with the new robust anode performed for seven days without any sign of performance decay, whereas SOFCs with conventional anodes failed in less than 2 h because of significant carbon deposition. Our findings indicate the potential applications of these water storage cermets as catalysts in hydrocarbon reforming and as anodes for SOFCs that operate directly on hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. On the chemistry of ethanol on basic oxides: revising mechanisms and intermediates in the Lebedev and Guerbet reactions.

    Science.gov (United States)

    Chieregato, Alessandro; Velasquez Ochoa, Juliana; Bandinelli, Claudia; Fornasari, Giuseppe; Cavani, Fabrizio; Mella, Massimo

    2015-01-01

    A common way to convert ethanol into chemicals is by upgrading it over oxide catalysts with basic features; this method makes it possible to obtain important chemicals such as 1-butanol (Guerbet reaction) and 1,3-butadiene (Lebedev reaction). Despite their long history in chemistry, the details of the close inter-relationship of these reactions have yet to be discussed properly. Our present study focuses on reactivity tests, in situ diffuse reflectance infrared Fourier transform spectroscopy, MS analysis, and theoretical modeling. We used MgO as a reference catalyst with pure basic features to explore ethanol conversion from its very early stages. Based on the obtained results, we formulate a new mechanistic theory able to explain not only our results but also most of the scientific literature on Lebedev and Guerbet chemistry. This provides a rational description of the intermediates shared by the two reaction pathways as well as an innovative perspective on the catalyst requirements to direct the reaction pathway toward 1-butanol or butadiene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synergy in lignin upgrading by a combination of Cu-based mixed oxide and Ni-phosphide catalysts in supercritical ethanol

    NARCIS (Netherlands)

    Koranyi, T.I.; Huang, X.; Coumans, A.E.; Hensen, E.J.M.

    2017-01-01

    The depolymerization of lignin to bioaromatics usually requires a hydrodeoxygenation (HDO) step to lower the oxygen content. A mixed Cu–Mg–Al oxide (CuMgAlOx) is an effective catalyst for the depolymerization of lignin in supercritical ethanol. We explored the use of Ni-based cocatalysts, i.e.

  16. Significant promotion effect of carbon nanotubes on the electrocatalytic activity of supported Pd NPs for ethanol oxidation reaction of fuel cells: the role of inner tubes.

    Science.gov (United States)

    Zhang, Jin; Cheng, Yi; Lu, Shanfu; Jia, Lichao; Shen, Pei Kang; Jiang, San Ping

    2014-11-18

    The inner tubes of carbon nanotubes (CNTs) have a significant promotion effect on the electrocatalytic activity of Pd nanoparticles (NPs) for the ethanol oxidation of direct alcohol fuel cells (DAFCs) and Pd NPs supported on CNTs with 3-7 walls show a much higher activity as compared to that supported on typical single-walled and multi-walled CNTs.

  17. Dose-dependent suppression by ethanol of transient auditory 40-Hz response.

    Science.gov (United States)

    Jääskeläinen, I P; Hirvonen, J; Saher, M; Pekkonen, E; Sillanaukee, P; Näätänen, R; Tiitinen, H

    2000-02-01

    Acute alcohol (ethanol) challenge is known to induce various cognitive disturbances, yet the neural basis of the effect is poorly known. The auditory transient evoked gamma-band (40-Hz) oscillatory responses have been suggested to be associated with various perceptual and cognitive functions in humans; however, alcohol effects on auditory 40-Hz responses have not been investigated to date. The objective of the study was to test the dose-related impact of alcohol on auditory transient evoked 40-Hz responses during a selective-attention task. Ten healthy social drinkers ingested, in four separate sessions, 0.00, 0. 25, 0.50, or 0.75 g/kg of 10% (v/v) alcohol solution. The order of the sessions was randomized and a double-blind procedure was employed. During a selective attention task, 300-Hz standard and 330-Hz deviant tones were presented to the left ear, and 1000-Hz standards and 1100-Hz deviants to the right ear of the subjects (P=0. 425 for each standard, P=0.075 for each deviant). The subjects attended to a designated ear, and were to detect the deviants therein while ignoring tones to the other ear. The auditory transient evoked 40-Hz responses elicited by both the attended and unattended standard tones were significantly suppressed by the 0.50 and 0.75 g/kg alcohol doses. Alcohol suppresses auditory transient evoked 40-Hz oscillations already with moderate blood alcohol concentrations. Given the putative role of gamma-band oscillations in cognition, this finding could be associated with certain alcohol-induced cognitive deficits.

  18. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Science.gov (United States)

    Price, Alex; Pearson, Victoria K.; Schwenzer, Susanne P.; Miot, Jennyfer; Olsson-Francis, Karen

    2018-01-01

    This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate

  19. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Directory of Open Access Journals (Sweden)

    Alex Price

    2018-03-01

    Full Text Available This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with

  20. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism.

    Science.gov (United States)

    Price, Alex; Pearson, Victoria K; Schwenzer, Susanne P; Miot, Jennyfer; Olsson-Francis, Karen

    2018-01-01

    This work considers the hypothetical viability of microbial nitrate-dependent Fe 2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe 2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe 2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1-3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe 2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate

  1. Mild Synthesis of Pt/SnO2 /Graphene Nanocomposites with Remarkably Enhanced Ethanol Electro-oxidation Activity and Durability.

    Science.gov (United States)

    Qu, Yunteng; Gao, Yunzhi; Wang, Long; Rao, Jiancun; Yin, Geping

    2016-01-04

    We have designed a new Pt/SnO2 /graphene nanomaterial by using L-arginine as a linker; this material shows the unique Pt-around-SnO2 structure. The Sn(2+) cations reduce graphene oxide (GO), leading to the in situ formation of SnO2 /graphene hybrids. L-Arginine is used as a linker and protector to induce the in situ growth of Pt nanoparticles (NPs) connected with SnO2 NPs and impede the agglomeration of Pt NPs. The obtained Pt/SnO2 /graphene composites exhibit superior electrocatalytic activity and stability for the ethanol oxidation reaction as compared with the commercial Pt/C catalyst owing to the close-connected structure between the Pt NPs and SnO2 NPs. This work should have a great impact on the rational design of future metal-metal oxide nanostructures with high catalytic activity and stability for fuel cell systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Comparative Study of Basic, Amphoteric, and Acidic Catalysts in the Oxidative Coupling of Methanol and Ethanol for Acrolein Production.

    Science.gov (United States)

    Lilić, Aleksandra; Wei, Tiantian; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-09-11

    The impact of acid/base properties (determined by adsorption microcalorimetry) of various catalysts on the cross-aldolization of acetaldehyde and formaldehyde leading to acrolein was methodically studied in oxidizing conditions starting from a mixture of methanol and ethanol. The aldol condensation and further dehydration to acrolein were carried out on catalysts presenting various acid/base properties (MgO, Mg-Al oxides, Mg/SiO 2 , NbP, and heteropolyanions on silica, HPA/SiO 2 ). Thermodynamic calculations revealed that cross-aldolization is always favored compared with self-aldolization of acetaldehyde, which leads to crotonaldehyde formation. The presence of strong basic sites is shown to be necessary, but a too high amount drastically increases CO x production. On strong acid sites, production of acrolein and carbon oxides (CO x ) does not increase with temperature. The optimal catalyst for this process should be amphoteric with a balanced acid/base cooperation of medium strength sites and a small amount (150 kJ mol -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  4. The oxidative burst reaction in mammalian cells depends on gravity.

    Science.gov (United States)

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver

    2013-12-20

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function

  5. Lateral dimension-dependent antibacterial activity of graphene oxide sheets.

    Science.gov (United States)

    Liu, Shaobin; Hu, Ming; Zeng, Tingying Helen; Wu, Ran; Jiang, Rongrong; Wei, Jun; Wang, Liang; Kong, Jing; Chen, Yuan

    2012-08-21

    Graphene oxide (GO) is a promising precursor to produce graphene-family nanomaterials for various applications. Their potential health and environmental impacts need a good understanding of their cellular interactions. Many factors may influence their biological interactions with cells, and the lateral dimension of GO sheets is one of the most relevant material properties. In this study, a model bacterium, Escherichia coli ( E. coli ), was used to evaluate the antibacterial activity of well-dispersed GO sheets, whose lateral size differs by more than 100 times. Our results show that the antibacterial activity of GO sheets toward E. coli cells is lateral size dependent. Larger GO sheets show stronger antibacterial activity than do smaller ones, and they have different time- and concentration-dependent antibacterial activities. Large GO sheets lead to most cell loss after 1 h incubation, and their concentration strongly influences antibacterial activity at relative low concentration (oxidation capacity toward glutathione is similar, consistent with X-ray photoelectron spectroscopy and ultraviolet-visible absorption spectroscopy results. This suggests the lateral size-dependent antibacterial activity of GO sheets is caused by neither their aggregation states, nor oxidation capacity. Atomic force microscope analysis of GO sheets and cells shows that GO sheets interact strongly with cells. Large GO sheets more easily cover cells, and cells cannot proliferate once fully covered, resulting in the cell viability loss observed in the followed colony counting test. In contrast, small GO sheets adhere to the bacterial surfaces, which cannot effectively isolate cells from environment. This study highlights the importance of tailoring the lateral dimension of GO sheets to optimize the application potential with minimal risks for environmental health and safety.

  6. Fuel ethanol discussion paper

    International Nuclear Information System (INIS)

    1992-01-01

    In recognition of the potential benefits of ethanol and the merits of encouraging value-added agricultural development, a committee was formed to develop options for the role of the Ontario Ministry of Agriculture and Food in the further development of the ethanol industry in Ontario. A consultation with interested parties produced a discussion paper which begins with an outline of the role of ethanol as an alternative fuel. Ethanol issues which require industry consideration are presented, including the function of ethanol as a gasoline oxygenate or octane enhancer, environmental impacts, energy impacts, agricultural impacts, trade and fiscal implications, and regulation. The ethanol industry and distribution systems in Ontario are then described. The current industry consists of one ethanol plant and over 30 retail stations. The key issue for expanding the industry is the economics of producing ethanol. At present, production of ethanol in the short term depends on tax incentives amounting to 23.2 cents/l. In the longer term, a significant reduction in feedstock costs and a significant improvement in processing technology, or equally significant gasoline price increases, will be needed to create a sustainable ethanol industry that does not need incentives. Possible roles for the Ministry are identified, such as support for ethanol research and development, financial support for construction of ethanol plants, and active encouragement of market demand for ethanol-blended gasolines

  7. Influence of Support Material of PtSnNiGa/C Electrocatalysts for Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Deise M Santos

    2017-07-01

    Full Text Available Ethanol is a promising alternative source for fuel cells due to its low toxicity and high power density. However, the cleavage of the C-C bond, CO poisoning, and low electrocatalyst stability are still considered crucial issues. To overcome this limitation, binary, ternary and quaternary electrocatalysts have been investigated along with new carbon supports. This paper presents a physicochemical and electrochemical investigation of quaternary PtSnNiGa/C electrocatalysts supported on Vulcan XC72 and Printex-L6 carbons and also a carbon produced by natural gas pyrolysis in an Argon plasma torch (Black Plasma. The electrochemical characterization was performed through cyclic voltammetry, chronoamperometry, chronopotentiometry and electrochemical impedance spectroscopy in the presence of ethanol 1.0 mol L-1. Energy dispersive X-ray spectroscopy, X-ray diffraction, Raman spectroscopy and transmission electron microscopy were also carried out for physicochemical characterization. The electrochemical results show that the quaternary electrocatalysts supported on Vulcan XC72 and Printex-L6 carbons display a high current normalized by Pt mass and are more stable than the electrocatalyst supported on Black Plasma. In addition, the quaternary electrocatalysts with reduced Pt loading display better electrocatalytic activity towards the EOR compared to high Pt loading electrocatalysts. DOI: http://dx.doi.org/10.17807/orbital.v9i3.949 

  8. Synthesis of Cobalt Powder by Reduction of Cobalt Oxide with Ethanol

    Science.gov (United States)

    Cetinkaya, S.; Eroglu, S.

    2018-03-01

    In this study, ethanol (C2H5OH) was used as a reducing agent for Co powder synthesis from Co3O4. It aimed to investigate the effects of temperature (700-900 K), reaction time (0-60 min), and gas flow rate on the reaction behavior of Co3O4 in ethanol flow. Mass measurement, x-ray diffraction, and scanning electron microscopy techniques were used to characterize the products. Single-phase Co powders with mean particle sizes of 0.51 μm and 0.70 μm were obtained within 10 min at 800 K and 900 K, respectively. Above 800 K, external mass transfer controlled the reduction process (Q a = 0.52 kJ/mole). Below 800 K, the process (Q a = 20.17 kJ/mole) was partly controlled by external mass transfer and partly by intrinsic chemical reaction kinetics. Significant C uptake was observed at 700 K and 750 K within 60 min. The reactions were discussed in the light of thermodynamic results, which predicted Co formation from Co3O4 and C2H5OH.

  9. A hot water extract of turmeric (Curcuma longa) suppresses acute ethanol-induced liver injury in mice by inhibiting hepatic oxidative stress and inflammatory cytokine production.

    Science.gov (United States)

    Uchio, Ryusei; Higashi, Yohei; Kohama, Yusuke; Kawasaki, Kengo; Hirao, Takashi; Muroyama, Koutarou; Murosaki, Shinji

    2017-01-01

    Turmeric ( Curcuma longa ) is a widely used spice that has various biological effects, and aqueous extracts of turmeric exhibit potent antioxidant activity and anti-inflammatory activity. Bisacurone, a component of turmeric extract, is known to have similar effects. Oxidative stress and inflammatory cytokines play an important role in ethanol-induced liver injury. This study was performed to evaluate the influence of a hot water extract of C. longa (WEC) or bisacurone on acute ethanol-induced liver injury. C57BL/6 mice were orally administered WEC (20 mg/kg body weight; BW) or bisacurone (60 µg/kg BW) at 30 min before a single dose of ethanol was given by oral administration (3·0 g/kg BW). Plasma levels of aspartate aminotransferase and alanine aminotransferase were markedly increased in ethanol-treated mice, while the increase of these enzymes was significantly suppressed by prior administration of WEC. The increase of alanine aminotransferase was also significantly suppressed by pretreatment with bisacurone. Compared with control mice, animals given WEC had higher hepatic tissue levels of superoxide dismutase and glutathione, as well as lower hepatic tissue levels of thiobarbituric acid-reactive substances, TNF-α protein and IL-6 mRNA. These results suggest that oral administration of WEC may have a protective effect against ethanol-induced liver injury by suppressing hepatic oxidation and inflammation, at least partly through the effects of bisacurone.

  10. Ethanol Total Oxidation Over Calcined Layered Double Hydroxides Modified with Organic Components

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jirátová, Květa; Klempa, Jan; Raabová, H.; Zapivovarski Votipka, Z.; Kovanda, F.

    2013-01-01

    Roč. 62, 5-6 (2013), s. 137-146 ISSN 0022-9830 R&D Projects: GA ČR GAP106/10/1762 Institutional support: RVO:67985858 Keywords : mixed oxides * Pluronic 123 * VOC oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  11. Analysis of performance losses of direct ethanol fuel cells with the aid of a reference electrode

    Science.gov (United States)

    Li, Guangchun; Pickup, Peter G.

    The performances of direct ethanol fuel cells with different anode catalysts, different ethanol concentrations, and at different operating temperatures have been studied. The performance losses of the cell have been separated into individual electrode performance losses with the aid of a reference electrode, ethanol crossover has been quantified, and CO 2 and acetic acid production have been measured by titration. It has been shown that the cell performance strongly depends on the anode catalyst, ethanol concentration, and operating temperature. It was found that the cathode and anode exhibit different dependences on ethanol concentration and operating temperature. The performance of the cathode is very sensitive to the rate of ethanol crossover. Product analysis provides insights into the mechanisms of electro-oxidation of ethanol.

  12. Analysis of performance losses of direct ethanol fuel cells with the aid of a reference electrode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guangchun; Pickup, Peter G. [Department of Chemistry, Memorial University of Newfoundland, Elizabeth Avenue, St. John' s, Newfoundland (Canada A 1B 3X7)

    2006-10-20

    The performances of direct ethanol fuel cells with different anode catalysts, different ethanol concentrations, and at different operating temperatures have been studied. The performance losses of the cell have been separated into individual electrode performance losses with the aid of a reference electrode, ethanol crossover has been quantified, and CO{sub 2} and acetic acid production have been measured by titration. It has been shown that the cell performance strongly depends on the anode catalyst, ethanol concentration, and operating temperature. It was found that the cathode and anode exhibit different dependences on ethanol concentration and operating temperature. The performance of the cathode is very sensitive to the rate of ethanol crossover. Product analysis provides insights into the mechanisms of electro-oxidation of ethanol. (author)

  13. Pd-NiO decorated multiwalled carbon nanotubes supported on reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation in alkaline medium

    Science.gov (United States)

    Rajesh, Dhanushkotti; Indra Neel, Pulidindi; Pandurangan, Arumugam; Mahendiran, Chinnathambi

    2018-06-01

    The synthesis of Pd-NiO nanoparticles decorated multiwalled carbon nanotubes (MWCNTs) on reduced graphene oxide (rGO) for ethanol electrooxidation is reported. NiO nanoparticles (NPs) were deposited on functionalized MWCNTs by wet impregnation method. Pd nanoparticles were formed on NiO-MWCNTs by the addition of PdCl2 and its reduction using NaBH4. The Pd-NiO/MWCNTs nanocomposite then deposited on rGO support using ultrasound irradiation which led to the formation of the Pd-NiO/MWCNTs/rGO electrocatalyst. The prepared electrocatalysts were characterized by XRD, SEM, HR-TEM and XPS analysis. Electrochemical measurements demonstrate that as synthesized Pd-NiO/MWCNTs/rGO electrocatalyst exhibit higher catalytic activity (90.89 mA/cm2) than either Pd/MWCNTs/rGO (43.05 mA/cm2) or Pd/C (28.0 mA/cm2) commercial catalyst. Chronoamperometry study of Pd-NiO/MWCNTs/rGO electrocatalyst showed long-term electrochemical stability. The enhanced catalytic activity of Pd-NiO/MWCNTs/rGO electrocatalyst for electrooxidation of ethanol can be attributed to the synergistic effect between Pd & NiO active sites.

  14. Size-dependent magnetic properties of branchlike nickel oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2017-01-01

    Full Text Available Branchlike nickel oxide nanocrystals with narrow size distribution are obtained by a solution growth method. The size-dependent of magnetic properties of the nickel oxides were investigated. The results of magnetic characterization indicate that the NiO nanocrystals with size below 12.8 nm show very weak ferromagnetic state at room temperature due to the uncompensated spins. Both of the average blocking temperature (Tb and the irreversible temperature (Tirr increase with the increase of nanoparticle sizes, while both the remnant magnetization and the coercivity at 300 K increase with the decrease of the particle sizes. Moreover, the disappearance of two-magnon (2M band and redshift of one-phonon longitudinal (1LO and two-phonon LO in vibrational properties due to size reduction are observed. Compared to the one with the spherical morphological, it is also found that nano-structured nickel oxides with the branchlike morphology have larger remnant magnetization and the coercivity at 5 K due to their larger surface-to-volume ratio and greater degree of broken symmetry at the surface or the higher proportion of broken bonds.

  15. Total Oxidation of Ethanol over Layered Double Hydroxide-Related Mixed Oxide Catalysts: Effect of Cation Composition.

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Kovanda, F.; Ludvíková, Jana; Balabánová, Jana; Klempa, Jan

    2016-01-01

    Roč. 277, NOV 15 (2016), s. 61-67 ISSN 0920-5861. [Czech-Italian-Spanish Conference on Molecular Sieves and Catalysis /16./. Amantea, 14.06.2015-17.06.2015] R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : layered double hydroxides * transition metal oxides * vox oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.636, year: 2016

  16. Hepatic lipid profiling of deer mice fed ethanol using 1H and 31P NMR spectroscopy: A dose-dependent subchronic study

    International Nuclear Information System (INIS)

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2012-01-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH − ) vs. hepatic ADH-normal (ADH + ) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH − deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH − and ADH + deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ( 1 H) and 31 phosphorus ( 31 P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH − deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH − deer mouse model. Analysis of NMR data of ADH − deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH 2 -) and FAMEs) were also mildly increased in ADH − deer mice fed 1 or 2

  17. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were

  18. Directional dependence of the threshold displacement energies in metal oxides

    Science.gov (United States)

    Cowen, Benjamin J.; El-Genk, Mohamed S.

    2017-12-01

    Molecular dynamics (MD) simulations are performed to investigate the directional dependence and the values of the threshold energies (TDEs) for the displacements of the oxygen and metal atoms and for producing stable Frenkel pairs in five metal oxides of Cr2O3, Al2O3, TiO2, SiO2, and MgO. The TDEs for the Frenkel pairs and atoms displacement are calculated in 66 crystallographic directions, on both the anion and cation sublattices. The performed simulations are for metal and oxygen PKA energies up to 350 and 400 eV, respectively. The calculated probability distributions for the atoms displacement and average number of Frenkel pairs produced in the different oxides are compared. The results revealed unique symmetrical patterns of the TDEs for the displacement of the atoms and the formation of stable Frenkel pairs, confirming the strong dependence on the direction and the crystalline structure of the oxides. Results also showed that the formation of stable Frenkel pairs is associated with the displacements of the PKAs and/or of the SKAs. The probabilities of the TDEs for the displacement of the oxygen and metal PKAs are consistently lower than those of the atoms in the crystal. In SiO2, TDEs for the displacement of oxygen and metal atoms and those for the formation of stable Frenkel pairs are the lowest, while those in TiO2 are among the highest. The results for Cr2O3 and Al2O3, which have the same crystal structure, are similar. The calculated TDEs for MgO, Al2O3 and TiO2 are generally in good agreement with the experimental values and the probability distributions of the TDEs for the PKAs in TiO2 are in good agreement with reported MD simulation results.

  19. PtRu/C and PtRuBi/C electrocatalysts prepared by two different methodologies of borohydride reduction process for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Brandalise, Michele; Tusi, Marcelo Marques; Piasentin, Ricardo Marcelo; Correa, Olandir Vercino; Linardi, Marcelo; Spinace, Estevam Vitorio; Oliveira Neto, Almir, E-mail: brandalise@usp.br, E-mail: mmtusi@usp.br, E-mail: rmpiasen@ipen.br, E-mail: ovcorrea@ipen.br, E-mail: mlinardi@ipen.br, E-mail: espinace@ipen.br, E-mail: aolivei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    PtRu/C (50:50) and PtRuBi/C (50:40:10) electrocatalysts were prepared by borohydride reduction using H{sub 2}PtCl{sub 6.6}H{sub 2}O, RuCl{sub 3.x}H{sub 2}O and Bi(NO{sub 3}){sub 3.5}H{sub 2}O as metals sources and Vulcan XC72 as support. The borohydride solution was added in two different ways: drop by drop and rapid addition of all the solution. The obtained electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electro-oxidation of ethanol was studied by cyclic voltammetry and chronoamperometry at room temperature and on a single cell of a direct ethanol fuel cell (DEFC) at 100 deg C. PtRuBi/C electrocatalysts showed superior performance for ethanol electro-oxidation than PtRu/C electrocatalysts prepared in a similar way. However, PtRuBi/C electrocatalyst prepared by rapid addition of the borohydride solution showed superior performance for ethanol electro oxidation at room temperature, while PtRuBi/C electrocatalyst prepared by addition drop by drop of borohydride solution showed superior performance on DEFC at 100 deg C. (author)

  20. PtRu/C and PtRuBi/C electrocatalysts prepared by two different methodologies of borohydride reduction process for ethanol electro-oxidation

    International Nuclear Information System (INIS)

    Brandalise, Michele; Tusi, Marcelo Marques; Piasentin, Ricardo Marcelo; Correa, Olandir Vercino; Linardi, Marcelo; Spinace, Estevam Vitorio; Oliveira Neto, Almir

    2009-01-01

    PtRu/C (50:50) and PtRuBi/C (50:40:10) electrocatalysts were prepared by borohydride reduction using H 2 PtCl 6.6 H 2 O, RuCl 3.x H 2 O and Bi(NO 3 ) 3.5 H 2 O as metals sources and Vulcan XC72 as support. The borohydride solution was added in two different ways: drop by drop and rapid addition of all the solution. The obtained electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electro-oxidation of ethanol was studied by cyclic voltammetry and chronoamperometry at room temperature and on a single cell of a direct ethanol fuel cell (DEFC) at 100 deg C. PtRuBi/C electrocatalysts showed superior performance for ethanol electro-oxidation than PtRu/C electrocatalysts prepared in a similar way. However, PtRuBi/C electrocatalyst prepared by rapid addition of the borohydride solution showed superior performance for ethanol electro oxidation at room temperature, while PtRuBi/C electrocatalyst prepared by addition drop by drop of borohydride solution showed superior performance on DEFC at 100 deg C. (author)

  1. A green method to prepare Pd-Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation

    Science.gov (United States)

    Li, Lingzhi; Chen, Mingxi; Huang, Guanbo; Yang, Nian; Zhang, Li; Wang, Huan; Liu, Yu; Wang, Wei; Gao, Jianping

    2014-10-01

    Bimetallic palladium-silver nanoparticles (NPs) supported on reduced oxide graphene (RGO) with different Pd/Ag ratios (Pd-Ag/RGO) were prepared by an easy green method which did not use any additional reducing agents or a dispersing agent. During the process, simultaneous redox reactions between AgNO3, K2PdCl4 and graphene oxide (GO) led to bimetallic Pd-Ag NPs. The morphology and composition of the Pd-Ag/RGO were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis and Raman spectroscopy. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of these Pd-Ag/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. Among the different Pd/Ag ratios, the Pd-Ag (1:1)/RGO had the best catalytic activities and stability. So it is a promising catalyst for direct alcohol fuel cell applications.

  2. ELECTROCHEMICAL OXIDATION OF ETHANOL USING Ni-Co-PVC COMPOSITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2011-07-01

    Full Text Available The morphological characteristics and electrochemical behavior of nickel metal foil (Ni, nickel-polyvinyl chloride (Ni-PVC and nickel-cobalt-polyvinyl chloride (Ni-Co-PVC electrodes in alkaline solution has been investigated. The morphological characteristics of the electrode surface were studied using SEM and EDS, while the electrochemical behavior of the electrodes was studied using cyclic voltammetry (CV. It was found that composite electrodes (Ni-PVC and Ni-Co-PVC have a porous, irregular and rough surface. In situ studies using electrochemical technique using those three electrodes exhibited electrochemical activity for redox system, as well as selectivity in the electrooxidation of ethanol to acetic acid. The studies also found that an electrokinetics and electrocatalytic activity behaviors of the electrodes prepared were Ni metal foil

  3. Au@Pd core-shell nanobricks with concave structures and their catalysis of ethanol oxidation.

    Science.gov (United States)

    Wang, Wenjin; Zhang, Jie; Yang, Shengchun; Ding, Bingjun; Song, Xiaoping

    2013-10-01

    Au@Pd core-shell nanobricks (CNBs) with concave surfaces and Pd shells with a thickness of approximately 5 nm were synthesized by co-reduction of HAuCl4 and H2 PdCl4 in the presence of Au seeds and Ag ions. These as-synthesized concave CNBs exhibit significantly enhanced catalytic activity for the electrooxidation of ethanol in alkaline media compared to the commercially-used Pd black. The improved performance of the Au@Pd CNBs can be attributed to the exposed stepped surfaces, high-index facets, and the synergistic effects of the core and shell metals. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation

    Science.gov (United States)

    Zhang, Ke; Xu, Hui; Yan, Bo; Wang, Jin; Gu, Zhulan; Du, Yukou

    2017-12-01

    This article reports a rapid synthetic method for the preparation of dendritic platinum-lead bimetallic catalysts by using an oil bath for 5 min in the presence of hexadecyltrimethylammonium chloride (CTAC) and ascorbic acid (AA). CTAC acts as a shape-direction agent, and AA acts as a reducing agent during the reaction process. A series of physical techniques are used to characterize the morphology, structure and electronic properties of the dendritic Pt/Pb nanoparticles, indicating the Pt/Pb dendrites are porous, highly alloying, and self-supported nanostructures. Various electrochemical techniques were also investigated the catalytic performance of the Pt/Pb catalysts toward the ethanol electrooxidation reaction. Cyclic voltammetry and chronoamperometry indicated that the synthesized dendritic Pt/Pb nanoparticles possessed much higher electrocatalytic performance than bulk Pt catalyst. This study may inspire the engineering of dendritic bimetallic catalysts, which are expected to have great potential applications in fuel cells.

  5. Ethanol Extract of Evodia rutaecarpa Attenuates Cell Growth through Caspase-Dependent Apoptosis in Benign Prostatic Hyperplasia-1 Cells

    Directory of Open Access Journals (Sweden)

    Eunsook Park

    2018-04-01

    Full Text Available The dried fruits of Evodia rutaecarpa Bentham have been used widely as a herbal medicine for the treatment of inflammatory disorders and abdominal pain. Benign prostatic hyperplasia (BPH is a nonmalignant disease characterized by overgrowth of prostates. Despite the pharmacological efficacy of the fruits of E. rutaecarpa against various diseases, their effects against BPH have not been reported. Here, we investigated the inhibitory activity of a 70% ethanol extract of E. rutaecarpa (EEER against BPH, and its underlying mechanisms regarding cell growth of BPH using BPH-1 cells. An in vitro 5α-reductase activity assay showed that EEER exhibited inhibitory activity against 5α-reductase. In BPH-1 cells, EEER treatment inhibited cell viability and reduced the expression of the proliferating cell nuclear antigen proliferating cell nuclear antigen (PCNA, cyclin D1, and phosphor-ERK1/2 proteins. Moreover, EEER also induced apoptosis, with chromatin condensation, apoptotic bodies, and internucleosomal DNA fragmentation. Regarding its underlying mechanisms, EEER exacerbated the activation of caspase-8 and caspase-3 in a concentration-dependent manner and eventually caused the cleavage of PARP. Taken together, these data demonstrated that EEER had a potent 5α-reductase inhibitory activity and that EEER treatment in BPH-1 cells inhibited cell viability via caspase-8- and caspase-3-dependent apoptosis. Therefore, EEER may be a potential phytotherapeutic agent for the treatment of BPH.

  6. Concentration-Dependent Protection by Ethanol Extract of Propolis against γ-Ray-Induced Chromosome Damage in Human Blood Lymphocytes

    Directory of Open Access Journals (Sweden)

    A. Montoro

    2011-01-01

    Full Text Available Radioprotection with natural products may be relevant to the mitigation of ionizing radiation-induced damage in mammalian systems; in this sense, propolis extracts have shown effects such as antioxidant, antitumoral, anti-inflammatory, and immunostimulant. We report for the first time a cytogenetic study to evaluate the radioprotective effect, in vitro, of propolis against radiation-induced chromosomal damage. Lymphocytes were cultured with increasing concentrations of ethanol extract of propolis (EEP, including 20, 40, 120, 250, 500, 750, 1000, and 2000 μg mL−1 and then exposed to 2 Gy γ-rays. A significant and concentration-dependent decrease is observed in the frequency of chromosome aberrations in samples treated with EEP. The protection against the formation of dicentrics was concentration-dependent, with a maximum protection at 120 μg mL−1 of EEP. The observed frequency of dicentrics is described as negative exponential function, indicating that the maximum protectible fraction of dicentrics is approximately 44%. Free radical scavenging and antioxidant activities are the mechanisms that these substances use to protect cells from ionizing radiation.

  7. The Complete Oxidation of Ethanol at Low Temperature over a Novel Pd-Ce/γ-Al2O3-TiO2 Catalyst

    International Nuclear Information System (INIS)

    Wang, Yanping; Zhao, Jinshuang; Wang, Xiaoli; Li, Zhe; Liu, Pengfei

    2013-01-01

    Pd-Ce/γ-Al 2 O 3 -TiO 2 catalysts were prepared by combined sol.gel and impregnation methods. Transmission electron microscopy, X-ray diffraction, H 2 -temperature-programmed reduction, O 2 -temperature-programmed desorption, and ethanol oxidation experiments were conducted to determine the properties of the catalysts. Addition of an optimal amount of Ce improved the performance of the Pd/γ-Al 2 O 3 -TiO 2 catalyst in promoting the complete oxidation of ethanol. The catalyst with 1% Ce exhibited the highest activity, and catalyzed complete oxidation of ethanol at 175 .deg. C; its selectivity to CO 2 reached 87%. Characterization results show that addition of appropriate amount of Ce could enrich the PdO species, and weaken the Pd-O bonds, thus enhancing oxidation ability of the catalyst. Meanwhile, the introduction of CeO 2 could make PdO better dispersed on γ-Al 2 O 3 -TiO 2 , which is beneficial for the improvement of the catalytic oxidation activity

  8. Influence of oxidation state on the pH dependence of hydrous iridium oxide films

    International Nuclear Information System (INIS)

    Steegstra, Patrick; Ahlberg, Elisabet

    2012-01-01

    Many electrochemical reactions taking place in aqueous solution consume or produce protons. The pH in the diffusion layer can therefore be significantly altered during the reaction and there is a need for in situ pH measurements tracing this near surface pH. In the present paper the rotating ring disc technique was used to measure near surface pH changes during oxygen reduction, utilising hydrous iridium oxide as the pH sensing probe. Before such experiments a good understanding of the pH sensing properties of these films is required and the impact of the oxidation state of the film on the pH sensing properties was investigated as well as the influence of solution redox species. The pH sensitivity (depicted by dE/dpH) was found to depend on the average oxidation state of the film in a manner resembling the cyclic voltammetry response. In all cases the pH response is “supernernstian” with more than one proton per electron. The origin of this behaviour is discussed in the context of acid-base properties of the film and the existence of both hydrous and anhydrous oxide phases. The pH response depends also on the redox properties of the solution but can be optimised for various purposes by conditioning the film at different potentials. This was clearly illustrated by adding hydrogen peroxide, an intermediate in the oxygen reduction reaction, to the solution. It was shown that hydrous iridium oxide can be used as a reliable in situ pH sensor provided that care is taken to optimise the oxidation state of the film.

  9. Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment.

    Science.gov (United States)

    Li, Hailong; Xiong, Lian; Chen, Xuefang; Wang, Can; Qi, Gaoxiang; Huang, Chao; Luo, Mutan; Chen, Xinde

    2017-03-01

    This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Temperature effect on the electrode kinetics of ethanol oxidation on Pd modified Pt electrodes and the estimation of intermediates formed in alkali medium

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, S.S.; Dutta, A. [Department of Chemistry, Bengal Engineering and Science University, PO-B. Garden, Shibpur, Howrah 711 103, West Bengal (India); Datta, J., E-mail: jayati_datta@rediffmail.co [Department of Chemistry, Bengal Engineering and Science University, PO-B. Garden, Shibpur, Howrah 711 103, West Bengal (India)

    2010-12-01

    Ethanol has been recognized as the ideal fuel for direct alcohol fuel cell (DAFC) systems due to its high energy density, non-toxicity and its bio-generation. However the complete conversion of ethanol to CO{sub 2} is still met with challenges, due to dearth of suitable catalysts for the electro-oxidation. In the present work the effect of temperature on the catalytic oxidation of ethanol in alkaline medium over electrodeposited Pt and Pt-Pd alloyed nano particles on carbon support and also on the product formation during the course of reaction have been studied within the temperature range of 20-80 {sup o}C. The information on surface morphology, structural characteristics and bulk composition of the catalyst was obtained using SEM, XRD and EDX. BET surface area and pore widths of the catalyst particles were calculated by applying the BET equation to the adsorption isotherms. The electrochemical techniques like cyclic voltammetry, chronoamperometry and impedance spectroscopy were employed to investigate the electrochemical parameters related to electro-oxidation of ethanol in alkaline pH on the catalyst surfaces under the influence of temperature. The results show that the oxidation kinetics of ethanol on the alloyed Pt-Pd/C catalysts is significantly improved compared to that on Pt alone. The observations were interpreted in terms of the synergistic effect of higher electrochemical surface area, preferred OH{sup -} adsorption on the surface and the ad-atom contribution of the alloyed matrix. A pronounced influence of temperature on the reaction kinetics was manifested in the diminution of charge transfer resistance and activation energy of the ethanol oxidation with Pd incorporation into the Pt matrix, ensuring greater tolerance of the alloyed catalyst towards ethanolic residues. The higher yield of the reaction products like acetate and CO{sub 3}{sup -2} on the alloyed catalyst compared to Pt alone in alkaline medium, as estimated by ion chromatography, further

  11. Palladium-based electrocatalysts for ethanol oxidation reaction in DEFC; Eletrocatalisadores de paladio para reacao de oxidacao do etanol em DEFC

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, L.P.R. de; Elsheikh, A.; Silva, E. L. da; Radtke, C.; Amico, S.C.; Malfatti, C.F., E-mail: leticiaprm@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2014-07-01

    Direct ethanol fuel cells require the use of electrocatalysts to promote bond cleavage of the ethanol molecule in an efficient way. Currently, most electrocatalysts contain platinum, which enables improved catalytic activity and stability in acidic media. However platinum presents high cost and low availability. Based on that, novel catalysts have been developed, such as those based on palladium and its alloys, which have attained excellent results in the oxidation of ethanol in alkaline media. In this work, Pd, PdSn and PdNiSn catalysts supported on Vulcan XC72R carbon were synthesized via impregnation/reduction. The electrocatalysts were characterized by RBS, XRD and cyclic voltammetry. The X-ray diffraction results showed the formation of an alloy and not the deposition of isolated elements. The synthesized catalysts displayed good catalytic activity, as observed by cyclic voltammetry, being the best electrochemical performance achieved by the ternary alloy. (author)

  12. Ethanol gas sensing performance of high-dimensional fuzz metal oxide nanostructure

    Science.gov (United States)

    Ibano, Kenzo; Kimura, Yoshihiro; Sugahara, Tohru; Lee, Heun Tae; Ueda, Yoshio

    2018-04-01

    Gas sensing ability of the He plasma induced fiber-like nanostructure, so-called fuzz structure, was firstly examined. A thin Mo layer deposited on a quartz surface was irradiated by He plasma to form the fuzz structure and oxidized by annealing in a quartz furnace. Electric conductivity of the fuzz Mo oxide layer was then measured through the Au electrodes deposited on the layer. Changes in electric conductivity by C2H5OH gas flow were examined as a function of temperature from 200 to 400 °C. Improved sensitivities were observed for the specimens after a fuzz nanostructure formation. However, the sensor developed in this study showed lower sensitivities than previously reported MoO3 nano-rod sensor, further optimization of oxidation is needed to improve the sensitivity.

  13. The immunomodulatory effect of Zingiber cassumunar ethanolic extract on phagocytic activity, nitrit oxide and reaxtive oxygen intermediate secretions of macrophage in mice

    Science.gov (United States)

    Nurkhasanah; Santoso, R. D.; Fauziah, R.

    2017-11-01

    Immunomodulators could protect the body from a variety of infectious agents and boost immunity. Zingiber cassumunar rhizome or bangle potentially showed as an immunomodulator through increasing of macrophage activity in vitro. The objective of the study was to determine the effect of Z. cassumunar rhizome ethanolic extract on phagocytic activity, nitrite oxide (NO) and reactive oxygen intermediate (ROI) secretions in macrophages in vivo. A total of 200 g of Z. cassumunar rhizome was powdered, macerated in 96% ethanol and evaporated to get concentrated extract. Mice were divided into 5 groups as follow: the normal group was given by water only, the negative control group was given by a 0.94% CMC-Na suspension, the treatment groups were given by 250, 500 and 1000 mg/kgBW, respectively, of Z. cassumunar ethanolic extract. The extract was administered orally for 7 days. On the 8th day the mice were injected intraperitoneally 0.7 mg/kg BW of lipopolysaccharide. Four hours later macrophage was isolated. Furthermore, the determination of the phagocytic activity, NO and ROI secretions levels of macrophage were performed. The treatments of 250, 500 and 1000 mg/kg BW of Z. cassumunar ethanolic extract significantly increase the ROI and NO secretions levels (p0.05) of macrophage. Z. cassumunar ethanolic extract have immunomodulatory effect in vivo.

  14. Indium oxide thin film based ammonia gas and ethanol vapour sensor

    Indian Academy of Sciences (India)

    Unknown

    acetone and dried under an electric lamp (100 W). Thin films of indium oxide ... A λ-19, UV–VIS Spectrophotometer (Perkin Elmer, USA) was used for measuring .... tion of ammonia is observed through glowing of LED. LM3914, LED driver is ...

  15. Total Oxidation of Ethanol and Toluene over Ceria-Zirconia Supported Platinum Catalysts.

    Czech Academy of Sciences Publication Activity Database

    Topka, Pavel; Kaluža, Luděk; Gaálová, Jana

    2016-01-01

    Roč. 70, č. 7 (2016), s. 898-906 ISSN 0366-6352 R&D Projects: GA ČR GP13-24186P Institutional support: RVO:67985858 Keywords : oxidation * volatile organic compounds * platinum Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.258, year: 2016

  16. An investigation into the electro-oxidation of ethanol and 2-propanol ...

    Indian Academy of Sciences (India)

    Unknown

    for application in direct alcohol fuel cells (DAFCs). SAGAR SEN ... methanol, is oxidized at the anode while oxygen is ... single crystal electrodes studied, the production of ... required. It is therefore necessary to develop more active catalysts for DAFC to be economically viable. .... The current densities were calculated using.

  17. Reduction of the DNA damages, Hepatoprotective Effect and Antioxidant Potential of the Coconut Water, ascorbic and Caffeic Acids in Oxidative Stress Mediated by Ethanol

    Directory of Open Access Journals (Sweden)

    VANDERSON S. BISPO

    Full Text Available ABSTRACT Hepatic disorders such as steatosis and alcoholic steatohepatitis are common diseases that affect thousands of people around the globe. This study aims to identify the main phenol compounds using a new HPLC-ESI+-MS/MS method, to evaluate some oxidative stress parameters and the hepatoprotective action of green dwarf coconut water, caffeic and ascorbic acids on the liver and serum of rats treated with ethanol. The results showed five polyphenols in the lyophilized coconut water spiked with standards: chlorogenic acid (0.18 µM, caffeic acid (1.1 µM, methyl caffeate (0.03 µM, quercetin (0.08 µM and ferulic acid (0.02 µM isomers. In the animals, the activity of the serum γ-glutamyltranspeptidase (γ-GT was reduced to 1.8 I.U/L in the coconut water group, 3.6 I.U/L in the ascorbic acid group and 2.9 I.U/L in the caffeic acid groups, when compared with the ethanol group (5.1 I.U/L, p<0.05. Still in liver, the DNA analysis demonstrated a decrease of oxidized bases compared to ethanol group of 36.2% and 48.0% for pretreated and post treated coconut water group respectively, 42.5% for the caffeic acid group, and 34.5% for the ascorbic acid group. The ascorbic acid was efficient in inhibiting the thiobarbituric acid reactive substances (TBARS in the liver by 16.5% in comparison with the ethanol group. These data indicate that the green dwarf coconut water, caffeic and ascorbic acids have antioxidant, hepatoprotective and reduced DNA damage properties, thus decreasing the oxidative stress induced by ethanol metabolism.

  18. Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations

    International Nuclear Information System (INIS)

    Zignani, Sabrina C.; Baglio, Vincenzo; Linares, José J.; Monforte, Giuseppe; Gonzalez, Ernesto R.; Aricò, Antonino S.

    2012-01-01

    Carbon supported Pt–Sn catalysts were prepared by reduction of Pt and Sn precursors with formic acid and characterized in terms of structure, morphology and surface properties. The electrocatalytic activity for ethanol oxidation was studied in a direct ethanol fuel cell (DEFC) at 70 °C and 90 °C. Electrochemical and physico-chemical data indicated that a proper balance of Pt and Sn species in the near surface region was necessary to maximize the reaction rate. The best atomic surface composition, in terms of electrochemical performance, was Pt:Sn 65:35 corresponding to a bulk composition 75:25 namely Pt 3 Sn 1 /C. The reaction products of ethanol electro-oxidation in single cell and their distribution as a function of the nature of catalyst were determined. Essentially, acetaldehyde and acetic acid were detected as the main reaction products; whereas, a lower content of CO 2 was formed. The selectivity toward acetic acid vs. acetaldehyde increased with the increase of the Sn content and decreased by decreasing the concentration of the reducing agent used in the catalyst preparation. According to the recent literature, these results have been interpreted on the basis of ethanol adsorption characteristics and ligand effects occurring for Sn-rich electrocatalysts.

  19. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yogi, Alvaro; Callera, Glaucia E. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Mecawi, André S. [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Batalhão, Marcelo E.; Carnio, Evelin C. [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil); Antunes-Rodrigues, José [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Queiroz, Regina H. [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil); Touyz, Rhian M. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP (Brazil)

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  20. Crystal habit dependent quantum confined photoluminescence of zinc oxide nanostructures

    International Nuclear Information System (INIS)

    Arellano, Ian Harvey J.; Payawan, Leon Jr. M.; Sarmago, Roland V.

    2008-01-01

    Diverse zinc oxide crystal habits namely wire, rods, tubes, whiskers and tetrapods were synthesized via hydrothermal and carbothermal reduction routes. A vapor current induced regionalization in the carbothermal synthesis lead to the isolation of these crystal habits for characterization. The surface morphology of the nanostructures was analyzed via field emission scanning electron microscopy (FESEM). The morphology and crystallinity of the as-synthesized nanostructure architectural motifs were related to their photoluminescence (PL). The photoluminescence at 157 nm was taken using F2 excimer laser and a crystal habit dependent response was observed. X-ray diffraction (XRD) analyses were conducted to deduce the degree of crystallinity showing results consistent with the excitonic emission at the band edge and visible emission at the electron-hole recombination sites. The presence of minimal crystal defects which gave the green emission was supported by energy dispersive spectroscopy (EDS) data. Transmission spectroscopy for the tetrapods exhibited an interesting PL reduction associated with high-energy deep traps in the nanostructures. Furthermore, some intensity dependent characteristics were deduced indicating quantum confined properties of these nano structures. (author)

  1. Ethanolic extract of Aconiti Brachypodi Radix attenuates nociceptive pain probably via inhibition of voltage-dependent Na⁺ channel.

    Science.gov (United States)

    Ren, Wei; Yuan, Lin; Li, Jun; Huang, Xian-Ju; Chen, Su; Zou, Da-Jiang; Liu, Xiangming; Yang, Xin-Zhou

    2012-01-01

    Aconiti Brachypodi Radix, belonging to the genus of Aconitum (Family Ranunculaceae), are used clinically as anti-rheumatic, anti-inflammatory and anti-nociceptive in traditional medicine of China. However, its mechanism and influence on nociceptive threshold are unknown and need further investigation. The analgesic effects of ethanolic extract of Aconiti Brachypodi Radix (EABR) were thus studied in vivo and in vitro. Three pain models in mice were used to assess the effect of EABR on nociceptive threshold. In vitro study was conducted to clarify the modulation of the extract on the tetrodotoxin-sensitive (TTX-S) sodium currents in rat's dorsal root ganglion (DRG) neurons using whole-cell patch clamp technique. The results showed that EABR (5-20 mg/kg, i.g.) could produce dose-dependent analgesic effect on hot-plate tests as well as writhing response induced by acetic acid. In addition, administration of 2.5-10 mg/kg EABR (i.g.) caused significant decrease in pain responses in the first and second phases of formalin test without altering the PGE₂ production in the hind paw of the mice. Moreover, EABR (10 µg/ml -1 mg/ml) could suppress TTX-S voltage-gated sodium currents in a dose-dependent way, indicating the underlying electrophysiological mechanism of the analgesic effect of the folk plant medicine. Collectively, our results indicated that EABR has analgesic property in three pain models and useful influence on TTX-S sodium currents in DRG neurons, suggesting that the interference with pain messages caused by the modulation of EABR on TTX-S sodium currents in DRG neurones may explain some of its analgesic effect.

  2. Greenhouse gases in the corn-to-fuel ethanol pathway.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-06-18

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  3. Greenhouse gases in the corn-to-fuel ethanol pathway

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen

  4. Aluminum Wire Meshes Coated with Co-Mn-Al and Co Oxides as Catalysts for Deep Ethanol Oxidation.

    Czech Academy of Sciences Publication Activity Database

    Jirátová, Květa; Kovanda, F.; Balabánová, Jana; Kšírová, P.

    2018-01-01

    Roč. 304, SI (2018), s. 165-171 ISSN 0920-5861. [Czech-Italian-Spanish Symposium in Catalysis /7./. Třešť, 13.06.2017-17.06.2017] R&D Projects: GA ČR GA17-08389S Institutional support: RVO:67985858 Keywords : GA17-08389S * Co-Mn-Al mixed oxides * aluminum mesh Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 4.636, year: 2016

  5. Preparation of Pt Ru/C + rare earths by the method of reduction by alcohol for the electro-oxidation of ethanol

    International Nuclear Information System (INIS)

    Tusi, M.M.; Rodrigues, R.M.S.; Spinace, E.V.; Oliveira Neto, A.

    2010-01-01

    PtRu/C electrocatalyst was prepared in a single step, while that PtRu/85%C-15%Ce, PtRu/85%C-15%La, PtRu/85%C-15%Nd and PtRu/85%C-15%Er electrocatalyst were prepared in a two step. In the first step a Carbon Vulcan XC72 + rare earth supports were prepared. In the second step PtRu electrocatalyst were prepared by an alcohol-reduction process using ethylene glycol as solvent and reducing agent and supported on Vulcan XC72 + earth rare. The obtained electrocatalysts were characterized by EDAX, XRD and chronoamperometry. The electro-oxidation of ethanol was studied by chronoamperometry at room temperature. PtRu/85%C- 15%Ce electrocatalyst showed a significant increase of performance for ethanol oxidation compared to PtRu/C electrocatalyst. (author)

  6. A two step method to synthesize palladium-copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol

    Science.gov (United States)

    Na, HeYa; Zhang, Lei; Qiu, HaiXia; Wu, Tao; Chen, MingXi; Yang, Nian; Li, LingZhi; Xing, FuBao; Gao, JianPing

    2015-08-01

    Palladium-copper nanoparticles (Pd-Cu NPs) supported on reduced graphene oxide (RGO) with different Pd/Cu ratios (Pd-Cu/RGO) were prepared by a two step method. The Pd-Cu/RGO hybrids were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and thermogravimetric analyses. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of the Pd-Cu/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. The Pd-Cu/RGO catalysts exhibited high catalytic activities and good stabilities. This is because the catalysts have a bimetallic structure consisting of a small Pd-Cu core surrounded by a thin Pd-rich shell which improves the catalytic activities of the Pd-Cu/RGO hybrids. Thus they should be useful in direct methanol and ethanol fuel cells.

  7. Formation of Acetic Acid by Aqueous-Phase Oxidation of Ethanol with Air in the Presence of a Heterogeneous Gold Catalyst

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Jørgensen, B.; Hansen, Jeppe Rass

    2006-01-01

    Die selektive Oxidation von Ethanol zu Essigsäure gelingt in wässriger Lösung mit dem Oxidans Luft an einem Gold-Heterogenkatalysator (siehe Bild). Bei 423 K und einem O2-Druck von 0.6 MPa verläuft diese Reaktion glatt in saurer wässriger Lösung in Ausbeuten um 90 %. CO2 ist das einzige Nebenprod...

  8. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress

    Directory of Open Access Journals (Sweden)

    Saba Naqvi

    2010-11-01

    Full Text Available Saba Naqvi1, Mohammad Samim2, MZ Abdin3, Farhan Jalees Ahmed4, AN Maitra5, CK Prashant6, Amit K Dinda61Faculty of Engineering and Interdisciplinary Sciences, 2Department of Chemistry, 3Department of Biotechnology, Faculty of Science, 4Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, 5Department of Chemistry, University of Delhi, 6Department of Pathology, All India Institute of Medical Sciences, New Delhi, IndiaAbstract: Iron oxide nanoparticles with unique magnetic properties have a high potential for use in several biomedical, bioengineering and in vivo applications, including tissue repair, magnetic resonance imaging, immunoassay, drug delivery, detoxification of biologic fluids, cell sorting, and hyperthermia. Although various surface modifications are being done for making these nonbiodegradable nanoparticles more biocompatible, their toxic potential is still a major concern. The current in vitro study of the interaction of superparamagnetic iron oxide nanoparticles of mean diameter 30 nm coated with Tween 80 and murine macrophage (J774 cells was undertaken to evaluate the dose- and time-dependent toxic potential, as well as investigate the role of oxidative stress in the toxicity. A 15–30 nm size range of spherical nanoparticles were characterized by transmission electron microscopy and zeta sizer. MTT assay showed >95% viability of cells in lower concentrations (25–200 µg/mL and up to three hours of exposure, whereas at higher concentrations (300–500 µg/mL and prolonged (six hours exposure viability reduced to 55%–65%. Necrosis-apoptosis assay by propidium iodide and Hoechst-33342 staining revealed loss of the majority of the cells by apoptosis. H2DCFDDA assay to quantify generation of intracellular reactive oxygen species (ROS indicated that exposure to a higher concentration of nanoparticles resulted in enhanced ROS generation, leading to cell injury and death. The cell membrane injury

  9. Steam reforming of ethanol over Co3O4–Fe2O3 mixed oxides

    KAUST Repository

    Abdelkader, A.

    2013-05-03

    Co3O4, Fe2O3 and a mixture of the two oxides Co-Fe (molar ratio of Co3O4/Fe 2O3 = 0.67 and atomic ratio of Co/Fe = 1) were prepared by the calcination of cobalt oxalate and/or iron oxalate salts at 500 C for 2 h in static air using water as a solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O 3 on the catalytic behaviour. The reforming activity over Fe 2O3, while initially high, underwent fast deactivation. In comparison, over the Co-Fe catalyst both the H2 yield and stability were higher than that found over the pure Co3O4 or Fe 2O3 catalysts. DRIFTS-MS studies under the reaction feed highlighted that the Co-Fe catalyst had increased amounts of adsorbed OH/water; similar to Fe2O3. Increasing the amount of reactive species (water/OH species) adsorbed on the Co-Fe catalyst surface is proposed to facilitate the steam reforming reaction rather than decomposition reactions reducing by-product formation and providing a higher H2 yield. © Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  10. Mesoporous PtSnO2/C Catalyst with Enhanced Catalytic Activity for Ethanol Electro-oxidation

    Directory of Open Access Journals (Sweden)

    Siyu Chen

    2018-01-01

    Full Text Available In this paper, we report the synthesis, characterization, and electrochemical evaluation of a mesoporous PtSnO2/C catalyst, called PtSnO2(M/C, with a nominal Pt : Sn ratio of 3 : 1. Brunauer–Emmett–Teller and transmission electron microscopy characterizations showed the obvious mesoporous structure of SnO2 in PtSnO2(M/C catalyst. X-ray photoelectron spectroscopy analysis exhibited the interaction between Pt and mesoporous SnO2. Compared with Pt/C and commercial PtSnO2/C catalysts, PtSnO2(M/C catalyst has a lower active site, but higher catalytic activity for ethanol electro-oxidation reaction (EOR. The enhanced activity could be attributed to Pt nanoparticles deposited on mesoporous SnO2 that could decrease the amount of poisonous intermediates produced during EOR by the interaction between Pt and mesoporous SnO2.

  11. Ex vivo immunomodulatory effect of ethanolic extract of propolis during Celiac Disease: involvement of nitric oxide pathway.

    Science.gov (United States)

    Medjeber, Oussama; Touri, Kahina; Rafa, Hayet; Djeraba, Zineb; Belkhelfa, Mourad; Boutaleb, Amira Fatima; Arroul-Lammali, Amina; Belguendouz, Houda; Touil-Boukoffa, Chafia

    2018-03-07

    Celiac Disease (CeD) is a chronic immune-mediated enteropathy, in which dietary gluten induces an inflammatory reaction, predominantly in the duodenum. Propolis is a resinous hive product, collected by honeybees from various plant sources. Propolis is well-known for its anti-inflammatory, anti-oxidant and immunomodulatory effects, due to its major compounds, polyphenols and flavonoids. The aim of our study was to assess the ex vivo effect of ethanolic extract of propolis (EEP) upon the activity and expression of iNOS, along with IFN-γ and IL-10 production in Algerian Celiac patients. In this context, PBMCs isolated from peripheral blood of Celiac patients and healthy controls were cultured with different concentrations of EEP. NO production was measured using the Griess method, whereas quantitation of IFN-γ and IL-10 levels was performed by ELISA. Inducible nitric oxide synthase (iNOS) expression, NFκB and pSTAT-3 activity were analyzed by immunofluorescence assay. Our results showed that PBMCs from Celiac patients produced high levels of NO and IFN-γ compared with healthy controls (HC). Interestingly, EEP reduced significantly, NO and IFN-γ levels and significantly increased IL-10 levels at a concentration of 50 µg/mL. Importantly, EEP downmodulated the iNOS expression as well as the activity of NFκB and pSTAT-3 transcription factors. Altogether, our results highlight the immunomodulatory effect of propolis on NO pathway and on pro-inflammatory cytokines. Therefore, we suggest that propolis may constitute a potential candidate to modulate inflammation during Celiac Disease and has a potential therapeutic value.

  12. Free radical scavenging and anti-oxidative activities of an ethanol-soluble pigment extract prepared from fermented Zijuan Pu-erh tea.

    Science.gov (United States)

    Fan, Jiang Ping; Fan, Chong; Dong, Wen Min; Gao, Bin; Yuan, Wei; Gong, Jia Shun

    2013-09-01

    An ethanol-soluble pigment extract was separated from fermented Zijuan Pu-erh tea. The compositions of the ethanol soluble pigment extract were analyzed by high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS). The extract was prepared into a series of ethanol solutions and analyzed for free radical-scavenging activities (against two free radicals: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)) and in vitro anti-oxidative properties. Electron spin resonance spectroscopy showed that the peaks of DPPH and TEMPO decreased with increasing extract concentration, suggesting that the extract had excellent free radical-scavenging activities. In vitro cell culture suggested that, at 50-200 mg/L, the extract had no measurable effect on the viability of vascular endothelial cells (ECV340) but produced significant protective effects for cells that underwent oxidative injuries due to hydrogen peroxide (H₂O₂) treatment. Compared with the H₂O₂ treatment alone cells group, 200 mg/L of the extract increased the activity of superoxide dismutase (SOD) in cells by 397.3%, and decreased the concentration of malondialdehyde (MDA) and the activity of lactate acid dehydrogenase (LDH) by 47.8% and 69.6%, respectively. These results suggest that the extract has excellent free radical scavenging and anti-oxidative properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Preparation of Pt Au/C and Pt Au Bi/C electrocatalysts using electron beam irradiation for ethanol electro-oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Silva, Dionisio F.; Geraldes, Adriana N.; Cardoso, Elisangela S.Z.; Gomes, Thiago B.; Linardi, Marcelo; Oliveira Neto, Almir; Spinace, Estevam V.

    2011-01-01

    Pt Au/C (50:50) and PtAuBi/C electrocatalysts with Pt:Au:Bi atomic ratios of 50:40:10, 50:30:20 and 50:10:40 were prepared in water/2-propanol using electron beam irradiation. The materials were characterized by X-ray diffraction (XRD) and the electro-oxidation of ethanol was studied by chronoamperometry at room temperature. The X-ray diffraction measurements for all electrocatalysts prepared showed four peaks, which are associated with the planes of the face-centered cubic (fcc) structure characteristic of Pt and Pt alloys. For PtAuBi/C it was also observed the presence of a mixture of BiPt alloys and bismuth phases. The average crystallite sizes for Pt/C, PtAu/C, PtAuBi/C (50:40:10), PtAuBi/C (50:30:20) and PtAuBi/C (50:10:40) were in the range of 2.0 - 4.0 nm. The activity of the electrocatalysts for ethanol oxidation in alkaline medium showed that PtAuBi/C (50:40:10) had a higher performance for ethanol oxidation compared to others electrocatalysts prepared. (author)

  14. Ethanol electro-oxidation in alkaline medium using Pd/MWCNT and PdAuSn/MWCNT electrocatalysts prepared by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Andrade e Silva, Leonardo Gondin de; Spinace, Estevam Vitorio; Oliveira Neto, Almir; Santos, Mauro Coelho dos

    2015-01-01

    Environmental problems and the world growing demand for energy has mobilized the scientific community in finding of clean and renewable energy sources. In this context, fuel cells appear as appropriate technology for generating electricity through alcohols electro-oxidation. Multi Wall Carbon Nanotubes (MWCNT)-supported Pd and trimetallic PdAuSn (Pd:Au:Sn 50:10:40 atomic ratio) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by VC, Chronoamperometry, EDX, TEM and XRD. The catalytic activities of electrocatalysts toward ethanol electro-oxidation were evaluated in alkaline medium in a single alkaline direct ethanol fuel cell (ADEFC) in a range temperature 60 to 90 deg C. The best performances were obtained at 85 deg C: 33 mW.cm -2 and 31 mW.cm -2 for Pd/ MWCNT and PdAuSn/MWCNT electrocatalysts, respectively. X-ray diffractograms of electrocatalysts showed the presence of Pd-rich (fcc) and Au-rich (fcc) phases. Cyclic voltammetry and chronoamperometry experiments showed that PdAuSn/MWCNT electrocatalyst demonstrated similar activity toward ethanol electro-oxidation at room temperature, compared to electrocatalyst Pd/MWCNT. (author)

  15. Simultaneous determination of ethanol's four types of non-oxidative metabolites in human whole blood by liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Xinyu; Zheng, Feng; Lin, Zebin; Johansen, Sys Stybe; Yu, Tianfang; Liu, Yuming; Huang, Zhibin; Li, Jiaolun; Yan, Jie; Rao, Yulan

    2017-04-22

    The importance of ethanol non-oxidative metabolites as the specific biomarkers of alcohol consumption in clinical and forensic settings is increasingly acknowledged. Simultaneous determination of these metabolites can provide a wealth of information like drinking habit and history, but it was difficult to achieve because of their wide range of polarity. This work describes development and validation of a simple liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for 4 types of ethanol non-oxidative metabolites (ethyl glucuronide, ethyl sulfate, fatty acid ethyl esters and phosphatidylethanols) in 50 μL of human whole blood. Pretreatment method, column and MS conditions were optimized. For the first time, the four types of ethanol non-oxidative metabolites with enormous discrepancies of property were simultaneously extracted and analyzed in one run within 40 min. The limits of detections (LODs) were among 0.1-10 ng/mL, and good linearity was obtained. Deviations in precision and accuracy were all lower than 15% at three QC levels. This method was then applied to two forensic samples, resulting in information on drinking habits and drinking time which were very useful for the interpretation of the blood alcohol results. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Spectroelectrochemical Study of Carbon Monoxide and Ethanol Oxidation on Pt/C, PtSn(3:1/C and PtSn(1:1/C Catalysts

    Directory of Open Access Journals (Sweden)

    Rubén Rizo

    2016-09-01

    Full Text Available PtSn-based catalysts are one of the most active materials toward that contribute ethanol oxidation reaction (EOR. In order to gain a better understanding of the Sn influence on the carbon monoxide (principal catalyst poison and ethanol oxidation reactions in acidic media, a systematic spectroelectrochemical study was carried out. With this end, carbon-supported PtSnx (x = 0, 1/3 and 1 materials were synthesized and employed as anodic catalysts for both reactions. In situ Fourier transform infrared spectroscopy (FTIRS and differential electrochemical mass spectrometry (DEMS indicate that Sn diminishes the amount of bridge bonded CO (COB and greatly improves the CO tolerance of Pt-based catalysts. Regarding the effect of Sn loading on the EOR, it enhances the catalytic activity and decreases the onset potential. FTIRS and DEMS analysis indicate that the C-C bond scission occurs at low overpotentials and at the same potential values regardless of the Sn loading, although the amount of C-C bond breaking decreases with the rise of Sn in the catalytic material. Therefore, the elevated catalytic activity toward the EOR at PtSn-based electrodes is mainly associated with the improved CO tolerance and the incomplete oxidation of ethanol to form acetic acid and acetaldehyde species, causing the formation of a higher amount of both C2 products with the rise of Sn loading.

  17. Ethanol electro-oxidation in alkaline medium using Pd/MWCNT and PdAuSn/MWCNT electrocatalysts prepared by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Andrade e Silva, Leonardo Gondin de; Spinace, Estevam Vitorio; Oliveira Neto, Almir, E-mail: drinager@ig.com.br, E-mail: dfsilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Santos, Mauro Coelho dos [Universidade Federal do ABC (LEMN/CCNH/UFABC), Santo Andre, SP (Brazil)

    2015-07-01

    Environmental problems and the world growing demand for energy has mobilized the scientific community in finding of clean and renewable energy sources. In this context, fuel cells appear as appropriate technology for generating electricity through alcohols electro-oxidation. Multi Wall Carbon Nanotubes (MWCNT)-supported Pd and trimetallic PdAuSn (Pd:Au:Sn 50:10:40 atomic ratio) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by VC, Chronoamperometry, EDX, TEM and XRD. The catalytic activities of electrocatalysts toward ethanol electro-oxidation were evaluated in alkaline medium in a single alkaline direct ethanol fuel cell (ADEFC) in a range temperature 60 to 90 deg C. The best performances were obtained at 85 deg C: 33 mW.cm{sup -2} and 31 mW.cm{sup -2} for Pd/ MWCNT and PdAuSn/MWCNT electrocatalysts, respectively. X-ray diffractograms of electrocatalysts showed the presence of Pd-rich (fcc) and Au-rich (fcc) phases. Cyclic voltammetry and chronoamperometry experiments showed that PdAuSn/MWCNT electrocatalyst demonstrated similar activity toward ethanol electro-oxidation at room temperature, compared to electrocatalyst Pd/MWCNT. (author)

  18. Preparation of Pt Au/C and Pt Au Bi/C electrocatalysts using electron beam irradiation for ethanol electro-oxidation in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F.; Geraldes, Adriana N.; Cardoso, Elisangela S.Z.; Gomes, Thiago B.; Linardi, Marcelo; Oliveira Neto, Almir; Spinace, Estevam V., E-mail: dfsilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Pt Au/C (50:50) and PtAuBi/C electrocatalysts with Pt:Au:Bi atomic ratios of 50:40:10, 50:30:20 and 50:10:40 were prepared in water/2-propanol using electron beam irradiation. The materials were characterized by X-ray diffraction (XRD) and the electro-oxidation of ethanol was studied by chronoamperometry at room temperature. The X-ray diffraction measurements for all electrocatalysts prepared showed four peaks, which are associated with the planes of the face-centered cubic (fcc) structure characteristic of Pt and Pt alloys. For PtAuBi/C it was also observed the presence of a mixture of BiPt alloys and bismuth phases. The average crystallite sizes for Pt/C, PtAu/C, PtAuBi/C (50:40:10), PtAuBi/C (50:30:20) and PtAuBi/C (50:10:40) were in the range of 2.0 - 4.0 nm. The activity of the electrocatalysts for ethanol oxidation in alkaline medium showed that PtAuBi/C (50:40:10) had a higher performance for ethanol oxidation compared to others electrocatalysts prepared. (author)

  19. Nitric oxide, cholesterol oxides and endothelium-dependent vasodilation in plasma of patients with essential hypertension

    Directory of Open Access Journals (Sweden)

    P. Moriel

    2002-11-01

    Full Text Available The objective of the present study was to identify disturbances of nitric oxide radical (·NO metabolism and the formation of cholesterol oxidation products in human essential hypertension. The concentrations of·NO derivatives (nitrite, nitrate, S-nitrosothiols and nitrotyrosine, water and lipid-soluble antioxidants and cholesterol oxides were measured in plasma of 11 patients with mild essential hypertension (H: 57.8 ± 9.7 years; blood pressure, 148.3 ± 24.8/90.8 ± 10.2 mmHg and in 11 healthy subjects (N: 48.4 ± 7.0 years; blood pressure, 119.4 ± 9.4/75.0 ± 8.0 mmHg.Nitrite, nitrate and S-nitrosothiols were measured by chemiluminescence and nitrotyrosine was determined by ELISA. Antioxidants were determined by reverse-phase HPLC and cholesterol oxides by gas chromatography. Hypertensive patients had reduced endothelium-dependent vasodilation in response to reactive hyperemia (H: 9.3 and N: 15.1% increase of diameter 90 s after hyperemia, and lower levels of ascorbate (H: 29.2 ± 26.0, N: 54.2 ± 24.9 µM, urate (H: 108.5 ± 18.9, N: 156.4 ± 26.3 µM, ß-carotene (H: 1.1 ± 0.8, N: 2.5 ± 1.2 nmol/mg cholesterol, and lycopene (H: 0.4 ± 0.2, N: 0.7 ± 0.2 nmol/mg cholesterol, in plasma, compared to normotensive subjects. The content of 7-ketocholesterol, 5alpha-cholestane-3ß,5,6ß-triol and 5,6alpha-epoxy-5alpha-cholestan-3alpha-ol in LDL, and the concentration of endothelin-1 (H: 0.9 ± 0.2, N: 0.7 ± 0.1 ng/ml in plasma were increased in hypertensive patients. No differences were found for ·NO derivatives between groups. These data suggest that an increase in cholesterol oxidation is associated with endothelium dysfunction in essential hypertension and oxidative stress, although ·NO metabolite levels in plasma are not modified in the presence of elevated cholesterol oxides.

  20. Eletroxidação do etanol em eletrodos de Ti/IrO2 Electro-oxidation of ethanol in Ti/IrO2

    Directory of Open Access Journals (Sweden)

    Carlos H.V. Fidelis

    2001-02-01

    Full Text Available It has been carried out an investigation of ethanol electro-oxidation on Ti/IrO2 electrodes. The experimental results show a high selectivity towards acetaldehyde formation thus, offering potential advantages in cost and availability of raw material. It has been observed that the electrode is partially blocked by a film formed after the oxidation of the starting material which can be removed by pulse technique between RDO and RDH onset. The mechanism and the selectivity of the product formed is presented.

  1. Ethanol concentration-dependent alterations in gene expression during acute binge drinking in the HIV-1 transgenic rat.

    Science.gov (United States)

    Sarkar, Sraboni; Chang, Sulie L

    2013-07-01

    Binge drinking of high ethanol (EtOH) concentration beverages is common among young adults and can be a risk factor for exposure to sexually transmitted diseases, including HIV-1. We used a novel noninfectious HIV-1 transgenic (HIV-1Tg) rat model that mimics HIV-1 patients in terms of altered immune responses and deficits in cognitive learning and memory to investigate EtOH concentration-dependent effects on 48 alcohol-modulated genes during binge EtOH administration. HIV-1Tg and control F344 rats were administered water, 8% EtOH, or 52% EtOH by gavage (i.g.) for 3 days (2.0 g/kg/d). Two hours after final treatment, blood, liver, and spleen were collected from each animal. Serum blood EtOH concentration (BEC) was measured, and gene expression in the liver and spleen was determined using a specifically designed PCR array. The BEC was significantly higher in the 52% EtOH-treated HIV-1Tg rats compared with the 8% EtOH group; however, the BEC was higher in the 8% EtOH-treated control rats compared with the 52% EtOH group. There was no change in expression of the EtOH metabolism-related genes, Adh1, Adh4, and Cyp2e1, in either the 8 or 52% EtOH-treated HIV-1Tg rats, whereas expression of those genes was significantly higher in the liver of the 52% EtOH control rats, but not in the 8% EtOH group. In the HIV-1Tg rats, expression of the GABAA , metabotropic glutamate, and dopamine neurotransmitter receptor genes was significantly increased in the spleen of the 52% EtOH group, but not in the 8% EtOH group, whereas no change was observed in those genes in either of the control groups. Our data indicate that, in the presence of HIV-1 infection, EtOH concentration-dependent binge drinking can have significantly different molecular effects. Copyright © 2013 by the Research Society on Alcoholism.

  2. Hippocampal-dependent Pavlovian conditioning in adult rats exposed to binge-like doses of ethanol as neonates.

    Science.gov (United States)

    Lindquist, Derick H

    2013-04-01

    Binge-like postnatal ethanol exposure produces significant damage throughout the brain in rats, including the cerebellum and hippocampus. In the current study, cue- and context-mediated Pavlovian conditioning were assessed in adult rats exposed to moderately low (3E; 3g/kg/day) or high (5E; 5g/kg/day) doses of ethanol across postnatal days 4-9. Ethanol-exposed and control groups were presented with 8 sessions of trace eyeblink conditioning followed by another 8 sessions of delay eyeblink conditioning, with an altered context presented over the last two sessions. Both forms of conditioning rely on the brainstem and cerebellum, while the more difficult trace conditioning also requires the hippocampus. The hippocampus is also needed to gate or modulate expression of the eyeblink conditioned response (CR) based on contextual cues. Results indicate that the ethanol-exposed rats were not significantly impaired in trace EBC relative to control subjects. In terms of CR topography, peak amplitude was significantly reduced by both doses of alcohol, whereas onset latency but not peak latency was significantly lengthened in the 5E rats across the latter half of delay EBC in the original training context. Neither dosage resulted in significant impairment in the contextual gating of the behavioral response, as revealed by similar decreases in CR production across all four treatment groups following introduction of the novel context. Results suggest ethanol-induced brainstem-cerebellar damage can account for the present results, independent of the putative disruption in hippocampal development and function proposed to occur following postnatal ethanol exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Synaptic adaptations to chronic ethanol intake in male rhesus monkey dorsal striatum depend on age of drinking onset.

    Science.gov (United States)

    Cuzon Carlson, Verginia C; Grant, Kathleen A; Lovinger, David M

    2018-03-15

    One in 12 adults suffer with alcohol use disorder (AUD). Studies suggest the younger the age in which alcohol consumption begins the higher the probability of being diagnosed with AUD. Binge/excessive alcohol drinking involves a transition from flexible to inflexible behavior likely involving the dorsal striatum (caudate and putamen nuclei). A major focus of this study was to examine the effect of age of drinking onset on subsequent chronic, voluntary ethanol intake and dorsal striatal circuitry. Data from rhesus monkeys (n = 45) that started drinking as adolescents, young adults or mature adults confirms an age-related risk for heavy drinking. Striatal neuroadaptations were examined using whole-cell patch clamp electrophysiology to record AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) and GABA A receptor-mediated miniature inhibitory postsynaptic currents (mIPSCs) from medium-sized spiny projection neurons located in the caudate or putamen nuclei. In controls, greater GABAergic transmission (mIPSC frequency and amplitude) was observed in the putamen compared to the caudate. With advancing age, in the absence of ethanol, an increase in mIPSC frequency concomitant with changes in mIPSC amplitude was observed in both regions. Chronic ethanol drinking decreased mIPSC frequency in the putamen regardless of age of onset. In the caudate, an ethanol drinking-induced increase in mIPSC frequency was only observed in monkeys that began drinking as young adults. Glutamatergic transmission did not differ between the dorsal striatal subregions in controls. With chronic ethanol drinking there was a decrease in the postsynaptic characteristics of rise time and area of mEPSCs in the putamen but an increase in mEPSC frequency in the caudate. Together, the observed changes in striatal physiology indicate a combined disinhibition due to youth and ethanol leading to abnormally strong activation of the putamen that could contribute to the increased risk

  4. Highly active carbon supported ternary PdSnPtx (x=0.1-0.7) catalysts for ethanol electro-oxidation in alkaline and acid media.

    Science.gov (United States)

    Wang, Xiaoguang; Zhu, Fuchun; He, Yongwei; Wang, Mei; Zhang, Zhonghua; Ma, Zizai; Li, Ruixue

    2016-04-15

    A series of trimetallic PdSnPtx (x=0.1-0.7)/C catalysts with varied Pt content have been synthesized by co-reduction method using NaBH4 as a reducing agent. These catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results show that, after adding a minor amount of Pt dopant, the resultant PdSnPtx/C demonstrated more superior catalytic performance toward ethanol oxidation as compared with that of mono-/bi-metallic Pd/C or PdSn/C in alkaline solution and the PdSnPt0.2/C with optimal molar ratio reached the best. In acid solution, the PdSnPt0.2/C also depicted a superior catalytic activity relative to the commercial Pt/C catalyst. The possible enhanced synergistic effect between Pd, Sn/Sn(O) and Pt in an alloyed state should be responsible for the as-revealed superior ethanol electro-oxidation performance based upon the beneficial electronic effect and bi-functional mechanism. It implies the trimetallic PdSnPt0.2/C with a low Pt content has a promising prospect as anodic electrocatalyst in fields of alkali- and acid-type direct ethanol fuel cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Ethanol electro-oxidation in alkaline medium using Pd/c and PdRh/C electrocatalysts prepared by electron beam irradiation

    International Nuclear Information System (INIS)

    Silva, Dionisio Furtunato da; Geraldes, Adriana Napoleao; Pino, Eddy Segura; Spinace, Estevam Vitorio; Oliveira Neto, Almir; Linardi, Marcelo

    2013-01-01

    In this study, carbon-supported Pd (Pd/C) and bimetallic PdRh (Pd:Rh 90:10 atomic ratio) (PdRh/C) electrocatalysts were prepared using electron beam irradiation. The morphology and composition of the obtained materials were characterized by Cyclic voltammetry (VC), Chronoamperometry (CA), Energy dispersive X-ray (EDX), X-ray Diffraction (XRD) and Thermo-gravimetric analysis (TGA). The catalytic activities of the electrocatalysts toward the ethanol electro-oxidation were evaluated in alkaline medium in a single alkaline direct ethanol fuel cell (ADEFC), in a range temperature of 50 to 85 deg C. The best performances were obtained at 85 deg C (25 mW.cm -2 ) and 75 deg C (38 mW.cm -2 ) for Pd/C and PdRh/C electrocatalysts, respectively. The XRD of the PdRh/C electrocatalyst showed the presence of Pd-rich (fcc) phase. CV and CA experiments showed that PdRh/C electrocatalyst demonstrated superior activity toward ethanol electro-oxidation at room temperature, compared to Pd/C electrocatalyst. (author)

  6. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa

    Directory of Open Access Journals (Sweden)

    Saúl Gómez-Manzo

    2015-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH and the aldehyde dehydrogenase (ALDH. We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6 and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.

  7. Ethanol electro-oxidation in alkaline medium using Pd/c and PdRh/C electrocatalysts prepared by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio Furtunato da; Geraldes, Adriana Napoleao; Pino, Eddy Segura; Spinace, Estevam Vitorio; Oliveira Neto, Almir; Linardi, Marcelo, E-mail: dfsilva@ipen.br, E-mail: drinager@ig.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In this study, carbon-supported Pd (Pd/C) and bimetallic PdRh (Pd:Rh 90:10 atomic ratio) (PdRh/C) electrocatalysts were prepared using electron beam irradiation. The morphology and composition of the obtained materials were characterized by Cyclic voltammetry (VC), Chronoamperometry (CA), Energy dispersive X-ray (EDX), X-ray Diffraction (XRD) and Thermo-gravimetric analysis (TGA). The catalytic activities of the electrocatalysts toward the ethanol electro-oxidation were evaluated in alkaline medium in a single alkaline direct ethanol fuel cell (ADEFC), in a range temperature of 50 to 85 deg C. The best performances were obtained at 85 deg C (25 mW.cm{sup -2}) and 75 deg C (38 mW.cm{sup -2}) for Pd/C and PdRh/C electrocatalysts, respectively. The XRD of the PdRh/C electrocatalyst showed the presence of Pd-rich (fcc) phase. CV and CA experiments showed that PdRh/C electrocatalyst demonstrated superior activity toward ethanol electro-oxidation at room temperature, compared to Pd/C electrocatalyst. (author)

  8. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction

    Science.gov (United States)

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-12-01

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.

  9. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction

    International Nuclear Information System (INIS)

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-01-01

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611}high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H_2PtCl_6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells. (paper)

  10. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    Science.gov (United States)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  11. Ethanol extract of Scutellaria baicalensis Georgi prevents oxidative damage and neuroinflammation and memorial impairments in artificial senescense mice

    Directory of Open Access Journals (Sweden)

    Choi Youkyung

    2011-02-01

    Full Text Available Abstract Aging is a progressive process related to the accumulation of oxidative damage and neuroinflammation. We tried to find the anti-amnesic effect of the Scutellaria baicalens Georgia (SBG ethanol extract and its major ingredients. The antioxidative effect of SBG on the mice model with memory impairment induced by chronic injection of D-galactose and sodium nitrate was studied. The Y-maze test was used to evaluate the learning and memory function of mice. The activities of superoxide dismutase, catalase and the content of malondialdehyde in brain tissue were used for the antioxidation activities. Neuropathological alteration and expression of bcl-2 protein were investigated in the hippocampus by immunohistochemical staining. ROS, neuroinflammation and apoptosis related molecules expression such as Cox-2, iNOS, procaspase-3, cleaved caspase-3, 8 and 9, bcl-2 and bax protein and the products of iNOS and Cox-2, NO, PGE2, were studied using LPS-activated Raw 264.7 cells and microglia BV2 cells. The cognition of mice was significantly improved by the treatment of baicalein and 50 and 100 mg/kg of SBG in Y-maze test. Both SBG groups showed strong antioxidation, antiinflammation effects with significantly decreased iNOS and Cox-2 expression, NO and PGE2 production, increased bcl-2 and decreased bax and cleaved caspase-3 protein expression in LPS induced Raw 264.7 and BV2 cells. We also found that apoptotic pathway was caused by the intrinsic mitochondrial pathway with the decreased cleaved caspase-9 and unchanged cleaved caspase-8 expression. These findings suggest that SBG, especially high dose, 100 mg/kg, improved the memory impairments significantly and showed antioxidation, antiinflammation and intrinsic caspase-mediated apoptosis effects.

  12. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    KAUST Repository

    Song, Hyon Min

    2012-09-27

    Hybrid alloys among gold, palladium and platinum become a new category of catalysts primarily due to their enhanced catalytic effects. Enhancement means not only their effectiveness, but also their uniqueness as catalysts for the reactions that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au compared to Ag, Pd, and Pt helps to produce hollow Au cores first, followed by Pd or Pt shell growth. Continuous and highly crystalline shell growth was observed in Au@Pd core-shell NPs, but the sporadic and porous-like structure was observed in Au@Pt core-shell NPs. Along with hollow core-shell NPs, hollow porous Pt and hollow Au NPs are also prepared from Ag seed NPs. Twin boundaries which are typically observed in large size (>20 nm) Au NPs were not observed in hollow Au NPs. This absence is believed to be due to the role of the hollows, which significantly reduce the strain energy of edges where the two lattice planes meet. In ethanol oxidation reactions in alkaline medium, hollow Au@Pd core-shell NPs show highest current density in forward scan. Hollow Au@Pt core-shell NPs maintain better catalytic activities than metallic Pt, which is thought to be due to the better crystallinity of Pt shells as well as the alloy effect of Au cores. © 2012 The Royal Society of Chemistry.

  13. In Situ Surface-Enhanced Raman Spectroscopy Study of the Electrocatalytic Effect of PtFe/C Nanocatalyst on Ethanol Electro-Oxidation in Alkaline Medium

    Directory of Open Access Journals (Sweden)

    A. C. Gómez-Monsiváis

    2017-03-01

    Full Text Available Currently, the ethanol electro-oxidation reaction has attracted considerable attention in fuel cells because of new green ethanol synthetic methods based on biomass processes that have emerged. In this study, PtFe/C and Pt/C nanoparticles were synthesized by a chemical reduction method and tested in the ethanol electro-oxidation reaction. Furthermore, the electrocatalytic effect of the PtFe bimetallic catalyst was analyzed by in situ surface-enhanced Raman spectroscopy (SERS coupled to an electrochemical cell. X-ray diffractograms showed typical face-centered cubic structures with crystallite sizes of 3.31 and 3.94 for Pt/C and PtFe/C, respectively. TEM micrographs revealed nanoparticle sizes of 2 ± 0.4 nm and 3 ± 0.6 nm for Pt/C and PtFe/C respectively. PtFe/C exhibited a Pt90Fe10 composition by both X-ray fluorescence and energy-dispersive X-ray spectroscopy. A better electrocatalytic activity as function of concentration was obtained through the incorporation of a small amount of Fe into the Pt lattice and the presence of Fe2+/Fe3+ (observed by X-ray photoelectron spectroscopy. According to SERS experiments, the presence of these iron species promotes the chemisorption of ethanol, the formation of formic acid as main product and renewal of the catalytic sites, resulting in current densities that were at least three fold higher than the values obtained for the Pt/C nanocatalyst.

  14. Carbon Supported Oxide-Rich Pd-Cu Bimetallic Electrocatalysts for Ethanol Electrooxidation in Alkaline Media Enhanced by Cu/CuOx

    Directory of Open Access Journals (Sweden)

    Zengfeng Guo

    2016-04-01

    Full Text Available Different proportions of oxide-rich PdCu/C nanoparticle catalysts were prepared by the NaBH4 reduction method, and their compositions were tuned by the molar ratios of the metal precursors. Among them, oxide-rich Pd0.9Cu0.1/C (Pd:Cu = 9:1, metal atomic ratio exhibits the highest electrocatalytic activity for ethanol oxidation reaction (EOR in alkaline media. X-ray photoelectron spectroscopy (XPS and high resolution transmission electron microscopy (HRTEM confirmed the existence of both Cu and CuOx in the as-prepared Pd0.9Cu0.1/C. About 74% of the Cu atoms are in their oxide form (CuO or Cu2O. Besides the synergistic effect of Cu, CuOx existed in the Pd-Cu bimetallic nanoparticles works as a promoter for the EOR. The decreased Pd 3d electron density disclosed by XPS is ascribed to the formation of CuOx and the spill-over of oxygen-containing species from CuOx to Pd. The low Pd 3d electron density will decrease the adsorption of CH3COads intermediates. As a result, the electrocatalytic activity is enhanced. The onset potential of oxide-rich Pd0.9Cu0.1/C is negative shifted 150 mV compared to Pd/C. The oxide-rich Pd0.9Cu0.1/C also exhibited high stability, which indicated that it is a candidate for the anode of direct ethanol fuel cells (DEFCs.

  15. Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials

    Directory of Open Access Journals (Sweden)

    Ye Wang

    2015-09-01

    Full Text Available The ethanol oxidation reaction (EOR has drawn increasing interest in electrocatalysis and fuel cells by considering that ethanol as a biomass fuel has advantages of low toxicity, renewability, and a high theoretical energy density compared to methanol. Since EOR is a complex multiple-electron process involving various intermediates and products, the mechanistic investigation as well as the rational design of electrocatalysts are challenging yet essential for the desired complete oxidation to CO2. This mini review is aimed at presenting an overview of the advances in the study of reaction mechanisms and electrocatalytic materials for EOR over the past two decades with a focus on Pt- and Pd-based catalysts. We start with discussion on the mechanistic understanding of EOR on Pt and Pd surfaces using selected publications as examples. Consensuses from the mechanistic studies are that sufficient active surface sites to facilitate the cleavage of the C–C bond and the adsorption of water or its residue are critical for obtaining a higher electro-oxidation activity. We then show how this understanding has been applied to achieve improved performance on various Pt- and Pd-based catalysts through optimizing electronic and bifunctional effects, as well as by tuning their surface composition and structure. Finally we point out the remaining key problems in the development of anode electrocatalysts for EOR.

  16. A comparative investigation of metal-support interactions on the catalytic activity of Pt nanoparticles for ethanol oxidation in alkaline medium

    Science.gov (United States)

    Godoi, Denis R. M.; Villullas, Hebe M.; Zhu, Fu-Chun; Jiang, Yan-Xia; Sun, Shi-Gang; Guo, Junsong; Sun, Lili; Chen, Rongrong

    2016-04-01

    The effects of interactions of Pt nanoparticles with hybrid supports on reactivity towards ethanol oxidation in alkaline solution are investigated. Studies involve catalysts with identical Pt nanoparticles on six hybrid supports containing carbon powder and transition metal oxides (TiO2, ZrO2, SnO2, CeO2, MoO3 and WO3). In situ X-ray absorption spectroscopy (XAS) results evidence that metal-support interactions produce changes in the Pt 5d band vacancy, which appears to determine the catalytic activity. The highest and lowest activities are observed for Pt nanoparticles on hybrid supports containing TiO2 and CeO2, respectively. Further studies are presented for these two catalysts. In situ FTIR reflection spectroscopy measurements, taken using both multi-stepped FTIR spectroscopy (MS-FTIR) and single potential alteration FTIR spectroscopy (SPA-FTIR), evidence that the main product of ethanol oxidation is acetate, although signals attributed to carbonate and CO2 indicate some differences in CO2 production. Fuel cell performances of these catalysts, tested in a 4.5 cm2 single cell at different temperatures (40-90 °C) show good agreement with data obtained by electrochemical techniques. Results of this comprehensive study point out the possibility of compensating a reduction of noble metal load with an increase in activity promoted by interactions between metallic nanoparticles and a support.

  17. Al-doped TiO{sub 2} mesoporous material supported Pd with enhanced catalytic activity for complete oxidation of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jing, E-mail: mlczjsls123@163.com; Mu, Wentao, E-mail: mwt15035687833@163.com; Su, Liqing, E-mail: suliqing0163@163.com; Li, Xingying, E-mail: lixingying0479@link.tyut.edu.cn; Guo, Yuyu, E-mail: guoyuyu0455@link.tyut.edu.cn; Zhang, Shen, E-mail: zhangshen0472@link.tyut.edu.cn; Li, Zhe, E-mail: lizhe@tyut.edu.cn

    2017-04-15

    Pd catalysts supported on Al-doped TiO{sub 2} mesoporous materials were evaluated in complete oxidation of ethanol. The catalysts synthesized by wet impregnation based on evaporation-induced self-assembly were characterized by X-ray diffraction, measurement of pore structure, XPS, FT-IR, temperature programmed reduction and TEM. Characteristic results showed that the aluminium was doped into the lattice of mesoporous anatase TiO{sub 2} to form Al-O-Ti defect structure. Catalytic results revealed that Al-doped catalysts were much more active than the pristine one, especially at low temperature (≤200 °C). This should be ascribed to the introduction of aluminium ions that suppressed the strong metal-support interaction and increased the active sites of Pd oxides, enhanced the stabilized anatase TiO{sub 2}, improved well dispersed high valence palladium species with high reducibility and enriched chemisorption oxygen. - Graphical abstract: Al-doped Pd/TiO{sub 2} exhibited optimal catalytic performance for ethanol oxidation and CO{sub 2} yield by the suppression of SMSI. - Highlights: • Palladium catalysts supported on Al-doped TiO{sub 2} mesoporous materials were studied. • The introduction of Al can enhance anatase stabilization and increase defect TiO{sub 2}. • The Pd/Al-TiO{sub 2} catalysts show higher ethanol conversion and CO{sub 2} yield than Pd/TiO{sub 2}. • The influence of Al on SMSI and catalytic performance were evaluated by TPR and XPS.

  18. Reversing Size-Dependent Trends in the Oxidation of Copper Clusters through Support Effects: Reversing Size-Dependent Trends in the Oxidation of Copper Clusters through Support Effects

    Energy Technology Data Exchange (ETDEWEB)

    Mammen, Nisha [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, -560064 Bangalore India; Spanu, Leonardo [Shell Technology Center, Shell India Markets Private Limited, -560048 Bangalore India; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Yang, Bing [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Halder, Avik [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Institute for Molecular Engineering, The University of Chicago, 60637 Chicago IL USA; Narasimhan, Shobhana [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, -560064 Bangalore India

    2017-12-22

    Having the ability to tune the oxidation state of Cu nanoparticles is essential for their utility as catalysts. The degree of oxidation that maximizes product yield and selectivity is known to vary, depending on the particular reaction. Using first principles calculations and XANES measurements, we show that for subnanometer sizes in the gas phase, smaller Cu clusters are more resistant to oxidation. However, this trend is reversed upon deposition on an alumina support. We are able to explain this result in terms of strong cluster-support interactions, which differ significantly for the oxidized and elemental clusters. The stable cluster phases also feature novel oxygen stoichiometries. Our results suggest that one can tune the degree of oxidation of Cu catalysts by optimizing not just their size, but also the support they are deposited on.

  19. Ethanol-induced oxidative stress and acetaldehyde formation in rat mammary tissue: Potential factors involved in alcohol drinking promotion of breast cancer

    International Nuclear Information System (INIS)

    Castro, Gerardo D.; Rodriguez de Castro, Carmen; Maciel, Maria E.; Fanelli, Silvia L.; Cignoli de Ferreyra, Elida; Gomez, Maria I. Diaz; Castro, Jose A.

    2006-01-01

    Recent studies from our laboratory provided evidence that part of the carcinogenic effects of ethanol consumption might be related to its in situ metabolism at cytosolic and microsomal levels, to the mutagen acetaldehyde and to hydroxyl and 1-hydroxyethyl radicals. In this work, we report on our experiments where Sprague-Dawley female rats were exposed to the standard Lieber and De Carli diet for 28 days. We observed: the induction of the (xanthineoxidoreductase mediated) cytosolic and microsomal (lipoxygenase mediated) pathways of ethanol metabolism; promotion of oxidative stress as shown by increased formation of lipid hydroperoxides; delay in the t-butylhydroperoxide induced chemiluminiscence, and a significant decrease in protein sulfhydryls. In addition, the epithelial cells showed ultrastructural alterations consisting of markedly irregular nuclei, with frequent invaginations at the level of the nuclear envelope, condensation of chromatin around the inner nuclear membrane, and marked dilatation of the nuclear pores showing filamentous material exiting to the cytoplasm. In conclusion, the presence in mammary epithelial cells of cytosolic and microsomal pathways of ethanol bioactivation to carcinogenic and to tumorigenic metabolites might play a role in alcohol promotion of breast cancer

  20. Performance and economic assessments of a solid oxide fuel cell system with a two-step ethanol-steam-reforming process using CaO sorbent

    Science.gov (United States)

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2016-02-01

    The hydrogen production process is known to be important to a fuel cell system. In this study, a carbon-free hydrogen production process is proposed by using a two-step ethanol-steam-reforming procedure, which consists of ethanol dehydrogenation and steam reforming, as a fuel processor in the solid oxide fuel cell (SOFC) system. An addition of CaO in the reformer for CO2 capture is also considered to enhance the hydrogen production. The performance of the SOFC system is analyzed under thermally self-sufficient conditions in terms of the technical and economic aspects. The simulation results show that the two-step reforming process can be run in the operating window without carbon formation. The addition of CaO in the steam reformer, which runs at a steam-to-ethanol ratio of 5, temperature of 900 K and atmospheric pressure, minimizes the presence of CO2; 93% CO2 is removed from the steam-reforming environment. This factor causes an increase in the SOFC power density of 6.62%. Although the economic analysis shows that the proposed fuel processor provides a higher capital cost, it offers a reducing active area of the SOFC stack and the most favorable process economics in term of net cost saving.

  1. Direct electron transfer-based bioanodes for ethanol biofuel cells using PQQ-dependent alcohol and aldehyde dehydrogenases

    International Nuclear Information System (INIS)

    Aquino Neto, Sidney; Suda, Emily L.; Xu, Shuai; Meredith, Matthew T.; De Andrade, Adalgisa R.; Minteer, Shelley D.

    2013-01-01

    This paper compares the performance of a DET (direct electron transfer) bioanode containing both PQQ-ADH (pyrroloquinoline quinone-dependent alcohol dehydrogenase) and PQQ-AldDH (PQQ-dependent aldehyde dehydrogenase) immobilized onto different modified electrode surfaces employing either a tetrabutylammonium (TBAB)-modified Nafion ® membrane polymer or polyamidoamine (PAMAM) dendrimers for the enzyme immobilization. The electrochemical characterization showed that the prepared bioelectrodes were able to undergo DET onto glassy carbon surface in the presence as well as the absence of multi-walled carbon nanotubes (MWCNTs); also, in the latter case a relevant shift in the oxidation peak of about 180 mV vs. saturated calomel electrode (SCE) was observed. A very similar redox potential was achieved with the self-assembled bioelectrode prepared onto modified-gold surfaces with dendrimers, indicating that both methodologies provide an environment that enables the PQQ-enzymes to undergo DET. The biofuel cell tests confirmed the ease of the DET process and the enhanced performance in the presence of the carbon nanotubes. Considering the bioanodes prepared with PAMAM dendrimers, the power density values vary from 19.4 μW cm −2 without MWCNTs to 25.7 μW cm −2 in the presence of MWCNTs. Similarly, with the bioanodes prepared with the TBAB-modified-Nafion ® polymer, the results indicate power densities of 27.9 and 38.4 μW cm −2 respectively. These electrode modifications represent effective methods for immobilization and direct electrical connection of quinohemoproteins to electrode surfaces.

  2. Grapefruit-seed extract attenuates ethanol-and stress-induced gastric lesions via activation of prostaglandin, nitric oxide and sensory nerve pathways.

    Science.gov (United States)

    Brzozowski, Tomasz; Konturek, Peter C; Drozdowicz, Danuta; Konturek, Stanislaw J; Zayachivska, Oxana; Pajdo, Robert; Kwiecien, Slawomir; Pawlik, Wieslaw W; Hahn, Eckhart G

    2005-11-07

    Grapefruit-seed extract (GSE) containing flavonoids, possesses antibacterial and antioxidative properties but whether it influences the gastric defense mechanism and gastroprotection against ethanol- and stress-induced gastric lesions remains unknown. We compared the effects of GSE on gastric mucosal lesions induced in rats by topical application of 100% ethanol or 3.5 h of water immersion and restraint stress (WRS) with or without (A) inhibition of cyclooxygenase (COX)-1 activity by indomethacin and rofecoxib, the selective COX-2 inhibitor, (B) suppression of NO-synthase with L-NNA (20 mg/kg ip), and (C) inactivation by capsaicin (125 mg/kg sc) of sensory nerves with or without intragastric (ig) pretreatment with GSE applied 30 min prior to ethanol or WRS. One hour after ethanol and 3.5 h after the end of WRS, the number and area of gastric lesions were measured by planimetry, the gastric blood flow (GBF) was assessed by H2-gas clearance technique and plasma gastrin levels and the gastric mucosal generation of PGE2, superoxide dismutase (SOD) activity and malonyldialdehyde (MDA) concentration, as an index of lipid peroxidation were determined. Ethanol and WRS caused gastric lesions accompanied by the significant fall in the GBF and SOD activity and the rise in the mucosal MDA content. Pretreatment with GSE (8-64 mg/kg i g) dose-dependently attenuated gastric lesions induced by 100% ethanol and WRS; the dose reducing these lesions by 50% (ID50) was 25 and 36 mg/kg, respectively, and this protective effect was similar to that obtained with methyl PGE2 analog (5 microg/kg i g). GSE significantly raised the GBF, mucosal generation of PGE2, SOD activity and plasma gastrin levels while attenuating MDA content. Inhibition of PGE2 generation with indomethacin or rofecoxib and suppression of NO synthase by L-NNA or capsaicin denervation reversed the GSE-induced protection and the accompanying hyperemia. Co-treatment of exogenous calcitonine gene-related peptide (CGRP) with

  3. Comparing oxidative and dilute acid wet explosion pretreatment of Cocksfoot grass at high dry matter concentration for cellulosic ethanol production

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2013-01-01

    into cellulose monomeric C6 sugars was achieved for WEx condition AC-E (180°C, 15 min, and 0.2% sulfuric acid). For that condition, the highest ethanol yield of 197 g/kg DM (97% of theoretical maximum value) was achieved for SSF process by Saccharomyces cerevisiae. However, the highest concentration...... of hemicellulose C5 sugars was found for WEx pretreatment condition O2-A (160°C, 15 min, and 6 bar O2) which means that the highest potential ethanol yield was found at this moderate pretreatment condition with oxygen added. Increasing the pretreatment temperature to 180–190°C with addition of oxygen or dilute...... was investigated for cellulosic ethanol production. The biomass raw materials were pretreated using wet explosion (WEx) at 25% dry matter concentration with addition of oxygen or dilute sulfuric acid. The enzymatic hydrolysis of cellulose was significantly improved after pretreatment. The highest conversion...

  4. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  5. Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Yongke Lu

    2015-10-01

    results suggest that autophagy is protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. We speculate that autophagy-dependent processes such as mitophagy and lipophagy help to minimize ethanol-induced CYP2E1-dependent oxidative stress and therefore the subsequent liver injury and steatosis. Attempts to stimulate autophagy may be helpful in lowering ethanol and CYP2E1-dependent liver toxicity.

  6. The oxidative burst reaction in mammalian cells depends on gravity

    OpenAIRE

    Adrian, A; Schoppmann, K; Sromicki, J; Brungs, S; von der Wiesche, M; Hock, B; Kolanus, W; Hemmersbach, R; Ullrich, O

    2013-01-01

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to...

  7. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xiang; Wang, Lianqin; Shen, Pei Kang [The State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Cui, Guofeng [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Bianchini, Claudio [Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2010-03-01

    The mechanism of ethanol electrooxidation on a palladium electrode in alkaline solution (from 0.01 to 5 M NaOH) has been investigated by cyclic voltammetry and in situ Fourier transform infrared spectroelectrochemistry. The electrode performance has been found to depend on the pH of the fuel solution. The best performance was observed in 1 M NaOH solution (pH = 14), while the electrochemical activity decreased by either increasing or decreasing the NaOH concentration. In situ FTIR spectroscopic measurements showed the main oxidation product to be sodium acetate at NaOH concentrations higher than 0.5 M. The C-C bond cleavage of ethanol, put in evidence by the formation of CO{sub 2}, occurred at pH values {<=}13. In these conditions, however, the catalytic activity for ethanol oxidation was quite low. No CO formation was detected along the oxidation of ethanol by FTIR spectroscopy. (author)

  8. Preparation and characterization of Pt Sn / C-rare earth and PtRu / C-rare earth using an alcohol reduction process for ethanol electron-oxidation

    International Nuclear Information System (INIS)

    Rodrigues, Rita Maria de Sousa

    2011-01-01

    The electro catalyst PtRu / C-rare earth and PtSn/C-rare earth (20 wt%) were prepared by alcohol reduction method using H 2 PtCl 6 .6H 2 O Ru Cl xH 2 O, SnCl 2 .2H 2 O as a source of metals 85 % Vulcan - 15 % rare earth as a support and, finally, ethylene glycol as reducing agent. The electrocatalysts were characterized physically by X-ray diffraction (XRD), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). Analyses by EDX showed that the atomic ratios of different electrocatalysts, prepared by alcohol reduction method are similar to the nominal starting compositions indicating that this methodology is promising for the preparation of electrocatalysts. In all the XRD patterns for the prepared electrocatalysts there is a broad peak at about 2θ = 25 o , which is associated with the carbon support and four additional diffraction peaks at approximately 2θ = 40 o , 47 o , 67 o e 82 o , which in turn are associated with the plans (111), (200), (220) e (311), respectively, of face-centered cubic structure (FCC) platinum. The results of X-ray diffraction also showed average crystallite sizes between 2.0 and 4.0 nm for PtSn e 2,0 a 3,0 para PtRu. The studies for the electrochemical oxidation of ethanol in acid medium were carried out using the technique of chronoamperometry in a solution 0,5 mol.L-1 H 2 SO 4 , + 1,0 mol.L-1 de C 2 H 5 OH. The polarization curves obtained in the fuel cell unit, powered directly by ethanol, are in agreement with the results of voltammetry and chronoamperometry noting the beneficial effect of rare earths in the preparation of electrocatalysts and attesting that the electrocatalysts PtSn/C are more effective than PtRu/C for the oxidation of ethanol.

  9. Preparation of catalysts PtSb2O5.SnO2 supported on carbon and ATO using the alcohol reduction method for electrochemical oxidation of ethanol

    International Nuclear Information System (INIS)

    Ayoub, Jamil Mahmoud Said

    2013-01-01

    Pt Sn/C-ATO electrocatalysts with different Pt:Sn atomic ratios (90:10, 70:30 and 50:50) were prepared in a single step by an alcohol-reduction process using H 2 PtCl 6 .6H 2 O and SnCl 2 .2H 2 O as metal sources and ethylene glycol as solvent and reducing agent and a physical mixture of carbon Vulcan XC72 (85 wt%) and Sb 2 O 5 .SnO 2 (15 wt%) as support (C-ATO). The obtained materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The catalytic activity for ethanol electro-oxidation in acid medium was investigated by cyclic voltammetry and chronoamperometry and in single direct ethanol fuel cell (DEFC). XRD analyses showed that Pt(FCC), SnO 2 , carbon and ATO phases coexist in the obtained materials. The electrochemical studies showed that PtSn/C-ATO electrocatalysts were more active for ethanol electro-oxidation than PtSn/C electrocatalyst. The experiments at 100 deg C on a single DEFC showed that the power density of the cell using Pt Sn/C-ATO (90:10) was nearly 100% higher than the one obtained using Pt Sn/C (50:50). FTIR measurements showed that the addition of ATO to Pt Sn/C favors the formation of acetic acid as a product while for PtSn/C acetaldehyde was the principal product formed. (author)

  10. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by ¤Thermoanaerobacter mathranii¤

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, B.K.

    2001-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degreesC) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g....../l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present...

  11. Chronic ethanol increases calcium/calmodulin-dependent protein kinaseIIδ gene expression and decreases monoamine oxidase amount in rat heart muscles: Rescue effect of Zingiber officinale (ginger) extract.

    Science.gov (United States)

    Heshmati, Elaheh; Shirpoor, Alireza; Kheradmand, Fatemeh; Alizadeh, Mohammad; Gharalari, Farzaneh Hosseini

    2018-01-01

    Association between chronic alcohol intake and cardiac abnormality is well known; however, the precise underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. This study investigated the effect of chronic ethanol exposure on calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) gene expression and monoamine oxidase (MAO) levels and histological changes in rat heart. It was also planned to find out whether Zingiber officinale (ginger) extract mitigated the abnormalities induced by ethanol in rat heart. Male wistar rats were divided into three groups of eight animals each: control, ethanol, and ginger extract treated-ethanol (GETE) groups. After 6 weeks of treatment, the results revealed a significant increase in CaMKIIδtotal and isoforms δ2 and δ3 of CaMKIIδ gene expression as well as a significant decrease in the MAO levels in the ethanol group compared to that in the control group. Moreover, compared to the control group, the ethanol group showed histological changes, such as fibrosis, heart muscle cells proliferation, myocyte hypertrophy, vacuolization, and focal lymphocytic infiltration. Consumption of ginger extract along with ethanol ameliorated CaMKIIδtotal. In addition, compared to the ethanol group, isoforms gene expression changed and increased the reduced MAO levels and mitigated heart structural changes. These findings indicate that ethanol-induced heart abnormalities may, in part, be associated with Ca 2+ homeostasis changes mediated by overexpression of CaMKIIδ gene and the decrease of MAO levels and that these effects can be alleviated by using ginger extract as an antioxidant and anti-inflammatory agent.

  12. Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation

    International Nuclear Information System (INIS)

    Mahendiran, C.; Maiyalagan, T.; Scott, K.; Gedanken, A.

    2011-01-01

    Highlights: → Carbon coated on NiO/MgO in a core/shell nanostructure is synthesized by RAPET. → The carbon-coated NiO/MgO is supported by Pd. → The electrocatalytic properties of the Pd/(NiO/MgO-C) catalyst for ethanol oxidation studied. - Abstract: Carbon coated on NiO/MgO in a core/shell nanostructure was synthesized by the single-step RAPET (reaction under autogenic pressure at elevated temperatures) technique, and the obtained formation mechanism of the core/shell nanocomposite was presented. The carbon-coated NiO/MgO and its supported Pd catalyst, Pd/(NiO/MgO-C), were characterized by SEM, HR-TEM, XRD and cyclic voltammetry. The X-ray diffraction patterns confirmed the face-centered cubic crystal structure of NiO/MgO. Raman spectroscopy measurements provided structural evidence for the formation of a NiO/MgO composite and the nature of the coated carbon shell. The high-resolution transmission electron microscopy images showed the core and shell morphologies individually. The electrocatalytic properties of the Pd/(NiO/MgO-C) catalyst for ethanol oxidation were investigated in an alkaline solution. The results indicated that the prepared Pd-NiO/MgO-C catalyst has excellent electrocatalytic activity and stability.

  13. Electrocatalytic behavior of a nanocomposite of Ni/Pd supported by carbonized PVA nanofibers towards formic acid, ethanol and urea oxidation: A physicochemical and electro-analysis study

    Science.gov (United States)

    Mohamed, Ibrahim M. A.; Yasin, Ahmed S.; Barakat, Nasser A. M.; Song, Seung A.; Lee, Ha Eun; Kim, Seong Su

    2018-03-01

    A nanocomposite of Ni/Pd supported by carbonized poly-vinyl alcohol (PVA) nanofibers (NFs) was synthesized via electrospinning followed by calcination under an argon atmosphere. The as-synthesized NFs were studied using physicochemical analyses, such as field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTsbnd IR) and X-ray photoelectron spectroscopy (XPS), to investigate the morphology, crystallinity, effect of carbonization and surface chemistry of the NFs, respectively. Cyclic voltammetry (CV) and chronoamperometry (CA) were utilized to study the performance of the NFs towards electrooxidation reactions. The designed NFs present superior electrocatalytic behavior in an acid medium towards formic acid oxidation, as well as urea and ethanol oxidation in an alkaline medium. The electrocatalytic performance of the bimetallic NFs appears to arise from the assembly of bimetallic Ni/Pd@NFs based on PVA, which has hydroxyl groups. These hydroxyl groups can decrease the negative processes that occur as a result of metal-metal interactions, such as the aggregation process. This study introduces a novel non-precious electrocatalyst to facilitate the commercialization of fuel cells based on formic acid, urea and ethanol.

  14. Electrochemical oxidation of ethanol using PtRh/C electrocatalysts in alkaline medium and synthesized by sodium borohydride and alcohol reduction

    International Nuclear Information System (INIS)

    Fontes, Eric Hossein

    2017-01-01

    PtRh/C were prepared by the following atomic proportions: (100,0), (0,100), (90,10), (70,30) and (50,50). The methods employed in the synthesis of these materials were reduction by sodium borohydride and reduction by alcohol. The metal salts used were H 2 PtCl 6 3•6H 2 0 and (RhNO 3 ) 3 , the support used was Carbon black XC72 and the bulk metal composition was 20% and 80% of support. The electrocatalysts were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction and Transmission electron microscopy. The ethanol electrochemical oxidation mechanism was investigated by in situ Fourier Transform Infrared Spectroscopy couple to an Attenuated Total Reflection technique. The electrocatalytic activity were evaluated by Cyclic Voltammetry, Linear Sweep Voltammetry and Chronoamperometry techniques. The Fuel Cells tests were made in a single direct alcohol fuel cell with alkaline membrane. The working electrodes were prepared by a thin porous coating technique. X-ray diffraction allowed to verify metallic alloys, segregate phases and to calculate the percentage of metallic alloys. It was else possible to identify crystallographic phases. Infrared Spectroscopy allowed to verify that the electrochemical oxidation of ethanol was carried out by an incomplete mechanism. PtRh(70:30)/C prepared by sodium borohydride produced large amounts of carbon dioxide and acetaldehyde. Rh/C showed electrocatalytic activity when compared with other materials studied.

  15. Steam reforming of ethanol over Co3O4–Fe2O3 mixed oxides

    KAUST Repository

    Abdelkader, A.; Daly, H.; Saih, Y.; Morgan, K.; Mohamed, M.A.; Halawy, S.A.; Hardacre, C.

    2013-01-01

    solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O 3 on the catalytic behaviour. The reforming activity over Fe 2O3, while initially high

  16. Microwave-assisted pechini synthesis of Pd-Ni nanocatalyst for ethanol electro-oxidation in alkaline medium

    CSIR Research Space (South Africa)

    Rohwer, M

    2012-11-01

    Full Text Available Fuel cells provide a means for the direct conversion of fuels to electricity. Direct alcohol fuel cells (DAFCs) are particularly attractive because liquid fuels such as methanol or ethanol have a relatively low cost, a high volumetric energy density...

  17. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge

    KAUST Repository

    Meulepas, Roel J.W.; Jagersma, Christian G.; Zhang, Yu; Petrillo, Michele; Cai, Hengzhe; Buisman, Cees J.N.; Stams, Alfons J.M.; Lens, Piet N.L.

    2010-01-01

    This study investigates the oxidation of labeled methane (CH4) and the CH4 dependence of sulfate reduction in three types of anaerobic granular sludge. In all samples, 13C-labeled CH4 was anaerobically oxidized to 13C-labeled CO2, while net

  18. Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation.

    Science.gov (United States)

    Miller, Yury I; Shyy, John Y-J

    2017-02-01

    Oxidized low-density lipoprotein (OxLDL), which contains hundreds of different oxidized lipid molecules, is a hallmark of hyperlipidemia and atherosclerosis. The same oxidized lipids found in OxLDL are also formed in apoptotic cells, and are present in tissues as well as in the circulation under pathological conditions. In many disease contexts, oxidized lipids constitute damage signals, or patterns, that activate pattern-recognition receptors (PRRs) and significantly contribute to inflammation. Here, we review recent discoveries and emerging trends in the field of oxidized lipids and the regulation of inflammation, focusing on oxidation products of polyunsaturated fatty acids esterified into cholesteryl esters (CEs) and phospholipids (PLs). We also highlight context-dependent activation and biased agonism of Toll-like receptor-4 (TLR4) and the NLRP3 inflammasome, among other signaling pathways activated by oxidized lipids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fact sheet: Ethanol from corn

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-31

    This fact sheet is intended to provide an overview of the advantages of ethanol from corn, emphasizing ethanol`s contribution to environmental protection and sustainable agriculture. Ethanol, an alternative fuel used as an octane enhancer is produced through the conversion of starch to sugars by enzymes, and fermentation of these sugars to ethanol by yeast. The production process may involve wet milling or dry milling. Both these processes produce valuable by-products, in addition to ethanol and carbon dioxide. Ethanol contains about 32,000 BTU per litre. It is commonly believed that using state-of-the-art corn farming and corn processing processes, the amount of energy contained in ethanol and its by-products would be more than twice the energy required to grow and process corn into ethanol. Ethanol represents the third largest market for Ontario corn, after direct use as animal feed and wet milling for starch, corn sweetener and corn oil. The environmental consequences of using ethanol are very significant. It is estimated that a 10 per cent ethanol blend in gasoline would result in a 25 to 30 per cent decrease in carbon monoxide emissions, a 6 to 10 per cent decrease in net carbon dioxide, a slight increase in nitrous oxide emissions which, however, would still result in an overall decrease in ozone formation, since the significant reduction in carbon monoxide emissions would compensate for any slight increase in nitrous oxide. Volatile organic compounds emission would also decrease by about 7 per cent with a 10 per cent ethanol blend. High level blends could reduce VOCs production by as much as 30 per cent. 7 refs.

  20. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-900 Sao Paulo, SP (Brazil)

    2007-03-30

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature. (author)

  1. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Science.gov (United States)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.

  2. Muscarinic receptors, nitric oxide formation and cyclooxygenase pathway involved in tracheal smooth muscle relaxant effect of hydro-ethanolic extract of Lavandula angustifolia flowers.

    Science.gov (United States)

    Naghdi, Farzaneh; Gholamnezhad, Zahra; Boskabady, Mohammad Hossein; Bakhshesh, Morteza

    2018-06-01

    Lavandula angustifolia (L. angustifolia) Mill. (Common name Lavender) is used in traditional and folk medicines for the treatment of various diseases including respiratory disorders worldwide. The relaxant effect of the plant on the smooth muscle of some tissues was shown previously. The present study has investigated the role of different receptors and pathways in the relaxant effect of L. angustifolia on tracheal smooth muscle. Cumulative concentrations of the hydro-ethanolic extract of L. angustifolia flowers (0.5, 1, 2 and 4 mg/ml) were added on pre-contracted tracheal smooth muscle by methacholine (10 μM) or KCl (60 mM) on non-preincubated or preincubated tissues with atropine, chlorpheniramine, propranolol, diltiazem, glibenclamide, indomethacin, ω-nitro-L-arginine methyl ester (L-NAME) and papaverine. The results compared with of theophylline (0.2, 0.4, 0.6 and 0.8 mM) as positive control and saline (1 ml) as negative control. The extract showed concentration-dependent relaxant effects in non-preincubated tracheal smooth muscle contracted by KCl and methacholine (p effect ofL. angustifolia was not significantly different between non-preincubated and preincubated tissues with chlorpheniramine, propranolol, diltiazem, glibenclamide, and papaverine. However, two higher concentrations of L. angustifolia in preincubated tissues with L-NAME (p effects than non-preincubated tissues. The EC 50 values of L. angustifolia in tissues preincubated with indomethacin was significantly higher than non-preincubated trachea (p effects of three first concentrations of the extract on KCl and methacholine-induced muscle contraction were significantly lower than those of theophylline (p effect ofL. angustifolia that was lower than the effect of theophylline. The possible mechanisms of relaxant effect of this plant on tracheal smooth muscle are muscarinic receptors blockade, inhibition of cyclooxygenase pathways and/or involvement of nitric oxide production

  3. Piper nigrum ethanolic extract rich in piperamides causes ROS overproduction, oxidative damage in DNA leading to cell cycle arrest and apoptosis in cancer cells.

    Science.gov (United States)

    de Souza Grinevicius, Valdelúcia Maria Alves; Kviecinski, Maicon Roberto; Santos Mota, Nádia Sandrini Ramos; Ourique, Fabiana; Porfirio Will Castro, Luiza Sheyla Evenni; Andreguetti, Rafaela Rafognato; Gomes Correia, João Francisco; Filho, Danilo Wilhem; Pich, Claus Tröger; Pedrosa, Rozangela Curi

    2016-08-02

    Ayurvedic and Chinese traditional medicine and tribal people use herbal preparations containing Piper nigrum fruits for the treatment of many health disorders like inflammation, fever, asthma and cancer. In Brazil, traditional maroon culture associates the spice Piper nigrum to health recovery and inflammation attenuation. The aim of the current work was to evaluate the relationship between reactive oxygen species (ROS) overproduction, DNA fragmentation, cell cycle arrest and apoptosis induced by Piper nigrum ethanolic extract and its antitumor activity. The plant was macerated in ethanol. Extract constitution was assessed by TLC, UV-vis and ESI-IT-MS/MS spectrometry. The cytotoxicity, proliferation and intracellular ROS generation was evaluated in MCF-7 cells. DNA damage effects were evaluated through intercalation into CT-DNA, plasmid DNA cleavage and oxidative damage in CT-DNA. Tumor growth inhibition, survival time increase, apoptosis, cell cycle arrest and oxidative stress were assessed in Ehrlich ascites carcinoma-bearing mice. Extraction yielded 64mg/g (36% piperine and 4.2% piperyline). Treatments caused DNA damage and reduced cell viability (EC50=27.1±2.0 and 80.5±6.6µg/ml in MCF-7 and HT-29 cells, respectively), inhibiting cell proliferation by 57% and increased ROS generation in MCF-7 cells (65%). Ehrlich carcinoma was inhibited by the extract, which caused reduction of tumor growth (60%), elevated survival time (76%), cell cycle arrest and induced apoptosis. The treatment with extract increased Bax and p53 and inhibited Bcl-xL and cyclin A expression. It also induced an oxidative stress in vivo verified as enhanced lipid peroxidation and carbonyl proteins content and increased activities of glutathione reductase, superoxide dismutase and catalase. GSH concentration was decreased in tumor tissue from mice. The ethanolic extract has cytotoxic and antiproliferative effect on MCF-7 cells and antitumor effect in vivo probably due to ROS overproduction

  4. Chemical interaction of dual-fuel mixtures in low-temperature oxidation, comparing n -pentane/dimethyl ether and n -pentane/ethanol

    KAUST Repository

    Jin, Hanfeng

    2018-03-22

    With the aim to study potential cooperative effects in the low-temperature oxidation of dual-fuel combinations, we have investigated prototypical hydrocarbon (CH) / oxygenated (CHO) fuel mixtures by doping n-pentane with either dimethyl ether (DME) or ethanol (EtOH). Species measurements were performed in a flow reactor at an equivalence ratio of ϕ = 0.7, at a pressure of p = 970 mbar, and in the temperature range of 450–930 K using electron ionization molecular-beam mass spectrometry (EI-MBMS). Series of different blending ratios were studied including the three pure fuels and mixtures of n-pentane containing 25% and 50% of CHO. Mole fractions and signals of a significant number of species with elemental composition CHO (n = 1–5, x = 0–(n + 2), y = 0–3) were analyzed to characterize the behavior of the mixtures in comparison to that of the individual components. Not unexpectedly, the overall reactivity of n-pentane is decreased when doping with ethanol, while it is promoted by the addition of DME. Interestingly, the present experiments reveal synergistic interactions between n-pentane and DME, showing a stronger effect on the negative temperature coefficient (NTC) for the mixture than for each of the individual components. Reasons for this behavior were investigated and show several oxygenated intermediates to be involved in enhanced OH radical production. Conversely, ethanol is activated by the addition of n-pentane, again involving key OH radical reactions. Although the main focus here is on the experimental results, we have attempted, in a first approximation, to complement the experimental observations by simulations with recent kinetic models. Interesting differences were observed in this comparison for both, fuel consumption and intermediate species production. The inhibition effect of ethanol is not predicted fully, and the synergistic effect of DME is not captured satisfactorily. The exploratory analysis of the experimental results with current

  5. Influence of *OH adsorbates on the potentiodynamics of the CO2 generation during the electro-oxidation of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guangxing; Namin, Lida M.; Aaron Deskins, N.; Teng, Xiaowei

    2017-09-01

    Direct ethanol fuel cells (DEFCs) are a promising technology for the generation of electricity via the direct conversion of ethanol into CO2, showing higher thermodynamic efficiency and volumetric energy density than hydrogen fuel cells. However, implementation of DEFCs is hampered by the low CO2 selectivity during the ethanol oxidation reaction (EOR). Comprehensive understanding of the electro-kinetics and reaction pathways of CO2 generation via CC bond-breaking is not only a fundamental question for electro-catalysis, but also a key technological challenge since practical implementation of DEFC technology is contingent on its ability to selectively oxidize ethanol into CO2 to achieve exceptional energy density through 12-electron transfer reaction. Here, we present comprehensive in situ potentiodynamics studies of CO2 generation during the EOR on Pt, Pt/SnO2 and Pt/Rh/SnO2 catalysts using a house-made electrochemical cell equipped with a CO2 microelectrode. Highly sensitive CO2 measurements enable the real time detection of the partial pressure of CO2 during linear sweep voltammetry measurements, through which electro-kinetics details of CO2 generation can be obtained. In situ CO2 measurements provide the mechanistic understanding of potentiodynamics of the EOR, particularly the influence of *OH adsorbates on CO2 generation rate and selectivity. Density functional theory (DFT) simulations of Pt, Pt/SnO2, and Pt/Rh/SnO2 surfaces clarify reaction details over these catalysts. Our results show that at low potentials, inadequate *OH adsorbates impair the removal of reaction intermediates, and thus Pt/Rh/SnO2 exhibited the best performance toward CO2 generation, while at high potentials, Rh sites were overwhelmingly occupied (poisoned) by *OH adsorbates, and thus Pt/SnO2

  6. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes.

    Science.gov (United States)

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr; Jørgensen, Henning; Felby, Claus

    2013-11-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50°C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50°C, though ideal for ethanol yield, should be kept short or carried out at lower temperature to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose a challenge for applicable methods in enzyme recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution

    International Nuclear Information System (INIS)

    Chatterjee, Moitrayee; Chatterjee, Abhik; Ghosh, Susanta; Basumallick, I.

    2009-01-01

    Present paper reports kinetics of electro-oxidation of ethanol (EtOH) and ethylene glycol (EG) onto Pt and PtRu nanocatalysts of different compositions in the temperature range of 298-318 K. These catalysts have been characterized by SEM, EDX, XRD, CV and amperometry. It has been observed that apparent activation energies for oxidation of EtOH and EG pass through a minimum at about 15-20 at.% of Ru in the PtRu alloy catalysts. Anodic peak current vs. composition curve also shows a maximum around this composition. The results have been explained by a geometric model, which proposes requirement of an ensemble of three Pt atoms with an adjacent Ru atom onto PtRu surface for an efficient electro-oxidation of EtOH or EG. This is further supported from statistical data analysis of probability of occurrence of such ensembles onto PtRu alloy surface. Present results also suggest that electro-oxidation of EG onto nano-PtRu catalyst surfaces follows a different path from that of EtOH at alloy composition less than 15 at.% of Ru.

  8. Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Moitrayee; Chatterjee, Abhik; Ghosh, Susanta [Electrochemical Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Basumallick, I., E-mail: ibasumallick@yahoo.co.u [Electrochemical Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India)

    2009-12-01

    Present paper reports kinetics of electro-oxidation of ethanol (EtOH) and ethylene glycol (EG) onto Pt and PtRu nanocatalysts of different compositions in the temperature range of 298-318 K. These catalysts have been characterized by SEM, EDX, XRD, CV and amperometry. It has been observed that apparent activation energies for oxidation of EtOH and EG pass through a minimum at about 15-20 at.% of Ru in the PtRu alloy catalysts. Anodic peak current vs. composition curve also shows a maximum around this composition. The results have been explained by a geometric model, which proposes requirement of an ensemble of three Pt atoms with an adjacent Ru atom onto PtRu surface for an efficient electro-oxidation of EtOH or EG. This is further supported from statistical data analysis of probability of occurrence of such ensembles onto PtRu alloy surface. Present results also suggest that electro-oxidation of EG onto nano-PtRu catalyst surfaces follows a different path from that of EtOH at alloy composition less than 15 at.% of Ru.

  9. Impact of aerobic exercise on cognitive impairment and oxidative stress markers in methamphetamine-dependent patients.

    Science.gov (United States)

    Zhang, Kai; Zhang, Qiaoyang; Jiang, Haifeng; Du, Jiang; Zhou, Chenglin; Yu, Shunying; Hashimoto, Kenji; Zhao, Min

    2018-03-17

    This study aimed to investigate whether 12-week moderate-intensity aerobic exercise has beneficial effects on oxidative stress markers in blood and on cognitive functions in patients who have methamphetamine dependence. Serum levels of oxidative stress markers, including total anti-oxidation capability, super oxide dismutase (SOD), catalase (CAT), and methane dicarboxylic aldehyde (MDA), were measured at baseline (all participants) and the 12-week follow-up (methamphetamine-dependent patients). Serum levels of CAT and MDA in methamphetamine-dependent patients (n = 68) were higher than those in healthy controls (n = 35) at baseline. Furthermore, the international shopping list (ISL) task scores of methamphetamine-dependent patients were significantly lower than those of the controls, indicating verbal memory deficits in methamphetamine-dependent patients. Although there were no significant interactions for all cognitive function scores, aerobic exercise improved the processing speed in methamphetamine-dependent patients. Of interest, aerobic exercise significantly attenuated a spontaneous increase in serum MDA levels in methamphetamine-dependent patients after 12-weeks of abstinence. In conclusion, this study showed that methamphetamine-dependent patients with verbal learning and memory deficits have higher serum levels of MDA, and that a 12-week aerobic exercise program may have beneficial effects on the processing speed as well as blood lipid peroxidation in methamphetamine-dependent patients. Copyright © 2018. Published by Elsevier B.V.

  10. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge

    KAUST Repository

    Meulepas, Roel J.W.

    2010-05-01

    This study investigates the oxidation of labeled methane (CH4) and the CH4 dependence of sulfate reduction in three types of anaerobic granular sludge. In all samples, 13C-labeled CH4 was anaerobically oxidized to 13C-labeled CO2, while net endogenous CH4 production was observed. Labeled-CH4 oxidation rates followed CH4 production rates, and the presence of sulfate hampered both labeled-CH4 oxidation and methanogenesis. Labeled-CH4 oxidation was therefore linked to methanogenesis. This process is referred to as trace CH4 oxidation and has been demonstrated in methanogenic pure cultures. This study shows that the ratio between labeled-CH4 oxidation and methanogenesis is positively affected by the CH4 partial pressure and that this ratio is in methanogenic granular sludge more than 40 times higher than that in pure cultures of methanogens. The CH4 partial pressure also positively affected sulfate reduction and negatively affected methanogenesis: a repression of methanogenesis at elevated CH4 partial pressures confers an advantage to sulfate reducers that compete with methanogens for common substrates, formed from endogenous material. The oxidation of labeled CH 4 and the CH4 dependence of sulfate reduction are thus not necessarily evidence of anaerobic oxidation of CH4 coupled to sulfate reduction. © 2010 Federation of European Microbiological Societies.

  11. A complex regulatory network controls aerobic ethanol oxidation in Pseudomonas aeruginosa: indication of four levels of sensor kinases and response regulators.

    Science.gov (United States)

    Mern, Demissew S; Ha, Seung-Wook; Khodaverdi, Viola; Gliese, Nicole; Görisch, Helmut

    2010-05-01

    In addition to the known response regulator ErbR (former AgmR) and the two-component regulatory system EraSR (former ExaDE), three additional regulatory proteins have been identified as being involved in controlling transcription of the aerobic ethanol oxidation system in Pseudomonas aeruginosa. Two putative sensor kinases, ErcS and ErcS', and a response regulator, ErdR, were found, all of which show significant similarity to the two-component flhSR system that controls methanol and formaldehyde metabolism in Paracoccus denitrificans. All three identified response regulators, EraR (formerly ExaE), ErbR (formerly AgmR) and ErdR, are members of the luxR family. The three sensor kinases EraS (formerly ExaD), ErcS and ErcS' do not contain a membrane domain. Apparently, they are localized in the cytoplasm and recognize cytoplasmic signals. Inactivation of gene ercS caused an extended lag phase on ethanol. Inactivation of both genes, ercS and ercS', resulted in no growth at all on ethanol, as did inactivation of erdR. Of the three sensor kinases and three response regulators identified thus far, only the EraSR (formerly ExaDE) system forms a corresponding kinase/regulator pair. Using reporter gene constructs of all identified regulatory genes in different mutants allowed the hierarchy of a hypothetical complex regulatory network to be established. Probably, two additional sensor kinases and two additional response regulators, which are hidden among the numerous regulatory genes annotated in the genome of P. aeruginosa, remain to be identified.

  12. Ternary Pt9RhFex Nanoscale Alloys as Highly Efficient Catalysts with Enhanced Activity and Excellent CO-Poisoning Tolerance for Ethanol Oxidation.

    Science.gov (United States)

    Wang, Peng; Yin, Shibin; Wen, Ying; Tian, Zhiqun; Wang, Ningzhang; Key, Julian; Wang, Shuangbao; Shen, Pei Kang

    2017-03-22

    To address the problems of high cost and poor stability of anode catalysts in direct ethanol fuel cells (DEFCs), ternary nanoparticles Pt 9 RhFe x (x = 1, 3, 5, 7, and 9) supported on carbon powders (XC-72R) have been synthesized via a facile method involving reduction by sodium borohydride followed by thermal annealing in N 2 at ambient pressure. The catalysts are physically characterized by X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy, and their catalytic performance for the ethanol oxidation reaction (EOR) is evaluated by cyclic and linear scan voltammetry, CO-stripping voltammograms, and chronopotentiometry. All the Pt 9 RhFe x /C catalysts of different atomic ratios produce high EOR catalytic activity. The catalyst of atomic ratio composition 9:1:3 (Pt/Rh/Fe) has the highest activity and excellent CO-poisoning tolerance. Moreover, the enhanced EOR catalytic activity on Pt 9 RhFe 3 /C when compared to Pt 9 Rh/C, Pt 3 Fe/C, and Pt/C clearly demonstrates the presence of Fe improves catalytic performance. Notably, the onset potential for CO oxidation on Pt 9 RhFe 3 /C (0.271 V) is ∼55, 75, and 191 mV more negative than on Pt 9 Rh/C (0.326 V), Pt 3 Fe/C (0.346 V), and Pt/C (0.462 V), respectively, which implies the presence of Fe atoms dramatically improves CO-poisoning tolerance. Meanwhile, compared to the commercial PtRu/C catalyst, the peak potential on Pt 9 RhFe 3 /C for CO oxidation was just slightly changed after several thousand cycles, which shows high stability against the potential cycling. The possible mechanism by which Fe and Rh atoms facilitate the observed enhanced performance is also considered herein, and we conclude Pt 9 RhFe 3 /C offers a promising anode catalyst for direct ethanol fuel cells.

  13. Doping dependent tunneling conductance in SDW ordered copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, Dept. of Applied Physics and Ballistics, F.M. University, 756 019 Balasore, Orissa (India); Panda, S.K. [K.D. Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India)

    2011-07-15

    The model calculation reports the co-existences of s-wave superconductivity and spin density wave (SDW) in high-T{sub c} cuprates. The doping dependence of the phase diagram explains the experimental observations qualitatively. The calculated tunneling spectra explains the observed multiple peak structures. This calculation provides an alternative to BCS formalism to calculate order parameters from the spectra. It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-T{sub c} systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green's functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green's functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.

  14. Doping dependent tunneling conductance in SDW ordered copper oxide superconductors

    International Nuclear Information System (INIS)

    Rout, G.C.; Panda, S.K.

    2011-01-01

    The model calculation reports the co-existences of s-wave superconductivity and spin density wave (SDW) in high-T c cuprates. The doping dependence of the phase diagram explains the experimental observations qualitatively. The calculated tunneling spectra explains the observed multiple peak structures. This calculation provides an alternative to BCS formalism to calculate order parameters from the spectra. It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-T c systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green's functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green's functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.

  15. Doping dependent tunneling conductance in SDW ordered copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, Dept. of Applied Physics and Ballistics, F.M. University, 756 019 Balasore, Orissa (India); Panda, S K [K.D. Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India)

    2011-07-15

    The model calculation reports the co-existences of s-wave superconductivity and spin density wave (SDW) in high-T{sub c} cuprates. The doping dependence of the phase diagram explains the experimental observations qualitatively. The calculated tunneling spectra explains the observed multiple peak structures. This calculation provides an alternative to BCS formalism to calculate order parameters from the spectra. It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-T{sub c} systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green's functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green's functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.

  16. Comparative environmental performance of lignocellulosic ethanol from different feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, Sara; Moreira, M. Teresa; Feijoo, Gumersindo [Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2010-09-15

    A renewable biofuel economy is projected as a pathway to decrease dependence on fossil fuels as well as to reduce greenhouse gases (GHG) emissions. Ethanol produced on large-scale from lignocellulosic raw materials is considered the most potential next generation automotive fuel. In this paper, a Life Cycle Assessment model was developed to evaluate the environmental implications of the production of ethanol from five lignocellulosic materials: alfalfa stems, poplar, Ethiopian mustard, flax shives and hemp hurds and its use in passenger cars. Two ethanol-based fuel applications, E10 (a mixture of 10% ethanol and 90% gasoline by volume) and E85 (85% ethanol and 15% gasoline by volume) were assessed and the results were compared to those of conventional gasoline (CG) in an equivalent car. The environmental performance was assessed in terms of fossil fuels requirements, global warming, photochemical oxidant formation, acidification and eutrophication by means of the Life Cycle Assessment (LCA) methodology in order to identify the best environmental friendly lignocellulosic source. The results show that, compared to CG, life cycle greenhouse gases emissions are lower for etanol blends, specifically up to 145% lower for E85-fueled car derived from Ethiopian mustard. This crop is also the best option in terms of eutrophying emissions regardless the ratio of ethanol in the blend. In the remaining impact categories, other feedstocks are considered beneficial, that is, poplar in the case of photochemical oxidants formation and flax shives for acidification. Concerning fossil fuels requirements, decreases up to 10% and 63% for E10 and E85 derived from hemp hurds and Ethiopian mustard, respectively, were obtained. According to the results, the study clearly demonstrates the importance of using low intensive energy and high biomass yield crops. LCA procedure helps to identify the key areas in the ethanol production life cycle where the researchers and technicians need to work

  17. Temperature Dependent Variations of Phonon Interactions in Nanocrystalline Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2015-01-01

    Full Text Available The temperature dependent anharmonic behavior of the phonon modes of nanocrystalline CeO2 was investigated in the temperature range of 80–440 K. The anharmonic constants have been derived from the shift in phonon modes fitted to account for the anharmonic contributions as well as the thermal expansion contribution using the high pressure parameters derived from our own high pressure experimental data reported previously. The total anharmonicity has also been estimated from the true anharmonicity as well as quasiharmonic component. In the line-width variation analysis, the cubic anharmonic term was found to dominate the quartic term. Finally, the phonon lifetime also reflected the trend so observed.

  18. Cross-beam pulsed laser fabrication of Free-Standing Nanostructured Carbon Nanotubes-Pt-Ceria Anode with unprecedented electroactivity and durability for ethanol oxidation

    Science.gov (United States)

    Wang, Youling; Tabet-Aoul, Amel; Gougis, Maxime; Mohamedi, Mohamed

    2015-01-01

    Owing to its inherent properties such as great capacity to store and release oxygen, lattice oxygen that has a key role in removing the CO poisoning effect, non-toxicity, abundance, low cost and low temperature processing, CeO2 is emerging as a unique class of electrode material for low temperature polymer electrolyte fuel cells such as direct ethanol fuel cells (DEFCs). However, the maximal exploitation of its functional properties is strictly reliant on the availability of optimized synthesis routes that allow tailor-designing, architecturing and manipulation of CeO2 in a precise manner when it is combined with other functional materials. Here we use the cross-beam pulsed laser deposition (CBPLD) technique to synthesize free-standing (binderless) Pt-CeO2 nanostructured thin films onto carbon nanotubes as anodes for ethanol oxidation reaction. Further significance of this work is that it establishes the importance in the design of the catalyst layer architecture. Indeed, we demonstrate here that when CeO2 material is beneath or when it is mixed with Pt, the interactions between Pt with CeO2 are not similar leading inevitably to different electrocatalytic performances. Given proper tailoring synthesis conditions, CBPLD-developed Pt-CeO2 thin films are remarkably stable and provide electrochemical performance much greater than the layer onto layer CeO2/Pt architecture.

  19. Synergy in Lignin Upgrading by a Combination of Cu-Based Mixed Oxide and Ni-Phosphide Catalysts in Supercritical Ethanol.

    Science.gov (United States)

    Korányi, Tamás I; Huang, Xiaoming; Coumans, Alessandro E; Hensen, Emiel J M

    2017-04-03

    The depolymerization of lignin to bioaromatics usually requires a hydrodeoxygenation (HDO) step to lower the oxygen content. A mixed Cu-Mg-Al oxide (CuMgAlO x ) is an effective catalyst for the depolymerization of lignin in supercritical ethanol. We explored the use of Ni-based cocatalysts, i.e. Ni/SiO 2 , Ni 2 P/SiO 2 , and Ni/ASA (ASA = amorphous silica alumina), with the aim of combining lignin depolymerization and HDO in a single reaction step. While the silica-supported catalysts were themselves hardly active in lignin upgrading, Ni/ASA displayed comparable lignin monomer yield as CuMgAlO x . A drawback of using an acidic support is extensive dehydration of the ethanol solvent. Instead, combining CuMgAlO x with Ni/SiO 2 and especially Ni 2 P/SiO 2 proved to be effective in increasing the lignin monomer yield, while at the same time reducing the oxygen content of the products. With Ni 2 P/SiO 2 , the lignin monomer yield was 53 wt %, leading to nearly complete deoxygenation of the aromatic products.

  20. Thermodynamic analysis of carbon formation in solid oxide fuel cells with a direct internal reformer fueled by ethanol, methanol, and methane

    International Nuclear Information System (INIS)

    Laosiripojana, N.; Assabumrungrat, S.; Pavarajarn, V.; Sangtongkitcharoen, W.; Tangjitmatee, A.; Praserthdam, P.

    2004-01-01

    'Full text:' This paper concerns a detailed thermodynamic analysis of carbon formation for a Direct Internal Reformer (DIR) Solid Oxide Fuel Cells (SOFC). The modeling of DIR-SOFC fueled by ethanol, methanol, and methane were compared. Two types of fuel cell electrolytes, i.e. oxygen-conducting and hydrogen-conducting, are considered. Equilibrium calculations were performed to find the ranges of inlet steam/fuel ratio where carbon formation is thermodynamically unfavorable in the temperature range of 500-1200 K. It was found that the key parameters determining the boundary of carbon formation are temperature, type of solid electrolyte and extent of the electrochemical reaction of hydrogen. The minimum requirements of H2O/fuel ratio for each type of fuel in which the carbon formation is thermodynamically unfavored were compared. At the same operating conditions, DIR-SOFC fueled by ethanol required the lowest inlet H2O/fuel ratio in which the carbon formation is thermodynamically unfavored. The requirement decreased with increasing temperature for all three fuels. Comparison between two types of the electrolytes reveals that the hydrogen-conducting electrolyte is impractical for use, regarding to the tendency of carbon formation. This is due mainly to the water formed by the electrochemical reaction at the electrodes. (author)

  1. Interaction of biogenic amines with ethanol.

    Science.gov (United States)

    Smith, A A

    1975-01-01

    Ethanol through its primary catabolite, acetaldehyde, competitively inhibits oxidation of aldehyde dehydrogenase substrates. As a consequence biogenic amines form increased quantities of alcohols rather than the corresponding acids. During this biotransformation, condensation reactions between deaminated and intact amines may occur which can yield tetrahydropapaverolines. These compounds are closely related to precursors of opioids which is cause to link ethanol abuse to morphine addiction. There is, however, no pharmacological or clinical evidence suggesting similarities between ethanol dependence or opiod addiction. Acetaldehyde plays an additional role in alkaloidal formation in vitro. Biogenic amines may react with acetaldehyde to form isoquinoline or carboline compounds. Some of these substances have significant pharmacological activity. Furthermore, they may enter neural stores and displace the natural neurotransmitter. Thus, they can act as false neurotransmitters. Some investigators believe that chronic ethanol ingestion leads to significant formation of such aberrant compounds which may then upset autonomic nervous system balance. This disturbance may explain the abnormal sympathetic activity seen in withdrawal. While these ideas about the etiology of alcohol abuse have a definite appeal, they are naturally based on in vitro preliminary work. Much study of the quantitative pharmacology of these compounds in animals is required before judgement can be made as to the merits of the proposed hypotheses. In the meantime, pharmacological studies on the ability of ethanol to depress respiration in the mouse has revealed that unlike opioids or barbituates, respiratory depression induced by ethanol requires the presence in brain of serotonin. This neurotransmitter also mediates the respiratory effects of several other alcohols but curiously, not chloral hydrate, yet this compound is purported to alter biogenic amine metabolism much like ethanol. Thus, the response

  2. The Study on the Performance of Carbon Supported PtSnM (M = W, Pd, and Ni) Ternary Electro-Catalysts for Ethanol Electro-Oxidation Reaction.

    Science.gov (United States)

    Noh, Chang Soo; Heo, Dong Hyun; Lee, Ki Rak; Jeon, Min Ku; Sohn, Jung Min

    2016-05-01

    PtSn/C and Pt5Sn4M/C (M = W, Pd, Ni) electrocatalysts were prepared by impregnation method using NaBH4 as a reducing agent. Chemical composition, crystalline size, and alloy formation were determined by EDX, XRD and TEM. The average particle sizes of the synthesized catalysts were approximately 3.64-4.95 nm. The electro-chemical properties were measured by CO stripping, cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. The maximum specific activity of the electro-catalysts for ethanol electro-oxidation was 406.08 mA m(-2) in Pt5Sn4Pd/C. The poisoning rate of the Pt5Sn4Pd/C (0.0017% s(-1)) was 4.5 times lower than that of the PtSn/C (0.0076% s(-1)).

  3. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites.

    Science.gov (United States)

    Xiao, Dianne J; Bloch, Eric D; Mason, Jarad A; Queen, Wendy L; Hudson, Matthew R; Planas, Nora; Borycz, Joshua; Dzubak, Allison L; Verma, Pragya; Lee, Kyuho; Bonino, Francesca; Crocellà, Valentina; Yano, Junko; Bordiga, Silvia; Truhlar, Donald G; Gagliardi, Laura; Brown, Craig M; Long, Jeffrey R

    2014-07-01

    Enzymatic haem and non-haem high-valent iron-oxo species are known to activate strong C-H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron-oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)-oxo compounds. In particular, although nature's non-haem iron(IV)-oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal-organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal-organic framework Fe2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C-H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)-oxo species.

  4. Improving the stability and ethanol electro-oxidation activity of Pt catalysts by selectively anchoring Pt particles on carbon-nanotubes-supported-SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.J.; Wang, J.S.; Zhao, J.H.; Song, C.Y.; Wang, L.C. [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou (China); Guo, X. [Department of Chemistry, Tsinghua University, Beijing (China)

    2012-10-15

    To improve the stability and activity of Pt catalysts for ethanol electro-oxidation, Pt nanoparticles were selectively deposited on carbon-nanotubes (CNTs)-supported-SnO{sub 2} to prepare Pt/SnO{sub 2}/CNTs and Pt/CNTs was prepared by impregnation method for reference study. X-ray diffraction (XRD) was used to confirm the crystalline structures of Pt/SnO{sub 2}/CNTs and Pt/CNTs. The stabilities of Pt/SnO{sub 2}/CNTs and Pt/CNTs were compared by analyzing the Pt size increase amplitude using transmission electron microscopy (TEM) images recorded before and after cyclic voltammetry (CV) sweeping. The results showed that the Pt size increase amplitude is evidently smaller for Pt/SnO{sub 2}/CNTs, indicating the higher stability of Pt/SnO{sub 2}/CNTs. Although both catalysts exhibit degradation of electrochemical active surface area (EAS) after CV sweeping, the EAS degradation for the former is lower, further confirming the higher stability of Pt/SnO{sub 2}/CNTs. CV and potentiostatic current-time curves were recorded for ethanol electro-oxidation on both catalysts before and after CV sweeping and the results showed that the mass specific activity of Pt/CNTs increases more than that of Pt/SnO{sub 2}/CNTs, indicating that Pt/CNTs experiences more severe evolution and is less stable. The calculated area specific activity of Pt/SnO{sub 2}/CNTs is larger than that of Pt/CNTs, indicating SnO{sub 2} can co-catalyze Pt due to plenty of interfaces between SnO{sub 2} and Pt. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Using ionic liquid as the solvent to prepare Pd–Ni bimetallic nanoparticles by a pyrolysis method for ethanol oxidation reaction

    International Nuclear Information System (INIS)

    Ding, Keqiang; Yang, Hongwei; Cao, Yanli; Zheng, Chunbao; Rapole, Sowjanya B.; Guo, Zhanhu

    2013-01-01

    Room temperature ionic liquids (RTILs) of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) is used as the solvent for the first time to prepare multi-walled carbon nanotubes (MWCNTs) supported nanocomposite catalysts of Pd x Ni y (atomic ratios of Pd to Ni are 1:1, 1:1.5, 1:2, and 1:2.5) nanoparticles (denoted as Pd x Ni y /MWCNTs) by using a simple pyrolysis process. The Pd x Ni y /MWCNTs catalysts are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results show that the Pd x Ni y nanoparticles (NPs) are quite uniformly dispersed on the surface of MWCNTs with an average crystallite size of ∼7.0 nm. The electro-catalytic activity of the Pd x Ni y /MWCNTs catalysts for ethanol oxidation reaction (EOR) is examined by cyclic voltammetry (CV). It is revealed that the onset potential is ∼80 mV lower and the peak current is about three times higher for ethanol oxidation for MWCNT catalysts with Pd 1 Ni 1.5 compared to those of Pd/MWCNTs. The catalytic mechanisms of the Pd 1 Ni 1.5 /MWCNTs towards EOR are also proposed and discussed. - Highlights: • Introducing ionic liquids to the pyrolysis process for the preparation of Pd x Ni y nanoparticles. • Pd x Ni y nanoparticles with an average particle size of ∼7.0 nm were fabricated. • The peak current of EOR was about three times higher at Pd 1 Ni 1.5 compared to those of Pd

  6. Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Chang, Yu-Cheng; Lee, Wen-Jhy; Wu, Tser Son; Wu, Chang-Yu; Chen, Shui-Jen

    2014-01-01

    Fuel blends that contain biodiesel are known to produce greater NO x (nitrogen oxide) emissions in diesel engine exhaust than regular diesel, and this is one of the key barriers to the wider adoption of biodiesel as an alternative fuel. In this study, a water-containing ABE (acetone–butanol–ethanol) solution, which simulates products that are produced from biomass fermentation without dehydration processing, was tested as a biodiesel-diesel blend additive to lower NO x emissions from diesel engines. The energy efficiency and the PM (particulate matter) and PAHs (polycyclic aromatic hydrocarbons) emissions were investigated and compared under various operating conditions. Although biodiesel had greater NO x emissions, the blends that contained 25% of the water-containing ABE solution had significantly lower NO x (4.30–30.7%), PM (10.9–63.1%), and PAH (polycyclic aromatic hydrocarbon) emissions (26.7–67.6%) than the biodiesel–diesel blends and regular diesel, respectively. In addition, the energy efficiency of this new blend was 0.372–7.88% higher with respect to both the biodiesel–diesel blends and regular diesel. Because dehydration and surfactant addition are not necessary, the application of ABE–biodiesel–diesel blends can simplify fuel production processes, reduce energy consumption, and lower pollutant emissions, meaning that the ABE–biodiesel–diesel blend is a promising green fuel. - Highlights: • Water-containing ABE (acetone–butanol–ethanol)–biodiesel–diesel was tested in a diesel engine. • The addition of ABE to biodiesel–diesel blends can enhance the energy efficiency. • The addition of ABE can solve the problem of NO x -PM (nitrogen oxide-particulate matter) trade-off when using biodiesel. • PAHs (polycyclic aromatic hydrocarbons) can be further reduced by adding ABE in biodiesel–diesel blends. • Fuel production was simplified due to the acceptance of water in ABE

  7. An unusual temperature dependence in the oxidation of oxycarbide layers on uranium

    Science.gov (United States)

    Ellis, Walton P.

    1981-09-01

    An anomalous temperature dependence has been observed for the oxidation kinetics of outermost oxycarbide layers on polycrystalline uranium metal. Normally, oxidation or corrosion reactions are expected to proceed more rapidly as the temperature is elevated. Thus, it came as a surprise when we observed that the removal of the outermost atomic layers of carbon from uranium oxycarbide by O 2 reproducibly proceeds at a much faster rate at 25°C than at 280°C.

  8. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    Science.gov (United States)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  9. Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation

    International Nuclear Information System (INIS)

    Wei Lu; Fan Youjun; Wang Honghui; Tian Na; Zhou Zhiyou; Sun Shigang

    2012-01-01

    Highlights: ► The electrochemically shape-controlled synthesis in deep eutectic solvents (DESs) has been applied to produce the uniform Pt nanoflowers with sharp single crystal petals and high density of atomic steps. ► The as-prepared Pt nanoflowers exhibit higher electrocatalytic activity and stability than commercial Pt black catalyst toward ethanol electrooxidation. ► The growth of Pt nanoflowers in DESs by the simple electrochemical route is straightforward and controllable in terms of nanoflowers’ shape and size. - Abstract: The electrochemically shape-controlled synthesis in deep eutectic solvents (DESs) has been applied to produce the electrocatalyst of Pt nanoflowers. The uniform Pt nanoflowers with sharp single crystal petals and high density of atomic steps were characterized by SEM, TEM, XRD, XPS and electrochemical tests. The results illustrated that the as-prepared Pt nanoflowers exhibit higher electrocatalytic activity and stability than commercial Pt black catalyst toward ethanol electrooxidation. The growth of Pt nanoflowers in DESs by the simple electrochemical route is straightforward and controllable in terms of nanoflowers’ shape and size, which can be applied in shape-controlled synthesis of other noble metal nanoparticles with high catalytic activity.

  10. Total Oxidation of Ethanol over Au/Ce0.5Zr0.5O2 Cordierite Monolithic Catalysts.

    Czech Academy of Sciences Publication Activity Database

    Topka, Pavel; Klementová, M.

    2016-01-01

    Roč. 522, 25 JULY (2016), s. 130-137 ISSN 0926-860X R&D Projects: GA ČR GP13-24186P Institutional support: RVO:67985858 Keywords : oxidation * gold * ceria-zirconia mixed oxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.339, year: 2016

  11. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Guoqiang, E-mail: zhougq1982@163.com; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying [Hebei University, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science (China)

    2016-05-15

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  12. Fluxes of Ethanol Between the Atmosphere and Oceanic Surface Waters; Implications for the Fate of Biofuel Ethanol Released into the Environment

    Science.gov (United States)

    Avery, G. B., Jr.; Shimizu, M. S.; Willey, J. D.; Mead, R. N.; Skrabal, S. A.; Kieber, R. J.; Lathrop, T. E.; Felix, J. D. D.

    2017-12-01

    The use of ethanol as a transportation fuel has increased significantly during the past decade in the US. Some ethanol escapes the combustion process in internal combustion engines resulting in its release to the atmosphere. Ethanol can be oxidized photochemically to acetaldehyde and then converted to peroxyacetyl nitrate contributing to air pollution. Therefore it is important to determine the fate ethanol released to the atmosphere. Because of its high water solubility the oceans may act as a sink for ethanol depending on its state of saturation with respect to the gas phase. The purpose of the current study was to determine the relative saturation of oceanic surface waters by making simultaneous measurements of gas phase and surface water concentrations. Data were obtained from four separate cruises ranging from estuarine to open ocean locations in the coast of North Carolina, USA. The majority of estuarine sites were under saturated in ethanol with respect to the gas phase (11-50% saturated) representing a potential sink. Coastal surface waters tended to be supersaturated (135 - 317%) representing a net flux of ethanol to the atmosphere. Open ocean samples were generally at saturation or slightly below saturation (76-99%) indicating equilibrium between the gas and aqueous phases. The results of this study underscore to variable role the oceans play in mitigating the increases in atmospheric ethanol from increased biofuel usage and their impact on air quality.

  13. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    International Nuclear Information System (INIS)

    Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna; Jana, Madhurya; Pramanik, Panchanan; Karmakar, Parimal

    2014-01-01

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain

  14. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    Energy Technology Data Exchange (ETDEWEB)

    Laha, Dipranjan; Pramanik, Arindam [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India); Laskar, Aparna [CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India); Jana, Madhurya [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India); Pramanik, Panchanan [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India); Karmakar, Parimal, E-mail: pkarmakar_28@yahoo.co.in [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India)

    2014-11-15

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.

  15. Ethanol dehydration to ethylene in a stratified autothermal millisecond reactor.

    Science.gov (United States)

    Skinner, Michael J; Michor, Edward L; Fan, Wei; Tsapatsis, Michael; Bhan, Aditya; Schmidt, Lanny D

    2011-08-22

    The concurrent decomposition and deoxygenation of ethanol was accomplished in a stratified reactor with 50-80 ms contact times. The stratified reactor comprised an upstream oxidation zone that contained Pt-coated Al(2)O(3) beads and a downstream dehydration zone consisting of H-ZSM-5 zeolite films deposited on Al(2)O(3) monoliths. Ethanol conversion, product selectivity, and reactor temperature profiles were measured for a range of fuel:oxygen ratios for two autothermal reactor configurations using two different sacrificial fuel mixtures: a parallel hydrogen-ethanol feed system and a series methane-ethanol feed system. Increasing the amount of oxygen relative to the fuel resulted in a monotonic increase in ethanol conversion in both reaction zones. The majority of the converted carbon was in the form of ethylene, where the ethanol carbon-carbon bonds stayed intact while the oxygen was removed. Over 90% yield of ethylene was achieved by using methane as a sacrificial fuel. These results demonstrate that noble metals can be successfully paired with zeolites to create a stratified autothermal reactor capable of removing oxygen from biomass model compounds in a compact, continuous flow system that can be configured to have multiple feed inputs, depending on process restrictions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Specific Conditions for Resveratrol Neuroprotection against Ethanol-Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Brigitte Gonthier

    2012-01-01

    Full Text Available Aims. 3,5,4′-Trihydroxy-trans-stilbene, a natural polyphenolic compound present in wine and grapes and better known as resveratrol, has free radical scavenging properties and is a potent protector against oxidative stress induced by alcohol metabolism. Today, the mechanism by which ethanol exerts its toxicity is still not well understood, but it is generally considered that free radical generation plays an important role in the appearance of structural and functional alterations in cells. The aim of this study was to evaluate the protective action of resveratrol against ethanol-induced brain cell injury. Methods. Primary cultures of rat astrocytes were exposed to ethanol, with or without a pretreatment with resveratrol. We examined the dose-dependent effects of this resveratrol pretreatment on cytotoxicity and genotoxicity induced by ethanol. Cytotoxicity was assessed using the MTT reduction test. Genotoxicity was evidenced using single cell gel electrophoresis. In addition, DNA staining with fluorescent dyes allowed visualization of nuclear damage using confocal microscopy. Results. Cell pretreatment with low concentrations of trans-resveratrol (0.1–10 μM slowed down cell death and DNA damage induced by ethanol exposure, while higher concentrations (50–100 μM enhanced these same effects. No protection by cis-resveratrol was observed. Conclusion. Protection offered by trans-resveratrol against ethanol-induced neurotoxicity was only effective for low concentrations of this polyphenol.

  17. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    Science.gov (United States)

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  18. Thermally oxidized aluminum as catalyst-support layer for vertically aligned single-walled carbon nanotube growth using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Mohd Asyadi, E-mail: asyadi@jaist.ac.jp [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Fujiwara, Akihiko [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo, Hyogo 679-5198 (Japan); Shimoda, Tatsuya [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2011-11-01

    Characteristics and role of Al oxide (Al-O) films used as catalyst-support layer for vertical growth of single-walled carbon nanotubes (SWCNTs) were studied. EB-deposited Al films (20 nm) were thermally oxidized at 400 deg. C (10 min, static air) to produce the most appropriate surface structure of Al-O. Al-O catalyst-support layers were characterized using various analytical measurements, i.e., atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and spectroscopy ellipsometry (SE). The thermally oxidized Al-O has a highly roughened surface, and also has the most suitable surface chemical states compared to other type of Al-O support layers. We suggest that the surface of thermally oxidized Al-O characterized in this work enhanced Co catalyst activity to promote the vertically aligned SWCNT growth.

  19. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

    Directory of Open Access Journals (Sweden)

    Matthias Augustin

    2015-01-01

    Full Text Available Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mnx+ oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure–property relationships. The oxidation process related to the different MnOx species was observed by in situ X-ray diffraction (XRD measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnOx species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnOx species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.

  20. Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): Effect of the nature and structure of the catalytic anode

    Science.gov (United States)

    Lamy, Claude; Jaubert, Thomas; Baranton, Stève; Coutanceau, Christophe

    2014-01-01

    The electrocatalytic oxidation of ethanol was investigated in a Proton Exchange Membrane Electrolysis Cell (PEMEC) working at low temperature (20°C) on several Pt-based catalysts (Pt/C, PtSn/C, PtSnRu/C) in order to produce very clean hydrogen by electrolysis of a biomass compound. The electrocatalytic activity was determined by cyclic voltammetry and the rate of hydrogen evolution was measured for each catalyst at different current densities. The cell voltages UEtOH were recorded as a function of time for each current density. At 100 mA cm-2, i.e. 0.5 A with the 5 cm2 surface area PEMEC used, the cell voltage did not exceed 0.9 V for an evolution rate of about 220 cm3 of hydrogen per hour and the electrical energy consumed was less than 2.3 kWh (Nm3)-1, i.e. less than one half of the energy needed for water electrolysis (4.7 kWh (Nm3)-1 at UH2O = 2 V). This result is valid for the decomposition of any organic compound, particularly those originated from biomass resource, provided that their electro-oxidation rate is sufficient (>100 mA cm-2) at a relatively low cell voltage (Ucell < 1 V) which necessitates the development of efficient electrocatalysts for the electrochemical decomposition of this compound.

  1. Ethanol Extract from Ulva prolifera Prevents High-Fat Diet-Induced Insulin Resistance, Oxidative Stress, and Inflammation Response in Mice

    Directory of Open Access Journals (Sweden)

    Wei Song

    2018-01-01

    Full Text Available Ulva prolifera is the major causative species in the green tide, a serious marine ecological disaster, which bloomed in the Yellow Sea and the Bohai Sea of China. However, it is also a popular edible seaweed and its extracts exerts anti-inflammatory and antioxidant effects. The present study investigated the effects of ethanol extract of U. prolifera (EUP on insulin sensitivity, inflammatory response, and oxidative stress in high-fat-diet- (HFD- treated mice. HFD-treated mice obtained drinking water containing 2% or 5% EUP. The results showed that EUP supplementation significantly prevented HFD-induced weight gain of liver and fat. EUP supplementation also improved glucose tolerance and insulin resistance in HFD-treated mice. Moreover, EUP supplementation prevented the increased expression of genes involved in triglyceride synthesis and proinflammatory genes and the decreased expression of genes involved in fatty acid oxidation in liver of HFD-treated mice. Furthermore, EUP supplementation decreased reactive oxygen species content, while increasing glutathione content and glutathione peroxidase activity in HFD-treated mice. In conclusion, our results showed that EUP improved insulin resistance and had antilipid accumulation and anti-inflammatory and antioxidative effects on HFD-treated mice. We suggested that U. prolifera extracts may be regarded as potential candidate for the prevention of nonalcoholic fatty liver disease.

  2. Synergistic Effect of Rapamycin and Metformin Against Age-Dependent Oxidative Stress in Rat Erythrocytes.

    Science.gov (United States)

    Singh, Abhishek Kumar; Garg, Geetika; Singh, Sandeep; Rizvi, Syed Ibrahim

    2017-10-01

    Erythrocytes are particularly vulnerable toward age-dependent oxidative stress-mediated damage. Caloric restriction mimetics (CRMs) may provide a novel strategy for the maintenance of redox balance as well as effective treatment of age-associated diseases. Herein, we have investigated the beneficial effect of cotreatment with CRM-candidate drugs, rapamycin (an immunosuppressant drug and inhibitor of mammalian target of rapamycin) and metformin (an antidiabetic biguanide and activator of adenosine monophosphate kinase), against aging-induced oxidative stress in erythrocytes and plasma of aging rats. Male Wistar rats of age 4 (young) and 24 months (old) were coexposed to rapamycin (0.5 mg/kg body weight [b.w.]) and metformin (300 mg/kg b.w.), and data were compared with the response of rats receiving an independent exposure to these chemicals at similar doses. The exposure of individual candidate drugs significantly reversed the age-dependent alterations in the endpoints associated with oxidative stress such as reactive oxygen species, ferric reducing ability of plasma, malondialdehyde, reduced glutathione, plasma membrane redox system, plasma protein carbonyl, and acetyl cholinesterase in erythrocytes and plasma of aging rats. However, the cotreatment with rapamycin and metformin showed a significant augmented effect compared with individual drug interventions on reversal of these age-dependent biomarkers of oxidative stress, suggesting a synergistic response. Thus, the findings open up further possibilities for the design of new combinatorial therapies to prevent oxidative stress- and age-associated health problems.

  3. Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate.

    Science.gov (United States)

    Wang, X; Miller, E N; Yomano, L P; Zhang, X; Shanmugam, K T; Ingram, L O

    2011-08-01

    Furfural is an important fermentation inhibitor in hemicellulose sugar syrups derived from woody biomass. The metabolism of furfural by NADPH-dependent oxidoreductases, such as YqhD (low K(m) for NADPH), is proposed to inhibit the growth and fermentation of xylose in Escherichia coli by competing with biosynthesis for NADPH. The discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural provided a new approach to improve furfural tolerance. Strains that produced ethanol or lactate efficiently as primary products from xylose were developed. These strains included chromosomal mutations in yqhD expression that permitted the fermentation of xylose broths containing up to 10 mM furfural. Expression of fucO from plasmids was shown to increase furfural tolerance by 50% and to permit the fermentation of 15 mM furfural. Product yields with 15 mM furfural were equivalent to those of control strains without added furfural (85% to 90% of the theoretical maximum). These two defined genetic traits can be readily transferred to enteric biocatalysts designed to produce other products. A similar strategy that minimizes the depletion of NADPH pools by native detoxification enzymes may be generally useful for other inhibitory compounds in lignocellulosic sugar streams and with other organisms.

  4. Increased Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains Engineered for the Production of Ethanol and Lactate▿

    Science.gov (United States)

    Wang, X.; Miller, E. N.; Yomano, L. P.; Zhang, X.; Shanmugam, K. T.; Ingram, L. O.

    2011-01-01

    Furfural is an important fermentation inhibitor in hemicellulose sugar syrups derived from woody biomass. The metabolism of furfural by NADPH-dependent oxidoreductases, such as YqhD (low Km for NADPH), is proposed to inhibit the growth and fermentation of xylose in Escherichia coli by competing with biosynthesis for NADPH. The discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural provided a new approach to improve furfural tolerance. Strains that produced ethanol or lactate efficiently as primary products from xylose were developed. These strains included chromosomal mutations in yqhD expression that permitted the fermentation of xylose broths containing up to 10 mM furfural. Expression of fucO from plasmids was shown to increase furfural tolerance by 50% and to permit the fermentation of 15 mM furfural. Product yields with 15 mM furfural were equivalent to those of control strains without added furfural (85% to 90% of the theoretical maximum). These two defined genetic traits can be readily transferred to enteric biocatalysts designed to produce other products. A similar strategy that minimizes the depletion of NADPH pools by native detoxification enzymes may be generally useful for other inhibitory compounds in lignocellulosic sugar streams and with other organisms. PMID:21685167

  5. Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone–butanol–ethanol fermentation of Clostridium acetobutylicum in continuous culture

    Science.gov (United States)

    Millat, Thomas; Janssen, Holger; Bahl, Hubert; Fischer, Ralf-Jörg; Wolkenhauer, Olaf

    2013-01-01

    Summary In a continuous culture under phosphate limitation the metabolism of Clostridium acetobutylicum depends on the external pH level. By comparing seven steady-state conditions between pH 5.7 and pH 4.5 we show that the switch from acidogenesis to solventogenesis occurs between pH 5.3 and pH 5.0 with an intermediate state at pH 5.1. Here, an integrative study is presented investigating how a changing external pH level affects the clostridial acetone–butanol–ethanol (ABE) fermentation pathway. This is of particular interest as the biotechnological production of n-butanol as biofuel has recently returned into the focus of industrial applications. One prerequisite is the furthering of the knowledge of the factors determining the solvent production and their integrative regulations. We have mathematically analysed the influence of pH-dependent specific enzyme activities of branch points of the metabolism on the product formation. This kinetic regulation was compared with transcriptomic regulation regarding gene transcription and the proteomic profile. Furthermore, both regulatory mechanisms were combined yielding a detailed projection of their individual and joint effects on the product formation. The resulting model represents an important platform for future developments of industrial butanol production based on C. acetobutylicum. PMID:23332010

  6. Interstitial pressure dependence of the thermal conductivity of some rare earth oxide powders

    International Nuclear Information System (INIS)

    Pradeep, P.

    1997-01-01

    Thermal transport properties of powdered materials depend upon interstitial gas pressure. The present study reports the experimental results for the effective thermal conductivity of three rare earth oxide powders viz. yttrium oxide, samarium oxide, and gadolinium oxide, at various interstitial pressures by using transient plane source (TPS) method. A theoretical model is also proposed for the interpretation of the variation of the effective thermal conductivity with interstitial gas pressure. Its validity is found to be good in low pressure range of 45 mm Hg to normal pressure when compared with the experimental results. Also an attempt has been made to calculate the variation of thermal conductivity with interstitial pressure in the high pressure range up to 2 kbar using the proposed model. (author)

  7. Time-dependence hole and electron trapping effects in SIMOX buried oxides

    International Nuclear Information System (INIS)

    Boesch, H.E. Jr.; Taylor, T.L.; Hite, L.R.; Bailey, W.E.

    1990-01-01

    Back-channel threshold shift associated with the buried oxide layers of separation by implanted oxygen (SIMOX) and zone-melted recrystallization (ZMR) field-effect transistors (FETs) was measured following pulsed irradiation as a function of temperature and back-gate bias using a fast time-resolved I-V measurement technique. The SIMOX FETs showed large initial negative voltage shifts at 0.2 ms after irradiation followed by temperature- and bias-dependent additional negative shifts to 800s. Analysis and modeling of the results indicate efficient deep trapping of radiation-generated holes in the bulk of the oxide, substantial initial trapping of radiation-generated electrons in the oxide, and rapid removal of the trapped electrons by a thermal detrapping process. The ZMR FETs showed evidence of substantial trapping of holes alone in the oxide bulk

  8. The Effect of Ethanol Extract of Aerial Parts of the Mentha piperita in the Acquisition, Tolerance Expression and Dependence to Morphine in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    N Khajeh

    2015-04-01

    Full Text Available Background & aim: Morphine dependence is a compulsive pattern of drug taking, resulting from the positive reinforcement of the rewarding effects of drug taking and the negative reinforcement of withdrawal syndrome that accompanies the cessation of drug taking. The objective of this study was to investigate the effect of ethanol extract of aerial parts of the Mentha piperita in the acquisition, tolerance expression and dependence to morphine in adult male mice Methods: In the present study, 75 NMRI mice were divided into fifiteen groups. The Hot-plate test was used to survey the morphine activity. Morphine was injected (2.5, 5, 10, 20, 40 mg/kg, i.p. twice daily for seven days, except in 8th day in which morphine was administrated at a single dose (50 mg/kg. The extract (50, 75, 100 mg/kg was injected for eight days. The control animals were intact, and sham animals only received morphine. Naloxone was injected (10 mg/kg five hours after the final dose of morphine and the withdrawal signs were recorded during a 30 minute period. The data were expressed as mean values ± SEM and tested, using analysis of one-way ANOVA test. Results: Peppermint extract at doses of 75 and 100 kg significantly improved the tolerance expression and dependence to morphine in animals and significantly reduced the symptoms of withdrawal. Conclusion: Peppermint extract was commuted morphine tolerance and dependence in mice.The plant contained component(s that alleviate morphine withdrawal syndrome. The extract possibly be effective in improving tolerance to morphine.

  9. The shared role of oxidative stress and inflammation in major depressive disorder and nicotine dependence.

    Science.gov (United States)

    Nunes, Sandra Odebrecht Vargas; Vargas, Heber Odebrecht; Prado, Eduardo; Barbosa, Decio Sabbatini; de Melo, Luiz Picoli; Moylan, Steven; Dodd, Seetal; Berk, Michael

    2013-09-01

    Nicotine dependence is common in people with mood disorders; however the operative pathways are not well understood. This paper reviews the contribution of inflammation and oxidative stress pathways to the co-association of depressive disorder and nicotine dependence, including increased levels of pro-inflammatory cytokines, increased acute phase proteins, decreased levels of antioxidants and increased oxidative stress. These could be some of the potential pathophysiological mechanisms involved in neuroprogression. The shared inflammatory and oxidative stress pathways by which smoking may increase the risk for development of depressive disorders are in part mediated by increased levels of pro-inflammatory cytokines, diverse neurotransmitter systems, activation the hypothalamic-pituitary-adrenal (HPA) axis, microglial activation, increased production of oxidative stress and decreased levels of antioxidants. Depressive disorder and nicotine dependence are additionally linked imbalance between neuroprotective and neurodegenerative metabolites in the kynurenine pathway that contribute to neuroprogression. These pathways provide a mechanistic framework for understanding the interaction between nicotine dependence and depressive disorder. Copyright © 2013. Published by Elsevier Ltd.

  10. Theoretical investigation of the selective dehydration and dehydrogenation of ethanol catalyzed by small molecules.

    Science.gov (United States)

    Wang, Yanqun; Tang, Yizhen; Shao, Youxiang

    2017-09-01

    Catalytic dehydration and dehydrogenation reactions of ethanol have been investigated systematically using the ab initio quantum chemistry methods The catalysts include water, hydrogen peroxide, formic acid, phosphoric acid, hydrogen fluoride, ammonia, and ethanol itself. Moreover, a few clusters of water and ethanol were considered to simulate the catalytic mechanisms in supercritical water and supercritical ethanol. The barriers for both dehydration and dehydrogenation can be reduced significantly in the presence of the catalysts. It is revealed that the selectivity of the catalytic dehydration and dehydrogenation depends on the acidity and basicity of the catalysts and the sizes of the clusters. The acidic catalyst prefers dehydration while the basic catalysts tend to promote dehydrogenation more effectively. The calculated water-dimer catalysis mechanism supports the experimental results of the selective oxidation of ethanol in the supercritical water. It is suggested that the solvent- and catalyst-free self-oxidation of the supercritical ethanol could be an important mechanism for the selective dehydrogenation of ethanol on the theoretical point of view. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Catalase inhibition in the Arcuate nucleus blocks ethanol effects on the locomotor activity of rats.

    Science.gov (United States)

    Sanchis-Segura, Carles; Correa, Mercé; Miquel, Marta; Aragon, Carlos M G

    2005-03-07

    Previous studies have demonstrated that there is a bidirectional modulation of ethanol-induced locomotion produced by drugs that regulate brain catalase activity. In the present study we have assessed the effect in rats of intraperitoneal, intraventricular or intracraneal administration of the catalase inhibitor sodium azide in the locomotor changes observed after ethanol (1 g/kg) administration. Our results show that sodium azide prevents the effects of ethanol in rats locomotion not only when sodium azide was systemically administered but also when it was intraventricularly injected, then confirming that the interaction between catalase and ethanol takes place in Central Nervous System (CNS). Even more interestingly, the same results were observed when sodium azide administration was restricted to the hypothalamic Arcuate nucleus (ARC), a brain region which has one of the highest levels of expression of catalase. Therefore, the results of the present study not only confirm a role for brain catalase in the mediation of ethanol-induced locomotor changes in rodents but also point to the ARC as a major neuroanatomical location for this interaction. These results are in agreement with our reports showing that ethanol-induced locomotor changes are clearly dependent of the ARC integrity and, especially of the POMc-synthesising neurons of this nucleus. According to these data we propose a model in which ethanol oxidation via catalase could produce acetaldehyde into the ARC and to promote a release of beta-endorphins that would activate opioid receptors to produce locomotion and other ethanol-induced neurobehavioural changes.

  12. Nrf2-mediated antioxidant response by ethanolic extract of Sida cordifolia provides protection against alcohol-induced oxidative stress in liver by upregulation of glutathione metabolism.

    Science.gov (United States)

    Rejitha, S; Prathibha, P; Indira, M

    2015-03-01

    Objective The study aimed to evaluate the antioxidant property of ethanolic extract of Sida cordifolia (SAE) on alcohol-induced oxidative stress and to elucidate its mechanism of action. Methods Male albino rats of the Sprague-Dawley strain were grouped into four: (1) control, (2) alcohol (4 g/kg body weight), (3) SAE (50 mg/100 g body weight), and (4) alcohol (4 g/kg body weight) + SAE (50 mg/100 g body weight). Alcohol and SAE were given orally each day by gastric intubation. The duration of treatment was 90 days. Results The activities of toxicity markers in liver and serum increased significantly in alcohol-treated rats and to a lesser extent in the group administered SAE + alcohol. The activity of alcohol dehydrogenase and the reactive oxygen species level were increased significantly in alcohol-treated rats but attenuated in the SAE co-administered group. Oxidative stress was increased in alcohol-treated rats as evidenced by the lowered activities of antioxidant enzymes, decreased level of reduced glutathione (GSH), increased lipid peroxidation products, and decreased expression of γ-glutamyl cysteine synthase in liver. The co-administration of SAE with alcohol almost reversed these changes. The activity of glutathione-S-transferase and translocation of Nrf2 from cytosol to nucleus in the liver was increased in both the alcohol and alcohol + SAE groups, but the maximum changes were observed in the latter group. Discussion The SAE most likely elicits its antioxidant potential by reducing oxidative stress, enhancing the translocation of Nrf2 to nucleus and thereby regulating glutathione metabolism, leading to enhanced GSH content.

  13. Improvement of Toluene Selectivity via the Application of an Ethanol Oxidizing Catalytic Cell Upstream of a YSZ-Based Sensor for Air Monitoring Applications

    Science.gov (United States)

    Sato, Tomoaki; Breedon, Michael; Miura, Norio

    2012-01-01

    The sensing characteristics of a yttria-stabilized zirconia (YSZ)-based sensor utilizing a NiO sensing-electrode (SE) towards toluene (C7H8) and interfering gases (C3H6, H2, CO, NO2 and C2H5OH) were evaluated with a view to selective C7H8 monitoring in indoor atmospheres. The fabricated YSZ-based sensor showed preferential responses toward 480 ppb C2H5OH, rather than the target 50 ppb C7H8 at an operational temperature of 450 °C under humid conditions (RH ≃ 32%). To overcome this limitation, the catalytic activity of Cr2O3, SnO2, Fe2O3 and NiO powders were evaluated for their selective ethanol oxidation ability. Among these oxides, SnO2 was found to selectively oxidize C2H5OH, thus improving C7H8 selectivity. An inline pre-catalytic cell loaded with SnO2 powder was installed upstream of the YSZ-based sensor utilizing NiO-SE, which enabled the following excellent abilities by selectively catalyzing common interfering gases; sensitive ppb level detection of C7H8 lower than the established Japanese Guideline value; low interferences from 50 ppb C3H6, 500 ppb H2, 100 ppb CO, 40 ppb NO2, as well as 480 ppb C2H5OH. These operational characteristics are all indicative that the developed sensor may be suitable for real-time C7H8 concentration monitoring in indoor environments. PMID:22666053

  14. <