WorldWideScience

Sample records for dependent delayed neutron

  1. Study of calculated and measured time dependent delayed neutron yields

    International Nuclear Information System (INIS)

    Waldo, R.W.

    1980-05-01

    Time-dependent delayed neutron emission is of interest in reactor design, reactor dynamics, and nuclear physics studies. The delayed neutrons from neutron-induced fission of 232 U, 237 Np, 238 Pu, 241 Am, /sup 242m/Am, 245 Cm, and 249 Cf were studied for the first time. The delayed neutron emission from 232 Th, 233 U, 235 U, 238 U, 239 Pu, 241 Pu, and 242 Pu were measured as well. The data were used to develop an empirical expression for the total delayed neutron yield. The expression gives accurate results for a large variety of nuclides from 232 Th to 252 Cf. The data measuring the decay of delayed neutrons with time were used to derive another empirical expression predicting the delayed neutron emission with time. It was found that nuclides with similar mass-to-charge ratios have similar decay patterns. Thus the relative decay pattern of one nuclide can be established by any measured nuclide with a similar mass-to-charge ratio. A simple fission product yield model was developed and applied to delayed neutron precursors. It accurately predicts observed yield and decay characteristics. In conclusion, it is possible to not only estimate the total delayed neutron yield for a given nuclide but the time-dependent nature of the delayed neutrons as well. Reactors utilizing recycled fuel or burning actinides are likely to have inventories of fissioning nuclides that have not been studied until now. The delayed neutrons from these nuclides can now be incorporated so that their influence on the stability and control of reactors can be delineated. 8 figures, 39 tables

  2. MODICO, 1-D Time-Dependent 1 Group, 2 Group Neutron Diffusion with Delayed Neutron Precursors

    International Nuclear Information System (INIS)

    Camiciola, P.; Cundari, D.; Montagnini, B.

    1992-01-01

    1 - Description of program or function: The program solves the 1-D time-dependent one and two group coarse-mesh neutron diffusion equations, coupled with the equations for the delayed-neutron precursor, in plane geometry. 2 - Method of solution: The program is based on a simple coarse-mesh cubic approximation formula for the spatial behaviour of the flux inside each interval. An implicit scheme (the time-integrated method) is used for the advancement of the solution. The resulting (block three-diagonal) matrix is inverted at each time step by Thomas' method. 3 - Restrictions on the complexity of the problem: Number of coarse- mesh intervals LE 80; number of material regions LE 10; number of delayed-neutron precursor groups LE 10. Typical mesh sizes range from 5 cm to 20 cm; typical step length (non-prompt critical transients) ranges from 0.005 to 0.1 seconds

  3. Analysis of incident-energy dependence of delayed neutron yields in actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, Mohamad Nasrun bin Mohd, E-mail: monasr211@gmail.com; Metorima, Kouhei, E-mail: kohei.m2420@hotmail.co.jp; Ohsawa, Takaaki, E-mail: ohsawa@mvg.biglobe.ne.jp; Hashimoto, Kengo, E-mail: kengoh@pp.iij4u.or.jp [Graduate School of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, 577-8502 (Japan)

    2015-04-29

    The changes of delayed neutron yields (ν{sub d}) of Actinides have been analyzed for incident energy up to 20MeV using realized data of precursor after prompt neutron emission, from semi-empirical model, and delayed neutron emission probability data (P{sub n}) to carry out a summation method. The evaluated nuclear data of the delayed neutron yields of actinide nuclides are still uncertain at the present and the cause of the energy dependence has not been fully understood. In this study, the fission yields of precursor were calculated considering the change of the fission fragment mass yield based on the superposition of fives Gaussian distribution; and the change of the prompt neutrons number associated with the incident energy dependence. Thus, the incident energy dependent behavior of delayed neutron was analyzed.The total number of delayed neutron is expressed as ν{sub d}=∑Y{sub i} • P{sub ni} in the summation method, where Y{sub i} is the mass yields of precursor i and P{sub ni} is the delayed neutron emission probability of precursor i. The value of Y{sub i} is derived from calculation of post neutron emission mass distribution using 5 Gaussian equations with the consideration of large distribution of the fission fragments. The prompt neutron emission ν{sub p} increases at higher incident-energy but there are two different models; one model says that the fission fragment mass dependence that prompt neutron emission increases uniformly regardless of the fission fragments mass; and the other says that the major increases occur at heavy fission fragments area. In this study, the changes of delayed neutron yields by the two models have been investigated.

  4. TDTORT: Time-Dependent, 3-D, Discrete Ordinates, Neutron Transport Code System with Delayed Neutrons

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: TDTORT solves the time-dependent, three-dimensional neutron transport equation with explicit representation of delayed neutrons to estimate the fission yield from fissionable material transients. This release includes a modified version of TORT from the C00650MFMWS01 DOORS3.1 code package plus the time-dependent TDTORT code. GIP is also included for cross-section preparation. TORT calculates the flux or fluence of particles due to particles incident upon the system from extraneous sources or generated internally as a result of interaction with the system in two- or three-dimensional geometric systems. The principle application is to the deep-penetration transport of neutrons and photons. Reactor eigenvalue problems can also be solved. Numerous printed edits of the results are available, and results can be transferred to output files for subsequent analysis. TDTORT reads ANISN-format cross-section libraries, which are not included in the package. Users may choose from several available in RSICC's data library collection which can be identified by the keyword 'ANISN FORMAT'. 2 - Methods:The time-dependent spatial flux is expressed as a product of a space-, energy-, and angle-dependent shape function, which is usually slowly varying in time and a purely time-dependent amplitude function. The shape equation is solved for the shape using TORT; and the result is used to calculate the point kinetics parameters (e.g., reactivity) by using their inner product definitions, which are then used to solve the time-dependent amplitude and precursor equations. The amplitude function is calculated by solving the kinetics equations using the LSODE solver. When a new shape calculation is needed, the flux is calculated using the newly computed amplitude function. The Boltzmann transport equation is solved using the method of discrete ordinates to treat the directional variable and weighted finite-difference methods, in addition to Linear Nodal

  5. Energy dependence of average half-life of delayed neutron precursors in fast neutron induced fission of 235U and 236U

    International Nuclear Information System (INIS)

    Isaev, S.G.; Piksaikin, L.E.; Kazakov, L.E.; Tarasko, M.Z.

    2000-01-01

    The measurements of relative abundances and periods of delayed neutrons from fast neutron induced fission of 235 U and 236 U have been made at the electrostatic accelerator CG-2.5 at IPPE. The preliminary results were obtained and discussed in the frame of the systematics of the average half-life of delayed neutron precursors. It was shown that the average half-life value in both reactions depends on the energy of primary neutrons [ru

  6. Systematic of delayed neutron parameters

    International Nuclear Information System (INIS)

    Isaev, S.G.; Piksaikin, V.M.

    2000-01-01

    The experimental studies of the energy dependence of the delayed neutron (DN) parameters for various fission systems has shown that the behaviour of a some combination of delayed neutron parameters has a similar features. On the basis of this findings the systematics of delayed neutron experimental data for thorium, uranium, plutonium and americium isotopes have been investigated with the purpose to find a correlation of DN parameters with characteristics of fissioning system as well as a correlation between the delayed neutron parameters themselves. It was presented the preliminary results which were obtained during study the physics interpretation of the results [ru

  7. Neutron delayed choice experiments

    International Nuclear Information System (INIS)

    Bernstein, H.J.

    1986-01-01

    Delayed choice experiments for neutrons can help extend the interpretation of quantum mechanical phenomena. They may also rule out alternative explanations which static interference experiments allow. A simple example of a feasible neutron test is presented and discussed. (orig.)

  8. Analytical applications for delayed neutrons

    International Nuclear Information System (INIS)

    Eccleston, G.W.

    1983-01-01

    Analytical formulations that describe the time dependence of neutron populations in nuclear materials contain delayed-neutron dependent terms. These terms are important because the delayed neutrons, even though their yields in fission are small, permit control of the fission chain reaction process. Analytical applications that use delayed neutrons range from simple problems that can be solved with the point reactor kinetics equations to complex problems that can only be solved with large codes that couple fluid calculations with the neutron dynamics. Reactor safety codes, such as SIMMER, model transients of the entire reactor core using coupled space-time neutronics and comprehensive thermal-fluid dynamics. Nondestructive delayed-neutron assay instruments are designed and modeled using a three-dimensional continuous-energy Monte Carlo code. Calculations on high-burnup spent fuels and other materials that contain a mix of uranium and plutonium isotopes require accurate and complete information on the delayed-neutron periods, yields, and energy spectra. A continuing need exists for delayed-neutron parameters for all the fissioning isotopes

  9. Delayed neutrons in ANSTO

    International Nuclear Information System (INIS)

    Wall, T.

    1988-01-01

    Delayed neutron analysis carried out at the Australian Nuclear Scientific and Technology Organization facilities, provides a fast, high sensitivity, low cost, reliable method, particularly suitable for large batches of samples, and for non destructive analysis of a range of materials. While its main use has been in uranium exploration, other applications include archeological investigations, agriculture, oceanography and biology

  10. Correlation properties of delayed neutrons from fast neutron induced fission

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Isaev, S.G.

    1998-01-01

    The experimental studies of the energy dependence of the delayed neutron parameters for various fissioning systems has shown that the behavior of a some combination of delayed neutron parameters (group relative abundances a i and half lives T i ) has a similar features. On the basis of this findings the systematics of delayed neutron experimental data for thorium, uranium, plutonium and americium isotopes have been investigated with the purpose to find a correlation of DN parameters with characteristics of fissioning system as well as a correlation between the delayed neutron parameters themselves. Below we will present the preliminary results which were obtained during this study omitting the physics interpretation of the results. (author)

  11. Neutron stochastic transport theory with delayed neutrons

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Verdu, G.

    1987-01-01

    From the stochastic transport theory with delayed neutrons, the Boltzmann transport equation with delayed neutrons for the average flux emerges in a natural way without recourse to any approximation. From this theory a general expression is obtained for the Feynman Y-function when delayed neutrons are included. The single mode approximation for the particular case of a subcritical assembly is developed, and it is shown that Y-function reduces to the familiar expression quoted in many books, when delayed neutrons are not considered, and spatial and source effects are not included. (author)

  12. Energy dependence of relative abundances and periods of delayed neutron separate groups from neutron induced fission of 239Pu in the virgin neutron energy range 0.37-4.97 MeV

    International Nuclear Information System (INIS)

    Piksajkin, V.M.; Kazakov, L.E.; Isaev, S.T.; Korolev, G.G.; Roshchenko, V.A.; Tertychnyj, R.G.

    2002-01-01

    Relative yield and group period of delayed neutrons induced by the 239 Pu fission in the 0.37-4.97 MeV range were measured. Comparative analysis of experimental data was conducted in terms of middle period of half-life of delayed neutron nuclei-precursors. Character and scale of changing values of delayed neutron group parameters as changing excitation energy of fission compound-nucleus have been demonstrated for the first time. Considerable energy dependence of group parameters under the neutron induced 239 Pu fission that was expressed by the decreasing middle period of half-life of nuclei-precursors by 10 % in the 2.85 eV - 5 MeV range of virgin neutrons was detected [ru

  13. Energy dependence of relative abundances and periods of separate groups of delayed neutrons at neutron induced fission of 239Pu in a range of neutrons energies 0.37 - 5 MeV

    International Nuclear Information System (INIS)

    Roschenko, V.A.; Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Tarasko, M.Z.; Tertychnyi, R.G.

    2001-01-01

    The fundamental role of delayed neutrons in behavior, control and safety of reactors is well known today. Delayed neutron data are of great interest not only for reactor physics but also for nuclear fission physics and astrophysics. The purpose of the present work was the measurement of energy dependence of delayed neutrons (DN) group parameters at fission of nuclei 239 Pu in a range of energies of primary neutrons from 0.37 up to 5 MeV. The measurements were executed on installation designed on the basis of the electrostatic accelerator of KG - 2.5 SSC RF IPPE. The data are obtained in 6-group representation. It is shown, that there is a significant energy dependence of DN group parameters in a range of primary neutrons energies from thermal meanings up to 5 MeV, which is expressed in reduction of the average half-life of nuclei of the DN precursors on 10 %. The data, received in the present work, can be used at creation of a set of group constants for reactors with an intermediate spectrum of neutrons. (authors)

  14. Delayed neutrons in liquid metal spallation targets

    International Nuclear Information System (INIS)

    Ridikas, D.; Bokov, P.; David, J.C.; Dore, D.; Giacri, M.L.; Van Lauwe, A.; Plukiene, R.; Plukis, A.; Ignatiev, S.; Pankratov, D.

    2003-01-01

    The next generation spallation neutron sources, neutrino factories or RIB production facilities currently being designed and constructed around the world will increase the average proton beam power on target by a few orders of magnitude. Increased proton beam power results in target thermal hydraulic issues leading to new target designs, very often based on flowing liquid metal targets such as Hg, Pb, Pb-Bi. Radioactive nuclides produced in liquid metal targets are transported into hot cells, past electronics, into pumps with radiation sensitive components, etc. Besides the considerable amount of photon activity in the irradiated liquid metal, a significant amount of the delayed neutron precursor activity can be accumulated in the target fluid. The transit time from the front of a liquid metal target into areas, where delayed neutrons may be important, can be as short as a few seconds, well within one half-life of many delayed neutron precursors. Therefore, it is necessary to evaluate the total neutron flux (including delayed neutrons) as a function of time and determine if delayed neutrons contribute significantly to the dose rate. In this study the multi-particle transport code MCNPX combined with the material evolution program CINDER'90 will be used to evaluate the delayed neutron flux and spectra. The following scientific issues will be addressed in this paper: - Modeling of a typical geometry of the liquid metal spallation target; - Predictions of the prompt neutron fluxes, fission fragment and spallation product distributions; - Comparison of the above parameters with existing experimental data; - Time-dependent calculations of delayed neutron precursors; - Neutron flux estimates due to the prompt and delayed neutron emission; - Proposal of an experimental program to measure delayed neutron spectra from high energy spallation-fission reactions. The results of this study should be directly applicable in the design study of the European MegaPie (1 MW

  15. Systematics in delayed neutron yields

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1998-03-01

    An attempt was made to reproduce the systematic trend observed in the delayed neutron yields for actinides on the basis of the five-Gaussian representation of the fission yield together with available data sets for delayed neutron emission probability. It was found that systematic decrease in DNY for heavier actinides is mainly due to decrease of fission yields of precursors in the lighter side of the light fragment region. (author)

  16. Preliminary Formulation of Finite Element Solution for the 1-D, 1-G Time Dependent Neutron Diffusion Equation without Consideration about Delay Neutron

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Eun Hyun; Song, Yong Mann; Park, Joo Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    If time-dependent equation is solved with the FEM, the limitation of the input geometry will disappear. It has often been pointed out that the numerical methods implemented in the RFSP code are not state-of-the-art. Although an acceleration method such as the Coarse Mesh Finite Difference (CMFD) for Finite Difference Method (FDM) does not exist for the FEM, one should keep in mind that the number of time steps for the transient simulation is not large. The rigorous formulation in this study will richen the theoretical basis of the FEM and lead to an extension of the dynamics code to deal with a more complicated problem. In this study, the formulation for the 1-D, 1-G Time Dependent Neutron Diffusion Equation (TDNDE) without consideration of the delay neutron will first be done. A problem including one multiplying medium will be solved. Also several conclusions from a comparison between the numerical and analytic solutions, a comparison between solutions with various element orders, and a comparison between solutions with different time differencing will be made to be certain about the formulation and FEM solution. By investigating various cases with different values of albedo, theta, and the order of elements, it can be concluded that the finite element solution is agree well with the analytic solution. The higher the element order used, the higher the accuracy improvements are obtained.

  17. TIMEX, 1-D Time-Dependent Multigroup Transport Theory with Delayed Neutron, Planar Cylindrical and Spherical Geometry

    International Nuclear Information System (INIS)

    Hill, T. R.; Reed, W. H.

    1980-01-01

    1 - Description of problem or function: TIMEX solves the time- dependent, one-dimensional multigroup transport equation with delayed neutrons in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective, periodic, white, albedo or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. 2 - Method of solution: The discrete ordinates approximation for the angular variable is used with the diamond (central) difference approximation for the angular extrapolation in curved geometries. A linear discontinuous finite element representation for the angular flux in each spatial mesh cell is used. Negative fluxes are eliminated by a local set-to-zero and correct algorithm. The time variable is differenced by an explicit technique that is unconditionally stable so that arbitrarily large time-steps can be taken. Two acceleration methods, exponential extrapolation and re-balance, are utilized to improve the accuracy of the time differencing scheme. 3 - Restrictions on the complexity of the problem: Variable dimensioning is used so that any combination of problem parameters leading to a container array less than MAXCOR can be accommodated. In addition, the CDC version permits the use of extended core storage less than MAXECS

  18. TIMEX: a time-dependent explicit discrete ordinates program for the solution of multigroup transport equations with delayed neutrons

    International Nuclear Information System (INIS)

    Hill, T.R.; Reed, W.H.

    1976-01-01

    TIMEX solves the time-dependent, one-dimensional multigroup transport equation with delayed neutrons in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective, periodic, white, albedo or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. The discrete ordinates approximation for the angular variable is used with the diamond (central) difference approximation for the angular extrapolation in curved geometries. A linear discontinuous finite element representation for the angular flux in each spatial mesh cell is used. The time variable is differenced by an explicit technique that is unconditionally stable so that arbitrarily large time steps can be taken. Because no iteration is performed the method is exceptionally fast in terms of computing time per time step. Two acceleration methods, exponential extrapolation and rebalance, are utilized to improve the accuracy of the time differencing scheme. Variable dimensioning is used so that any combination of problem parameters leading to a container array less than MAXCOR can be accommodated. The running time for TIMEX is highly problem-dependent, but varies almost linearly with the total number of unknowns and time steps. Provision is made for creation of standard interface output files for angular fluxes and angle-integrated fluxes. Five interface units (use of interface units is optional), five output units, and two system input/output units are required. A large bulk memory is desirable, but may be replaced by disk, drum, or tape storage. 13 tables, 9 figures

  19. Delayed neutron yield from fast neutron induced fission of 238U

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Roshchenko, V.A.; Goverdovski, A.A.; Tertytchnyi, R.G.

    2002-01-01

    The measurements of the total delayed neutron yield from fast neutron induced fission of 238 U were made. The experimental method based on the periodic irradiation of the fissionable sample by neutrons from a suitable nuclear reaction had been employed. The preliminary results on the energy dependence of the total delayed neutron yield from fission of 238 U are obtained. According to the comparison of experimental data with our prediction based on correlation properties of delayed neutron characteristics, it is concluded that the value of the total delayed neutron yield near the threshold of (n,f) reaction is not a constant. (author)

  20. An examination of the time-dependent background counts of the delayed neutron counting system at the Royal Military College of Canada

    International Nuclear Information System (INIS)

    Sellers, M.T.; Corcoran, E.C.; Kelly, D.G.

    2011-01-01

    A delayed neutron counting (DNC) system for the analysis of special nuclear materials (SNM) has been constructed and calibrated at the Royal Military College of Canada. The polyethylene vials used to transport SNM samples have been found to contribute a time-dependent count rate, B(t), far above the system background. B(t) has been found to be independent of polyethylene mass and shows a dependence on irradiation position in the SLOWPOKE-2 reactor and irradiation time. A comparison of B(t) and the theoretical delayed neutron production from the fission of small amounts of 235 U has indicated that trace amounts of uranium may be present in the DNC system tubing. (author)

  1. 8-group relative delayed neutron yields for monoenergetic neutron induced fission of 239Pu

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Roshchenko, V.A.; Tertychnyj, R.G

    2002-01-01

    The energy dependence of the relative yield of delayed neutrons in an 8-group model representation was obtained for monoenergetic neutron induced fission of 239 Pu. A comparison of this data with the available experimental data by other authors was made in terms of the mean half-life of the delayed neutron precursors. (author)

  2. COSTANZA, 1-D 2 Group Space-Dependent Reactor Dynamics of Spatial Reactor with 1 Group Delayed Neutrons

    International Nuclear Information System (INIS)

    Agazzi, A.; Gavazzi, C.; Vincenti, E.; Monterosso, R.

    1964-01-01

    1 - Nature of physical problem solved: The programme studies the spatial dynamics of reactor TESI, in the two group and one space dimension approximation. Only one group of delayed neutrons is considered. The programme simulates the vertical movement of the control rods according to any given movement law. The programme calculates the evolution of the fluxes and temperature and precursor concentration in space and time during the power excursion. 2 - Restrictions on the complexity of the problem: The maximum number of lattice points is 100

  3. 8-group relative delayed neutron yields for epithermal neutron induced fission of 235U and 239Pu

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Roshchenko, V.A.; Tertychnyj, R.G

    2002-01-01

    An 8-group representation of relative delayed neutron yields was obtained for epithermal neutron induced fission of 235 U and 239 Pu. These data were compared with ENDF/B-VI data in terms of the average half- life of the delayed neutron precursors and on the basis of the dependence of reactivity on the asymptotic period. (author)

  4. Radiochemical Means of Investigating Delayed Neutron Precursors

    International Nuclear Information System (INIS)

    Marmol, P. del

    1968-01-01

    Fast radiochemical methods used now for the determination of delayed neutron precursors are classified and reviewed: precipitations, solvent extractions, range experiments, milking, gas sweeping, isotopic and ion exchange, hot atom reactions and diffusion loss. Advantages and limitations of irradiation systems with respect to fast separations are discussed: external beams which allow faster separations only have low neutron fluxes, internal beams which are mostly fit for gaseous reactions; and rabbits for solution irradiations. Future prospects of radiochemical procedures are presented; among these, studies should be mostly oriented towards gaseous reactions which offer possibilities of isolating very short-lived delayed neutron precursors. Chemical procedures for delayed neutron precursor detection are compared with mass spectrometric and isotope separator techniques; it is concluded that the methods are complementary. (author)

  5. Radiochemical Means of Investigating Delayed Neutron Precursors

    International Nuclear Information System (INIS)

    Marmol, P. del

    1968-01-01

    Fast radiochemical methods used now for the determination of delayed neutron precursors are classified and reviewed: precipitations, solvent extractions, range experiments, milking, gas sweeping, isotopic and ion exchange, hot-atom reactions and diffusion loss. Advantages and limitations of irradiation systems with respect to fast separations are discussed: external beams which allow faster separations only have low neutron fluxes, internal beams which are mostly fit for gaseous reactions; and rabbits for solution irradiations. Future prospects of radiochemical procedures are presented; among these, studies should be mostly oriented towards gaseous reactions which offer possibilities of isolating very short-lived delayed neutron precursors. Chemical procedures for delayed neutron precursor detection are compared with mass spectrometric and isotope-separator techniques; it is concluded that the methods are complementary. (author)

  6. The delayed neutron method of uranium analysis

    International Nuclear Information System (INIS)

    Wall, T.

    1989-01-01

    The technique of delayed neutron analysis (DNA) is discussed. The DNA rig installed on the MOATA reactor, the assay standards and the types of samples which have been assayed are described. Of the total sample throughput of about 55,000 units since the uranium analysis service began, some 78% has been concerned with analysis of uranium ore samples derived from mining and exploration. Delayed neutron analysis provides a high sensitivity, low cost uranium analysis method for both uranium exploration and other applications. It is particularly suitable for analysis of large batch samples and for non-destructive analysis over a wide range of matrices. 8 refs., 4 figs., 3 tabs

  7. The effective delayed neutron fraction for bare-metal criticals

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1999-01-01

    Given sufficient material, a large number of actinides could be used to form bare-metal criticals. The effective delayed neutron fraction for a bare critical comprised of a fissile material is comparable with the absolute delayed neutron fraction. The effective delayed neutron fraction for a bare critical composed of a fissionable material is reduced by factors of 2 to 10 when compared with the absolute delayed neutron fraction. When the effective delayed neutron fraction is small, the difference between delayed and prompt criticality is small, and extreme caution must be used in critical assemblies of these materials. This study uses an approximate but realistic model to survey the actinide region to compare effective delayed neutron fractions with absolute delayed neutron fractions

  8. Improved Delayed-Neutron Spectroscopy Using Trapped Ions

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Eric

    2018-04-24

    The neutrons emitted following the  decay of fission fragments (known as delayed neutrons because they are emitted after fission on a timescale of the -decay half-lives) play a crucial role in reactor performance and control. Reviews of delayed-neutron properties highlight the need for high-quality data for a wide variety of delayed-neutron emitters to better understand the timedependence and energy spectrum of the neutrons as these properties are essential for a detailed understanding of reactor kinetics needed for reactor safety and to understand the behavior of these reactors under various accident and component-failure scenarios. For fast breeder reactors, criticality calculations require accurate delayed-neutron energy spectra and approximations that are acceptable for light-water reactors such as assuming the delayed-neutron and fission-neutron energy spectra are identical are not acceptable and improved -delayed neutron data is needed for safety and accident analyses for these reactors. With improved nuclear data, the delayedneutrons flux and energy spectrum could be calculated from the contributions from individual isotopes and therefore could be accurately modeled for any fuel-cycle concept, actinide mix, or irradiation history. High-quality -delayed neutron measurements are also critical to constrain modern nuclear-structure calculations and empirical models that predict the decay properties for nuclei for which no data exists and improve the accuracy and flexibility of the existing empirical descriptions of delayed neutrons from fission such as the six-group representation

  9. Proceedings of the specialists' meeting on delayed neutron nuclear data

    International Nuclear Information System (INIS)

    Katakura, Jun-ichi

    1999-07-01

    This report is the Proceedings of the Specialists' Meeting on Delayed Neutron Nuclear Data. The meeting was held on January 28-29, 1999, at the Tokai Research Establishment of Japan Atomic Energy Research Institute with the participation of thirty specialists, who are evaluators, theorist, experimentalists. Although the fraction of the delayed neutron is no more than 1% in the total neutrons emitted in the fission process, it plays an important roll in the control of fission reactor. In the meeting, the following topics were reported: the present status of delayed neutron data in the major evaluated data libraries, measurements of effective delayed neutron fraction using FCA (Fast Critical Assembly) and TCA (Tank-type Critical Assembly) and their analyses, sensitivity analysis for fast reactor, measurements of delayed neutron emission from actinides and so on. As another topics, delayed neutron in transmutation system and fission yield data were also presented. Free discussion was held on the future activity of delayed neutron data evaluation. The discussion was helpful for the future activity of the delayed neutron working group of JNDC aiming to the evaluation of delayed neutron data for JENDL-3.3. The 15 of the presented papers are indexed individually. (J.P.N.)

  10. Energy dependent neutron imaging

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Hitterman, R.L.; Rhodes, E.

    1990-01-01

    A waste package consisting of a container and high-level nuclear waste is being developed for the permanent disposal of radioactive waste. Yucca Mountain, Nevada, is being studied as a potential site for the underground high-level nuclear waste repository. A major consideration for choosing Yucca Mountain is the presence of zeolite in tertiary ash-flow tuffs. The presence of zeolites could provide geological barriers to radionuclide migration. The suitability of the tuffaceous rocks at Yucca Mountain for the repository is being investigated since the properties of the environment around a waste site must be well characterized to reliably predict performance. The results of experiments at Lawrence Livermore National Laboratory (LLNL) to assess the possibility of imaging water in Nevada Test Site welded tuff samples showed that nuclear magnetic resonance imaging is not viable. This leaves neutron tomography and high-frequency electromagnetic geotomography as possibilities for the practical imaging of distribution and flow of fluids in rock, including tuff specimens. Water tracers are needed in electromagnetic tomography techniques since the contrast for detecting water in cracks of tuff is lower than in granite because of the higher porosity in tuff. The results of preliminary testing with geotomography by LLNL indicates relatively low spatial resolution. More sensitive techniques for detecting water is needed. This paper describes preliminary experiments to apply pulsed neutrons to image water in a sample of tuff. 3 refs., 3 figs

  11. Evaluation method for uncertainty of effective delayed neutron fraction βeff

    International Nuclear Information System (INIS)

    Zukeran, Atsushi

    1999-01-01

    Uncertainty of effective delayed neutron fraction β eff is evaluated in terms of three quantities; uncertainties of the basic delayed neutron constants, energy dependence of delayed neutron yield ν d m , and the uncertainties of the fission cross sections of fuel elements. The uncertainty of β eff due to the delayed neutron yield is expressed by a linearized formula assuming that the delayed neutron yield does not depend on the incident energy, and the energy dependence is supplemented by using the detailed energy dependence proposed by D'Angelo and Filip. The third quantity, uncertainties of fission cross section, is evaluated on the basis of the generalized perturbation theory in relation to reaction rate rations such as central spectral indexes or average reaction rate ratios. Resultant uncertainty of β eff is about 4 to 5%s, in which primary factor is the delayed neutron yield, and the secondary one is the fission cross section uncertainty, especially for 238 U. The energy dependence of ν d m systematically reduces the magnitude of β eff about 1.4% to 1.7%, depending on the model of the energy vs. ν d m correlation curve. (author)

  12. Leakage monitoring equipment of fuel element by delayed neutron method

    International Nuclear Information System (INIS)

    Ji Changsong; Zhang Shulan; Zhang Shuheng

    1999-01-01

    Based on monitoring results of delayed neutrons from reactor first circle water, the leakage of reactor fuel elements is monitored. A monitoring equipment consisted of an array of 3 He proportional counter tubes with 75 s delay has been developed. The neutron detection efficiency of 6.1% is obtained

  13. An accurate solution of point reactor neutron kinetics equations of multi-group of delayed neutrons

    International Nuclear Information System (INIS)

    Yamoah, S.; Akaho, E.H.K.; Nyarko, B.J.B.

    2013-01-01

    Highlights: ► Analytical solution is proposed to solve the point reactor kinetics equations (PRKE). ► The method is based on formulating a coefficient matrix of the PRKE. ► The method was applied to solve the PRKE for six groups of delayed neutrons. ► Results shows good agreement with other traditional methods in literature. ► The method is accurate and efficient for solving the point reactor kinetics equations. - Abstract: The understanding of the time-dependent behaviour of the neutron population in a nuclear reactor in response to either a planned or unplanned change in the reactor conditions is of great importance to the safe and reliable operation of the reactor. In this study, an accurate analytical solution of point reactor kinetics equations with multi-group of delayed neutrons for specified reactivity changes is proposed to calculate the change in neutron density. The method is based on formulating a coefficient matrix of the homogenous differential equations of the point reactor kinetics equations and calculating the eigenvalues and the corresponding eigenvectors of the coefficient matrix. A small time interval is chosen within which reactivity relatively stays constant. The analytical method was applied to solve the point reactor kinetics equations with six-groups delayed neutrons for a representative thermal reactor. The problems of step, ramp and temperature feedback reactivities are computed and the results compared with other traditional methods. The comparison shows that the method presented in this study is accurate and efficient for solving the point reactor kinetics equations of multi-group of delayed neutrons

  14. An experimental facility for studying delayed neutron emission

    International Nuclear Information System (INIS)

    Dermendzhiev, E.; Nazarov, V.M.; Pavlov, S.S.; Ruskov, Iv.; Zamyatin, Yu.S.

    1993-01-01

    A new experimental facility for studying delayed neutron emission has been designed and tested. A method based on utilization of the Dubna IBR-2 pulsed reactor, has been proposed and realized for periodical irradiation of targets composed of fissionable isotopes. Such a powerful pulsed neutron source in combination with a slow neutron chopper synchronized with the reactor bursts makes possible variation of the exposure duration and effective suppression of the fast neutron background due to delay neutrons emitted from the reactor core. Detection of delayed neutrons from the target is carried out by a high-efficiency multicounter neutron detector with a near-4π geometry. Some test measurements and results are briefly described. Possible use of the facility for other tasks is also discussed. 14 refs.; 14 figs

  15. Gamma/neutron competition above the neutron separation energy in delayed neutron emitters

    Directory of Open Access Journals (Sweden)

    Valencia E.

    2014-03-01

    Full Text Available To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyväskylä in Finland using Total Absorption γ-ray Spectroscopy (TAGS technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn.

  16. Modeling delayed neutron monitoring systems for fast breeder reactors

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  17. Temperature Dependent Wire Delay Estimation in Floorplanning

    DEFF Research Database (Denmark)

    Winther, Andreas Thor; Liu, Wei; Nannarelli, Alberto

    2011-01-01

    Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability. In this w......Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability....... In this work, we show that using wirelength as the evaluation metric does not always produce a floorplan with the shortest delay. We propose a temperature dependent wire delay estimation method for thermal aware floorplanning algorithms, which takes into account the thermal effect on wire delay. The experiment...

  18. Experimental methods of effective delayed neutron fraction

    International Nuclear Information System (INIS)

    Yamaye, Yoshihiro

    1995-01-01

    The defining principle and examples of β eff measurement method: the substitutional method, Cf neutron source method, Bennett method, the coupling coefficient method and Nelson method were introduced and surveyed. Measurement errors and C/E value of the substitutional, Cf ray source and Bennett method were of the order of 3%, 5% and 3 - 6% and 0.903 - 0.965, 1.85 and 1.019 - 1.165, respectably. Evaluation of the absolute value is so hard that β eff measurement belongs to the difficult experiment. The dependence on nuclear calculation in decreasing order is the substitutional, Cf ray source, Bennett, the coupling coefficient and Nelson number method. If good substitute materials were selected, the substitutional method has possibility to determine β eff by small correction value or independent on calculation. (S.Y.)

  19. Possibilities of delayed neutron fraction (βeff) calculation and measurement

    International Nuclear Information System (INIS)

    Michalek, S.; Hascik, J.; Farkas, G.

    2008-01-01

    The influence of the delayed neutrons on the reactor dynamics can be understood through their impact on the reactor power change rate. In spite of the fact that delayed neutrons constitute only a very small fraction of the total number of neutrons generated from fission, they play a dominant role in the fission chain reaction control. If only the prompt neutrons existed, the reactor operation would become impossible due to the fast reactor power changes. The exact determination of delayed neutrons main parameter, the delayed neutron fraction (β eff ), is very important in the field of reactor physics. The interest in the delayed neutron data accuracy improvement started to increase at the end of 80-ties and the beginning of 90-ties, after discrepancies among the results of calculations and experiments. In consequence of difficulties in β eff experimental measurement, this value in exact state use to be determined by calculations. Subsequently, its reliability depends on the calculation method and the delayed neutron data used. Determination of β eff requires criticality calculations. In the past, k eff used to be traditionally calculated by taking the ratio of the adjoint- and spectrum-weighted delayed neutron production rate to the adjoint- and spectrum- weighted total neutron production rate. An alternative method has also been used in which β eff is calculated from simple k-eigenvalue solutions. In this work, a summary of possible β eff calculation methods can be found and a calculation of β eff for VR-1 training reactor in one operation state is made using the prompt method, by MCNP5 code. Also a method of β eff kinetic measurement on VR-1 training reactor at Czech Technical University in Prague using in-pile kinetic technique is outlined (authors)

  20. Beta-delayed neutron decay of $^{33}$Na

    CERN Document Server

    Radivojevic, Z; Caurier, E; Cederkäll, J; Courtin, S; Dessagne, P; Jokinen, A; Knipper, A; Le Scornet, G; Lyapin, V G; Miehé, C; Nowacki, F; Nummela, S; Oinonen, M; Poirier, E; Ramdhane, M; Trzaska, W H; Walter, G; Äystö, J

    2002-01-01

    Beta-delayed neutron decay of /sup 33/Na has been studied using the on-line mass separator ISOLDE. The delayed neutron spectra were measured by time-of-flight technique using fast scintillators. Two main neutron groups at 800(60) and 1020(80) keV were assigned to the /sup 33/Na decay, showing evidence for strong feeding of states at about 4 MeV in /sup 33/Mg. By simultaneous beta - gamma -n counting the delayed neutron emission probabilities P/sub 1n/ = 47(6)% and P /sub 2n/ = 13(3)% were determined. The half-life value for /sup 33 /Na, T/sub 1/2/ = 8.0(3) ms, was measured by three different techniques, one employing identifying gamma transitions and two employing beta and neutron counting. (21 refs).

  1. Information about the new 8-group delayed neutron set preparation

    International Nuclear Information System (INIS)

    Svarny, J.

    1998-01-01

    Some comments to the present state concerning delayed neutron data preparation is given and preliminary analysis of the new 8-group delayed data (relative abundances) is presented. Comparisons of the 8-group to 6-group set is given for rod drop experiment (Unit 1, Cycle 14, NPP Dukovany).(Author)

  2. Delayed neutron emission near the shell-closures

    Directory of Open Access Journals (Sweden)

    Borzov Ivan

    2016-01-01

    Full Text Available The self-consistent Density Functional + Continuum QRPA approach (DF+CQRPA provides a good description of the recent experimental beta-decay half-lives and delayed neutron emission branchings for the nuclei approaching to (and beyond the neutron closed shells N = 28; 50; 82. Predictions of beta-decay properties are more reliable than the ones of standard global approaches traditionally used for the r-process modelling. An impact of the quasi-particle phonon coupling on the delayed multi-neutron emission rates P2n, P3n,… near the closed shells is also discussed.

  3. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    CERN Document Server

    Isaev, S G; Piksaikin, V M; Roshchenko, V A

    2001-01-01

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of sup 2 sup 3 sup 5 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus.

  4. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    International Nuclear Information System (INIS)

    Isaev, S.G.; Piksaikin, V.M.; Kazakov, L.E.; Roshchenko, V.A.

    2002-01-01

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of 235 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus. (author)

  5. A possible island of beta-delayed neutron precursors in heavy nucleus region

    International Nuclear Information System (INIS)

    Zhang Li

    1991-01-01

    The possible Beta-Delayed neutron precursors in the elements Tl, Hg, and Au were predicted following a systematic research on the known Beta-Delayed neutron precursors. The masses of the unknown nuclei and neutron emission probabilities were calculated

  6. Importance of delayed neutron data in transmutation system

    International Nuclear Information System (INIS)

    Tsujimoto, Kazufumi

    1999-01-01

    The accelerator-driven transmutation system has been studied at the Japan Atomic Energy Research Institute. This system is a hybrid system which consists of a high intensity accelerator, a spallation target and a subcritical core region. The subcritical core is driven by neutrons generated by spallation reaction in the target region. There is no control rod in this system, so the power is controlled only by proton beam current. The beam current to keep constant power change with effective multiplication factor of subcritical core. So, the evaluation of delayed neutron fraction which is strongly connected to the measurement of subcritical level is important factor in operation of accelerator-driven system. In this paper, important nuclides for the delayed neutron fraction of ADS will be discussed, moreover, present state of delayed neutron data in evaluated nuclear data library is presented. (author)

  7. The energy spectrum of delayed neutrons from thermal neutron induced fission of 235U and its analytical approximation

    International Nuclear Information System (INIS)

    Doroshenko, A.Yu.; Tarasko, M.Z.; Piksaikin, V.M.

    2002-01-01

    The energy spectrum of the delayed neutrons is the poorest known of all input data required in the calculation of the effective delayed neutron fractions. In addition to delayed neutron spectra based on the aggregate spectrum measurements there are two different approaches for deriving the delayed neutron energy spectra. Both of them are based on the data related to the delayed neutron spectra from individual precursors of delayed neutrons. In present work these two different data sets were compared with the help of an approximation by gamma-function. The choice of this approximation function instead of the Maxwellian or evaporation type of distribution is substantiated. (author)

  8. MONSTER: a TOF Spectrometer for beta-delayed Neutron Spetroscopy

    CERN Document Server

    Martinez, T; Castilla, J; Garcia, A R; Marin, J; Martinez, G; Mendoza, E; Santos, C; Tera, F; Jordan, M D; Rubio, B; Tain, J L; Bhattacharya, C; Banerjee, K; Bhattacharya, S; Roy, P; Meena, J K; Kundu, S; Mukherjee, G; Ghosh, T K; Rana, T K; Pandey, R; Saxena, A; Behera, B; Penttila, H; Jokinen, A; Rinta-Antila, S; Guerrero, C; Ovejero, M C; Villamarin, D; Agramunt, J; Algora, A

    2014-01-01

    Beta-delayed neutron (DN) data, including emission probabilities, P-n, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.

  9. Deterministic calculation of the effective delayed neutron fraction without using the adjoint neutron flux - 299

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Aliberti, G.; Zhong, Z.; Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C.; Serafimovich, I.

    2010-01-01

    In 1997, Bretscher calculated the effective delayed neutron fraction by the k-ratio method. The Bretscher's approach is based on calculating the multiplication factor of a nuclear reactor core with and without the contribution of delayed neutrons. The multiplication factor set by the delayed neutrons (the delayed multiplication factor) is obtained as the difference between the total and the prompt multiplication factors. Bretscher evaluated the effective delayed neutron fraction as the ratio between the delayed and total multiplication factors (therefore the method is often referred to as k-ratio method). In the present work, the k-ratio method is applied by deterministic nuclear codes. The ENDF/B nuclear data library of the fuel isotopes ( 238 U and 238 U) have been processed by the NJOY code with and without the delayed neutron data to prepare multigroup WIMSD nuclear data libraries for the DRAGON code. The DRAGON code has been used for preparing the PARTISN macroscopic cross sections. This calculation methodology has been applied to the YALINA-Thermal assembly of Belarus. The assembly has been modeled and analyzed using PARTISN code with 69 energy groups and 60 different material zones. The deterministic and Monte Carlo results for the effective delayed neutron fraction obtained by the k-ratio method agree very well. The results also agree with the values obtained by using the adjoint flux. (authors)

  10. Some properties of zero power neutron noise in a time-varying medium with delayed neutrons

    International Nuclear Information System (INIS)

    Kitamura, Y.; Pal, L.; Pazsit, I.; Yamamoto, A.; Yamane, Y.

    2008-01-01

    The temporal evolution of the distribution of the number of neutrons in a time-varying multiplying system, producing only prompt neutrons, was treated recently with the master equation technique by some of the present authors. Such a treatment gives account of both the so-called zero power reactor noise and the power reactor noise simultaneously. In particular, the first two moments of the neutron number, as well as the concept of criticality for time-varying systems, were investigated and discussed. The present paper extends these investigations to the case when delayed neutrons are also taken into account. Due to the complexity of the description, only the expectation of the neutron number is calculated. The concept of criticality of a time-varying system is also generalized to systems with delayed neutrons. The temporal behaviour of the expectation of the number of neutrons and its asymptotic properties are displayed and discussed

  11. A delayed neutron technique for measuring induced fission rates in fresh and burnt LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.A., E-mail: kajordan@gmail.co [Paul Scherrer Institut, Laboratory for Reactor Physics and System Behaviour, 5232 Villigen (Switzerland); Perret, G. [Paul Scherrer Institut, Laboratory for Reactor Physics and System Behaviour, 5232 Villigen (Switzerland)

    2011-04-01

    The LIFE-PROTEUS program at the Paul Scherrer Institut is being undertaken to characterize the interfaces between burnt and fresh fuel assemblies in modern LWRs. Techniques are being developed to measure fission rates in burnt fuel following re-irradiation in the zero-power PROTEUS research reactor. One such technique utilizes the measurement of delayed neutrons. To demonstrate the feasibility of the delayed neutron technique, fresh and burnt UO{sub 2} fuel samples were irradiated in different positions in the PROTEUS reactor, and their neutron outputs were recorded shortly after irradiation. Fission rate ratios of the same sample irradiated in two different positions (inter-positional) and of two different samples irradiated in the same position (inter-sample) were derived from the measurements and compared with Monte Carlo predictions. Derivation of fission rate ratios from the delayed neutron measured signal requires correcting the signal for the delayed neutron source properties, the efficiency of the measurement setup, and the time dependency of the signal. In particular, delayed neutron source properties strongly depend on the fissile and fertile isotopes present in the irradiated sample and must be accounted for when deriving inter-sample fission rate ratios. Measured inter-positional fission rate ratios generally agree within 1{sigma} uncertainty (on the order of 1.0%) with the calculation predictions. For a particular irradiation position, however, a bias of about 2% is observed and is currently under investigation. Calculated and measured inter-sample fission rate ratios have C/E values deviating from unity by less than 1% and within 2{sigma} of the statistical uncertainties. Uncertainty arising from delayed neutron data is also assessed, and is found to give an additional 3% uncertainty factor. The measurement data indicate that uncertainty is overestimated.

  12. Kalman filter analysis of delayed neutron nondestructive assay measurements

    International Nuclear Information System (INIS)

    Aumeier, S. E.

    1998-01-01

    The ability to nondestructively determine the presence and quantity of fissile and fertile nuclei in various matrices is important in several nuclear applications including international and domestics safeguards, radioactive waste characterization and nuclear facility operations. Material irradiation followed by delayed neutron counting is a well known and useful nondestructive assay technique used to determine the fissile-effective content of assay samples. Previous studies have demonstrated the feasibility of using Kalman filters to unfold individual isotopic contributions to delayed neutron measurements resulting from the assay of mixes of uranium and plutonium isotopes. However, the studies in question used simulated measurement data and idealized parameters. We present the results of the Kalman filter analysis of several measurements of U/Pu mixes taken using Argonne National Laboratory's delayed neutron nondestructive assay device. The results demonstrate the use of Kalman filters as a signal processing tool to determine the fissile and fertile isotopic content of an assay sample from the aggregate delayed neutron response following neutron irradiation

  13. A general formula considering one group delayed neutron under nonequilibrium condition

    International Nuclear Information System (INIS)

    Li Haofeng; Chen Wenzhen; Zhu Qian; Luo Lei

    2008-01-01

    A general neutron breeder formula is developed when the reactor does not reach the steady state and the reactivity changes in phase. This formula can be used to calculate the results of six groups delayed neutron model through a way of amending λ in one group delayed neutron model. The analysis shows that the solution of amended single group delayed neutron model is approximately equal to that of six-group delayed neutron model, and the amended model meets the engineering accuracy. (authors)

  14. Calibration of the JET neutron yield monitors using the delayed neutron counting technique

    International Nuclear Information System (INIS)

    van Belle, P.; Jarvis, O.N.; Sadler, G.; de Leeuw, S.; D'Hondt, P.; Pillon, M.

    1990-01-01

    The time-resolved neutron yield is routinely measured on the JET tokamak using a set of fission chambers. At present, the preferred technique is to employ activation reactions to determine the neutron fluence at a well-chosen position and to relate the measured fluence to the total neutron emission by means of neutron transport calculations. The delayed neutron counting method is a particularly convenient method of performing the activation measurement and the fission cross sections are accurately known. This paper outlines the measurement technique as used on JET

  15. Bioassay method for Uranium in urine by Delay Neutron counting

    International Nuclear Information System (INIS)

    Suratman; Purwanto; Sukarman-Aminjoyo

    1996-01-01

    A bioassay method for uranium in urine by neutron counting has been studied. The aim of this research is to obtain a bioassay method for uranium in urine which is used for the determination of internal dose of radiation workers. The bioassay was applied to the artificially uranium contaminated urine. The weight of the contaminant was varied. The uranium in the urine was irradiated in the Kartini reactor core, through pneumatic system. The delayed neutron was counted by BF3 neutron counter. Recovery of the bioassay was between 69.8-88.8 %, standard deviation was less than 10 % and the minimum detection was 0.387 μg

  16. Statistical precision of delayed-neutron nondestructive assay techniques

    International Nuclear Information System (INIS)

    Bayne, C.K.; McNeany, S.R.

    1979-02-01

    A theoretical analysis of the statistical precision of delayed-neutron nondestructive assay instruments is presented. Such instruments measure the fissile content of nuclear fuel samples by neutron irradiation and delayed-neutron detection. The precision of these techniques is limited by the statistical nature of the nuclear decay process, but the precision can be optimized by proper selection of system operating parameters. Our method is a three-part analysis. We first present differential--difference equations describing the fundamental physics of the measurements. We then derive and present complete analytical solutions to these equations. Final equations governing the expected number and variance of delayed-neutron counts were computer programmed to calculate the relative statistical precision of specific system operating parameters. Our results show that Poisson statistics do not govern the number of counts accumulated in multiple irradiation-count cycles and that, in general, maximum count precision does not correspond with maximum count as first expected. Covariance between the counts of individual cycles must be considered in determining the optimum number of irradiation-count cycles and the optimum irradiation-to-count time ratio. For the assay system in use at ORNL, covariance effects are small, but for systems with short irradiation-to-count transition times, covariance effects force the optimum number of irradiation-count cycles to be half those giving maximum count. We conclude that the equations governing the expected value and variance of delayed-neutron counts have been derived in closed form. These have been computerized and can be used to select optimum operating parameters for delayed-neutron assay devices

  17. Elemental analysis of some West Malaysian limestones using neutron activation, delayed neutron and electron microprobe analysis

    International Nuclear Information System (INIS)

    Amin, Y.M.; Kamaluddin, B.; Mahat, R.H.

    1990-01-01

    Limestone stratigraphy in Malaysia has been and is dependent almost entirely in palaeontology. However fossil localities are sporadic and as such a new fossil discovery mean the necessity for a complete re-appraisal of the stratigraphy. The almost complete dependence upon palaeontology results from the difficulties of stratigraphy correlation of isolated outcrops, from the cover of tropical vegetation and from the often complex folding and faulting which has been imposed on the geosyn-clinical rocks by the Indonesian-Thai-Malayan orogeny. So by studying the elemental composition of limestones accurately, we would be able to correlate outcrops and other stratigraphic samples independent of fossil finds. The use of delayed neutron analysis would also determine the concentration of uranium and thorium accurately. This study, in conjunction with thermoluminescence and fission track studies, would able us to date the age of the limestones

  18. Study of beta-delayed neutron with proton-neutron QRPA plus statistical model

    International Nuclear Information System (INIS)

    Minato, Futoshi; Iwamoto, Osamu

    2015-01-01

    β-delayed neutron is known to be important for safety operation of nuclear reactor and prediction of elemental abundance after freeze-out of r-process. A lot of researches on it have been performed. However, the experimental data are far from complete since the lifetime of most of the relevant nuclei is so short that one cannot measure in a high efficiency. In order to estimate half-lives and delayed neutron emission probabilities of unexplored nuclei, we developed a new theoretical method which combines a proton-neutron quasi-particle random-phase-approximation and the Hauser-Feshbach statistical model. The present method reproduces experimentally known β-decay half-lives within a factor of 10 and about 40% of within a factor of 2. However it fails to reproduce delayed neutron emission probabilities. We discuss the problems and remedy for them to be made in future. (author)

  19. Delayed neutron spectra from short pulse fission of uranium-235

    International Nuclear Information System (INIS)

    Atwater, H.F.; Goulding, C.A.; Moss, C.E.; Pederson, R.A.; Robba, A.A.; Wimett, T.F.; Reeder, P.; Warner, R.

    1986-01-01

    Delayed neutron spectra from individual short pulse (∼50 μs) fission of small 235 U samples (50 mg) were measured using a small (5 cm OD x 5 cm length) NE 213 neutron spectrometer. The irradiating fast neutron flux (∼10 13 neutrons/cm 2 ) for these measurements was provided by the Godiva fast burst reactor at the Los Alamos Critical Experiment Facility (LACEF). A high speed pneumatic transfer system was used to transfer the 50 mg 235 U samples from the irradiation position near the Godiva assembly to a remote shielded counting room containing the NE 213 spectrometer and associated electronics. Data were acquired in sixty-four 0.5 s time bins and over an energy range 1 to 7 MeV. Comparisons between these measurements and a detailed model calculation performed at Los Alamos is presented

  20. Use of one delayed-neutron precursor group in transient analysis

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1983-01-01

    In most reactor dynamics calculations six groups of delayed-neutron precursors are usually accounted for. However, under certain circumstances it may be advantageous to simplify the calculation and utilize a single delayed-neutron group. The motivation for going to one precursor group is economy. For LWR transient codes that use point kinetics the equations are solved very rapidly and six precursor groups should always be used. However, codes with spatially dependent neutron kinetics are very long running and the use of one precursor group may save computer costs and not impair the accuracy of the results significantly. Furthermore, in some codes, the elimation of five presursor groups makes additional memory available which may be used to give a net increase in the accuracy of the calculations, e.g., by allowing for an increase in mesh density. In order to use one delayed neutron precursor group it is necessary to derive a single decay constant, 6 lambda-, which, along with the total (or one group) delayed neutron fraction β = Σ/sub i = 1/β/sub i/, will adequately describe the transeint precursor behavior. The present summary explains how a recommendation for lambda- was derived

  1. Subcritical Neutron Multiplication Measurements of HEU Using Delayed Neutrons as the Driving Source

    International Nuclear Information System (INIS)

    Hollas, C.L.; Goulding, C.A.; Myers, W.L.

    1999-01-01

    A new method for the determination of the multiplication of highly enriched uranium systems is presented. The method uses delayed neutrons to drive the HEU system. These delayed neutrons are from fission events induced by a pulsed 14-MeV neutron source. Between pulses, neutrons are detected within a medium efficiency neutron detector using 3 He ionization tubes within polyethylene enclosures. The neutron detection times are recorded relative to the initiation of the 14-MeV neutron pulse, and subsequently analyzed with the Feynman reduced variance method to extract singles, doubles and triples neutron counting rates. Measurements have been made on a set of nested hollow spheres of 93% enriched uranium, with mass values from 3.86 kg to 21.48 kg. The singles, doubles and triples counting rates for each uranium system are compared to calculations from point kinetics models of neutron multiplicity to assign multiplication values. These multiplication values are compared to those from MC NP K-Code calculations

  2. The neutron long counter NERO for studies of β-delayed neutron emission in the r-process

    International Nuclear Information System (INIS)

    Pereira, J.; Hosmer, P.; Lorusso, G.; Santi, P.; Couture, A.; Daly, J.; Del Santo, M.; Elliot, T.

    2010-01-01

    The neutron long counter NERO was built at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, for measuring β-delayed neutron-emission probabilities. The detector was designed to work in conjunction with a β-delay implantation station, so that β decays and β-delayed neutrons emitted from implanted nuclei can be measured simultaneously. The high efficiency of about 40%, for the range of energies of interest, along with the small background, are crucial for measuring β-delayed neutron emission branchings for neutron-rich r-process nuclei produced as low intensity fragmentation beams in in-flight separator facilities.

  3. Proton energy dependence of slow neutron intensity

    International Nuclear Information System (INIS)

    Teshigawara, Makoto; Harada, Masahide; Watanabe, Noboru; Kai, Tetsuya; Sakata, Hideaki; Ikeda, Yujiro

    2001-01-01

    The choice of the proton energy is an important issue for the design of an intense-pulsed-spallation source. The optimal proton beam energy is rather unique from a viewpoint of the leakage neutron intensity but no yet clear from the slow-neutron intensity view point. It also depends on an accelerator type. Since it is also important to know the proton energy dependence of slow-neutrons from the moderators in a realistic target-moderator-reflector assembly (TMRA). We studied on the TMRA proposed for Japan Spallation Neutron Source. The slow-neutron intensities from the moderators per unit proton beam power (MW) exhibit the maximum at about 1-2 GeV. At higher proton energies the intensity per MW goes down; at 3 and 50 GeV about 0.91 and 0.47 times as low as that at 1 GeV. The proton energy dependence of slow-neutron intensities was found to be almost the same as that of total neutron yield (leakage neutrons) from the same bare target. It was also found that proton energy dependence was almost the same for the coupled and decoupled moderators, regardless the different moderator type, geometry and coupling scheme. (author)

  4. Review of experimental methods for evaluating effective delayed neutron fraction

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Yoshihiro [Nagoya Univ. (Japan). School of Engineering

    1997-03-01

    The International Effective Delayed Neutron Fraction ({beta}{sub eff}) Benchmark Experiments have been carried out at the Fast Critical Assembly of Japan Atomic Energy Research Institute since 1995. Researchers from six countries, namely France, Italy, Russia, U.S.A., Korea, and Japan, participate in this FCA project. Each team makes use of each experimental method, such as Frequency Method, Rossi-{alpha} Method, Nelson Number Method, Cf Neutron Source Method, and Covariance Method. In this report these experimental methods are reviewed. (author)

  5. Delayed Neutron Fraction (beta-effective) Calculation for VVER 440 Reactor

    International Nuclear Information System (INIS)

    Hascik, J.; Michalek, S.; Farkas, G.; Slugen, V.

    2008-01-01

    Effective delayed neutron fraction (β eff ) is the main parameter in reactor dynamics. In the paper, its possible determination methods are summarized and a β eff calculation for a VVER 440 power reactor as well as for training reactor VR1 using stochastic transport Monte Carlo method based code MCNP5 is made. The uncertainties in determination of basic delayed neutron parameters lead to the unwished conservatism in the reactor control system design and operation. Therefore, the exact determination of the β eff value is the main requirement in the field of reactor dynamics. The interest in the delayed neutron data accuracy improvement started to increase at the end of 80-ties and the beginning of 90-ties, after discrepancies among the results of experiments and measurements what do you mean differences between different calculation approaches and experimental results. In consequence of difficulties in β eff experimental measurement, this value in exact state is determined by calculations. Subsequently, its reliability depends on the calculation method and the delayed neutron data used. An accurate estimate of β eff is essential for converting reactivity, as measured in dollars, to an absolute reactivity and/or to an absolute k eff . In the past, k eff has been traditionally calculated by taking the ratio of the adjoint- and spectrum-weighted delayed neutron production rate to the adjoint- and spectrum-weighted total neutron production rate. An alternative method has also been used in which β eff is calculated from simple k-eigenvalue solutions. The summary of the possible β eff determination methods can be found in this work and also a calculation of β eff first for the training reactor VR1 in one operation state and then for VVER 440 power reactor in two different operation states are made using the prompt method, by MCNP5 code.(author)

  6. Nondestructive analysis of the natural uranium mass through the measurement of delayed neutrons using the technique of pulsed neutron source

    International Nuclear Information System (INIS)

    Coelho, Paulo Rogerio Pinto

    1979-01-01

    This work presents results of non destructive mass analysis of natural uranium by the pulsed source technique. Fissioning is produced by irradiating the test sample with pulses of 14 MeV neutrons and the uranium mass is calculated on a relative scale from the measured emission of delayed neutrons. Individual measurements were normalised against the integral counts of a scintillation detector measuring the 14 MeV neutron intensity. Delayed neutrons were measured using a specially constructed slab detector operated in anti synchronism with the fast pulsed source. The 14 MeV neutrons were produced via the T(d,n) 4 He reaction using a 400 kV Van de Graaff accelerated operated at 200 kV in the pulsed source mode. Three types of sample were analysed, namely: discs of metallic uranium, pellets of sintered uranium oxide and plates of uranium aluminium alloy sandwiched between aluminium. These plates simulated those of Material Testing Reactor fuel elements. Results of measurements were reproducible to within an overall error in the range 1.6 to 3.9%; the specific error depending on the shape, size and mass of the sample. (author)

  7. Calibration of the delayed-gamma neutron activation facility

    International Nuclear Information System (INIS)

    Ma, R.; Zhao, X.; Rarback, H.M.; Yasumura, S.; Dilmanian, F.A.; Moore, R.I.; Lo Monte, A.F.; Vodopia, K.A.; Liu, H.B.; Economos, C.D.; Nelson, M.E.; Aloia, J.F.; Vaswani, A.N.; Weber, D.A.; Pierson, R.N. Jr.; Joel, D.D.

    1996-01-01

    The delayed-gamma neutron activation facility at Brookhaven National Laboratory was originally calibrated using an anthropomorphic hollow phantom filled with solutions containing predetermined amounts of Ca. However, 99% of the total Ca in the human body is not homogeneously distributed but contained within the skeleton. Recently, an artificial skeleton was designed, constructed, and placed in a bottle phantom to better represent the Ca distribution in the human body. Neutron activation measurements of an anthropomorphic and a bottle (with no skeleton) phantom demonstrate that the difference in size and shape between the two phantoms changes the total body calcium results by less than 1%. To test the artificial skeleton, two small polyethylene jerry-can phantoms were made, one with a femur from a cadaver and one with an artificial bone in exactly the same geometry. The femur was ashed following the neutron activation measurements for chemical analysis of Ca. Results indicate that the artificial bone closely simulates the real bone in neutron activation analysis and provides accurate calibration for Ca measurements. Therefore, the calibration of the delayed-gamma neutron activation system is now based on the new bottle phantom containing an artificial skeleton. This change has improved the accuracy of measurement for total body calcium. Also, the simple geometry of this phantom and the artificial skeleton allows us to simulate the neutron activation process using a Monte Carlo code, which enables us to calibrate the system for human subjects larger and smaller than the phantoms used as standards. copyright 1996 American Association of Physicists in Medicine

  8. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    International Nuclear Information System (INIS)

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    Highlights: ► Kinetic parameters of Tehran research reactor mixed-core have been calculated. ► Burn-up effect on TRR kinetics parameters has been studied. ► Replacement of LEU-CFE with HEU-CFE in the TRR core has been investigated. ► Results of each mixed core were compared to the reference core. ► Calculation of kinetic parameters are necessary for reactivity and power excursion transient analysis. - Abstract: In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR P C package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change

  9. Population of delayed-neutron granddaughter states and the optical potential

    International Nuclear Information System (INIS)

    Schenter, R.E.; Mann, F.M.; Warner, R.A.; Reeder, P.L.

    1982-08-01

    Using a statistical treatment of beta decay and the Hauser-Feshbach model of nuclear reactions, calculations were made and compared to recent experimental measurements of the population of granddaughter states of several delayed neutron precursors ( 144 145 147 Cs and 96 Rb). Emphasis of this paper is on the sensitivity and interpretation of experimental results to various standard low energy neutron optical model potentials and variations in their forms and parameters. Results for these precursors show qualitative agreement with experiment for all the optical potential models used and good quantitative agreement for two (Moldauer and Becchetti-Greenlees). Questions such as (N-Z) terms, deformation and nonlocality dependence are presented

  10. Measurement of delayed neutron-emitting fission products in nuclear reactor coolant water during reactor operation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The method covers the detection and measurement of delayed neutron-emitting fission products contained in nuclear reactor coolant water while the reactor is operating. The method is limited to the measurement of the delayed neutron-emitting bromine isotope of mass 87 and the delayed neutron-emitting iodine isotope of mass 137. The other delayed neutron-emitting fission products cannot be accurately distinguished from nitrogen 17, which is formed under some reactor conditions by neutron irradiation of the coolant water molecules. The method includes a description of significance, measurement variables, interferences, apparatus, sampling, calibration, standardization, sample measurement procedures, system efficiency determination, calculations, and precision

  11. Measurement of the most exotic beta-delayed neutron emitters at N=50 and N=126

    Science.gov (United States)

    Dillmann, Iris

    2017-09-01

    Beta-delayed neutron (βn)-emission will be the dominant decay mechanism of neutron-rich nuclei and plays an important role in the stellar nucleosynthesis of heavy elements in the ``r process''. It leads to a detour of the material β-decaying back to stability and the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. Thus the neutron branching ratio of very neutron-rich isotopes is a crucial parameter in astrophysical simulations. In addition, β-decay half-lives can be deduced from the time-dependent detection of βn's. I will talk about two recent experimental campaigns. The neutron detector BELEN was used at GSI Darmstadt to measure half-lives and neutron-branching ratios of the heaviest presently accessible βn-emitters at N=126. For isotopes between 204Au and 220Bi nine half-lives and eight neutron-branching ratios were measured for the first time and provide an important input for benchmarking theoretical models in this mass region. Its successor is the BRIKEN detector (``Beta-delayed neutron measurements at RIKEN for nuclear structure, astrophysics, and applications''), the most efficient neutron detector used so far for nuclear structure studies. In conjunction with two clover detectors and the ``Advanced Implantation Detector Array'' (AIDA) the setup has been used a few months ago to measure the most neutron-rich isotopes around 78Ni, 132Sn, and the Rare Earth Region. Some preliminary results are shown from the campaign covering the 78Ni region where the neutron-branching ratio of 78Ni and 28 more isotopes were measured for the first time, as well as the half-lives of 20 isotopes. The BRIKEN campaign aims to (re-)measure almost all βn-emitters between 76Co and 167Eu, many of them for the first time. An extension of the campaign to lighter masses is planned. This work has been supported by the NSERC and NRC in Canada, the US DOE, the Spanish

  12. Study of $\\beta$-delayed neutron decay of $^{8}$He

    CERN Multimedia

    The goal of the present proposal is to study $\\beta$-delayed neutron decay branch of $^{8}$He. The energy spectra of the emitted neutrons will be measured in the energy range of 0.1 – 6 MeV using the VANDLE spectrometer. Using coincident $\\gamma$-ray measurement, components of the spectrum corresponding to transitions to the ground- and first- excited states of $^{7}$Li will be disentangled. The new data will allow us to get a more complete picture of the $\\beta$-decay of $^{8}$He and to clarify the discrepancy between the B(GT) distributions derived from the $\\beta$-decay and $^{8}$He(p, n)$^{8}$Li reaction studies.

  13. Automated uranium analysis by delayed-neutron counting

    International Nuclear Information System (INIS)

    Kunzendorf, H.; Loevborg, L.; Christiansen, E.M.

    1980-10-01

    Automated uranium analysis by fission-induced delayed-neutron counting is described. A short description is given of the instrumentation including transfer system, process control, irradiation and counting sites, and computer operations. Characteristic parameters of the facility (sample preparations, background, and standards) are discussed. A sensitivity of 817 +- 22 counts per 10 -6 g U is found using irradiation, delay, and counting times of 20 s, 5 s, and 10 s, respectively. Presicion is generally less than 1% for normal geological samples. Critical level and detection limits for 7.5 g samples are 8 and 16 ppb, respectively. The importance of some physical and elemental interferences are outlined. Dead-time corrections of measured count rates are necessary and a polynomical expression is used for count rates up to 10 5 . The presence of rare earth elements is regarded as the most important elemental interference. A typical application is given and other areas of application are described. (auther)

  14. Proceedings of the specialists' meeting on delayed neutron nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Katakura, Jun-ichi [ed.] [Japanese Nuclear Data Committee, Tokai, Ibaraki (Japan)

    1999-07-01

    This report is the Proceedings of the Specialists' Meeting on Delayed Neutron Nuclear Data. The meeting was held on January 28-29, 1999, at the Tokai Research Establishment of Japan Atomic Energy Research Institute with the participation of thirty specialists, who are evaluators, theorist, experimentalists. Although the fraction of the delayed neutron is no more than 1% in the total neutrons emitted in the fission process, it plays an important roll in the control of fission reactor. In the meeting, the following topics were reported: the present status of delayed neutron data in the major evaluated data libraries, measurements of effective delayed neutron fraction using FCA (Fast Critical Assembly) and TCA (Tank-type Critical Assembly) and their analyses, sensitivity analysis for fast reactor, measurements of delayed neutron emission from actinides and so on. As another topics, delayed neutron in transmutation system and fission yield data were also presented. Free discussion was held on the future activity of delayed neutron data evaluation. The discussion was helpful for the future activity of the delayed neutron working group of JNDC aiming to the evaluation of delayed neutron data for JENDL-3.3. The 15 of the presented papers are indexed individually. (J.P.N.)

  15. Reduction of delayed-neutron contribution to variance-to-mean ratio by application of difference filter technique

    International Nuclear Information System (INIS)

    Hashimoto, Kengo; Mouri, Tomoaki; Ohtani, Nobuo

    1999-01-01

    The difference-filtering correlation analysis was applied to time-sequence neutron count data measured in a slightly subcritical assembly, where the Feynman-α analysis suffered from large contribution of delayed neutron to the variance-to-mean ratio of counts. The prompt-neutron decay constant inferred from the present filtering analysis agreed very closely with that by pulsed neutron experiment, and no dependence on the gate-time range specified could be observed. The 1st-order filtering was sufficient for the reduction of the delayed-neutron contribution. While the conventional method requires a choice of analysis formula appropriate to a gate-time range, the present method is applicable to a wide variety of gate-time ranges. (author)

  16. Rapid uranium analysis by delayed neutron counting of neutron activated samples

    International Nuclear Information System (INIS)

    Papadopoulos, N.N.

    1985-01-01

    The uranium analyzer at the Nuclear Research Center ''Demokritos'' and the delayed neutron method have been used to determine the uranium content in lignite, in chemically enriched samples and in solutions of extractable uranium. The results are compared with data obtained by other methods. In the case of dissolved extractable uranium. The results are in good agreement with X-ray fluorescence data in the range 100 ppm to 2000 ppm while beyond these limits the discrepancies between neutron and spectrophotometric data are observed. The results for lignite samples are in good agreement with gamma spectrometric data. Discrepancies indicate that more extensive intercomparisons are needed to check the reliability of various methods

  17. Delaying gratification depends on social trust

    Science.gov (United States)

    Michaelson, Laura; de la Vega, Alejandro; Chatham, Christopher H.; Munakata, Yuko

    2013-01-01

    Delaying gratification is hard, yet predictive of important life outcomes, such as academic achievement and physical health. Prominent theories focus on the role of self-control, hypersensitivity to immediate rewards, and the cost of time spent waiting. However, delaying gratification may also require trust in people delivering future rewards as promised. To test the role of social trust, participants were presented with character vignettes and faces that varied in trustworthiness, and then choose between hypothetical smaller immediate or larger delayed rewards from those characters. Across two experiments, participants were less willing to wait for delayed rewards from less trustworthy characters, and perceived trustworthiness predicted willingness to delay gratification. These findings provide the first demonstration of a causal role for social trust in willingness to delay gratification, independent of other relevant factors, such as self-control or reward history. Thus, delaying gratification requires choosing not only a later reward, but a reward that is potentially less likely to be delivered, when there is doubt about the person promising it. Implications of this work include the need to revise prominent theories of delay of gratification, and new directions for interventions with populations characterized by impulsivity. PMID:23801977

  18. Delaying gratification depends on social trust

    Directory of Open Access Journals (Sweden)

    Laura eMichaelson

    2013-06-01

    Full Text Available Delaying gratification is hard, yet predictive of important life outcomes, such as academic achievement and physical health. Prominent theories focus on the role of self-control, hypersensitivity to immediate rewards, and the cost of time spent waiting. However, delaying gratification may also require trust in people delivering future rewards as promised. To test the role of social trust, participants were presented with character vignettes and faces that varied in trustworthiness, and then chose between hypothetical smaller immediate or larger delayed rewards from those characters. Across two experiments, participants were less willing to wait for delayed rewards from less trustworthy characters, and perceived trustworthiness predicted willingness to delay gratification. These findings provide the first demonstration of a causal role for social trust in willingness to delay gratification, independent of other relevant factors, such as self-control or reward history. Thus, delaying gratification requires choosing not only a later reward, but a reward that is potentially less likely to be delivered, when there is doubt about the person promising it. Implications of this work include the need to revise prominent theories of delay of gratification, and new directions for interventions with populations characterized by impulsivity.

  19. Two reports: (i) Correlation properties of delayed neutrons from fast neutron induced fission. (ii) Method and set-up for measurements of trace level content of heavy fissionable elements based on delayed neutron counting

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Isaev, S.G.; Goverdovski, A.A.; Pshakin, G.M.

    1998-10-01

    The document includes the following two reports: 'Correlation properties of delayed neutrons from fast neutron induced fission' and 'Method and set-up for measurements of trace level content of heavy fissionable elements based on delayed neutron counting. A separate abstract was prepared for each report

  20. An In-Pile Kinetic Method for Determining the Delayed Neutron Fraction βeff

    International Nuclear Information System (INIS)

    Gilad, E.; Rivin, O.; Ettedgui, H.; Yaar, I.; Geslot, B.; Pepino, A.; Di Salvo, J.; Gruel, A.; Blaise, P.

    2014-01-01

    Delayed neutrons are of fundamental importance in the field of nuclear reactor dynamics and control. Although only a small fraction of the neutrons emitted by fission are not prompt, the knowledge of the delayed neutrons parameters is essential for transient analysis, such as startup or shutdown of the reactor, as well as for accidents analysis and control system design [1]. One of the main delayed neutron parameters used in the point reactor model equations is the effective delayed neutron fraction, which incorporates both delayed neutron spectral properties and core geometrical configuration [1,2]. Additional delayed neutron parameters include the fraction of fission neutrons emitted in each delayed group, and the delayed neutron precursors decay constants . Experimental efforts aimed at determining the value ofβ, which provide experimental support for the evaluation of delayed neutron parameters, are extremely valuable. This is due to the fact that unlike other fields in reactor physics, e.g. criticality safety or shielding, the availability of experimental data and benchmark problems for validating delayed neutron parameters and its implementation in different models is highly limited. Furthermore, the existing experimental data exhibit significant discrepancies between the different sets of parameter, which lead to substantial disparity in the analysis of kinetic experiments and reactor dynamic behavior]. In this work, a method for determining the effective delayed neutron fraction using in-pile reactivity oscillation and Fourier analysis is presented. The method is based on measurements of the reactor's power response to small periodic in-pile reactivity perturbations and utilizes Fourier analysis for reconstruction of the reactor zero power transfer function. Knowledge of the reactor transfer function enables the estimation of theβ value using multi-parameter nonlinear fit. The method accounts for higher harmonics, which are excited by the trapezoidal

  1. Study on calculation methods for the effective delayed neutron fraction

    International Nuclear Information System (INIS)

    Irwanto, Dwi; Obara, Toru; Chiba, Go; Nagaya, Yasunobu

    2011-03-01

    The effective delayed neutron fraction β eff is one of the important neutronic parameters from a view point of a reactor kinetics. Several Monte-Carlo-based methods to estimate β eff have been proposed to date. In order to quantify the accuracy of these methods, we study calculation methods for β eff by analyzing various fast neutron systems including the bare spherical systems (Godiva, Jezebel, Skidoo, Jezebel-240), the reflective spherical systems (Popsy, Topsy, Flattop-23), MASURCA-R2 and MASURCA-ZONA2, and FCA XIX-1, XIX-2 and XIX-3. These analyses are performed by using SLAROM-UF and CBG for the deterministic method and MVP-II for the Monte Carlo method. We calculate β eff with various definitions such as the fundamental value β 0 , the standard definition, Nauchi's definition and Meulekamp's definition, and compare these results with each other. Through the present study, we find the following: The largest difference among the standard definition of β eff , Nauchi's β eff and Meulekamp's β eff is approximately 10%. The fundamental value β 0 is quite larger than the others in several cases. For all the cases, Meulekamp's β eff is always higher than Nauchi's β eff . This is because Nauchi's β eff considers the average neutron multiplicity value per fission which is large in the high energy range (1MeV-10MeV), while the definition of Meulekamp's β eff does not include this parameter. Furthermore, we evaluate the multi-generation effect on β eff values and demonstrate that this effect should be considered to obtain the standard definition values of β eff . (author)

  2. Improving Delay-Range-Dependent Stability Condition for Systems with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Wei Qian

    2013-01-01

    Full Text Available This paper discusses the delay-range-dependent stability for systems with interval time-varying delay. Through defining the new Lyapunov-Krasovskii functional and estimating the derivative of the LKF by introducing new vectors, using free matrices and reciprocally convex approach, the new delay-range-dependent stability conditions are obtained. Two well-known examples are given to illustrate the less conservatism of the proposed theoretical results.

  3. Statistical theory for calculating energy spectra of β-delayed neutrons

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Moeller, Peter; Wilson, William B.

    2008-01-01

    Theoretical β-delayed neutron spectra are calculated based on the Quasi-particle Random Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after β-decay to the granddaughter residual are more accurately calculated than previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra reasonably agree with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors. (authors)

  4. Comparison of dynamic compensation methods for delayed self-powered neutron detector

    International Nuclear Information System (INIS)

    In, Wang Kee; Kim, Joon Sung; Auh, Geun Sun; Yoon, Tae Young

    1993-01-01

    Dynamic compensation methods for rhodium self-powered neutron detector have been developed by Banda and Hoppe to compensate for the time delay associated with detector signals. The time delay is due to the decay of the neutron-activated rhodium and results in delayed detector response. Two digital dynamic compensation methods, were compared for step change of neutron flux in this paper. The inverse kinetics method gave slightly better response time and noise gain. However, the inverse kinetics method also showed overshooting of neutron flux for the step change. (Author)

  5. Investigation of capture reactions far off stability by β-delayed neutron emission

    International Nuclear Information System (INIS)

    Wiescher, M.; Leist, B.; Ziegert, W.; Gabelmann, H.; Steinmueller, B.; Ohm, H.; Kratz, K.h.; Thielemann, F.h.; Hillebrandt, W.

    1985-01-01

    Beta-delayed neutron spectroscopy is applied to determine reaction rates of neutron capture on several neutron rich nuclei. The results of these experiments are presented and discussed in the light of their astrophysical implications. Furthermore, the experimental possibilities and limits of planned measurements are advertised

  6. Measurements of periods, relative abundances and absolute yields of delayed neutrons from fast neutron induced fission of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Piksaikine, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The experimental method for measurements of the delayed neutron yields and period is presented. The preliminary results of the total yield, relative abundances and periods are shown comparing with the previously reported values. (J.P.N.)

  7. Online failed fuel identification using delayed neutron detector signals in pool type reactors

    International Nuclear Information System (INIS)

    Upadhyay, Chandra Kant; Sivaramakrishna, M.; Nagaraj, C.P.; Madhusoodanan, K.

    2011-01-01

    In todays world, nuclear reactors are at the forefront of modern day innovation and reactor designs are increasingly incorporating cutting edge technology. It is of utmost importance to detect failure or defects in any part of a nuclear reactor for healthy operation of reactor as well as the safety aspects of the environment. Despite careful fabrication and manufacturing of fuel pins, there is a chance of clad failure. After fuel pin clad rupture takes place, it allows fission products to enter in to sodium pool. There are some potential consequences due to this such as Total Instantaneous Blockage (TIB) of coolant and primary component contamination. At present, the failed fuel detection techniques such as cover gas monitoring (alarming the operator), delayed neutron detection (DND-automatic trip) and standalone failed fuel localization module (FFLM) are exercised in various reactors. The first technique is a quantitative measurement of increase in the cover gas activity background whereas DND system causes automatic trip on detecting certain level of activity during clad wet rupture. FFLM is subsequently used to identify the failed fuel subassembly. The later although accurate, but mainly suffers from downtime and reduction in power during identification process. The proposed scheme, reported in this paper, reduces the operation of FFLM by predicting the faulty sector and therefore reducing reactor down time and thermal shocks. The neutron evolution pattern gets modulated because fission products are the delay neutron precursors. When they travel along with coolant to Intermediate heat Exchangers, experienced three effects i.e. delay; decay and dilution which make the neutron pulse frequency vary depending on the location of failed fuel sub assembly. This paper discusses the method that is followed to study the frequency domain properties, so that it is possible to detect exact fuel subassembly failure online, before the reactor automatically trips. (author)

  8. Calculating the effective delayed neutron fraction in the Molten Salt Fast Reactor: Analytical, deterministic and Monte Carlo approaches

    International Nuclear Information System (INIS)

    Aufiero, Manuele; Brovchenko, Mariya; Cammi, Antonio; Clifford, Ivor; Geoffroy, Olivier; Heuer, Daniel; Laureau, Axel; Losa, Mario; Luzzi, Lelio; Merle-Lucotte, Elsa; Ricotti, Marco E.; Rouch, Hervé

    2014-01-01

    Highlights: • Calculation of effective delayed neutron fraction in circulating-fuel reactors. • Extension of the Monte Carlo SERPENT-2 code for delayed neutron precursor tracking. • Forward and adjoint multi-group diffusion eigenvalue problems in OpenFOAM. • Analytical approach for β eff calculation in simple geometries and flow conditions. • Good agreement among the three proposed approaches in the MSFR test-case. - Abstract: This paper deals with the calculation of the effective delayed neutron fraction (β eff ) in circulating-fuel nuclear reactors. The Molten Salt Fast Reactor is adopted as test case for the comparison of the analytical, deterministic and Monte Carlo methods presented. The Monte Carlo code SERPENT-2 has been extended to allow for delayed neutron precursors drift, according to the fuel velocity field. The forward and adjoint eigenvalue multi-group diffusion problems are implemented and solved adopting the multi-physics tool-kit OpenFOAM, by taking into account the convective and turbulent diffusive terms in the precursors balance. These two approaches show good agreement in the whole range of the MSFR operating conditions. An analytical formula for the circulating-to-static conditions β eff correction factor is also derived under simple hypotheses, which explicitly takes into account the spatial dependence of the neutron importance. Its accuracy is assessed against Monte Carlo and deterministic results. The effects of in-core recirculation vortex and turbulent diffusion are finally analysed and discussed

  9. Detection of special nuclear material from delayed neutron emission induced by a dual-particle monoenergetic source

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Nattress, J.; Jovanovic, I., E-mail: ijov@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-06-27

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the {sup 11}B(d,n γ){sup 12}C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time-dependent buildup and decay of delayed neutron emission from {sup 238}U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  10. Study of Beta-Delayed Neutron Emission by Neutron-Rich Nuclei and Analysis of the Nuclear Reaction Mechanism responsible for the Yields of these Nuclei

    International Nuclear Information System (INIS)

    Bazin, D.

    1987-07-01

    Among the nuclear mechanisms used for the production of nuclei far from stability, the projectile fragmentation process has recently proved its efficiency. However, at Fermi energies, one has to take into account some collective and relaxation effects which drastically modify the production cross-sections. The spectroscopic study of very neutron-rich nuclei is very dependent of these production rates. A study of beta-delayed neutron emission which leads to new measurements of half-lives and neutron delayed emission probabilities is achieved with a liquid scintillator detector. The results which are then compared to different theories are of interest for the understanding of natural production of heavy elements (r processus) [fr

  11. State-dependent neutral delay equations from population dynamics.

    Science.gov (United States)

    Barbarossa, M V; Hadeler, K P; Kuttler, C

    2014-10-01

    A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations.

  12. Control of District Heating System with Flow-dependent Delays

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Ledesma, Jorge Val; Kallesøe, Carsten Skovmose

    2017-01-01

    All flow systems are subject to transport delays, which are governed by the flow rates in the system. When the flow rates themselves are control inputs, the system becomes subject to input-dependent state delays, which poses significant theoretical problems. In an earlier paper, we proposed...

  13. Influence of delayed neutron parameter calculation accuracy on results of modeled WWER scram experiments

    International Nuclear Information System (INIS)

    Artemov, V.G.; Gusev, V.I.; Zinatullin, R.E.; Karpov, A.S.

    2007-01-01

    Using modeled WWER cram rod drop experiments, performed at the Rostov NPP, as an example, the influence of delayed neutron parameters on the modeling results was investigated. The delayed neutron parameter values were taken from both domestic and foreign nuclear databases. Numerical modeling was carried out on the basis of SAPFIR 9 5andWWERrogram package. Parameters of delayed neutrons were acquired from ENDF/B-VI and BNAB-78 validated data files. It was demonstrated that using delay fraction data from different databases in reactivity meters led to significantly different reactivity results. Based on the results of numerically modeled experiments, delayed neutron parameters providing the best agreement between calculated and measured data were selected and recommended for use in reactor calculations (Authors)

  14. On solution to the problem of reactor kinetics with delayed neutrons by Monte Carlo method

    International Nuclear Information System (INIS)

    Kyncl, Jan

    2013-07-01

    The initial value problem is addressed for the neutron transport equation and for the system of equations that describe the behaviour of emitters of delayed neutrons. Examination of the solution to this problem is based on several main assumptions concerning the behaviour of macroscopic effective cross-sections describing the reaction of the neutron with the medium, the temperature of medium and the remaining parameters of the equations. Formulation of these assumptions is adequately general and is in agreement with the properties of all known models of the physical quantities involved. Among others, the assumptions admit dependence of the macroscopic effective cross-sections and temperature on spatial coordinates and time that can be arbitrary to a great extent. The problem starts from a set of integro-differential equations. This problem is first transposed into the equivalent problem of solving a linear integral equation for neutron flux. This integral equation is solved by the method of successive iterations and its uniqueness is demonstrated. Numeric solution to the integral equation by Monte Carlo method consists in finding a functional of the exact solution. For this, a random process is set up and some random variables are proposed. Then it is demonstrated that each of these variables is an unbiased estimator of that functional. (author)

  15. Thermal Aware Floorplanning Incorporating Temperature Dependent Wire Delay Estimation

    DEFF Research Database (Denmark)

    Winther, AndreasThor; Liu, Wei; Nannarelli, Alberto

    2015-01-01

    Temperature has a negative impact on metal resistance and thus wire delay. In state-of-the-art VLSI circuits, large thermal gradients usually exist due to the uneven distribution of heat sources. The difference in wire temperature can lead to performance mismatch because wires of the same length...... can have different delay. Traditional floorplanning algorithms use wirelength to estimate wire performance. In this work, we show that this does not always produce a design with the shortest delay and we propose a floorplanning algorithm taking into account temperature dependent wire delay as one...

  16. Breached fuel location in FFTF by delayed neutron monitor triangulation

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1985-10-01

    The Fast Flux Test Facility (FFTF) features a three-loop, sodium-cooled 400 MWt mixed oxide fueled reactor designed for the irradiation testing of fuels and materials for use in liquid metal cooled fast reactors. To establish the ultimate capability of a particular fuel design and thereby generate information that will lead to improvements, many of the fuel irradiations are continued until a loss of cladding integrity (failure) occurs. When the cladding fails, fission gas escapes from the fuel pin and enters the reactor cover gas system. If the cladding failure permits the primary sodium to come in contact with the fuel, recoil fission products can enter the sodium. The presence of recoil fission products in the sodium can be detected by monitoring for the presence of delayed neutrons in the coolant. It is the present philosophy to not operate FFTF when a failure has occurred that permits fission fragments to enter the sodium. Thus, it is important that the identity and location of the fuel assembly that contains the failed cladding be established in order that it might be removed from the core. This report discusses method of location of fuel element when cladding is breached

  17. Delayed Particle Study of Neutron Rich Lithium Isotopes

    CERN Multimedia

    Marechal, F; Perrot, F

    2002-01-01

    We propose to make a systematic complete coincidence study of $\\beta$-delayed particles from the decay of neutron-rich lithium isotopes. The lithium isotopes with A=9,10,11 have proven to contain a vast information on nuclear structure and especially on the formation of halo nuclei. A mapping of the $\\beta$-strength at high energies in the daughter nucleus will make possible a detailed test of our understanding of their structure. An essential step is the comparison of $\\beta$-strength patterns in $^{11}$Li and the core nucleus $^{9}$Li, another is the full characterization of the break-up processes following the $\\beta$-decay. To enable such a measurement of the full decay process we will use a highly segmented detection system where energy and emission angles of both charged and neutral particles are detected in coincidence and with high efficiency and accuracy. We ask for a total of 30 shifts (21 shifts for $^{11}$Li, 9 shifts $^{9}$Li adding 5 shifts for setting up with stable beam) using a Ta-foil target...

  18. Delay-slope-dependent stability results of recurrent neural networks.

    Science.gov (United States)

    Li, Tao; Zheng, Wei Xing; Lin, Chong

    2011-12-01

    By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.

  19. Delayed neutron spectra and their uncertainties in fission product summation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Miyazono, T.; Sagisaka, M.; Ohta, H.; Oyamatsu, K.; Tamaki, M. [Nagoya Univ. (Japan)

    1997-03-01

    Uncertainties in delayed neutron summation calculations are evaluated with ENDF/B-VI for 50 fissioning systems. As the first step, uncertainty calculations are performed for the aggregate delayed neutron activity with the same approximate method as proposed previously for the decay heat uncertainty analyses. Typical uncertainty values are about 6-14% for {sup 238}U(F) and about 13-23% for {sup 243}Am(F) at cooling times 0.1-100 (s). These values are typically 2-3 times larger than those in decay heat at the same cooling times. For aggregate delayed neutron spectra, the uncertainties would be larger than those for the delayed neutron activity because much more information about the nuclear structure is still necessary. (author)

  20. Pulse-shape discrimination in radioanalytical methods. Part I. Delayed fission neutron counting

    International Nuclear Information System (INIS)

    Posta, S.; Vacik, J.; Hnatowicz, V.; Cervena, J.

    1999-01-01

    In this study the principle of pulse shape discrimination (PSD) has been employed in delayed fission neutron counting (DNC) method. Effective elimination of unwanted gamma background signals in measured radiation spectra has been proved. (author)

  1. Detection of dependence patterns with delay.

    Science.gov (United States)

    Chevallier, Julien; Laloë, Thomas

    2015-11-01

    The Unitary Events (UE) method is a popular and efficient method used this last decade to detect dependence patterns of joint spike activity among simultaneously recorded neurons. The first introduced method is based on binned coincidence count (Grün, 1996) and can be applied on two or more simultaneously recorded neurons. Among the improvements of the methods, a transposition to the continuous framework has recently been proposed by Muiño and Borgelt (2014) and fully investigated by Tuleau-Malot et al. (2014) for two neurons. The goal of the present paper is to extend this study to more than two neurons. The main result is the determination of the limit distribution of the coincidence count. This leads to the construction of an independence test between L≥2 neurons. Finally, we propose a multiple test procedure via a Benjamini and Hochberg approach (Benjamini and Hochberg, 1995). All the theoretical results are illustrated by a simulation study, and compared to the UE method proposed by Grün et al. (2002). Furthermore our method is applied on real data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Asymptotic time dependent neutron transport in multidimensional systems

    International Nuclear Information System (INIS)

    Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.

    1983-01-01

    A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated

  3. Beta-delayed gamma and neutron emission near the double shell closure at 78Ni

    International Nuclear Information System (INIS)

    Rykaczewski, Krzysztof Piotr; Mazzocchi, C.; Grzywacz, R.; Batchelder, J. C.; Bingham, C.R.; Fong, D.; Hamilton, J.H.; Hwang, J.K.; Karny, M.; Krolas, W.; Liddick, S. N.; Morton, A. C.; Mantica, P. F.; Mueller, W. F.; Steiner, M.; Stolz, A.; Winger, J.A.

    2005-01-01

    An experiment was performed at the National Superconducting Cyclotron Laboratory at Michigan State University to investigate β decay of very neutron-rich cobalt isotopes. Beta-delayed neutron emission from 71-74 Co has been observed for the first time. Preliminary results are reported

  4. New Beta-delayed Neutron Measurements in the Light-mass Fission Group

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt, J. [Instituto de Física Corpuscular, CSIC-Univ. Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); García, A.R. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid (Spain); Algora, A. [Instituto de Física Corpuscular, CSIC-Univ. Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); Äystö, J. [University of Jyväskylä, FI-40014 Jyväskyä (Finland); Caballero-Folch, R.; Calviño, F. [Secció d' Enginyeria Nuclear, Universitat Politécnica de Catalunya, E-08028 Barcelona (Spain); Cano-Ott, D. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid (Spain); Cortés, G. [Secció d' Enginyeria Nuclear, Universitat Politécnica de Catalunya, E-08028 Barcelona (Spain); Domingo-Pardo, C. [Instituto de Física Corpuscular, CSIC-Univ. Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); Eronen, T. [University of Jyväskylä, FI-40014 Jyväskyä (Finland); Gelletly, W. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Gómez-Hornillos, M.B. [Secció d' Enginyeria Nuclear, Universitat Politécnica de Catalunya, E-08028 Barcelona (Spain); and others

    2014-06-15

    A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4π neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for {sup 91}Br, {sup 86}As, {sup 85}As, and {sup 85}Ge nuclei.

  5. JENDL-4.0 benchmarking for effective delayed neutron fraction of fast neutron systems

    International Nuclear Information System (INIS)

    Chiba, Go; Tsuji, Masashi; Sugiyama, Ken-ichiro; Narabayashi, Tadashi

    2011-01-01

    The performance of the latest Japanese evaluated nuclear data library JENDL-4.0 for the prediction of effective delayed neutron fraction β eff is assessed using experimental data of a wide range of fast neutron systems. Covariance data of JENDL-4.0 are used to quantify nuclear-data-induced uncertainties. Calculations with other libraries. JENDL-3.3, ENDF/B-VII.0, and JEFF-3.1, are also carried out for a quantitative comparison. JENDL-4.0 results in good agreement between calculation and experimental values within total uncertainties, and consistency between the differential nuclear data and integral experimental data is confirmed. While the other libraries also show good performance for β eff prediction, there are small differences in the predicted values of β eff among different libraries and ENDF/B-VII.0 gives the most stable results. Furthermore, a simple and convenient procedure to calculate sensitivity profiles of β eff to nuclear data is proposed. (author)

  6. Delay-Dependent Asymptotic Stability of Cohen-Grossberg Models with Multiple Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liao

    2007-01-01

    Full Text Available Dynamical behavior of a class of Cohen-Grossberg models with multiple time-varying delays is studied in detail. Sufficient delay-dependent criteria to ensure local and global asymptotic stabilities of the equilibrium of this network are derived by constructing suitable Lyapunov functionals. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.

  7. A novel delay-dependent criterion for delayed neural networks of neutral type

    International Nuclear Information System (INIS)

    Lee, S.M.; Kwon, O.M.; Park, Ju H.

    2010-01-01

    This Letter considers a robust stability analysis method for delayed neural networks of neutral type. By constructing a new Lyapunov functional, a novel delay-dependent criterion for the stability is derived in terms of LMIs (linear matrix inequalities). A less conservative stability criterion is derived by using nonlinear properties of the activation function of the neural networks. Two numerical examples are illustrated to show the effectiveness of the proposed method.

  8. Evaluation of Kalman filters and genetic algorithms for delayed-neutron nondestructive assay data analyses

    International Nuclear Information System (INIS)

    Aumeier, S.E.; Forsmann, J.H.

    1998-01-01

    The ability to nondestructively determine the presence and quantity of fissile/fertile nuclei in various matrices is important in several areas of nuclear applications, including international and domestic safeguards, radioactive waste characterization, and nuclear facility operations. An analysis was performed to determine the feasibility of identifying the masses of individual fissionable isotopes from a cumulative delayed-neutron signal resulting form the neutron irradiation of several uranium and plutonium isotopes. The feasibility of two separate data-processing techniques was studied: Kalman filtering and genetic algorithms. The basis of each technique is reviewed, and the structure of the algorithms as applied to the delayed-neutron analysis problem is presented. The results of parametric studies performed using several variants of the algorithms are presented. The effect of including additional constraining information such as additional measurements and known relative isotopic concentration is discussed. The parametric studies were conducted using simulated delayed-neutron data representative of the cumulative delayed-neutron response following irradiation of a sample containing 238 U, 235 U, 239 Pu, and 240 Pu. The results show that by processing delayed-neutron data representative of two significantly different fissile/fertile fission ratios, both Kalman filters and genetic algorithms are capable of yielding reasonably accurate estimates of the mass of individual isotopes contained in a given assay sample

  9. Influence of fission product transport on delayed neutron precursors and decay heat sources in LMFBR accidents

    International Nuclear Information System (INIS)

    Apperson, C.E. Jr.

    1981-01-01

    A method is presented for studying the influence of fission product transpot on delayed neutron precursors and decay heat sources during Liquid Metal Fast Breeder Reactor (LMFBR) unprotected accidents. The model represents the LMFBR core as a closed homogeneous cell. Thermodynamic phase equilibrium theory is used to predict fission product mobility. Reactor kinetics behavior is analyzed by an extension of point kinetics theory. Group dependent delayed neutron precursor and decay heat source retention factors, which represent the fraction of each group retained in the fuel, are developed to link the kinetics and thermodynamics analysis. Application of the method to a highly simplified model of an unprotected loss-of-flow accident shows a time delay on the order of 10 ms is introduced in the predisassembly power history if fission product motion is considered when compared to the traditional transient solution. The post-transient influence of fission product transport calculated by the present model is a 24 percent reduction in the decay heat level in the fuel material which is similar to traditional approximations. Isotopes of the noble gases, Kr and Xe, and the elements I and Br are shown to be very mobile and are responsible for a major part of the observed effects. Isotopes of the elements Cs, Se, Rb, and Te were found to be moderately mobile and contribute to a lesser extent to the observed phenomena. These results obtained from the application of the described model confirm the initial hypothesis that sufficient fission product transport can occur to influence a transient. For these reasons, it is concluded that extension of this model into a multi-cell transient analysis code is warranted

  10. Local bifurcations in differential equations with state-dependent delay.

    Science.gov (United States)

    Sieber, Jan

    2017-11-01

    A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDE.

  11. Local bifurcations in differential equations with state-dependent delay

    Science.gov (United States)

    Sieber, Jan

    2017-11-01

    A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDE.

  12. Delay-Dependent Guaranteed Cost Control of an Interval System with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Xiao Min

    2009-01-01

    Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.

  13. Delay-range-dependent exponential H∞ synchronization of a class of delayed neural networks

    International Nuclear Information System (INIS)

    Karimi, Hamid Reza; Maass, Peter

    2009-01-01

    This article aims to present a multiple delayed state-feedback control design for exponential H ∞ synchronization problem of a class of delayed neural networks with multiple time-varying discrete delays. On the basis of the drive-response concept and by introducing a descriptor technique and using Lyapunov-Krasovskii functional, new delay-range-dependent sufficient conditions for exponential H ∞ synchronization of the drive-response structure of neural networks are driven in terms of linear matrix inequalities (LMIs). The explicit expression of the controller gain matrices are parameterized based on the solvability conditions such that the drive system and the response system can be exponentially synchronized. A numerical example is included to illustrate the applicability of the proposed design method.

  14. Commissioning of the BRIKEN beta-delayed neutron detector for the study of exotic neutron-rich nuclei

    Directory of Open Access Journals (Sweden)

    Tolosa-Delgado A.

    2017-01-01

    Full Text Available The commissioning of a new setup for β-delayed neutron measurements was carried out successfully in November-2016, at the RIKEN Nishina Center in Japan. The β-decay half-lives and Pn branching ratios of several isotopes in the 78Ni region were measured. Details of the experimental setup and the first results are given.

  15. Delayed neutron kinetic functions for /sup 232/Th and /sup 238/U mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Ganich, P P; Goshovskij, M V; Lendel, A I; Lomonosov, V I; Sikora, D I; Sychev, S I

    1984-11-01

    In order to investigate the applicability of the method based on using kinetic functions, describing the emission of delayed neutrons by samples for determination of the content of fissionable nuclides in binary mixtures, the /sup 232/Th+/sup 238/U mixtures have been analyzed with the M-30 microtron. Fresh samples containing ThO/sub 2/, U/sub 3/O/sub 8/ and their mixtures are irradiated by bremstrahlung at the 15.5 MeV energy of accelerated electrons and 9 ..mu..A average current. The mass of samples is about 6 g. To determine the kinetic functions, temporal distributions of delayed neutron pulses are used, their maximum number for different samples being (1.7-3.0) x 10/sup 4/. In processing the data obtained two methods of normalization of the delayed neutron number in the kinetic functions are used: to the total yield of delayed neutrons and to the yield of /sup 133/I ..gamma..-quanta. The conclusion is drawn that the method investigated permits to determine relative /sup 238/U concentrations in the mixtures considered with 0.06-0.2 errors. Error reduction is achieved during the normalization of the number of delayed neutrons to the yield of /sup 130/I ..gamma..-quanta.

  16. Control of Thermodynamical System with Input-Dependent State Delays

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Krstic, Miroslav

    2013-01-01

    We consider control of a cooling system with several consumers that require cooling from a common source. The flow feeding coolant to the consumers can be controlled, but due to significant physical distances between the common source and the consumers, the coolant flow takes a non......-negligible amount of time to travel to the consumers, giving rise to input-dependent state delays. We first present a simple bilinear model of the system, followed by a state feedback control design that is able to stabilize the system at a chosen equilibrium in spite of the delays. We also present a heuristic...

  17. Beta-Delayed Neutron Spectroscopy of 72Co with VANDLE

    Science.gov (United States)

    Keeler, Andrew; Grzywacz, Robert; King, Thomas; Taylor, Steven; Paulauskas, Stanley; Zachary, Christopher; Vandle Collaboration

    2017-09-01

    Measurements of simple, closed-shell isotopes far from stability provide important benchmarks for nuclear models and are a key constraint in r-process calculations. In particular, r-process models are sensitive to beta decay lifetimes and branching ratios of these neutron-rich isotopes. In this experiment, the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was used to observe decays of nuclei produced by the fragmentation of 82Se at the National Superconducting Cyclotron Laboratory (NSCL). The neutron and gamma emissions of 72Co were measured to map the beta strength distribution (S_beta) above the neutron separation energy and infer the size of the Z = 28 shell gap in the 78Ni region. An implantation detector made of a radiation-hardened, inorganic scintillator was used to correlate implanted ions with beta decays as well as provide a start signal for the neutron Time of Flight measurement. Funded by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DE-NA0002132 and by the Office of Nuclear Physics, U.S. Department of Energy under Awards No. DE-FG02-96ER40983 (UTK).

  18. $\\beta$-delayed neutron spectroscopy of $^{130-132}$ Cd isotopes with the ISOLDE decay station and the VANDLE array

    CERN Multimedia

    We propose to use the new ISOLDE decay station and the neutron detector VANDLE to measure the $\\beta$-delayed neutron emission of N=82-84 $^{130-132}$Cd isotopes. The large delayed neutron emission probability observed in a previous ISOLDE measurement is indicative of the Gamow-Teller transitions due to the decay of deep core neutrons. Core Gamow-Teller decay has been experimentally proven in the $^{78}$Ni region for the N>50 nuclei using the VANDLE array. The spectroscopic measurement of delayed neutron emission along the cadmium isotopic chain will allow us to track the evolution of the single particle states and the shell gap.

  19. On the combination of delayed neutron and delayed gamma techniques for fission rate measurement in nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Perret, G.; Jordan, K. A. [Paul Scherrer Institut, Villigen, 5232 (Switzerland)

    2011-07-01

    Novel techniques to measure newly induced fissions in spent fuel after re-irradiation at low power have been developed and tested at the Proteus zero-power research reactor. The two techniques are based on the detection of high energy gamma-rays emitted by short-lived fission products and delayed neutrons. The two techniques relate the measured signals to the total fission rate, the isotopic composition of the fuel, and nuclear data. They can be combined to derive better estimates on each of these parameters. This has potential for improvement in many areas. Spent fuel characterisation and safeguard applications can benefit from these techniques for non-destructive assay of plutonium content. Another application of choice is the reduction of uncertainties on nuclear data. As a first application of the combination of the delayed neutron and gamma measurement techniques, this paper shows how to reduce the uncertainties on the relative abundances of the longest delayed neutron group for thermal fissions in {sup 235}U, {sup 239}Pu and fast fissions in {sup 238}U. The proposed experiments are easily achievable in zero-power research reactors using fresh UO{sub 2} and MOX fuel and do not require fast extraction systems. The relative uncertainties (1{sigma}) on the relative abundances are expected to be reduced from 13% to 4%, 16% to 5%, and 38% to 12% for {sup 235}U, {sup 238}U and {sup 239}Pu, respectively. (authors)

  20. Delay-dependent exponential stability for neural networks with discrete and distributed time-varying delays

    International Nuclear Information System (INIS)

    Zhu Xunlin; Wang Youyi

    2009-01-01

    This Letter studies the exponential stability for a class of neural networks (NNs) with both discrete and distributed time-varying delays. Under weaker assumptions on the activation functions, by defining a more general type of Lyapunov functionals and developing a new convex combination technique, new less conservative and less complex stability criteria are established to guarantee the global exponential stability of the discussed NNs. The obtained conditions are dependent on both discrete and distributed delays, are expressed in terms of linear matrix inequalities (LMIs), and contain fewer decision variables. Numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed conditions.

  1. Time-dependent delayed signatures from energetic photon interrogations

    International Nuclear Information System (INIS)

    Norman, Daren R.; Jones, James L.; Blackburn, Brandon W.; Haskell, Kevin J.; Johnson, James T.; Watson, Scott M.; Hunt, Alan W.; Spaulding, Randy; Harmon, Frank

    2007-01-01

    Pulsed photonuclear interrogation environments generated by 8-24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in pulsed photonuclear assessment environments. These developments demonstrate that pulsed, high-energy, photon-inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods

  2. Uranium borehole logging using delayed or prompt fission neutrons

    International Nuclear Information System (INIS)

    Schulze, G.; Wuerz, H.

    1977-04-01

    The measurement of induced fission neutrons using Cf 252 and 14 MeV neutrons is a sensitive method for an in situ determination of Uranium. Applying this methods requires a unique relation between concentration of Uranium and intensity of induced fission neutrons. A discussion of parameters influencing the determination of concentration is given. A simple method is developed allowing an elemination of the geochemistry of the deposit and of the borehole configuration. Borehole probes using the methods described are of considerable help during the phase of detailed exploration of uranium ore deposits. These on-line tools allow an immediate determination of concentration. Thus avoiding the expensive and time consuming step of core drilling and subsequent chemical analysis. (orig./HP) [de

  3. Delay-Dependent Control for Networked Control Systems with Large Delays

    Directory of Open Access Journals (Sweden)

    Yilin Wang

    2013-01-01

    Full Text Available We consider the problems of robust stability and control for a class of networked control systems with long-time delays. Firstly, a nonlinear discrete time model with mode-dependent time delays is proposed by converting the uncertainty of time delay into the uncertainty of parameter matrices. We consider a probabilistic case where the system is switched among different subsystems, and the probability of each subsystem being active is defined as its occurrence probability. For a switched system with a known subsystem occurrence probabilities, we give a stochastic stability criterion in terms of linear matrix inequalities (LMIs. Then, we extend the results to a more practical case where the subsystem occurrence probabilities are uncertain. Finally, a simulation example is presented to show the efficacy of the proposed method.

  4. Total body-calcium measurements: comparison of two delayed-gamma neutron activation facilities

    International Nuclear Information System (INIS)

    Ma, R.; Ellis, K.J.; Shypailo, R.J.; Pierson, R.N. Jr.

    1999-01-01

    This study compares two independently calibrated delayed-gamma neutron activation (DGNA) facilities, one at the Brookhaven National Laboratory (BNL), Upton, New York, and the other at the Children's Nutrition Research Center (CNRC), Houston, Texas that measure total body calcium (TBCa). A set of BNL phantoms was sent to CNRC for neutron activation analysis, and a set of CNRC phantoms was measured at BNL. Both facilities showed high precision (<2%), and the results were in good agreement, within 5%. (author)

  5. Delay-distribution-dependent H∞ state estimation for delayed neural networks with (x,v)-dependent noises and fading channels.

    Science.gov (United States)

    Sheng, Li; Wang, Zidong; Tian, Engang; Alsaadi, Fuad E

    2016-12-01

    This paper deals with the H ∞ state estimation problem for a class of discrete-time neural networks with stochastic delays subject to state- and disturbance-dependent noises (also called (x,v)-dependent noises) and fading channels. The time-varying stochastic delay takes values on certain intervals with known probability distributions. The system measurement is transmitted through fading channels described by the Rice fading model. The aim of the addressed problem is to design a state estimator such that the estimation performance is guaranteed in the mean-square sense against admissible stochastic time-delays, stochastic noises as well as stochastic fading signals. By employing the stochastic analysis approach combined with the Kronecker product, several delay-distribution-dependent conditions are derived to ensure that the error dynamics of the neuron states is stochastically stable with prescribed H ∞ performance. Finally, a numerical example is provided to illustrate the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Estimation of delayed neutron emission probability by using the gross theory of nuclear β-decay

    International Nuclear Information System (INIS)

    Tachibana, Takahiro

    1999-01-01

    The delayed neutron emission probabilities (P n -values) of fission products are necessary in the study of reactor physics; e.g. in the calculation of total delayed neutron yields and in the summation calculation of decay heat. In this report, the P n -values estimated by the gross theory for some fission products are compared with experiment, and it is found that, on the average, the semi-gross theory somewhat underestimates the experimental P n -values. A modification of the β-decay strength function is briefly discussed to get more reasonable P n -values. (author)

  7. Power measurement in the boiling capsules in R2 using delayed neutron detector

    International Nuclear Information System (INIS)

    Roennberg, G.

    1979-03-01

    LWR fuel testing is performed in the R2 reactor by irradiation in both loops and so-called boiling capsules. The loops have forced cooling, and the power can be measured calorimetrically by conventional instrumentation. The boiling capsules have convection cooling, and it has therefore been necessary to develop a special technique for power measurement, the delayed neutron detector (DND). The DND is a pneumatic rabbit system, which activates small uranium samples in the boiling capsules and counts the delayed neutrons for determination of the fission rate. This report describes the equipment used, the procedure of measurement, and the method of evaluation. (atuhor)

  8. Music-dependent memory in immediate and delayed word recall.

    Science.gov (United States)

    Balch, W R; Bowman, K; Mohler, L

    1992-01-01

    Undergraduate volunteers rated a series of words for pleasantness while hearing a particular background music. The subjects in Experiment 1 received, immediately or after a 48-h delay, an unexpected word-recall test in one of the following musical cue contexts: same cue (S), different cue (D), or no cue (N). For immediate recall, context dependency (S-D) was significant but same-cue facilitation (S-N) was not. No cue effects at all were found for delayed recall, and there was a significant interaction between cue and retention interval. A similar interaction was also found in Experiment 3, which was designed to rule out an alternative explanation with respect to distraction. When the different musical selection was changed specifically in either tempo or form (genre), only pieces having an altered tempo produced significantly lower immediate recall compared with the same pieces (Experiment 2). The results support a stimulus generalization view of music-dependent memory.

  9. A Neutron Sensitive Microchannel Plate Detector with Cross Delay Line Readout

    International Nuclear Information System (INIS)

    Berry, Kevin D.; Bilheux, Hassina Z.; Crow, Lowell; Diawara, Yacouba; Feller, W. Bruce; Iverson, Erik B.; Martin, Adrian; Robertson, J. Lee

    2012-01-01

    Microchannel plates containing neutron absorbing elements such as boron and gadolinium in the bulk glass are used as the sensing element in high spatial resolution, high rate neutron imaging systems. In this paper we describe one such device, using both 10 B and natural Gd, which employs cross delay line signal readout, with time-of-flight capability. This detector has a measured spatial resolution under 40 m FWHM, thermal neutron efficiency of 19%, and has recorded rates in excess of 500 kHz. A physical and functional description is presented, followed by a discussion of measurements of detector performance and a brief survey of some practical applications.

  10. Non-destructive isotopic uranium assay by multiple delayed neutron measurements

    International Nuclear Information System (INIS)

    Papadopoulos, N.N.; Tsagas, N.F.

    1991-01-01

    The high accuracy and precision required in nuclear safeguards measurements can be achieved by an improved neutron activation technique based on multiple delayed fission neutron counting under various experimental conditions. For the necessary ultrahigh counting statistics required, cyclic activation of multiple subsamples has been applied. The home-made automated flexible analytical system with neutron flux and spectrum differentiation by irradiation position adjustment and cadmium screening, permits the non-destructive determination of the U235 abundance and the total U element concentration needed in nuclear safeguards sample analysis, with a high throughout and a low operational cost. Careful experimental optimization led to considerable improvement of the results

  11. First measurement of several $\\beta$-delayed neutron emitting isotopes beyond N=126

    CERN Document Server

    Caballero-Folch, R.; Agramunt, J.; Algora, A.; Ameil, F.; Arcones, A.; Ayyad, Y.; Benlliure, J.; Borzov, I.N.; Bowry, M.; Calvino, F.; Cano-Ott, D.; Cortés, G.; Davinson, T.; Dillmann, I.; Estrade, A.; Evdokimov, A.; Faestermann, T.; Farinon, F.; Galaviz, D.; García, A.R.; Geissel, H.; Gelletly, W.; Gernhäuser, R.; Gómez-Hornillos, M.B.; Guerrero, C.; Heil, M.; Hinke, C.; Knöbel, R.; Kojouharov, I.; Kurcewicz, J.; Kurz, N.; Litvinov, Y.; Maier, L.; Marganiec, J.; Marketin, T.; Marta, M.; Martínez, T.; Martínez-Pinedo, G.; Montes, F.; Mukha, I.; Napoli, D.R.; Nociforo, C.; Paradela, C.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Rice, S.; Riego, A.; Rubio, B.; Schaffner, H.; Scheidenberger, Ch.; Smith, K.; Sokol, E.; Steiger, K.; Sun, B.; Taín, J.L.; Takechi, M.; Testov, D.; Weick, H.; Wilson, E.; Winfield, J.S.; Wood, R.; Woods, P.; Yeremin, A.

    2016-01-01

    The $\\beta$-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with $\\beta$-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb and Bi in the mass region N$\\gtrsim$126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the $\\beta$-decay strength distribution. In doing so, it provides important constraints to global theoretical models currently used in $r$-process nucleosynthesis.

  12. First Measurement of Several β-Delayed Neutron Emitting Isotopes Beyond N=126.

    Science.gov (United States)

    Caballero-Folch, R; Domingo-Pardo, C; Agramunt, J; Algora, A; Ameil, F; Arcones, A; Ayyad, Y; Benlliure, J; Borzov, I N; Bowry, M; Calviño, F; Cano-Ott, D; Cortés, G; Davinson, T; Dillmann, I; Estrade, A; Evdokimov, A; Faestermann, T; Farinon, F; Galaviz, D; García, A R; Geissel, H; Gelletly, W; Gernhäuser, R; Gómez-Hornillos, M B; Guerrero, C; Heil, M; Hinke, C; Knöbel, R; Kojouharov, I; Kurcewicz, J; Kurz, N; Litvinov, Yu A; Maier, L; Marganiec, J; Marketin, T; Marta, M; Martínez, T; Martínez-Pinedo, G; Montes, F; Mukha, I; Napoli, D R; Nociforo, C; Paradela, C; Pietri, S; Podolyák, Zs; Prochazka, A; Rice, S; Riego, A; Rubio, B; Schaffner, H; Scheidenberger, Ch; Smith, K; Sokol, E; Steiger, K; Sun, B; Taín, J L; Takechi, M; Testov, D; Weick, H; Wilson, E; Winfield, J S; Wood, R; Woods, P; Yeremin, A

    2016-07-01

    The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.

  13. Numerical method for solving the three-dimensional time-dependent neutron diffusion equation

    International Nuclear Information System (INIS)

    Khaled, S.M.; Szatmary, Z.

    2005-01-01

    A numerical time-implicit method has been developed for solving the coupled three-dimensional time-dependent multi-group neutron diffusion and delayed neutron precursor equations. The numerical stability of the implicit computation scheme and the convergence of the iterative associated processes have been evaluated. The computational scheme requires the solution of large linear systems at each time step. For this purpose, the point over-relaxation Gauss-Seidel method was chosen. A new scheme was introduced instead of the usual source iteration scheme. (author)

  14. Time-dependent pseudo-reciprocity relations in neutronics

    International Nuclear Information System (INIS)

    Modak, R.S.; Sahni, D.C.

    2002-01-01

    Earlier, certain reciprocity-like relations have been shown to hold in some restricted steady state cases in neutron diffusion and transport theories. Here, the possibility of existence of similar relations in time-dependent situations is investigated

  15. Existence results for impulsive evolution differential equations with state-dependent delay

    OpenAIRE

    Eduardo Hernandez M.; Rathinasamy Sakthivel; Sueli Tanaka Aki

    2008-01-01

    We study the existence of mild solution for impulsive evolution abstract differential equations with state-dependent delay. A concrete application to partial delayed differential equations is considered.

  16. JENDL-4.0 benchmarking for effective delayed neutron fraction with a continuous-energy Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Nagaya, Yasunobu

    2013-01-01

    Benchmark calculations with a continuous-energy Monte Carlo code have been performed for delayed neutron data of JENDL-4.0. JENDL-4.0 gives good prediction for the effective delayed neutron fraction in the present benchmarks but further detailed analysis is required for some cores. (author)

  17. First delayed neutron emission measurements at ALTO with the neutron detector TETRA

    International Nuclear Information System (INIS)

    Testov, D.; Ancelin, S.; Bettane, J.; Ibrahim, F.; Kolos, K.; Mavilla, G.; Niikura, M.; Verney, D.; Wilson, J.; Kuznetsova, E.; Penionzhkevich, Yu.; Smirnov, V.; Sokol, E.

    2013-01-01

    Beta-decay properties are among the easiest and, therefore, the first ones to be measured to study new neutron-rich isotopes. Eventually, a very small number of nuclei could be sufficient to estimate their lifetime and neutron emission probability. With the new radioactive beam facilities which have been commissioned recently (or will be constructed shortly) new areas of neutron-rich isotopes will become reachable. To study beta-decay properties of such nuclei at IPN (Orsay) in the framework of collaboration with JINR (Dubna), a new experimental setup including the neutron detector of high efficiency TETRA was developed and commissioned

  18. Calculation of the pulsed Feynman- and Rossi-alpha formulae with delayed neutrons

    International Nuclear Information System (INIS)

    Kitamura, Y.; Pazsit, I.; Wright, J.; Yamamoto, A.; Yamane, Y.

    2005-01-01

    In previous works, the authors have developed an effective solution technique for calculating the pulsed Feynman- and Rossi-alpha formulae. Through derivation of these formulae, it was shown that the technique can easily handle various pulse shapes of the pulsed neutron source. Furthermore, it was also shown that both the deterministic (i.e., synchronizing with the pulsing of neutron source) and stochastic (non-synchronizing) Feynman-alpha formulae can be obtained with this solution technique. However, for mathematical simplicity and the sake of insight, the formal derivation was performed in a model without delayed neutrons. In this paper, to demonstrate the robustness of the technique, the pulsed Feynman- and Rossi-alpha formulae were re-derived by taking one group of delayed neutrons into account. The results show that the advantages of this technique are retained even by inclusion of the delayed neutrons. Compact explicit formulae are derived for the Feynman- and Rossi-alpha methods for various pulse shapes and pulsing methods

  19. Easy-to-use application programs for decay heat and delayed neutron calculations on personal computers

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, Kazuhiro [Nagoya Univ. (Japan)

    1998-03-01

    Application programs for personal computers are developed to calculate the decay heat power and delayed neutron activity from fission products. The main programs can be used in any computers from personal computers to main frames because their sources are written in Fortran. These programs have user friendly interfaces to be used easily not only for research activities but also for educational purposes. (author)

  20. The universal library of fission products and delayed neutron group yields

    International Nuclear Information System (INIS)

    Koldobskiy, A.B.; Zhivun, V.M.

    1997-01-01

    A new fission product yield library based on the Semiempirical method for the estimation of their mass and charge distribution is described. Contrary to other compilations, this library can be used with all possible excitation energies of fissionable actinides. The library of delayed neutron group yields, based on the fission product yield compilation, is described as well. (author). 15 refs, 4 tabs

  1. One-run Monte Carlo calculation of effective delayed neutron fraction and area-ratio reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhaopeng Zhong; Talamo, Alberto; Gohar, Yousry, E-mail: zzhong@anl.gov, E-mail: alby@anl.gov, E-mail: gohar@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, IL (United States)

    2011-07-01

    The Monte Carlo code MCNPX has been utilized to calculate the effective delayed neutron fraction and reactivity by using the area-ratio method. The effective delayed neutron fraction β{sub eff} has been calculated with the fission probability method proposed by Meulekamp and van der Marck. MCNPX was used to calculate separately the fission probability of the delayed and the prompt neutrons by using the TALLYX user subroutine of MCNPX. In this way, β{sub eff} was obtained from the one criticality (k-code) calculation without performing an adjoint calculation. The traditional k-ratio method requires two criticality calculations to calculate β{sub eff}, while this approach utilizes only one MCNPX criticality calculation. Therefore, the approach described here is referred to as a one-run method. In subcritical systems driven by a pulsed neutron source, the area-ratio method is used to calculate reactivity (in dollar units) as the ratio between the prompt and delayed areas. These areas represent the integral of the reaction rates induced from the prompt and delayed neutrons during the pulse period. Traditionally, application of the area-ratio method requires two separate fixed source MCNPX simulations: one with delayed neutrons and the other without. The number of source particles in these two simulations must be extremely high in order to obtain accurate results with low statistical errors because the values of the total and prompt areas are very close. Consequently, this approach is time consuming and suffers from the statistical errors of the two simulations. The present paper introduces a more efficient method for estimating the reactivity calculated with the area method by taking advantage of the TALLYX user subroutine of MCNPX. This subroutine has been developed for separately scoring the reaction rates caused by the delayed and the prompt neutrons during a single simulation. Therefore the method is referred to as a one run calculation. These methodologies have

  2. One-run Monte Carlo calculation of effective delayed neutron fraction and area-ratio reactivity

    International Nuclear Information System (INIS)

    Zhaopeng Zhong; Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The Monte Carlo code MCNPX has been utilized to calculate the effective delayed neutron fraction and reactivity by using the area-ratio method. The effective delayed neutron fraction β_e_f_f has been calculated with the fission probability method proposed by Meulekamp and van der Marck. MCNPX was used to calculate separately the fission probability of the delayed and the prompt neutrons by using the TALLYX user subroutine of MCNPX. In this way, β_e_f_f was obtained from the one criticality (k-code) calculation without performing an adjoint calculation. The traditional k-ratio method requires two criticality calculations to calculate β_e_f_f, while this approach utilizes only one MCNPX criticality calculation. Therefore, the approach described here is referred to as a one-run method. In subcritical systems driven by a pulsed neutron source, the area-ratio method is used to calculate reactivity (in dollar units) as the ratio between the prompt and delayed areas. These areas represent the integral of the reaction rates induced from the prompt and delayed neutrons during the pulse period. Traditionally, application of the area-ratio method requires two separate fixed source MCNPX simulations: one with delayed neutrons and the other without. The number of source particles in these two simulations must be extremely high in order to obtain accurate results with low statistical errors because the values of the total and prompt areas are very close. Consequently, this approach is time consuming and suffers from the statistical errors of the two simulations. The present paper introduces a more efficient method for estimating the reactivity calculated with the area method by taking advantage of the TALLYX user subroutine of MCNPX. This subroutine has been developed for separately scoring the reaction rates caused by the delayed and the prompt neutrons during a single simulation. Therefore the method is referred to as a one run calculation. These methodologies have been

  3. Reactor kinetics calculated in the summation method and key delayed-neutron data

    International Nuclear Information System (INIS)

    Oyamatsu, Kazuhiro

    2001-01-01

    The point-reactor kinetics after a step reactivity insertion to a critical condition is solved directly form fission-product (FP) data (fission yields and decay data) for the first time. Numerical calculations are performed with the FP data in ENDF/B-VI. The inhour equation obtained directly from the FP data shows a different behavior at long periods from the one obtained from Tuttle's six-group parameter sets. The behavior is quite similar to the one obtained from the six-group parameter sets in ENDF/B-VI, that were obtained from FP data in a preliminary version of ENDF/B-VI. To identify the erroneous FP data, we examine the asymptotic form of the inhour equation at an infinitely long period. It is found that the most important precursors for long reactor periods are found 137 I, 88 Br and 87 Br. They cover more than 60% of the reactivity. It is remarkable that 137 I alone covers 30-50% depending on the fissioning system. In addition to the three precursors, 136 Te is found a candidate precursor for the peculiarity from the time dependence of the delayed neutron activity. It is recommended that the precision of their Pn values should be improved experimentally. For 137 I, 88 Br, and 87 Br, the relative uncertainty, dPn/Pn, should be decreased down to 2% and for 136 Te to 5%. (author)

  4. Isotonic and isotopic dependence of the radiative neutron capture cross-section on the neutron excess

    International Nuclear Information System (INIS)

    Trofimov, Yu.N.

    1991-01-01

    The radiative neutron capture cross-section of nuclei has been derived as a function of neutron excess on the basis of the exponential dependence of the cross-section on the reaction energy. It is shown that unknown cross-sections of stable and radioactive nuclei may be evaluated by using the isotonic and isotopic dependence together with available reference cross-section measurements. (author). 4 refs, 3 figs

  5. Measurement of the Effective Delayed Neutron Fraction in Three Different FR0-cores

    Energy Technology Data Exchange (ETDEWEB)

    Moberg, L; Kockum, J

    1972-06-15

    The effective delayed neutron fraction, beta{sub eff}, has been measured in the three cores 3, 5 and 8 of the fast zero-power reactor FR0. The variance-to-mean method, in which the statistical fluctuations of the neutron density in the reactor is studied, was used. A 3He-gas scintillator was placed in the reflector and used as a neutron detector. It was made more sensitive to fast neutrons by surrounding it with polythene. Its efficiency, expressed as the number of counts per fission in the reactor, was determined using fission chambers with known efficiency placed in the core. The space distribution of the fission rate in the core was determined by foil activation technique. The experimental results were compared with theoretical beta{sub eff}-values calculated with perturbation theory. The difference was about 3 % which is of the same order as the accuracy in the experimental values

  6. Delay-Dependent Exponential Stability for Discrete-Time BAM Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Yonggang Chen

    2008-01-01

    Full Text Available This paper considers the delay-dependent exponential stability for discrete-time BAM neural networks with time-varying delays. By constructing the new Lyapunov functional, the improved delay-dependent exponential stability criterion is derived in terms of linear matrix inequality (LMI. Moreover, in order to reduce the conservativeness, some slack matrices are introduced in this paper. Two numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.

  7. Statistical effects in beta-delayed neutron emission from fission product nuclides

    International Nuclear Information System (INIS)

    McElroy, R.D. Jr.

    1986-01-01

    The delayed neutron spectra for the precursors Rb-93, 94, 95, 96, 97 and Cs-145 were measured by use of the on-line isotope separator facility TRISTAN and a time-of-flight (TOF) spectrometer. Flight paths were used that provided, for energies below 70 keV, a FWHM energy resolution between 2 and 4 percent. Each spectrum showed discrete neutron peaks below 156 keV, with as many as 26 in the Rb-95 spectra. Level densities near the neutron binding energy in the neutron-emitting nuclide were deduced using a missing-level indicator based on a Porter-Thomas distribution of neutron peak intensities. The resulting level density data were compared to the predictions of the Gilbert and Cameron formulism and to those of Dilg, Schantl, Vonach and Uhl. Comparisons were made between the empirically-based level parameter a and the values predicted by each model for Sr-93, 94, 95, 97 and Ba-145. The two models appear, within the uncertainties, to be equally capable of describing these neutron-rich nuclides and equally as capable for them as they are for nuclides in the valley of beta stability. Measurements of the neutron strength function are sometimes possible with the present TOF system for neutron decays with competing neutron branches to levels in the grandchild nucleus. A value for the d-wave strength function of Sr-96 is found to be (4.2 +- 1.1)/10 4 . Improvements in the TOF system, allowing the measurement of the neutron strength function for the more general case, are discussed. 72 refs., 56 figs., 16 tabs

  8. Generalized Aharonov-Bohm and wheeler-type delayed choice experiments with neutrons

    International Nuclear Information System (INIS)

    Zeilinger, A.

    1984-01-01

    Novel time-dependent neutron interferometry experiments are proposed. These would elucidate the peculiar role of potential energy in quantum mechanics on the one hand and the complementarity in quantum interference on the other hand

  9. Numerical solution of the time dependent neutron transport equation by the method of the characteristics

    International Nuclear Information System (INIS)

    Talamo, Alberto

    2013-01-01

    This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps

  10. Numerical solution of the time dependent neutron transport equation by the method of the characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto, E-mail: alby@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

    2013-05-01

    This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.

  11. Sensitivity analysis of the kinetic behaviour of a Gas Cooled Fast Reactor to variations of the delayed neutron parameters

    International Nuclear Information System (INIS)

    Van Rooijen, W. F. G.; Lathouwers, D.

    2007-01-01

    In advanced Generation IV (fast) reactors an integral fuel cycle is envisaged, where all Heavy Metal is recycled in the reactor. This leads to a nuclear fuel with a considerable content of Minor Actinides. For many of these isotopes the nuclear data is not very well known. In this paper the sensitivity of the kinetic behaviour of the reactor to the dynamic parameters λ k , β k and the delayed spectrum χ d,k is studied using first order perturbation theory. In the current study, feedback due to Doppler and/or thermohydraulic effects are not treated. The theoretical framework is applied to a Generation IV Gas Cooled Fast Reactor. The results indicate that the first-order approach is satisfactory for small variations of the data. Sensitivities to delayed neutron data are similar for increasing and decreasing transients. Sensitivities generally increase with reactivity for increasing transients. For decreasing transients, there are less clearly defined trends, although the sensitivity to the delayed neutron spectrum decreases with larger sub-criticality, as expected. For this research, an adjoint capable version of the time-dependent diffusion code DALTON is under development. (authors)

  12. Statistical and non statistical models for delayed neutron emission: applications to nuclei near A = 90

    International Nuclear Information System (INIS)

    De Oliveira, Z.M.

    1980-01-01

    A detailed analysis of the simple statistical model description for delayed neutron emission of 87 Br, 137 I, 85 As and 135 Sb has been performed. In agreement with experimental findings, structure in the #betta#-strength function is required to reproduce the envelope of the neutron spectrum from 87 Br. For 85 As and 135 Sb the model is found incapable of simultaneously reproducing envelopes of delayed neutron spectra and neutron branching ratios to excited states in the final nuclei for any choice of #betta#-strength function. The results indicate that partial widths for neutron emission are not compatible with optical-model transmission coefficients. The simple shell model with pairing is shown to qualitatively describe the main features of the #betta#-strength functions for decay of 87 Br and 91 93 95 97 Rb. It is found that the location of apparent resonances in the experimental data are in rough agreement with the location of centroids of strength calculated with this model. An extension of the shell model picture which includes the Gamow-Teller residual interaction is used to investigate decay properties of 84 86 As, 86 92 Br and 88 102 Rb. For a realistic choice of interaction strength, the half lives of these isotopes are fairly well reproduced and semiquantitative agreement with experimental #betta#-strength functions is found. Delayed neutron emission probabilities are reproduced for precursors nearer stability with systematic deviations being observed for the heavier nuclei. Contrary to the assumption of a structureless Gamow-Teller giant resonance as embodied gross theory of #betta#-decay, we find that structures in the tail of the Gamow-Teller giant resonances are expected which strongly influence the decay properties of nuclides in this region

  13. Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay

    International Nuclear Information System (INIS)

    Wang Shen-Quan; Feng Jian; Zhao Qing

    2012-01-01

    In this paper, the problem of delay-distribution-dependent stability is investigated for continuous-time recurrent neural networks (CRNNs) with stochastic delay. Different from the common assumptions on time delays, it is assumed that the probability distribution of the delay taking values in some intervals is known a priori. By making full use of the information concerning the probability distribution of the delay and by using a tighter bounding technique (the reciprocally convex combination method), less conservative asymptotic mean-square stable sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Two numerical examples show that our results are better than the existing ones. (general)

  14. Savannah River Site delayed neutron instruments for safeguards measurements

    International Nuclear Information System (INIS)

    Studley, R.V.

    1992-01-01

    The Savannah River Site (SRS) includes a variety of nuclear production facilities that, since 1953, have processed special nuclear materials (SNM) including highly-enriched uranium (>90% 235 U), recycled enriched uranium (∼50% 235 U + 40% 236 U), low burnup plutonium (> 90% 239 Pu + 240 Pu ) and several other nuclear materials such as heat source plutonium ( 238 Pu). DOE Orders, primarily 5633.3, require all nuclear materials to be safeguarded through accountability and material control. Accountability measurements determine the total amount of material in a facility, balancing inventory changes against receipts and shipments, to provide assurance (delayed) that all material was present. Material control immediately detects or deters theft or diversion by assuring materials remain in assigned locations or by impeding unplanned movement of materials within or from a material access area. Goals for accountability or material control, and, therefore, the design of measurement systems, are distinctly different. Accountability measurements are optimized for maximum precision and accuracy, usually for large amounts of special nuclear material. Material control measurements are oriented more toward security features and often must be optimized for sensitivity, to detect small amounts of materials where none should be

  15. Determination of the effective delayed neutron fraction in the Coral-I Reactor

    International Nuclear Information System (INIS)

    Francisco, J. L. de; Perez-Navarro, A.; Rodriguez-Mayquez, E.

    1973-01-01

    The effective delayed neutron fraction, β eff, has been determined from the measurement of E / β 2 , by means of reactor noise analysis in the time domain, and the neutron detector efficiency, ε. For the ε measurement it is necessary to determine the fission rate in the reactor. This value can be obtained from the absolute measurement of the fission rate per cm 3 , at a certain point of the reactor, and the determination of these two values ratio, which has been calculated by the Monte Cario method and also measured with results in good agreement. (Author)

  16. Test of statistical models of the ν-delayed neutron emission by application of the Monte Carlo method

    International Nuclear Information System (INIS)

    Ohm, H.

    1982-01-01

    Using the example of the delayed neutron spectrum of 24 s- 137 I the statistical model is tested in view of its applicability. A computer code was developed which simulates delayed neutron spectra by the Monte Carlo method under the assumption that the transition probabilities of the ν and the neutron decays obey the Porter-Thomas distribution while the distances of the neutron emitting levels are Wigner distribution. Gramow-Teller ν-transitions and simply forbidden ν-transitions from the preceding nucleus to the emitting nucleus were regarded. (orig./HSI) [de

  17. Measuring delayed part of the current of a self powered neutron detector and comparison with calculations

    International Nuclear Information System (INIS)

    Kophazi, J.; Czifrus, Sz.; Feher, S.; Por, G.

    2001-01-01

    The paper describes the measurement of the delayed signal of a Rh emitter Self Powered Neutron Detector (SPND) separately from other signal components originating from (n-gamma-e), (background gamma-e) and other effects. In order to separate the delayed signal, the detector was removed from the reactor core and placed to an adequately distant location during the measurement, where the radiation from the core was negligible. The experiment was carried out on the 100kW light water tank-type reactor of Technical University of Budapest and the results of the measurement were compared with the results of Monte Carlo calculations.(author)

  18. Delay discounting of oral morphine and sweetened juice rewards in dependent and non-dependent rats.

    Science.gov (United States)

    Harvey-Lewis, Colin; Perdrizet, Johnna; Franklin, Keith B J

    2014-07-01

    Opioid-dependent humans are reported to show accelerated delay discounting of opioid rewards when compared to monetary rewards. It has been suggested that this may reflect a difference in discounting of consumable and non-consumable goods not specific to dependent individuals. Here, we evaluate the discounting of similar morphine and non-morphine oral rewards in dependent and non-dependent rats We first tested the analgesic and rewarding effects of our morphine solution. In a second experiment, we assigned rats randomly to either dependent or non-dependent groups that, 30 min after daily testing, received 30 mg/kg subcutaneous dose of morphine, or saline, respectively. Delay discounting of drug-free reward was examined prior to initiation of the dosing regimen. We tested discounting of the morphine reward in half the rats and retested the discounting of the drug-free reward in the other half. All tests were run 22.5 h after the daily maintenance dose. Rats preferred the morphine cocktail to the drug-free solution and consumed enough to induce significant analgesia. The control quinine solution did not produce these effects. Dependent rats discounted morphine rewards more rapidly than before dependence and when compared to discounting drug-free rewards. In non-dependent rats both reward types were discounted similarly. These results show that morphine dependence increases impulsiveness specifically towards a drug reward while morphine experience without dependence does not.

  19. Benchmarking time-dependent neutron problems with Monte Carlo codes

    International Nuclear Information System (INIS)

    Couet, B.; Loomis, W.A.

    1990-01-01

    Many nuclear logging tools measure the time dependence of a neutron flux in a geological formation to infer important properties of the formation. The complex geometry of the tool and the borehole within the formation does not permit an exact deterministic modelling of the neutron flux behaviour. While this exact simulation is possible with Monte Carlo methods the computation time does not facilitate quick turnaround of results useful for design and diagnostic purposes. Nonetheless a simple model based on the diffusion-decay equation for the flux of neutrons of a single energy group can be useful in this situation. A combination approach where a Monte Carlo calculation benchmarks a deterministic model in terms of the diffusion constants of the neutrons propagating in the media and their flux depletion rates thus offers the possibility of quick calculation with assurance as to accuracy. We exemplify this approach with the Monte Carlo benchmarking of a logging tool problem, showing standoff and bedding response. (author)

  20. Surface harmonics method for two-dimensional time-dependent neutron transport problems of square-lattice nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A. [National Research Centre Kurchatov Institute, Kurchatov Sq. 1, Moscow (Russian Federation)

    2013-07-01

    Time-dependent equations of the Surface Harmonics Method (SHM) have been derived from the time-dependent neutron transport equation with explicit representation of delayed neutrons for solving the two-dimensional time-dependent problems. These equations have been realized in the SUHAM-TD code. The TWIGL benchmark problem has been used for verification of the SUHAM-TD code. The results of the study showed that computational costs required to achieve necessary accuracy of the solution can be an order of magnitude less than with the use of the conventional finite difference method (FDM). (authors)

  1. Study and building of a detection array for delayed neutrons: TONNERRE

    International Nuclear Information System (INIS)

    Martin, Thierry

    1998-01-01

    This work has been undertaken within a French-Romanian collaboration in order to build a high efficiency detector array for delayed neutrons: barrel-shaped TONNERRE. Some neutron-rich nuclei decay through 1, 2 or 3 neutron emission after β - decay. More exotic nuclei will be produced by SPIRAL at GANIL. An array with high efficiency and good resolution is then required. Thirty two BC400 plastic scintillators (160 x 20 x 4 cm 3 ) allow us to get the time of flight neutron spectra. They are bent for uniform flight path and viewed by a photomultiplier tube at both ends. Simulations have allowed to establish scintillator size and to minimize light attenuation. Intrinsic efficiency and crosstalk have been measured with 252 Cf and compared to GEANT. 1 to 5 MeV neutrons are detected with good timing and position properties. Other counters will be built for neutrons from 300 keV to 1 MeV. Planned to run at several particle accelerators (GANIL, CERN, and others), TONNERRE is modular and many geometries are possible. (author)

  2. Determination of delayed neutrons source in the frequency domain based on in-pile oscillation measurements

    International Nuclear Information System (INIS)

    Yedvab, Y.; Reiss, I.; Bettan, M.; Harari, R.; Grober, A.; Ettedgui, H.; Caspi, E. N.

    2006-01-01

    A method for determining delayed neutrons source in the frequency domain based on measuring power oscillations in a non-critical reactor is presented. This method is unique in the sense that the delayed neutrons source is derived from the dynamic behavior of the reactor, which serves as the measurement system. An algorithm for analyzing power oscillation measurements was formulated, which avoids the need for a multi-parameter non-linear fit process used by other methods. Using this algorithm results of two sets of measurements performed in IRR-I and IRR-II (Israeli Research Reactors I and II) are presented. The agreement between measured values from both reactors and calculated values based on Keepin (and JENDL-3.3) group parameters is very good. (authors)

  3. Evaluation of temperature dependent neutron resonance integrals

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Sahni, D.C.

    1975-01-01

    The Fourier transform method is extended for evaluating temperature dependent resonance integrals and Doppler coefficients. With the temperature dependent cross-sections, the slowing-down equation is transformed into a Fredholm integral equation of second kind. A method of solution is presented using the familiar Gauss-Hermite quadrature formulae. As a byproduct of the above technique, a fast and accurate method for computing the resonance integral J-function is given. (orig.) [de

  4. 235U Determination using In-Beam Delayed Neutron Counting Technique at the NRU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, M. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bentoumi, G. [Canadian Nuclear Labs., Chalk River, ON (Canada); Corcoran, E. C. [Royal Military College of Canada, Kingston, ON (United States); Dimayuga, I. [Canadian Nuclear Labs., Chalk River, ON (Canada); Kelly, D. G. [Royal Military College of Canada, Kingston, ON (United States); Li, L. [Canadian Nuclear Labs., Chalk River, ON (Canada); Sur, B. [Canadian Nuclear Labs., Chalk River, ON (Canada); Rogge, R. B. [Canadian Nuclear Labs., Chalk River, ON (Canada)

    2015-11-17

    This paper describes a collaborative effort that saw the Royal Military College of Canada (RMC)’s delayed neutron and gamma counting apparatus transported to Canadian Nuclear Laboratories (CNL) for use in the neutron beamline at the National Research Universal (NRU) reactor. Samples containing mg quantities of fissile material were re-interrogated, and their delayed neutron emissions measured. This collaboration offers significant advantages to previous delayed neutron research at both CNL and RMC. This paper details the determination of 235U content in enriched uranium via the assay of in-beam delayed neutron magnitudes and temporal behavior. 235U mass was determined with an average absolute error of ± 2.7 %. This error is lower than that obtained at RMCC for the assay of 235U content in aqueous solutions (3.6 %) using delayed neutron counting. Delayed neutron counting has been demonstrated to be a rapid, accurate, and precise method for special nuclear material detection and identification.

  5. A two-dimensional detector with delay line readout for slow neutron fields measurements

    International Nuclear Information System (INIS)

    Cheremukhina, G.A.; Chernenko, S.P.; Ivanov, A.B.

    1992-01-01

    This article presents the description of a two-dimensional detector of slow neutrons together with its readout and data acquisition electronics based on a PC/AT> The detector with a sensitive area of 260x140 mm 2 is based on a high pressure multiwire proportional chamber with delay line readout and gas filling of 3.0 atm. 3 He + propane. 25 refs.; 10 figs.; 2 tabs

  6. Review and comparison of effective delayed neutron fraction calculation methods with Monte Carlo codes

    International Nuclear Information System (INIS)

    Bécares, V.; Pérez-Martín, S.; Vázquez-Antolín, M.; Villamarín, D.; Martín-Fuertes, F.; González-Romero, E.M.; Merino, I.

    2014-01-01

    Highlights: • Review of several Monte Carlo effective delayed neutron fraction calculation methods. • These methods have been implemented with the Monte Carlo code MCNPX. • They have been benchmarked against against some critical and subcritical systems. • Several nuclear data libraries have been used. - Abstract: The calculation of the effective delayed neutron fraction, β eff , with Monte Carlo codes is a complex task due to the requirement of properly considering the adjoint weighting of delayed neutrons. Nevertheless, several techniques have been proposed to circumvent this difficulty and obtain accurate Monte Carlo results for β eff without the need of explicitly determining the adjoint flux. In this paper, we make a review of some of these techniques; namely we have analyzed two variants of what we call the k-eigenvalue technique and other techniques based on different interpretations of the physical meaning of the adjoint weighting. To test the validity of all these techniques we have implemented them with the MCNPX code and we have benchmarked them against a range of critical and subcritical systems for which either experimental or deterministic values of β eff are available. Furthermore, several nuclear data libraries have been used in order to assess the impact of the uncertainty in nuclear data in the calculated value of β eff

  7. Activity of the Delayed Neutron Working Group of JNDC and the International Evaluation Cooperation - WPEC/SG6

    International Nuclear Information System (INIS)

    Yoshida, Tadashi

    1999-01-01

    The Delayed Neutron Working Group was established in April 1997 within the Nuclear Data Subcommittee of JNDC. It has two principal missions. One is to coordinate the Japanese activities toward the WPEC/Subgroup-6 efforts, and the other is to recommend the delayed neutron data for JENDL-3.3. The final report of Subgroup-6, which in one of the subgroups of the NEA International Evaluation Cooperation (WPEC) and is in charge of the delayed neutron data, is to be completed in 1999. Here in Japan, JENDL-3.3 is planned to be released in early 2000. Delayed Neutron Working Group is, then, going to finalize its activity by the end of the fiscal year 1999 after recommending appropriate sets of data as coherently as possible with the of Subgroup-6 efforts. (author)

  8. Delay-dependent exponential stability of cellular neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Zhang Qiang; Wei Xiaopeng; Xu Jin

    2005-01-01

    The global exponential stability of cellular neural networks (CNNs) with time-varying delays is analyzed. Two new sufficient conditions ensuring global exponential stability for delayed CNNs are obtained. The conditions presented here are related to the size of delay. The stability results improve the earlier publications. Two examples are given to demonstrate the effectiveness of the obtained results

  9. Time dependent and asymptotic neutron number probability distribution calculation using discrete Fourier transform

    International Nuclear Information System (INIS)

    Humbert, Ph.

    2005-01-01

    In this paper we consider the probability distribution of neutrons in a multiplying assembly. The problem is studied using a space independent one group neutron point reactor model without delayed neutrons. We recall the generating function methodology and analytical results obtained by G.I. Bell when the c 2 approximation is used and we present numerical solutions in the general case, without this approximation. The neutron source induced distribution is calculated using the single initial neutron distribution which satisfies a master (Kolmogorov backward) equation. This equation is solved using the generating function method. The generating function satisfies a differential equation and the probability distribution is derived by inversion of the generating function. Numerical results are obtained using the same methodology where the generating function is the Fourier transform of the probability distribution. Discrete Fourier transforms are used to calculate the discrete time dependent distributions and continuous Fourier transforms are used to calculate the asymptotic continuous probability distributions. Numerical applications are presented to illustrate the method. (author)

  10. Recent activities for β-decay half-lives and β-delayed neutron emission of very neutron-rich isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Dillmann, Iris [TRIUMF, Vancouver BC, V6T 2A3, Canada and GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Abriola, Daniel [Laboratorio Tandar, Comisión Nacional de Energía Atómica, B1650KINA, San Martín, Buenos Aires (Argentina); Singh, Balraj [Department of Physics and Astronomy, McMaster University, Hamilton ON, L8S 4M1 (Canada)

    2014-05-02

    Beta-delayed neutron (βn) emitters play an important, two-fold role in the stellar nucleosynthesis of heavy elements in the 'rapid neutron-capture process' (r process). On one hand they lead to a detour of the material β-decaying back to stability. On the other hand, the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. A large fraction of the isotopes inside the r-process reaction path are not yet experimentally accessible and are located in the (experimental) 'Terra Incognita'. With the next generation of fragmentation and ISOL facilities presently being built or already in operation, one of the main motivation of all projects is the investigation of these very neutron-rich isotopes. A short overview of one of the planned programs to measure βn-emitters at the limits of the presently know isotopes, the BRIKEN campaign (Beta delayed neutron emission measurements at RIKEN) will be given. Presently, about 600 β-delayed one-neutron emitters are accessible, but only for a third of them experimental data are available. Reaching more neutron-rich isotopes means also that multiple neutron-emission becomes the dominant decay mechanism. About 460 β-delayed two-, three-or four-neutron emitters are identified up to now but for only 30 of them experimental data about the neutron branching ratios are available, most of them in the light mass region below A=30. The International Atomic and Energy Agency (IAEA) has identified the urgency and picked up this topic recently in a 'Coordinated Research Project' on a 'Reference Database for Beta-Delayed Neutron Emission Data'. This project will review, compile, and evaluate the existing data for neutron-branching ratios and half-lives of β-delayed neutron emitters and help to ensure a reliable database for the future discoveries of new isotopes and help to constrain astrophysical and

  11. Improved Criteria on Delay-Dependent Stability for Discrete-Time Neural Networks with Interval Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    O. M. Kwon

    2012-01-01

    Full Text Available The purpose of this paper is to investigate the delay-dependent stability analysis for discrete-time neural networks with interval time-varying delays. Based on Lyapunov method, improved delay-dependent criteria for the stability of the networks are derived in terms of linear matrix inequalities (LMIs by constructing a suitable Lyapunov-Krasovskii functional and utilizing reciprocally convex approach. Also, a new activation condition which has not been considered in the literature is proposed and utilized for derivation of stability criteria. Two numerical examples are given to illustrate the effectiveness of the proposed method.

  12. New Delay-Dependent Stability Criteria for Uncertain Neutral Systems with Mixed Time-Varying Delays and Nonlinear Perturbations

    Directory of Open Access Journals (Sweden)

    Hamid Reza Karimi

    2009-01-01

    Full Text Available The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range-dependent, and distributed-delay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method.

  13. $\\beta$-delayed neutrons from oriented $^{137,139}$I and $^{87,89}$Br nuclei

    CERN Multimedia

    We propose a world-first measurement of the angular distribution of $\\beta$‐delayed n and $\\gamma$-radiation from oriented $^{137, 139}$I and $^{87,89}$Br nuclei, polarised at low temperature at the NICOLE facility. $\\beta$­-delayed neutron emission is an increasingly important decay mechanism as the drip line is approached and its detailed understanding is essential to phenomena as fundamental as the r‐process and practical as the safe operation of nuclear power reactors. The experiments offer sensitive tests of theoretical input concerning the allowed and first­‐forbidden $\\beta$‐decay strength, the spin-density of neutron emitting states and the partial wave barrier penetration as a function of nuclear deformation. In $^{137}$I and $^{87}$Br the decay feeds predominantly the ground state of the daughters $^{136}$Xe and $^{86}$Kr whereas in $^{139}$I and $^{89}$Br we will explore the use of n-$\\gamma$- coincidence to study neutron transitions to the first and second excited states in the daughters...

  14. $\\beta$-delayed neutrons from oriented $^{137,139}$I and $^{87,89}$Br nuclei

    CERN Document Server

    Grzywacz, Robert; Stone, Nicholas; Köster, Ulli; Singh, Barlaj; Bingham, Carrol; Gaulard, S; Kolos, Karolina; Madurga, Miguel; Nikolov, J; Otsubo, T; Roccia, S; Veskovic, Miroslav; Walker, Phil; Walters, William

    2013-01-01

    We propose a world-­‐first measurement of the angular distribution of $\\beta$-­‐delayed n and $\\gamma$- radiation from oriented $^{137, 139}$I and $^{87,89}$Br nuclei, polarised at low temperature at the NICOLE facility. $\\beta$-­‐delayed neutron emission is an increasingly important decay mechanism as the drip line is approached and its detailed understanding is essential to phenomena as fundamental as the r‐process and practical as the safe operation of nuclear power reactors. The experiments offer sensitive tests of theoretical input concerning the allowed and first-­‐forbidden $\\beta$‐decay strength, the spin-­‐density of neutron emitting states and the partial wave barrier penetration as a function of nuclear deformation. In $^{137}$I and $^{87}$Br the decay feeds predominantly the ground state of the daughters $^{136}$Xe and $^{86}$Kr whereas in $^{139}$I and $^{89}$Br we will explore the use of n-$\\gamma$- coincidence to study neutron transitions to the first and second excited state...

  15. Delay-dependent stability of neural networks of neutral type with time delay in the leakage term

    International Nuclear Information System (INIS)

    Li, Xiaodi; Cao, Jinde

    2010-01-01

    This paper studies the global asymptotic stability of neural networks of neutral type with mixed delays. The mixed delays include constant delay in the leakage term (i.e. 'leakage delay'), time-varying delays and continuously distributed delays. Based on the topological degree theory, Lyapunov method and linear matrix inequality (LMI) approach, some sufficient conditions are derived ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point, which are dependent on both the discrete and distributed time delays. These conditions are expressed in terms of LMI and can be easily checked by the MATLAB LMI toolbox. Even if there is no leakage delay, the obtained results are less restrictive than some recent works. It can be applied to neural networks of neutral type with activation functions without assuming their boundedness, monotonicity or differentiability. Moreover, the differentiability of the time-varying delay in the non-neutral term is removed. Finally, two numerical examples are given to show the effectiveness of the proposed method

  16. Beta-delayed fission and neutron emission calculations for the actinide cosmochronometers

    International Nuclear Information System (INIS)

    Meyer, B.S.; Howard, W.M.; Mathews, G.J.; Takahashi, K.; Moeller, P.; Leander, G.A.

    1989-01-01

    The Gamow-Teller beta-strength distributions for 19 neutron-rich nuclei, including ten of interest for the production of the actinide cosmochronometers, are computed microscopically with a code that treats nuclear deformation explicitly. The strength distributions are then used to calculate the beta-delayed fission, neutron emission, and gamma deexcitation probabilities for these nuclei. Fission is treated both in the complete damping and WKB approximations for penetrabilities through the nuclear potential-energy surface. The resulting fission probabilities differ by factors of 2 to 3 or more from the results of previous calculations using microscopically computed beta-strength distributions around the region of greatest interest for production of the cosmochronometers. The indications are that a consistent treatment of nuclear deformation, fission barriers, and beta-strength functions is important in the calculation of delayed fission probabilities and the production of the actinide cosmochronometers. Since we show that the results are very sensitive to relatively small changes in model assumptions, large chronometric ages for the Galaxy based upon high beta-delayed fission probabilities derived from an inconsistent set of nuclear data calculations must be considered quite uncertain

  17. Delay-Range-Dependent H∞ Control for Automatic Mooring Positioning System with Time-Varying Input Delay

    Directory of Open Access Journals (Sweden)

    Xiaoyu Su

    2014-01-01

    Full Text Available Aiming at the economy and security of the positioning system in semi-submersible platform, the paper presents a new scheme based on the mooring line switching strategy. Considering the input delay in switching process, H∞ control with time-varying input delay is designed to calculate the control forces to resist disturbing forces. In order to reduce the conservativeness, the information of the lower bound of delay is taken into account, and a Lyapunov function which contains the range of delay is constructed. Besides, the input constraint is considered to avoid breakage of mooring lines. The sufficient conditions for delay-range-dependent stabilization are derived in terms of LMI, and the controller is also obtained. The effectiveness of the proposed approach is illustrated by a realistic design example.

  18. Prompt and delay gamma ray measurements for 'in vivo' neutron activation analysis using a cyclic system

    International Nuclear Information System (INIS)

    Matthews, I.P.

    1979-09-01

    Early attempts at determining the elemental composition of the body by radioactive isotope dilution techniques are reviewed. The development and current status of in-vivo neutron activation analysis and the ways in which it supersedes or supplements certain of the former techniques are outlined. An irradiation facility is described which employs a 5 Ci neutron source and is capable of performing prompt and delay γ-ray measurements as well as cyclic activation. The uniformity of thermal neutron flux in a phantom is demonstrated and the neutron spectrum at a depth in the phantom has been obtained by means of threshold detectors. An examination is made of the possible applications of the Monte Carlo method to the design of irradiation and detection facilities and in yielding information about inaccessible areas. Detection limits for the bulk body elements and trace elements are presented. It is shown that the depth of a region of the body can be determined from a prompt gamma ray spectrum. This technique can be used to correct measurements when it is known that activation and detection is non-uniform. The feasibility of using a C.T. whole body scanner to measure bone demineralisation is explored. (author)

  19. New delay-dependent absolute stability criteria for Lur'e systems with time-varying delay

    Science.gov (United States)

    Chen, Yonggang; Bi, Weiping; Li, Wenlin

    2011-07-01

    In this article, the absolute stability problem is investigated for Lur'e systems with time-varying delay and sector-bounded nonlinearity. By employing the delay fractioning idea, the new augmented Lyapunov functional is first constructed. Then, by introducing some slack matrices and by reserving the useful term when estimating the upper bound of the derivative of Lyapunov functional, the new delay-dependent absolute stability criteria are derived in terms of linear matrix inequalities. Several numerical examples are presented to show the effectiveness and the less conservativeness of the proposed method.

  20. Two specialized delayed-neutron detector designs for assays of fissionable elements in water and sediment samples

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Balagna, J.P.; Menlove, H.O.

    1976-01-01

    Two specialized neutron-sensitive detectors are described which are employed for rapid assays of fissionable elements by sensing for delayed neutrons emitted by samples after they have been irradiated in a nuclear reactor. The more sensitive of the two detectors, designed to assay for uranium in water samples, is 40% efficient; the other, designed for sediment sample assays, is 27% efficient. These detectors are also designed to operate under water as an inexpensive shielding against neutron leakage from the reactor and neutrons from cosmic rays. (Auth.)

  1. The effect of mixed fractionation with X rays and neutrons on tumour growth delay and skin reactions in mice

    International Nuclear Information System (INIS)

    Carl, U.M.

    1987-01-01

    The authors have compared the effects of mixed fractionation schedules with X rays and neutrons on growth delay of a murine tumour and skin reactions in mice. The schedules were five daily fractions of X rays, neutrons or mixtures (NNXXX, XXXNN or NXXXN). For clamped tumours or skin all three mixed schedules had the same effect. In contrast, for unclamped tumours giving the neutrons first (NNXXX) was more effective than the other two mixed schedules. This represented a true therapeutic gain and implies that if neutrons are used clinically as only part of a course of fractionated radiotherapy, they should be given at the beginning rather than at the end of treatment. (author)

  2. Summary Report of Consultants' Meeting on Beta-Delayed Neutron Emission Evaluation

    International Nuclear Information System (INIS)

    Abriola, Daniel; Singh, Balraj; Dillmann, Iris

    2011-12-01

    A summary is given of a Consultants' Meeting assembled to assess the viability of a new IAEA Co-ordinated Research Project (CRP) on Beta-delayed neutron emission evaluation. The current status of the field was reviewed, cases in which new measurements are needed were identified and the current theoretical models were examined. The best known cases were selected as standards and were assessed and preliminary best values of the emission probabilities were obtained. The need of such a CRP was strongly agreed. Both the technical discussions and the expected outcome of such a project are described, along with detailed recommendations for its implementation. (author)

  3. Improved delay-dependent globally asymptotic stability of delayed uncertain recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Yan, Ji; Bao-Tong, Cui

    2010-01-01

    In this paper, we have improved delay-dependent stability criteria for recurrent neural networks with a delay varying over a range and Markovian jumping parameters. The criteria improve over some previous ones in that they have fewer matrix variables yet less conservatism. In addition, a numerical example is provided to illustrate the applicability of the result using the linear matrix inequality toolbox in MATLAB. (general)

  4. Delay-Dependent Stability Criteria of Uncertain Periodic Switched Recurrent Neural Networks with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Xing Yin

    2011-01-01

    uncertain periodic switched recurrent neural networks with time-varying delays. When uncertain discrete-time recurrent neural network is a periodic system, it is expressed as switched neural network for the finite switching state. Based on the switched quadratic Lyapunov functional approach (SQLF and free-weighting matrix approach (FWM, some linear matrix inequality criteria are found to guarantee the delay-dependent asymptotical stability of these systems. Two examples illustrate the exactness of the proposed criteria.

  5. Aging-dependent reduction in glyoxalase 1 delays wound healing.

    Science.gov (United States)

    Fleming, Thomas H; Theilen, Till-Martin; Masania, Jinit; Wunderle, Marius; Karimi, Jamshid; Vittas, Spiros; Bernauer, Rainer; Bierhaus, Angelika; Rabbani, Naila; Thornalley, Paul J; Kroll, Jens; Tyedmers, Jens; Nawrotzki, Ralph; Herzig, Stephan; Brownlee, Michael; Nawroth, Peter P

    2013-01-01

    Methylglyoxal (MG), the major dicarbonyl substrate of the enzyme glyoxalase 1 (GLO1), is a reactive metabolite formed via glycolytic flux. Decreased GLO1 activity in situ has been shown to result in an accumulation of MG and increased formation of advanced glycation endproducts, both of which can accumulate during physiological aging and at an accelerated rate in diabetes and other chronic degenerative diseases. To determine the physiological consequences which result from elevated MG levels and the role of MG and GLO1 in aging, wound healing in young (≤12 weeks) and old (≥52 weeks) wild-type mice was studied. Old mice were found to have a significantly slower rate of wound healing compared to young mice (74.9 ± 2.2 vs. 55.4 ± 1.5% wound closure at day 6; 26% decrease; p wounds of young mice, decreased wound healing by 24% compared to untreated mice, whereas application of BSA modified minimally by MG had no effect. Treatment of either young or old mice with aminoguanidine, a scavenger of free MG, significantly increased wound closure by 16% (66.8 ± 1.6 vs. 77.2 ± 3.1%; p wound healing in the old mice was restored to the level observed in the young mice. These findings were confirmed in vitro, as MG reduced migration and proliferation of fibroblasts derived from young and old, wild-type mice. The data demonstrate that the balance between MG and age-dependent GLO1 downregulation contributes to delayed wound healing in old mice. Copyright © 2013 S. Karger AG, Basel.

  6. Wavelength dependent delay in the onset of FEL tissue ablation

    International Nuclear Information System (INIS)

    Tribble, J.A.; Edwards, G.S.; Lamb, J.A.

    1995-01-01

    We are investigating the wavelength dependence of the onset of laser tissue ablation in the IR Visible and UV ranges. Toward this end, we have made simultaneous measurements of the ejected material (using a HeNe probe beam tangential to the front surface) and the residual stress transient in the tissue (using traditional piezoelectric detection behind the thin samples). For the IR studies we have used the Vanderbilt FEL and for the UV and Vis range we have used a Q-switched ND:Yag with frequency doubling and quadrupling. To satisfy the conditions of the near field limit for the detection of the stress transient, the duration of the IR FEL macropulse must be as short as possible. We have obtained macropulses as short as 100 ns using Pockels Cell technology. The recording of the signals from both the photodiode monitoring the HeNe probe beam and the acoustic detector are synchronized with the arrival of the 100 ns macropulse. With subablative intensities, the resulting stress transient is bipolar with its positive peak separated from its negative peak by 100 ns in agreement with theory. Of particular interest is the comparison of ablative results using 3 μm and 6.45 μm pulses. Both the stress transient and the ejection of material suffer a greater delay (with respect to the arrival of the 100 ns pulse) when the FEL is tuned to 3 μm as compared to 6.45 μm. A comparison of IR Vis and UV data will be discussed in terms of microscopic mechanisms governing the laser ablation process

  7. Time-dependent solutions for stochastic systems with delays: Perturbation theory and applications to financial physics

    International Nuclear Information System (INIS)

    Frank, T.D.

    2006-01-01

    First-order approximations of time-dependent solutions are determined for stochastic systems perturbed by time-delayed feedback forces. To this end, the theory of delay Fokker-Planck equations is applied in combination with Bayes' theorem. Applications to a time-delayed Ornstein-Uhlenbeck process and the geometric Brownian walk of financial physics are discussed

  8. Feasibility study of {sup 235}U and {sup 239}Pu characterization in radioactive waste drums using neutron-induced fission delayed gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, T. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); FZJ, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety, Wilhelm-Johnen-Straße, d-52425 Jülich (Germany); Pérot, B., E-mail: bertrand.perot@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Carasco, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Brackx, E. [CEA, DEN, Marcoule, Metallography and Chemical Analysis Laboratory, F-30207 Bagnols-sur-Cèze (France); Mariani, A.; Passard, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Mauerhofer, E. [FZJ, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety, Wilhelm-Johnen-Straße, d-52425 Jülich (Germany); Collot, J. [Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble Alpes, CNRS/IN2P3 Grenoble (France)

    2016-10-01

    This paper reports a feasibility study of {sup 235}U and {sup 239}Pu characterization in 225 L bituminized waste drums or 200 L concrete waste drums, by detecting delayed fission gamma rays between the pulses of a deuterium-tritium neutron generator. The delayed gamma yields were first measured with bare samples of {sup 235}U and {sup 239}Pu in REGAIN, a facility dedicated to the assay of 118 L waste drums by Prompt Gamma Neutron Activation Analysis (PGNAA) at CEA Cadarache, France. Detectability in the waste drums is then assessed using the MCNPX model of MEDINA (Multi Element Detection based on Instrumental Neutron Activation), another PGNAA cell dedicated to 200 L drums at FZJ, Germany. For the bituminized waste drum, performances are severely hampered by the high gamma background due to {sup 137}Cs, which requires the use of collimator and shield to avoid electronics saturation, these elements being very penalizing for the detection of the weak delayed gamma signal. However, for lower activity concrete drums, detection limits range from 10 to 290 g of {sup 235}U or {sup 239}Pu, depending on the delayed gamma rays of interest. These detection limits have been determined by using MCNPX to calculate the delayed gamma useful signal, and by measuring the experimental gamma background in MEDINA with a 200 L concrete drum mock-up. The performances could be significantly improved by using a higher interrogating neutron emission and an optimized experimental setup, which would allow characterizing nuclear materials in a wide range of low and medium activity waste packages.

  9. Calculation of the effective delayed neutron fraction by TRIPOLI-4 code for IPEN/MB-01 research reactor

    International Nuclear Information System (INIS)

    Lee, Y.K.; Hugot, F.X.

    2011-01-01

    The effective delayed neutron fraction βeff is an important reactor physics parameter. Its calculation within the multi-group deterministic transport code can be performed with the aid of adjoint flux weighted integrations. However, in continuous energy Monte Carlo transport code, the adjoint weighted βeff calculation becomes complicated due to the backward treatment of the anisotropy scattering. In TRIPOLI-4 continuous energy Monte Carlo code, the βeff calculation was performed by a two-run method, one run with delayed neutrons and second with only the contribution from prompt fission neutrons. To improve the uncertainty of the βeff two-run calculation for the experimental reactors, two simple and fast one-run methods to estimate the βeff in the continuous energy simulation have been implemented into the TRIPOLI-4 code. First approach is an improved one of the Bretscher's prompt method and second one based on the proposal of Nauchi and Kameyama. In these one-run methods, the prompt and the delayed neutrons are first tagged. Their tracking and statistics are separated performed. The new βeff calculations have been optimized in the power iteration cycles so as to estimate the production of prompt and delayed neutrons from the prompt and delayed neutrons of previous generation. To validate the new βeff calculation by TRIPOLI-4, several benchmarks including fast and thermal systems have been considered. In this paper the recent measurements of βeff in the research reactor IPEN/MB-01 have been benchmarked. The basic components of the βeff and the Keff have been also calculated so as to understand the influences of the cross sections and the delayed neutron yields on the reactor reactivity calculations. Three nuclear data libraries, ENDF/BVI.r4, ENDF/B-VII.0, and JEFF-3.1 were taken into account in this study. (author)

  10. Exponential Antisynchronization Control of Stochastic Memristive Neural Networks with Mixed Time-Varying Delays Based on Novel Delay-Dependent or Delay-Independent Adaptive Controller

    Directory of Open Access Journals (Sweden)

    Minghui Yu

    2017-01-01

    Full Text Available The global exponential antisynchronization in mean square of memristive neural networks with stochastic perturbation and mixed time-varying delays is studied in this paper. Then, two kinds of novel delay-dependent and delay-independent adaptive controllers are designed. With the ability of adapting to environment changes, the proposed controllers can modify their behaviors to achieve the best performance. In particular, on the basis of the differential inclusions theory, inequality theory, and stochastic analysis techniques, several sufficient conditions are obtained to guarantee the exponential antisynchronization between the drive system and response system. Furthermore, two numerical simulation examples are provided to the validity of the derived criteria.

  11. Delay-Dependent Guaranteed Cost H∞ Control of an Interval System with Interval Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Zhongke Shi

    2009-01-01

    Full Text Available This paper concerns the problem of the delay-dependent robust stability and guaranteed cost H∞ control for an interval system with time-varying delay. The interval system with matrix factorization is provided and leads to less conservative conclusions than solving a square root. The time-varying delay is assumed to belong to an interval and the derivative of the interval time-varying delay is not a restriction, which allows a fast time-varying delay; also its applicability is broad. Based on the Lyapunov-Ktasovskii approach, a delay-dependent criterion for the existence of a state feedback controller, which guarantees the closed-loop system stability, the upper bound of cost function, and disturbance attenuation lever for all admissible uncertainties as well as out perturbation, is proposed in terms of linear matrix inequalities (LMIs. The criterion is derived by free weighting matrices that can reduce the conservatism. The effectiveness has been verified in a number example and the compute results are presented to validate the proposed design method.

  12. Electron-capture delayed fission properties of neutron-deficient einsteinium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Shaughnessy, Dawn A. [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Electron-capture delayed fission (ECDF) properties of neutron-deficient einsteinium isotopes were investigated using a combination of chemical separations and on-line radiation detection methods. 242Es was produced via the 233U(14N,5n)242Es reaction at a beam energy of 87 MeV (on target) in the lab system, and was found to decay with a half-life of 11 ± 3 seconds. The ECDF of 242Es showed a highly asymmetric mass distribution with an average pre-neutron emission total kinetic energy (TKE) of 183 ± 18 MeV. The probability of delayed fission (PDF) was measured to be 0.006 ± 0.002. In conjunction with this experiment, the excitation functions of the 233U(14N,xn)247-xEs and 233U(15N,xn)248-xEs reactions were measured for 243Es, 244Es and 245Es at projectile energies between 80 MeV and 100 MeV.

  13. Electron-capture delayed fission properties of neutron-deficient einsteinium nuclei

    International Nuclear Information System (INIS)

    Shaughnessy, Dawn A.

    2000-01-01

    Electron-capture delayed fission (ECDF) properties of neutron-deficient einsteinium isotopes were investigated using a combination of chemical separations and on-line radiation detection methods. 242 Es was produced via the 233 U( 14 N,5n) 242 Es reaction at a beam energy of 87 MeV (on target) in the lab system, and was found to decay with a half-life of 11 ± 3 seconds. The ECDF of 242 Es showed a highly asymmetric mass distribution with an average pre-neutron emission total kinetic energy (TKE) of 183 ± 18 MeV. The probability of delayed fission (P DF ) was measured to be 0.006 ± 0.002. In conjunction with this experiment, the excitation functions of the 233 U( 14 N,xn) 247-x Es and 233 U( 15 N,xn) 248-x Es reactions were measured for 243 Es, 244 Es and 245 Es at projectile energies between 80 MeV and 100 MeV

  14. Rhodium SPND's Error Reduction using Extended Kalman Filter combined with Time Dependent Neutron Diffusion Equation

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Park, Tong Kyu; Jeon, Seong Su

    2014-01-01

    The Rhodium SPND is accurate in steady-state conditions but responds slowly to changes in neutron flux. The slow response time of Rhodium SPND precludes its direct use for control and protection purposes specially when nuclear power plant is used for load following. To shorten the response time of Rhodium SPND, there were some acceleration methods but they could not reflect neutron flux distribution in reactor core. On the other hands, some methods for core power distribution monitoring could not consider the slow response time of Rhodium SPND and noise effect. In this paper, time dependent neutron diffusion equation is directly used to estimate reactor power distribution and extended Kalman filter method is used to correct neutron flux with Rhodium SPND's and to shorten the response time of them. Extended Kalman filter is effective tool to reduce measurement error of Rhodium SPND's and even simple FDM to solve time dependent neutron diffusion equation can be an effective measure. This method reduces random errors of detectors and can follow reactor power level without cross-section change. It means monitoring system may not calculate cross-section at every time steps and computing time will be shorten. To minimize delay of Rhodium SPND's conversion function h should be evaluated in next study. Neutron and Rh-103 reaction has several decay chains and half-lives over 40 seconds causing delay of detection. Time dependent neutron diffusion equation will be combined with decay chains. Power level and distribution change corresponding movement of control rod will be tested with more complicated reference code as well as xenon effect. With these efforts, final result is expected to be used as a powerful monitoring tool of nuclear reactor core

  15. Rhodium SPND's Error Reduction using Extended Kalman Filter combined with Time Dependent Neutron Diffusion Equation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Hun; Park, Tong Kyu; Jeon, Seong Su [FNC Technology Co., Ltd., Yongin (Korea, Republic of)

    2014-05-15

    The Rhodium SPND is accurate in steady-state conditions but responds slowly to changes in neutron flux. The slow response time of Rhodium SPND precludes its direct use for control and protection purposes specially when nuclear power plant is used for load following. To shorten the response time of Rhodium SPND, there were some acceleration methods but they could not reflect neutron flux distribution in reactor core. On the other hands, some methods for core power distribution monitoring could not consider the slow response time of Rhodium SPND and noise effect. In this paper, time dependent neutron diffusion equation is directly used to estimate reactor power distribution and extended Kalman filter method is used to correct neutron flux with Rhodium SPND's and to shorten the response time of them. Extended Kalman filter is effective tool to reduce measurement error of Rhodium SPND's and even simple FDM to solve time dependent neutron diffusion equation can be an effective measure. This method reduces random errors of detectors and can follow reactor power level without cross-section change. It means monitoring system may not calculate cross-section at every time steps and computing time will be shorten. To minimize delay of Rhodium SPND's conversion function h should be evaluated in next study. Neutron and Rh-103 reaction has several decay chains and half-lives over 40 seconds causing delay of detection. Time dependent neutron diffusion equation will be combined with decay chains. Power level and distribution change corresponding movement of control rod will be tested with more complicated reference code as well as xenon effect. With these efforts, final result is expected to be used as a powerful monitoring tool of nuclear reactor core.

  16. Finite difference solution of the time dependent neutron group diffusion equations

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Henry, A.F.

    1975-08-01

    In this thesis two unrelated topics of reactor physics are examined: the prompt jump approximation and alternating direction checkerboard methods. In the prompt jump approximation it is assumed that the prompt and delayed neutrons in a nuclear reactor may be described mathematically as being instantaneously in equilibrium with each other. This approximation is applied to the spatially dependent neutron diffusion theory reactor kinetics model. Alternating direction checkerboard methods are a family of finite difference alternating direction methods which may be used to solve the multigroup, multidimension, time-dependent neutron diffusion equations. The reactor mesh grid is not swept line by line or point by point as in implicit or explicit alternating direction methods; instead, the reactor mesh grid may be thought of as a checkerboard in which all the ''red squares'' and '' black squares'' are treated successively. Two members of this family of methods, the ADC and NSADC methods, are at least as good as other alternating direction methods. It has been found that the accuracy of implicit and explicit alternating direction methods can be greatly improved by the application of an exponential transformation. This transformation is incompatible with checkerboard methods. Therefore, a new formulation of the exponential transformation has been developed which is compatible with checkerboard methods and at least as good as the former transformation for other alternating direction methods

  17. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    Science.gov (United States)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for

  18. Nondestructive analysis of the natural uranium mass through the measurement of delayed neutrons using the technique of pulsed neutron source; Analise nao destrutiva da massa de uranio natural atraves da medida de neutrons atrasados com o uso da tecnica de fonte pulsada de neutrons rapidos

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Paulo Rogerio Pinto

    1979-07-01

    This work presents results of non destructive mass analysis of natural uranium by the pulsed source technique. Fissioning is produced by irradiating the test sample with pulses of 14 MeV neutrons and the uranium mass is calculated on a relative scale from the measured emission of delayed neutrons. Individual measurements were normalised against the integral counts of a scintillation detector measuring the 14 MeV neutron intensity. Delayed neutrons were measured using a specially constructed slab detector operated in anti synchronism with the fast pulsed source. The 14 MeV neutrons were produced via the T(d,n) {sup 4}He reaction using a 400 kV Van de Graaff accelerated operated at 200 kV in the pulsed source mode. Three types of sample were analysed, namely: discs of metallic uranium, pellets of sintered uranium oxide and plates of uranium aluminium alloy sandwiched between aluminium. These plates simulated those of Material Testing Reactor fuel elements. Results of measurements were reproducible to within an overall error in the range 1.6 to 3.9%; the specific error depending on the shape, size and mass of the sample. (author)

  19. Study of neutron rich nuclei by delayed neutron decay using the Tonnerre multidetector; Etude de la decroissance par neutrons retardes de noyaux legers riches en neutrons avec le multidetecteur tonnerre

    Energy Technology Data Exchange (ETDEWEB)

    Timis, C.N

    2001-07-01

    A new detection array for beta delayed neutrons was built. It includes up to 32 plastic scintillation counters 180 cm long located at 120 cm from the target. Neutron energy spectra are measured by time-of-flight in the 300 keV-15 MeV range with good energy resolution. The device was tested with several known nuclei. Its performances are discussed in comparison with Monte Carlo simulations. They very high overall detection efficiency on the TONNERRE array made it possible to study one and two neutron emission of {sup 11}Li. A complete decay scheme was obtained. The {sup 33}Mg and {sup 35}Al beta decays were investigated for the first time by neutron and gamma spectroscopy. Complete decay schemes were established and compared to large scale shell-model calculations. (authors)

  20. Energy dependence of fast neutron dosimetry using electrochemical etching

    International Nuclear Information System (INIS)

    Su, S.J.; Morgan, K.Z.

    1978-01-01

    Registration of fast-neutron induced recoil tracks by the electrochemical etching technique as applied to sensitive Lexan polycarbonate foils provides a simple and inexpensive means of fast neutron personnel dosimetry. The sensitivity (tracks/neutron) of recoil particle registration is given as a function of neutron energy. Neutrons of 7 Li (p,n) 7 Be, 3 T (d,n) 4 He and 9 B, respectively. Results are compared with other studies using other neutron sources and conventional etching method

  1. Effect of state-dependent delay on a weakly damped nonlinear oscillator.

    Science.gov (United States)

    Mitchell, Jonathan L; Carr, Thomas W

    2011-04-01

    We consider a weakly damped nonlinear oscillator with state-dependent delay, which has applications in models for lasers, epidemics, and microparasites. More generally, the delay-differential equations considered are a predator-prey system where the delayed term is linear and represents the proliferation of the predator. We determine the critical value of the delay that causes the steady state to become unstable to periodic oscillations via a Hopf bifurcation. Using asymptotic averaging, we determine how the system's behavior is influenced by the functional form of the state-dependent delay. Specifically, we determine whether the branch of periodic solutions will be either sub- or supercritical as well as an accurate estimation of the amplitude. Finally, we choose a few examples of state-dependent delay to test our analytical results by comparing them to numerical continuation.

  2. Estimation of time- and state-dependent delays and other parameters in functional differential equations

    Science.gov (United States)

    Murphy, K. A.

    1990-01-01

    A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.

  3. Eigenvalue-dependent neutron energy spectra: Definitions, analyses, and applications

    International Nuclear Information System (INIS)

    Cacuci, D.G.; Ronen, Y.; Shayer, Z.; Wagschal, J.J.; Yeivin, Y.

    1982-01-01

    A general qualitative analysis of spectral effects that arise from solving the kappa-, α-, γ-, and sigma-eigenvalue formulations of the neutron transport equation for nuclear systems that deviate (to first order) from criticality is presented. Hierarchies of neutron spectra softness are established and expressed concisely in terms of the newly introduced spatialdependent local spectral indices for the core and for the reflector. It is shown that each hierarchy is preserved, regardless of the nature of the specific physical mechanism that cause the system to deviate from criticality. Qualitative conclusions regarding the general behavior of the spectrum-dependent integral spectral indices and ICRs corresponding to the kappa-, α-, γ-, and sigma-eigenvalue formalisms are also presented. By defining spectral indices separately for the core and for the reflector, it is possible to account for the characteristics of neutron spectra in both the core and the reflector. The distinctions between the spectra in the core and in the reflector could not have been accounted for by using a single type of spectral index (e.g., a spectral index for the entire system or a spectral index solely for the core)

  4. A delay-dependent approach to robust control for neutral uncertain neural networks with mixed interval time-varying delays

    International Nuclear Information System (INIS)

    Lu, Chien-Yu

    2011-01-01

    This paper considers the problem of delay-dependent global robust stabilization for discrete, distributed and neutral interval time-varying delayed neural networks described by nonlinear delay differential equations of the neutral type. The parameter uncertainties are norm bounded. The activation functions are assumed to be bounded and globally Lipschitz continuous. Using a Lyapunov functional approach and linear matrix inequality (LMI) techniques, the stability criteria for the uncertain neutral neural networks with interval time-varying delays are established in the form of LMIs, which can be readily verified using the standard numerical software. An important feature of the result reported is that all the stability conditions are dependent on the upper and lower bounds of the delays. Another feature of the results lies in that it involves fewer free weighting matrix strategy, and upper bounds of the inner product between two vectors are not introduced to reduce the conservatism of the criteria. Two illustrative examples are provided to demonstrate the effectiveness and the reduced conservatism of the proposed method

  5. MINARET: Towards a time-dependent neutron transport parallel solver

    International Nuclear Information System (INIS)

    Baudron, A.M.; Lautard, J.J.; Maday, Y.; Mula, O.

    2013-01-01

    We present the newly developed time-dependent 3D multigroup discrete ordinates neutron transport solver that has recently been implemented in the MINARET code. The solver is the support for a study about computing acceleration techniques that involve parallel architectures. In this work, we will focus on the parallelization of two of the variables involved in our equation: the angular directions and the time. This last variable has been parallelized by a (time) domain decomposition method called the para-real in time algorithm. (authors)

  6. Criticality problems in energy dependent neutron transport theory

    International Nuclear Information System (INIS)

    Victory, H.D. Jr.

    1979-01-01

    The criticality problem is considered for energy dependent neutron transport in an isotropically scattering, homogeneous slab. Under a positivity assumption on the scattering kernel, an expression can be found relating the thickness of the slab to a parameter characterizing production by fission. This is accomplished by exploiting the Perron-Frobenius-Jentsch characterization of positive operators (i.e. those leaving invariant a normal, reproducing cone in a Banach space). It is pointed out that those techniques work for classes of multigroup problems were the Case singular eigenfunction approach is not as feasible as in the one-group theory, which is also analyzed

  7. Delay-dependent asymptotic stability of a two-neuron system with different time delays

    International Nuclear Information System (INIS)

    Tu Fenghua; Liao Xiaofeng; Zhang Wei

    2006-01-01

    In this paper, we consider a two-neuron system with time-delayed connections between neurons. Based on the construction of Lyapunov functionals, we obtain sufficient criteria to ensure local and global asymptotic stability of the equilibrium of the neural network. The obtained conditions are shown to be less conservative and restrictive than those reported in the literature. Some examples are included to illustrate our results

  8. Bioassay method for Uranium in urine by Delay Neutron counting; Metoda Bioassay Uranium dalam urin dengan pencacahan Netron Kasip

    Energy Technology Data Exchange (ETDEWEB)

    Suratman,; Purwanto,; Sukarman-Aminjoyo, [Yogyakarta Nuclear Research Centre, National Atomic Energy Agency, Yogyakarta (Indonesia)

    1996-04-15

    A bioassay method for uranium in urine by neutron counting has been studied. The aim of this research is to obtain a bioassay method for uranium in urine which is used for the determination of internal dose of radiation workers. The bioassay was applied to the artificially uranium contaminated urine. The weight of the contaminant was varied. The uranium in the urine was irradiated in the Kartini reactor core, through pneumatic system. The delayed neutron was counted by BF3 neutron counter. Recovery of the bioassay was between 69.8-88.8 %, standard deviation was less than 10 % and the minimum detection was 0.387 {mu}g.

  9. Stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters

    International Nuclear Information System (INIS)

    Xu, X.; Hu, H.Y.; Wang, H.L.

    2006-01-01

    It is very common that neural network systems usually involve time delays since the transmission of information between neurons is not instantaneous. Because memory intensity of the biological neuron usually depends on time history, some of the parameters may be delay dependent. Yet, little attention has been paid to the dynamics of such systems. In this Letter, a detailed analysis on the stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters is given. Moreover, the direction and the stability of the bifurcating periodic solutions are obtained by the normal form theory and the center manifold theorem. It shows that the dynamics of the neuron model with delay-dependent parameters is quite different from that of systems with delay-independent parameters only

  10. Measurement of 235U content and flow of UF6 using delayed neutrons or gamma rays following induced fission

    International Nuclear Information System (INIS)

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF 6 gas streams. A 252 Cf neutron source was used to induce 235 U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved open-quotes down-stream.close quotes The experiments used a UO 2 powder that was transported down the pipe to simulate the flowing UF 6 gas. Computer modeling and analytic calculation extended the test results to a flowing UF 6 gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the 235 U content and UF 6 flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF 6 provides an approximate measure of the 235 U content without using a neutron source to induce fission

  11. Development of a methodology for analysis of delayed-neutron signals

    International Nuclear Information System (INIS)

    Gross, K.C.; Strain, R.V.; Fryer, R.M.

    1980-02-01

    Experimental and analytical techniques have been developed for analysis and characterization of delayed-neutron (DN) signals that can provide diagnostic information to augment data from cover-gas analyses in the detection and identification of breached elements in an LMFBR. Eleven flow-reduction tests have been run in EBR-II to provide base data support for predicting DN signal characteristics during exposed-fuel operation. Results from the tests demonstrate the feasibility and practicability of response-analysis techniques for determining (a) the transit time, T/sub tr/, for DN emitters traveling from the core to the detector and (b) the isotropic holdup time, T/sub h/, of DN precursors in the fuel element

  12. Benchmark experiments of effective delayed neutron fraction βeff at FCA

    International Nuclear Information System (INIS)

    Sakurai, Takeshi; Okajima, Shigeaki

    1999-01-01

    Benchmark experiments of effective delayed neutron fraction β eff were performed at Fast Critical Assembly (FCA) in the Japan Atomic Energy Research Institute. The experiments were made in three cores providing systematic change of nuclide contribution to the β eff : XIX-1 core fueled with 93% enriched uranium, XIX-2 core fueled with plutonium and uranium (23% enrichment) and XIX-3 core fueled with plutonium (92% fissile Pu). Six organizations from five countries participated in these experiments and measured the β eff by using their own methods and instruments. Target accuracy in the β eff was achieved to be better than ±3% by averaging the β eff values measured using a wide variety of experimental methods. (author)

  13. Delay-dependent exponential stability analysis of bi-directional associative memory neural networks with time delay: an LMI approach

    International Nuclear Information System (INIS)

    Li Chuandong; Liao Xiaofeng; Zhang Rong

    2005-01-01

    For bi-directional associative memory (BAM) neural networks (NNs) with different constant or time-varying delays, the problems of determining the exponential stability and estimating the exponential convergence rate are investigated in this paper. An approach combining the Lyapunov-Krasovskii functional with the linear matrix inequality (LMI) is taken to study the problems, which provide bounds on the interconnection matrix and the activation functions, so as to guarantee the system's exponential stability. Some criteria for the exponential stability, which give information on the delay-dependent property, are derived. The results obtained in this paper provide one more set of easily verified guidelines for determining the exponential stability of delayed BAM (DBAM) neural networks, which are less conservative and less restrictive than the ones reported so far in the literature. Some typical examples are presented to show the application of the criteria obtained in this paper

  14. Delayed neutron fraction and prompt decay constant measurement in the MINERVE reactor using the PSI instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Gregory [Paul Scherrer Institute, Villigen, 5232, (Switzerland)

    2015-07-01

    The critical decay constant (B/A), delayed neutron fraction (B) and generation time (A) of the Minerve reactor were measured by the Paul Scherrer Institut (PSI) and the Commissariat a l'Energie Atomique (CEA) in September 2014 using the Feynman-alpha and Power Spectral Density neutron noise measurement techniques. Three slightly subcritical configuration were measured using two 1-g {sup 235}U fission chambers. This paper reports on the results obtained by PSI in the near critical configuration (-2g). The most reliable and precise results were obtained with the Cross-Power Spectral Density technique: B = 708.4±9.2 pcm, B/A = 79.0±0.6 s{sup -1} and A 89.7±1.4 micros. Predictions of the same kinetic parameters were obtained with MCNP5-v1.6 and the JEFF-3.1 and ENDF/B-VII.1 nuclear data libraries. On average the predictions for B and B/A overestimate the experimental results by 5% and 11%, respectively. The discrepancy is suspected to come from either a corruption of the data or from the inadequacy of the point kinetic equations to interpret the measurements in the Minerve driven system. (authors)

  15. Precision measurement of the neutron spin dependent structure functions

    International Nuclear Information System (INIS)

    Kolomensky, Y.G.

    1997-02-01

    In experiment E154 at the Stanford Linear Accelerator Center the spin dependent structure function g 1 n (x, Q 2 ) of the neutron was measured by scattering longitudinally polarized 48.3 GeV electrons off a longitudinally polarized 3 He target. The high beam energy allowed the author to extend the kinematic coverage compared to the previous SLAC experiments to 0.014 ≤ x ≤ 0.7 with an average Q 2 of 5 GeV 2 . The author reports the integral of the spin dependent structure function in the measured range to be ∫ 0.014 0.7 dx g 1 n (x, 5 GeV 2 ) = -0.036 ± 0.004(stat.) ± 0.005(syst.). The author observes relatively large values of g 1 n at low x that call into question the reliability of data extrapolation to x → 0. Such divergent behavior disagrees with predictions of the conventional Regge theory, but is qualitatively explained by perturbative QCD. The author performs a Next-to-Leading Order perturbative QCD analysis of the world data on the nucleon spin dependent structure functions g 1 p and g 1 n paying careful attention to the experimental and theoretical uncertainties. Using the parameterizations of the helicity-dependent parton distributions obtained in the analysis, the author evolves the data to Q 2 = 5 GeV 2 , determines the first moments of the polarized structure functions of the proton and neutron, and finds agreement with the Bjorken sum rule

  16. The structure of the Gamow-Teller giant resonance and consequences for beta-delayed neutron spectra and element synthesis

    International Nuclear Information System (INIS)

    Klapdor, H.V.

    1976-01-01

    Recent results in β-delayed neutron emission are interpreted by structure of the Gamow-Teller giant resonance not included in the 'gross-theory' of β-decay. Inclusion of this structure of the β-decay function is important for calculations of β-decay production rates for heavy nuclides by astrophysical processes and thermonuclear explosions. (Auth.)

  17. Delayed effects of neutron irradiation on central nervous system microvasculature in the rat

    International Nuclear Information System (INIS)

    Goodman, J.H.; McGregor, J.M.; Clendenon, N.R.; Gordon, W.A.; Yates, A.J.; Gahbauer, R.A.; Barth, R.F.; Fairchild, R.G.

    1988-01-01

    Pathologic examination of a series of 14 patients with malignant gliomas treated with BNCT showed well demarcated zones of radiation damage characterized by coagulation necrosis. Beam attenuation was correlated with edema, loss of parenchymal elements, demyelination, leukocytosis, and peripheral gliosis. Vascular disturbances consisted of endothelial swelling, medial and adventitial proliferation, fibrin impregnation, frequent thrombosis, and perivascular inflammation. Radiation changes appeared to be acute and delayed. The outcome of the patients in this series was not significantly different from the natural course of the disease, even though two of the patients had no residual tumor detected at the time of autopsy. The intensity of the vascular changes raised a suspicion that boron may have sequestered in vessel walls, resulting in selectively high doses of radiation to these structures (Asbury et al., 1972), or that there may have been high blood concentrations of boron at the time of treatment. The potential limiting effects of a vascular ischemic reaction in Boron Neutron Capture Therapy (BNCT) prompted the following study to investigate the delayed response of microvascular structures in a rat model currently being used for pre-clinical investigations. 8 refs., 3 figs., 1 tab

  18. Determination of the effective delayed neutron fraction in the Coral-I Reactor; Determinacion de la fraccion efectiva de neutrones retardados en el Reactor Coral-1

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, J L. de; Perez-Navarro, A; Rodriguez-Mayquez, E

    1973-07-01

    The effective delayed neutron fraction, {beta} eff, has been determined from the measurement of E / {beta}{sup 2}, by means of reactor noise analysis in the time domain, and the neutron detector efficiency, {epsilon}. For the {epsilon} measurement it is necessary to determine the fission rate in the reactor. This value can be obtained from the absolute measurement of the fission rate per cm{sup 3}, at a certain point of the reactor, and the determination of these two values ratio, which has been calculated by the Monte Cario method and also measured with results in good agreement. (Author)

  19. The dependence of radiation damage analysis on neutron dosimetry

    International Nuclear Information System (INIS)

    Goland, A.N.; Parkin, D.M.

    1977-01-01

    The characteristics of defect production in neutron spectra can be determined by utilizing neutron cross section data (e.g. ENDF/B), detailed neutron spectral data and radiation damage models. The combination of neutron cross section and spectral data is a fundamental starting point in applying damage models. Calculations using these data and damage models show that there are significant differences in the way defects are produced in various neutron spectra. Nonelastic events dominate the recoil energy distribution in high-energy neutron sources such as those based upon fusion and deuteron-breakup reactions. Therefore, high-energy neutron cross sections must be measured or calculated to supplement existing data files. Radiation damage models can then be used to further characterize the diverse neutron spectra

  20. Local Properties of Solutions to Non-Autonomous Parabolic PDEs with State-Dependent Delays

    Czech Academy of Sciences Publication Activity Database

    Rezunenko, Oleksandr

    2012-01-01

    Roč. 2, č. 2 (2012), s. 56-71 ISSN 2158-611X R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : partial differential equations * state-dependent delay * invariance principle Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/rezunenko- local properties of solutions to non-autonomous parabolic PDEs with state-dependent delay s.pdf

  1. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  2. Robust and global delay-dependent stability for genetic regulatory networks with parameter uncertainties.

    Science.gov (United States)

    Tian, Li-Ping; Wang, Jianxin; Wu, Fang-Xiang

    2012-09-01

    The study of stability is essential for designing or controlling genetic regulatory networks, which can be described by nonlinear differential equations with time delays. Much attention has been paid to the study of delay-independent stability of genetic regulatory networks and as a result, many sufficient conditions have been derived for delay-independent stability. Although it might be more interesting in practice, delay-dependent stability of genetic regulatory networks has been studied insufficiently. Based on the linear matrix inequality (LMI) approach, in this study we will present some delay-dependent stability conditions for genetic regulatory networks. Then we extend these results to genetic regulatory networks with parameter uncertainties. To illustrate the effectiveness of our theoretical results, gene repressilatory networks are analyzed .

  3. Relationship between Social Media Dependency, Perceived Parenting Style, Delay of Gratification, and Narcissism

    OpenAIRE

    Derebaşı, Muhammet Burak

    2015-01-01

    Worldwide, there is an increasing interest to study social media dependency. Currently, most of the researches compare social media dependency with other dependencies such as substance abuse and gambling. Although, there is limited research to investigate the effect of personality on social media dependency. Therefore, the main aim of the current study was to examine the predictor roles of narcissism, perceived parenting styles and delay of gratification on social media dependency. A total of...

  4. Study and building of a detection array for delayed neutrons: TONNERRE; Etude et realisation d`un ensemble de detection pour neutrons retardes: TONNERRE

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Thierry [Lab. de Physique Corpusculaire, Caen Univ., 14 - Caen (France)

    1998-11-09

    This work has been undertaken within a French-Romanian collaboration in order to build a high efficiency detector array for delayed neutrons: barrel-shaped TONNERRE. Some neutron-rich nuclei decay through 1, 2 or 3 neutron emission after {beta}{sup -} decay. More exotic nuclei will be produced by SPIRAL at GANIL. An array with high efficiency and good resolution is then required. Thirty two BC400 plastic scintillators (160 x 20 x 4 cm{sup 3}) allow us to get the time of flight neutron spectra. They are bent for uniform flight path and viewed by a photomultiplier tube at both ends. Simulations have allowed to establish scintillator size and to minimize light attenuation. Intrinsic efficiency and crosstalk have been measured with {sup 252}Cf and compared to GEANT. 1 to 5 MeV neutrons are detected with good timing and position properties. Other counters will be built for neutrons from 300 keV to 1 MeV. Planned to run at several particle accelerators (GANIL, CERN, and others), TONNERRE is modular and many geometries are possible. (author) 48 refs., 78 figs., 20 tabs.

  5. The implication of sensitivity analysis on the safety and delayed-neutron parameters for fast breeder reactors

    International Nuclear Information System (INIS)

    Onega, R.J.; Florian, R.J.

    1983-01-01

    The delayed-neutron energy spectra for LMFBRs are not as well known as those for LWRs. These spectra are necessary for kinetics calculations which play an important role in safety and accident analyses. A sensitivity analysis was performed to study the response of the reactor power and power density to uncertainties in the delayed-neutron spectra during a rod-ejection accident. The accidents studied were central control-rod-ejections with ejection times of 2,10 and 30s. A two-energy group and two-precursor group model was formulated for the International Nuclear Fuel Cycle Evaluation (INFCE) reference design MOX-fueled LMFBR. The sensitivity analysis is based on the use of adjoints so that it is not necessary to repeatedly solve the governing (kinetics) equations to obtain the sensitivity derivatives. This is of particular importance when large systems of equations are used. The power and power-density responses were found to be most sensitive to uncertainties in the spectrum of the second delayed-neutron precursor group, resulting from the fission of 238 U, producing neutrons in the first energy group. It was found, for example, that for a rod-ejection time of 30s, and uncertainty of 7.2% in the fast components of the spectra resulted in a 24% uncertainty in the predicted power and power density. These responses were recalculated by repeatedly solving the kinetics equations. The maximum discrepancy between the recalculated and the sensitivity analysis response was only 1.6%. The results of the sensitivity analysis indicate the need for improved delayed-neutron spectral data in order to reduce the uncertainties in accident analyses. (author)

  6. The analysis and attribution of the time-dependent neutron background resultant from sample irradiation in a SLOWPOKE-2 reactor

    International Nuclear Information System (INIS)

    Sellers, M.T.; Corcoran, E.C.; Kelly, D.G.

    2013-01-01

    The Royal Military College of Canada (RMCC) has commissioned a Delayed Neutron Counting (DNC) system for the analysis of special nuclear materials. A significant, time-dependent neutron background with an initial maximum count rate, more than 50 times that of the time-independent background, was characterised during the validation of this system. This time-dependent background was found to be dependent on the presence of the polyethylene (PE) vials used to transport the fissile samples, yet was not an activation product of vial impurities. The magnitude of the time-dependent background was found to be irradiation site specific and independent of the mass of PE. The capability of RMCC's DNC system to analyze the neutron count rates in time intervals 235 U contamination was present on each irradiated vial. However, Inductively Coupled Plasma-Mass Spectroscopy measurements of material leached from the outer vial surfaces after their irradiations found only trace amounts of uranium, 0.118 ± 0.048 ng of 235 U derived from natural uranium. These quantities are insufficient to account for the time-independent background, and in fact could not be discriminated from the noise associated with time-independent background. It is suggested that delayed neutron emitters are deposited in the vial surface following fission recoil, leaving the main body of uranium within the irradiation site. This hypothesis is supported by the physical cleaning of the site with materials soaked in distilled water and HNO 3 , which lowered the background from a nominal 235 U mass equivalent of 120 to 50 ng per vial. (author)

  7. SOURCES-3A: A code for calculating (α, n), spontaneous fission, and delayed neutron sources and spectra

    International Nuclear Information System (INIS)

    Perry, R.T.; Wilson, W.B.; Charlton, W.S.

    1998-04-01

    In many systems, it is imperative to have accurate knowledge of all significant sources of neutrons due to the decay of radionuclides. These sources can include neutrons resulting from the spontaneous fission of actinides, the interaction of actinide decay α-particles in (α,n) reactions with low- or medium-Z nuclides, and/or delayed neutrons from the fission products of actinides. Numerous systems exist in which these neutron sources could be important. These include, but are not limited to, clean and spent nuclear fuel (UO 2 , ThO 2 , MOX, etc.), enrichment plant operations (UF 6 , PuF 4 , etc.), waste tank studies, waste products in borosilicate glass or glass-ceramic mixtures, and weapons-grade plutonium in storage containers. SOURCES-3A is a computer code that determines neutron production rates and spectra from (α,n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides in homogeneous media (i.e., a mixture of α-emitting source material and low-Z target material) and in interface problems (i.e., a slab of α-emitting source material in contact with a slab of low-Z target material). The code is also capable of calculating the neutron production rates due to (α,n) reactions induced by a monoenergetic beam of α-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 43 actinides. The (α,n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 89 nuclide decay α-particle spectra, 24 sets of measured and/or evaluated (α,n) cross sections and product nuclide level branching fractions, and functional α-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron source. It also provides an

  8. Measured and calculated effective delayed neutron fraction of the IPR-R1 Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rose Mary G.P.; Dalle, Hugo M.; Campolina, Daniel A.M., E-mail: souzarm@cdtn.b, E-mail: dallehm@cdtn.b, E-mail: campolina@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The effective delayed neutron fraction, {beta}{sub eff}, one of the most important parameter in reactor kinetics, was measured for the 100 kW IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil. The current reactor core has 63 fuel elements, containing about 8.5% and 8% by weight of uranium enriched to 20% in U{sup 235}. The core has cylindrical configuration with an annular graphite reflector. Since the first criticality of the reactor in November 1960, the core configuration and the number of fuel elements have been changed several times. At that time, the reactor power was 30 kW, there were 56 fuel elements in the core, and the {beta}{sub eff} value for the reactor recommended by General Atomic (manufacturer of TRIGA) was 790 pcm. The current {beta}{sub eff} parameter was determined from experimental methods based on inhour equation and on the control rod drops. The estimated values obtained were (774 {+-} 38) pcm and (744 {+-} 20) pcm, respectively. The {beta}{sub eff} was calculated by Monte Carlo transport code MCNP5 and it was obtained 747 pcm. The calculated and measured values are in good agreement, and the relative percentage error is -3.6% for the first case, and 0.4% for the second one. (author)

  9. Determination of uranium in urine: Comparison of ICP-mass spectrometry and delayed neutron assay

    International Nuclear Information System (INIS)

    Gladney, E.S.; Moss, W.D.; Gautier, M.A.; Bell, M.G.

    1986-01-01

    Los Alamos analytical chemistry group acquired a VG-Plasmaquad ICP-MS in January, 1986 and have applied the technique to a variety of environmental and bioassay analytical problems. The authors report on their experience with the determination of uranium and its isotopics in urine and compare this new method with their current uranium procedure, delayed neutron activation analysis (DNA) at the Los Alamos Omega West Reactor. The authors have utilized DNA for bioassay samples since 1978. They currently analyze approximately 2000 urine samples annually. Quantitative data on uranium concentrations are obtained by concurrent measurement of urine standards of known uranium content and isotopic ratio. Detection of 0.03 μg of normal U in a 25 mL sample (1 μg/L) can be achieved by the DNA system. The NRC has proposed new urine bioassay standards that might require at least an order of magnitude reduction in the authors current DNA detection limits. The authors have fully optimized the reactor, and can forsee no instrumental improvement. They may be forced to resort to time-consuming chemical separations at greatly increased costs. DNA is a mature technology with little prospect for radical change. ICPMS is still in its infancy, and there are several ideas for obtaining drastic improvements in detection limits. Costs and time per analysis for both methods are equal

  10. Man/machine interface algorithm for advanced delayed-neutron signal characterization system

    International Nuclear Information System (INIS)

    Gross, K.C.

    1985-01-01

    The present failed-element rupture detector (FERD) at Experimental Breeder Reactor II (EBR-II) consists of a single bank of delayed-neutron (DN) detectors at a fixed transit time from the core. Plans are currently under way to upgrade the FERD in 1986 and provide advanced DN signal characterization capability that is embodied in an equivalent-recoil-area (ERA) meter. The new configuration will make available to the operator a wealth of quantitative diagnostic information related to the condition and dynamic evolution of a fuel breach. The diagnostic parameters will include a continuous reading of the ERA value for the breach; the transit time, T/sub tr/, for DN emitters traveling from the core to the FERD; and the isotopic holdup time, T/sub h/, for the source. To enhance the processing, interpretation, and display of these parameters to the reactor operator, a man/machine interface (MMI) algorithm has been developed to run in the background on EBR-II's data acquisition system (DAS). The purpose of this paper is to describe the features and implementation of this newly developed MMI algorithm

  11. TASK, 1-D Multigroup Diffusion or Transport Theory Reactor Kinetics with Delayed Neutron

    International Nuclear Information System (INIS)

    Buhl, A.R.; Hermann, O.W.; Hinton, R.J.; Dodds, H.L. Jr.; Robinson, J.C.; Lillie, R.A.

    1975-01-01

    1 - Description of problem or function: TASK solves the one-dimensional multigroup form of the reactor kinetics equations, using either transport or diffusion theory and allowing an arbitrary number of delayed neutron groups. The program can also be used to solve standard static problems efficiently such as eigenvalue problems, distributed source problems, and boundary source problems. Convergence problems associated with sources in highly multiplicative media are circumvented, and such problems are readily calculable. 2 - Method of solution: TASK employs a combination scattering and transfer matrix method to eliminate certain difficulties that arise in classical finite difference approximations. As such, within-group (inner) iterations are eliminated and solution convergence is independent of spatial mesh size. The time variable is removed by Laplace transformation. (A later version will permit direct time solutions.) The code can be run either in an outer iteration mode or in closed (non-iterative) form. The running mode is dictated by the number of groups times the number of angles, consistent with available storage. 3 - Restrictions on the complexity of the problem: The principal restrictions are available storage and computation time. Since the code is flexibly-dimensioned and has an outer iteration option there are no internal restrictions on group structure, quadrature, and number of ordinates. The flexible-dimensioning scheme allows optional use of core storage. The generalized cylindrical geometry option is not complete in Version I of the code. The feedback options and omega-mode search options are not included in Version I

  12. Neutron-energy-dependent cell survival and oncogenic transformation.

    Science.gov (United States)

    Miller, R C; Marino, S A; Martin, S G; Komatsu, K; Geard, C R; Brenner, D J; Hall, E J

    1999-12-01

    Both cell lethality and neoplastic transformation were assessed for C3H10T1/2 cells exposed to neutrons with energies from 0.040 to 13.7 MeV. Monoenergetic neutrons with energies from 0.23 to 13.7 MeV and two neutron energy spectra with average energies of 0.040 and 0.070 MeV were produced with a Van de Graaff accelerator at the Radiological Research Accelerator Facility (RARAF) in the Center for Radiological Research of Columbia University. For determination of relative biological effectiveness (RBE), cells were exposed to 250 kVp X rays. With exposures to 250 kVp X rays, both cell survival and radiation-induced oncogenic transformation were curvilinear. Irradiation of cells with neutrons at all energies resulted in linear responses as a function of dose for both biological endpoints. Results indicate a complex relationship between RBEm and neutron energy. For both survival and transformation, RBEm was greatest for cells exposed to 0.35 MeV neutrons. RBEm was significantly less at energies above or below 0.35 MeV. These results are consistent with microdosimetric expectation. These results are also compatible with current assessments of neutron radiation weighting factors for radiation protection purposes. Based on calculations of dose-averaged LET, 0.35 MeV neutrons have the greatest LET and therefore would be expected to be more biologically effective than neutrons of greater or lesser energies.

  13. Time-Dependent Neutron and Photon Dose-Field Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Georgia Inst. of Technology, Atlanta, GA (United States)

    2005-08-01

    A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The Pandemonium code, originally designed to determine flux and dose-rates only, is improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. A primary benefit of this work has been an extensive analysis and improvement of the photon model that is not limited to the application described in this thesis. The photon model has been extended in energy range to 10 MeV to include photons from fission and new photon buildup factors have been included that account for the effects of photon buildup at slant-path thicknesses as a function of angle, where the mean free path thickness has been preserved. The overall system of codes is user-friendly and it is directly applicable to facilities such as the plutonium facility at Los Alamos National Laboratory, where high-intensity neutron and photon emitters are regularly used. The codes may be used to determine a priori doses for given work scenarios in an effort to supply dose information to process models which will in turn assist decision makers on ensuring as low as reasonably achievable (ALARA) compliance. In addition, coupling the computational results of these tools with the process model visualization tools will help to increase worker safety and radiological safety awareness.

  14. Hopf bifurcation of a ratio-dependent predator-prey system with time delay

    International Nuclear Information System (INIS)

    Celik, Canan

    2009-01-01

    In this paper, we consider a ratio dependent predator-prey system with time delay where the dynamics is logistic with the carrying capacity proportional to prey population. By considering the time delay as bifurcation parameter, we analyze the stability and the Hopf bifurcation of the system based on the normal form approach and the center manifold theory. Finally, we illustrate our theoretical results by numerical simulations.

  15. Delay-dependent asymptotic stability of mobile ad-hoc networks: A descriptor system approach

    International Nuclear Information System (INIS)

    Yang Juan; Yang Dan; Zhang Xiao-Hong; Huang Bin; Luo Jian-Lu

    2014-01-01

    In order to analyze the capacity stability of the time-varying-propagation and delay-dependent of mobile ad-hoc networks (MANETs), in this paper, a novel approach is proposed to explore the capacity asymptotic stability for the delay-dependent of MANETs based on non-cooperative game theory, where the delay-dependent conditions are explicitly taken into consideration. This approach is based on the Lyapunov—Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique. A corresponding Lyapunov—Krasovskii functional is introduced for the stability analysis of this system with use of the descriptor and “neutral-type” model transformation without producing any additional dynamics. The delay-dependent stability criteria are derived for this system. Conditions are given in terms of linear matrix inequalities, and for the first time referred to neutral systems with the time-varying propagation and delay-dependent stability for capacity analysis of MANETs. The proposed criteria are less conservative since they are based on an equivalent model transformation. Furthermore, we also provide an effective and efficient iterative algorithm to solve the constrained stability control model. Simulation experiments have verified the effectiveness and efficiency of our algorithm. (general)

  16. Intercomparison of delayed neutron summation calculations among JEF2.2, ENDF/B-VI and JNDC-V2

    Energy Technology Data Exchange (ETDEWEB)

    Sagisaka, Mitsuyuki [Nagoya Univ. (Japan); Oyamatsu, K.; Kukita, Y.

    1998-03-01

    We perform intercomparison of delayed neutron activities calculated with JEF2.2, ENDF/B-VI and JNDC-V2 with a simple new method. Significant differences are found at t < 20 (s) for major fissioning systems. The differences are found to stem from fission yields or decay data of several nuclides. The list of these nuclides are also given for the future experimental determination of these nuclear data. (author)

  17. Summary Report of 1st Research Coordination Meeting on Development of Reference Database for Beta-delayed Neutron Emission

    International Nuclear Information System (INIS)

    Dillmann, Iris; Dimitriou, Paraskevi; Singh, Balraj

    2014-03-01

    A summary is given of the 1st Research Coordination Meeting of the new IAEA Coordinated Research Project (CRP) on Development of a Reference Database for Beta-delayed neutron emission data. Participants presented their work, reviewed the current status of the field with regards to individual precursors and aggregate data, and discussed the scope of the work to be undertaken. A list of priorities and task assignments was produced. (author)

  18. Proposal for Analysis of the Safeguarded Nuclear Materials 235U and 239Pu by Delayed Neutrons Technique

    International Nuclear Information System (INIS)

    El-Mongy, S.A.

    2000-01-01

    This paper introduces, describes and initiates a very sensitive and rapid non-destructive technique to be used for analysis of the safeguarded nuclear materials 235 U and 239 Pu. The technique is based on fission of the nuclear material by neutrons and then measuring the delayed neutrons produced from the neutron rich fission products. By this technique, fissile isotope content ( 235 U) can be determined in the presence of the other fissile (e.g. 239 Pu) or fertile isotopes (e.g. 238 U) in fresh and spent fuel. The time consumed for analysis of bulk materials by this technique is only 4 minutes. The method is also used for analysis of uranium in rock, sediment, soil, meteorites, lunar, biological, urine, archaeological, zircon sand and seawater samples. The method enables uranium in a sample to be measured without respect to its oxidation state, organic and inorganic elements

  19. Generating energy dependent neutron flux maps for effective ...

    African Journals Online (AJOL)

    For activation analysis and irradiation scheme of miniature neutron source reactor, designers or engineers usually require information on thermal neutron flux levels and other energy group flux levels (such as fast, resonance and epithermal). A methodology for readily generating such flux maps and flux profiles for any ...

  20. Core Power Control of the fast nuclear reactors with estimation of the delayed neutron precursor density using Sliding Mode method

    International Nuclear Information System (INIS)

    Ansarifar, G.R.; Nasrabadi, M.N.; Hassanvand, R.

    2016-01-01

    Highlights: • We present a S.M.C. system based on the S.M.O for control of a fast reactor power. • A S.M.O has been developed to estimate the density of delayed neutron precursor. • The stability analysis has been given by means Lyapunov approach. • The control system is guaranteed to be stable within a large range. • The comparison between S.M.C. and the conventional PID controller has been done. - Abstract: In this paper, a nonlinear controller using sliding mode method which is a robust nonlinear controller is designed to control a fast nuclear reactor. The reactor core is simulated based on the point kinetics equations and one delayed neutron group. Considering the limitations of the delayed neutron precursor density measurement, a sliding mode observer is designed to estimate it and finally a sliding mode control based on the sliding mode observer is presented. The stability analysis is given by means Lyapunov approach, thus the control system is guaranteed to be stable within a large range. Sliding Mode Control (SMC) is one of the robust and nonlinear methods which have several advantages such as robustness against matched external disturbances and parameter uncertainties. The employed method is easy to implement in practical applications and moreover, the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness and stability.

  1. A consistent, differential versus integral, method for measuring the delayed neutron yield in fissions

    International Nuclear Information System (INIS)

    Flip, A.; Pang, H.F.; D'Angelo, A.

    1995-01-01

    Due to the persistent uncertainties: ∼ 5 % (the uncertainty, here and there after, is at 1σ) in the prediction of the 'reactivity scale' (β eff ) for a fast power reactor, an international project was recently initiated in the framework of the OECD/NEA activities for reevaluation, new measurements and integral benchmarking of delayed neutron (DN) data and related kinetic parameters (principally β eff ). Considering that the major part of this uncertainty is due to uncertainties in the DN yields (v d ) and the difficulty for further improvement of the precision in differential (e.g. Keepin's method) measurements, an international cooperative strategy was adopted aiming at extracting and consistently interpreting information from both differential (nuclear) and integral (in reactor) measurements. The main problem arises from the integral side; thus the idea was to realize β eff like measurements (both deterministic and noise) in 'clean' assemblies. The 'clean' calculational context permitted the authors to develop a theory allowing to link explicitly this integral experimental level with the differential one, via a unified 'Master Model' which relates v d and measurables quantities (on both levels) linearly. The combined error analysis is consequently largely simplified and the final uncertainty drastically reduced (theoretically, by a factor √3). On the other hand the same theoretical development leading to the 'Master Model', also resulted in a structured scheme of approximations of the general (stochastic) Boltzmann equation allowing a consistent analysis of the large range of measurements concerned (stochastic, dynamic, static ... ). This paper is focused on the main results of this theoretical development and its application to the analysis of the Preliminary results of the BERENICE program (β eff measurements in MASURCA, the first assembly in CADARACHE-FRANCE)

  2. Pebble bed modular reactor fuel enrichment discrimination using delayed neutrons - HTR2008-58133

    International Nuclear Information System (INIS)

    Skoda, R.; Rataj, J.; Uhera, J.

    2008-01-01

    The Pebble Bed Modular Reactor (PBMR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor which utilise fuel in form of spheres that are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burn-up limit. When the reactor is started up for the first time, the lower-enriched start-up fuel is used, mixed with graphite spheres, to bring the core to criticality. As the core criticality is established and the start-up fuel is burned-in, the graphite spheres are progressively removed and replaced with more start-up fuel. Once it becomes necessary for maintaining power output, the higher enriched equilibrium fuel is introduced to the reactor and the start-up fuel is removed. During the initial run of the reactor it is important to discriminate between the irradiated startup fuel and the irradiated equilibrium fuel to ensure that only the equilibrium fuel is returned to the reactor. There is therefore a need for an on-line enrichment discrimination device that can discriminate between irradiated start-up fuel spheres and irradiated equilibrium fuel spheres. The device must also not be confused by the presence of any remaining graphite spheres. Due to it's on-line nature the device must accomplish the discrimination within tight time limits. Theoretical calculations and experiments show that Fuel Enrichment Discrimination based on delayed neutrons detection is possible. The paper presents calculations and experiments showing viability of the method. (authors)

  3. Systematic studies of binding energy dependence of neutron-proton momentum correlation function

    International Nuclear Information System (INIS)

    Wei, Y B; Ma, Y G; Shen, W Q; Ma, G L; Wang, K; Cai, X Z; Zhong, C; Guo, W; Chen, J G; Fang, D Q; Tian, W D; Zhou, X F

    2004-01-01

    Hanbury Brown-Twiss (HBT) results of the neutron-proton correlation function have been systematically investigated for a series of nuclear reactions with light projectiles with the help of the isospin-dependent quantum molecular dynamics model. The relationship between the binding energy per nucleon of the projectiles and the strength of the neutron-proton HBT at small relative momentum has been obtained. Results show that neutron-proton HBT results are sensitive to the binding energy per nucleon

  4. Singular Hopf bifurcation in a differential equation with large state-dependent delay.

    Science.gov (United States)

    Kozyreff, G; Erneux, T

    2014-02-08

    We study the onset of sustained oscillations in a classical state-dependent delay (SDD) differential equation inspired by control theory. Owing to the large delays considered, the Hopf bifurcation is singular and the oscillations rapidly acquire a sawtooth profile past the instability threshold. Using asymptotic techniques, we explicitly capture the gradual change from nearly sinusoidal to sawtooth oscillations. The dependence of the delay on the solution can be either linear or nonlinear, with at least quadratic dependence. In the former case, an asymptotic connection is made with the Rayleigh oscillator. In the latter, van der Pol's equation is derived for the small-amplitude oscillations. SDD differential equations are currently the subject of intense research in order to establish or amend general theorems valid for constant-delay differential equation, but explicit analytical construction of solutions are rare. This paper illustrates the use of singular perturbation techniques and the unusual way in which solvability conditions can arise for SDD problems with large delays.

  5. State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays

    International Nuclear Information System (INIS)

    Liu Yurong; Wang Zidong; Liu Xiaohui

    2008-01-01

    In this Letter, we investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to the switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions

  6. An experimental field study of delayed density dependence in natural populations of Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Rachael K Walsh

    Full Text Available Aedes albopictus, a species known to transmit dengue and chikungunya viruses, is primarily a container-inhabiting mosquito. The potential for pathogen transmission by Ae. albopictus has increased our need to understand its ecology and population dynamics. Two parameters that we know little about are the impact of direct density-dependence and delayed density-dependence in the larval stage. The present study uses a manipulative experimental design, under field conditions, to understand the impact of delayed density dependence in a natural population of Ae. albopictus in Raleigh, North Carolina. Twenty liter buckets, divided in half prior to experimentation, placed in the field accumulated rainwater and detritus, providing oviposition and larval production sites for natural populations of Ae. albopictus. Two treatments, a larvae present and larvae absent treatment, were produced in each bucket. After five weeks all larvae were removed from both treatments and the buckets were covered with fine mesh cloth. Equal numbers of first instars were added to both treatments in every bucket. Pupae were collected daily and adults were frozen as they emerged. We found a significant impact of delayed density-dependence on larval survival, development time and adult body size in containers with high larval densities. Our results indicate that delayed density-dependence will have negative impacts on the mosquito population when larval densities are high enough to deplete accessible nutrients faster than the rate of natural food accumulation.

  7. The impact of the tensor interaction on the β-delayed neutron emission of the neutron-rich Ni isotopes

    Directory of Open Access Journals (Sweden)

    Sushenok E.O.

    2018-01-01

    Full Text Available The neutron emission of the β-decay of 74;76;78;80Ni are studied within the quasiparticle random phase approximation with the Skyrme interaction. The coupling between one- and two-phonon terms in the wave functions of the low-energy 1+ states of the daughter nuclei is taken into account. It is shown that the strength decrease of the neutronproton tensor interaction leads to the increase of the half-life and the neutron-emission probability.

  8. Improved Delay-Dependent Robust Stability Criteria for a Class of Uncertain Neutral Type Lur’e Systems with Discrete and Distributed Delays

    Directory of Open Access Journals (Sweden)

    Kaibo Shi

    2014-01-01

    Full Text Available This paper is concerned with the problem of delay-dependent robust stability analysis for a class of uncertain neutral type Lur’e systems with mixed time-varying delays. The system has not only time-varying uncertainties and sector-bounded nonlinearity, but also discrete and distributed delays, which has never been discussed in the previous literature. Firstly, by employing one effective mathematical technique, some less conservative delay-dependent stability results are established without employing the bounding technique and the mode transformation approach. Secondly, by constructing an appropriate new type of Lyapunov-Krasovskii functional with triple terms, improved delay-dependent stability criteria in terms of linear matrix inequalities (LMIs derived in this paper are much brief and valid. Furthermore, both nonlinearities located in finite sector and infinite one have been also fully taken into account. Finally, three numerical examples are presented to illustrate lesser conservatism and the advantage of the proposed main results.

  9. Burnup dependent core neutronic calculations for research and training reactors via SCALE4.4

    International Nuclear Information System (INIS)

    Tombakoglu, M.; Cecen, Y.

    2001-01-01

    In this work, the full core modelling is performed to improve neutronic analyses capability for nuclear research reactors using SCALE4.4 code system. KENOV.a module of SCALE4.4 code system is utilized for full core neutronic analysis. The ORIGEN-S module is coupled with the KENOV.a module to perform burnup dependent neutronic analyses. Results of neutronic calculations for 1 st cycle of Cekmece TR-2 research reactor are presented. In particular, coupling of KENOV.a and ORIGEN-S modules of SCALE4.4 is discussed. The preliminary results of 2-D burnup dependent neutronic calculations are also given. These results are extended to burnup dependent core calculations of TRIGA Mark-II research reactors. The code system developed here is similar to the code system that couples MCNP and ORIGEN2.(author)

  10. Permanence for a Delayed Nonautonomous SIR Epidemic Model with Density-Dependent Birth Rate

    Directory of Open Access Journals (Sweden)

    Li Yingke

    2011-01-01

    Full Text Available Based on some well-known SIR models, a revised nonautonomous SIR epidemic model with distributed delay and density-dependent birth rate was considered. Applying some classical analysis techniques for ordinary differential equations and the method proposed by Wang (2002, the threshold value for the permanence and extinction of the model was obtained.

  11. Hopf bifurcation in a partial dependent predator-prey system with delay

    International Nuclear Information System (INIS)

    Zhao Huitao; Lin Yiping

    2009-01-01

    In this paper, a partial dependent predator-prey model with time delay is studied by using the theory of functional differential equation and Hassard's method, the condition on which positive equilibrium exists and Hopf bifurcation occurs are given. Finally, numerical simulations are performed to support the analytical results, and the chaotic behaviors are observed.

  12. Existence of periodic solutions for Rayleigh equations with state-dependent delay

    Directory of Open Access Journals (Sweden)

    Jehad O. Alzabut

    2012-05-01

    Full Text Available We establish sufficient conditions for the existence of periodic solutions for a Rayleigh-type equation with state-dependent delay. Our approach is based on the continuation theorem in degree theory, and some analysis techniques. An example illustrates that our approach to this problem is new.

  13. Existence of Mild Solutions for Impulsive Fractional Integro-Differential Inclusions with State-Dependent Delay

    Directory of Open Access Journals (Sweden)

    Selvaraj Suganya

    2017-01-01

    Full Text Available In this manuscript, we implement Bohnenblust–Karlin’s fixed point theorem to demonstrate the existence of mild solutions for a class of impulsive fractional integro-differential inclusions (IFIDI with state-dependent delay (SDD in Banach spaces. An example is provided to illustrate the obtained abstract results.

  14. Controllability Results For First Order Impulsive Stochastic Functional Differential Systems with State-Dependent Delay

    Directory of Open Access Journals (Sweden)

    C. Parthasarathy

    2013-03-01

    Full Text Available In this paper, we study the controllability results of first order impulsive stochastic differential and neutral differential systems with state-dependent delay by using semigroup theory. The controllability results are derived by the means of Leray-SchauderAlternative fixed point theorem. An example is provided to illustrate the theory.

  15. Existence results for impulsive neutral functional differential equations with state-dependent delay

    Directory of Open Access Journals (Sweden)

    Mani Mallika Arjunan

    2009-04-01

    Full Text Available In this article, we study the existence of mild solutions for a class of impulsive abstract partial neutral functional differential equations with state-dependent delay. The results are obtained by using Leray-Schauder Alternative fixed point theorem. Example is provided to illustrate the main result.

  16. TEMPS, 1-Group Time-Dependent Pulsed Source Neutron Transport

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1988-01-01

    1 - Description of program or function: TEMPS numerically determines the scalar flux as given by the one-group neutron transport equation with a pulsed source in an infinite medium. Standard plane, point, and line sources are considered as well as a volume source in the negative half-space in plane geometry. The angular distribution of emitted neutrons can either be isotropic or mono-directional (beam) in plane geometry and isotropic in spherical and cylindrical geometry. A general anisotropic scattering Kernel represented in terms of Legendre polynomials can be accommodated with a time- dependent number of secondaries given by c(t)=c 0 (t/t 0 ) β , where β is greater than -1 and less than infinity. TEMPS is designed to provide the flux to a high degree of accuracy (4-5 digits) for use as a benchmark to which results from other numerical solutions or approximations can be compared. 2 - Method of solution: A semi-analytic Method of solution is followed. The main feature of this approach is that no discretization of the transport or scattering operators is employed. The numerical solution involves the evaluation of an analytical representation of the solution by standard numerical techniques. The transport equation is first reformulated in terms of multiple collisions with the flux represented by an infinite series of collisional components. Each component is then represented by an orthogonal Legendre series expansion in the variable x/t where the distance x and time t are measured in terms of mean free path and mean free time, respectively. The moments in the Legendre reconstruction are found from an algebraic recursion relation obtained from Legendre expansion in the direction variable mu. The multiple collision series is evaluated first to a prescribed relative error determined by the number of digits desired in the scalar flux. If the Legendre series fails to converge in the plane or point source case, an accelerative transformation, based on removing the

  17. Theory of stochastic space-dependent neutron kinetics with a Gaussian parametric excitation

    International Nuclear Information System (INIS)

    Saito, K.

    1980-01-01

    Neutron kinetics and statics in a multiplying medium with a statistically fluctuating reactivity are unified and systematically studied by applying the Novikov-Furutsu formula. The parametric or multiplicative noise is spatially distributed and of Gaussian nature with an arbitrary spectral profile. It is found that the noise introduces a new definite production term into the conventional balance equation for the mean neutron number. The term is characterized by the magnitude and the correlation function of the random excitation. Its relaxation phenomena bring forth a non-Markoffian or a memory effect, which is conceptualised by introducing 'pseudo-precursors' or 'pseudo-delayed neutrons'. By using the concept, some typical reactor physical problems are solved; they are (1) reactivity and flux perturbation originating from the random dispersal of core materials and (2) analysis of neutron decay mode and it relaxation constant, and derivation of the corresponding new inhour equation. (author)

  18. Effect of time dependence of neutron flux on the plutonium 238 production

    International Nuclear Information System (INIS)

    Rudik, A.P.

    1975-01-01

    An analytical treatment is given of the dependence of a plutonium-238 yield when irradiating neptunium-237 on the time variation of the neutron flux. This dependence is governed by the two physical factors: the competition between the beta decay and the neptunium-238 depletion, and the differences in the depletion rate of neptunium-237, neptunium-238 and plutonium-238 with thermal and resonance neutrons. The role of the neptunium-238 nonprompt decay has been studied and the order of the effect determined, and it has been established that it is advantageous to irradiate neptunium-237 in the lowest central neutron flux possible for thermal and resonance neutron reactors. A perturbation theory has been developed to determine the role of the time variation of the thermal neutron flux and it has been established that, the integral neutron flux being the same, it is advantageous to irradiate the material in a drooping rather than a constant flux of neutrons. The simplest example of great time variations of a neutron flux has been considered and it has been established that in this particular case the conclusions made in the framework of the perturbation theory find a qualitative support. Convenient formulas are given for determining the number of neutrons used to produce plutonium-238

  19. A two-solar-mass neutron star measured using Shapiro delay

    NARCIS (Netherlands)

    Demorest, P.B.; Pennucci, T.; Ransom, S.M.; Roberts, M.S.E.; Hessels, J.W.T.

    2010-01-01

    Neutron stars are composed of the densest form of matter known to exist in our Universe, the composition and properties of which are still theoretically uncertain. Measurements of the masses or radii of these objects can strongly constrain the neutron star matter equation of state and rule out

  20. The Application of Time-Delay Dependent H∞ Control Model in Manufacturing Decision Optimization

    Directory of Open Access Journals (Sweden)

    Haifeng Guo

    2015-01-01

    Full Text Available This paper uses a time-delay dependent H∞ control model to analyze the effect of manufacturing decisions on the process of transmission from resources to capability. We establish a theoretical framework of manufacturing management process based on three terms: resource, manufacturing decision, and capability. Then we build a time-delay H∞ robust control model to analyze the robustness of manufacturing management. With the state feedback controller between manufacturing resources and decision, we find that there is an optimal decision to adjust the process of transmission from resources to capability under uncertain environment. Finally, we provide an example to prove the robustness of this model.

  1. Boundary layer phenomena for differential-delay equations with state-dependent time lags: III

    Science.gov (United States)

    Mallet-Paret, John; Nussbaum, Roger D.

    We consider a class of singularly perturbed delay-differential equations of the form ɛ ẋ(t)=f(x(t),x(t-r)), where r= r( x( t)) is a state-dependent delay. We study the asymptotic shape, as ɛ→0, of slowly oscillating periodic solutions. In particular, we show that the limiting shape of such solutions can be explicitly described by the solution of a pair of so-called max-plus equations. We are able thereby to characterize both the regular parts of the solution graph and the internal transition layers arising from the singular perturbation structure.

  2. Application of Trotter approximation for solving time dependent neutron transport equation

    International Nuclear Information System (INIS)

    Stancic, V.

    1987-01-01

    A method is proposed to solve multigroup time dependent neutron transport equation with arbitrary scattering anisotropy. The recurrence relation thus obtained is simple, numerically stable and especially suitable for treatment of complicated geometries. (author)

  3. Optimization of combined delayed neutron and differential die-away prompt neutron signal detection for characterization of spent nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Blanc, Pauline; Tobin, Stephen J.; Croft, Stephen; Menlove, Howard O.; Swinhoe, M.; Lee, T.

    2010-01-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy (DOE) has funded multiple laboratories and universities to develop a means to accurately quantify the Plutonium (Pu) mass in spent nuclear fuel assemblies and ways to also detect potential diversion of fuel pins. Delayed Neutron (DN) counting provides a signature somewhat more sensitive to 235 U than Pu while Differential Die-Away (DDA) is complementary in that it has greater sensitivity to Pu. The two methods can, with care, be combined into a single instrument which also provides passive neutron information. Individually the techniques cannot robustly quantify the Pu content but coupled together the information content in the signatures enables Pu quantification separate to the total fissile content. The challenge of merging DN and DDA, prompt neutron (PN) signal, capabilities in the same design is the focus of this paper. Other possibilities also suggest themselves, such as a direct measurement of the reactivity (multiplication) by either the boost in signal obtained during the active interrogation itself or by the extension of the die-away profile. In an early study, conceptual designs have been modeled using a neutron detector comprising fission chambers or 3He proportional counters and a ∼14 MeV neutron Deuterium-Tritium (DT) generator as the interrogation source. Modeling was performed using the radiation transport code Monte Carlo N-Particles eXtended (MCNPX). Building on this foundation, the present paper quantifies the capability of a new design using an array of 3 He detectors together with fission chambers to optimize both DN and PN detections and active characterization, respectively. This new design was created in order to minimize fission in 238 U (a nuisance DN emitter), to use a realistic neutron generator, to reduce the cost and to achieve near spatial interrogation and detection of the DN and PN, important for detection of diversion, all within the constraints of

  4. Theory and use of GIRAFFE for analysis of decay characteristics of delayed-neutron precursors in an LMFBR

    International Nuclear Information System (INIS)

    Gross, K.C.

    1980-07-01

    The application of the computer code GIRAFFE (General Isotope Release Analysis For Failed Elements) written in FORTRAN IV is described. GIRAFFE was designed to provide parameter estimates of the nonlinear discrete-measurement models that govern the transport and decay of delayed-neutron precursors in a liquid-metal fast breeder reactor (LMFBR). The code has been organized into a set of small, relatively independent and well-defined modules to facilitate modification and maintenance. The program logic, the numerical techniques, and the methods of solution used by the code are presented, and the functions of the MAIN program and of each subroutine are discussed

  5. Delayed Ego Strength Development in Opioid Dependent Adolescents and Young Adults

    Science.gov (United States)

    Abramoff, Benjamin A.; Lange, Hannah L. H.; Matson, Steven C.; Cottrill, Casey B.; Bridge, Jeffrey A.; Abdel-Rasoul, Mahmoud; Bonny, Andrea E.

    2015-01-01

    Objective. To evaluate ego strengths, in the context of Erikson's framework, among adolescents and young adults diagnosed with opioid dependence as compared to non-drug using youth. Methods. Opioid dependent (n = 51) and non-drug using control (n = 31) youth completed the self-administered Psychosocial Inventory of Ego Strengths (PIES). The PIES assesses development in the framework of Erikson's ego strength stages. Multivariate linear regression modeling assessed the independent association of the primary covariate (opioid dependent versus control) as well as potential confounding variables (e.g., psychiatric comorbidities, intelligence) with total PIES score. Results. Mean total PIES score was significantly lower in opioid dependent youth (231.65 ± 30.39 opioid dependent versus 270.67 ± 30.06 control; p development. A treatment approach acknowledging this delay may be needed in the counseling and treatment of adolescents with opioid dependence. PMID:26664819

  6. Atlantic Richfield Hanford Company californium multiplier/delayed neutron counter safety analysis

    International Nuclear Information System (INIS)

    Zimmer, W.H.

    1976-08-01

    The Californium Multiplier (CFX) is a subcritical assembly of uranium surrounding 252 Cf spontaneously fissioning neutron sources; its function is to multiply the neutron flux to a level useful for activation analysis. This document summarizes the safety analysis aspects of the CFX, DNC, pneumatic transfer system, and instrumentation and to detail all the aspects of the total facility as a starting point for the ARHCO Safety Analysis Review. Recognized hazards and steps already taken to neutralize them are itemized

  7. Analysis of cavity effect on space- and time-dependent fast and thermal neutron energy spectra

    International Nuclear Information System (INIS)

    Kudo, Katsuhisa; Narita, Masakuni; Ozawa, Yasutomo.

    1975-01-01

    The effects of the presence of a central cavity on the space- and time-dependent neutron energy spectra in both thermal and fast neutron systems are analyzed theoretically with use made of the multi-group one-dimensional time-dependent Ssub(n) method. The thermal neutron field is also analyzed for the case of a fundamental time eigenvalue problem with the time-dependent P 1 approximation. The cavity radius is variable, and the system radius for graphite is 120 cm and for the other materials 7 cm. From the analysis of the time-dependent Ssub(n) calculations in the non-multiplying systems of polythene, light water and graphite, cavity heating is the dominant effect for the slowing-down spectrum in the initial period following fast neutron burst, and when the slowing-down spectrum comes into the thermal energy region, cavity heating shifts to cavity cooling. In the multiplying system of 235 U, cavity cooling also takes place as the spectrum approaches equilibrium after the fast neutron burst is injected. The mechanism of cavity cooling is explained analytically for the case of thermal neutron field to illustrate its physical aspects, using the time-dependent P 1 approximation. An example is given for the case of light water. (auth.)

  8. Finite moments approach to the time-dependent neutron transport equation

    International Nuclear Information System (INIS)

    Kim, Sang Hyun

    1994-02-01

    Currently, nodal techniques are widely used in solving the multidimensional diffusion equation because of savings in computing time and storage. Thanks to the development of computer technology, one can now solve the transport equation instead of the diffusion equation to obtain more accurate solution. The finite moments method, one of the nodal methods, attempts to represent the fluxes in the cell and on cell surfaces more rigorously by retaining additional spatial moments. Generally, there are two finite moments schemes to solve the time-dependent transport equation. In one, the time variable is treated implicitly with finite moments method in space variable (implicit finite moments method), the other method uses finite moments method in both space and time (space-time finite moments method). In this study, these two schemes are applied to two types of time-dependent neutron transport problems. One is a fixed source problem, the other a heterogeneous fast reactor problem with delayed neutrons. From the results, it is observed that the two finite moments methods give almost the same solutions in both benchmark problems. However, the space-time finite moments method requires a little longer computing time than that of the implicit finite moments method. In order to reduce the longer computing time in the space-time finite moments method, a new iteration strategy is exploited, where a few time-stepwise calculation, in which original time steps are grouped into several coarse time divisions, is performed sequentially instead of performing iterations over the entire time steps. This strategy results in significant reduction of the computing time and we observe that 2-or 3-stepwise calculation is preferable. In addition, we propose a new finite moments method which is called mixed finite moments method in this thesis. Asymptotic analysis for the finite moments method shows that accuracy of the solution in a heterogeneous problem mainly depends on the accuracy of the

  9. Some time dependent aspects of fast neutron induced atomic cascades

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1976-01-01

    Analytical results are obtained for the time-energy distribution of neutrons and the associated displaced atoms slowing down in an amorphous medium according to a general force law. Explicit results are given for the inverse power law, and applications to hard-sphere and Coulomb scattering are discussed. Complete results are obtained for the steady state energy distribution of particles arising from a primary knock-on, and from a neutron initiated cascade. The speed of the slowing down process is assessed by calculating the slowing down time of particles. Two different concepts of slowing down time are discussed, one based upon a density average and the other on a slowing down density average. It is shown that the latter definition is physically more realistic and mathematically simpler. (author)

  10. Neutron scattering investigations of the lipid bilayer structure pressure dependence

    Directory of Open Access Journals (Sweden)

    D. V. Soloviov

    2012-03-01

    Full Text Available Lipid bilayer structure investigation results obtained with small angle neutron scattering method at the Joint Institute for Nuclear Research IBR-2M nuclear reactor (Dubna, Russia are presented. Experiment has been per-formed with small angle neutron scattering spectrometer YuMO, upgraded with the apparatus for performing P-V-T measurements on the substance under investigation. D2O-1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC liquid system, presenting the model of natural live membrane, has been taken as the sample for investiga-tions. The lipid bilayer spatial period was measured in experiment along with isothermal compressibility simulta-neously at different pressures. It has been shown, that the bilayer structural transition from ripple (wavelike gel-phase phase to liquid-crystal phase is accompanied with anomalous rise of isothermal compressibility, indicat-ing occurrence of the phase transition.

  11. Neutron scattering investigations of the lipid bilayer structure pressure dependence

    International Nuclear Information System (INIS)

    Solovjov, D.V.; Gordelyij, V.Yi.; Gorshkova, Yu.Je.; Yivan'kov, O.Yi.; Koval'ov, Yu.S.; Kuklyin, A.Yi.; Solovjov, D.V.; Bulavyin, L.A.; Yivan'kov, O.Yi.; Nyikolajenko, T.Yu.; Kuklyin, A.Yi.; Gordelyij, V.Yi.; Gordelyij, V.Yi.

    2012-01-01

    Lipid bilayer structure investigation results obtained with small angle neutron scattering method at the Joint Institute for Nuclear Research IBR-2M nuclear reactor (Dubna, Russia) are presented. Experiment has been performed with small angle neutron scattering spectrometer YuMO, upgraded with the apparatus for performing PV-T measurements on the substance under investigation. D 2 O-1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liquid system, presenting the model of natural live membrane, has been taken as the sample for investigations. The lipid bilayer spatial period was measured in experiment along with isothermal compressibility simultaneously at different pressures. It has been shown, that the bilayer structural transition from ripple (wavelike gel-phase) phase to liquid-crystal phase is accompanied with anomalous rise of isothermal compressibility, indicating occurrence of the phase transition.

  12. Effects of fast neutrons on chromatin: dependence on chromatin structure

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Dept. of Molecular Genetics, V. Babes National Inst., Bd. Timisoara, Bucharest (Romania); Constantinescu, B. [Dept. of Cyclotron, H. Hulubei National Inst., Bucharest (Romania); Gazdaru, D. [Dept. of Biophysics, Physics Faculty, Univ. of Bucharest (Romania)

    2002-07-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  13. Effects of fast neutrons on chromatin: dependence on chromatin structure

    International Nuclear Information System (INIS)

    Radu, L.; Constantinescu, B.; Gazdaru, D.

    2002-01-01

    The effects of fast neutrons (10-100 Gy) on chromatin extracted from normal (liver of Wistar rats) and tumor (Walker carcinosarcoma maintained on Wistar rats) tissues were compared. The spectroscopic assays used were (i) chromatin intrinsic fluorescence, (ii) time-resolved fluorescence of chromatin-proflavine complexes, and (iii) fluorescence resonance energy transfer (FRET) between dansyl chloride and acridine orange coupled to chromatin. For both normal and tumor chromatin, the intensity of intrinsic fluorescence specific for acidic and basic proteins decreased with increasing dose. The relative contributions of the excited-state lifetime of proflavine bound to chromatin were reduced upon fast-neutron irradiation, indicating a decrease in the proportion of chromatin DNA available for ligand binding. The Forster energy transfer efficiencies were also modified by irradiation. These effects were larger for chromatin from tumor tissue. In the range 0-100 Gy, fast neutrons induced alterations in DNA and acidic and basic proteins, as well as in global chromatin structure. The radiosensitivity of chromatin extracted from tumor tissue seems to be higher than that of chromatin extracted from normal tissue, probably because of its higher euchromatin (loose)-heterochromatin (compact) ratio. (author)

  14. Thermal neutron diffusion parameters dependent on the flux energy distribution in finite hydrogenous media

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1999-01-01

    Macroscopic parameters for a description of the thermal neutron transport in finite volumes are considered. A very good correspondence between the theoretical and experimental parameters of hydrogenous media is attained. Thermal neutrons in the medium possess an energy distribution, which is dependent on the size (characterized by the geometric buckling) and on the neutron transport properties of the medium. In a hydrogenous material the thermal neutron transport is dominated by the scattering cross section which is strongly dependent on energy. A monoenergetic treatment of the thermal neutron group (admissible for other materials) leads in this case to a discrepancy between theoretical and experimental results. In the present paper the theoretical definitions of the pulsed thermal neutron parameters (the absorption rate, the diffusion coefficient, and the diffusion cooling coefficient) are based on Nelkin's analysis of the decay of a neutron pulse. Problems of the experimental determination of these parameters for a hydrogenous medium are discussed. A theoretical calculation of the pulsed parameters requires knowledge of the scattering kernel. For thermal neutrons it is individual for each hydrogenous material because neutron scattering on hydrogen nuclei bound in a molecule is affected by the molecular dynamics (characterized with internal energy modes which are comparable to the incident neutron energy). Granada's synthetic model for slow-neutron scattering is used. The complete up-dated formalism of calculation of the energy transfer scattering kernel after this model is presented in the paper. An influence of some minor variants within the model on the calculated differential and integral neutron parameters is shown. The theoretical energy-dependent scattering cross section (of Plexiglas) is compared to experimental results. A particular attention is paid to the calculation of the diffusion cooling coefficient. A solution of an equation, which determines the

  15. Parabolic partial differential equations with discrete state-dependent delay: Classical solutions and solution manifold

    Czech Academy of Sciences Publication Activity Database

    Krisztin, T.; Rezunenko, Oleksandr

    2016-01-01

    Roč. 260, č. 5 (2016), s. 4454-4472 ISSN 0022-0396 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic partial differential equations * State dependent delay * Solution manifold Subject RIV: BC - Control Systems Theory Impact factor: 1.988, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/rezunenko-0457879.pdf

  16. On time transformations for differential equations with state-dependent delay

    Czech Academy of Sciences Publication Activity Database

    Rezunenko, Oleksandr

    2014-01-01

    Roč. 12, č. 2 (2014), s. 298-307 ISSN 1895-1074 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : differential equations * state-dependent delay * time transformations Subject RIV: BD - Theory of Information Impact factor: 0.578, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/rezunenko-0429130.pdf

  17. Dynamics of second order in time evolution equations with state-dependent delay

    Czech Academy of Sciences Publication Activity Database

    Chueshov, I.; Rezunenko, Oleksandr

    123-124, č. 1 (2015), s. 126-149 ISSN 0362-546X R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Second order evolution equations * State dependent delay * Nonlinear plate * Finite-dimensional attractor Subject RIV: BD - Theory of Information Impact factor: 1.125, year: 2015 http://library.utia.cas.cz/separaty/2015/AS/rezunenko-0444708.pdf

  18. Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay

    Czech Academy of Sciences Publication Activity Database

    Chueshov, I.; Rezunenko, Oleksandr

    2015-01-01

    Roč. 14, č. 5 (2015), s. 1685-1704 ISSN 1534-0392 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic evolution equations * state-dependent delay * global attractor * finite-dimension * exponential attractor Subject RIV: BC - Control Systems Theory Impact factor: 0.926, year: 2015 http://library.utia.cas.cz/separaty/2015/AS/rezunenko-0444705.pdf

  19. Existence results for fractional integro-differential inclusions with state-dependent delay

    Directory of Open Access Journals (Sweden)

    Siracusa Giovana

    2017-10-01

    Full Text Available In this paper we are concerned with a class of abstract fractional integro-differential inclusions with infinite state-dependent delay. Our approach is based on the existence of a resolvent operator for the homogeneous equation.We establish the existence of mild solutions using both contractive maps and condensing maps. Finally, an application to the theory of heat conduction in materials with memory is given.

  20. New Delay-Dependent Robust Exponential Stability Criteria of LPD Neutral Systems with Mixed Time-Varying Delays and Nonlinear Perturbations

    Directory of Open Access Journals (Sweden)

    Sirada Pinjai

    2013-01-01

    Full Text Available This paper is concerned with the problem of robust exponential stability for linear parameter-dependent (LPD neutral systems with mixed time-varying delays and nonlinear perturbations. Based on a new parameter-dependent Lyapunov-Krasovskii functional, Leibniz-Newton formula, decomposition technique of coefficient matrix, free-weighting matrices, Cauchy’s inequality, modified version of Jensen’s inequality, model transformation, and linear matrix inequality technique, new delay-dependent robust exponential stability criteria are established in terms of linear matrix inequalities (LMIs. Numerical examples are given to show the effectiveness and less conservativeness of the proposed methods.

  1. Measurement of the response time of the delay window for the neutron converter of the SPIRAL2 project

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, G. [INFN Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Andre, T. [GANIL, Caen (France); Bermudez, J. [INFN Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Blinov, M.F. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Jamet, C. [GANIL, Caen (France); Logatchev, P.V.; Semenov, Y.I.; Starostenko, A.A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Tecchio, L.B., E-mail: tecchio@lnl.infn.it [INFN Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Tsyganov, A.S. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation); Udup, E. [INFN Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Horia Hulubei National Institute of Physics and Engineering, Bucharest (Romania); University Polytechnic of Bucharest (Romania); Vasquez, J. [INFN Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of)

    2014-09-11

    Research and development of a safety system for the SPIRAL2 facility has been conceived to protect the UCx target from a possible interaction with the 200 kW deuteron beam. The system called “delay window” (DW) is designed as an integral part of the neutron converter module and is located in between the neutron converter and the fission target. The device has been designed as a barrier, located directly behind the neutron converter on the axis of the deuteron beam, with the purpose of “delaying” the eventual interaction of the deuteron beam with the UCx target in case of a failure of the neutron converter. The “delay” must be long enough to allow the interlock to react and safely stop the beam operation, before the beam will reach the UCx target. The working concept of the DW is based on the principle of the electrical fuse. Electrically insulated wires placed on the surface of a Tantalum disk assure a so called “free contact”, normally closed to an electronic circuit located on the HV platform, far from the radioactive environment. The melting temperature of the wires is much less than Tantalum. Once the beam is impinging on the disk, one or more wires are melted and the “free contact” is open. A solid state relay is changing its state and a signal is sent to the interlock device. A prototype of the DW has been constructed and tested with an electron beam of power density equivalent to the SPIRAL2 beam. The measured “delay” is 682.5 ms (σ=116 ms), that is rather long in comparison to the intrinsic delays introduced by the detectors itself (2 ms) and by the associated electronic devices (120 ns). The experimental results confirm that, in the case of a failure of the neutron converter, the DW as conceived is enable to withstand the beam power for a period of time sufficiently long to safely shut down the SPIRAL2 accelerator.

  2. SYNTH-C, Steady-State and Time-Dependent 3-D Neutron Diffusion with Thermohydraulic Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Brega, E [ENEL-CRTN, Bastioni di Porta Volta 10, Milan (Italy); Salina, E [A.R.S. Spa, Viale Maino 35, Milan (Italy)

    1980-04-01

    1 - Description of problem or function: SYNTH-C-STEADY and SYNTH-C- TRANS solve respectively the steady-state and time-dependent few- group neutron diffusion equations in three dimensions x,y,z in the presence of fuel temperature and thermal-hydraulic feedback. The neutron diffusion and delayed precursor equations are approximated by a space-time (z,t) synthesis method with axially discontinuous trial functions. Three thermal-hydraulic and fuel heat transfer models are available viz. COBRA-3C/MIT model, lumped parameter (WIGL) model and adiabatic fuel heat-up model. 2 - Method of solution: The steady-state and time-dependent synthesis equations are solved respectively by the Wielandt's power method and by the theta-difference method (in time), both coupled with a block factorization technique and double precision arithmetic. The thermal-hydraulic model equations are solved by fully implicit finite differences (WIGL) or explicit-implicit difference techniques with iterations (COBRA-EC/MIT). 3 - Restrictions on the complexity of the problem: Except for the few- group limitation, the programs have no other fixed limitation so the ability to run a problem depends only on the available computer storage.

  3. Energy dependence of collective flow of neutrons and charged particles in 197Au+197Au collisions

    International Nuclear Information System (INIS)

    Blaich, T.; Freiesleben, H.; Holzmann, R.; Keller, J.G.; Prokopowicz, W.; Schuetter, C.; Wajda, E.; Zude, E.

    1994-01-01

    Our contribution focusses on one particular aspect of collective flow of nuclear matter: the so-called ''squeeze-out'', i.e. the preferential emission of mid-rapidity particles perpendicular to the reaction plane. The data were taken for the system 197 Au + 197 Au at 400, 600 and 800 MeV/u. We cover two topics, the comparison of neutrons and protons, and the bombarding energy dependence of the neutrons' squeeze-out. (orig.)

  4. Delay-Dependent Stability Criterion for Bidirectional Associative Memory Neural Networks with Interval Time-Varying Delays

    Science.gov (United States)

    Park, Ju H.; Kwon, O. M.

    In the letter, the global asymptotic stability of bidirectional associative memory (BAM) neural networks with delays is investigated. The delay is assumed to be time-varying and belongs to a given interval. A novel stability criterion for the stability is presented based on the Lyapunov method. The criterion is represented in terms of linear matrix inequality (LMI), which can be solved easily by various optimization algorithms. Two numerical examples are illustrated to show the effectiveness of our new result.

  5. Delayed neutron detection in canning burst detection studies (1961); Etude sur la detection des neutrons differes en vue de la detection des ruptures de gaines (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Perlini, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    This paper describes a theoretical and experimental study on the detection of neutrons present in the primary cooling circuit of a reactor cooled by heavy or light water, with a view to the installation of a canning burst detection unit. The concentration of background neutrons is first calculated, taking into account the neutrons from nitrogen 17 decay, and the photoneutrons produced by the decay of nitrogen 16 and sodium 24. The emission of delayed fission neutrons, originating at a given crack in the canning, has been estimated. Using the D{sub 2}O circuit of the pile EL-3, three units have been developed by means of which the following three types of detector may be compared: 1) BF{sub 3} proportional counter 2) Boron scintillator 3) Fission chamber Under the present experimental conditions the BF{sub 3} counter gave the best results. The influence on these detectors of the {gamma} flux, which in certain cases reaches 200 R/h, is analysed. Finally a calibration is carried out with an experimental crack of 30 mm{sup 2} of uranium exposed to a flux of 5.8 x 10{sup 13} n.cm{sup -2}.s{sup -1}. The sensitivity obtained with the BF{sub 3} counter during this test is 2 counts/s per mm{sup 2} of exposed uranium. (author) [French] Le present rapport est une etude theorique et experimentale sur la detection des neutrons presents dans le circuit primaire de refroidissement d'un reacteur refrigere par l'eau lourde ou l'eau legere, en vue d'une installation de detection de ruptures de gaines. On fait d'abord un calcul sur la concentration des neutrons de bruit de fond en tenant compte: des neutrons de decroissance de l'azote 17 et des photoneutrons produits par les decroissances de l'azote 16 et du sodium 24. L'emission des neutrons differes de fission, qui ont pour origine une fissure de gaine donnee, a ete evaluee. Utilisant le circuit D{sub 2}O de la pile EL3, trois installations ont ete mises au point permettant de comparer les trois types de detecteurs suivants: 1

  6. Does a deformation of special relativity imply energy dependent photon time delays?

    Science.gov (United States)

    Carmona, J. M.; Cortés, J. L.; Relancio, J. J.

    2018-01-01

    Theoretical arguments in favor of energy dependent photon time delays from a modification of special relativity (SR) have met with recent gamma ray observations that put severe constraints on the scale of such deviations. We review the case of the generality of this theoretical prediction in the case of a deformation of SR and find that, at least in the simple model based on the analysis of photon worldlines which is commonly considered, there are many scenarios compatible with a relativity principle which do not contain a photon time delay. This will be the situation for any modified dispersion relation which reduces to E=\\vert p\\vert for photons, independently of the quantum structure of spacetime. This fact opens up the possibility of a phenomenologically consistent relativistic generalization of SR with a new mass scale many orders of magnitude below the Planck mass.

  7. Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: A computational model

    Science.gov (United States)

    Moustafa, Ahmed A.; Wufong, Ella; Servatius, Richard J.; Pang, Kevin C. H.; Gluck, Mark A.; Myers, Catherine E.

    2013-01-01

    A recurrent-network model provides a unified account of the hippocampal region in mediating the representation of temporal information in classical eyeblink conditioning. Much empirical research is consistent with a general conclusion that delay conditioning (in which the conditioned stimulus CS and unconditioned stimulus US overlap and co-terminate) is independent of the hippocampal system, while trace conditioning (in which the CS terminates before US onset) depends on the hippocampus. However, recent studies show that, under some circumstances, delay conditioning can be hippocampal-dependent and trace conditioning can be spared following hippocampal lesion. Here, we present an extension of our prior trial-level models of hippocampal function and stimulus representation that can explain these findings within a unified framework. Specifically, the current model includes adaptive recurrent collateral connections that aid in the representation of intra-trial temporal information. With this model, as in our prior models, we argue that the hippocampus is not specialized for conditioned response timing, but rather is a general-purpose system that learns to predict the next state of all stimuli given the current state of variables encoded by activity in recurrent collaterals. As such, the model correctly predicts that hippocampal involvement in classical conditioning should be critical not only when there is an intervening trace interval, but also when there is a long delay between CS onset and US onset. Our model simulates empirical data from many variants of classical conditioning, including delay and trace paradigms in which the length of the CS, the inter-stimulus interval, or the trace interval is varied. Finally, we discuss model limitations, future directions, and several novel empirical predictions of this temporal processing model of hippocampal function and learning. PMID:23178699

  8. Delayed power analysis

    International Nuclear Information System (INIS)

    Adamovich, L.A.; Azarov, V.V.

    1999-01-01

    Time dependent core power behavior in a nuclear reactor is described with well-known neutron kinetics equations. At the same time, two portions are distinguished in energy released from uranium nuclei fission; one released directly at fission and another delayed (residual) portion produced during radioactive decay of fission products. While prompt power is definitely described with kinetics equations, the delayed power presentation still remains outstanding. Since in operation the delayed power part is relatively small (about 6%) operation, it can be neglected for small reactivity disturbances assuming that entire power obeys neutron kinetics equations. In case of a high negative reactivity rapidly inserted in core (e.g. reactor scram initiation) the prompt and delayed components can be calculated separately with practically no impact on each other, employing kinetics equations for prompt power and known approximation formulas for delayed portion, named residual in this specific case. Under substantial disturbances the prompt component in the dynamic process becomes commensurable with delayed portion, thus making necessary to take into account their cross impact. A system of differential equations to describe time-dependent behavior of delayed power is presented. Specific NPP analysis shows a way to significantly simplify the task formulation. (author)

  9. Monte carlo calculation of energy-dependent response of high-sensitive neutron monitor, HISENS

    International Nuclear Information System (INIS)

    Imanaka, Tetsuji; Ebisawa, Tohru; Kobayashi, Keiji; Koide, Hiroaki; Seo, Takeshi; Kawano, Shinji

    1988-01-01

    A highly sensitive neutron monitor system, HISENS, has been developed to measure leakage neutrons from nuclear facilities. The counter system of HISENS contains a detector bank which consists of ten cylindrical proportional counters filled with 10 atm 3 He gas and a paraffin moderator mounted in an aluminum case. The size of the detector bank is 56 cm high, 66 cm wide and 10 cm thick. It is revealed by a calibration experiment using an 241 Am-Be neutron source that the sensitivity of HISENS is about 2000 times as large as that of a typical commercial rem-counter. Since HISENS is designed to have a high sensitivity in a wide range of neutron energy, the shape of its energy dependent response curve cannot be matched to that of the dose equivalent conversion factor. To estimate dose equivalent values from neutron counts by HISENS, it is necessary to know the energy and angular characteristics of both HISENS and the neutron field. The area of one side of the detector bank is 3700 cm 2 and the detection efficiency in the constant region of the response curve is about 30 %. Thus, the sensitivity of HISENS for this energy range is 740 cps/(n/cm 2 /sec). This value indicates the extremely high sensitivity of HISENS as compared with exsisting highly sensitive neutron monitors. (Nogami, K.)

  10. A numerical approach to the time dependent neutron flux using the Laplace transform technique

    International Nuclear Information System (INIS)

    El-Demerdash, A; Beynon, T.D.

    1979-01-01

    In this study a time dependent transport problem in which an isotopic neutron source emits a pulse of neutrons into a finite sphere has been solved by a numerical Laplace transform technique. The object has been to investigate the time behaviour of the neutron field in the moderators at times shortly after the neutron source initiation, that is in the nanosecond time period. The basis of the solution is a numercial evaluation of the Laplace transform of the flux in the linear Boltzmann equation with the use of a modified version of a steady state energy multi-group spatially dependent code. The explicit or direct inversion of the Laplace transformed flux is complicated to be solved numerically due to the ill-conditioned matrix obtained. The suggested method of solutions depends on choice of a function that satisfies the physical condition known from the neutron behaviour and that has a Laplace inversion which is analytically amenable. By employing a least square fitting procedure the function is modified in order to minimize the error in the Laplace transformed values and hence in the time dependent solution. This method has been applied satisfactorily in comparison to analytical and experimental results

  11. Role of Ku80-dependent end-joining in delayed genomic instability in mammalian cells surviving ionizing radiation

    International Nuclear Information System (INIS)

    Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2010-01-01

    Ionizing radiation induces delayed destabilization of the genome in the progenies of surviving cells. This phenomenon, which is called radiation-induced genomic instability, is manifested by delayed induction of radiation effects, such as cell death, chromosome aberration, and mutation in the progeny of cells surviving radiation exposure. Previously, there was a report showing that delayed cell death was absent in Ku80-deficient Chinese hamster ovary (CHO) cells, however, the mechanism of their defect has not been determined. We found that delayed induction of DNA double strand breaks and chromosomal breaks were intact in Ku80-deficient cells surviving X-irradiation, whereas there was no sign for the production of chromosome bridges between divided daughter cells. Moreover, delayed induction of dicentric chromosomes was significantly compromised in those cells compared to the wild-type CHO cells. Reintroduction of the human Ku86 gene complimented the defective DNA repair and recovered delayed induction of dicentric chromosomes and delayed cell death, indicating that defective Ku80-dependent dicentric induction was the cause of the absence of delayed cell death. Since DNA-PKcs-defective cells showed delayed phenotypes, Ku80-dependent illegitimate rejoining is involved in delayed impairment of the integrity of the genome in radiation-survived cells.

  12. Role of Ku80-dependent end-joining in delayed genomic instability in mammalian cells surviving ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Keiji, E-mail: kzsuzuki@nagasaki-u.ac.jp [Course of Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Kodama, Seiji [Research Institute for Advanced Science and Technology, Osaka Prefecture University, 1-2 Gakuen-machi, Sakai 599-8570 (Japan); Watanabe, Masami [Kyoto University Research Reactor Institute, Kumatori-cho Sennan-gun, Osaka 590-0494 (Japan)

    2010-01-05

    Ionizing radiation induces delayed destabilization of the genome in the progenies of surviving cells. This phenomenon, which is called radiation-induced genomic instability, is manifested by delayed induction of radiation effects, such as cell death, chromosome aberration, and mutation in the progeny of cells surviving radiation exposure. Previously, there was a report showing that delayed cell death was absent in Ku80-deficient Chinese hamster ovary (CHO) cells, however, the mechanism of their defect has not been determined. We found that delayed induction of DNA double strand breaks and chromosomal breaks were intact in Ku80-deficient cells surviving X-irradiation, whereas there was no sign for the production of chromosome bridges between divided daughter cells. Moreover, delayed induction of dicentric chromosomes was significantly compromised in those cells compared to the wild-type CHO cells. Reintroduction of the human Ku86 gene complimented the defective DNA repair and recovered delayed induction of dicentric chromosomes and delayed cell death, indicating that defective Ku80-dependent dicentric induction was the cause of the absence of delayed cell death. Since DNA-PKcs-defective cells showed delayed phenotypes, Ku80-dependent illegitimate rejoining is involved in delayed impairment of the integrity of the genome in radiation-survived cells.

  13. Low energy neutron scattering for energy dependent cross sections. General considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rothenstein, W; Dagan, R [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering

    1996-12-01

    We consider in this paper some aspects related to neutron scattering at low energies by nuclei which are subject to thermal agitation. The scattering is determined by a temperature dependent joint scattering kernel, or the corresponding joint probability density, which is a function of two variables, the neutron energy after scattering, and the cosine of the angle of scattering, for a specified energy and direction of motion of the neutron, before the interaction takes place. This joint probability density is easy to calculate, when the nucleus which causes the scattering of the neutron is at rest. It can be expressed by a delta function, since there is a one to one correspondence between the neutron energy change, and the cosine of the scattering angle. If the thermal motion of the target nucleus is taken into account, the calculation is rather more complicated. The delta function relation between the cosine of the angle of scattering and the neutron energy change is now averaged over the spectrum of velocities of the target nucleus, and becomes a joint kernel depending on both these variables. This function has a simple form, if the target nucleus behaves as an ideal gas, which has a scattering cross section independent of energy. An energy dependent scattering cross section complicates the treatment further. An analytic expression is no longer obtained for the ideal gas temperature dependent joint scattering kernel as a function of the neutron energy after the interaction and the cosine of the scattering angle. Instead the kernel is expressed by an inverse Fourier Transform of a complex integrand, which is averaged over the velocity spectrum of the target nucleus. (Abstract Truncated)

  14. Measurements of time dependent energy spectra of neutrons in a small graphite assembly

    International Nuclear Information System (INIS)

    Fujita, Yoshiaki; Sakamoto, Shigeyasu; Aizawa, Otohiko; Takahashi, Akito; Sumita, Kenji.

    1975-01-01

    The time-dependent energy spectra of neutrons have been measured in a small 30x30x30 cm 3 graphite assembly by means of the linac-chopper method, with a view to establishing experimental evidence that there is no asymptotic spectrum in such a small assembly, and in order to study the non-asymptotic behavior of neutrons. The arrangement of a polyethylene pre-moderator adjacent to the assembly made the measurements possible with the improvement obtained thereby of the neutron counting statistics. It was indicated from calculation that the presence of the pre-moderator had little effect - at least above the Bragg cut-off energy - on the evolution in time of the energy spectra of neutrons in the graphite assembly. The experimental results indicated very probable disappearance of asymptotic spectra, and revealed significant enhancement of trapping at Bragg energies with the lapse of time. This is consistent with the results of pulsed neutron experiments in small assemblies conducted by Takahashi et al., and falls in line with de Saussure's approximation. The spectra in the graphite assembly showed significant space dependence, the spectra becoming harder with increasing distance from the pre-moderator. This hardening may be attributed to the relatively faster propagation of higher energy neutrons. (auth.)

  15. Angular dependence of the attosecond time delay in the H 2 + ion

    Science.gov (United States)

    Kheifets, Anatoli; Serov, Vladislav

    2016-05-01

    Angular dependence of attosecond time delay relative to polarization of light can now be measured using combination of RABBITT and COLTRIMS techniques. This dependence brings particularly useful information in molecules where it is sensitive to the orientation of the molecular axis. Here we extend the theoretical studies of and consider a molecular ion H2+in combination of an attosecond pulse train and a dressing IR field which is a characteristic set up of a RABBIT measurement. We solve the time-dependent Schrödinger equation using a fast spherical Bessel transformation (SBT) for the radial variable, a discrete variable representation for the angular variables and a split-step technique for the time evolution. The use of SBT ensures correct phase of the wave function for a long time evolution which is especially important in time delay calculations. To speed up computations, we implement an expanding coordinate (EC) system which allows us to reach space sizes and time periods unavailable by other techniques. Australian Research Council DP120101805.

  16. Spin-dependent delay time and Hartman effect in asymmetrical graphene barrier under strain

    Science.gov (United States)

    Sattari, Farhad; Mirershadi, Soghra

    2018-01-01

    We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin-orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.

  17. Output regulation control for switched stochastic delay systems with dissipative property under error-dependent switching

    Science.gov (United States)

    Li, L. L.; Jin, C. L.; Ge, X.

    2018-01-01

    In this paper, the output regulation problem with dissipative property for a class of switched stochastic delay systems is investigated, based on an error-dependent switching law. Under the assumption that none subsystem is solvable for the problem, a sufficient condition is derived by structuring multiple Lyapunov-Krasovskii functionals with respect to multiple supply rates, via designing error feedback regulators. The condition is also established when dissipative property reduces to passive property. Finally, two numerical examples are given to demonstrate the feasibility and efficiency of the present method.

  18. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses

    Czech Academy of Sciences Publication Activity Database

    Rezunenko, Oleksandr

    2017-01-01

    Roč. 22, č. 4 (2017), s. 1547-1563 ISSN 1531-3492 R&D Projects: GA ČR(CZ) GA16-06678S Institutional support: RVO:67985556 Keywords : Evolution equations * Lyapunov stability * state-dependent delay * virus infection model Subject RIV: BC - Control Systems Theory OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.994, year: 2016 http://library.utia.cas.cz/separaty/2017/AS/rezunenko-0476128.pdf

  19. Temporal framing and the hidden-zero effect: rate-dependent outcomes on delay discounting.

    Science.gov (United States)

    Naudé, Gideon P; Kaplan, Brent A; Reed, Derek D; Henley, Amy J; DiGennaro Reed, Florence D

    2018-05-01

    Recent research suggests that presenting time intervals as units (e.g., days) or as specific dates, can modulate the degree to which humans discount delayed outcomes. Another framing effect involves explicitly stating that choosing a smaller-sooner reward is mutually exclusive to receiving a larger-later reward, thus presenting choices as an extended sequence. In Experiment 1, participants (N = 201) recruited from Amazon Mechanical Turk completed the Monetary Choice Questionnaire in a 2 (delay framing) by 2 (zero framing) design. Regression suggested a main effect of delay, but not zero, framing after accounting for other demographic variables and manipulations. We observed a rate-dependent effect for the date-framing group, such that those with initially steep discounting exhibited greater sensitivity to the manipulation than those with initially shallow discounting. Subsequent analyses suggest these effects cannot be explained by regression to the mean. Experiment 2 addressed the possibility that the null effect of zero framing was due to within-subject exposure to the hidden- and explicit-zero conditions. A new Amazon Mechanical Turk sample completed the Monetary Choice Questionnaire in either hidden- or explicit-zero formats. Analyses revealed a main effect of reward magnitude, but not zero framing, suggesting potential limitations to the generality of the hidden-zero effect. © 2018 Society for the Experimental Analysis of Behavior.

  20. Angular distribution of scission neutrons studied with time-dependent Schrödinger equation

    Science.gov (United States)

    Wada, Takahiro; Asano, Tomomasa; Carjan, Nicolae

    2018-03-01

    We investigate the angular distribution of scission neutrons taking account of the effects of fission fragments. The time evolution of the wave function of the scission neutron is obtained by integrating the time-dependent Schrodinger equation numerically. The effects of the fission fragments are taken into account by means of the optical potentials. The angular distribution is strongly modified by the presence of the fragments. In the case of asymmetric fission, it is found that the heavy fragment has stronger effects. Dependence on the initial distribution and on the properties of fission fragments is discussed. We also discuss on the treatment of the boundary to avoid artificial reflections

  1. Comorbid depression, antisocial personality, and substance dependence: Relationship with delay discounting.

    Science.gov (United States)

    Moody, Lara; Franck, Christopher; Bickel, Warren K

    2016-03-01

    Within the field of addiction, as many as four-fifths of individuals in treatment for substance use disorder have co-existing lifetime psychopathology and as high as two-thirds have current psychopathology. Among substance-dependent individuals, excessive delay discounting is pervasive. Despite evidence of excessive discounting across substance use disorders, few studies have investigated the impact of co-occurring psychopathologies and SUD on delay discounting. We compared delay discounting in currently abstaining substance users with (a) SUD (n=166), (b) SUD and managed major depressive disorder (MDD; n=44), (c) SUD and antisocial personality disorder (APD; n=35), (d) SUD and managed MDD and APD (n=22) and (e) no SUD or co-occurring psychopathology (n=60). All groups with SUD discounted future delayed rewards significantly more than healthy controls (p<0.001 in each case, d=0.686, 0.835, 1.098 and 1.650, respective to groups a-d above). Individuals with both APD and SUD and individuals with MDD, APD, and SUD discounted future rewards significantly more than substance users without comorbid psychopathology (p=0.029, d=0.412 and p<0.001, d=0.964, respectively). Overall, individuals with multiple psychopathologies in addition to substance use have exacerbated deficits in discounting of the future, above and beyond that observed in substance use alone. Increased discounting in combined substance and psychopathology profiles suggest a greater chance of treatment failure and therefore may necessitate individualized treatment using adjunctive interventions to achieve better treatment outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Determination of the decay constants and relative abundances of delayed neutrons by noise analysis in zero-power reactors

    International Nuclear Information System (INIS)

    Diniz, Ricardo

    2005-01-01

    A reactor noise approach has been employed at the IPEN/MB-01 research reactor facility in order to determine experimentally the effective delayed neutron parameters β i and λ i in a six group model and assuming the point reactor. The method can be considered a novice one because exploits the very low frequency domain of the spectral densities. The proposed method has some advantages to other in-pile methods since it does not disturb the reactor system and consequently does not 'excite' any sort of harmonic modes. As a byproduct and a consistency check, the β eff parameter was obtained without the need of the Diven factor and the power normalization and it is in excellent agreement with independent measurements. The theory/experiment comparison shows that for the abundances the JENDL 3.3 presents the best performance while for the decay constants the revised version of ENDF/B-VI.8 shows the best agreement. The best performance for the β eff determination is obtained with JENDL3.3. In contrast, ENDF/B-VI.8 and its revised version performed at LANL overestimate β eff by as much as 4%. The β eff results of this work support totally the proposal of reducing the thermal delayed neutron number for 235 U fission as made by Sakurai and Okajima. A new observed effect related to the correlation between the fluctuations of both measurement channels is also presented and discussed. This effect can be considered as an indirect evidence for the use of the point reactor model in this work as well as a possible useful tool in the understanding of reactor dynamics. (author)

  3. Calculation of Beta Decay Half-Lives and Delayed Neutron Branching Ratio of Fission Fragments with Skyrme-QRPA

    Directory of Open Access Journals (Sweden)

    Minato Futoshi

    2016-01-01

    Full Text Available Nuclear β-decay and delayed neutron (DN emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA and the Hauser-Feshbach statistical model (HFSM. In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.

  4. Delay differential equations and the dose-time dependence of early radiotherapy reactions

    International Nuclear Information System (INIS)

    Fenwick, John D.

    2006-01-01

    The dose-time dependence of early radiotherapy reactions impacts on the design of accelerated fractionation schedules--oral mucositis, for example, can be dose limiting for short treatments designed to avoid tumor repopulation. In this paper a framework for modeling early reaction dose-time dependence is developed. Variation of stem cell number with time after the start of a radiation schedule is modeled using a first-order delay differential equation (DDE), motivated by experimental observations linking the speed of compensatory proliferation in early reacting tissues to the degree of tissue damage. The modeling suggests that two types of early reaction radiation response are possible, stem cell numbers either monotonically approaching equilibrium plateau levels or overshooting before returning to equilibrium. Several formulas have been derived from the delay differential equation, predicting changes in isoeffective total radiation dose with schedule duration for different types of fractionation scheme. The formulas have been fitted to a wide range of published animal early reaction data, the fits all implying a degree of overshoot. Results are presented illustrating the scope of the delay differential model: most of the data are fitted well, although the model struggles with a few datasets measured for schedules with distinctive dose-time patterns. Ways of extending the current model to cope with these particular dose-time patterns are briefly discussed. The DDE approach is conceptually more complex than earlier descriptive dose-time models but potentially more powerful. It can be used to study issues not addressed by simpler models, such as the likely effects of increasing or decreasing the dose-per-day over time, or of splitting radiation courses into intense segments separated by gaps. It may also prove useful for modeling the effects of chemoirradiation

  5. Delay differential equations and the dose-time dependence of early radiotherapy reactions.

    Science.gov (United States)

    Fenwick, John D

    2006-09-01

    The dose-time dependence of early radiotherapy reactions impacts on the design of accelerated fractionation schedules--oral mucositis, for example, can be dose limiting for short treatments designed to avoid tumor repopulation. In this paper a framework for modeling early reaction dose-time dependence is developed. Variation of stem cell number with time after the start of a radiation schedule is modeled using a first-order delay differential equation (DDE), motivated by experimental observations linking the speed of compensatory proliferation in early reacting tissues to the degree of tissue damage. The modeling suggests that two types of early reaction radiation response are possible, stem cell numbers either monotonically approaching equilibrium plateau levels or overshooting before returning to equilibrium. Several formulas have been derived from the delay differential equation, predicting changes in isoeffective total radiation dose with schedule duration for different types of fractionation scheme. The formulas have been fitted to a wide range of published animal early reaction data, the fits all implying a degree of overshoot. Results are presented illustrating the scope of the delay differential model: most of the data are fitted well, although the model struggles with a few datasets measured for schedules with distinctive dose-time patterns. Ways of extending the current model to cope with these particular dose-time patterns are briefly discussed. The DDE approach is conceptually more complex than earlier descriptive dose-time models but potentially more powerful. It can be used to study issues not addressed by simpler models, such as the likely effects of increasing or decreasing the dose-per-day over time, or of splitting radiation courses into intense segments separated by gaps. It may also prove useful for modeling the effects of chemoirradiation.

  6. Beta-delayed proton emission in neutron-deficient lanthanide isotopes

    International Nuclear Information System (INIS)

    Wilmarth, P.A.

    1988-01-01

    Forty-two β-delayed proton precursors with 56≤Z≤71 and 63≤N≤83 were produced in heavy-ion reactions at the Lawrence Berkeley Laboratory SuperHILAC and their radioactive decay properties studied at the on-line mass separation facility OASIS. Twenty-five isotopes and eight delayed proton branches were identified for the first time. Delayed proton energy spectra and proton coincident γ-ray and x-ray spectra were measured for all precursors. In a few cases, proton branching ratios were also determined. The precursor mass numbers were determined by the separator, while the proton coincident x-ray energies provided unambiguous Z identifications. The proton coincident γ-ray intensities were used to extract final state branching ratios. Proton emission from ground and isomeric states was observed in many cases. The majority of the delayed proton spectra exhibited the smooth bell-shaped distribution expected for heavy mass precursors. The experimental results were compared to statistical model calculations using standard parameter sets. Calculations using Nilsson model/RPA β-strength functions were found to reproduce the spectral shapes and branching ratios better than calculations using either constant or gross theory β-strength functions. Precursor half-life predictions from the Nilsson model/RPA β-strength functions were also in better agreement with the measured half-lives than were gross theory predictions. The ratios of positron coincident proton intensities to total proton intensities were used to determine Q/sub EC/-B/sub p/ values for several precursors near N=82. The statistical model calculations were not able to reproduce the experimental results for N=81 precursors. 154 refs., 82 figs., 19 tabs

  7. Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays.

    Science.gov (United States)

    Şaylı, Mustafa; Yılmaz, Enes

    2015-08-01

    In this paper, we consider existence and global exponential stability of periodic solution for state-dependent impulsive shunting inhibitory cellular neural networks with time-varying delays. By means of B-equivalence method, we reduce these state-dependent impulsive neural networks system to an equivalent fix time impulsive neural networks system. Further, by using Mawhin's continuation theorem of coincide degree theory and employing a suitable Lyapunov function some new sufficient conditions for existence and global exponential stability of periodic solution are obtained. Previous results are improved and extended. Finally, we give an illustrative example with numerical simulations to demonstrate the effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Review of fission product yields and delayed neutron data for the actinides NP-237, PU-242, AM-242M, AM-243, CM-243 and CM-245

    International Nuclear Information System (INIS)

    Mills, R.W.

    1990-07-01

    A review of fission product yields and delayed neutron data for Np-237, Pu-242, Am-242m, Am-243, Cm-243 and Cm-245 has been undertaken. Gaps in understanding and inconsistencies in existing data were identified and priority areas for further experimental, theoretical and evaluation investigation detailed

  9. Hopf bifurcations of a ratio-dependent predator–prey model involving two discrete maturation time delays

    International Nuclear Information System (INIS)

    Karaoglu, Esra; Merdan, Huseyin

    2014-01-01

    Highlights: • A ratio-dependent predator–prey system involving two discrete maturation time delays is studied. • Hopf bifurcations are analyzed by choosing delay parameters as bifurcation parameters. • When a delay parameter passes through a critical value, Hopf bifurcations occur. • The direction of bifurcation, the period and the stability of periodic solution are also obtained. - Abstract: In this paper we give a detailed Hopf bifurcation analysis of a ratio-dependent predator–prey system involving two different discrete delays. By analyzing the characteristic equation associated with the model, its linear stability is investigated. Choosing delay terms as bifurcation parameters the existence of Hopf bifurcations is demonstrated. Stability of the bifurcating periodic solutions is determined by using the center manifold theorem and the normal form theory introduced by Hassard et al. Furthermore, some of the bifurcation properties including direction, stability and period are given. Finally, theoretical results are supported by some numerical simulations

  10. Neutron-neutron probe for uranium exploration

    International Nuclear Information System (INIS)

    Smith, R.C.

    1979-01-01

    A neutron activation probe for assaying the amount of fissionable isotopes in an ore body is described which comprises a casing which is movable through a borehole in the ore body, a neutron source and a number of delayed neutron detectors arranged colinearly in the casing below the neutron source for detecting delayed neutrons

  11. Calculation of the energy-dependent efficiency of gridded 3He fast-neutron ionization chambers

    International Nuclear Information System (INIS)

    Prussin, S.G.

    1982-01-01

    Research and development activities under this contract proceeded along several lines, including development of a gas jet facility for the transport and isolation of fission product activities with half lives in the range T/sub 1/2/ less than or equal to 2 sec, studies on the factors affecting the energy and timing resolution of gridded 3 He ionization detectors for delayed neutron spectroscopy and the development of simple models for calculation of the beta-decay characteristics of short-lived fission products near A = 90. Brief outlines of the activities in the areas are given

  12. Neutron Scattering in Hydrogenous Moderators, Studied by Time Dependent Reaction Rate Method

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L G; Moeller, E; Purohit, S N

    1966-03-15

    The moderation and absorption of a neutron burst in water, poisoned with the non-1/v absorbers cadmium and gadolinium, has been followed on the time scale by multigroup calculations, using scattering kernels for the proton gas and the Nelkin model. The time dependent reaction rate curves for each absorber display clear differences for the two models, and the separation between the curves does not depend much on the absorber concentration. An experimental method for the measurement of infinite medium reaction rate curves in a limited geometry has been investigated. This method makes the measurement of the time dependent reaction rate generally useful for thermalization studies in a small geometry of a liquid hydrogenous moderator, provided that the experiment is coupled to programs for the calculation of scattering kernels and time dependent neutron spectra. Good agreement has been found between the reaction rate curve, measured with cadmium in water, and a calculated curve, where the Haywood kernel has been used.

  13. The energy dependence of neutron-proton charge exchange

    International Nuclear Information System (INIS)

    Bouquet, A.; Diu, R.

    1978-01-01

    The new Fermilab data on up charge exchange are analysed phenomenologically, to determine the energy dependence of the amplitudes in the corresponding domain (60 2 trajectories. If one imposes the presence of standard rho-A 2 terms (three-component analysis), one has to introduce a pomeronlike contribution, with a trajectory α approximately equal to 1.0+0.25t. In both cases, the resulting parametrization gives a good description of the data from Psub(lab)=1GeV/c up to 300GeV/c

  14. Measurement of the spin dependent structure functions of proton and neutron

    International Nuclear Information System (INIS)

    Rith, K.

    1989-01-01

    Recent results from the EMC experiment on the spin dependent structure function g 1 p (x) of the proton are discussed. They suggest that the nucleon spin does not originate from quark spins but rather from angular orbital momentum and gluon contributions. A proposed experiment at HERA is presented which will allow a very accurate measurement of the spin dependent structure functions and their integrals of both proton and neutron and a precise test of the Bjorken sum rule. (orig.)

  15. Delay-Dependent Stability Analysis of Uncertain Fuzzy Systems with State and Input Delays under Imperfect Premise Matching

    Directory of Open Access Journals (Sweden)

    Zejian Zhang

    2013-01-01

    Full Text Available This paper discusses the stability and stabilization problem for uncertain T-S fuzzy systems with time-varying state and input delays. A new augmented Lyapunov function with an additional triple-integral term and different membership functions of the fuzzy models and fuzzy controllers are introduced to derive the stability criterion, which is less conservative than the existing results. Moreover, a new flexibility design method is also provided. Some numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed method.

  16. Calculation and applications of the frequency dependent neutron detector response functions

    International Nuclear Information System (INIS)

    Van Dam, H.; Van Hagen, T.H.J.J. der; Hoogenboom, J.E.; Keijzer, J.

    1994-01-01

    The theoretical basis is presented for the evaluation of the frequency dependent function that enables to calculate the response of a neutron detector to parametric fluctuations ('noise') or oscillations in reactor core. This function describes the 'field view' of a detector and can be calculated with a static transport code under certain conditions which are discussed. Two applications are presented: the response of an ex-core detector to void fraction fluctuations in a BWR and of both in and ex-core detectors to a rotating neutron absorber near or inside a research reactor core. (authors). 7 refs., 4 figs

  17. $\\beta$-decay and $\\beta$-delayed Neutron Emission Measurements at GSI-FRS Beyond N=126, for r-process Nucleosynthesis

    CERN Document Server

    Caballero-Folch, R; Cortès, G; Taín, J L; Agramunt, J; Algora, A; Ameil, F; Ayyad, Y; Benlliure, J; Bowry, M; Calviño, F; Cano-Ott, D; Davinson, T; Dillmann, I; Estrade, A; Evdokimov, A; Faestermann, T; Farinon, F; Galaviz, D; García-Ríos, A; Geissel, H; Gelletly, W; Gernhäuser, R; Gómez-Hornillos, M B; Guerrero, C; Heil, M; Hinke, C; Knöbel, R; Kojouharov, I; Kurcewicz, J; Kurz, N; Litvinov, Y; Maier, L; Marganiec, J; Marta, M; Martínez, T; Montes, F; Mukha, I; Napoli, D R; Nociforo, C; Paradela, C; Pietri, S; Podolyák, Zs; Prochazka, A; Rice, S; Riego, A; Rubio, B; Schaffner, H; Scheidenberger, C; Smith, K; Sokol, E; Steiger, K; Sun, B; Takechi, M; Testov, D; Weick, H; Wilson, E; Winfield, J S; Wood, R; Woods, P J; Yeremin, A

    2014-01-01

    New measurements of very exotic nuclei in the neutron-rich region beyond N=126 have been performed at the GSI facility with the fragment separator (FRS). The aim of the experiment is to determine half-lives and beta-delayed neutron emission branching ratios of isotopes of Hg, Tl and Pb in this region. This contribution summarizes final counting statistics for identification and for implantation, as well as the present status of the data analysis of the half-lives. In summary, isotopes of Pt, Au, Hg, Ti, Pb, Bi, Po, At, Rn and Fr were clearly identified and several of them (Hg208-211, Tl211-215, Pb214-218) were implanted with enough statistics to determine their half-lives. About half of them are expected to be neutron emitters, in such cases it will become possible to obtain the neutron emission probabilities, P-n.

  18. Psilocybin dose-dependently causes delayed, transient headaches in healthy volunteers.

    Science.gov (United States)

    Johnson, Matthew W; Sewell, R Andrew; Griffiths, Roland R

    2012-06-01

    Psilocybin is a well-characterized classic hallucinogen (psychedelic) with a long history of religious use by indigenous cultures, and nonmedical use in modern societies. Although psilocybin is structurally related to migraine medications, and case studies suggest that psilocybin may be efficacious in treatment of cluster headache, little is known about the relationship between psilocybin and headache. This double-blind study examined a broad range of psilocybin doses (0, 5, 10, 20, and 30 mg/70 kg) on headache in 18 healthy participants. Psilocybin frequently caused headache, the incidence, duration, and severity of which increased in a dose-dependent manner. All headaches had delayed onset, were transient, and lasted no more than a day after psilocybin administration. Possible mechanisms for these observations are discussed, and include induction of delayed headache through nitric oxide release. These data suggest that headache is an adverse event to be expected with the nonmedical use of psilocybin-containing mushrooms as well as the administration of psilocybin in human research. Headaches were neither severe nor disabling, and should not present a barrier to future psilocybin research. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Delay-Dependent Exponential Optimal Synchronization for Nonidentical Chaotic Systems via Neural-Network-Based Approach

    Directory of Open Access Journals (Sweden)

    Feng-Hsiag Hsiao

    2013-01-01

    Full Text Available A novel approach is presented to realize the optimal exponential synchronization of nonidentical multiple time-delay chaotic (MTDC systems via fuzzy control scheme. A neural-network (NN model is first constructed for the MTDC system. Then, a linear differential inclusion (LDI state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, a delay-dependent exponential stability criterion of the error system derived in terms of Lyapunov's direct method is proposed to guarantee that the trajectories of the slave system can approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI. According to the LMI, a fuzzy controller is synthesized not only to realize the exponential synchronization but also to achieve the optimal performance by minimizing the disturbance attenuation level at the same time. Finally, a numerical example with simulations is given to demonstrate the effectiveness of our approach.

  20. Mass number dependence of total neutron cross section; a discussion based on the semi-classical optical model

    International Nuclear Information System (INIS)

    Angeli, Istvan

    1990-01-01

    The dependence of total neutron cross section on mass number can be calculated by the black nucleus formula, according to the optical model. The fine structure of mass number dependence is studied, and a correction factor formula is given on the basis of a semi-classical optical model. Yielding results in good agreement with experimental data. In addition to the mass number dependence, the neutron-energy dependence can also be calculated using this model. (K.A.)

  1. Isomer-delayed gamma-ray spectroscopy of neutron-rich 166Tb

    Directory of Open Access Journals (Sweden)

    Gurgi L.A.

    2017-01-01

    Full Text Available This short paper presents the identification of a metastable, isomeric-state decay in the neutron-rich odd-odd, prolate-deformed nucleus 166Tb. The nucleus of interest was formed using the in-flight fission of a 345 MeV per nucleon 238U primary beam at the RIBF facility, RIKEN, Japan. Gamma-ray transitions decaying from the observed isomeric states in 166Tb were identified using the EURICA gamma-ray spectrometer, positioned at the final focus of the BigRIPS fragments separator. The current work identifies a single discrete gamma-ray transition of energy 119 keV which de-excites an isomeric state in 166Tb with a measured half-life of 3.5(4 μs. The multipolarity assignment for this transition is an electric dipole and is made on the basis internal conversion and decay lifetime arguments. Possible two quasi-particle Nilsson configurations for the initial and final states which are linked by this transition in 166Tb are made on the basis of comparison with Blocked BCS Nilsson calculations, with the predicted ground state configuration for this nucleus arising from the coupling of the v(1-/2[521] and π(3+/2 Nilsson orbitals.

  2. Measurement of time-dependent fast neutron energy spectra in a depleted uranium assembly

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-10-01

    Time-dependent neutron energy spectra in the range 0.6 to 6.4 MeV have been measured in a depleted uranium assembly. By selecting windows in the time range 0.9 to 82 ns after the beam pulse, it was possible to observe the change of the neutron energy distributions from spectra of predominantly 4 to 6 MeV neutrons to spectra composed almost entirely of fission neutrons. The measured spectra were compared to a Monte Carlo calculation of the experiment using the ENDF/B-IV data file. At times and energies at which the calculation predicted a fission spectrum, the experiment agreed with the calculation, confirming the accuracy of the neutron spectroscopy system. However, the presence of discrepancies at other times and energies suggested that there are significant inconsistencies in the inelastic cross sections in the 1 to 6 MeV range. The time response generated concurrently with the energy spectra was compared to the Monte Carlo calculation. From this comparison, and from examination of time spectra measured by other workers using 235 U and 237 Np fission detectors, it would appear that there are discrepancies in the ENDF/B-IV cross sections below 1 MeV. The predicted decay rates were too low below and too high above 0.8 MeV

  3. Theoretical analysis of time-dependent neutron spectra in bulk assemblies

    International Nuclear Information System (INIS)

    Akimoto, Tadashi; Ogawa, Yuichi; Togawa, Orihiko.

    1988-01-01

    Time-dependent neutron spectra in an iron assembly and in a graphite assembly are obtained with the one-dimensional S N calculation, in order an attempt to investigate the availability of these spectra to the benchmark test by the LINAC-TOF method for evaluation of nuclear data and numerical methods. The group constants are taken from the JAERI FAST SET Version 1, 2 and the ABBN SET. It was demonstrated by a sensitivity test that the time-dependent neutron spectra are sensitive to changes in the inelastic scattering cross section data in the iron assembly and to changes in the elastic scattering cross section data in the graphite assembly. Moreover, it is shown that the time-dependent spectra in the graphite assembly are sensitive to the group structure. Because some information about the neutron transport phenomena which has not been obtained in the stationary spectra is observed in the time-dependent spectra, the availability of the benchmark test based on the time-dependent spectra is indicated from the theoretical analysis. (author)

  4. Treatment-time-dependence models of early and delayed radiation injury in rat small intestine

    International Nuclear Information System (INIS)

    Denham, James W.; Hauer-Jensen, Martin; Kron, Tomas; Langberg, Carl W.

    2000-01-01

    Background: The present study modeled data from a large series of experiments originally designed to investigate the influence of time, dose, and fractionation on early and late pathologic endpoints in rat small intestine after localized irradiation. The objective was to obtain satisfactory descriptions of the regenerative response to injury together with the possible relationships between early and late endpoints. Methods: Two- and 26-week pathologic radiation injury data in groups of Sprague-Dawley rats irradiated with 27 different fractionation schedules were modeled using the incomplete repair (IR) version of the linear-quadratic model with or without various time correction models. The following time correction models were tested: (1) No time correction; (2) A simple exponential (SE) regenerative response beginning at an arbitrary time after starting treatment; and (3) A bi-exponential response with its commencement linked to accumulated cellular depletion and fraction size (the 'intelligent response model' [INTR]). Goodness of fit of the various models was assessed by correlating the predicted biological effective dose for each dose group with the observed radiation injury score. Results: (1) The incomplete repair model without time correction did not provide a satisfactory description of either the 2- or 26-week data. (2) The models using SE time correction performed better, providing modest descriptions of the data. (3) The INTR model provided reasonable descriptions of both the 2- and 26-week data, confirming a treatment time dependence of both early and late pathological endpoints. (4) The most satisfactory descriptions of the data by the INTR model were obtained when the regenerative response was assumed to cease 2 weeks after irradiation rather than at the end of irradiation. A fraction-size-dependent delay of the regenerative response was also suggested in the best fitting models. (5) Late endpoints were associated with low-fractionation sensitivity

  5. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jason, E-mail: jason.hou@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ivanov, Kostadin N. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Boyarinov, Victor F.; Fomichenko, Peter A. [National Research Centre “Kurchatov Institute”, Kurchatov Sq. 1, Moscow (Russian Federation)

    2017-06-15

    Highlights: • A time-dependent homogenization-free neutron transport benchmark was created. • The first phase, known as the kinetics phase, was described in this work. • Preliminary results for selected 2-D transient exercises were presented. - Abstract: A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for the time-dependent neutron transport calculations without spatial homogenization has been established in order to facilitate the development and assessment of numerical methods for solving the space-time neutron kinetics equations. The benchmark has been named the OECD/NEA C5G7-TD benchmark, and later extended with three consecutive phases each corresponding to one modelling stage of the multi-physics transient analysis of the nuclear reactor core. This paper provides a detailed introduction of the benchmark specification of Phase I, known as the “kinetics phase”, including the geometry description, supporting neutron transport data, transient scenarios in both two-dimensional (2-D) and three-dimensional (3-D) configurations, as well as the expected output parameters from the participants. Also presented are the preliminary results for the initial state 2-D core and selected transient exercises that have been obtained using the Monte Carlo method and the Surface Harmonic Method (SHM), respectively.

  6. A stochastic model for neutron simulation considering the spectrum and nuclear properties with continuous dependence of energy

    International Nuclear Information System (INIS)

    Camargo, Dayana Q. de; Bodmann, Bardo E.J.; Vilhena, Marco T. de; Froehlich, Herberth B.

    2011-01-01

    In this work we developed a stochastic model to simulate neutron transport in a heterogeneous environment, considering continuous neutron spectra and the nuclear properties with its continuous dependence on energy. This model was implemented using the Monte Carlo method for the propagation of neutrons in different environments. Due to restrictions with respect to the number of neutrons that can be simulated in reasonable computational time we introduced a variable control volume together with (pseudo-) periodic boundary conditions in order to overcome this problem. This study allowed a detailed analysis of the influence of energy on the neutron population and its impact on the life cycle of neutrons. From the results, even for a simple geometrical arrangement, we can conclude that there is need to consider the energy dependence and hence defined a spectral effective multiplication factor per Monte Carlo step. (author)

  7. Space dependent neutron slowing and thermalization in monatomic hydrogen gas in the P-1 approximation

    International Nuclear Information System (INIS)

    Musazay, M.S.

    1981-01-01

    A solution to the space and energy dependent neutron transport equation in the framework of the consistent P-1 approximation is sought. The transport equation for thermal neutrons in a moderator of 1/v absorption and constant scattering cross section is changed into a set of coupled partial differential equations. The space dependent part is removed by assuming a cosine shaped flux due to a cosine shaped source at a very high energy. The resulting set of strongly coupled ordinary differential equations is decoupled by assuming expansion of collision density in the powers of a leakage parameter whose coefficients are energy and absorption dependent. These energy dependent coefficients are solutions of a set of weakly coupled differential equations. Series solutions to these differential equations in powers of epsilon and 1/epsilon, where epsilon = E/kT, E being the neutron energy and kT the moderator temperature in units of energy, are found. The properties of these solutions are studied extensively. Absorption appears as a parameter in the coefficients of the series. The difficulties arising in choosing the correct form of the asymptotic solutions are resolved by comparing slowing and thermalization. The limitations on the size of the slab and on the range of absorption are included in the analysis

  8. Development of a photonuclear activation file and measurement of delayed neutron spectra; Creation d'une bibliotheque d'activation photonucleaire et mesures de spectres d'emission de neutrons retardes

    Energy Technology Data Exchange (ETDEWEB)

    Giacri-Mauborgne, M.L

    2005-11-15

    This thesis work consists in two parts. The first part is the description of the creation of a photonuclear activation file which will be used to calculated photonuclear activation. To build this file we have used different data sources: evaluations but also calculations done using several cross sections codes (HMS-ALICE, GNASH, ABLA). This file contains photonuclear activation cross sections for more than 600 nuclides and fission fragments distributions for 30 actinides at tree different Bremsstrahlung energies and the delay neutron spectrum associated. These spectra are not in good agreement with experimental data. That is why we decided to launch measurement of delayed neutrons spectra from photofission. The second part of this thesis consists in demonstrating the possibility to do such measurements at the ELSA accelerator facility. To that purpose, we have developed the detection, the acquisition system and the analysis method of such spectra. These were tested for the measurement of the delayed neutron spectrum of uranium-238 after irradiation in a 2 MeV neutron flux. Finally, we have measured the delayed neutron spectrum of uranium-238 after irradiation in a 15 MeV Bremsstrahlung flux. We compare our results with experimental data. The experiment has allowed us to improve the value of {nu}{sub p}-bar with an absolute uncertainty below 7%, we propose {nu}{sub p}-bar = (3.03 {+-} 0.02) n/100 fissions, and to correct the Nikotin's parameters for the six group representation. Particularly, we have improved the data concerning the sixth group by taking into account results from different irradiation times.

  9. Incident energy and target dependence of interaction cross sections and density distribution of neutron drip-line nuclei

    International Nuclear Information System (INIS)

    Shimoura, S.

    1992-01-01

    The relation between nuclear density distribution and interaction cross section is discussed in terms of Glauber model. Based on the model, density distribution of neutron drip-line nucleus 11 Be and 11 Li is determined experimentally from incident energy dependence of interaction cross sections of 11 Be and 11 Li on light targets. The obtained distributions have long tails corresponding to neutron halos of loosely bound neutrons. (Author)

  10. Size dependent diffusive parameters and tensorial diffusion equations in neutronic models for optically small nuclear systems

    International Nuclear Information System (INIS)

    Premuda, F.

    1983-01-01

    Two lines in improved neutron diffusion theory extending the efficiency of finite-difference diffusion codes to the field of optically small systems, are here reviewed. The firs involves the nodal solution for tensorial diffusion equation in slab geometry and tensorial formulation in parallelepiped and cylindrical gemometry; the dependence of critical eigenvalue from small slab thicknesses is also analitically investigated and finally a regularized tensorial diffusion equation is derived for slab. The other line refer to diffusion models formally unchanged with respect to the classical one, but where new size-dependent RTGB definitions for diffusion parameters are adopted, requiring that they allow to reproduce, in diffusion approach, the terms of neutron transport global balance; the trascendental equation for the buckling, arising in slab, sphere and parallelepiped geometry from the above requirement, are reported and the sizedependence of the new diffusion coefficient and extrapolated end point is investigated

  11. Monoenergetic time-dependent neutron transport in an infinite medium with time-varying cross sections

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1987-01-01

    For almost 20 yr, the main thrust of the author's research has been the generation of as many benchmark solutions to the time-dependent monoenergetic neutron transport equation as possible. The major motivation behind this effort has been to provide code developers with highly accurate numerical solutions to serve as standards in the assessment of numerical transport algorithms. In addition, these solutions provide excellent educational tools since the important physical features of neutron transport are still present even though the problems solved are idealized. A secondary motivation, though of equal importance, is the intellectual stimulation and understanding provided by the combination of the analytical, numerical, and computational techniques required to obtain these solutions. Therefore, to further the benchmark development, the added complication of time-dependent cross sections in the one-group transport equation is considered here

  12. A proton-recoil neutron spectrometer for time-dependent ion temperatures on the National Ignition Facility

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1995-01-01

    Ion temperatures from inertial confinement fusion targets are usually determined by measuring the Doppler broadening of the neutron spectrum using the time-of-flight method. Measurement systems are generally designed so that the contribution of the duration of neutron production (∼100 ps) to the width of the neutron signal is negligible. This precludes the possibility of time-dependent ion temperature. If, however, one could measure the neutron energy and arrival time at a detector independently, then time-dependent neutron spectra could be obtained, and ion temperature information deduced. A concept utilizing a proton-recoil neutron spectrometer has been developed in which recoil protons from a small plastic foil are measured. From the energy, arrival time, and recoil angle of the recoil proton, the birth time and energy of the incident neutron can be deduced. The sensitivity of the system is low, but the higher anticipated neutron yields from the proposed National Ignition Facility may make the technique feasible. Large scintillator arrays currently in use on the Nova facility for neutron spectral measurements consist of ∼1,000 channels and detect between 50 and 500 counts for typical time-integrated data. Time-dependent results would then require about an order of magnitude larger system. Key issues for making this system feasible will be keeping the cost per channel low while allowing adequately time (∼ 50 ps), energy (20 keV), and angular resolution (2 mrad) for each of the proton detectors

  13. Binary neutron star mergers: Dependence on the nuclear equation of state

    International Nuclear Information System (INIS)

    Hotokezaka, Kenta; Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru; Kiuchi, Kenta

    2011-01-01

    We perform a numerical-relativity simulation for the merger of binary neutron stars with 6 nuclear-theory-based equations of states (EOSs) described by piecewise polytropes. Our purpose is to explore the dependence of the dynamical behavior of the binary neutron star merger and resulting gravitational waveforms on the EOS of the supernuclear-density matter. The numerical results show that the merger process and the first outcome are classified into three types: (i) a black hole is promptly formed, (ii) a short-lived hypermassive neutron star (HMNS) is formed, (iii) a long-lived HMNS is formed. The type of the merger depends strongly on the EOS and on the total mass of the binaries. For the EOS with which the maximum mass is larger than 2M · , the lifetime of the HMNS is longer than 10 ms for a total mass m 0 =2.7M · . A recent radio observation suggests that the maximum mass of spherical neutron stars is M max ≥1.97±0.04M · in one σ level. This fact and our results support the possible existence of a HMNS soon after the onset of the merger for a typical binary neutron star with m 0 =2.7M · . We also show that the torus mass surrounding the remnant black hole is correlated with the type of the merger process; the torus mass could be large, ≥0.1M · , in the case that a long-lived HMNS is formed. We also show that gravitational waves carry information of the merger process, the remnant, and the torus mass surrounding a black hole.

  14. The determination by irradiation with a pulsed neutron generator and delayed neutron counting of the amount of fissile material present in a sample; Determination de la quantite de matiere fissile presente dans un echantillon par irradiation au moyen d'une source pulsee de neutrons et comptage des neutrons retardes

    Energy Technology Data Exchange (ETDEWEB)

    Beliard, L; Janot, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    A preliminary study was conducted to determine the amount of fissile material present in a sample. The method used consisted in irradiating the sample by means of a pulsed neutron generator and delayed neutron counting. Results show the validity of this method provided some experimental precautions are taken. Checking on the residual proportion of fissile material in leached hulls seems possible. (authors) [French] Ce rapport rend compte d'une etude preliminaire effectuee en vue de determiner la quantite de matiere fissile presente dans un echantillon. La methode utilisee consiste a irradier l'echantillon considere au moyen d'une source puisee de neutrons et a compter les neutrons retardes produits. Les resultats obtenus permettent de conclure a la validite de la methode moyennant certaines precautions. Un controle de la teneur residuelle en matiere fissile des gaines apres traitement semble possible. (auteurs)

  15. Comparison of reactor RA-4 kinetics with simulations with Matlab-Simulink for one group and six groups of delayed neutrons

    International Nuclear Information System (INIS)

    Orso, J A

    2012-01-01

    The critical state of a nuclear reactor is an unstable equilibrium. The nuclear reactor can go from critical to subcritical state or can go from critical to hypercritical state. Although the evolution of the system in these cases is slow, it requires the intervention of an operator to correct deviations. For this reason an automatic control technique was designed, based on the kinetic point to a group of delayed neutrons, which corrects deviations automatically. In this paper we study the point kinetics models in a group and six groups of delayed neutrons for different values of reactivity using the simulations software MATLAB, Simulink. A comparison of two models with the reactor kinetic behavior is made (author)

  16. Study of the delayed neutron emission through the time-of-flight method. Application to 49K, 50K and 51K

    International Nuclear Information System (INIS)

    Rachidi, J.

    1983-04-01

    This work is dedicated to the study of the emission of delayed neutrons observed in the decay of 49 K, 50 K and 51 K. Spectroscopic data are non-existent for these 3 isotopes, so we have had to design a specific detection system based on a large-surface scintillation counter. A series of n-γ coincidence measurement has allowed us to determine the energy levels of the non-bound states of 49 Ca, 50 Ca and 51 Ca and to establish the nature of the beta transitions (K → Ca). We have measured the energy of the delayed neutrons through the time-of-flight method. Our results are consistent with the model of the p-n states based on the Bansac-French's works. This model shows that the non-bound states of the calcium isotopes discovered in the experiment are represented by simple configurations of the (sd) -1 (fp) n type. (A.C.)

  17. A delay-dependent LMI approach to dynamics analysis of discrete-time recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Song, Qiankun; Wang, Zidong

    2007-01-01

    In this Letter, the analysis problem for the existence and stability of periodic solutions is investigated for a class of general discrete-time recurrent neural networks with time-varying delays. For the neural networks under study, a generalized activation function is considered, and the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. By employing the latest free-weighting matrix method, an appropriate Lyapunov-Krasovskii functional is constructed and several sufficient conditions are established to ensure the existence, uniqueness, and globally exponential stability of the periodic solution for the addressed neural network. The conditions are dependent on both the lower bound and upper bound of the time-varying time delays. Furthermore, the conditions are expressed in terms of the linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Two simulation examples are given to show the effectiveness and less conservatism of the proposed criteria

  18. The astrophysical r-process and its dependence on properties of nuclei far from stability: Beta strength functions and neutron capture rates

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Metzinger, J.; Oda, T.; Thielemann, F.K.; Hillebrandt, W.

    1981-01-01

    The question of the astrophysical site of the rapid neutron capture (r-) process which is believed to be responsible for the production of the heavy elements in the universe has been a problem in astrophysics for more than two decades. The solution of this problem is not only dependent on the development of realistic astrophysical supernova models, i.e. correct treatment of the hydrodynamics of gravitational collapse and supernova explosion and the equation of state of hot and dense matter, but is shown in this paper to be very sensitive also to 'standard' nuclear physics properties of nuclei far from stability such as beta decay properties and neutron capture rates. For both of the latter, strongly oversimplifying assumptions, not applying the development in nuclear physics during the last decade, have been made in almost all r-process calculations performed up to now. A critical discussion of the state of the art of such calculations seems therefore to be indicated. In this paper procedures are described which allow one to obtain: 1) β-decay properties (decay rates, β-delayed neutron emissions and fission rates); 2) neutron capture rates for neutron-rich nuclei considerably improved over what has been used up to now. The beta strength functions are calculated for approx. equal to6000 nuclei between beta stability line and neutron drip line. By hydrodynamical supernova explosion calculations using realistic stellar models it is shown that as a consequence of the improved β-rates explosive He burning is a convincing alternative site to the 'classical' r-process whose existence still is questionable. The new β-rates will be important also for the investigation of further astrophysical sites producing heavy elements such as the r(n)-processes in explosive C or Ne burning. (orig.)

  19. Delay selection by spike-timing-dependent plasticity in recurrent networks of spiking neurons receiving oscillatory inputs.

    Directory of Open Access Journals (Sweden)

    Robert R Kerr

    Full Text Available Learning rules, such as spike-timing-dependent plasticity (STDP, change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.

  20. Angular dependence of dose equivalent response of an albedo neutron dosimeter

    International Nuclear Information System (INIS)

    Torres, B.A.; Boswell, E.; Schwartz, R.B.

    1994-01-01

    The ANSI provides procedures for testing the performance of dosimetry services. Although neutron dose equivalent angular response studies are not now mandated, future standards may well require that such studies be performed. Current studies with an albedo dosimeter will yield information regarding the angular dependence of dose equivalent response for this type of personnel dosimeter. Preliminary data for bare 252 Cf fluences show a marked decrease in dosimeter reading with increasing angle. The response decreased by an approximate factor of four. For the horizontal orientation, the same response was noted from both positive and negative angles. However, for the vertical orientation, the response was unexplainably assymetric. We are also examining the response of the personnel badge in moderated 252 Cf fluences. Responses from the moderated and unmoderated 252 Cf fields and theoretical calculations of the neutron angular response will be compared. This information will assist in building a data base for future comparisons of neutron angular responses with other neutron albedo dosimeters and phantoms

  1. Approximate method in estimation sensitivity responses to variations in delayed neutron energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Shin, H. S.; Song, T. Y.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor. We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of out approximation, these approximate results are compared with exact results obtained from out previous numerical study. 4 refs., 2 figs., 3 tabs. (Author)

  2. Approximate method in estimation sensitivity responses to variations in delayed neutron energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J; Shin, H S; Song, T Y; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor. We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of out approximation, these approximate results are compared with exact results obtained from out previous numerical study. 4 refs., 2 figs., 3 tabs. (Author)

  3. Studies of frequency dependent C-V characteristics of neutron irradiated p+-n silicon detectors

    International Nuclear Information System (INIS)

    Li, Zheng; Kraner, H.W.

    1990-10-01

    Frequency-dependent capacitance-voltage fluence (C-V) characteristics of neutron irradiated high resistivity silicon p + -n detectors have been observed up to a fluence of 8.0 x 10 12 n/cm 2 . It has been found that frequency dependence of the deviation of the C-V characteristic (from its normal V -1/2 dependence), is strongly dependent on the ratio of the defect density and the effective doping density N t /N' d . As the defect density approaches the effective dopant density, or N t /N' d → 1, the junction capacitance eventually assumes the value of the detector geometry capacitance at high frequencies (f ≤ 10 5 Hz), independent of voltage. A two-trap-level model using the concept of quasi-fermi levels has been developed, which predicts both the effects of C-V frequency dependence and dopant compensation observed in this study

  4. Use of delayed gamma rays for active non-destructive assay of {sup 235}U irradiated by pulsed neutron source (plasma focus)

    Energy Technology Data Exchange (ETDEWEB)

    Andola, Sanjay; Niranjan, Ram [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kaushik, T.C., E-mail: tckk@barc.gov.in [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rout, R.K. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ashwani; Paranjape, D.B.; Kumar, Pradeep; Tomar, B.S.; Ramakumar, K.L. [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gupta, S.C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-07-01

    A pulsed neutron source based on plasma focus device has been used for active interrogation and assay of {sup 235}U by monitoring its delayed high energy γ-rays. The method involves irradiation of fissile material by thermal neutrons obtained after moderation of a burst of neutrons emitted upon fusion of deuterium in plasma focus (PF) device. The delayed gamma rays emitted from the fissile material as a consequence of induced fission were detected by a large volume sodium iodide (NaI(Tl)) detector. The detector is coupled to a data acquisition system of 2k input size with 2k ADC conversion gain. Counting was carried out in pulse height analysis mode for time integrated counts up to 100 s while the temporal profile of delayed gamma has been obtained by counting in multichannel scaling mode with dwell time of 50 ms. To avoid the effect of passive (natural) and active (from surrounding materials) backgrounds, counts have been acquired for gamma energy between 3 and 10 MeV. The lower limit of detection of {sup 235}U in the oxide samples with this set-up is estimated to be 14 mg.

  5. Chikungunya virus–induced autophagy delays caspase-dependent cell death

    Science.gov (United States)

    Joubert, Pierre-Emmanuel; Werneke, Scott W.; de la Calle, Claire; Guivel-Benhassine, Florence; Giodini, Alessandra; Peduto, Lucie; Levine, Beth; Schwartz, Olivier; Lenschow, Deborah J.

    2012-01-01

    Autophagy is an important survival pathway and can participate in the host response to infection. Studying Chikungunya virus (CHIKV), the causative agent of a major epidemic in India, Southeast Asia, and southern Europe, we reveal a novel mechanism by which autophagy limits cell death and mortality after infection. We use biochemical studies and single cell multispectral assays to demonstrate that direct infection triggers both apoptosis and autophagy. CHIKV-induced autophagy is mediated by the independent induction of endoplasmic reticulum and oxidative stress pathways. These cellular responses delay apoptotic cell death by inducing the IRE1α–XBP-1 pathway in conjunction with ROS-mediated mTOR inhibition. Silencing of autophagy genes resulted in enhanced intrinsic and extrinsic apoptosis, favoring viral propagation in cultured cells. Providing in vivo evidence for the relevance of our findings, Atg16LHM mice, which display reduced levels of autophagy, exhibited increased lethality and showed a higher sensitivity to CHIKV-induced apoptosis. Based on kinetic studies and the observation that features of apoptosis and autophagy were mutually exclusive, we conclude that autophagy inhibits caspase-dependent cell death but is ultimately overwhelmed by viral replication. Our study suggests that inducers of autophagy may limit the pathogenesis of acute Chikungunya disease. PMID:22508836

  6. Characterization of the energy-dependent uncertainty and correlation in silicon neutron displacement damage metrics

    Directory of Open Access Journals (Sweden)

    Griffin Patrick

    2017-01-01

    Full Text Available A rigorous treatment of the uncertainty in the underlying nuclear data on silicon displacement damage metrics is presented. The uncertainty in the cross sections and recoil atom spectra are propagated into the energy-dependent uncertainty contribution in the silicon displacement kerma and damage energy using a Total Monte Carlo treatment. An energy-dependent covariance matrix is used to characterize the resulting uncertainty. A strong correlation between different reaction channels is observed in the high energy neutron contributions to the displacement damage metrics which supports the necessity of using a Monte Carlo based method to address the nonlinear nature of the uncertainty propagation.

  7. Study of the momentum loss achromate and its application to the measurement of the β-delayed neutron radioactivity of 14Be, 17B, and 19C

    International Nuclear Information System (INIS)

    Hanelt, E.

    1992-02-01

    In this thesis it was shown that the projectile fragmentation at relativistic projectile velocities is a production mechanism for exotic nuclei, which is because of its advantageous kinematics especially suited for the fast and efficient separation of the reaction product in an ion optical system. An essential result of these studies is that projectile fragments can be separated in a wide energy range from about 100 MeV/nucleon to 1 GeV/nucleon and over the whole mass range by means of a momentum-loss achromate. In the experiment described in this thesis this method was for the first time applied to the measurement of the β-deLayed neutron radioactivity. The studied isotopes - 1 - 4Be, - 1 - 7B, and - 1 - 9C were produced by the fragmentation of a - 2 - 2Ne beam at 60 MeV/nucleon. A measurement of β half-lifes and neutron branching ratios was performed, the accuracy of which was in other experiments with similarly exotic nuclei hitherto hardly reached. In - 1 - 7B thereby for the first time a β-delayed 4-neutron radioactivity could be detected. The results of these measurements were compared with calculations from different theoretical models. The observed multiplicities of the β-delayed neutrons are consistent with the multiplicities, which are expected by means of a comparison of the Q - β values and the neutron binding energies. The measured neutron branching ratios yield indirect information on distribution of the β strength in the daugther nuclei. At time none of the theories is yet able to reproduce these experimental values in sufficient way. (orig./HSI) [de

  8. Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete

    International Nuclear Information System (INIS)

    Zhang Peng; Wittmann, Folker H.; Zhao Tiejun; Lehmann, Eberhard H.; Vontobel, Peter

    2011-01-01

    Highlights: ► For the first time water movement in cement-based materials could be quantified in a non-destructive way. ► neutron radiography has a sensitivity and a spatial resolution unknown so far. ► Results are essential for prediction of service life. ► Results will contribute to more durable and more ecological construction. - Abstract: Service life of reinforced concrete structures is often limited by penetration of water and compounds dissolved in water into concrete. Concrete can be damaged in this way and corrosion of steel reinforcement can be initiated. There is an urgent need to study water penetration into concrete in order to better understand deterioration mechanisms and to find appropriate ways to improve durability. Neutron radiography provides us with an advanced non-destructive technique with high spatial resolution and extraordinary sensitivity. In this contribution, neutron radiography was successfully applied to study the process of water absorption of two types of concrete with different water–cement ratios, namely 0.4 and 0.6. The influence cracks and of water repellent treatment on water absorption has been studied on mortar specimens. It is possible to visualize migration of water into concrete and other cement-based composites and to quantify the time-dependent moisture distributions as function of time with high spatial resolution by means of neutron radiography. Water penetration depth obtained from neutron radiography is in good agreement with corresponding values obtained from capillary suction tests. Surface impregnation of concrete with silane prevents capillary uptake of water. Even fine cracks are immediately filled with water as soon as the surface gets in contact. Results provide us with a solid basis for a better understanding of deteriorating processes in concrete and other cement-based materials.

  9. Solution to the monoenergetic time-dependent neutron transport equation with a time-varying source

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1986-01-01

    Even though fundamental time-dependent neutron transport problems have existed since the inception of neutron transport theory, it has only been recently that a reliable numerical solution to one of the basic problems has been obtained. Experience in generating numerical solutions to time-dependent transport equations has indicated that the multiple collision formulation is the most versatile numerical technique for model problems. The formulation coupled with a moment reconstruction of each collided flux component has led to benchmark-quality (four- to five-digit accuracy) numerical evaluation of the neutron flux in plane infinite geometry for any degree of scattering anisotropy and for both pulsed isotropic and beam sources. As will be shown in this presentation, this solution can serve as a Green's function, thus extending the previous results to more complicated source situations. Here we will be concerned with a time-varying source at the center of an infinite medium. If accurate, such solutions have both pedagogical and practical uses as benchmarks against which other more approximate solutions designed for a wider class of problems can be compared

  10. A time-dependent neutron transport model and its coupling to thermal-hydraulics

    International Nuclear Information System (INIS)

    Pautz, A.

    2001-01-01

    A new neutron transport code for time-dependent analyses of nuclear systems has been developed. The code system is based on the well-known Discrete Ordinates code DORT, which solves the steady-state neutron/photon transport equation in two dimensions for an arbitrary number of energy groups and the most common regular geometries. For the implementation of time-dependence a fully implicit first-order scheme was employed to minimize errors due to temporal discretization. This requires various modifications to the transport equation as well as the extensive use of elaborated acceleration mechanisms. The convergence criteria for fluxes, fission rates etc. had to be strongly tightened to ensure the reliability of results. To perform coupled analyses, an interface to the GRS system code ATHLET has been developed. The nodal power densities from the neutron transport code are passed to ATHLET to calculate thermal-hydraulic system parameters, e.g. fuel and coolant temperatures. These are in turn used to generate appropriate nuclear cross sections by interpolation of pre-calculated data sets for each time step. Finally, to demonstrate the transient capabilities of the coupled code system, the research reactor FRM-II has been analysed. Several design basis accidents were modelled, like the loss of off site power, loss of secondary heat sink and unintended control rod withdrawal. (author)

  11. Sigma-R: an improved version of the delayed neutron counting device for THTR fuel element verification

    International Nuclear Information System (INIS)

    Galantucci, R.; Haas, R.; Janssens, A.; Agostini, P.; Becker, L.; Bernede, M.; Caldon, L.; Cordani, G.; Guardini, S.

    1989-01-01

    SIGMA is a device designed for the Safeguards verification measurements of the 235 U content of THTR (or AVR) pebble fuel elements; it has been in operation for more than 12 years at the HOBEG fuel fabrication plant in HANAU (FRG). The THTR fuel element is a 60 mm diameter sphere composed of particles of a U-Th mixture in a graphite matrix. The device is schematically composed of an irradiation facility where the pebble is irradiated by 252 Cf and a counting facility where the delayed fission neutrons are monitored. The system has recently been thoroughly updated, the modified instrument being called SIGMA-R. SIGMA-R automatically governs the whole charge-discharge, irradiation and counting sequence, collects the measured counts in the microprocessor memory and performs the relevant calculations, including the statistical evaluation. The instructions are given interactively to the inspector through an IRIS terminal. SIGMA-R provides extensive self diagnosis features. The inspector is also informed explicity of malfunctions during routine operation. The instrument is equipped with a permanent memory which facilitates the inspector's work considerably. SIGMA is complementary to the so-called fuel pebble sampling devices (FPSD) which are designed to take a random sample of 10 pebbles out of 1000 directly from the production line. With SIGMA-R it is now possible to measure the 235 U content of THTR pebbles very accurately. The uncertainty essentially is limited to Poisson statistics and allows us to evaluate the 235 U content in routine operation, with a random error down to 0.15% and a systematic uncertainty estimated at 0.25%, the latter coming from calibration and normalization procedures

  12. Temperature dependence of the thermal expansion of neutron-irradiated pyrolytic carbon and graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1988-01-01

    The effects of neutron irradiation and annealing on the temperature dependence of the linear thermal expansion of pyrolytic carbon and graphite were investigated after irradiation at 930-1280 0 C to a maximum neutron fluence of 2.84 x 10 25 m -2 (E > 29 fJ). After irradiation, little change in the thermal expansion of pyrolytic graphite was observed. However, as-deposited pyrolytic carbon showed an increase in thermal expansion in the perpendicular direction, a decrease in the direction parallel to the deposition plane, and also an increase in the anisotropy of the thermal expansion. Annealing at 2000 0 C did not cause any effective changes for irradiated specimens of either as-deposited pyrolytic carbon or pyrolytic graphite. (author)

  13. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  14. Oxygenation measurement by multi-wavelength oxygen-dependent phosphorescence and delayed fluorescence: catchment depth and application in intact heart

    NARCIS (Netherlands)

    Balestra, Gianmarco M.; Aalders, Maurice C. G.; Specht, Patricia A. C.; Ince, Can; Mik, Egbert G.

    2015-01-01

    Oxygen delivery and metabolism represent key factors for organ function in health and disease. We describe the optical key characteristics of a technique to comprehensively measure oxygen tension (PO(2)) in myocardium, using oxygen-dependent quenching of phosphorescence and delayed fluorescence of

  15. About the Existence Results of Fractional Neutral Integrodifferential Inclusions with State-Dependent Delay in Fréchet Spaces

    Directory of Open Access Journals (Sweden)

    Selvaraj Suganya

    2016-01-01

    Full Text Available A recent nonlinear alternative for multivalued contractions in Fréchet spaces thanks to Frigon fixed point theorem consolidated with semigroup theory is utilized to examine the existence results for fractional neutral integrodifferential inclusions (FNIDI with state-dependent delay (SDD. An example is described to represent the hypothesis.

  16. Distance Dependent Model for the Delay Power Spectrum of In-room Radio Channels

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri

    2013-01-01

    A model based on experimental observations of the delay power spectrum in closed rooms is proposed. The model includes the distance between the transmitter and the receiver as a parameter which makes it suitable for range based radio localization. The experimental observations motivate the proposed...... model of the delay power spectrum with a primary (early) component and a reverberant component (tail). The primary component is modeled as a Dirac delta function weighted according to an inverse distance power law (d-n). The reverberant component is an exponentially decaying function with onset equal...... to the propagation time between transmitter and receiver. Its power decays exponentially with distance. The proposed model allows for the prediction of e.g. the path loss, mean delay, root mean squared (rms) delay spread, and kurtosis versus the distance. The model predictions are validated by measurements...

  17. Permanence of a Semi-Ratio-Dependent Predator-Prey System with Nonmonotonic Functional Response and Time Delay

    Directory of Open Access Journals (Sweden)

    Xuepeng Li

    2009-01-01

    Full Text Available Sufficient conditions for permanence of a semi-ratio-dependent predator-prey system with nonmonotonic functional response and time delay ̇1(=1([1(−11(1(−(−12(2(/(2+21(],  ̇2(=2([2(−21(2(/1(], are obtained, where 1( and 2( stand for the density of the prey and the predator, respectively, and ≠0 is a constant. (≥0 stands for the time delays due to negative feedback of the prey population.

  18. Dependence of the cutoff in lithium plasma harmonics on the delay between the prepulse and the main pulse

    International Nuclear Information System (INIS)

    Suzuki, M; Baba, M; Kuroda, H; Ganeev, R A; Bom, L B Elouga; Ozaki, T

    2012-01-01

    We demonstrated the generation of the 43rd harmonic at the wavelength of 18.49 nm (67 eV photon energy) by using laser-ablation lithium plasma irradiated by a Ti:sapphire laser pulse. We found that for low-Z material, such as lithium, the cutoff energy depends strongly on the delay time between the prepulse and the main pulse, due to rapid recombination. As a result, the maximum cutoff energy was obtained at a relatively short delay of 24 ns. From the theoretical cutoff rule and hydrodynamic simulations, we show that these harmonics were generated from singly charged lithium ions. (paper)

  19. Improving neutron multiplicity counting for the spatial dependence of multiplication: Results for spherical plutonium samples

    Energy Technology Data Exchange (ETDEWEB)

    Göttsche, Malte, E-mail: malte.goettsche@physik.uni-hamburg.de; Kirchner, Gerald

    2015-10-21

    The fissile mass deduced from a neutron multiplicity counting measurement of high mass dense items is underestimated if the spatial dependence of the multiplication is not taken into account. It is shown that an appropriate physics-based correction successfully removes the bias. It depends on four correction coefficients which can only be exactly determined if the sample geometry and composition are known. In some cases, for example in warhead authentication, available information on the sample will be very limited. MCNPX-PoliMi simulations have been performed to obtain the correction coefficients for a range of spherical plutonium metal geometries, with and without polyethylene reflection placed around the spheres. For hollow spheres, the analysis shows that the correction coefficients can be approximated with high accuracy as a function of the sphere's thickness depending only slightly on the radius. If the thickness remains unknown, less accurate estimates of the correction coefficients can be obtained from the neutron multiplication. The influence of isotopic composition is limited. The correction coefficients become somewhat smaller when reflection is present.

  20. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    International Nuclear Information System (INIS)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q.

    2007-01-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10 -5 -1x10 -2 dpa at KUR, and 8x10 -3 -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High concentration of alloying

  1. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q. [Kyoto Univ., Research Reactor Institute, Osaka (Japan)

    2007-07-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10{sup -5}-1x10{sup -2} dpa at KUR, and 8x10{sup -3} -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High

  2. The temperature dependence of the momentum distribution of beryllium measured by neutron Compton scattering

    International Nuclear Information System (INIS)

    Fielding, A.L.; Timms, D.; Mayers, J.

    1999-01-01

    A new neutron Compton scattering (NCS) measurement of the temperature dependence of the kinetic energy in polycrystalline beryllium at momentum transfers in the range 27.91 to 104.21 A -1 is presented. The measurements have been made with the Electron Volt Spectrometer (eVS) at the ISIS facility and the measured kinetic energies are shown to be in good agreement with calculations made in the harmonic approximation. Numerical simulations are also presented based on the Sears expansion which predict that final state effects in NCS experiments become less significant at elevated temperatures. (author)

  3. Diffraction plane dependency of elastic constants in ferritic steel in neutron stress measurement

    International Nuclear Information System (INIS)

    Hayashi, M.; Ishiwata, M.; Minakawa, N.; Funahashi, S.

    1993-01-01

    Neutron diffraction measurements have been made to investigate the elastic properties of the ferritic steel obtained from socket weld. The Kroner elastic model is found to account for the [hkl]-dependence of Young's modulus and Poisson's ratio in the material. Maps of residual stress are later to be made by measuring lattice strain from shifts in the (112) diffraction peak, for which the diffraction elastic constants the herein found to be E=243±5GPa and ν=0.28±0.01. (author)

  4. Effect of neutron flux on the frequency dependencies of electrical conductivity of silicon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, E.; Garibli, A., E-mail: elchin.huse@yahoo.com [National Nuclear Research Center, Department of Nanotechnology and Radiation Material Science, 1073, Inshaatchilar pr. 4, Baku (Azerbaijan)

    2016-11-01

    It has been reviewed the frequency dependencies of electrical conductivity of nanoparticles affected by neutron flux at different times and initial state, at various constant temperatures such as 100, 200, 300 and 400 K. Measurements have been carried out at each temperature at the different 97 values of frequency in the 1 Hz - 1 MHz range. From interdependence between real and imaginary parts of electrical conductivity it has been determined the type of conductivity. Moreover, in the work it is given the mechanism of electrical conductivity according to the obtained results. (Author)

  5. Criticality problems for slabs and spheres in energy dependent neutron transport theory

    International Nuclear Information System (INIS)

    Victory, H.D. Jr.

    1980-01-01

    The steady-state equation for energy-dependent neutron transport in isotropically scattering slabs and spheres is formulated as an integral equation. The Perron-Frobenius-Jentzsch theory of positive operators is used to analyze criticality problems for transport in slab and spherical media consisting of core and reflector. In addition, with an adroit selection of diffusion-like solutions, this theory is used to obtain an expression relating the critical radius of a homogeneous sphere to a parameter characterizing fission production. 21 refs

  6. Inventory model with cash flow oriented and time-dependent holding cost under permissible delay in payments

    Directory of Open Access Journals (Sweden)

    Tripathi R.P.

    2013-01-01

    Full Text Available This study develops an inventory model for determining an optimal ordering policy for non-deteriorating items and time-dependent holding cost with delayed payments permitted by the supplier under inflation and time-discounting. The discounted cash flows approach is applied to study the problem analysis. Mathematical models have been derived under two different situations i.e. case I: The permissible delay period is less than cycle time for settling the account and case II: The permissible delay period is greater than or equal to cycle time for settling the account. An algorithm is used to obtain minimum total present value of the costs over the time horizon H. Finally, numerical example and sensitivity analysis demonstrate the applicability of the proposed model. The main purpose of this paper is to investigate the optimal cycle time and optimal payment time for an item so that annual total relevant cost is minimized.

  7. Dependence of the Ratio between the Resonance Integral and Thermal Neutron Cross Section on the Deviation of the Epithermal Neutron Spectrum from the 1/E Law

    International Nuclear Information System (INIS)

    Soliman, N.F.

    2012-01-01

    In k 0 - Neutron Activation Analysis (k 0 -NAA), the conversion from the tabulated Q 0 (ratio of the resonance integral to thermal neutron cross-section)to Q 0 (α) (α is the shape factor of the epithermal neutron flux, indicating the deviation of the epithermal neutron spectrum from the ideal 1/E shape) are calculated using a FORTRAN program. The calculations are done for most elements that can be detected by neutron activation using different values of the parameter (α) ranging from -0.1≤α≤+0.1. The obtained data are used to study the dependence of the values (α) on the irradiation position factor in (k 0 -NAA)equation for some selected isotopes differ in their resonance energy and its Q 0 values. The results show that, the irradiation factor is affective mainly for low thermal tro epithermal flux ratio f especially for Q 0 value greater than 50. so consequently determining the irradiation parameters α value is not needed for irradiation positions that rich with thermal neutron. But for high f values the irradiation position factor should be taken into account. On the other hand the constructed FORTRAN program can be used to calculate the value Q 0 (α) directly for different value of α

  8. A multidimensional multigroup diffusion model for the determination of the frequency-dependent field of view of a neutron detector

    International Nuclear Information System (INIS)

    van der Hagen, T.H.J.J.; Hoogenboom, J.E.; van Dam, H.

    1992-01-01

    This paper reports on the sensitivity of a neutron detector to parametric fluctuations in the core of a reactor which depends on the position and the frequency of the perturbation. The basic neutron diffusion model for the calculation of this so-called field of view (FOV) of the detector is extended with respect to the dimensionality of the problem and the number of energy groups involved. The physical meaning of the FOV concept is illustrated by means of some simple examples, which can be handled analytically. The possibility of calculating the FOV by a conventional neutron diffusion code is demonstrated. In that case, the calculation in n neutron energy groups leads to 2n modified neutron diffusion equations

  9. β-delayed charged particle decays of neutron-deficient nuclei 20Mg and 23Si and 22Si

    International Nuclear Information System (INIS)

    Babo, Mathieu

    2016-01-01

    The neutron-deficient nuclei 20 Mg, 23 Si and 22 Si were produced by fragmentation at NSCL, at MSU (USA), and implanted into an array of 3 double sided stripped Si detectors, surrounded by 16 high-purity Ge detectors. This novel arrangement allowed the detection of the charged particles emitted by the unbound excited states in coincidence with the γ rays emitted by the de-excitation of the daughter. The βp decay of 20 Mg is very well-known and therefore was used to test and optimize the analysis program. The β-delayed proton transitions to the first 3 excited states in 19 Ne were identified and compared to previous measurements. The half-life, the branching ratio of the transitions and the excitation energies, including the IAS, were measured and are in good agreement with the adopted values. The study of the β+ decay of 23 Si allowed the identification of 14 excited states in 23 Al. The emission of 2 protons from the IAS was unambiguously identified. The measurement of the IAS energy allowed a better determination of the mass excess of 23 Si, giving 23.27 (7) MeV. A possible β3p decay channel was also tentatively identified. Most of the theoretical predictions are in favor of a 2-proton radioactive 22 Si. The β2p decays to the first excited state and the ground state of 20 Na were identified. The branching ratio of the decay to the IAS is 2.05 (44) %, and the IAS excitation energy was measured to be 9040 (54) keV. The additional measurement of the half-life gives T 1/2 = 30.38 (45) ms, and allowed the determination of the partial half-life. In this study, we propose a parameterization of the statistical rate function f for the superallowed Fermi β decays. This allow the first indirect mass measurement of 22 Si ground state, 31.49 (14) MeV. The two-proton threshold is then S2p = 645 (100) keV and does not allow 2p radioactivity. (author) [fr

  10. Angular dependence of neutron yield and of spectrum of neutrons producted in pA and π-A interactions

    International Nuclear Information System (INIS)

    Bayukov, Yu.D.; Gavrilov, V.B.; Goryainov, N.A.

    1982-01-01

    Neutron spectra are measured in the T kinetic energy range from 6 up to 20a MeV. Neutrons escape from C, Cu, Pb, U nuclei under the angles of THETA=10 deg + 160 deg in p+A → n+x reaction at 7.5 GeV/c and in π - +A → n+x reaction at 5.0 GeV/c. In the 80-200 MeV secondary neutron energy range the obtained data are compared with the results of simultaneous measurements of proton spectra. The effect of itopic symmetry of fast nucleon yield from non-symmetric nuclei are under considereation. Division of contributions of quasi-free and deep inelastic nuclear processes to fast neutron formation is carried out on the basis of the data obtained

  11. Hydration-dependent dynamics of human telomeric oligonucleotides in the picosecond timescale: A neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Sebastiani, F.; Comez, L.; Sacchetti, F. [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia (Italy); CNR, Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, 06123 Perugia (Italy); Longo, M. [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia (Italy); Elettra—Sincrotrone Trieste, 34149 Basovizza, Trieste (Italy); Orecchini, A.; Petrillo, C.; Paciaroni, A., E-mail: alessandro.paciaroni@fisica.unipg.it [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia (Italy); De Francesco, A. [CNR-IOM OGG c/o Institut Laue-Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9 (France); Muthmann, M. [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at Heinz Maier-Leibnitz Zentrum, Lichtenbergstrasse 1, 85747 Garching (Germany); Teixeira, S. C. M. [EPSAM, Keele University, Staffordshire ST5 5BG (United Kingdom); Institut Laue–Langevin, 71 Avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9 (France)

    2015-07-07

    The dynamics of the human oligonucleotide AG{sub 3}(T{sub 2}AG{sub 3}){sub 3} has been investigated by incoherent neutron scattering in the sub-nanosecond timescale. A hydration-dependent dynamical activation of thermal fluctuations in weakly hydrated samples was found, similar to that of protein powders. The amplitudes of such thermal fluctuations were evaluated in two different exchanged wave-vector ranges, so as to single out the different contributions from intra- and inter-nucleotide dynamics. The activation energy was calculated from the temperature-dependent characteristic times of the corresponding dynamical processes. The trends of both amplitudes and activation energies support a picture where oligonucleotides possess a larger conformational flexibility than long DNA sequences. This additional flexibility, which likely results from a significant relative chain-end contribution to the average chain dynamics, could be related to the strong structural polymorphism of the investigated oligonucleotides.

  12. Impact Parameter Dependence of the Double Neutron/Proton Ratio of Nucleon Emissions in Isotopic Reaction Systems

    International Nuclear Information System (INIS)

    Xun-Chao, Zhang; Gao-Chan, Yong; Bao-An, Li; Lie-Wen, Chen

    2009-01-01

    Within the transport model IBUU04, we investigate the double neutron/proton ratio of free nucleons taken from two reaction systems using two Sn isotopes at a beam energy of 50 MeV/nucleon and with impact parameters 2 fm, 4 fm and 8 fm, respectively. It is found that the double neutron/proton ratio from peripheral collisions is more sensitive to the density dependence of the symmetry energy than those from mid-central and central collisions. (nuclear physics)

  13. Existence and controllability results for damped second order impulsive functional differential systems with state-dependent delay

    Directory of Open Access Journals (Sweden)

    M. Mallika Arjunan

    2014-01-01

    Full Text Available In this paper, we investigate the existence and controllability of mild solutions for a damped second order impulsive functional differential equation with state-dependent delay in Banach spaces. The results are obtained by using Sadovskii's fixed point theorem combined with the theories of a strongly continuous cosine family of bounded linear operators. Finally, an example is provided to illustrate the main results.

  14. Peculiar time dependence of unexpected lines in delayed beam-foil X-ray spectra of V, Fe and Ni

    International Nuclear Information System (INIS)

    Ahmad, Nissar; Karn, Ranjeet K.; Marketos, Pan; Nandi, T.

    2005-01-01

    Delayed beam-foil X-ray spectra of highly charged ions of V, Fe and Ni show a few lines at energies higher than the H-like Lyman α-line of the respective projectile ions. These can only be attributed to heavier ions. Further the time dependence of such unexpected lines display a peculiar behavior. This work presents the experimental observations systematically

  15. Time interval approach to the pulsed neutron logging method

    International Nuclear Information System (INIS)

    Zhao Jingwu; Su Weining

    1994-01-01

    The time interval of neighbouring neutrons emitted from a steady state neutron source can be treated as that from a time-dependent neutron source. In the rock space, the neutron flux is given by the neutron diffusion equation and is composed of an infinite terms. Each term s composed of two die-away curves. The delay action is discussed and used to measure the time interval with only one detector in the experiment. Nuclear reactions with the time distribution due to different types of radiations observed in the neutron well-logging methods are presented with a view to getting the rock nuclear parameters from the time interval technique

  16. Position-dependent radiative transfer as a tool for studying Anderson localization: Delay time, time-reversal and coherent backscattering

    Science.gov (United States)

    van Tiggelen, B. A.; Skipetrov, S. E.; Page, J. H.

    2017-05-01

    Previous work has established that the localized regime of wave transport in open media is characterized by a position-dependent diffusion coefficient. In this work we study how the concept of position-dependent diffusion affects the delay time, the transverse confinement, the coherent backscattering, and the time reversal of waves. Definitions of energy transport velocity of localized waves are proposed. We start with a phenomenological model of radiative transfer and then present a novel perturbational approach based on the self-consistent theory of localization. The latter allows us to obtain results relevant for realistic experiments in disordered quasi-1D wave guides and 3D slabs.

  17. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    Science.gov (United States)

    Wu, Bin

    Neutron scattering and fully atomistic molecular dynamics (MD) are employed to investigate the structural and dynamical properties of polyamidoamine (PAMAM) dendrimers with ethylenediamine (EDA) core under various charge conditions. Regarding to the conformational characteristics, we focus on scrutinizing density profile evolution of PAMAM dendrimers as the molecular charge of dendrimer increases from neutral state to highly charged condition. It should be noted that within the context of small angle neutron scattering (SANS), the dendrimers are composed of hydrocarbon component (dry part) and the penetrating water molecules. Though there have been SANS experiments that studied the charge-dependent structural change of PAMAM dendrimers, their results were limited to the collective behavior of the aforementioned two parts. This study is devoted to deepen the understanding towards the structural responsiveness of intra-molecular polymeric and hydration parts separately through advanced contrast variation SANS data analysis scheme available recently and unravel the governing principles through coupling with MD simulations. Two kinds of acids, namely hydrochloric and sulfuric acids, are utilized to tune the pH condition and hence the molecular charge. As far as the dynamical properties, we target at understanding the underlying mechanism that leads to segmental dynamic enhancement observed from quasielstic neutron scattering (QENS) experiment previously. PAMAM dendrimers have a wealth of potential applications, such as drug delivery agency, energy harvesting medium, and light emitting diodes. More importantly, it is regarded as an ideal system to test many theoretical predictions since dendrimers conjugate both colloid-like globular shape and polymer-like flexible chains. This Ph.D. research addresses two main challenges in studying PAMAM dendrimers. Even though neutron scattering is an ideal tool to study this PAMAM dendrimer solution due to its matching temporal and

  18. Distributed Containment Control of Networked Fractional-Order Systems with Delay-Dependent Communications

    Directory of Open Access Journals (Sweden)

    Xueliang Liu

    2012-01-01

    Full Text Available This paper is concerned with a containment problem of networked fractional-order system with multiple leaders under a fixed directed interaction graph. Based on the neighbor rule, a distributed protocol is proposed in delayed communication channels. By employing the algebraic graph theory, matrix theory, Nyquist stability theorem, and frequency domain method, it is analytically proved that the whole follower agents will flock to the convex hull which is formed by the leaders. Furthermore, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is obtained. As a special case, the interconnection topology under the undirected case is also discussed. Finally, some numerical examples with simulations are presented to demonstrate the effectiveness and correctness of the theoretical results.

  19. Boundary layer phenomena for differential-delay equations with state-dependent time lags, I.

    Science.gov (United States)

    Mallet-Paret, John; Nussbaum, Roger D.

    1992-11-01

    In this paper we begin a study of the differential-delay equation \\varepsilon x'(t) = - x(t) + f(x(t - r)), r = r(x(t)) . We prove the existence of periodic solutions for 0equations. In a companion paper these results will be used to investigate the limiting profile and corresponding boundary layer phenomena for periodic solutions as ɛ approaches zero.

  20. Time dependent worldwide distribution of atmospheric neutrons and of their products. I, II, III.

    Science.gov (United States)

    Merker, M.; Light, E. S.; Verschell, H. J.; Mendell, R. B.; Korff, S. A.

    1973-01-01

    Review of the experimental results obtained in a series of measurements of the fast neutron cosmic ray spectrum by means of high-altitude balloons and aircraft. These results serve as a basis for checking a Monte Carlo calculation of the entire neutron distribution and its products. A calculation of neutron production and transport in the earth's atmosphere is then discussed for the purpose of providing a detailed description of the morphology of secondary neutron components. Finally, an analysis of neutron observations during solar particle events is presented. The Monte Carlo output is used to estimate the contribution of flare particles to fluctuations in the steady state neutron distributions.

  1. Strong Delayed Interactive Effects of Metal Exposure and Warming: Latitude-Dependent Synergisms Persist Across Metamorphosis.

    Science.gov (United States)

    Debecker, Sara; Dinh, Khuong V; Stoks, Robby

    2017-02-21

    As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species' ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and low-latitude populations. By integrating these mechanisms into a single study, we could identify two novel patterns. First, during exposure zinc did not affect survival, whereas it induced mild to moderate postexposure mortality in the larval stage and at metamorphosis, and very strongly reduced adult lifespan. This severe delayed effect across metamorphosis was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies. These results highlight that a more complete life-cycle approach that incorporates the possibility of delayed interactions between contaminants and warming in a geographical context is crucial for a more realistic risk assessment in a warming world.

  2. Positive solution of a time and energy dependent neutron transport problem

    International Nuclear Information System (INIS)

    Pao, C.V.

    1975-01-01

    A constructive method is given for the determination of a solution and an existence--uniqueness theorem for some nonlinear time and energy dependent neutron transport problems, including the linear transport system. The geometry of the medium under consideration is allowed to be either bounded or unbounded which includes the geometry of a finite or infinite cylinder, a half-space and the whole space R/subm/ (m=1,2,center-dotcenter-dotcenter-dot). Our approach to the problem is by successive approximation which leads to various recursion formulas for the approximations in terms of explicit integrations. It is shown under some Lipschitz conditions on the nonlinear functions, which describe the process of neutrons absorption, fission, and scattering, that the sequence of approximations converges to a unique positive solution. Since these conditions are satisfied by the linear transport equation, all the results for the nonlinear system are valid for the linear transport problem. In the general nonlinear problem, the existence of both local and global solutions are discussed, and an iterative process for the construction of the solution is given

  3. Dynamic neutron depolarization system for the investigation of time dependent magnetic effects

    International Nuclear Information System (INIS)

    Hammer, J.; Badurek, G.; Rauch, H.

    1978-01-01

    To study magnetic after-effects in ferro- and superparamagnetic materials within a range of about 100 μs - 10s a so-called dynamic neutron depolarization system has been developed that is currently installed at the polarized beam facility of the TRIGA Mark II reactor, Vienna. It allows to measure the time dependence of the polarization change of an initially fully polarized neutron beam on its transmission through a sample exposed to a pulsed magnetic field. A split-pair coil mounted directly on the nitrogen shield of a specially designed helium/nitrogen bath cryostat can be energized up to a maximal induction of 0.25T at a slope of about 10 3 Ts -1 . Sample temperatures in the ranges of 4.2-15K and 77-120K can be established. In order to minimize eddy currents the coil suspension as well as the sample holder are sliced radially. The maximal repetition frequency of the field pulses is 100 Hz which is the upper limit of the multiscaler system we use for a synchronized registration of the beam polarization. First measurements are dealing with the superparamagnetic system Cu-1%Co where single domain cobalt precipitations are expected to give rise to relaxation phenomena well observable with this method. (author)

  4. Measurement of the Time Dependence of Neutron Slowing-Down and Therma in Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E

    1966-03-15

    The behaviour of neutrons during their slowing-down and thermalization in heavy water has been followed on the time scale by measurements of the time-dependent rate of reaction between the flux and the three spectrum indicators indium, cadmium and gadolinium. The space dependence of the reaction rate curves has also been studied. The time-dependent density at 1.46 eV is well reproduced by a function, given by von Dardel, and a time for the maximum density of 7.1 {+-} 0.3 {mu}s has been obtained for this energy in deuterium gas in agreement with the theoretical value of 7.2 {mu}s. The spatial variation of this time is in accord with the calculations by Claesson. The slowing- down time to 0.2 eV has been found to be 16.3 {+-}2.4 {mu}s. The approach to the equilibrium spectrum takes place with a time constant of 33 {+-}4 {mu}s, and the equilibrium has been established after about 200 {mu}s. Comparison of the measured curves for cadmium and gadolinium with multigroup calculations of the time-dependent flux and reaction rate show the superiority of the scattering models for heavy water of Butler and of Brown and St. John over the mass 2 gas model. The experiment has been supplemented with Monte Carlo calculations of the slowing down time.

  5. Reaction rate and composition dependence of the stability of thermonuclear burning on accreting neutron stars

    International Nuclear Information System (INIS)

    Keek, L.; Cyburt, R. H.; Heger, A.

    2014-01-01

    The stability of thermonuclear burning of hydrogen and helium accreted onto neutron stars is strongly dependent on the mass accretion rate. The burning behavior is observed to change from Type I X-ray bursts to stable burning, with oscillatory burning occurring at the transition. Simulations predict the transition at a 10 times higher mass accretion rate than observed. Using numerical models we investigate how the transition depends on the hydrogen, helium, and CNO mass fractions of the accreted material, as well as on the nuclear reaction rates of 3α and the hot-CNO breakout reactions 15 O(α, γ) 19 Ne and 18 Ne(α, p) 21 Na. For a lower hydrogen content the transition is at higher accretion rates. Furthermore, most experimentally allowed reaction rate variations change the transition accretion rate by at most 10%. A factor 10 decrease of the 15 O(α, γ) 19 Ne rate, however, produces an increase of the transition accretion rate of 35%. None of our models reproduce the transition at the observed rate, and depending on the true 15 O(α, γ) 19 Ne reaction rate, the actual discrepancy may be substantially larger. We find that the width of the interval of accretion rates with marginally stable burning depends strongly on both composition and reaction rates. Furthermore, close to the stability transition, our models predict that X-ray bursts have extended tails where freshly accreted fuel prolongs nuclear burning.

  6. Measurement of the Time Dependence of Neutron Slowing-Down and Therma in Heavy Water

    International Nuclear Information System (INIS)

    Moeller, E.

    1966-03-01

    The behaviour of neutrons during their slowing-down and thermalization in heavy water has been followed on the time scale by measurements of the time-dependent rate of reaction between the flux and the three spectrum indicators indium, cadmium and gadolinium. The space dependence of the reaction rate curves has also been studied. The time-dependent density at 1.46 eV is well reproduced by a function, given by von Dardel, and a time for the maximum density of 7.1 ± 0.3 μs has been obtained for this energy in deuterium gas in agreement with the theoretical value of 7.2 μs. The spatial variation of this time is in accord with the calculations by Claesson. The slowing- down time to 0.2 eV has been found to be 16.3 ±2.4 μs. The approach to the equilibrium spectrum takes place with a time constant of 33 ±4 μs, and the equilibrium has been established after about 200 μs. Comparison of the measured curves for cadmium and gadolinium with multigroup calculations of the time-dependent flux and reaction rate show the superiority of the scattering models for heavy water of Butler and of Brown and St. John over the mass 2 gas model. The experiment has been supplemented with Monte Carlo calculations of the slowing down time

  7. The feasibility of in vivo quantification of bone-fluorine in humans by delayed neutron activation analysis: a pilot study

    International Nuclear Information System (INIS)

    Chamberlain, M; Gräfe, J L; Aslam; Byun, S H; Chettle, D R; Egden, L M; Orchard, G M; Webber, C E; McNeill, F E

    2012-01-01

    Fluorine (F) plays an important role in dental health and bone formation. Many studies have shown that excess fluoride (F − ) can result in dental or skeletal fluorosis, while other studies have indicated that a proper dosage of fluoride may have a protective effect on bone fracture incidence. Fluorine is stored almost completely in the skeleton making bone an ideal site for measurement to assess long-term exposure. This paper outlines a feasibility study of a technique to measure bone-fluorine non-invasively in the human hand using in vivo neutron activation analysis (IVNAA) via the 19 F(n,γ) 20 F reaction. Irradiations were performed using the Tandetron accelerator at McMaster University. Eight NaI(Tl) detectors arranged in a 4π geometry were employed for delayed counting of the emitted 1.63 MeV gamma ray. The short 11 s half-life of 20 F presents a difficult and unique practical challenge in terms of patient irradiation and subsequent detection. We have employed two simultaneous timing methods to determine the fluorine sensitivity by eliminating the interference of the 1.64 MeV gamma ray from the 37 Cl(n,γ) 38 Cl reaction. The timing method consisted of three counting periods: an initial 30 s (sum of three 10 s periods) count period for F, followed by a 120 s decay period, and a subsequent 300 s count period to obtain information pertaining to Ca and Cl. The phantom minimum detectable limit (M DL ) determined by this method was 0.96 mg F/g Ca. The M DL was improved by dividing the initial timing period into three equal segments (10 s each) and combining the results using inverse variance weighting. This resulted in a phantom M DL of 0.66 mg F/g Ca. These detection limits are comparable to ex vivo results for various bones in the adult skeleton reported in the literature. Dosimetry was performed for these irradiation conditions. The equivalent dose for each phantom measurement was determined to be 30 mSv. The effective dose was however low, 35 µSv, which is

  8. A stochastic model for neutron simulation considering the spectrum and nuclear properties with continuous dependence of energy

    International Nuclear Information System (INIS)

    Camargo, Dayana Queiroz de

    2011-01-01

    This thesis has developed a stochastic model to simulate the neutrons transport in a heterogeneous environment, considering continuous neutron spectra and the nuclear properties with its continuous dependence on energy. This model was implemented using Monte Carlo method for the propagation of neutrons in different environment. Due to restrictions with respect to the number of neutrons that can be simulated in reasonable computational processing time introduced the variable control volume along the (pseudo-) periodic boundary conditions in order to overcome this problem. The choice of class physical Monte Carlo is due to the fact that it can decompose into simpler constituents the problem of solve a transport equation. The components may be treated separately, these are the propagation and interaction while respecting the laws of energy conservation and momentum, and the relationships that determine the probability of their interaction. We are aware of the fact that the problem approached in this thesis is far from being comparable to building a nuclear reactor, but this discussion the main target was to develop the Monte Carlo model, implement the code in a computer language that allows extensions of modular way. This study allowed a detailed analysis of the influence of energy on the neutron population and its impact on the life cycle of neutrons. From the results, even for a simple geometrical arrangement, we can conclude the need to consider the energy dependence, i.e. an spectral effective multiplication factor should be introduced each energy group separately. (author)

  9. Irradiation temperature dependence of defect formation of nitrides (A1N and c-BN) during neutron irradiations

    International Nuclear Information System (INIS)

    Atobe, Kozo.; Okada, Moritami; Nakagawa, Masuo

    2000-01-01

    The nitrogen vacancy concentration in the more refractory nitrides (A1N and c-BN) is determined as a function of reactor fluence up to 5.2x10 17 thermal neutrons/cm 2 and a function of the irradiation temperature at 25, 50, 100, 150, 200, 250 K. It is found that there is no remarkable dependence of the defect formation in nitrides on the irradiation temperature. The production of damage in the nitrides is considerably different from that in oxides. From the irradiation experiments using thermal neutron irradiation field, it is suggested in reactor irradiation that the atomic displacements in the nitrides occur predominately from energetic particles of the nuclear reactions with thermal neutrons in addition to the elastic collisions by fast neutron

  10. Effects of momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei

    International Nuclear Information System (INIS)

    Li Baoan; Das, Champak B.; Das Gupta, Subal; Gale, Charles

    2004-01-01

    Using an isospin- and momentum-dependent transport model we study effects of the momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei. It is found that symmetry potentials with and without the momentum-dependence but corresponding to the same density-dependent symmetry energy E sym (ρ) lead to significantly different predictions on several E sym (ρ)-sensitive experimental observables especially for energetic nucleons. The momentum- and density-dependence of the symmetry potential have to be determined simultaneously in order to extract the E sym (ρ) accurately. The isospin asymmetry of midrapidity nucleons at high transverse momenta is particularly sensitive to the momentum-dependence of the symmetry potential. It is thus very useful for investigating accurately the equation of state of dense neutron-rich matter

  11. Time development and flux dependence of neutron-irradiation induced defects in silicon pad detectors

    CERN Document Server

    Zontar, D; Kramberger, G; Mikuz, M

    1999-01-01

    1x1 cm sup 2 silicon pad p sup + -n-n sup + detectors were irradiated with fast neutrons from the TRIGA research reactor in Ljubljana to fluences from 5x10 sup 1 sup 3 to 10 sup 1 sup 4 n/cm sup 2. The observed time development of annealing of the full-depletion voltage (FDV) could be fitted by a constant and two exponentials. The characteristic time of the fast component is 4 h, independent of temperature in the interval 0-15 deg. C. A comparison of MESA and planar pad detectors shows a 20-30% lower FDV for the MESA. A search for a flux dependence of the radiation damage was performed in the range from 2x10 sup 8 to 5x10 sup 1 sup 5 n/cm sup 2 s and no systematic differences were observed.

  12. Angular and dose dependence of CR-39 neutron response for shape-selected tracks

    CERN Document Server

    Tam, N C; Lakosi, L

    1999-01-01

    A shape selection method corresponding to an energy discrimination was used to eliminate unwanted events disturbing evaluation of CR-39 detectors in detecting tracks induced by particles both of perpendicular and oblique incidence. The angular dependence of the response was examined, detecting fast neutrons from sup 2 sup 5 sup 2 Cf with shape selection technique at various angles and distances. Also, the CR-39 track detectors with the sup 2 sup 5 sup 2 Cf source were exposed to high gamma-intensity of a sup 6 sup 0 Co irradiation facility in the range 0.1 to 4.5 kGy, similar to the exposures inside spent fuel assemblies. Using the two functions the lower limit of burnup could be determined by the method.

  13. Recent SLAC measurements of the spin dependent structure functions for the proton and neutron

    International Nuclear Information System (INIS)

    Zapalac, G.

    1995-09-01

    The authors present results from SLAC experiments E142 and E143 for the spin dependent structure functions of the proton g 1 p (x, Q 2 ) and neutron g 1 n (x,Q 2 ) measured in deep inelastic scattering of polarized electrons from a polarized target. Experiment E142 measures ∫ 0 1 g 1 n (x)dx = -0.022 ± 0.011 at 2 > = 2 (GeV/c) 2 using a polarized 3 He target. Experiment E143 measures ∫ 0 1 g 1 p (x)dx = 0.129 ± 0.011 at 2 > = 3 (GeV/c) 2 using a polarized NH 3 target. These results are combined at Q 2 = 3 (GeV/c) 2 to yield ∫ 0 1 [g 1 p (x) - g 1 n (x)]dx = 0.151 ± 0.015. The Bjorken sum rule predicts 0.171 ± 0.008

  14. A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay

    International Nuclear Information System (INIS)

    Misra, A.K.; Mishra, S.N.; Pathak, A.L.; Srivastava, P.K.; Chandra, Peeyush

    2013-01-01

    In this paper, a non-linear delay mathematical model for the control of carrier-dependent infectious diseases through insecticides is proposed and analyzed. In the modeling process, it is assumed that disease spreads due to direct contact between susceptibles and infectives as well as through carriers (indirect contact). Further, it is assumed that insecticides are used to kill carriers and the rate of introduction of insecticides is proportional to the density of carriers with some time lag. The model analysis suggests that as delay in using insecticides exceeds some critical value, the system loses its stability and Hopf-bifurcation occurs. The direction, stability and period of the bifurcating periodic solutions arising through Hopf-bifurcation are also analyzed using normal form concept and center manifold theory. Numerical simulation is carried out to confirm the obtained analytical results

  15. Photobiomodulation delays the onset of skeletal muscle fatigue in a dose-dependent manner.

    Science.gov (United States)

    Larkin-Kaiser, Kelly A; Borsa, Paul A; Baweja, Harsimran S; Moore, Molly A; Tillman, Mark D; George, Steven Z; Christou, Evangelos A

    2016-09-01

    Photobiomodulation (PBM) therapy has been implicated as an effective ergogenic aid to delay the onset of muscle fatigue. The purpose of this study was to examine the dose-response ergogenic properties of PBM therapy and its ability to prolong time to task failure by enhancing muscle activity and delaying the onset of muscle fatigue using a static positioning task. Nine participants (24.3 ± 4.9 years) received three doses of near-infrared (NIR) light therapy randomly on three separate sessions (sham, 240, and 480 J). For the positioning task, participants held a 30 % one-repetition maximum (1-RM) load using the index finger until volitional fatigue. Surface electromyography (sEMG) of the first dorsal interosseous muscle was recorded for the length of the positioning task. Outcomes included time to task failure (TTF), muscle fatigue, movement accuracy, motor output variability, and muscle activity (sEMG). The 240-J dose significantly extended TTF by 26 % (p = 0.032) compared with the sham dose. TTF for the 240-J dose was strongly associated with a decrease in muscle fatigue (R (2) = 0.54, p = 0.024). Our findings show that a 240-J dose of NIR light therapy is efficacious in delaying the onset and extent of muscle fatigue during submaximal isometric positioning tasks. Our findings suggest that NIR light therapy may be used as an ergogenic aid during functional tasks or post-injury rehabilitation.

  16. A computationally simple model for determining the time dependent spectral neutron flux in a nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.A. [Department of Mechanical Engineering, University of Texas, Austin, TX (United States); Deinert, M.R. [Theoretical and Applied Mechanics, Cornell University, 219 Kimball Hall, Ithaca, NY 14853 (United States)]. E-mail: mrd6@cornell.edu; Cady, K.B. [Theoretical and Applied Mechanics, Cornell University, 219 Kimball Hall, Ithaca, NY 14853 (United States)

    2006-10-15

    The balance of isotopes in a nuclear reactor core is key to understanding the overall performance of a given fuel cycle. This balance is in turn most strongly affected by the time and energy-dependent neutron flux. While many large and involved computer packages exist for determining this spectrum, a simplified approach amenable to rapid computation is missing from the literature. We present such a model, which accepts as inputs the fuel element/moderator geometry and composition, reactor geometry, fuel residence time and target burnup and we compare it to OECD/NEA benchmarks for homogeneous MOX and UOX LWR cores. Collision probability approximations to the neutron transport equation are used to decouple the spatial and energy variables. The lethargy dependent neutron flux, governed by coupled integral equations for the fuel and moderator/coolant regions is treated by multigroup thermalization methods, and the transport of neutrons through space is modeled by fuel to moderator transport and escape probabilities. Reactivity control is achieved through use of a burnable poison or adjustable control medium. The model calculates the buildup of 24 actinides, as well as fission products, along with the lethargy dependent neutron flux and the results of several simulations are compared with benchmarked standards.

  17. Burnup-dependent core neutronics analysis of plate-type research reactor using deterministic and stochastic methods

    International Nuclear Information System (INIS)

    Liu, Shichang; Wang, Guanbo; Liang, Jingang; Wu, Gaochen; Wang, Kan

    2015-01-01

    Highlights: • DRAGON & DONJON were applied in burnup calculations of plate-type research reactors. • Continuous-energy Monte Carlo burnup calculations by RMC were chosen as references. • Comparisons of keff, isotopic densities and power distribution were performed. • Reasons leading to discrepancies between two different approaches were analyzed. • DRAGON & DONJON is capable of burnup calculations with appropriate treatments. - Abstract: The burnup-dependent core neutronics analysis of the plate-type research reactors such as JRR-3M poses a challenge for traditional neutronics calculational tools and schemes for power reactors, due to the characteristics of complex geometry, highly heterogeneity, large leakage and the particular neutron spectrum of the research reactors. Two different theoretical approaches, the deterministic and the stochastic methods, are used for the burnup-dependent core neutronics analysis of the JRR-3M plate-type research reactor in this paper. For the deterministic method the neutronics codes DRAGON & DONJON are used, while the continuous-energy Monte Carlo code RMC (Reactor Monte Carlo code) is employed for the stochastic one. In the first stage, the homogenizations of few-group cross sections by DRAGON and the full core diffusion calculations by DONJON have been verified by comparing with the detailed Monte Carlo simulations. In the second stage, the burnup-dependent calculations of both assembly level and the full core level were carried out, to examine the capability of the deterministic code system DRAGON & DONJON to reliably simulate the burnup-dependent behavior of research reactors. The results indicate that both RMC and DRAGON & DONJON code system are capable of burnup-dependent neutronics analysis of research reactors, provided that appropriate treatments are applied in both assembly and core levels for the deterministic codes

  18. Power Optimization of Multimode Mobile Embedded Systems with Workload-Delay Dependency

    Directory of Open Access Journals (Sweden)

    Hoeseok Yang

    2016-01-01

    Full Text Available This paper proposes to take the relationship between delay and workload into account in the power optimization of microprocessors in mobile embedded systems. Since the components outside a device continuously change their values or properties, the workload to be handled by the systems becomes dynamic and variable. This variable workload is formulated as a staircase function of the delay taken at the previous iteration in this paper and applied to the power optimization of DVFS (dynamic voltage-frequency scaling. In doing so, a graph representation of all possible workload/mode changes during the lifetime of a device, Workload Transition Graph (WTG, is proposed. Then, the power optimization problem is transformed into finding a cycle (closed walk in WTG which minimizes the average power consumption over it. Out of the obtained optimal cycle of WTG, one can derive the optimal power management policy of the target device. It is shown that the proposed policy is valid for both continuous and discrete DVFS models. The effectiveness of the proposed power optimization policy is demonstrated with the simulation results of synthetic and real-life examples.

  19. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    International Nuclear Information System (INIS)

    Hoffman, Adam J.; Lee, John C.

    2016-01-01

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.

  20. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Adam J., E-mail: adamhoff@umich.edu; Lee, John C., E-mail: jcl@umich.edu

    2016-02-15

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.

  1. A study of the effect of space-dependent neutronics on stochastically-induced bifurcations in BWR dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Analytis, G.T. [Paul Scherrer Institute (PSI), Villigen (Switzerland)

    1995-09-01

    A non-linear one-group space-dependent neutronic model for a finite one-dimensional core is coupled with a simple BWR feed-back model. In agreement with results obtained by the authors who originally developed the point-kinetics version of this model, we shall show numerically that stochastic reactivity excitations may result in limit-cycles and eventually in a chaotic behaviour, depending on the magnitude of the feed-back coefficient K. In the framework of this simple space-dependent model, the effect of the non-linearities on the different spatial harmonics is studied and the importance of the space-dependent effects is exemplified and assessed in terms of the importance of the higher harmonics. It is shown that under certain conditions, when the limit-cycle-type develop, the neutron spectra may exhibit strong space-dependent effects.

  2. Delay discounting, impulsiveness, and addiction severity in opioid-dependent patients.

    Science.gov (United States)

    Robles, Elias; Huang, B Emma; Simpson, Pippa M; McMillan, Donald E

    2011-12-01

    Individuals who abuse drugs show higher delay discounting (DD) rate and impulsiveness scores compared with controls; however, it is unclear if DD rate covaries with severity of the addiction or if an individual's discounting rate can be changed by effective substance abuse treatment. This study compared methadone maintenance treatment (MMT) patients (n = 30) who had not used illegal drugs for 2 years with drug-using MMT patients (n = 30) and controls (n = 25) in terms of addiction severity, DD rate, and impulsiveness. Methadone patients abstinent from illegal drugs scored significantly lower on a number of addiction severity measures than the drug-using methadone patients. In addition, both groups of MMT patients showed significantly higher rates of DD and impulsiveness than the control group; however, no differences in DD rate or impulsiveness were found between the groups of patients. Results suggest that DD rate and impulsiveness may not covary with indicators of addiction severity in MMT patients. Published by Elsevier Inc.

  3. Stability and Global Hopf Bifurcation Analysis on a Ratio-Dependent Predator-Prey Model with Two Time Delays

    Directory of Open Access Journals (Sweden)

    Huitao Zhao

    2013-01-01

    Full Text Available A ratio-dependent predator-prey model with two time delays is studied. By means of an iteration technique, sufficient conditions are obtained for the global attractiveness of the positive equilibrium. By comparison arguments, the global stability of the semitrivial equilibrium is addressed. By using the theory of functional equation and Hopf bifurcation, the conditions on which positive equilibrium exists and the quality of Hopf bifurcation are given. Using a global Hopf bifurcation result of Wu (1998 for functional differential equations, the global existence of the periodic solutions is obtained. Finally, an example for numerical simulations is also included.

  4. Delayed self-regulation and time-dependent chemical drive leads to novel states in epigenetic landscapes

    Science.gov (United States)

    Mitra, Mithun K.; Taylor, Paul R.; Hutchison, Chris J.; McLeish, T. C. B.; Chakrabarti, Buddhapriya

    2014-01-01

    The epigenetic pathway of a cell as it differentiates from a stem cell state to a mature lineage-committed one has been historically understood in terms of Waddington's landscape, consisting of hills and valleys. The smooth top and valley-strewn bottom of the hill represent their undifferentiated and differentiated states, respectively. Although mathematical ideas rooted in nonlinear dynamics and bifurcation theory have been used to quantify this picture, the importance of time delays arising from multistep chemical reactions or cellular shape transformations have been ignored so far. We argue that this feature is crucial in understanding cell differentiation and explore the role of time delay in a model of a single-gene regulatory circuit. We show that the interplay of time-dependent drive and delay introduces a new regime where the system shows sustained oscillations between the two admissible steady states. We interpret these results in the light of recent perplexing experiments on inducing the pluripotent state in mouse somatic cells. We also comment on how such an oscillatory state can provide a framework for understanding more general feedback circuits in cell development. PMID:25165605

  5. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    International Nuclear Information System (INIS)

    Hunt, Alan; Tobin, S. J.

    2015-01-01

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  6. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Alan [Idaho State Univ., Pocatello, ID (United States). Idaho Accelerator Center, Dept. of Physics; Reedy, E. T.E. [Idaho State Univ., Pocatello, ID (United States). Dept. of Phyics, Idaho Accelerator Center; Mozin, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, S. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Nonproliferation

    2015-02-12

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  7. Irradiation temperature dependence of production efficiency of lattice defects in some neutron-irradiated oxides

    International Nuclear Information System (INIS)

    Okada, Moritami; Atobe, Kozo; Nakagawa, Masuo

    2004-01-01

    Temperature dependence of production efficiency of irradiation-induced defects in neutron-irradiated oxides has been investigated. Some oxide single crystals, MgO, α-Al 2 O 3 (sapphire) and TiO 2 (rutile), were irradiated at several controlled temperatures, 10, 20, 50, 100, 150 and 200 K, using the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL), and at ambient temperature (∼370 K) in the same facility. Irradiation temperature dependence of production efficiency of a 1 μm band in TiO 2 differs greatly from that of anion vacancy (F-type centers) in MgO and α-Al 2 O 3 . Results for MgO and α-Al 2 O 3 show steep negative gradients from 10 to 370 K, whereas that for TiO 2 includes a valley between 40 and 60 K and a hump at about 130 K, and then disappear at about 200 K. In MgO and α-Al 2 O 3 , this behavior can be explained by the recombination of Frenkel pairs, which is activated at higher temperature. In TiO 2 , in addition to the recombination mechanism, a covalent bonding property is thought to be exerted strong influence, and it is suggested that a disappearance of the 1 μm band at above 200 K is due to the recombination process of Frenkel pairs which is caused by the irradiation-induced crystallization

  8. On grain size dependent void swelling in pure copper irradiated with fission neutrons

    International Nuclear Information System (INIS)

    Singh, B.N.; Eldrup, M.; Golubov, S.I.; Zinkle, S.J.

    2001-03-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms (SIAs). The phenomenon was investigated already in the 1970s and it was demonstrated that the grain size dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under cascade damage conditions was radically different and could not be explained in terms of the SRT. In an effort to understand the source of this significant difference, the effect of grain size on void swelling under cascade damage conditions has been investigated both experimentally and theoretically in pure copper irradiated with fission neutrons at 623K to a dose level of ∼0.3 dpa (displacement per atom). The post-irradiation defect microstructure including voids was investigated using transmission electron microscopy and positron annihilation spectroscopy. The evolution of void swelling was calculated within the framework of the production bias model (PBM) and the SRT. The grain size dependent void swelling measured experimentally is in good accord with the theoretical results obtained using PMB. Implications of these results on modeling of void swelling under cascade damage conditions are discussed. (au)

  9. Aldosterone downregulates delayed rectifier potassium currents through an angiotensin type 1 receptor-dependent mechanism.

    Science.gov (United States)

    Lv, Yankun; Wang, Yanjun; Zhu, Xiaoran; Zhang, Hua

    2018-01-01

    We have previously shown that aldosterone downregulates delayed rectifier potassium currents (I Ks ) via activation of the mineralocorticoid receptor (MR) in adult guinea pig cardiomyocytes. Here, we investigate whether angiotensin II/angiotensin type 1 receptor (AngII/AT1R) and intracellular calcium also play a role in these effects. Ventricular cardiomyocytes were isolated from adult guinea pigs and incubated with aldosterone (1 μmol·L -1 ) either alone or in combination with enalapril (1 μmol·L -1 ), losartan (1 μmol·L -1 ), nimodipine (1 μmol·L -1 ), or BAPTA-AM (2.5 μmol·L -1 ) for 24 h. We used the conventional whole cell patch-clamp technique to record the I Ks component. In addition, we evaluated expression of the I Ks subunits KCNQ1 and KCNE1 using Western blotting. Our results showed that both enalapril and losartan, but not nimodipine or BAPTA-AM, completely reversed the aldosterone-induced inhibition of I Ks and its effects on KCNQ1/KCNE1 protein levels. Furthermore, we found that AngII/AT1R mediates the inhibitory effects of aldosterone on I Ks . Finally, the downregulation of I Ks induced by aldosterone did not occur secondarily to a change in intracellular calcium concentrations. Taken together, our findings demonstrate that crosstalk between MR and AT1R underlies the effects of aldosterone, and provide new insights into the mechanism underlying potassium channels.

  10. H∞ Filtering for Discrete Markov Jump Singular Systems with Mode-Dependent Time Delay Based on T-S Fuzzy Model

    Directory of Open Access Journals (Sweden)

    Cheng Gong

    2014-01-01

    Full Text Available This paper investigates the H∞ filtering problem of discrete singular Markov jump systems (SMJSs with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition on H∞-disturbance attenuation is presented, in which both stability and prescribed H∞ performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependent H∞ filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI. Finally, an example is given to illustrate the effectiveness of the result.

  11. Quantitative analysis of the Ca2+ -dependent regulation of delayed rectifier K+ current IKs in rabbit ventricular myocytes.

    Science.gov (United States)

    Bartos, Daniel C; Morotti, Stefano; Ginsburg, Kenneth S; Grandi, Eleonora; Bers, Donald M

    2017-04-01

    [Ca 2+ ] i enhanced rabbit ventricular slowly activating delayed rectifier K + current (I Ks ) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol. Rabbit ventricular rapidly activating delayed rectifier K + current (I Kr ) amplitude and voltage dependence were unaffected by high [Ca 2+ ] i . When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca 2+ transient or when [Ca 2+ ] i was buffered to 500 nm. The slowly activating delayed rectifier K + current (I Ks ) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca 2+ ([Ca 2+ ] i ) and β-adrenergic receptor (β-AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca 2+ ] i dependence of I Ks in steady-state conditions and with dynamically changing membrane potential and [Ca 2+ ] i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole-cell patch clamp. With intracellular pipette solutions that controlled free [Ca 2+ ] i , we found that raising [Ca 2+ ] i from 100 to 600 nm produced similar increases in I Ks as did β-AR activation, and the effects appeared additive. Both β-AR activation and high [Ca 2+ ] i increased maximally activated tail I Ks , negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well-established mathematical model of the rabbit myocyte. In both AP-clamp experiments and simulations, I Ks recorded during a normal physiological Ca 2+ transient was similar to I Ks measured with [Ca 2+ ] i clamped at 500-600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca 2+ ] i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca 2+ ] i , in the submembrane or

  12. Measurement of the time dependent neutron energy spectrum in the 'DENA' plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahzadeh, M [Department of Physics, Imam Husein University, PO Box 16575-347, Tehran (Iran, Islamic Republic of); Sadat kiai, S M [Nuclear Science and Technology Research Institute (NSTRI), Nuclear Science Research School, A.E.O.I., PO Box 14155-1339, Tehran (Iran, Islamic Republic of); Babazadeh, A R [Physics Department, Qom University, PO Box 37165, Qom (Iran, Islamic Republic of)

    2008-10-15

    An extended time of flight method is used to determine the time dependent neutron energy spectrum in the Filippove type 'Dena' plasma focus (90 kJ, 25 kV, 288 {mu}F), filled with deuterium gas. An array of 5 detectors containing NE-102 plastic scintillators+photomultipliers is used. The number and position of the detectors are determined by a Monte Carlo program and the MCNP code. This paper briefly describes the simulation method and presents the experimental measurements and their results. The mechanisms of neutron production (thermonuclear and non-thermonuclear) and their time variations are discussed.

  13. Measurement of the Neutron Slowing-Down Time Distribution at 1.46 eV and its Space Dependence in Water

    International Nuclear Information System (INIS)

    Moeller, E.

    1965-12-01

    The use of the time dependent reaction rate method for the measurement of neutron slowing-down time distributions in hydrogen has been analyzed and applied to the case of sloping down in water. Neutrons with energies of about 1 MeV were slowed down, and the time-dependent neutron density at 1.46 eV and its space dependence was measured with a time resolution of 0.042 μs. The results confirm the well known theory for time-dependent slowing down in hydrogen. The space dependence of the distributions is well described by the P 1 -calculations by Claesson

  14. Measurement of the Neutron Slowing-Down Time Distribution at 1.46 eV and its Space Dependence in Water

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E

    1965-12-15

    The use of the time dependent reaction rate method for the measurement of neutron slowing-down time distributions in hydrogen has been analyzed and applied to the case of sloping down in water. Neutrons with energies of about 1 MeV were slowed down, and the time-dependent neutron density at 1.46 eV and its space dependence was measured with a time resolution of 0.042 {mu}s. The results confirm the well known theory for time-dependent slowing down in hydrogen. The space dependence of the distributions is well described by the P{sub 1}-calculations by Claesson.

  15. Dipole resonances in light neutron-rich nuclei studied with time-dependent calculations of antisymmetrized molecular dynamics

    International Nuclear Information System (INIS)

    Kanada-En'yo, Y.; Kimura, M.

    2005-01-01

    To study isovector dipole responses of neutron-rich nuclei, we applied a time-dependent method of antisymmetrized molecular dynamics. The dipole resonances in Be, B, and C isotopes were investigated. In 10 Be, 15 B, and 16 C, collective modes of the vibration between a core and valence neutrons cause soft resonances at the excitation energy E x =10-15 MeV below the giant dipole resonance (GDR). In 16 C, we found that a remarkable peak at E x =14 MeV corresponds to the coherent motion of four valence neutrons against a 12 C core, whereas the GDR arises in the E x >20 MeV region because of vibration within the core. In 17 B and 18 C, the dipole strengths in the low-energy region decline compared with those in 15 B and 16 C. We also discuss the energy-weighted sum rule for the E1 transitions

  16. Study and development of a method allowing the identification of actinides inside nuclear waste packages, by active neutron or photon interrogation and delayed gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Carrel, F.

    2007-10-01

    An accurate estimation of the alpha-activity of a nuclear waste package is necessary to select the best mode of storage. The main purpose of this work is to develop a non-destructive active method, based on the fission process and allowing the identification of actinides ( 235 U, 238 U, 239 Pu). These three elements are the main alpha emitters contained inside a package. Our technique is based on the detection of delayed gammas emitted by fission products. These latter are created by irradiation with the help of a neutron or photon beam. Performances of this method have been investigated after an Active Photon or Neutron Interrogation (INA or IPA). Three main objectives were fixed in the framework of this thesis. First, we measured many yields of photofission products to compensate the lack of data in the literature. Then, we studied experimental performances of this method to identify a given actinide ( 239 Pu in fission, 235 U in photofission) present in an irradiated mixture. Finally, we assessed the application of this technique on different mock-up packages for both types of interrogation (118 l mock-up package containing EVA in fission, 220 l mock-up package with a wall of concrete in photofission). (author)

  17. Temperature and dose dependencies of microstructure and hardness of neutron irradiated OFHC copper

    International Nuclear Information System (INIS)

    Singh, B.N.; Horsewell, A.; Toft, P.; Edwards, D.J.

    1995-01-01

    Tensile specimens of pure oxygen free high conductivity (OFHC) copper were irradiated with fission neutrons between 320 and 723 K to fluences in the range 5x10 21 to 1.5x10 24 n/m 2 (E>1 MeV) with a flux of 2.5x10 17 n/m 2 s. Irradiated specimens were investigated by transmission electron microscopy (TEM) and quantitative determinations were made of defect clusters and cavities. The dose dependence of tensile properties of specimens irradiated at 320 K was determined at 295 K. Hardness measurements were made at 295 K on specimens irradiated at different temperatures and doses. Microstructures of tensile tested specimens were also investigated by TEM. Results show that the increase in cluster density and hardening nearly saturate at a dose of similar 0.3 dpa. Irradiations at 320 K cause a drastic decrease in the uniform elongation already at ∼ =0.1 dpa. It is suggested that the irradiation-induced increase in the initial yield stress and a drastic decrease in the ability of copper to deform plastically in a homogeneous fashion are caused by a substantial reduction in the ability of grown-in dislocations to act as efficient dislocation sources. ((orig.))

  18. Energy Dependent Removal Cross-Sections in Fast Neutron Shielding Theory

    International Nuclear Information System (INIS)

    Groenroos, Henrik

    1965-05-01

    The analytical approximations behind the energy dependent removal cross-section concept of Spinney is investigated and its predictions compared with exact values calculated by Case's singular integral method. The exact values are obtained in plane infinite geometry for the two absorption ratios Σ a /Σ t = 0. 1 and Σ a /Σ t = 0.7 over a range of 20 mfp and for varying degrees of forward anisotrophy in the elastic scattering. The latter is characterized by choosing a suitable general scattering function. It is shown that Spinney's original definition follows if Grosjean's formalism, i. e. the matching of moments, is applied. The prediction of the neutron flux is remarkably accurate, and mostly within 50 % for the spatial range and cases investigated. A definition of the removal cross-sections based on matching the exact asymptotic solution to the exponential part of the approximate solution is found to give less accurate flux values than Spinney's model. A third way to define a removal cross-section independent of the spatial coordinates is the variational method. The possible uses of this technique is briefly commented upon

  19. Energy Dependent Removal Cross-Sections in Fast Neutron Shielding Theory

    Energy Technology Data Exchange (ETDEWEB)

    Groenroos, Henrik

    1965-05-15

    The analytical approximations behind the energy dependent removal cross-section concept of Spinney is investigated and its predictions compared with exact values calculated by Case's singular integral method. The exact values are obtained in plane infinite geometry for the two absorption ratios {sigma}{sub a}/{sigma}{sub t} = 0. 1 and {sigma}{sub a}/{sigma}{sub t} = 0.7 over a range of 20 mfp and for varying degrees of forward anisotrophy in the elastic scattering. The latter is characterized by choosing a suitable general scattering function. It is shown that Spinney's original definition follows if Grosjean's formalism, i. e. the matching of moments, is applied. The prediction of the neutron flux is remarkably accurate, and mostly within 50 % for the spatial range and cases investigated. A definition of the removal cross-sections based on matching the exact asymptotic solution to the exponential part of the approximate solution is found to give less accurate flux values than Spinney's model. A third way to define a removal cross-section independent of the spatial coordinates is the variational method. The possible uses of this technique is briefly commented upon.

  20. Energy dependence of the optical model of neutron scattering from niobium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Lawson, R.D.

    1985-05-01

    Neutron differential-elastic-scattering cross sections of niobium were measured from 1.5 to 10.0 MeV at intervals of less than or equal to200 keV below 4.0 MeV, and of approx. =500 keV from 4.0 to 10.0 MeV. Ten to more than fifty differential-cross-section values were determined at each incident energy, distributed over the angular range approx. =20 to 160 0 . The observed values were interpreted in the context of the spherical optical-statistical model. It was found that the volume integral of the real potential decreased with energy whereas the integral of the imaginary part increased. The energy dependence in both cases was consistent with a linear variation. There is a dispersion relationship between the real and imaginary potentials, and when this was used, in conjunction with the experimental imaginary potential, it was possible to predict the observed energy dependence of the real potential to a good degree of accuracy, thus supporting the consistency of the data and its analysis. The real-potential well depths needed to give the correct binding energies of the 2d/sub 5/2/, 3s/sub 1/2/, 2d/sub 3/2/ and 1g/sub 7/2/ particle states and of the 1g/sub 9/2/ hole state are in reasonable agreement with those given by a linear extrapolation of the scattering potential. However, the well depths needed to give the observed binding of the 2p/sub 3/2/, 1f/sub 5/2/ and 2p/sub 1/2/ hole states are about 10% less than the extrapolated values. 40 refs., 5 figs

  1. Irradiation temperature dependence of production efficiency of lattice defects in some neutron-irradiated oxides

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Moritami [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 5900494 (Japan)]. E-mail: okada@rri.kyoto-u.ac.jp; Atobe, Kozo [Faculty of Science, Naruto University of Education, Naruto, Tokushima 7728502 (Japan); Nakagawa, Masuo [Faculty of Education, Kagawa University, Takamatsu, Kagawa 7608522 (Japan)

    2004-11-01

    Temperature dependence of production efficiency of irradiation-induced defects in neutron-irradiated oxides has been investigated. Some oxide single crystals, MgO, {alpha}-Al{sub 2}O{sub 3} (sapphire) and TiO{sub 2} (rutile), were irradiated at several controlled temperatures, 10, 20, 50, 100, 150 and 200 K, using the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL), and at ambient temperature ({approx}370 K) in the same facility. Irradiation temperature dependence of production efficiency of a 1 {mu}m band in TiO{sub 2} differs greatly from that of anion vacancy (F-type centers) in MgO and {alpha}-Al{sub 2}O{sub 3}. Results for MgO and {alpha}-Al{sub 2}O{sub 3} show steep negative gradients from 10 to 370 K, whereas that for TiO{sub 2} includes a valley between 40 and 60 K and a hump at about 130 K, and then disappear at about 200 K. In MgO and {alpha}-Al{sub 2}O{sub 3}, this behavior can be explained by the recombination of Frenkel pairs, which is activated at higher temperature. In TiO{sub 2}, in addition to the recombination mechanism, a covalent bonding property is thought to be exerted strong influence, and it is suggested that a disappearance of the 1 {mu}m band at above 200 K is due to the recombination process of Frenkel pairs which is caused by the irradiation-induced crystallization.

  2. Dependence of isospin fractionation process on the neutron-proton ratio of a colliding system in intermediate energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xing Yongzhong; Liu Jianye; Fang Yutian; Guo Wenjun

    2004-01-01

    The degree of isospin fractionation is measured by the ratio of saturated neutron-proton: i.e. the ratio of gas phase (nucleon emission) to that of liquid phase (fragment emission) in heavy ion collisions. The authors have studied the dependence of the degree of isospin fractionation on the neutron-proton ratio in the colliding system by using isospin-dependent quantum molecular dynamical model. The calculated results show that the degree of isospin fractionation depends sensitively on the symmetry potential and weakly on the isospin effect of nucleon-nucleon cross section. In particular, the degree of isospin fractionation increases with increasing neutron-proton ratio in the colliding system for the neutron-rich system, in this process the neutron-rich gas phase and neutron-poor liquid phase are produced. The degree of isospin fractionation is very sensitive to the degree of symmetry potential. On the contrary, for the neutron-poor system the neutron-poor gas phase and neutron-rich liquid phase are produced. In this case, the degree of isospin fractionation is not sensitive to the symmetry potential. The authors also find that the role of momentum dependent interaction in the isospin fractionation process is not obvious. The authors propose that our calculated results can compared directly with the experimental data to get the information about the symmetry potential in the intermediate energy heavy-ion collisions

  3. BMAL1-dependent regulation of the mTOR signaling pathway delays aging.

    Science.gov (United States)

    Khapre, Rohini V; Kondratova, Anna A; Patel, Sonal; Dubrovsky, Yuliya; Wrobel, Michelle; Antoch, Marina P; Kondratov, Roman V

    2014-01-01

    The circadian clock, an internal time-keeping system, has been linked with control of aging, but molecular mechanisms of regulation are not known. BMAL1 is a transcriptional factor and core component of the circadian clock; BMAL1 deficiency is associated with premature aging and reduced lifespan. Here we report that activity of mammalian Target of Rapamycin Complex 1 (mTORC1) is increased upon BMAL1 deficiency both in vivo and in cell culture. Increased mTOR signaling is associated with accelerated aging; in accordance with that, treatment with the mTORC1 inhibitor rapamycin increased lifespan of Bmal1-/- mice by 50%. Our data suggest that BMAL1 is a negative regulator of mTORC1 signaling. We propose that the circadian clock controls the activity of the mTOR pathway through BMAL1-dependent mechanisms and this regulation is important for control of aging and metabolism.

  4. The new generations of power components will depend on neutron and/or electron bombardment techniques

    International Nuclear Information System (INIS)

    Lilen, H.

    1976-01-01

    Neutron and electron bombardment techniques for materials doping, newly introduced in the fabrication of power semiconductor components: diodes, transistors, thyristors, and triacs are briefly outlined. A neutron bombardment of high purity silicon results in a short-lived 31 Si isotope (from 30 Si) decaying into 31 P. The phosphorus with its five peripheral electrons induces a negative doping (N), and the neutron technique gives a homogeneous doping. Furthermore, silicon bombardment with 1 to 2MeV electrons induces micro-ruptures in the lattice, that act as recombination traps reducing carrier lifetimes. Consequently, gold diffusion techniques can be replaced by electron bombardment with a gain in controlling carrier lifetimes [fr

  5. Self powered neutron detectors

    International Nuclear Information System (INIS)

    Passe, J.; Petitcolas, H.; Verdant, R.

    1975-01-01

    The self-powered neutron detectors (SPND) enable to measure continuously high fluxes of thermal neutrons. They are particularly suitable for power reactor cores because of their robustness. Description of two kinds of SPND's characterized by the electrical current production way is given here: the first SPND's which present a V, Ag or Rh emitter are sensitive enough but they offer a few minute delay time: the second SPND's which are depending on the gamma activation have a short delay time. The emitter is made of Co or Pt. In any case, the signal is linear with reaction rates. Finally, the applications are briefly repeated here: irradiation facility monitor in research reactors, and flux map and space instability control in power reactors [fr

  6. B16 melanoma tumor growth is delayed in mice in an age-dependent manner

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2012-08-01

    Full Text Available A major risk factor for cancer is increasing age, which suggests that syngeneic tumor implants in old mice would grow more rapidly. However, various reports have suggested that old mice are not as permissive to implanted tumor cells as young mice. In order to determine and characterize the age-related response to B16 melanoma, we implanted 5×105 tumor cells into 8, 16, 24, and 32-month-old male C57BL/6 (B6 and C57BL/6×BALB/c F1 (CB6 F1 mice subcutaneously in the inguinal and axillary spaces, or intradermally in the lateral flank. Results showed decreased tumor volume with increasing age, which varied according to mouse genetic background and the implanted site. The B6 strain showed robust tumor growth at 8 months of age at the inguinal implantation site, with an average tumor volume of 1341.25 mm3. The 16, 24, and 32-month age groups showed a decrease in tumor growth with tumor volumes of 563.69, 481.02, and 264.55 mm3, respectively (p≤0.001. The axillary implantation site was less permissive in 8-month-old B6 mice with an average tumor volume of 761.52 mm3. The 24- and 32-month age groups showed a similar decrease in tumor growth with tumor volumes of 440 and 178.19 mm3, respectively (p≤0.01. The CB6F1 strain was not as tumor permissive at 8 months of age as B6 mice with average tumor volumes of 446.96 and 426.91 mm3 for the inguinal and axillary sites, respectively. There was a decrease in tumor growth at 24 months of age at both inguinal and axillary sites with an average tumor volume of 271.02 and 249.12 mm3, respectively (p≤0.05. The strain dependence was not apparent in 8-month-old mice injected intradermally with B16 melanoma cells, with average tumor volumes of 736.82 and 842.85 mm3 for B6 and CB6 F1, respectively. However, a strain difference was seen in 32-month-old B6 mice with an average decrease in tumor volume of 250.83 mm3 (p≤0.01. In contrast, tumor growth significantly decreased earlier in CB6 F1 mice with average

  7. The Determination of Uranium in Urine by Delayed Neutron Counting; Dosage de l'Uranium dans l'Urine par Comptage des Neutrons Differes; Opredelenie soderzhaniya urana v moche putem scheta zapazdyvayushchikh nejtronov; Determinacion del Uranio Contenido en la Orina por Recuento de Neutrones Retardados

    Energy Technology Data Exchange (ETDEWEB)

    Brookes, I. R. [Atomic Weapons Research Establishment, Aldermaston, Berks. (United Kingdom)

    1965-10-15

    For this method {sup 235}U is assayed by counting delayed neutrons emitted following the fission of {sup 235}U in the sample with thermal neutrons. The three groups of neutrons of interest have half-lives of 55.72, 22.72 and 6.22 s. A 100-ml sample of urine is evaporated to dryness on a water bath. The residue is transferred with about 4-5 ml of water to a 1-oz polythene bottle which is then heat sealed. The sample bottle is put into a ''rabbit'' and sent through a pneumatic tube system to the HERALD reactor core where it is irradiated in a thermal flux of 3.94 x 10{sup 12} n cm{sup 2}/s. The sample automatically returns to the laboratory after 60 s irradiation where the sample bottle is transferred to the counter. This counter is switched on 25 s after the sample has left the reactor and counts the sample for 1 min. Blank samples consist of urine from persons occupationally unexposed to uranium and the calibration standard is a known amount of {sup 235}U (as natural uranium). The limit of detection is 0.020 pCi of 93% enriched uranium (0.007 of the maximum permissible body- burden) and 0.036 {mu}g of natural uranium per 100 ml of urine. The limit of detection is governed by the magnitude of the blank count. The main component of the blank is the response of the counter to {gamma}-radiation from activation products in irradiated urine. The counting and irradiation cycle takes about 3 Vulgar-Fraction-One-Half min and 50 samples at one time may be evaporated and bottled in the working day. Interference from {sup 239}Pu is likely to be negligible for the purposes of urine analysis. (author) [French] U methode decrite consiste a doser l'uranium-235 d'un echantillon en comptant les neutrons differes emis lors de la fission de {sup 235}U par neutrons thermiques. Les trois groupes de neutrons qui presentent un interet ont des periodes de 55,72, 22, 72 et 6, 22 s. On fait evaporer 100 ml d'urine au bain-marie. Le residu est transvase avec 4 a 5 ml d'eau dans un flacon en

  8. MCT: a Monte Carlo code for time-dependent neutron thermalization problems

    International Nuclear Information System (INIS)

    Cupini, E.; Simonini, R.

    1974-01-01

    In the Monte Carlo simulation of pulse source experiments, the neutron energy spectrum, spatial distribution and total density may be required for a long time after the pulse. If the assemblies are very small, as often occurs in the cases of interest, sophisticated Monte Carlo techniques must be applied which force neutrons to remain in the system during the time interval investigated. In the MCT code a splitting technique has been applied to neutrons exceeding assigned target times, and we have found that this technique compares very favorably with more usual ones, such as the expected leakage probability, giving large gains in computational time and variance. As an example, satisfactory asymptotic thermal spectra with a neutron attenuation of 10 -5 were quickly obtained. (U.S.)

  9. Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2001-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding

  10. Neutron Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vanhavere, F

    2001-04-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding.

  11. Development of a new pressure dependent threshold superheated drop detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Rezaeian, Peiman [Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Raisali, Gholamreza, E-mail: graisali@aeoi.org.ir [Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Akhavan, Azam [Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Ghods, Hossein [Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 11365-3486, Tehran (Iran, Islamic Republic of); Hajizadeh, Bardia [Radiation Protection Division, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2015-03-11

    In this paper, a set of superheated drop detectors operated at different pressures is developed and fabricated by adding an appropriate amount of Freon-12 liquid on the free surface of the detector. The fabricated detectors have been used for determination of the threshold pressure for 2.89 MeV neutrons of a neutron generator in order to estimate the thermodynamic efficiency. Finally, knowing the thermodynamic efficiency of the detector and in a similar manner, the threshold pressure for {sup 241}Am–Be neutrons is determined and accordingly, the maximum neutron energy of the source spectrum is estimated. The maximum neutron energy of the {sup 241}Am–Be is estimated as 10.97±2.11 MeV. The agreement between this measured maximum energy and the reported value of the {sup 241}Am–Be neutron source shows that the method developed to apply pressure on the superheated drop detectors can be used to control the energy threshold of these detectors.

  12. Development of a new pressure dependent threshold superheated drop detector for neutrons

    International Nuclear Information System (INIS)

    Rezaeian, Peiman; Raisali, Gholamreza; Akhavan, Azam; Ghods, Hossein; Hajizadeh, Bardia

    2015-01-01

    In this paper, a set of superheated drop detectors operated at different pressures is developed and fabricated by adding an appropriate amount of Freon-12 liquid on the free surface of the detector. The fabricated detectors have been used for determination of the threshold pressure for 2.89 MeV neutrons of a neutron generator in order to estimate the thermodynamic efficiency. Finally, knowing the thermodynamic efficiency of the detector and in a similar manner, the threshold pressure for 241 Am–Be neutrons is determined and accordingly, the maximum neutron energy of the source spectrum is estimated. The maximum neutron energy of the 241 Am–Be is estimated as 10.97±2.11 MeV. The agreement between this measured maximum energy and the reported value of the 241 Am–Be neutron source shows that the method developed to apply pressure on the superheated drop detectors can be used to control the energy threshold of these detectors

  13. Systematic errors in the readings of track etch neutron dosemeters caused by the energy dependence of response

    International Nuclear Information System (INIS)

    Tanner, R.J.; Thomas, D.J.; Bartlett, D.T.; Horwood, N.

    1999-01-01

    A study has been performed to assess the extent to which variations in the energy dependence of response of neutron personal dosemeters can cause systematic errors in readings obtained in workplace fields. This involved a detailed determination of the response functions of personal dosemeters used in the UK. These response functions were folded with workplace spectra to ascertain the under- or over-response in workplace fields

  14. Systematic errors in the readings of track etch neutron dosemeters caused by the energy dependence of response

    CERN Document Server

    Tanner, R J; Bartlett, D T; Horwood, N

    1999-01-01

    A study has been performed to assess the extent to which variations in the energy dependence of response of neutron personal dosemeters can cause systematic errors in readings obtained in workplace fields. This involved a detailed determination of the response functions of personal dosemeters used in the UK. These response functions were folded with workplace spectra to ascertain the under- or over-response in workplace fields.

  15. SAM-CE, Time-Dependent 3-D Neutron Transport, Gamma Transport in Complex Geometry by Monte-Carlo

    International Nuclear Information System (INIS)

    2003-01-01

    1 - Nature of physical problem solved: The SAM-CE system comprises two Monte Carlo codes, SAM-F and SAM-A. SAM-F supersedes the forward Monte Carlo code, SAM-C. SAM-A is an adjoint Monte Carlo code designed to calculate the response due to fields of primary and secondary gamma radiation. The SAM-CE system is a FORTRAN Monte Carlo computer code designed to solve the time-dependent neutron and gamma-ray transport equations in complex three-dimensional geometries. SAM-CE is applicable for forward neutron calculations and for forward as well as adjoint primary gamma-ray calculations. In addition, SAM-CE is applicable for the gamma-ray stage of the coupled neutron-secondary gamma ray problem, which may be solved in either the forward or the adjoint mode. Time-dependent fluxes, and flux functionals such as dose, heating, count rates, etc., are calculated as functions of energy, time and position. Multiple scoring regions are permitted and these may be either finite volume regions or point detectors or both. Other scores of interest, e.g., collision and absorption densities, etc., are also made. 2 - Method of solution: A special feature of SAM-CE is its use of the 'combinatorial geometry' technique which affords the user geometric capabilities exceeding those available with other commonly used geometric packages. All nuclear interaction cross section data (derived from the ENDF for neutrons and from the UNC-format library for gamma-rays) are tabulated in point energy meshes. The energy meshes for neutrons are internally derived, based on built-in convergence criteria and user- supplied tolerances. Tabulated neutron data for each distinct nuclide are in unique and appropriate energy meshes. Both resolved and unresolved resonance parameters from ENDF data files are treated automatically, and extremely precise and detailed descriptions of cross section behaviour is permitted. Such treatment avoids the ambiguities usually associated with multi-group codes, which use flux

  16. Cellular neural networks (CNN) simulation for the TN approximation of the time dependent neutron transport equation in slab geometry

    International Nuclear Information System (INIS)

    Hadad, Kamal; Pirouzmand, Ahmad; Ayoobian, Navid

    2008-01-01

    This paper describes the application of a multilayer cellular neural network (CNN) to model and solve the time dependent one-speed neutron transport equation in slab geometry. We use a neutron angular flux in terms of the Chebyshev polynomials (T N ) of the first kind and then we attempt to implement the equations in an equivalent electrical circuit. We apply this equivalent circuit to analyze the T N moments equation in a uniform finite slab using Marshak type vacuum boundary condition. The validity of the CNN results is evaluated with numerical solution of the steady state T N moments equations by MATLAB. Steady state, as well as transient simulations, shows a very good comparison between the two methods. We used our CNN model to simulate space-time response of total flux and its moments for various c (where c is the mean number of secondary neutrons per collision). The complete algorithm could be implemented using very large-scale integrated circuit (VLSI) circuitry. The efficiency of the calculation method makes it useful for neutron transport calculations

  17. Delay-dependent working memory impairment in young-adult and aged 5-HT1BKO mice as assessed in a radial-arm water maze.

    Science.gov (United States)

    Wolff, Mathieu; Benhassine, Narimane; Costet, Pierre; Hen, Rene; Segu, Louis; Buhot, Marie-Christine

    2003-01-01

    Serotonin (5-HT) plays a modulatory role in mnemonic functions, especially by interacting with the cholinergic system. The 5-HT1B receptor is a key target of this interaction. The 5-HT1B receptor knockout mice were found previously to exhibit a facilitation in hippocampal-dependent spatial reference memory learning. In the present study, we submitted mice to a delayed spatial working memory task, allowing the introduction of various delays between an exposure trial and a test trial. The 5-HT1BKO and wild-type mice learned the task in a radial-arm water maze (returning to the most recent presented arm containing the escape platform), and exhibited a high level of performance at delays of 0 and 5 min. However, at the delay of 60 min, only 5-HT1BKO mice exhibited an impairment. At a delay of 90 min, all mice were impaired. Treatment by scopolamine (0.8 mg/kg) induced the same pattern of performance in wild type as did the mutation for short (5 min, no impairment) and long (60 min, impairment) delays. The 22-month-old wild-type and knockout mice exhibited an impairment at short delays (5 and 15 min). The effect of the mutation affected both young-adult and aged mice at delays of 15, 30, and 60 min. Neurobiological data show that stimulation of the 5-HT1B receptor inhibits the release of acetylcholine in the hippocampus, but stimulates this in the frontal cortex. This dual function might, at least in part, explain the opposite effect of the mutation on reference memory (facilitation) and delay-dependent working memory (impairment). These results support the idea that cholinergic-serotonergic interactions play an important role in memory processes.

  18. Study on neutron diffusion and time dependence heat ina fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Vilhena, M.T. de.

    1988-01-01

    The purpose of this work is to model the neutron diffusion and heat transfer for a Fluidized Bed Nuclear Reactor and its solution by Laplace Transform Technique with numerical inversion using Fourier Series. Also Gaussian quadrature and residues techniques were applied for numerical inversion. The neutron transport, diffusion, and point Kinetic equation for this nuclear reactor concept are developed. A matricial and Taylor Series methods are proposed for the solution of the point Kinetic equation which is a time scale problem of Stiff type

  19. Application of Trotter approximation for solving time dependent neutron transport equation; Primena Trotterove aproksimacije za resavanje vremenski zavisne transportne jednacine neutrona

    Energy Technology Data Exchange (ETDEWEB)

    Stancic, V [Institut za nuklearne nauke Boris Kidric, Vinca, Beograd (Yugoslavia)

    1987-07-01

    A method is proposed to solve multigroup time dependent neutron transport equation with arbitrary scattering anisotropy. The recurrence relation thus obtained is simple, numerically stable and especially suitable for treatment of complicated geometries. (author)

  20. Deficiency of the Cyclin-Dependent Kinase Inhibitor, CDKN1B, Results in Overgrowth and Neurodevelopmental Delay

    Science.gov (United States)

    Grey, William; Izatt, Louise; Sahraoui, Wafa; Ng, Yiu-Ming; Ogilvie, Caroline; Hulse, Anthony; Tse, Eric; Holic, Roman; Yu, Veronica

    2013-01-01

    Germline mutations in the cyclin-dependent kinase inhibitor, CDKN1B, have been described in patients with multiple endocrine neoplasia (MEN), a cancer predisposition syndrome with adult onset neoplasia and no additional phenotypes. Here, we describe the first human case of CDKN1B deficiency, which recapitulates features of the murine CDKN1B knockout mouse model, including gigantism and neurodevelopmental defects. Decreased mRNA and protein expression of CDKN1B were confirmed in the proband's peripheral blood, which is not seen in MEN syndrome patients. We ascribed the decreased protein level to a maternally derived deletion on chromosome 12p13 encompassing the CDKN1B locus (which reduced mRNA expression) and a de novo allelic variant (c.-73G>A) in the CDKN1B promoter (which reduced protein translation). We propose a recessive model where decreased dosage of CDKN1B during development in humans results in a neuronal phenotype akin to that described in mice, placing CDKN1B as a candidate gene involved in developmental delay. PMID:23505216

  1. The novel dehydroepiandrosterone (DHEA) derivative BNN27 counteracts delay-dependent and scopolamine-induced recognition memory deficits in rats.

    Science.gov (United States)

    Pitsikas, Nikolaos; Gravanis, Achille

    2017-04-01

    Experimental evidence indicates that the neurosteroids dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulphate (DHEAS) are involved in cognition. BNN27 is a novel 17C spiroepoxy-DHEA derivative, which devoid of steroidogenic activity. The neuroprotective effects of BNN27 have been recently reported. The present study was designed to investigate the effects of BNN27 on recognition memory in rats. For this purpose, the novel object task (NOT), a procedure assessing non-spatial recognition memory and the novel location task (NLT), a procedure evaluating spatial recognition memory were used. Intraperitoneal (i.p.) administration of BNN27 (3 and 10mg/kg) antagonized delay-dependent deficits in the NOT in the normal rat, suggesting that this DHEA derivative affected acquisition, storage and retrieval of information. In addition, BNN27 (3 and 10mg/kg, i.p.) counteracted the scopolamine [0.2mg/kg, subcutaneously (s.c.)]-induced non-spatial and spatial recognition memory deficits. These findings suggest that BNN27 may modulate different aspects of recognition memory, potentially interacting with the cholinergic system, relevant to cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Directory of Open Access Journals (Sweden)

    Luis I Angel-Chavez

    Full Text Available In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV. Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  3. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Science.gov (United States)

    Angel-Chavez, Luis I; Acosta-Gómez, Eduardo I; Morales-Avalos, Mario; Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  4. The delay in the development of experimental colitis from isomaltosyloligosaccharides in rats is dependent on the degree of polymerization.

    Directory of Open Access Journals (Sweden)

    Hitoshi Iwaya

    Full Text Available Isomaltosyloligosaccharides (IMO and dextran (Dex are hardly digestible in the small intestine and thus influence the luminal environment and affect the maintenance of health. There is wide variation in the degree of polymerization (DP in Dex and IMO (short-sized IMO, S-IMO; long-sized IMO, L-IMO, and the physiological influence of these compounds may be dependent on their DP.Five-week-old male Wistar rats were given a semi-purified diet with or without 30 g/kg diet of the S-IMO (DP = 3.3, L-IMO (DP = 8.4, or Dex (DP = 1230 for two weeks. Dextran sulfate sodium (DSS was administered to the rats for one week to induce experimental colitis. We evaluated the clinical symptoms during the DSS treatment period by scoring the body weight loss, stool consistency, and rectal bleeding. The development of colitis induced by DSS was delayed in the rats fed S-IMO and Dex diets. The DSS treatment promoted an accumulation of neutrophils in the colonic mucosa in the rats fed the control, S-IMO, and L-IMO diets, as assessed by a measurement of myeloperoxidase (MPO activity. In contrast, no increase in MPO activity was observed in the Dex-diet-fed rats even with DSS treatment. Immune cell populations in peripheral blood were also modified by the DP of ingested saccharides. Dietary S-IMO increased the concentration of n-butyric acid in the cecal contents and the levels of glucagon-like peptide-2 in the colonic mucosa.Our study provided evidence that the physiological effects of α-glucosaccharides on colitis depend on their DP, linkage type, and digestibility.

  5. Delay discounting, treatment motivation and treatment retention among substance-dependent individuals attending an in inpatient detoxification program

    NARCIS (Netherlands)

    Stevens, Laura; Verdejo-García, Antonio; Roeyers, Herbert; Goudriaan, Anna E.; Vanderplasschen, Wouter

    2015-01-01

    Recent studies consistently indicate high rates of delay discounting in drug users, which refers to a strong tendency to devaluate delayed rewards. Many addiction treatment programs however, place high demands on the ability to postpone immediate gratification. Therefore, these programs may be

  6. Vascular Steal Explains Early Paradoxical Blood Oxygen Level-Dependent Cerebrovascular Response in Brain Regions with Delayed Arterial Transit Times

    Directory of Open Access Journals (Sweden)

    Julien Poublanc

    2013-04-01

    Full Text Available Introduction: Blood oxygen level-dependent (BOLD magnetic resonance imaging (MRI during manipulation of inhaled carbon dioxide (CO2 can be used to measure cerebrovascular reactivity (CVR and map regions of exhausted cerebrovascular reserve. These regions exhibit a reduced or negative BOLD response to inhaled CO2. In this study, we sought to clarify the mechanism behind the negative BOLD response by investigating its time delay (TD. Dynamic susceptibility contrast (DSC MRI with the injection of a contrast agent was used as the gold standard in order to provide measurement of the blood arrival time to which CVR TD could be compared. We hypothesize that if negative BOLD responses are the result of a steal phenomenon, they should be synchronized with positive BOLD responses from healthy brain tissue, even though the blood arrival time would be delayed. Methods: On a 3-tesla MRI system, BOLD CVR and DSC images were collected in a group of 19 patients with steno-occlusive cerebrovascular disease. For each patient, we generated a CVR magnitude map by regressing the BOLD signal with the end-tidal partial pressure of CO2 (PETCO2, and a CVR TD map by extracting the time of maximum cross-correlation between the BOLD signal and PETCO2. In addition, a blood arrival time map was generated by fitting the DSC signal with a gamma variate function. ROI masks corresponding to varying degrees of reactivity were constructed. Within these masks, the mean CVR magnitude, CVR TD and DSC blood arrival time were extracted and averaged over the 19 patients. CVR magnitude and CVR TD were then plotted against DSC blood arrival time. Results: The results show that CVR magnitude is highly correlated to DSC blood arrival time. As expected, the most compromised tissues with the longest blood arrival time have the lowest (most negative CVR magnitude. However, CVR TD shows a noncontinuous relationship with DSC blood arrival time. CVR TD is well correlated to DSC blood arrival time

  7. Load-Dependent Increases in Delay-Period Alpha-Band Power Track the Gating of Task-Irrelevant Inputs to Working Memory

    Directory of Open Access Journals (Sweden)

    Andrew J. Heinz

    2017-05-01

    Full Text Available Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band power (ABP during the delay period of verbal and visual working memory (VWM tasks. There have been various proposals regarding the functional significance of such increases, including the inhibition of task-irrelevant cortical areas as well as the active retention of information in VWM. The present study examines the role of delay-period ABP in mediating the effects of interference arising from on-going visual processing during a concurrent VWM task. Specifically, we reasoned that, if set-size dependent increases in ABP represent the gating out of on-going task-irrelevant visual inputs, they should be predictive with respect to some modulation in visual evoked potentials resulting from a task-irrelevant delay period probe stimulus. In order to investigate this possibility, we recorded the electroencephalogram while subjects performed a change detection task requiring the retention of two or four novel shapes. On a portion of trials, a novel, task-irrelevant bilateral checkerboard probe was presented mid-way through the delay. Analyses focused on examining correlations between set-size dependent increases in ABP and changes in the magnitude of the P1, N1 and P3a components of the probe-evoked response and how such increases might be related to behavior. Results revealed that increased delay-period ABP was associated with changes in the amplitude of the N1 and P3a event-related potential (ERP components, and with load-dependent changes in capacity when the probe was presented during the delay. We conclude that load-dependent increases in ABP likely play a role in supporting short-term retention by gating task-irrelevant sensory inputs and suppressing potential sources of disruptive interference.

  8. Design of a phantom equivalent to measure bone-fluorine in a human's hand via delayed neutron activation analysis

    International Nuclear Information System (INIS)

    Mostafaei, F; McNeill, F E; Chettle, D R; Prestwich, W V; Inskip, M

    2013-01-01

    Fluorine is an element that can be either beneficial or harmful, depending on the total amount accumulated in the teeth or bones. In our laboratory, we have developed a non-invasive technique for the in vivo measurement of fluoride in bone using neutron activation analysis and performed the first pilot human study. Fluoride in humans is quantified by comparing the γ-ray signal from a person to the γ-ray signal obtained from appropriate anthropomorphic calibration phantoms. An identified problem with existing fluoride phantoms is contamination with aluminum. Aluminum creates an interfering γ-ray signal which, although it can be subtracted out, increases the uncertainty in the measurement and worsens the detection limit. This paper outlines a series of studies undertaken to develop a better calibration phantom for fluorine measurement, which does not have aluminum contamination. (paper)

  9. Quantum rotation and translation of hydrogen molecules encapsulated inside C₆₀: temperature dependence of inelastic neutron scattering spectra.

    Science.gov (United States)

    Horsewill, A J; Goh, K; Rols, S; Ollivier, J; Johnson, M R; Levitt, M H; Carravetta, M; Mamone, S; Murata, Y; Chen, J Y-C; Johnson, J A; Lei, X; Turro, N J

    2013-09-13

    The quantum dynamics of a hydrogen molecule encapsulated inside the cage of a C60 fullerene molecule is investigated using inelastic neutron scattering (INS). The emphasis is on the temperature dependence of the INS spectra which were recorded using time-of-flight spectrometers. The hydrogen endofullerene system is highly quantum mechanical, exhibiting both translational and rotational quantization. The profound influence of the Pauli exclusion principle is revealed through nuclear spin isomerism. INS is shown to be exceptionally able to drive transitions between ortho-hydrogen and para-hydrogen which are spin-forbidden to photon spectroscopies. Spectra in the temperature range 1.6≤T≤280 K are presented, and examples are given which demonstrate how the temperature dependence of the INS peak amplitudes can provide an effective tool for assigning the transitions. It is also shown in a preliminary investigation how the temperature dependence may conceivably be used to probe crystal field effects and inter-fullerene interactions.

  10. Convergence Analysis of Semi-Implicit Euler Methods for Solving Stochastic Age-Dependent Capital System with Variable Delays and Random Jump Magnitudes

    Directory of Open Access Journals (Sweden)

    Qinghui Du

    2014-01-01

    Full Text Available We consider semi-implicit Euler methods for stochastic age-dependent capital system with variable delays and random jump magnitudes, and investigate the convergence of the numerical approximation. It is proved that the numerical approximate solutions converge to the analytical solutions in the mean-square sense under given conditions.

  11. Context-dependent Dynamic Processes in Attention Deficit/Hyperactivity Disorder : Differentiating Common and Unique Effects of State Regulation Deficits and Delay Aversion

    NARCIS (Netherlands)

    Sonuga-Barke, Edmund J. S.; Wiersema, Jan R.; van der Meere, Jacob J.; Roeyers, Herbert

    The ability to specify differential predictions is a mark of a scientific models' value. State regulation deficits (SRD) and delay aversion (DAv) have both been hypothesized as context-dependent dynamic dysfunctions in ADHD. However, to date there has been no systematic comparison of their common

  12. EXPOSURE TO DIETHYL HEXYL PHTHALATE (DEHP) DELAYS PUBERTY AND REDUCES ANDROGEN-DEPENDENT TISSUE WEIGHTS IN LONG EVANS HOODED AND SPRAGUE DAWLEY MALE RATS

    Science.gov (United States)

    DEHP is a plasticizer that alters sexual differentiation in the male rat by reducing fetal Leydig cell testosterone synthesis and insl3 mRNA levels. When exposure includes the pubertal stage of life, DEHP and other phthalates delay puberty and reduce androgen-dependent tissue wei...

  13. In-situ neutron diffraction characterization of temperature dependence deformation in α-uranium

    Science.gov (United States)

    Calhoun, C. A.; Garlea, E.; Sisneros, T. A.; Agnew, S. R.

    2018-04-01

    In-situ strain neutron diffraction measurements were conducted at temperature on specimens coming from a clock-rolled α-uranium plate, and Elasto-Plastic Self-Consistent (EPSC) modeling was employed to interpret the findings. The modeling revealed that the active slip systems exhibit a thermally activated response, while deformation twinning remains athermal over the temperature ranges explored (25-150 °C). The modeling also allowed assessment of the effects of thermal residual stresses on the mechanical response during compression. These results are consistent with those from a prior study of room-temperature deformation, indicating that the thermal residual stresses strongly influence the internal strain evolution of grain families, as monitored with neutron diffraction, even though accounting for these residual stresses has little effect on the macroscopic flow curve, except in the elasto-plastic transition.

  14. Age-dependent conversion coefficients for organ doses and effective doses for external neutron irradiation

    International Nuclear Information System (INIS)

    Nishizaki, Chihiro; Endo, Akira; Takahashi, Fumiaki

    2006-06-01

    To utilize dose assessment of the public for external neutron irradiation, conversion coefficients of absorbed doses of organs and effective doses were calculated using the numerical simulation technique for six different ages (adult, 15, 10, 5 and 1 years and newborn), which represent the member of the public. Calculations were performed using six age-specific anthropomorphic phantoms and a Monte Carlo radiation transport code for two irradiation geometries, anterior-posterior and rotational geometries, for 20 incident energies from thermal to 20 MeV. Effective doses defined by the 1990 Recommendation of ICRP were calculated from the absorbed doses in 21 organs. The calculated results were tabulated in the form of absorbed doses and effective doses per unit neutron fluence. The calculated conversion coefficients are used for dose assessment of the public around nuclear facilities and accelerator facilities. (author)

  15. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  16. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  17. Direct Yaw-Moment Control of All-Wheel-Independent-Drive Electric Vehicles with Network-Induced Delays through Parameter-Dependent Fuzzy SMC Approach

    Directory of Open Access Journals (Sweden)

    Wanke Cao

    2017-01-01

    Full Text Available This paper investigates the robust direct yaw-moment control (DYC through parameter-dependent fuzzy sliding mode control (SMC approach for all-wheel-independent-drive electric vehicles (AWID-EVs subject to network-induced delays. AWID-EVs have obvious advantages in terms of DYC over the traditional centralized-drive vehicles. However it is one of the most principal issues for AWID-EVs to ensure the robustness of DYC. Furthermore, the network-induced delays would also reduce control performance of DYC and even deteriorate the EV system. To ensure robustness of DYC and deal with network-induced delays, a parameter-dependent fuzzy sliding mode control (FSMC method based on the real-time information of vehicle states and delays is proposed in this paper. The results of cosimulations with Simulink® and CarSim® demonstrate the effectiveness of the proposed controller. Moreover, the results of comparison with a conventional FSMC controller illustrate the strength of explicitly dealing with network-induced delays.

  18. Effect of the energy dependence of response of neutron personal dosemeters routinely used in the UK on the accuracy of dose estimation

    CERN Document Server

    Tanner, R J; Thomas, D J

    2002-01-01

    A large set of neutron energy distributions have been classified by workplace to provide a guide to the neutron fields to which workers in particular industries are likely to be exposed. These have been combined (folded) with the results of a major programme of neutron personal dosemeter response function measurements, to provide results for the systematic errors that those dosemeters would give in workplaces. Data for neutron doses recorded for UK classified workers have been taken from the CIDI tables, and related to the results from the folding process. It has hence been possible to draw conclusions about the probable systematic errors that result from the use of the currently available neutron personal dosemeters, which have inherent problems associated with their energy dependence of response.

  19. Effect of the energy dependence of response of neutron personal dosemeters routinely used in the UK on the accuracy of dose estimation

    International Nuclear Information System (INIS)

    Tanner, R.J.; Thomas, D.J.; Bartlett, D.T.

    2002-01-01

    A large set of neutron energy distributions have been classified by workplace to provide a guide to the neutron fields to which workers in particular industries are likely to be exposed. These have been combined (folded) with the results of a major programme of neutron personal dosemeter response function measurements, to provide results for the systematic errors that those dosemeters would give in workplaces. Data for neutron doses recorded for UK classified workers have been taken from the CIDI tables, and related to the results from the folding process. It has hence been possible to draw conclusions about the probable systematic errors that result from the use of the currently available neutron personal dosemeters, which have inherent problems associated with their energy dependence of response. (author)

  20. Phase-dependent absorption features in X-ray spectra of X-ray Dim Isolated Neutron Stars

    Science.gov (United States)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Turolla, R.; Tiengo, A.; Zane, S.

    2017-12-01

    A detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray Dim Isolated Neutron Stars (XDINSs) led to the discovery of narrow and strongly phase-dependent absorption features in two of these sources. The first was discovered in the X-ray spectrum of RX J0720.4-3125, followed by a new possible candidate in RX J1308.6+2127. Both spectral lines have similar properties: they are detected for only ˜ 20% of the rotational cycle and appear to be stable over the timespan covered by the observations. We performed Monte Carlo simulations to test the significance of these phase-variable features and in both cases the outcome has confirmed the detection with a confidence level > 4.6σ. Because of the narrow width and the strong dependence on the pulsar rotational phase, the most likely interpretation for these spectral features is in terms of resonant proton cyclotron absorption scattering in a confined high-B structure close to the stellar surface. Within the framework of this interpretation, our results provide evidence for deviations from a pure dipole magnetic field on small scales for highly magnetized neutron stars and support the proposed scenario of XDINSs being aged magnetars, with a strong non-dipolar crustal B-field component.

  1. Neutron beam irradiation study of workload dependence of SER in a microprocessor

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Graves, Todd L [Los Alamos National Laboratory; Hong, Ted [STANFORD; Ackaret, Jerry [IBM; Sonny, Rao [IBM; Subhasish, Mitra [STANFORD; Pia, Sanda [IBM

    2009-01-01

    It is known that workloads are an important factor in soft error rates (SER), but it is proving difficult to find differentiating workloads for microprocessors. We have performed neutron beam irradiation studies of a commercial microprocessor under a wide variety of workload conditions from idle, performing no operations, to very busy workloads resembling real HPC, graphics, and business applications. There is evidence that the mean times to first indication of failure, MTFIF defined in Section II, may be different for some of the applications.

  2. Time-dependent variation of the neutron multiplication factor in spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Leotlela, M.J. [Univ. of the Witwatersrand, Johannesburg (South Africa). School of Physics; Eskom, Johannesburg (South Africa). Regulations and Licensing, Koeberg Operating Unit; Olifant, T. [Cape Town Univ. (South Africa). Dept. of Electrical Engineering and Nuclear Power Studies; Koeberg Nuclear Power Station, Cape Town (South Africa). Operating Dept.; Petr, I. [Univ. of the Witwatersrand, Johannesburg (South Africa). School of Physics

    2017-12-15

    After spent fuel assemblies have been discharged from the reactor, reactivity will fluctuate as the cooling period progresses because of changes in the number density of fissile nuclides and neutron absorber nuclides. The purpose of this project was (1) to quantify the contribution of each individual nuclide to the reactivity of the fissile system, (2) to identify nuclides that are responsible for the fluctuation in reactivity, and (3) to determine the effect of the number of nuclides on reactivity. This paper will present the results of the study of the behaviour of the k{sub eff} with respect to variation in the duration of the cooling period during storage.

  3. Energy dependence of the neutron multiplicity P/sub nu/ in fast neutron induced fission of /sup 235,238/U and 239Pu

    International Nuclear Information System (INIS)

    Zucker, M.S.; Holden, N.E.

    1986-01-01

    Certain applications require knowledge of the higher moments of the neutron multiplicity probability. It can be shown that the second factorial moment is proportional to the fission rate in the sample, and that the third factorial moment can be of use in disentangling spontaneous fission from induced fission. Using a source of unpublished work in which neutron multiplicities were derived for the fast neutron induced fission of U-235, U-238, and Pu-239, the multiplicity probability has been calculated as a function of neutron energy for the energy range 0 to 10 MeV

  4. Neutron diffraction study of history dependence in MnFeP0.6Si0.4

    International Nuclear Information System (INIS)

    Zhang, L.; Moze, O.; Prokes, K.; Tegus, O.; Brueck, E.

    2005-01-01

    In the MnFe(P,As) compounds which are promising magnetorefrigerant materials, we have studied the effect of Si substitution and successfully replaced As by Si. Surprisingly besides all the other changes, a peculiar history dependence of the magnetic phase transition was disclosed. The as-prepared sample shows a significantly lower transition temperature (namely a virgin T C ) than the sample that has experienced thermal cycling. The neutron diffraction patterns recorded during the first cooling manifest the first-order and magnetic-field-induced characters of the virgin phase transition. However, the refinement of the diffraction patterns does not provide evidence for atomic-position swapping, which might account for this history dependence

  5. Theoretical Time Dependent Thermal Neutron Spectra and Reaction Rates in H2O and D2O

    International Nuclear Information System (INIS)

    Purohit, S.N.

    1966-04-01

    The early theoretical and experimental time dependent neutron thermalization studies were limited to the study of the transient spectrum in the diffusion period. The recent experimental measurements of the time dependent thermal neutron spectra and reaction rates, for a number of moderators, have generated considerable interest in the study of the time dependent Boltzmann equation. In this paper we present detailed results for the time dependent spectra and the reaction rates for resonance detectors using several scattering models of H 2 O and D 2 O. This study has been undertaken in order to interpret the integral time dependent neutron thermalization experiments in liquid moderators which have been performed at the AB Atomenergi. The proton gas and the deuteron gas models are inadequate to explain the measured reaction rates in H 2 O and D 2 O. The bound models of Nelkin for H 2 O and of Butler for D 2 O give much better agreement with the experimental results than the gas models. Nevertheless, some disagreement between theoretical and experimental results still persists. This study also indicates that the bound model of Butler and the effective mass 3. 6 gas model of Brown and St. John give almost identical reaction rates. It is also surprising to note that the calculated reaction rate for Cd for the Butler model appears to be in better agreement with the experimental results of D 2 O than of the Nelkin model with H 2 O experiments. The present reaction rate studies are sensitive enough so as to distinguish between the gas model and the bound model of a moderator. However, to investigate the details of a scattering law (such as the effect of the hindered rotations in H 2 O and D 2 O and the weights of different dynamical modes) with the help of these studies would require further theoretical as well as experimental investigations. Theoretical results can be further improved by improving the source for thermal neutrons, the group structure and the scattering

  6. Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Maziasz, P.J.; Stoller, R.E.

    1993-01-01

    Microstructural data on the evolution of the dislocation loop, cavity, and precipitate populations in neutron-irradiated austenitic stainless steels are reviewed in order to estimate the displacement damage levels needed to achieve the 'steady state' condition. The microstructural data can be conveniently divided into two temperature regimes. In the low temperature regime (below about 200 degrees C) the microstructure of austenitic stainless steel is dominated by 'black spot' defect clusters and faulted interstitial dislocation loops. The dose needed to approach saturation of the loop and defect cluster densities is generally on the order of 1 displacement per atom (dpa) in this regime. In the high temperature regime (∼300 to 700 degrees C), cavities, precipitates, loops and network dislocations are all produced during irradiation; doses in excess of 10 dpa are generally required to approach a 'steady state' microstructural condition. Due to complex interactions between the various microstructural components that form during irradiation, a secondary transient regime is typically observed in commercial stainless steels during irradiation at elevated temperatures. This slowly evolving secondary transient may extend to damage levels in excess of 50 dpa in typical 300-series stainless steels, and to >100 dpa in radiation-resistant developmental steels. The detailed evolution of any given microstructural component in the high-temperature regime is sensitive to slight variations in numerous experimental variables, including heat-to-heat composition changes and neutron spectrum

  7. NEW HYPERON EQUATIONS OF STATE FOR SUPERNOVAE AND NEUTRON STARS IN DENSITY-DEPENDENT HADRON FIELD THEORY

    Energy Technology Data Exchange (ETDEWEB)

    Banik, Sarmistha [BITS Pilani, Hyderabad Campus, Hyderabad-500078 (India); Hempel, Matthias [Departement Physik, Universität Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Bandyopadhyay, Debades [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)

    2014-10-01

    We develop new hyperon equation of state (EoS) tables for core-collapse supernova simulations and neutron stars. These EoS tables are based on a density-dependent relativistic hadron field theory where baryon-baryon interaction is mediated by mesons, using the parameter set DD2 for nucleons. Furthermore, light and heavy nuclei along with interacting nucleons are treated in the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich which includes excluded volume effects. Of all possible hyperons, we consider only the contribution of Λs. We have developed two variants of hyperonic EoS tables: in the npΛφ case the repulsive hyperon-hyperon interaction mediated by the strange φ meson is taken into account, and in the npΛ case it is not. The EoS tables for the two cases encompass a wide range of densities (10{sup –12} to ∼1 fm{sup –3}), temperatures (0.1 to 158.48 MeV), and proton fractions (0.01 to 0.60). The effects of Λ hyperons on thermodynamic quantities such as free energy per baryon, pressure, or entropy per baryon are investigated and found to be significant at higher densities. The cold, β-equilibrated EoS (with the crust included self-consistently) results in a 2.1 M {sub ☉} maximum mass neutron star for the npΛφ case, whereas that for the npΛ case is 1.95 M {sub ☉}. The npΛφ EoS represents the first supernova EoS table involving hyperons that is directly compatible with the recently measured 2 M {sub ☉} neutron stars.

  8. Cell cycle dependence of boron uptake in various boron compounds used for neutron capture therapy

    International Nuclear Information System (INIS)

    Yoshida, F.; Matsumura, A.; Shibata, Y.; Yamamoto, T.; Nose, T.; Okumura, M.

    2000-01-01

    In neutron capture therapy, it is important that the tumor take boron in selectively. Furthermore, it is ideal when the uptake is equal in each tumor cell. Some indirect proof of differences in boron uptake among neoplastic cell cycles has been documented. However, no investigation has yet measured boron uptake directly. Using flow cytometry, in the present study cells were sorted by G0/G1 phase and G2/M phase, and the boron concentration of each fraction was measured with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results were that BSH (sodiumborocaptate) and BPA (p-boronophenylalanine) had higher rates of boron uptake in the G2/M group than in the G0/G1 group. However, in BPA the difference was more prominent, which revealed a 2.2-3.3 times higher uptake of boron in the G2/M group than in the G0/G1 group. (author)

  9. Some contributions towards the parallel simulation of time dependent neutron transport and the integration of observed data in real time

    International Nuclear Information System (INIS)

    Mula-Hernandez, Olga

    2014-01-01

    In this thesis, we have first developed a time dependent 3D neutron transport solver on unstructured meshes with discontinuous Galerkin finite elements spatial discretization. The solver (called MINARET) represents in itself an important contribution in reactor physics thanks to the accuracy that it can provide in the knowledge of the state of the core during severe accidents. It will also play an important role on vessel fluence calculations. From a mathematical point of view, the most important contribution has consisted in the implementation of modern algorithms that are well adapted for modern parallel architectures and that significantly decrease the computing times. A special effort has been done in order to efficiently parallelize the time variable by the use of the parareal in time algorithm. For this, we have first analyzed the performances that the classical scheme of parareal can provide when applied to the resolution of the neutron transport equation in a reactor core. Then, with the purpose of improving these performances, a parareal scheme that takes more efficiently into account the presence of other iterative schemes in the resolution of each time step has been proposed. The main idea consists in limiting the number of internal iterations for each time step and to reach convergence across the parareal iterations. A second phase of our work has been motivated by the following question: given the high degree of accuracy that MINARET can provide in the modeling of the neutron population, could we somehow use it as a tool to monitor in real time the population of neutrons on the purpose of helping in the operation of the reactor? And, what is more, how to make such a tool be coherent in some sense with the measurements taken in situ? One of the main challenges of this problem is the real time aspect of the simulations. Indeed, despite all of our efforts to speed-up the calculations, the discretization methods used in MINARET do not provide simulations

  10. Iterative method for obtaining the prompt and delayed alpha-modes of the diffusion equation

    International Nuclear Information System (INIS)

    Singh, K.P.; Degweker, S.B.; Modak, R.S.; Singh, Kanchhi

    2011-01-01

    Highlights: → A method for obtaining α-modes of the neutron diffusion equation has been developed. → The difference between the prompt and delayed modes is more pronounced for the higher modes. → Prompt and delayed modes differ more in reflector region. - Abstract: Higher modes of the neutron diffusion equation are required in some applications such as second order perturbation theory, and modal kinetics. In an earlier paper we had discussed a method for computing the α-modes of the diffusion equation. The discussion assumed that all neutrons are prompt. The present paper describes an extension of the method for finding the α-modes of diffusion equation with the inclusion of delayed neutrons. Such modes are particularly suitable for expanding the time dependent flux in a reactor for describing transients in a reactor. The method is illustrated by applying it to a three dimensional heavy water reactor model problem. The problem is solved in two and three neutron energy groups and with one and six delayed neutron groups. The results show that while the delayed α-modes are similar to λ-modes they are quite different from prompt modes. The difference gets progressively larger as we go to higher modes.

  11. Time dependent effects of stress prior to encoding on event-related potentials and 24 h delayed retrieval

    NARCIS (Netherlands)

    Quaedflieg, C.W.E.M.; Schwabe, L.; Meyer, T.; Smeets, T.J.M.

    2013-01-01

    Stress can exert profound effects on memory encoding. Here, we investigated whether (sub)cortical information processing during encoding and memory retrieval at a 24 h delayed test are affected by the temporal proximity between stress and memory encoding. Sixty-four participants engaged in the

  12. Nuclear Dependence of the Transverse-Single-Spin Asymmetry for Forward Neutron Production in Polarized p +A Collisions at √{sN N}=200 GeV

    Science.gov (United States)

    Aidala, C.; Akiba, Y.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Asano, H.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bagoly, A.; Bandara, N. S.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Blau, D. S.; Boer, M.; Bok, J. S.; Brooks, M. L.; Bryslawskyj, J.; Bumazhnov, V.; Butler, C.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Citron, Z.; Connors, M.; Cronin, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dion, A.; Dixit, D.; Do, J. H.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; He, X.; Hemmick, T. K.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Ji, Z.; Jiang, X.; Johnson, B. M.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kang, J. H.; Kapukchyan, D.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Khachatryan, V.; Khanzadeev, A.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M.; Kim, M. H.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kline, P.; Koblesky, T.; Kotov, D.; Kudo, S.; Kurita, K.; Kwon, Y.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, S.; Leitch, M. J.; Leung, Y. H.; Lewis, N. A.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Lökös, S.; Lovasz, K.; Lynch, D.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Mendoza, M.; Metzger, W. J.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Murakami, T.; Murata, J.; Nagai, K.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, M.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Radzevich, P. V.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Safonov, A. S.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skoby, M. J.; Slunečka, M.; Smith, K. L.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takeda, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Vukman, N.; Wang, X. R.; Wang, Z.; Watanabe, Y.; Watanabe, Y. S.; Wong, C. P.; Woody, C. L.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zou, L.; Phenix Collaboration

    2018-01-01

    During 2015, the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized p +p collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in p +p collisions predicts only a moderate atomic-mass-number (A ) dependence. In contrast, the asymmetries observed at RHIC in p +A collisions showed a surprisingly strong A dependence in inclusive forward neutron production. The observed asymmetry in p +Al collisions is much smaller, while the asymmetry in p +Au collisions is a factor of 3 larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed A dependence.

  13. Continuous solutions to a viral infection model with general incidence rate, discrete state-dependent delay, CTL and antibody immune responses

    Czech Academy of Sciences Publication Activity Database

    Rezunenko, Oleksandr

    2016-01-01

    Roč. 2016, č. 79 (2016), s. 1-15 ISSN 1417-3875 R&D Projects: GA ČR(CZ) GA16-06678S Institutional support: RVO:67985556 Keywords : evolution equations * Lyapunov stability * state-dependent delay * virus infection model Subject RIV: BC - Control Systems Theory Impact factor: 0.926, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/rezunenko-0464066.pdf

  14. Sample dependent response of a LaCl{sub 3}:Ce detector in prompt gamma neutron activation analysis of bulk hydrocarbon samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A.; Khiari, F.Z. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.A. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Khateeb-ur-Rehman,; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2013-08-11

    The response of a LaCl{sub 3}:Ce detector has been found to depend upon the hydrogen content of bulk samples in prompt gamma analysis using 14 MeV neutron inelastic scattering. The moderation of 14 MeV neutrons from hydrogen in the bulk sample produces thermal neutrons around the sample which ultimately excite chlorine capture gamma rays in the LaCl{sub 3}:Ce detector material. Interference of 6.11 MeV chlorine gamma rays from the detector itself with 6.13 MeV oxygen gamma rays from the bulk samples makes the intensity of the 6.13 MeV oxygen gamma ray peak relatively insensitive to variations in oxygen concentration. The strong dependence of the 1.95 MeV doublet chlorine gamma ray yield on hydrogen content of the bulk samples confirms fast neutron moderation from hydrogen in the bulk samples as a major source of production of thermal neutrons and chlorine gamma rays in the LaCl{sub 3}:Ce detector material. Despite their poor oxygen detection capabilities, these detectors have nonetheless excellent detection capabilities for hydrogen and carbon in benzene, butyl alcohol, propanol, propanic acid, and formic acid bulk samples using 14 MeV neutron inelastic scattering.

  15. Slotted rotatable target assembly and systematic error analysis for a search for long range spin dependent interactions from exotic vector boson exchange using neutron spin rotation

    Science.gov (United States)

    Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.

    2018-03-01

    We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.

  16. Dose dependence of microstructural evolution and mechanical properties of neutron irradiated copper and copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B N; Edwards, D J; Horsewell, A; Toft, P

    1995-09-01

    The present investigation of the effects of neutron irradiation on microstructures and mechanical properties of copper alloys is a part of the ITER (International Thermonuclear Experimental Reactor) programme. Tensile specimens of the candidate alloys Cu-Al{sub 2}O{sub 3}, CuCrZr and CuNiBe were irradiated with fission neutrons in the DR-3 reactor at Risoe with a flux of 2.5 x 10{sup 17} n/m{sup 2}s (E > 1 MeV, i.e. a dose rate of {approx}5 x 10{sup -8} dpa/s) to fluences of 5 x 10{sup 22}, 5 x 10{sup 23} and 1 x 10{sup 24} n/m{sup 2} (E > 1 MeV, i.e. displacement doses of 0.01, 0.1 and 0.2 dpa) at 47 deg. C. The Cu-Al{sub 2}O{sub 3} (CuA125) specimens, were irradiated in the as-cold worked state. Tensile properties and Vickers hardness of both irradiated and unirradiated specimens were determined at 22 deg. C. Pre- and post-deformation microstructures of irradiated as well as unirradiated specimens were examined using a transmission electron microscope. The fractured surfaces of tensile tested specimens were investigated in a scanning electron microscope. The results show the following general trend: (a) that the CuNiBe alloy is stronger than CuCrZr as well as Cu Al{sub 2}O{sub 3}, (b) that even relatively low dose irradiations cause significant increase in the yield strength, but rather drastic decreases in the uniform elongation of CuCrZr and CuNiBe alloys and that the low dose irradiation of the cold-worked Cu-Al{sub 2}O{sub 3} alloy causes a decrease in the yield strength and an increase in the uniform elongation, at higher doses irradiation hardening occurs. The SEM examinations of the fractured surfaces demonstrate that both unirradiated and irradiated specimens fracture in a ductile manner. The lack of uniform elongation in the irradiated copper alloys may be understood in terms of difficulty in dislocation generation due to pinning of grown-in dislocation by defect clusters (loops) at or around them. (EG) 5 tabs., 18 ills., 13 refs.

  17. Dose dependence of microstructural evolution and mechanical properties of neutron irradiated copper and copper alloys

    International Nuclear Information System (INIS)

    Singh, B.N.; Edwards, D.J.; Horsewell, A.; Toft, P.

    1995-09-01

    The present investigation of the effects of neutron irradiation on microstructures and mechanical properties of copper alloys is a part of the ITER (International Thermonuclear Experimental Reactor) programme. Tensile specimens of the candidate alloys Cu-Al 2 O 3 , CuCrZr and CuNiBe were irradiated with fission neutrons in the DR-3 reactor at Risoe with a flux of 2.5 x 10 17 n/m 2 s (E > 1 MeV, i.e. a dose rate of ∼5 x 10 -8 dpa/s) to fluences of 5 x 10 22 , 5 x 10 23 and 1 x 10 24 n/m 2 (E > 1 MeV, i.e. displacement doses of 0.01, 0.1 and 0.2 dpa) at 47 deg. C. The Cu-Al 2 O 3 (CuA125) specimens, were irradiated in the as-cold worked state. Tensile properties and Vickers hardness of both irradiated and unirradiated specimens were determined at 22 deg. C. Pre- and post-deformation microstructures of irradiated as well as unirradiated specimens were examined using a transmission electron microscope. The fractured surfaces of tensile tested specimens were investigated in a scanning electron microscope. The results show the following general trend: (a) that the CuNiBe alloy is stronger than CuCrZr as well as Cu Al 2 O 3 , (b) that even relatively low dose irradiations cause significant increase in the yield strength, but rather drastic decreases in the uniform elongation of CuCrZr and CuNiBe alloys and that the low dose irradiation of the cold-worked Cu-Al 2 O 3 alloy causes a decrease in the yield strength and an increase in the uniform elongation, at higher doses irradiation hardening occurs. The SEM examinations of the fractured surfaces demonstrate that both unirradiated and irradiated specimens fracture in a ductile manner. The lack of uniform elongation in the irradiated copper alloys may be understood in terms of difficulty in dislocation generation due to pinning of grown-in dislocation by defect clusters (loops) at or around them. (EG) 5 tabs., 18 ills., 13 refs

  18. TART 2000: A Coupled Neutron-Photon, 3-D, Combinatorial Geometry, Time Dependent, Monte Carlo Transport Code

    International Nuclear Information System (INIS)

    Cullen, D.E

    2000-01-01

    TART2000 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input Preparation, running Monte Carlo calculations, and analysis of output results. TART2000 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART2000 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART2000 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART2000 and its data files

  19. TART 2000 A Coupled Neutron-Photon, 3-D, Combinatorial Geometry, Time Dependent, Monte Carlo Transport Code

    CERN Document Server

    Cullen, D

    2000-01-01

    TART2000 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input Preparation, running Monte Carlo calculations, and analysis of output results. TART2000 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART2000 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART2000 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART2000 and its data files.

  20. Measurement of the deep-inelastic spin-dependent structure functions of the proton and neutron at HERA

    International Nuclear Information System (INIS)

    Beck, D.H.; Filippone, B.W.; Jourdan, J.

    1988-01-01

    It is possible to measure the deep-inelastic spin-dependent structure functions g 1 /sup p/(x) and g 1 /sup n/(x) for the proton and neutron using internal polarized hydrogen, deuterium, and 3 He targets of polarization 50% and thickness 10 14 to 10 15 cm -2 and the 60 mA longitudinally polarized 30 GeV electron beam in the HERA electron storage ring. The measurement of the deep-inelastic spin-structure of both isospin states of the nucleon at the same kinematics and using the same apparatus allows the Bjorken sum rule to be experimentally checked. In addition, it uniquely constrains the spin distribution of the u and d quarks as a function of x in any model of the nucleon. Possible target and detector configurations are described and an estimate of the accuracy of such a measurement is presented

  1. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    Science.gov (United States)

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

  2. Electric field strength and plasma delay in silicon surface barrier detector

    International Nuclear Information System (INIS)

    Kanno, I.; Inbe, T.; Kanazawa, S.; Kimura, I.

    1994-01-01

    The resistivity change of a silicon irradiated by high energy neutrons became an interest of study associated with the large scale accelerator projects . The increase of the resistivity of the silicon of a silicon surface barrier detector (SSBD) was studied as a function of neutron fluence. The plasma delay, which was an interesting but not favorite timing property of the SSBD, was reported being dependent on the resistivity of silicon . The neutron irradiation brings the change of timing property as well as the resistivity change on the SSBD. The resistivity dependence of the plasma delay should be studied for the purpose of high energy accelerator experiments. Some empirical formulae of the plasma delay were reported, however, there were no discussions on the physical meanings of the resistivity dependence of the plasma delay. The plasma delay in a SSBD is discussed in the light of electric field strength in the depletion layer of the SSBD. The explanation of the plasma delay is presented taking into account of the competing two electric forces. The resistivity of the silicon affects the plasma delay through the electric forces. 3 figs, 3 refs. (author)

  3. Non-local PDEs with discrete state-dependent delays: Well-posedness in a metric space

    Czech Academy of Sciences Publication Activity Database

    Rezunenko, Oleksandr; Zagalak, Petr

    2013-01-01

    Roč. 33, č. 2 (2013), s. 819-835 ISSN 1078-0947 R&D Projects: GA ČR(CZ) GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Partial differential equations with delay s * well-posedness * metric space Subject RIV: BC - Control Systems Theory Impact factor: 0.923, year: 2013 http://library.utia.cas.cz/separaty/2012/AS/zagalak-0381969.pdf

  4. Latitude-dependent delay in the responses of the equatorial electrojet and Sq currents to X-class solar flares

    Science.gov (United States)

    Nogueira, Paulo A. B.; Abdu, Mangalathayil A.; Souza, Jonas R.; Denardini, Clezio M.; Barbosa Neto, Paulo F.; Serra de Souza da Costa, João P.; Silva, Ana P. M.

    2018-01-01

    We have analyzed low-latitude ionospheric current responses to two intense (X-class) solar flares that occurred on 13 May 2013 and 11 March 2015. Sudden intensifications, in response to solar flare radiation impulses, in the Sq and equatorial electrojet (EEJ) currents, as detected by magnetometers over equatorial and low-latitude sites in South America, are studied. In particular we show for the first time that a 5 to 8 min time delay is present in the peak effect in the EEJ, with respect that of Sq current outside the magnetic equator, in response to the flare radiation enhancement. The Sq current intensification peaks close to the flare X-ray peak, while the EEJ peak occurs 5 to 8 min later. We have used the Sheffield University Plasmasphere-Ionosphere Model at National Institute for Space Research (SUPIM-INPE) to simulate the E-region conductivity enhancement as caused by the flare enhanced solar extreme ultraviolet (EUV) and soft X-rays flux. We propose that the flare-induced enhancement in neutral wind occurring with a time delay (with respect to the flare radiation) could be responsible for a delayed zonal electric field disturbance driving the EEJ, in which the Cowling conductivity offers enhanced sensitivity to the driving zonal electric field.

  5. Radiation annealing mechanisms of low-alloy reactor pressure vessel steels dependent on irradiation temperature and neutron fluence

    International Nuclear Information System (INIS)

    Pachur, D.

    1982-01-01

    Heat treatment after irradiation of reactor pressure vessel steels showed annealing of irradiation embrittlement. Depending on the irradiation temperature, the embrittlement started to anneal at about 220 0 C and was completely annealed at 500 0 C with 4 h of annealing time. The annealing behavior was normally measured in terms of the Vickers hardness increase produced by irradiation relative to the initial hardness as a function of the annealing temperature. Annealing results of other mechanical properties correspond to hardness results. During annealing, various recovery mechanisms occur in different temperature ranges. These are characterized by activation energies from 1.5 to 2.1 eV. The individual mechanisms were determined by the different time dependencies at various temperatures. The relative contributions of the mechanisms showed a neutron fluence dependence, with the lower activation energy mechanisms being predominant at low fluence and vice versa. In the temperature range where partial annealing of a mechanism took place during irradiation, an increase in activation energy was observed. Trend curves for the increase in transition temperature with irradiation, for the relative increase of Vickers hardness and yield strength, and for the relative decrease of Charpy-V upper shelf energy are interpreted by the behavior of different mechanisms

  6. Relation of photofission cross sections and delayed neutron photoproduction in the range of E1-giant resonance. Sootnoshenie mezhdu secheniyami fotodeleniya i fotoobrazovaniya zapazdyvayushchikh nejtronov v oblasti E1-gigantskogo rezonansa

    Energy Technology Data Exchange (ETDEWEB)

    Ganich, P P; Parlag, O A; Sikora, D I; Sychev, S I

    1989-03-01

    Relation between yields and cross sections of photofission and photoproduction is studied in order to use them in the methods for analysis of fissile nuclides. Total yield of delayed neutrons from the {sup 232}Th target and ratios of total yields from {sup 238}U and {sup 232}Th targets were measured in the M=300 microtron in 6-18 MeV energy range. Efficiency of the suggested method for refining the {sup 238}U photofission cross sections in the range of E1-giant resonance is shown.

  7. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  8. Genetic effect of neutrons

    International Nuclear Information System (INIS)

    Luchnik, N.V.; Sevan'kaev, A.V.; Fesenko, Eh.V.

    1984-01-01

    Gene mutations resulting from neutron effect are considered, but attention is focused on chromosome mutations. Dose curves for different energy of neutrons obtained at different objects are obtained which makes it possible to consider RBE of neutrons depending on their energy and radiation dose and to get some information on the neutron effect on heredity

  9. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2010-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  10. Thermal neutron imaging in an active interrogation environment

    International Nuclear Information System (INIS)

    Vanier, P.E.; Forman, L.; Norman, D.R.

    2009-01-01

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of excitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  11. MCNP4C2, Coupled Neutron, Electron Gamma 3-D Time-Dependent Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: MCNP is a general-purpose, continuous-energy, generalized geometry, time-dependent, coupled neutron-photon-electron Monte Carlo transport code system. MCNP4C2 is an interim release of MCNP4C with distribution restricted to the Criticality Safety community and attendees of the LANL MCNP workshops. The major new features of MCNP4C2 include: - Photonuclear physics; - Interactive plotting; - Plot superimposed weight window mesh; - Implement remaining macro-body surfaces; - Upgrade macro-bodies to surface sources and other capabilities; - Revised summary tables; - Weight window improvements. See the MCNP home page more information http://www-xdiv.lanl.gov/XCI/PROJECTS/MCNP with a link to the MCNP Forum. See the Electronic Notebook at http://www-rsicc.ornl.gov/rsic.html for information on user experiences with MCNP. 2 - Methods:MCNP treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and some special fourth-degree surfaces. Pointwise continuous-energy cross section data are used, although multigroup data may also be used. Fixed-source adjoint calculations may be made with the multigroup data option. For neutrons, all reactions in a particular cross-section evaluation are accounted for. Both free gas and S(alpha, beta) thermal treatments are used. Criticality sources as well as fixed and surface sources are available. For photons, the code takes account of incoherent and coherent scattering with and without electron binding effects, the possibility of fluorescent emission following photoelectric absorption, and absorption in pair production with local emission of annihilation radiation. A very general source and tally structure is available. The tallies have extensive statistical analysis of convergence. Rapid convergence is enabled by a wide variety of variance reduction methods. Energy ranges are 0-60 MeV for neutrons (data generally only available up to

  12. Patient-dependent count-rate adaptive normalization for PET detector efficiency with delayed-window coincidence events

    International Nuclear Information System (INIS)

    Niu, Xiaofeng; Ye, Hongwei; Xia, Ting; Asma, Evren; Gagnon, Daniel; Wang, Wenli; Winkler, Mark

    2015-01-01

    Quantitative PET imaging is widely used in clinical diagnosis in oncology and neuroimaging. Accurate normalization correction for the efficiency of each line-of- response is essential for accurate quantitative PET image reconstruction. In this paper, we propose a normalization calibration method by using the delayed-window coincidence events from the scanning phantom or patient. The proposed method could dramatically reduce the ‘ring’ artifacts caused by mismatched system count-rates between the calibration and phantom/patient datasets. Moreover, a modified algorithm for mean detector efficiency estimation is proposed, which could generate crystal efficiency maps with more uniform variance. Both phantom and real patient datasets are used for evaluation. The results show that the proposed method could lead to better uniformity in reconstructed images by removing ring artifacts, and more uniform axial variance profiles, especially around the axial edge slices of the scanner. The proposed method also has the potential benefit to simplify the normalization calibration procedure, since the calibration can be performed using the on-the-fly acquired delayed-window dataset. (paper)

  13. Spatial dependence and origin of the ambient doce due to neutron activation processes in linear accelerators

    International Nuclear Information System (INIS)

    Ruiz Egea, E.; Sanchez Carrascal, M.; Torres Pozas, S.; Monja Ray, P. de la; Perez Molina, J. L.; Madan Rodriguez, C.; Luque Japon, L.; Morera Molina, A.; Hernandez Perez, A.; Barquero Bravo, Y.; Morengo Pedagna, I.; Oliva Gordillo, M. C.; Martin Olivar, R.

    2011-01-01

    In order to try to determine the high dose in the bunker of a Linear Accelerator clinical use trying to measure the spatial dependence of the sane f ron the isocenter to tite gateway to the Board ceeking to establich the origin of it. This doce measurements performed with an ionization charober at different locations incide the bunker after an irradiation of 400 Monitor Units verifying the doce rate per minute for an hour, and accumulating the doce received during that period of time.

  14. On grain-size-dependent void swelling in pure copper irradiated with fission neutrons

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Eldrup, Morten Mostgaard; Zinkle, S.J.

    2002-01-01

    The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms. The phenomenon had already been investigated in the 1970s and it was demonstrated that the grain......-size-dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under...

  15. Time dependent AN neutron transport calculations in finite media using a numerical inverse Laplace transform technique

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Sumini, M.

    1990-01-01

    The time dependent space second order discrete form of the monokinetic transport equation is given an analytical solution, within the Laplace transform domain. Th A n dynamic model is presented and the general resolution procedure is worked out. The solution in the time domain is then obtained through the application of a numerical transform inversion technique. The justification of the research relies in the need to produce reliable and physically meaningful transport benchmarks for dynamic calculations. The paper is concluded by a few results followed by some physical comments

  16. MMAPDNG: A new, fast code backed by a memory-mapped database for simulating delayed γ-ray emission with MCNPX package

    Science.gov (United States)

    Lou, Tak Pui; Ludewigt, Bernhard

    2015-09-01

    The simulation of the emission of beta-delayed gamma rays following nuclear fission and the calculation of time-dependent energy spectra is a computational challenge. The widely used radiation transport code MCNPX includes a delayed gamma-ray routine that is inefficient and not suitable for simulating complex problems. This paper describes the code "MMAPDNG" (Memory-Mapped Delayed Neutron and Gamma), an optimized delayed gamma module written in C, discusses usage and merits of the code, and presents results. The approach is based on storing required Fission Product Yield (FPY) data, decay data, and delayed particle data in a memory-mapped file. When compared to the original delayed gamma-ray code in MCNPX, memory utilization is reduced by two orders of magnitude and the ray sampling is sped up by three orders of magnitude. Other delayed particles such as neutrons and electrons can be implemented in future versions of MMAPDNG code using its existing framework.

  17. On the stability and multi-stability of a TCP/RED congestion control model with state-dependent delay and discontinuous marking function

    Science.gov (United States)

    Zhang, Shu; Xu, Jian; Chung, Kwok-wai

    2015-05-01

    Random early detection (RED) is an effective algorithm to control the Internet congestion. However, researches on RED parameters are difficult since there are state-dependent delay and discontinuous terms on the right-hand side of the model. We smooth the model by hyperbolic tangent function and reformulate it by a switch function to keep state variables positive. Numerical simulations on the original system validates the reformulated model. The multi-stability phenomenon is observed and some suggestions on the selection of RED parameters are given to enhance the global stability of the model by numerical bifurcation continuation on the reformulated model.

  18. Multiple coherence resonances and synchronization transitions by time delay in adaptive scale-free neuronal networks with spike-timing-dependent plasticity

    International Nuclear Information System (INIS)

    Xie, Huijuan; Gong, Yubing

    2017-01-01

    In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on multiple coherence resonances (MCR) and synchronization transitions (ST) induced by time delay in adaptive scale-free Hodgkin–Huxley neuronal networks. It is found that STDP has a big influence on MCR and ST induced by time delay and on the effect of network average degree on the MCR and ST. MCR is enhanced or suppressed as the adjusting rate A p of STDP decreases or increases, and there is optimal A p by which ST becomes strongest. As network average degree 〈k〉 increases, ST is enhanced and there is optimal 〈k〉 at which MCR becomes strongest. Moreover, for a larger A p value, ST is enhanced more rapidly with increasing 〈k〉 and the optimal 〈k〉 for MCR increases. These results show that STDP can either enhance or suppress MCR, and there is optimal STDP that can most strongly enhance ST induced by time delay in the adaptive neuronal networks. These findings could find potential implication for the information processing and transmission in neural systems.

  19. Delayed Puberty

    DEFF Research Database (Denmark)

    Kolby, Nanna; Busch, Alexander Siegfried; Juul, Anders

    2017-01-01

    . The underlying reasons for the large variation in the age at pubertal onset are not fully established; however, nutritional status and socioeconomic and environmental factors are known to be influencing, and a significant amount of influencing genetic factors have also been identified. The challenges...... optimal in discriminating especially CDGP from HH. Management of the delayed puberty depends on the etiology. For boys with CDGP an observational period will often reveal imminent puberty. If puberty is not progressing spontaneously, sex steroid replacement is effective in stimulating the development...

  20. Domain wall motion and magnetization reversal processes in a FeSi picture frame single crystal studied by the time-dependent neutron depolarization technique

    International Nuclear Information System (INIS)

    Schaik, F.J. van.

    1979-01-01

    The three dimensional neutron depolarization technique, which gives detailed information about the static properties of ferromagnetic materials, has been extended to a method by means of which the time dependence of magnetic phenomena can be studied. The measurement of the neutron depolarization against time is made possible by applying a periodical magnetic field on the investigated specimen and by continuous sampling of the transmitted neutron intensity in time channels, which are started synchronously with the applied field. The technique has been used in the study of the magnetic domain structure at room temperature of a (010) [001] picture frame FeSi single crystal (3.5 wt.% Si) with outer dimensions of (15 x 10 x 0.26) mm and a frame width of 2.78 mm. (Auth.)