Constitutive model with time-dependent deformations
DEFF Research Database (Denmark)
Krogsbøll, Anette
1998-01-01
are common in time as well as size. This problem is adressed by means of a new constitutive model for soils. It is able to describe the behavior of soils at different deformation rates. The model defines time-dependent and stress-related deformations separately. They are related to each other and they occur......In many geological and Engineering problems it is necessary to transform information from one scale to another. Data collected at laboratory scale are often used to evaluate field problems on a much larger scale. This is certainly true for geological problems where extreme scale differences...... simultanelously. The model is based on concepts from elasticity and viscoplasticity theories. In addition to Hooke's law for the elastic behavior, the framework for the viscoplastic behavior consists, in the general case (two-dimensional or three-dimensional), of a yield surface, an associated flow rule...
DEFF Research Database (Denmark)
2011-01-01
procedure is introduced for the analysis and solution of property models. Models that capture and represent the temperature dependent behaviour of physical properties are introduced, as well as equation of state models (EOS) such as the SRK EOS. Modelling of liquid phase activity coefficients are also......This chapter presents various types of constitutive models and their applications. There are 3 aspects dealt with in this chapter, namely: creation and solution of property models, the application of parameter estimation and finally application examples of constitutive models. A systematic...... covered, illustrating several models such as the Wilson equation and NRTL equation, along with their solution strategies. A section shows how to use experimental data to regress the property model parameters using a least squares approach. A full model analysis is applied in each example that discusses...
DEFF Research Database (Denmark)
2011-01-01
This chapter presents various types of constitutive models and their applications. There are 3 aspects dealt with in this chapter, namely: creation and solution of property models, the application of parameter estimation and finally application examples of constitutive models. A systematic...
Allen Phillip A.; Wilson, Christopher D.
2003-01-01
The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.
Numerical Modeling of Friction Stir Welding Process by Using Rate-dependent Constitutive Model
Institute of Scientific and Technical Information of China (English)
Hongwu ZHANG; Zhao ZHANG
2007-01-01
Rate-dependent constitutive model was used to simulate the friction stir welding process. The effect of the viscosity coefficient and the process parameters on the material behaviors and the stress distributions around the pin were studied. Results indicate that the stress in front of the pin is larger than that behind the pin. The difference between the radial/circumferential stress in front of the pin and that behind it becomes smaller when the material gets closer to the top surface. This difference increases with increasing the viscosity coefficient and becomes smaller when the welding speed decreases. The variation of the angular velocity does not significantly affect the difference.
Constitutive modeling of time-dependent response of human plantar aponeurosis.
Pavan, P G; Pachera, P; Stecco, C; Natali, A N
2014-01-01
The attention is focused on the viscoelastic behavior of human plantar aponeurosis tissue. At this purpose, stress relaxation tests were developed on samples taken from the plantar aponeurosis of frozen adult donors with age ranging from 67 to 78 years, imposing three levels of strain in the physiological range (4%, 6%, and 8%) and observing stress decay for 240 s. A viscohyperelastic fiber-reinforced constitutive model with transverse isotropy was assumed to describe the time-dependent behavior of the aponeurotic tissue. This model is consistent with the structural conformation of the tissue where collagen fibers are mainly aligned with the proximal-distal direction. Constitutive model fitting to experimental data was made by implementing a stochastic-deterministic procedure. The stress relaxation was found close to 40%, independently of the level of strain applied. The agreement between experimental data and numerical results confirms the suitability of the constitutive model to describe the viscoelastic behaviour of the plantar aponeurosis.
Institute of Scientific and Technical Information of China (English)
SHEN Xin-pu; SHEN Guo-xiao; CHEN Li-xin; YANG Lu
2005-01-01
Firstly, typical gradient-dependent nonlocal inelastic models were briefly gradient-dependent constitutive model for plasticity coupled with isotropic damage was presented in the framework of continuum thermodynamics. Numerical scheme for calculation of Laplacian term of damage field with the numerical results obtained by FEM calculation was proposed. Equations have been presented on the basis of Taylor series for both 2-dimensional and 3-dimensional cases, respectively. Numerical results have indicated the validity of the proposed gradient-dependent model and corresponding numerical scheme.
Constitutive Modeling of Time-Dependent Response of Human Plantar Aponeurosis
Pavan, P. G.; Pachera, P.; Stecco, C.; Natali, A. N.
2014-01-01
The attention is focused on the viscoelastic behavior of human plantar aponeurosis tissue. At this purpose, stress relaxation tests were developed on samples taken from the plantar aponeurosis of frozen adult donors with age ranging from 67 to 78 years, imposing three levels of strain in the physiological range (4%, 6%, and 8%) and observing stress decay for 240 s. A viscohyperelastic fiber-reinforced constitutive model with transverse isotropy was assumed to describe the time-dependent behav...
Constitutive Modeling of Time-Dependent Response of Human Plantar Aponeurosis
Directory of Open Access Journals (Sweden)
P. G. Pavan
2014-01-01
Full Text Available The attention is focused on the viscoelastic behavior of human plantar aponeurosis tissue. At this purpose, stress relaxation tests were developed on samples taken from the plantar aponeurosis of frozen adult donors with age ranging from 67 to 78 years, imposing three levels of strain in the physiological range (4%, 6%, and 8% and observing stress decay for 240 s. A viscohyperelastic fiber-reinforced constitutive model with transverse isotropy was assumed to describe the time-dependent behavior of the aponeurotic tissue. This model is consistent with the structural conformation of the tissue where collagen fibers are mainly aligned with the proximal-distal direction. Constitutive model fitting to experimental data was made by implementing a stochastic-deterministic procedure. The stress relaxation was found close to 40%, independently of the level of strain applied. The agreement between experimental data and numerical results confirms the suitability of the constitutive model to describe the viscoelastic behaviour of the plantar aponeurosis.
A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.
Ashrafi, M J; Arghavani, J; Naghdabadi, R; Sohrabpour, S
2015-02-01
Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper internal variables, free energy and limit functions are introduced. With the aim of numerical implementation, time discretization and solution algorithm for the proposed model are also presented. Due to lack of enough experimental data on multiaxial loadings of porous SMAs, we employ a computational simulation method (CSM) together with available experimental data to validate the proposed constitutive model. The method is based on a 3-D finite element model of a representative volume element (RVE) with random pores pattern. Good agreement between the numerical predictions of the model and CSM results is observed for elastic and phase transformation behaviors in various thermomechanical loadings.
ON PLASTIC ANISOTROPY OF CONSTITUTIVE MODEL FOR RATE-DEPENDENT SINGLE CRYSTAL
Institute of Scientific and Technical Information of China (English)
张光; 张克实; 冯露
2005-01-01
An algorithm for single crystals was developed and implemented to simulate plastic anisotropy using a rate-dependent slip model. The proposed procedure was a slightly modified form of single crystal constitutive model of Sarma and Zacharia. Modified Euler method, together with Newton-Raphson method was used to integrate this equation which was stable and efficient. The model together with the developed algorithm was used to study three problems. First, plastic anisotropy was examined by simulating the crystal deformation in tension and plane strain compression, respectively. Secondly, the orientation effect of some material parameters in the model and applied strain rate on plastic anisotropy for single crystal also is investigated. Thirdly, the influence of loading direction on the active slip system was discussed.
Institute of Scientific and Technical Information of China (English)
杨柳; 罗迎社
2008-01-01
The basic factors relating to the rheological stress in the constitutive equations were introduced.Carbon constructional quality steels were regarded as a kind of elastic-viscoplastic materials under high temperature and the elastic-viscoplastic constitutive models were summarized.A series of tension experiments under the same temperature and different strain rates,and the same strain rate and different temperatures were done on 20 steel,35 steel and 45 steel.52 groups of rheological stress-strain curves were obtained.The experimental results were analyzed theoretically.The rheological stress constitutive models of carbon steels were built combining the strong points of the Perzyna model and Johnson-Cook model.Comparing the calculation results conducted from the model with the experiment results,the results proves that the model can reflect the temperature effect and strain rate effect of carbon constructional quality steels better.
A QUASI-FLOW CONSTITUTIVE MODEL WITH STRAIN-RATE DEPENDENCE
Institute of Scientific and Technical Information of China (English)
HU Ping; SHEN Guozhe; YANG Guang
2004-01-01
In this paper, the proposed is a quasi-flow constitutive model with strain-rate sensitivity for elastic plastic large deformation. The model is based on the Quasi-flow Corner theory,and is suitable for the sheet metal forming process simulation with a variable punch machine velocity.Uniaxial tensile tests and deep-drawing tests of a circular blank with square punch are carried out and numerically simulated. The consistency between the experimental and the numerically simulated results shows the validity of the present new constitutive model.
Energy Technology Data Exchange (ETDEWEB)
Hammerand, Daniel Carl; Scherzinger, William Mark
2007-09-01
The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented
A size-dependent constitutive modelling framework for localised failure analysis
Nguyen, Giang D.; Nguyen, Chi T.; Nguyen, Vinh P.; Bui, Ha H.; Shen, Luming
2016-08-01
Localised deformation of materials usually takes place in thin bands during the nonlinear phase of the deformation process. The orientation and size of these localisation bands are important properties characterising the post-localisation behaviour of the materials, and hence should be taken into account in constitutive modelling. In this research, a new approach is proposed for the integration of both size and orientation of a localisation band in the constitutive description beyond the onset of localisation. Since a length scale related to the size of the localisation band appears in the model description, its post-localisation response then scales with both the band size and the size of the volume element containing it. Therefore, size effects are intrinsically included and post-localisation behaviour is correctly captured, which helps ensure convergence of numerical solutions upon discretisation refinement in numerical analysis of boundary value problems. The concept together with implementation features of the framework and its performances at constitutive level and in the analysis of boundary value problems are presented in this paper.
Crushed Salt Constitutive Model
Energy Technology Data Exchange (ETDEWEB)
Callahan, G.D.
1999-02-01
The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.
Directory of Open Access Journals (Sweden)
Fei LENG
2008-09-01
Full Text Available This paper discusses the seismic analysis of concrete dams with consideration of material nonlinearity. Based on a consistent rate-dependent model and two thermodynamics-based models, two thermodynamics-based rate-dependent constitutive models were developed with consideration of the influence of the strain rate. They can describe the dynamic behavior of concrete and be applied to nonlinear seismic analysis of concrete dams taking into account the rate sensitivity of concrete. With the two models, a nonlinear analysis of the seismic response of the Koyna Gravity Dam and the Dagangshan Arch Dam was conducted. The results were compared with those of a linear elastic model and two rate-independent thermodynamics-based constitutive models, and the influences of constitutive models and strain rate on the seismic response of concrete dams were discussed. It can be concluded from the analysis that, during seismic response, the tensile stress is the control stress in the design and seismic safety evaluation of concrete dams. In different models, the plastic strain and plastic strain rate of concrete dams show a similar distribution. When the influence of the strain rate is considered, the maximum plastic strain and plastic strain rate decrease.
Application of a time-dependent constitutive model to rheocast systems
Llegbusi, O. J.
1996-02-01
A mathematical model has been developed to describe the velocity field in an agitated Al- 5Cu alloy in which B4C particles were suspended at different loading rates of up to 40 %. The material system was agitated by means of an electromagnetic rotary stirrer. The non- Newtonian behavior of the melt/solid slurry was allowed for using two models: the steady- state model of Joly and Flemings and the model of Brown, which takes account of time- dependent behavior. Calculations have shown that the two models behave similarly at high shear rates. In addition, if agitation was discontinued, very little time was required for the velocity (and hence the fluidity) of the slurry to decay.
Mechanical Characterization and Constitutive Modeling of Human Trachea: Age and Gender Dependency
Directory of Open Access Journals (Sweden)
Farzaneh Safshekan
2016-06-01
Full Text Available Tracheal disorders can usually reduce the free lumen diameter or wall stiffness, and hence limit airflow. Trachea tissue engineering seems a promising treatment for such disorders. The required mechanical compatibility of the prepared scaffold with native trachea necessitates investigation of the mechanical behavior of the human trachea. This study aimed at mechanical characterization of human tracheas and comparing the results based on age and gender. After isolating 30 human tracheas, samples of tracheal cartilage, smooth muscle, and connective tissue were subjected to uniaxial tension to obtain force-displacement curves and calculate stress-stretch data. Among several models, the Yeoh and Mooney-Rivlin hyperelastic functions were best able to describe hyperelastic behavior of all three tracheal components. The mean value of the elastic modulus of human tracheal cartilage was calculated to be 16.92 ± 8.76 MPa. An overall tracheal stiffening with age was observed, with the most considerable difference in the case of cartilage. Consistently, we noticed some histological alterations in cartilage and connective tissue with aging, which may play a role in age-related tracheal stiffening. No considerable effect of gender on the mechanical behavior of tracheal components was observed. The results of this study can be applied in the design and fabrication of trachea tissue engineering scaffolds.
Constitutive modeling for isotropic materials
Chan, K. S.; Lindholm, U. S.; Bodner, S. R.
1988-01-01
The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.
Rock salt constitutive modeling
Energy Technology Data Exchange (ETDEWEB)
Nickell, R.E.
1980-03-18
The Serata model is the best operational model available today because it incorporates: (1) a yield function to demarcate between viscoelastic and viscoplastic behavior of rock salt; (2) a pressure and temperature dependence for yield stresses; and (3) a standard linear solid, which can be readily extended into the non-linear regime, to represent creep behavior. Its only deficiencies appear to be the lack of secondary creep behavior (a free dashpot) and some unsettling arbitrariness about the Poisson's ratio (..nu.. ..-->.. 0.5) argument for viscoplasticity. The Sandia/WIPP model will have good primary and secondary creep capability, but lacks the viscoplastic behavior. In some cases, estimated inelastic strains may be underpredicted. If a creep acceleration mechanism associated with brine inclusions is observed, this model may require extensive revision. Most of the other models available (SAI, RE-SPEC, etc.) are only useful for short-term calculations, because they employ temporal power law (t/sup n/) primary creep representations. These models are unsatisfactory because they cannot represent dual mechanisms with differing characteristic times. An approach based upon combined creep and plasticity is recommended in order to remove the remaining deficiency in the Serata model. DOE/Sandia/WIPP should be encouraged to move aggressively in this regard.
Liu, Jinxing
2012-11-27
Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes the influence of voids with a single parameter, namely the void-volume fraction, excluding any possible effects of the void-size distribution. We extend our newly proposed model including the multi-sized void (MSV) effect and the void-interaction effect for the capability of working for both moderate and high loading rate cases, where either rate dependence or microinertia becomes considerable or even dominant. Parametric studies show that the MSV-related competitive mechanism among void growth leads to the dependence of the void growth rate on void size, which directly influences the void\\'s contribution to the total energy composition. We finally show that the stress-strain constitutive behavior is also affected by this MSV-related competitive mechanism. The stabilizing effect due to rate sensitivity and microinertia is emphasized. © 2013 IOP Publishing Ltd.
Liu, J. X.; El Sayed, T.
2013-01-01
Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes the influence of voids with a single parameter, namely the void-volume fraction, excluding any possible effects of the void-size distribution. We extend our newly proposed model including the multi-sized void (MSV) effect and the void-interaction effect for the capability of working for both moderate and high loading rate cases, where either rate dependence or microinertia becomes considerable or even dominant. Parametric studies show that the MSV-related competitive mechanism among void growth leads to the dependence of the void growth rate on void size, which directly influences the void's contribution to the total energy composition. We finally show that the stress-strain constitutive behavior is also affected by this MSV-related competitive mechanism. The stabilizing effect due to rate sensitivity and microinertia is emphasized.
Constitutive model for overconsolidated clays
Institute of Scientific and Technical Information of China (English)
2008-01-01
Based on the relationships between the Hvorslev envelope,the current yield sur-face and the reference yield surface,a new constitutive model for overconsolidated clays is proposed. It adopts the unified hardening parameter,to which the potential failure stress ratio and the characteristic state stress ratio are introduced. The model can describe many characteristics of overconsolidated clays,including stress-strain relationships,strain hardening and softening,stress dilatancy,and stress path dependency. Compared with the Cam-clay model,the model only re-quires one additional soil parameter which is the slope of the Hvorslev envelope. Comparisons with data from triaxial drained compression tests for Fujinomori clay show that the proposed model can rationally describe overconsolidated properties. In addition,the model is also used to predict the stress-strain relationship in the isotropic consolidation condition and the stress paths in the undrained triaxial compression tests.
Constitutive Modelling in Geomechanics Introduction
Puzrin, Alexander M
2012-01-01
The purpose of this book is to bridge the gap between the traditional Geomechanics and Numerical Geotechnical Modelling with applications in science and practice. Geomechanics is rarely taught within the rigorous context of Continuum Mechanics and Thermodynamics, while when it comes to Numerical Modelling, commercially available finite elements or finite differences software utilize constitutive relationships within the rigorous framework. As a result, young scientists and engineers have to learn the challenging subject of constitutive modelling from a program manual and often end up with using unrealistic models which violate the Laws of Thermodynamics. The book is introductory, by no means does it claim any completeness and state of the art in such a dynamically developing field as numerical and constitutive modelling of soils. The author gives basic understanding of conventional continuum mechanics approaches to constitutive modelling, which can serve as a foundation for exploring more advanced theories....
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
2000-01-01
Lagrangian Integral Method) is a finite element method where Galerkons method is used for solving the governing equation in rectangular coordinates numerically. In the present implementation the velocity and pressure fields are approximated with tri-linear and constant shape functions, respectivly.The 3D LIM......) and polymeric solutions. Secondly, the 3D-LIM has also been applied to calculate the inflation of a thick sheet of a polymeric melt into a elliptic cylinder. These problems all include free surfaces. As the governing equations are solved for the particle positions, the motion of surfaces can be followed easily......A new technique for the numerical 3D simulation of time dependent flow of viscoelastic fluid is presented. The technique is based on a Lagrangian kinematics description of the fluid flow. The fluid is described by the Rivlin Sawyer integral constitutive equation. The method (referred to as the 3D...
An Elastoplastic Damage Constitutive Model for Concrete
Institute of Scientific and Technical Information of China (English)
LIU Jun; LIN Gao; ZHONG Hong
2013-01-01
An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented.Similar to traditional plastic theory,the irreversible deformation is modeled in effective stress space.In order to better describe different stiffness degradation mechanisms of concrete under tensile and compressive loading conditions,two damage variables,i.e.,tension and compression are introduced,to quantitatively evaluate the degree of deterioration of concrete structure.The rate dependent behavior is taken into account,and this model is derived firmly in the framework of irreversible thermodynamics.Fully implicit backward-Euler algorithm is suggested to perform constitutive integration.Numerical results of the model accord well with the test results for specimens under uniaxial tension and compression,biaxial loading and triaxial loading.Failure processes of double-edge-notched (DEN) specimen are also simulated to further validate the proposed model.
An elastoplastic damage constitutive model for concrete
Liu, Jun; Lin, Gao; Zhong, Hong
2013-04-01
An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to better describe different stiffness degradation mechanisms of concrete under tensile and compressive loading conditions, two damage variables, i.e., tension and compression are introduced, to quantitatively evaluate the degree of deterioration of concrete structure. The rate dependent behavior is taken into account, and this model is derived firmly in the framework of irreversible thermodynamics. Fully implicit backward-Euler algorithm is suggested to perform constitutive integration. Numerical results of the model accord well with the test results for specimens under uniaxial tension and compression, biaxial loading and triaxial loading. Failure processes of double-edge-notched (DEN) specimen are also simulated to further validate the proposed model.
Testing of constitutive models in LAME.
Energy Technology Data Exchange (ETDEWEB)
Hammerand, Daniel Carl; Scherzinger, William Mark
2007-09-01
Constitutive models for computational solid mechanics codes are in LAME--the Library of Advanced Materials for Engineering. These models describe complex material behavior and are used in our finite deformation solid mechanics codes. To ensure the correct implementation of these models, regression tests have been created for constitutive models in LAME. A selection of these tests is documented here. Constitutive models are an important part of any solid mechanics code. If an analysis code is meant to provide accurate results, the constitutive models that describe the material behavior need to be implemented correctly. Ensuring the correct implementation of constitutive models is the goal of a testing procedure that is used with the Library of Advanced Materials for Engineering (LAME) (see [1] and [2]). A test suite for constitutive models can serve three purposes. First, the test problems provide the constitutive model developer a means to test the model implementation. This is an activity that is always done by any responsible constitutive model developer. Retaining the test problem in a repository where the problem can be run periodically is an excellent means of ensuring that the model continues to behave correctly. A second purpose of a test suite for constitutive models is that it gives application code developers confidence that the constitutive models work correctly. This is extremely important since any analyst that uses an application code for an engineering analysis will associate a constitutive model in LAME with the application code, not LAME. Therefore, ensuring the correct implementation of constitutive models is essential for application code teams. A third purpose of a constitutive model test suite is that it provides analysts with example problems that they can look at to understand the behavior of a specific model. Since the choice of a constitutive model, and the properties that are used in that model, have an enormous effect on the results of an
Constitutive Models for Shape Memory Alloy Polycrystals
Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.
1996-01-01
Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.
Kim, Woo Jin; Kwak, Tae Yang
2017-07-01
The hot compressive flow behavior of the cast Mg-9.5Zn-2.0Y alloy as a function of strain was analyzed, and the degree of dependence of the parameters ( A: material constant, n 2: stress exponent, Q c: activation energy for plastic flow and α: stress multiplier) of the constitutive equation (\\dot ɛ = A{[ {sinh ( {α σ } )} ]^{{n_2}}}\\exp ( {{ - {Q_c}}/{RT}} )) upon the strain was examined in a systematic manner. This is to explore the possibility of representing the hot compressive deformation behavior of metallic alloys in a simple way by using a reduced number of strain-dependent constitutive parameters. The analysis results for several different cases can be interpreted as follows: (1) Q c can be treated as being strain-independent, which is physically sensible; (2) while only the microstructure changes as a function of strain at low flow stresses, as the flow stress increases, the power-law creep deformation and power-law breakdown mechanisms change; (3) the regime where only A is strain dependent expanded to higher strain rates and lower temperatures as the strain increased, suggesting that the number of the strain-dependent parameters decreases as the initial microstructure is refined by dynamic recrystallization, and the microstructure approaches a steady state.
Constitutive modeling for isotropic materials (HOST)
Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.
1986-01-01
The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined
Taheri Andani, Masood; Elahinia, Mohammad
2014-01-01
In this work, a modified 3D model is presented to capture the multi-axial behavior of superelastic shape memory alloys (SMAs) under quasi-static isothermal or dynamic loading conditions. General experimental based equivalent stress and strain terms are introduced and improved flow rule and transformation surfaces are presented. The 3D constitutive equations are found for both isothermal and dynamic loading states. An extended experimental study is conducted on NiTi thin walled tubes to investigate the performance of the model. The proposed approach is shown to be able to capture the SMA response better than the original model in tension-torsion loading conditions.
Crushed-salt constitutive model update
Energy Technology Data Exchange (ETDEWEB)
Callahan, G.D.; Loken, M.C.; Mellegard, K.D. [RE/SPEC Inc., Rapid City, SD (United States); Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States)
1998-01-01
Modifications to the constitutive model used to describe the deformation of crushed salt are presented in this report. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--defined previously but used separately are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. New creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from the shear consolidation tests and a combination of the shear and hydrostatic consolidation tests produced two sets of material parameter values for the model. The change in material parameter values from test group to test group indicates the empirical nature of the model but demonstrates improvement over earlier work with the previous models. Key improvements are the ability to capture lateral strain reversal and better resolve parameter values. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the model to predict the test data, the model appears to capture the creep consolidation behavior of crushed salt quite well.
A model for TRIP steel constitutive behaviour
Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Menari, G
2011-01-01
A constitutive model is developed for TRIP steel. This is a steel which contains three or four different phases in its microstructure. One of the phases in TRIP steels is metastable austenite (Retained Austenite) which transforms to martensite upon deformation. The accompanying transformation strain
Rapid implementation of advanced constitutive models
Starman, Bojan; Halilovič, Miroslav; Vrh, Marko; Štok, Boris
2013-12-01
This paper presents a methodology based on the NICE integration scheme [1, 2] for simple and rapid numerical implementation of a class of plasticity constitutive models. In this regard, an algorithm is purposely developed for the implementation of newly developed advanced constitutive models into explicit finite element framework. The methodology follows the organization of the problem state variables into an extended form, which allows the constitutive models' equations to be organized in such a way, that the algorithm can be optionally extended with minimal effort to integrate also evolution equations related to a description of other specific phenomena, such as damage, distortional hardening, phase transitions, degradation etc. To confirm simplicity of the program implementation, computational robustness, effectiveness and improved accuracy of the implemented integration algorithm, a deep drawing simulation of the cylindrical cup is considered as the case study, performed in ABAQUS/Explicit. As a fairly complex considered model, the YLD2004-18p model [3, 4] is first implemented via external subroutine VUMAT. Further, to give additional proof of the simplicity of the proposed methodology, a combination of the YLD2004-18p model and Gurson-Tvergaard-Needleman model (GTN) is considered. As demonstrated, the implementation is really obtained in a very simple way.
Thermodynamic watershed hydrological model: Constitutive relationship
Institute of Scientific and Technical Information of China (English)
2008-01-01
The representative elementary watershed (REW) approach proposed by Reggiani et al. was the first attempt to develop scale adaptable equations applicable directly at the macro scale. Tian et al. extended the initial definition of REW for simulating the energy related processes, and re-organized the deriving procedure of balance equations so that additional sub-regions and substances could be easily incorpo-rated. The resultant ordinary differential equation set can simulate various hydro-logical processes in a physically reasonable way. However, constitutive and geo-metric relationships have not been developed for Tian et al.’s equation set, which are necessary for the thermodynamic watershed hydrological model to apply in hydrological modeling practice. In this work, the constitutive equations for mass exchange terms and momentum exchange terms were developed as well as geo-metric relationships. The closed ordinary differential equation set with nine equa-tions was finally obtained.
Thermodynamic watershed hydrological model: Constitutive relationship
Institute of Scientific and Technical Information of China (English)
TIAN FuQiang; HU HePing; LEI ZhiDong
2008-01-01
The representative elementary watershed (REW) approach proposed by Reggiani et al. Was the first attempt to develop scale adaptable equations applicable directly at the macro scale. Tian et al. Extended the initial definition of REW for simulating the energy related processes, and re-organized the deriving procedure of balance equations so that additional sub-regions and substances could be easily incorpo- rated. The resultant ordinary differential equation set can simulate various hydro- logical processes in a physically reasonable way. However, constitutive and geo- metric relationships have not been developed for Tian et al.'s equation set, which are necessary for the thermodynamic watershed hydrological model to apply in hydrological modeling practice. In this work, the constitutive equations for mass exchange terms and momentum exchange terms were developed as well as geo- metric relationships. The closed ordinary differential equation set with nine equations was finally obtained.
Constitutive relations for multiphase flow modeling
Energy Technology Data Exchange (ETDEWEB)
Jacobs, H.; Vaeth, L.; Thurnay, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik
1998-01-01
The constitutive relations that are used in the three-field fluid dynamics code IVA-KA for determining the drag in three-phase mixtures and the heat transferred by radiation are described together with some comparisons of calculational results with experiments. In these experiments (QUEOS), large quantities of solid particles are injected into water. Potential deficiencies of the present drag model are discussed. (author)
Rate dependent constitutive behavior of dielectric elastomers and applications in legged robotics
Oates, William; Miles, Paul; Gao, Wei; Clark, Jonathan; Mashayekhi, Somayeh; Hussaini, M. Yousuff
2017-04-01
Dielectric elastomers exhibit novel electromechanical coupling that has been exploited in many adaptive structure applications. Whereas the quasi-static, one-dimensional constitutive behavior can often be accurately quantified by hyperelastic functions and linear dielectric relations, accurate predictions of electromechanical, rate-dependent deformation during multiaxial loading is non-trivial. In this paper, an overview of multiaxial electromechanical membrane finite element modeling is formulated. Viscoelastic constitutive relations are extended to include fractional order. It is shown that fractional order viscoelastic constitutive relations are superior to conventional integer order models. This knowledge is critical for transition to control of legged robotic structures that exhibit advanced mobility.
Constitutive modeling of contact angle hysteresis.
Vedantam, Srikanth; Panchagnula, Mahesh V
2008-05-15
We introduce a phase field model of wetting of surfaces by sessile drops. The theory uses a two-dimensional non-conserved phase field variable to parametrize the Gibbs free energy of the three-dimensional system. Contact line tension and contact angle hysteresis arise from the gradient term in the free energy and the kinetic coefficient respectively. A significant advantage of this approach is in the constitutive specification of hysteresis. The advancing and receding angles of a surface, the liquid-vapor interfacial energy and three-phase line tension are the only required constitutive inputs to the model. We first simulate hysteresis on a smooth chemically homogeneous surface using this theory. Next we show that it is possible to study heterogeneous surfaces whose component surfaces are themselves hysteretic. We use this theory to examine the wetting of a surface containing a circular heterogeneous island. The contact angle for this case is found to be determined solely by the material properties at the contact line in accord with recent experimental data.
A nonlinear constitutive model for magnetostrictive materials
Institute of Scientific and Technical Information of China (English)
Xin'en Liu; Xiaojing Zheng
2005-01-01
A general nonlinear constitutive model is proposed for magnetostrictive materials, based on the important physical fact that a nonlinear part of the elastic strain produced by a pre-stress is related to the magnetic domain rotation or movement and is responsible for the change of the maximum magnetostrictive strain with the pre-stress. To avoid the complicity of determining the tensor function describing the nonlinear elastic strain part, this paper proposes a simplified model by means of linearizing the nonlinear function.For the convenience of engineering applications, the expressions of the 3-D (bulk), 2-D (film) and 1-D (rod) models are, respectively, given for an isotropic material and their applicable ranges are also discussed. By comparison with the experimental data of a Terfenol-D rod, it is found that the proposed model can accurately predict the magnetostrictive strain curves in low, moderate and high magnetic field regions for various compressive pre-stress levels. The numerical simulation further illustrates that, for either magnetostrictive rods or thin films, the proposed model can effectively describe the effects of the pre-stress or residual stress on the magnetization and magnetostrictive strain curves, while none of the known models can capture all of them. Therefore, the proposed model enjoys higher precision and wider applicability than the previous models, especially in the region of the high field.
Method of Numerical Modeling for Constitutive Relations of Clay
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In order to study the method of numerical modeling for constitutive relations of clay, on the basis of the principle of interaction between plastic volumetric strain and plastic generalized shear strain, the two constitutive functionals that include the function of stress path were used as the basic framework of the constitutive model, which are able to demonstrate the dependence of stress path.The two partial differential cross terms appear in the expression of stress-strain increment relation, which are used to demonstrate the interaction between plastic volumetric strain and plastic generalized shear strain.The elasoplastic constitutive models of clay under two kinds of stress paths, CTC and TC, have been constructed using the triaxial test results.The three basic characteristics of deformation of soils, pressure sensitivity, dilatancy, and dependence of stress path, are well explained using these two models.Using visualization, the three-dimensional surfaces of shear and volume strains in the whole stress field under stress paths of CTC and TC are given.In addition, the two families of shear and volumetric yield loci under CTC and TC paths are plotted respectively.By comparing the results of deformation under these two stress paths, it has been found that, there are obvious differences in the strain peaks, the shapes of strain surfaces, and the trends of variation of volumetric yield loci, however both families of shear yield loci are similar.These results demonstrate that the influences of stress path on the constitutive relations of clay are considerably large and not negligible.The numerical modeling method that can sufficiently reflect the dependence of stress path is superior to the traditional one.
An improved computational constitutive model for glass
Holmquist, Timothy J.; Johnson, Gordon R.; Gerlach, Charles A.
2017-01-01
In 2011, Holmquist and Johnson presented a model for glass subjected to large strains, high strain rates and high pressures. It was later shown that this model produced solutions that were severely mesh dependent, converging to a solution that was much too strong. This article presents an improved model for glass that uses a new approach to represent the interior and surface strength that is significantly less mesh dependent. This new formulation allows for the laboratory data to be accurately represented (including the high tensile strength observed in plate-impact spall experiments) and produces converged solutions that are in good agreement with ballistic data. The model also includes two new features: one that decouples the damage model from the strength model, providing more flexibility in defining the onset of permanent deformation; the other provides for a variable shear modulus that is dependent on the pressure. This article presents a review of the original model, a description of the improved model and a comparison of computed and experimental results for several sets of ballistic data. Of special interest are computed and experimental results for two impacts onto a single target, and the ability to compute the damage velocity in agreement with experiment data. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
Deformation modeling and constitutive modeling for anisotropic superalloys
Milligan, Walter W.; Antolovich, Stephen D.
1989-01-01
A study of deformation mechanisms in the single crystal superalloy PWA 1480 was conducted. Monotonic and cyclic tests were conducted from 20 to 1093 C. Both (001) and near-(123) crystals were tested, at strain rates of 0.5 and 50 percent/minute. The deformation behavior could be grouped into two temperature regimes: low temperatures, below 760 C; and high temperatures, above 820 to 950 C depending on the strain rate. At low temperatures, the mechanical behavior was very anisotropic. An orientation dependent CRSS, a tension-compression asymmetry, and anisotropic strain hardening were all observed. The material was deformed by planar octahedral slip. The anisotropic properties were correlated with the ease of cube cross-slip, as well as the number of active slip systems. At high temperatures, the material was isotropic, and deformed by homogeneous gamma by-pass. It was found that the temperature dependence of the formation of superlattice-intrinsic stacking faults was responsible for the local minimum in the CRSS of this alloy at 400 C. It was proposed that the cube cross-slip process must be reversible. This was used to explain the reversible tension-compression asymmetry, and was used to study models of cross-slip. As a result, the cross-slip model proposed by Paidar, Pope and Vitek was found to be consistent with the proposed slip reversibility. The results were related to anisotropic viscoplastic constitutive models. The model proposed by Walter and Jordan was found to be capable of modeling all aspects of the material anisotropy. Temperature and strain rate boundaries for the model were proposed, and guidelines for numerical experiments were proposed.
Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag
Energy Technology Data Exchange (ETDEWEB)
Massoudi, Mehrdad [National Energy Technology Laboratory; Wang, Ping
2013-02-07
The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.
Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag
Directory of Open Access Journals (Sweden)
Mehrdad Massoudi
2013-02-01
Full Text Available The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.
Constitutive model development for flows of granular materials
Chialvo, Sebastian
Granular flows are ubiquitous in both natural and industrial processes. When com- posed of dry, noncohesive particles, they manifest three different flow regimes---commonly referred to as the quasistatic, inertial, and intermediate regimes---each of which exhibits its own dependences on solids volume fraction, shear rate, and particle-level properties. The differences in these regimes can be attributed to microscale phenomena, with quasistatic flows being dominated by enduring, frictional contacts between grains, inertial flows by grain collisions, and intermediate flows by a combination of the two. Existing constitutive models for the solids-phase stress tend to focus on one or two regimes at a time, with a limited degree of success; the same is true of models for wall-boundary conditions for granular flows. Moreover, these models tend not to be based on detailed particle-level flow data, either from experiment or simulation. Clearly, a comprehensive modeling framework is lacking. The work in this thesis aims to address these issues by proposing continuum models constructed on the basis of discrete element method (DEM) simulations of granular shear flows. Specifically, we propose (a) a constitutive stress model that bridges the three dense flow regimes, (b) an modified kinetic-theory model that covers both the dense and dilute ends of the inertial regime, and (c) a boundary-condition model for dense, wall-bounded flows. These models facilitate the modeling of a wide range of flow systems of practical interest and provide ideas for further model development and refinement.
Constitutive model with time-dependent deformations
DEFF Research Database (Denmark)
Krogsbøll, Anette
1998-01-01
In many geological and Engineering problems it is necessary to transform information from one scale to another. Data collected at laboratory scale are often used to evaluate field problems on a much larger scale. This is certainly true for geological problems where extreme scale differences...
A Constitutive Model for Isothermal Pseudoelasticity Coupled with Plasticity
Jiang, Dongjie; Landis, Chad M.
2016-12-01
In this paper, a new constitutive model for isothermal pseudoelastic shape memory alloys is presented. The model is based upon a kinematic hardening framework that was previously developed for ferroelastic and ferroelectric switching behavior. The basis of the model includes a transformation surface, an associated flow rule for transformation strain, and kinematic hardening with the back stresses represented by a transformation potential that is dependent upon the transformation strain. In contrast to many models that introduce tension/compression asymmetry by devising transformation surfaces in terms of invariants of the stress tensor, this model achieves this capability by means of expressing the transformation potential from which the back stresses are derived as a weighted mix of two potentials that are, respectively, calibrated to measured tensile and compressive responses. Additionally, in this model, plastic deformation is allowed to occur at high stresses by employing a standard J2-based yield surface with isotropic hardening. Finally, to demonstrate the ability of the constitutive model to perform in highly non-proportional loading states, some finite element simulations on crack tip fields are presented.
Constitutional mechanisms of vulnerability and resilience to nicotine dependence.
Hiroi, N; Scott, D
2009-07-01
The core nature of nicotine dependence is evident in wide variations in how individuals become and remain smokers. Individuals with pre-existing behavioral traits are more likely to develop nicotine dependence and experience difficulty when attempting to quit. Many molecular factors likely contribute to individual variations in the development of nicotine dependence and behavioral traits in complex manners. However, the identification of such molecules has been hampered by the phenotypic complexity of nicotine dependence and the complex ways molecules affect elements of nicotine dependence. We hypothesize that nicotine dependence is, in part, a result of interactions between nicotine and pre-existing behavioral traits. This perspective suggests that the identification of the molecular bases of such pre-existing behavioral traits will contribute to the development of effective methods for reducing smoking dependence and for helping smokers to quit.
Constitutive Modeling of Geomaterials Advances and New Applications
Zhang, Jian-Min; Zheng, Hong; Yao, Yangping
2013-01-01
The Second International Symposium on Constitutive Modeling of Geomaterials: Advances and New Applications (IS-Model 2012), is to be held in Beijing, China, during October 15-16, 2012. The symposium is organized by Tsinghua University, the International Association for Computer Methods and Advances in Geomechanics (IACMAG), the Committee of Numerical and Physical Modeling of Rock Mass, Chinese Society for Rock Mechanics and Engineering, and the Committee of Constitutive Relations and Strength Theory, China Institution of Soil Mechanics and Geotechnical Engineering, China Civil Engineering Society. This Symposium follows the first successful International Workshop on Constitutive Modeling held in Hong Kong, which was organized by Prof. JH Yin in 2007. Constitutive modeling of geomaterials has been an active research area for a long period of time. Different approaches have been used in the development of various constitutive models. A number of models have been implemented in the numerical analyses of geote...
A nonlocal constitutive model for trabecular bone softening in compression.
Charlebois, Mathieu; Jirásek, Milan; Zysset, Philippe K
2010-10-01
Using the three-dimensional morphological data provided by computed tomography, finite element (FE) models can be generated and used to compute the stiffness and strength of whole bones. Three-dimensional constitutive laws capturing the main features of bone mechanical behavior can be developed and implemented into FE software to enable simulations on complex bone structures. For this purpose, a constitutive law is proposed, which captures the compressive behavior of trabecular bone as a porous material with accumulation of irreversible strain and loss of stiffness beyond its yield point and softening beyond its ultimate point. To account for these features, a constitutive law based on damage coupled with hardening anisotropic elastoplasticity is formulated using density and fabric-based tensors. To prevent mesh dependence of the solution, a nonlocal averaging technique is adopted. The law has been implemented into a FE software and some simple simulations are first presented to illustrate its behavior. Finally, examples dealing with compression of vertebral bodies clearly show the impact of softening on the localization of the inelastic process.
Constitutive modelling of aluminium alloy sheet at warm forming temperatures
Kurukuri, S.; Worswick, M. J.; Winkler, S.
2016-08-01
The formability of aluminium alloy sheet can be greatly improved by warm forming. However predicting constitutive behaviour under warm forming conditions is a challenge for aluminium alloys due to strong, coupled temperature- and rate-sensitivity. In this work, uniaxial tensile characterization of 0.5 mm thick fully annealed aluminium alloy brazing sheet, widely used in the fabrication of automotive heat exchanger components, is performed at various temperatures (25 to 250 °C) and strain rates (0.002 and 0.02 s-1). In order to capture the observed rate- and temperature-dependent work hardening behaviour, a phenomenological extended-Nadai model and the physically based (i) Bergstrom and (ii) Nes models are considered and compared. It is demonstrated that the Nes model is able to accurately describe the flow stress of AA3003 sheet at different temperatures, strain rates and instantaneous strain rate jumps.
Neural Network Model for the Constitutive Relations of Soil
Institute of Scientific and Technical Information of China (English)
Zeng Jing; Wang Jing-tao
2003-01-01
The soil constitutive relation is one of the important issues in soil mechanics. It is very difficult to establish mathematical models because of the complexity of soil mechanical behavior. We propose a new method of neural network analysis for establishing soil constitutive models. Based on triaxial experiments of sand in the laboratory, the nonlinear constitutive models of sand expressed by the neural network were set up. In comparison with Duncan-Chang's model, the neural network method for sand modeling has been proved to be more convenient, accurate and it has a strong fault-tolerance function.
Towards a Simple Constitutive Model for Bread Dough
Tanner, Roger I.
2008-07-01
Wheat flour dough is an example of a soft solid material consisting of a gluten (rubbery) network with starch particles as a filler. The volume fraction of the starch filler is high-typically 60%. A computer-friendly constitutive model has been lacking for this type of material and here we report on progress towards finding such a model. The model must describe the response to small strains, simple shearing starting from rest, simple elongation, biaxial straining, recoil and various other transient flows. A viscoelastic Lodge-type model involving a damage function. which depends on strain from an initial reference state fits the given data well, and it is also able to predict the thickness at exit from dough sheeting, which has been a long-standing unsolved puzzle. The model also shows an apparent rate-dependent yield stress, although no explicit yield stress is built into the model. This behaviour agrees with the early (1934) observations of Schofield and Scott Blair on dough recoil after unloading.
Constitutive Laws for Dynamic Modelling of Soils,
1980-01-01
shear history progresses. This is the type of approach followed in the endochronic models used by Bazant and co-workers ( Bazant and Krizeck, 1976...h. The plastic strain increments can be derived, according to~ Hill (1950) as: d 1P~ zh 7r(-, df (4 13.4.1 Prevost’s Model 1 Jean Prevost, presently...this improved model to soils (1978). Mean- while, Bazant and his co-workers have continued using the older model for 1describing concrete ( Bazant and
Elasto-plastic constitutive modeling for granular materials
Institute of Scientific and Technical Information of China (English)
彭芳乐; 李建中
2004-01-01
Based on the modified plastic strain energy approach, an elasto-plastic constitutive modeling for sand was proposed. The hardening function between the modified plastic strain energy and a stress parameter was presented, which was independent of stress history and stress paths. The proposed model was related to an isotropically work-hardening and softening, non-associated and elasto-plastic material description. It is shown that the constitutive modeling, the inherent and stress system-induced cross-anisotropic elasticity is also considered. The constitutive model is capable of simulating the effects on the deformation characteristics of stress history and stress path, pressure level and anisotropic strength.
Spherocylindrical microplane constitutive model for shale and other anisotropic rocks
Li, Cunbao; Caner, Ferhun C.; Chau, Viet T.; Bažant, Zdeněk P.
2017-06-01
Constitutive equations for inelastic behavior of anisotropic materials have been a challenge for decades. Presented is a new spherocylindrical microplane constitutive model that meets this challenge for the inelastic fracturing behavior of orthotropic materials, and particularly the shale, which is transversely isotropic and is important for hydraulic fracturing (aka fracking) as well as many geotechnical structures. The basic idea is to couple a cylindrical microplane system to the classical spherical microplane system. Each system is subjected to the same strain tensor while their stress tensors are superposed. The spherical phase is similar to the previous microplane models for concrete and isotropic rock. The integration of stresses over spherical microplanes of all spatial orientations relies on the previously developed optimal Gaussian integration over a spherical surface. The cylindrical phase, which is what creates the transverse isotropy, involves only microplanes that are normal to plane of isotropy, or the bedding layers, and enhance the stiffness and strength in that plane. Unlike all the microplane models except the spectral one, the present one can reproduce all the five independent elastic constants of transversely isotropic shales. Vice versa, from these constants, one can easily calculate all the microplane elastic moduli, which are all positive if the elastic in-to-out-of plane moduli ratio is not too big (usually less than 3.75, which applies to all shales). Oriented micro-crack openings, frictional micro-slips and bedding plane behavior can be modeled more intuitively than with the spectral approach. Data fitting shows that the microplane resistance depends on the angle with the bedding layers non-monotonically, and compressive resistance reaches a minimum at 60°. A robust algorithm for explicit step-by-step structural analysis is formulated. Like all microplane models, there are many material parameters, but they can be identified sequentially
Evaluation of potential crushed-salt constitutive models
Energy Technology Data Exchange (ETDEWEB)
Callahan, G.D.; Loken, M.C.; Sambeek, L.L. Van; Chen, R.; Pfeifle, T.W.; Nieland, J.D. [RE/SPEC Inc., Rapid City, SD (United States); Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Dept.
1995-12-01
Constitutive models describing the deformation of crushed salt are presented in this report. Ten constitutive models with potential to describe the phenomenological and micromechanical processes for crushed salt were selected from a literature search. Three of these ten constitutive models, termed Sjaardema-Krieg, Zeuch, and Spiers models, were adopted as candidate constitutive models. The candidate constitutive models were generalized in a consistent manner to three-dimensional states of stress and modified to include the effects of temperature, grain size, and moisture content. A database including hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt was used to determine material parameters for the candidate constitutive models. Nonlinear least-squares model fitting to data from the hydrostatic consolidation tests, the shear consolidation tests, and a combination of the shear and hydrostatic tests produces three sets of material parameter values for the candidate models. The change in material parameter values from test group to test group indicates the empirical nature of the models. To evaluate the predictive capability of the candidate models, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the models to predict the test data, the Spiers model appeared to perform slightly better than the other two candidate models. The work reported here is a first-of-its kind evaluation of constitutive models for reconsolidation of crushed salt. Questions remain to be answered. Deficiencies in models and databases are identified and recommendations for future work are made. 85 refs.
A unified viscoplasticity constitutive model based on irreversible thermodynamics
Institute of Scientific and Technical Information of China (English)
LIU ChangChun; LV HeXiang; GUAN Ping
2008-01-01
A unified viscoplasticity constitutive model for metal materials is developed within the framework of irreversible thermodynamics, and an expression for the Helmholtz free energy function involving the parameters reflecting kinematic hardening and isotropic hardening is given. At the same time a non-associated flow potential function including the corresponding state variables is also given, from which the flow equation and the evolution equations of the internal state variables are derived. Thus, a general theoretical framework constructing a unified viscoplasticity con-stitutive model is given. Compared with the typical unified viscoplasticity constitu-tive models, the presented model evidently satisfies the irreversible thermody-namics laws. Moreover, this method not only provides a new theoretical foundation for further development of the unified viscoplasticity constitutive model, but also gives a new theoretical framework for the stress-strain analysis of more materials.
A unified viscoplasticity constitutive model based on irreversible thermodynamics
Institute of Scientific and Technical Information of China (English)
2008-01-01
A unified viscoplasticity constitutive model for metal materials is developed within the framework of irreversible thermodynamics, and an expression for the Helmholtz free energy function involving the parameters reflecting kinematic hardening and isotropic hardening is given. At the same time a non-associated flow potential function including the corresponding state variables is also given, from which the flow equation and the evolution equations of the internal state variables are derived. Thus, a general theoretical framework constructing a unified viscoplasticity constitutive model is given. Compared with the typical unified viscoplasticity constitutive models, the presented model evidently satisfies the irreversible thermodynamics laws. Moreover, this method not only provides a new theoretical foundation for further development of the unified viscoplasticity constitutive model, but also gives a new theoretical framework for the stress-strain analysis of more materials.
Remarks on ConstitutiveModeling of Nanofluids
Energy Technology Data Exchange (ETDEWEB)
Massoudi, Mehrdad; Tran X. Phuoc
2012-01-01
Nanofluids are made by adding nanoscale particles in low volumetric fractions to a fluid in order to enhance or improve their rheological, mechanical, optical, and thermal properties. The base fluid can be any liquid such as oil, water, ethylene glycol, or conventional fluid mixtures. Limited available studies on nanofluid viscosity have been reported [1-19]. In most of these studies, the behavior of the viscosity and the shear stress of nanofluids have been interpreted using the widely used empirical model developed by Casson [20].
Ligand-induced TCR down-regulation is not dependent on constitutive TCR cycling
DEFF Research Database (Denmark)
Dietrich, Jes; Menné, Charlotte; Lauritsen, Jens Peter H
2002-01-01
TCR internalization takes place both in resting T cells as part of constitutive TCR cycling, after PKC activation, and during TCR triggering. It is still a matter of debate whether these pathways represent distinct pathways. Thus, some studies have indicated that ligand-induced TCR internalization......, we next studied ligand-induced internalization in cells with abolished constitutive TCR cycling. We found that ligand-induced TCR internalization was not dependent on constitutive TCR internalization. Likewise, constitutive internalization and recycling of the TCR were independent of an intact ligand...... is regulated by mechanisms distinct from those involved in constitutive internalization, whereas other studies have suggested that the ligand-induced TCR internalization pathway is identical with the constitutive pathway. To resolve this question, we first identified requirements for constitutive TCR cycling...
Critical state soil constitutive model for methane hydrate soil
National Research Council Canada - National Science Library
S. Uchida; K. Soga; K. Yamamoto
2012-01-01
This paper presents a new constitutive model that simulates the mechanical behavior of methane hydrate-bearing soil based on the concept of critical state soil mechanics, referred to as the Methane...
Constitutive mixed mode model for cracks in concrete
DEFF Research Database (Denmark)
Jacobsen, J.S.; Poulsen, P.N.; Olesen, J.F.;
2013-01-01
The scope of the paper is to set up a constitutive mixed mode model for cracks in concrete. The model is formulated at macro level and includes the most important micro scale effects. An associated plasticity model inspired by the modified Cam clay model is established. The hardening parameters...... is determined from the topographic information and the constitutive model is thereby purely mechanically based. Using the actual topographic description the model is validated against experimental results for mixed mode crack openings....... are based on the standard Mode I tensile softening response and the response for Mode I crushing. The roughness of the crack is included through a topographic description of the crack surface. The constitutive behavior is based on the integration of local contributions. The local mixed mode ratio...
A Review of Constitutive Models for Rubber-Like Materials
Directory of Open Access Journals (Sweden)
Aidy Ali
2010-01-01
Full Text Available Problem statement: This study reviewed the needs of different constitutive models for rubber like material undergone large elastic deformation. The constitutive models are widely used in Finite Element Analysis (FEA packages for rubber components. Most of the starting point for modeling of various kinds of elastomer is a strain energy function. In order to define the hyperelastic material behavior, stress-strain response is required to determine material parameters in the strain energy potential and also proper selection of rubber elastic material model is the first attention. Conclusion: This review provided a sound basis decision to engineers and manufactures to choose the right model from several constitutive models based on strain energy potential for incompressible and isotropic materials.
Deviatoric constitutive model: domain of strain rate validity
Energy Technology Data Exchange (ETDEWEB)
Zocher, Marvin A [Los Alamos National Laboratory
2009-01-01
A case is made for using an enhanced methodology in determining the parameters that appear in a deviatoric constitutive model. Predictability rests on our ability to solve a properly posed initial boundary value problem (IBVP), which incorporates an accurate reflection of material constitutive behavior. That reflection is provided through the constitutive model. Moreover, the constitutive model is required for mathematical closure of the IBVP. Common practice in the shock physics community is to divide the Cauchy tensor into spherical and deviatoric parts, and to develop separate models for spherical and deviatoric constitutive response. Our focus shall be on the Cauchy deviator and deviatoric constitutive behavior. Discussions related to the spherical part of the Cauchy tensor are reserved for another time. A number of deviatoric constitutive models have been developed for utilization in the solution of IBVPs that are of interest to those working in the field of shock physics, e.g. All of these models are phenomenological and contain a number of parameters that must be determined in light of experimental data. The methodology employed in determining these parameters dictates the loading regime over which the model can be expected to be accurate. The focus of this paper is the methodology employed in determining model parameters and the consequences of that methodology as it relates to the domain of strain rate validity. We shall begin by describing the methodology that is typically employed. We shall discuss limitations imposed upon predictive capability by the typically employed methodology. We shall propose a modification to the typically employed methodology that significantly extends the domain of strain rate validity.
Coupled elasto-plasticity damage constitutive models for concrete
Institute of Scientific and Technical Information of China (English)
Qiang XU; Jian-yun CHEN; Jing LI; Gang XU
2013-01-01
The paper is to design and construct a coupled elasto-plasticity damage constitutive model for concrete.Based on the energy dissipation principle,the Hsieh-Ting-Chen four-parameter yield function is used.The model can reflect different strength characteristics of concrete in tension and compression,and reduce the limitation and lacuna of the traditional damage constitutive models for concrete.Furthermore,numerical test for concrete stress-strain relation under uniaxial tension and compression is given.Moreover,the damage process of concrete gravity dam is calculated and analyzed in seismic load.Compared with other damage constitutive models,the proposed model contains only one unknown parameter and the other parameters can be found in the Hsieh-Ting-Chen four-parameter yield function.The same damage evolution law,which is used for tension and compression,is good for determining stress-strain constitutive and damage characteristics in complex stress state.This coupled damage constitutive models can be applied in analyzing damage of concrete gravity dam and arch dam.
Constitutive Modeling of the Thermomechanical Behavior of Rock Salt
Hampel, A.
2016-12-01
For the safe disposal of heat-generating high-level radioactive waste in rock salt formations, highly reliable numerical simulations of the thermomechanical and hydraulic behavior of the host rock have to be performed. Today, the huge progress in computer technology has enabled experts to calculate large and detailed computer models of underground repositories. However, the big advances in computer technology are only beneficial when the applied material models and modeling procedures also meet very high demands. They result from the fact that the evaluation of the long-term integrity of the geological barrier requires an extrapolation of a highly nonlinear deformation behavior to up to 1 million years, while the underlying experimental investigations in the laboratory or in situ have a duration of only days, weeks or at most some years. Several advanced constitutive models were developed and continuously improved to describe the dependences of various deformation phenomena in rock salt on in-situ relevant boundary conditions: transient and steady-state creep, evolution of damage and dilatancy in the DRZ, failure, post-failure behavior, residual strength, damage and dilatancy reduction, and healing. In a joint project series between 2004 and 2016, fundamental features of the advanced models were investigated and compared in detail with benchmark calculations. The study included procedures for the determination of characteristic salt-type-specific model parameter values and for the performance of numerical calculations of underground structures. Based on the results of this work and on specific laboratory investigations, the rock mechanical modeling is currently developed further in a common research project of experts from Germany and the United States. In this presentation, an overview about the work and results of the project series is given and the current joint research project WEIMOS is introduced.
Mousavi, Mohammad Reza; Arghavani, Jamal
2017-01-01
This paper presents a three-dimensional phenomenological constitutive model for magnetic shape memory alloys (MSMAs), developed within the framework of irreversible continuum thermodynamics. To this end, a proper set of internal variables is introduced to reflect the microstructural consequences on the material macroscopic behavior. Moreover, a stress-dependent thermodynamic force threshold for variant reorientation is introduced which improves the model accuracy. Preassumed kinetic equations for magnetic domain volume fractions, decoupled equations for magnetization unit vectors and appropriate presentation of the limit function for martensite variant reorientation lead to a simple formulation of the proposed constitutive model. To show the model capability in reproducing the main features of MSMAs, several numerical examples are solved and compared with available experimental data as well as available three-dimensional constitutive models in the literature. Demonstrating good agreement with experimental data besides possessing computational advantages, the proposed constitutive model can be used for analysis of MSMA-based smart structures.
Image-driven constitutive modeling of myocardial fibrosis
Wang, Vicky Y.; Niestrawska, Justyna A.; Wilson, Alexander J.; Sands, Gregory B.; Young, Alistair A.; LeGrice, Ian J.; Nash, Martyn P.
2016-05-01
Myocardial fibrosis is a pathological process that occurs during heart failure (HF). It involves microstructural remodeling of normal myocardial tissue, and consequent changes in both cardiac geometry and function. The role of myocardial structural remodeling in the progression of HF remains poorly understood. We propose a constitutive modeling framework, informed by high-resolution images of cardiac tissue structure, to model the mechanical response of normal and fibrotic myocardium. This image-driven constitutive modeling approach allows us to better reproduce and understand the relationship between structural and functional remodeling of ventricular myocardium during HF.
A macro-mechanical constitutive model for shape memory polymer
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
It is of theoretical and engineering interest to establish a macro-mechanical constitutive model of the shape memory polymer (SMP), which includes the mechanical constitutive equation and the material parameter function, from the viewpoint of practical application. In this paper, a new three-dimensional macro-mechanical constitutive equation, which describes the mechanical behaviors associated with the shape memory effect of SMP, is developed based on solid mechanics and the viscoelasticity theorem. According to the results of the DMA test, a new material parameter function is established to express the relationship of the material parameters and temperature during the glass transition of SMP. The new macro-mechanical constitutive equation and material parameter function are used to numerically simulate the process producing the shape memory effect of SMP, which includes deforming at high temperature, stress freezing, unloading at low temperature and shape recovery. They are also used to investigate and analyze the influences of loading rate and temperature change rate on the thermo-mechanical behaviors of SMP. The numerical results and the comparisons with Zhou’s material parameter function and Tobushi’s mechanical constitutive equation illustrate that the proposed three-dimensional macro-mechanical constitutive model can effectively predict the thermo-mechanical behaviors of SMP under the state of complex stress.
Non-linear Constitutive Model for the Oligocarbonate Polyurethane Material
Institute of Scientific and Technical Information of China (English)
Marek Pawlikowski
2014-01-01
The polyurethane,which was the subject of the constitutive research presented in the paper,was based on oligocarbonate diols Desmophen C2100 produced by Bayer@.The constitutive modelling was performed with a view to applying the material as the inlay of intervertebral disc prostheses.The polyurethane was assumed to be non-linearly viscohyperelastic,isotropic and incompressible.The constitutive equation was derived from the postulated strain energy function.The elastic and rheological constants were identified on the basis of experimental tests,i.e.relaxation tests and monotonic uniaxial tests at two different strain rates,i.e.λ =0.1 min-1 and λ =1.0 min-1.The stiffness tensor was derived and introduced to Abaqus@finite element (FE) software in order to numerically validate the constitutive model.The results of the constants identification and numerical implementation show that the derived constitutive equation is fully adequate to model stress-strain behavior of the polyurethane material.
Target Soil Impact Verification: Experimental Testing and Kayenta Constitutive Modeling.
Energy Technology Data Exchange (ETDEWEB)
Broome, Scott Thomas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Flint, Gregory Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Dewers, Thomas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Newell, Pania [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-11-01
This report details experimental testing and constitutive modeling of sandy soil deformation under quasi - static conditions. This is driven by the need to understand constitutive response of soil to target/component behavior upon impact . An experimental and constitutive modeling program was followed to determine elastic - plastic properties and a compressional failure envelope of dry soil . One hydrostatic, one unconfined compressive stress (UCS), nine axisymmetric compression (ACS) , and one uniaxial strain (US) test were conducted at room temperature . Elastic moduli, assuming isotropy, are determined from unload/reload loops and final unloading for all tests pre - failure and increase monotonically with mean stress. Very little modulus degradation was discernable from elastic results even when exposed to mean stresses above 200 MPa . The failure envelope and initial yield surface were determined from peak stresses and observed onset of plastic yielding from all test results. Soil elasto - plastic behavior is described using the Brannon et al. (2009) Kayenta constitutive model. As a validation exercise, the ACS - parameterized Kayenta model is used to predict response of the soil material under uniaxial strain loading. The resulting parameterized and validated Kayenta model is of high quality and suitable for modeling sandy soil deformation under a range of conditions, including that for impact prediction.
A Gradient-Based Constitutive Model for Shape Memory Alloys
Tabesh, Majid; Boyd, James; Lagoudas, Dimitris
2017-06-01
Constitutive models are necessary to design shape memory alloy (SMA) components at nano- and micro-scales in NEMS and MEMS. The behavior of small-scale SMA structures deviates from that of the bulk material. Unfortunately, this response cannot be modeled using conventional constitutive models which lack an intrinsic length scale. At small scales, size effects are often observed along with large gradients in the stress or strain. Therefore, a gradient-based thermodynamically consistent constitutive framework is established. Generalized surface and body forces are assumed to contribute to the free energy as work conjugates to the martensite volume fraction, transformation strain tensor, and their spatial gradients. The rates of evolution of these variables are obtained by invoking the principal of maximum dissipation after assuming a transformation surface, which is a differential equation in space. This approach is compared to the theories that use a configurational force (microforce) balance law. The developed constitutive model includes energetic and dissipative length scales that can be calibrated experimentally. Boundary value problems, including pure bending of SMA beams and simple torsion of SMA cylindrical bars, are solved to demonstrate the capabilities of this model. These problems contain the differential equation for the transformation surface as well as the equilibrium equation and are solved analytically and numerically. The simplest version of the model, containing only the additional gradient of martensite volume fraction, predicts a response with greater transformation hardening for smaller structures.
Review of constitutive models and failure criteria for concrete
Energy Technology Data Exchange (ETDEWEB)
Seo, Jeong Moon; Choun, Young Sun [Korea Atomic Energy Research Institute, Taejeon (Korea)
2000-03-01
The general behavior, constitutive models, and failure criteria of concrete are reviewed. The current constitutive models for concrete cannot satisfy all of mechanical behavior of concrete. Among several constitutive models, damage models are recommended to describe properly the structural behavior of concrete containment buildings, because failure modes and post-failure behavior are important in containment buildings. A constitutive model which can describe the concrete behavior in tension is required because the containment buildings will reach failure state due to ultimate internal pressure. Therefore, a thorough study on the behavior and models under tension stress state in concrete and reinforced concrete has to be performed. There are two types of failure criteria in containment buildings: structural failure criteria and leakage failure criteria. For reinforced or prestressed concrete containment buildings, concrete cracking does not mean the structural failure of containment building because the reinforcement or post-tensioning system is able to resist tensile stress up to yield stress. Therefore leakage failure criteria will be prior to structural failure criteria, and a strain failure criterion for concrete has to be established. 120 refs., 59 figs., 1 tabs. (Author)
Constitutive model of rock based on microstructures simulation
Institute of Scientific and Technical Information of China (English)
YE Zhou-yuan; HONG Liang; LIU Xi-ling; YIN Tu-bing
2008-01-01
The constitutive model of rock can be built by mechanics elements because there are many kinds of damages in rock under varied loads. It is resumed that rock contains many microstructures and a structure of Bingham. The microstructure consists of two embranchments that are the unit of a spring and a gliding slice in series and the unit of a spring and a cementation bar in series, the two units connect each other in parallel. These microstructures are arranged disorderly or in the order of a certain state. A certain distribution of microstructures represents one type of rock. Two kinds of rock's constitutive relationship were deduced by using the model. One is the model in which many parallel microstructures and a structure of Bingham connect in series. And it is used to homogeneous rock. The other is the model in which many microstructures and a structure of Bingham connect in series. And it is used to the rock with much crack or microcrack in a certain direction. The two kinds of constitutive relationship were verified by the studied cases. The constitutive model of rock built by using mechanics elements is verified to be reasonable. Moreover, different types of rocks may be described with mechanics elements with different distributions.
Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils
DEFF Research Database (Denmark)
Jakobsen, Kim Parsberg
This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...
A thermomechanical crystal plasticity constitutive model for ultrasonic consolidation
Siddiq, Amir
2012-01-01
We present a micromechanics-based thermomechanical constitutive model to simulate the ultrasonic consolidation process. Model parameters are calibrated using an inverse modeling approach. A comparison of the simulated response and experimental results for uniaxial tests validate and verify the appropriateness of the proposed model. Moreover, simulation results of polycrystalline aluminum using the identified crystal plasticity based material parameters are compared qualitatively with the electron back scattering diffraction (EBSD) results reported in the literature. The validated constitutive model is then used to simulate the ultrasonic consolidation process at sub-micron scale where an effort is exerted to quantify the underlying micromechanisms involved during the ultrasonic consolidation process. © 2011 Elsevier B.V. All rights reserved.
Institute of Scientific and Technical Information of China (English)
BAO Lin; HU Jin-song; YU Yong-liang; CHENG Peng; XU Bo-qing; TONG Bing-gang
2006-01-01
Flexible insect wings deform passively under the periodic loading during flapping flight. The wing flexibility is considered as one of the specific mechanisms on improving insect flight performance. The constitutive relation of the insect wing material plays a key role on the wing deformation, but has not been clearly understood yet. A viscoelastic constitutive relation model was established based on the stress relaxation experiment of a dragonfly wing (in vitro). This model was examined by the finite clement analysis of the dynamic deformation response for a model insect wing under the action of the periodical inertial force in flapping. It is revealed that the viscoelastic constitutive relation is rational to characterize the biomaterial property of insect wings in contrast to the elastic one. The amplitude and form of the passive viscoelastic deformation of the wing is evidently dependent on the viscous parameters in the constitutive relation.
A constitutive model for sintering of granulated ceramic powders
Shinagawa, K.; Hirashima, Y.
1998-05-01
Sintering behavior of granulated powder is investigated to develop a constitutive model for deformation analysis of ceramic powder compacts during sintering. Spray-dried alumina is compacted by CIPing (cold isostatic pressing) and sintered at various temperatures. Shrinkage and the change in grain size of the compacts during sintering are revealed in relation to the inhomogeneous microstructure consisting of fractured and unfractured granules as a consequence of the compaction. A constitutive model for the ceramic powder compacts having the internal structure is presented; The difference in grain growth in dense and sparse regions of the compacts is taken into consideration to the model. The results calculated by the model show good agreement with that obtained by experiment.
Viscoelastoplastic constitutive model for creep deformation behavior of asphalt sand
Institute of Scientific and Technical Information of China (English)
叶永; 杨新华; 陈传尧
2008-01-01
A uniaxial viscoelastoplastic model that can describe whole creep behaviors of asphalt sand at different temperatures was presented.The model was composed of three submodels in series,which describe elastoplastic,viscoelastic and viscoplastic characteristics respectively.The constitutive equation was established for uniaxial loading condition,and the creep representation was also obtained.The constitutive parameters were determined by uniaxial compression tests under controlled-stress of 0.1 MPa with five different test temperatures of 20,40,45,50 and 60 ℃.Expressions of the model parameters in terms of temperatures were also given.The model gave prediction at various temperatures consistent with the experimental results,and can reflect the total deformation characterization of asphalt sands.
Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.
Caner, Ferhun C; Guo, Zaoyang; Moran, Brian; Bazant, Zdenek P; Carol, Ignacio
2007-10-01
In a recent paper, Peng et al. (2006, "An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Interaction for the Human Annulus Fibrosis," ASME J. Appl. Mech., 73(5), pp. 815-824) developed an anisotropic hyperelastic constitutive model for the human annulus fibrosus in which fiber-matrix interaction plays a crucial role in simulating experimental observations reported in the literature. Later, Guo et al. (2006, "A Composites-Based Hyperelastic Constitutive Model for Soft Tissue With Application to the Human Fibrosis," J. Mech. Phys. Solids, 54(9), pp. 1952-1971) used fiber reinforced continuum mechanics theory to formulate a model in which the fiber-matrix interaction was simulated using only composite effect. It was shown in these studies that the classical anisotropic hyperelastic constitutive models for soft tissue, which do not account for this shear interaction, cannot accurately simulate the test data on human annulus fibrosus. In this study, we show that the microplane model for soft tissue developed by Caner and Carol (2006, "Microplane Constitutive Model and Computational Framework for Blood Vessel Tissue," ASME J. Biomech. Eng., 128(3), pp. 419-427) can be adjusted for human annulus fibrosus and the resulting model can accurately simulate the experimental observations without explicit fiber-matrix interaction because, in microplane model, the shear interaction between the individual fibers distributed in the tissue provides the required additional rigidity to explain these experimental facts. The intensity of the shear interaction between the fibers can be adjusted by adjusting the spread in the distribution while keeping the total amount of the fiber constant. A comparison of results obtained from (i) a fiber-matrix parallel coupling model, which does not account for the fiber-matrix interaction, (ii) the same model but enriched with fiber-matrix interaction, and (iii) microplane model for soft tissue adapted to annulus fibrosus with two
Simulating sympathetic detonation using the hydrodynamic models and constitutive equations
Energy Technology Data Exchange (ETDEWEB)
Kim, Bo Hoon; Kim, Min Sung; Yoh, Jack J. [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Sun, Tae Boo [Hanwha Corporation Defense Rand D Center, Daejeon (Korea, Republic of)
2016-12-15
A Sympathetic detonation (SD) is a detonation of an explosive charge by a nearby explosion. Most of times it is unintended while the impact of blast fragments or strong shock waves from the initiating donor explosive is the cause of SD. We investigate the SD of a cylindrical explosive charge (64 % RDX, 20 % Al, 16 % HTPB) contained in a steel casing. The constitutive relations for high explosive are obtained from a thermo-chemical code that provides the size effect data without the rate stick data typically used for building the rate law and equation of state. A full size SD test of eight pallet-packaged artillery shells is performed that provides the pressure data while the hydrodynamic model with proper constitutive relations for reactive materials and the fragmentation model for steel casing is conducted to replicate the experimental findings. The work presents a novel effort to accurately model and reproduce the sympathetic detonation event with a reduced experimental effort.
Dynamic constitutive model for soils considering asymmetry of skeleton curve
Institute of Scientific and Technical Information of China (English)
Guoxing Chen; Hua Pan; Hui Long; Xiaojun Li
2013-01-01
Based on the asymmetric characteristic of skeleton curve obtained from dynamic tests on soils, a func-tion with double asymptotes is proposed for describing the dynamic constitutive relations of soils. The hysteresis loops observed during unloading and reloading show the same form as the skeleton curve and are constructed by taking the ultimate stress as the corresponding asymptote. The coefficient of initial unloading modulus is used to ensure that the constructed hysteresis loop fits well with the experimental data. Then, a new dynamic constitutive model considering the asymmetry of skeleton curve is elaborated. The verification tests on saturated Nanjing fine sand are performed using a hollow cylinder apparatus to verify the applicability of the UD model. It is found that the predicted curves by the UD model agree well with the test data.
Application of Anand's constitutive model on twin roll casting process of AZ31 magnesium alloy
Institute of Scientific and Technical Information of China (English)
HU Xiao-dong; JU Dong-ying
2006-01-01
Twin-roll thin strip casting process combines casting and hot rolling into a single process,in which thermal stress and thermal mechanical stress were involved. Considering the high temperature gradient,the existing of liquid and solid regions and rolling deformation,suitable constitutive model is the key to describe the process. Anand's model is a temperature-dependent,rate-dependent and unified of creep and plasticity model and the Jaumann derivative was employed in Anand's model which makes the constitutive model frame-indifferent or objective,therefore the highly nonlinearities behavior in the twin-roll casting process can be simulated. The parameters of the Anand's model were regressed based on the compression tests of AZ31 magnesium alloy. The simulation results reveal that the Anand's model can well describe the deformation characteristics of twin-roll casting process. Based on the simulation results,the form of evolution equations in Anand's model was discussed.
Constitutive modeling of shape memory alloys at finite strain
Energy Technology Data Exchange (ETDEWEB)
Pethoe, A. [Technical Univ. Budapest (Hungary). Dept. of Applied Mechanics
2001-07-01
A new model which is able to reproduce the basic responses of shape memory materials on both micro- and macrostructural aspects is presented. The model is based on a local finite strain continuum description and uses a multiplicative decomposition of the total deformation gradient which involves elastic, plastic and microstructurally given phase transitional parts. For the elastic behavior of the material a coupled hyper-hypoelastic model is used based on a recently developed logarithmic rate. A complex constitutive equation is presented which consists of the kinetics of phase change process given by thermodynamical basis. Finally a simple one dimensional example is also shown. (orig.)
A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers
Wang, Qiming; Gao, Zheming
2016-09-01
Nanocomposite hydrogels with only nanoparticle crosslinkers exhibit extraordinarily higher stretchability and toughness than the conventional organically crosslinked hydrogels, thus showing great potential in the applications of artificial muscles and cartilages. Despite their potential, the microscopic mechanics details underlying their mechanical performance have remained largely elusive. Here, we develop a constitutive model of the nanoparticle hydrogels to elucidate the microscopic mechanics behaviors, including the microarchitecture and evolution of the nanoparticle crosslinked polymer chains during the mechanical deformation. The constitutive model enables us to understand the Mullins effect of the nanocomposite hydrogels, and the effects of nanoparticle concentrations and sizes on their cyclic stress-strain behaviors. The theory is quantitatively validated by the tensile tests on a nanocomposite hydrogel with nanosilica crosslinkers. The theory can also be extended to explain the mechanical behaviors of existing hydrogels with nanoclay crosslinkers, and the necking instability of the composite hydrogels with both nanoparticle crosslinkers and organic crosslinkers. We expect that this constitutive model can be further exploited to reveal mechanics behaviors of novel particle-polymer chain interactions, and to design unprecedented hydrogels with both high stretchability and toughness.
A variational multiscale constitutive model for nanocrystalline materials
Gurses, Ercan
2011-03-01
This paper presents a variational multi-scale constitutive model in the finite deformation regime capable of capturing the mechanical behavior of nanocrystalline (nc) fcc metals. The nc-material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary effected zone (GBAZ). A rate-independent isotropic porous plasticity model is employed to describe the GBAZ, whereas a crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The constitutive models of both phases are formulated in a small strain framework and extended to finite deformation by use of logarithmic and exponential mappings. Assuming the rule of mixtures, the overall behavior of a given grain is obtained via volume averaging. The scale transition from a single grain to a polycrystal is achieved by Taylor-type homogenization where a log-normal grain size distribution is assumed. It is shown that the proposed model is able to capture the inverse HallPetch effect, i.e., loss of strength with grain size refinement. Finally, the predictive capability of the model is validated against experimental results on nanocrystalline copper and nickel. © 2010 Elsevier Ltd. All rights reserved.
Derivation of stiffness matrix in constitutive modeling of magnetorheological elastomer
Leng, D.; Sun, L.; Sun, J.; Lin, Y.
2013-02-01
Magnetorheological elastomers (MREs) are a class of smart materials whose mechanical properties change instantly by the application of a magnetic field. Based on the specially orthotropic, transversely isotropic stress-strain relationships and effective permeability model, the stiffness matrix of constitutive equations for deformable chain-like MRE is considered. To valid the components of shear modulus in this stiffness matrix, the magnetic-structural simulations with finite element method (FEM) are presented. An acceptable agreement is illustrated between analytical equations and numerical simulations. For the specified magnetic field, sphere particle radius, distance between adjacent particles in chains and volume fractions of ferrous particles, this constitutive equation is effective to engineering application to estimate the elastic behaviour of chain-like MRE in an external magnetic field.
A constitutive model for magnetostriction based on thermodynamic framework
Ho, Kwangsoo
2016-08-01
This work presents a general framework for the continuum-based formulation of dissipative materials with magneto-mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature.
An overview of constitutive models for shape memory alloys
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available The remarkable properties of shape memory alloys have facilitated their applications in many areas of technology. The purpose of this paper is to present an overview of thermomechanical behavior of these alloys, discussing the main constitutive models for their mathematical description. Metallurgical features and engineering applications are addressed as an introduction. Afterwards, five phenomenological theories are presented. In general, these models capture the general thermomechanical behavior of shape memory alloys, characterized by pseudoelasticity, shape memory effect, phase transformation phenomenon due to temperature variation, and internal subloops due to incomplete phase transformations.
Micromechanics and constitutive modeling of connective soft tissues.
Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M
2016-07-01
In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints.
Development of a Constitutive Model of Polypropylene for Thermoforming
O'Connor, C.; Martin, P.; Menary, G.; Sweeney, J.; Caton-Rose, P.; Spencer, P.
2011-05-01
In this paper the authors outline a constitutive model, implemented within finite element analyses, which was developed for large deformation, high temperature multi-axial stretching of polypropylenes. The model has been generalised to a fully 3-dimensional thermally coupled form. The paper describes how model parameters were characterised using constant width, biaxial and sequential stretching of polypropylenes at elevated temperature using a custom built flexible biaxial stretching machine developed at Queen's University Belfast. The paper presents results of finite element model predictions of material stretching behaviour compared to range of physical experiments. The results presented in the paper confirm that this model is very effective in predicting the complex thermo-mechanical behaviours of polypropylenes at elevated temperatures.
A linearized and incompressible constitutive model for arteries.
Liu, Y; Zhang, W; Wang, C; Kassab, G S
2011-10-07
In many biomechanical studies, blood vessels can be modeled as pseudoelastic orthotropic materials that are incompressible (volume-preserving) under physiological loading. To use a minimum number of elastic constants to describe the constitutive behavior of arteries, we adopt a generalized Hooke's law for the co-rotational Cauchy stress and a recently proposed logarithmic-exponential strain. This strain tensor absorbs the material nonlinearity and its trace is zero for volume-preserving deformations. Thus, the relationships between model parameters due to the incompressibility constraint are easy to analyze and interpret. In particular, the number of independent elastic constants reduces from ten to seven in the orthotropic model. As an illustratory study, we fit this model to measured data of porcine coronary arteries in inflation-stretch tests. Four parameters, n (material nonlinearity), Young's moduli E₁ (circumferential), E₂ (axial), and E₃ (radial) are necessary to fit the data. The advantages and limitations of this model are discussed.
A macro-mechanical constitutive model of shape memory alloys
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
It is of practical interest to establish a precise constitutive model which includes the equations describing the phase transformation behaviors and thermo-mechanical processes of shape memory alloy (SMA). The microscopic mechanism of super elasticity and shape memory effect of SMA is explained based on the concept of shape memory factor defined by the author of this paper. The conventional super elasticity and shape memory effect of SMA are further unified as shape memory effect. Shape memory factor is redefined in order to make clear its physical meaning. A new shape memory evolution equation is developed to predict the phase transformation behaviors of SMA based on the differential relationship between martensitic volume fraction and phase transformation free energy and the results of DSC test. It overcomes the limitations that the previous shape memory evolution equations or phase transformation equations fail to express the influences of the phase transformation peak temperatures on the phase transformation behaviors and the transformation from twinned martensite to detwinned martensite occurring in SMA. A new macro-mechanical constitutive equation is established to predict the thermo-mechanical processes realizing the shape memory effect of SMA from the expression of Gibbs free energy. It is expanded from one-dimension to three-dimension with assuming SMA as isotropic material. All material constants in the new constitutive equation can be determined from macroscopic experiments, which makes it more easily used in practical applications.
A macro-mechanical constitutive model of shape memory alloys
Institute of Scientific and Technical Information of China (English)
ZHOU Bo; LIU YanJu; LENG JinSong; ZOU GuangPing
2009-01-01
It is of practical interest to establish a precise constitutive model which includes the equations de-scribing the phase transformation behaviors and thermo-mechanical processes of shape memory alloy (SMA).The microscopic mechanism of super elasticity and shape memory effect of SMA is explained based on the concept of shape memory factor defined by the author of this paper.The conventional super elasticity and shape memory effect of SMA are further unified as shape memory effect.Shape memory factor is redefined in order to make clear its physical meaning.A new shape memory evolution equation is developed to predict the phase transformation behaviors of SMA based on the differential relationship between martensitic volume fraction and phase transformation free energy and the results of DSC test.It overcomes the limitations that the previous shape memory evolution equations or phase transformation equations fail to express the influences of the phase transformation peak temperatures on the phase transformation behaviors and the transformation from twinned martensite to detwinned martensite occurring in SMA.A new macro-mechanical constitutive equation is established to predict the thermo-mechanical processes realizing the shape memory effect of SMA from the expression of Gibbs free energy.It is expanded from one-dimension to three-dimension with assuming SMA as iso-tropic material.All material constants in the new constitutive equation can be determined from mac-roscopic experiments,which makes it more easily used in practical applications.
Nguyen, Judy V; Soto, Ileana; Kim, Keun-Young; Bushong, Eric A; Oglesby, Ericka; Valiente-Soriano, Francisco J; Yang, Zhiyong; Davis, Chung-ha O; Bedont, Joseph L; Son, Janice L; Wei, John O; Buchman, Vladimir L; Zack, Donald J; Vidal-Sanz, Manuel; Ellisman, Mark H; Marsh-Armstrong, Nicholas
2011-01-18
Optic nerve head (ONH) astrocytes have been proposed to play both protective and deleterious roles in glaucoma. We now show that, within the postlaminar ONH myelination transition zone (MTZ), there are astrocytes that normally express Mac-2 (also known as Lgals3 or galectin-3), a gene typically expressed only in phagocytic cells. Surprisingly, even in healthy mice, MTZ and other ONH astrocytes constitutive internalize large axonal evulsions that contain whole organelles. In mouse glaucoma models, MTZ astrocytes further up-regulate Mac-2 expression. During glaucomatous degeneration, there are dystrophic processes in the retina and optic nerve, including the MTZ, which contain protease resistant γ-synuclein. The increased Mac-2 expression by MTZ astrocytes during glaucoma likely depends on this γ-synuclein, as mice lacking γ-synuclein fail to up-regulate Mac-2 at the MTZ after elevation of intraocular pressure. These results suggest the possibility that a newly discovered normal degradative pathway for axons might contribute to glaucomatous neurodegeneration.
Constitutive modeling and computational implementation for finite strain plasticity
Reed, K. W.; Atluri, S. N.
1985-01-01
This paper describes a simple alternate approach to the difficult problem of modeling material behavior. Starting from a general representation for a rate-tpe constitutive equation, it is shown by example how sets of test data may be used to derive restrictions on the scalar functions appearing in the representation. It is not possible to determine these functions from experimental data, but the aforementioned restrictions serve as a guide in their eventual definition. The implications are examined for hypo-elastic, isotropically hardening plastic, and kinematically hardening plastic materials. A simple model for the evolution of the 'back-stress,' in a kinematic-hardening plasticity theory, that is entirely analogous to a hypoelastic stress-strain relation is postulated and examined in detail in modeling finitely plastic tension-torsion test. The implementation of rate-type material models in finite element algorithms is also discussed.
Goldberg, Robert K.; Stouffer, Donald C.
1998-01-01
Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.
Disturbed state concept as unified constitutive modeling approach
Directory of Open Access Journals (Sweden)
Chandrakant S. Desai
2016-06-01
Full Text Available A unified constitutive modeling approach is highly desirable to characterize a wide range of engineering materials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creep deformations, stress path, volume change, microcracking leading to fracture, failure and softening, stiffening, and mechanical and environmental forces. There are hardly available such unified models. The disturbed state concept (DSC is considered to be a unified approach and is able to provide material characterization for almost all of the above factors. This paper presents a description of the DSC, and statements for determination of parameters based on triaxial, multiaxial and interface tests. Statements of DSC and validation at the specimen level and at the boundary value problem levels are also presented. An extensive list of publications by the author and others is provided at the end. The DSC is considered to be a unique and versatile procedure for modeling behaviors of engineering materials and interfaces.
Disturbed state concept as unified constitutive modeling approach
Institute of Scientific and Technical Information of China (English)
Chandrakant S. Desai
2016-01-01
A unified constitutive modeling approach is highly desirable to characterize a wide range of engineering materials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creep deformations, stress path, volume change, microcracking leading to fracture, failure and softening, stiffening, and mechanical and environmental forces. There are hardly available such unified models. The disturbed state concept (DSC) is considered to be a unified approach and is able to provide material characterization for almost all of the above factors. This paper presents a description of the DSC, and statements for determination of parameters based on triaxial, multiaxial and interface tests. Statements of DSC and validation at the specimen level and at the boundary value problem levels are also presented. An extensive list of publications by the author and others is provided at the end. The DSC is considered to be a unique and versatile procedure for modeling behaviors of engineering materials and interfaces.
Mechanistic Constitutive Models for Rubber Elasticity and Viscoelasticity
Energy Technology Data Exchange (ETDEWEB)
Puso, M
2003-01-21
Physically based models which describe the finite strain behavior of vulcanized rubber are developed. Constitutive laws for elasticity and viscoelasticity are derived by integrating over orientation space the forces due to each individual polymer chain. A novel scheme is presented which effectively approximates these integrals in terms of strain and strain invariants. In addition, the details involving the implementation of such models into a quasi-static large strain finite element formulation are provided. In order to account for the finite extensibility of a molecular chain, Langevin statistics is used to model the chain response. The classical statistical model of rubber assumes that polymer chains interact only at the chemical crosslinks. It is shown that such model when fitted for uniaxial tension data cannot fit compression or equibiaxial data. A model which incorporates the entanglement interactions of surrounding chains, in addition to the finite extensibility of the chains, is shown to give better predictions than the classical model. The technique used for approximating the orientation space integral was applied to both the classical and entanglement models. A viscoelasticity model based on the force equilibration process as described by Doi and Edwards is developed. An assumed form for the transient force in the chain is postulated. The resulting stress tensor is composed of an elastic and a viscoelastic portion with the elastic stress given by the proposed entanglement model. In order to improve the simulation of experimental data, it was found necessary to include the effect of unattached or dangling polymer chains in the viscoelasticity model. The viscoelastic effect of such chains is the manifestation of a disengagement process. This disengagement model for unattached polymer chains motivated an empirical model which was very successful in simulating the experimental results considered.
Heterogeneous anisotropic complex structure gradual model and constitutive relation
Institute of Scientific and Technical Information of China (English)
李永; 宋健; 张志民
2003-01-01
Four new gradually delaminate models of the three-dimensional macro-/mesoscopic structure and delamination of the heterogeneous anisotropic composite (HAC) are set up by conducting research into its structure and performance. A general theory, which demonstrates the three-dimensional constitutive relation of the macro-/mesoscopic performance of this structure is further developed. The macroscopic expression of HAC is presented in terms of a Tanigawa delaminate homogeneous equivalent approach, the mesoscopic problems are analysed utilizing Eshelby-Mori-Tanaka theory, with the introduction of the representative volume elements of monolayer single unit cell and interlaminar double unit cells.According to the gradual continuity of the structure as a whole, great attention is given to the modelling and research of the interlaminar macroscopic and mesoscopic problems of HAC structure. Comparison with the existing solutions is made through calculation of typical cases.
Experimental investigation and constitutive model for lime mudstone.
Wang, Junbao; Liu, Xinrong; Zhao, Baoyun; Song, Zhanping; Lai, Jinxing
2016-01-01
In order to investigate the mechanical properties of lime mudstone, conventional triaxial compression tests under different confining pressures (0, 5, 15 and 20 MPa) are performed on lime mudstone samples. The test results show that, from the overall perspective of variation law, the axial peak stress, axial peak strain and elastic modulus of lime mudstone tend to gradually increase with increasing confining pressure. In the range of tested confining pressure, the variations in axial peak stress and elastic modulus with confining pressure can be described with linear functions; while the variation in axial peak strain with confining pressure can be reflected with a power function. To describe the axial stress-strain behavior in failure process of lime mudstone, a new constitutive model is proposed, with the model characteristics analyzed and the parameter determination method put forward. Compared with Wang' model, only one parameter n is added to the new model. The comparison of predicted curves from the model and test data indicates that the new model can preferably simulate the strain softening property of lime mudstone and the axial stress-strain response in rock failure process.
A solidification constitutive model for NIKE2D and NIKE3D
Energy Technology Data Exchange (ETDEWEB)
Raboin, P.J.
1994-03-17
This memo updates the current status of a solidification material model development which has been underway for more than a year. Significant modeling goals such as predicting cut-off stresses, thermo-elasto-plasticity, strain rate dependent plasticity and dynamic recovery have been completed. The model is called SOLMAT for solidification material model, and while developed for NIKE2D, it has already been implemented in NIKE3D and NIT03D by B. Maker. This memo details the future development strategy of SOLMAT including liquid and solid constitutive improvements, coupling of deviatoric and dilatational deformation and a plan to switch between constitutive theories. It explains some of the difficulties associated solidification modeling and proposes two experiments to measure properties for using SOLMAT. Due to the sensitive nature of these plans in relation to programmatic and CRADA concerns, this memo should be treated as confidential document.
Constitutive Modeling and Numerical Simulation of Frp Confined Concrete Specimens
Smitha, Gopinath; Ramachandramurthy, Avadhanam; Nagesh, Ranganatha Iyer; Shahulhameed, Eduvammal Kunhimoideen
2014-09-01
Fiber-reinforced polymer (FRP) composites are generally used for the seismic retrofit of concrete members to enhance their strength and ductility. In the present work, the confining effect of Carbon Fiber-Reinforced Polymer (CFRP) composite layers has been investigated by numerical simulation. The numerical simulation has been carried out using nonlinear finite element analysis (FEA) to predict the response behaviour of CFRP-wrapped concrete cylinders. The nonlinear behaviour of concrete in compression and the linear elastic behaviour of CFRP has been modeled using an appropriate constitutive relationship. A cohesive model has been developed for modeling the interface between the concrete and CFRP. The interaction and damage failure criteria between the concrete to the cohesive element and the cohesive element to the CFRP has also been accounted for in the modeling. The response behaviour of the wrapped concrete specimen has been compared with the proposed interface model and with a perfectly bonded condition. The results obtained from the present study showed good agreement with the experimental load-displacement response and the failure pattern in the literature. Further, a sensitivity analysis has been carried out to study the effect of the number of layers of CFRP on the concrete specimens. It has been observed that wrapping with two layers was found to be the optimum, beyond which the response becomes flexible but with a higher load-carrying capacity
Constitutive model of discontinuous plastic flow at cryogenic temperatures
Skoczen, B; Bielski, J; Marcinek, D
2010-01-01
FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. Some of these materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha) and evolution of micro-damage. The constitutive model presented in the paper is focused on the discontinuous plastic flow (serrated yielding) and takes into account the relevant thermodynamic background. The discontinuous plastic flow reflecting the DSA effect is described by the mechanism of local catastrophic failure of Lomer-Cottrell (LC) locks under the stress fields related to the accumulating edge dislocations (below the transition temperature from the screw dislocations to the edge dislocations mode T-1). The failure of LC locks leads to mass...
Constitutive models in stability analysis of rock slope
Institute of Scientific and Technical Information of China (English)
言志信; 段建; 王后裕
2008-01-01
Equivalent Mohr-Coulomb yield criterion was established,and the relationship between different constitutive models was studied.The application of equivalent Mohr-Coulomb yield criterion in Ansys was achieved by means of transforming material parameters.The stability research aiming at the most common rock slope without conspicuous slide surface was accomplished,the methods of measurably assessing the stability of rock slope without conspicuous slide surface were explored,and the disadvantages of method of minimum slide-resisted reserve as dangerous slide path were pointed out.The results show that through the calculation and analysis of cases,the conception that measurable assessment of the stability of rock slope without conspicuous slide surface can be achieved under condition that equivalent Mohr-Coulomb yield criterion is validated.Its safety parameter formula is explicit in theory and credible in results.The results obtained are approximate to those obtained by using finite element intensity reducing method.
Constitutive modelling of a tungsten heavy metal alloy
Skoglund, P.
2003-09-01
The dynamic mechanical behaviour of a tungsten heavy metal alloy (WHA) with potential use as a kinetic energy penetrator is investigated. Mechanical properties related to tensile loading are measured at strain rates up to 400 s^{-1} and at temperatures from 20 ^{circ}C to about 500 ^{circ}C. From the experimental data parameters for the constitutive equations developed by Johnson and Cook (J&C) as well as Zerilli and Armstrong (Z&A) are determined. From the extracted models isothermal and adiabatic flow stress curves are calculated and compared to experiments. At high strain rates or high temperatures the J&C model deviates about 5-10% from experimental results, while the Z&A model shows a better agreement with the collected data. It should be emphasised that the Z&A model used in this work is developed for materials with body centred crystals whereas the WHA is a composite with both face centredand body centred crystals.
Constitutively active CCR5 chemokine receptors differ in mediating HIV envelope-dependent fusion.
de Voux, Alex; Chan, Mei-Chi; Folefoc, Asongna T; Madziva, Michael T; Flanagan, Colleen A
2013-01-01
The CCR5 chemokine receptor is a rhodopsin-like G protein-coupled receptor that mediates the effects of pro-inflammatory β-chemokines. CCR5 is also the major co-receptor for entry of human immunodeficiency virus (HIV) into human cells. G protein-coupled receptors exist in ensembles of active and inactive conformations. Active receptor conformations can be stabilized by mutations. Although binding of the HIV envelope protein to CCR5 stimulates cellular signaling, the CCR5 conformation that induces fusion of the viral membrane with cellular membranes is not known. We mutated conserved amino acids to generate constitutively active CCR5 receptors, which are stabilized in active conformations, and tested the ability of constitutively active CCR5 receptors to mediate HIV envelope-directed membrane fusion. Mutation of the Asp³·⁴⁹(¹²⁵) and Arg⁶·³²(²²⁵) residues of CCR5 did not cause constitutive activity, but Lys or Pro substitutions for Thr²·⁵⁶(⁸²), in the TxP motif, caused high basal inositol phosphate signaling. Signaling did not increase in response to MIP-1β, suggesting that the Thr²·⁵⁶(⁸²) mutants were fully stabilized in active conformations. The Thr²·⁵⁶(⁸²)Lys mutation severely decreased cell surface CCR5 expression. Combining the Thr²·⁵⁶(⁸²)Lys mutation with an Arg⁶·³²(²²⁵)Gln mutation partially reversed the decrease in expression. Mutants with Thr²·⁵⁶(⁸²)Lys substitutions were poor mediators of HIV envelope-directed membrane fusion, but mutants with the Thr²·⁶⁵(⁸²)Pro substitution exhibited full co-receptor function. Our results suggest that the Thr²·⁶⁵(⁸²)Lys and Thr²·⁶⁵(⁸²)Pro mutations stabilize distinct constitutively active CCR5 conformations. Lys in position 2.65(82) stabilizes activated receptor conformations that appear to be constitutively internalized and do not induce envelope-dependent membrane fusion, whereas Pro stabilizes activated conformations
Constitutively active CCR5 chemokine receptors differ in mediating HIV envelope-dependent fusion.
Directory of Open Access Journals (Sweden)
Alex de Voux
Full Text Available The CCR5 chemokine receptor is a rhodopsin-like G protein-coupled receptor that mediates the effects of pro-inflammatory β-chemokines. CCR5 is also the major co-receptor for entry of human immunodeficiency virus (HIV into human cells. G protein-coupled receptors exist in ensembles of active and inactive conformations. Active receptor conformations can be stabilized by mutations. Although binding of the HIV envelope protein to CCR5 stimulates cellular signaling, the CCR5 conformation that induces fusion of the viral membrane with cellular membranes is not known. We mutated conserved amino acids to generate constitutively active CCR5 receptors, which are stabilized in active conformations, and tested the ability of constitutively active CCR5 receptors to mediate HIV envelope-directed membrane fusion. Mutation of the Asp³·⁴⁹(¹²⁵ and Arg⁶·³²(²²⁵ residues of CCR5 did not cause constitutive activity, but Lys or Pro substitutions for Thr²·⁵⁶(⁸², in the TxP motif, caused high basal inositol phosphate signaling. Signaling did not increase in response to MIP-1β, suggesting that the Thr²·⁵⁶(⁸² mutants were fully stabilized in active conformations. The Thr²·⁵⁶(⁸²Lys mutation severely decreased cell surface CCR5 expression. Combining the Thr²·⁵⁶(⁸²Lys mutation with an Arg⁶·³²(²²⁵Gln mutation partially reversed the decrease in expression. Mutants with Thr²·⁵⁶(⁸²Lys substitutions were poor mediators of HIV envelope-directed membrane fusion, but mutants with the Thr²·⁶⁵(⁸²Pro substitution exhibited full co-receptor function. Our results suggest that the Thr²·⁶⁵(⁸²Lys and Thr²·⁶⁵(⁸²Pro mutations stabilize distinct constitutively active CCR5 conformations. Lys in position 2.65(82 stabilizes activated receptor conformations that appear to be constitutively internalized and do not induce envelope-dependent membrane fusion, whereas Pro stabilizes activated
A continuum constitutive model for the active behaviour of skeletal muscle
Ehret, Alexander E.; Böl, Markus; Itskov, Mikhail
2011-03-01
In the present paper we propose a continuum constitutive model for the passive and active mechanical behaviour of skeletal muscle. Unlike most works in this field, the model is not based on an additive split between passive and active components but considers muscle tissue as one continuous biological material, which alters its properties when activated. This alteration also allows for a kinematic interpretation on the muscle fibre level and is described by a single activation-dependent model parameter. This as well as the other material parameters are obtained from standard experiments on resting and activated muscle or from microstructural information such as fibre type and twitch characteristics. In the passive state, the constitutive equations are governed by a transversely isotropic polyconvex and coercive strain-energy function. The model shows excellent agreement with experimental stress-stretch data of a passive and activated rat tibialis anterior muscle.
A Stress Vector-Based Constitutive Model for Cohesionless Soil( Ⅱ )-Application
Institute of Scientific and Technical Information of China (English)
史宏彦; 谢定义; 白琳
2002-01-01
The stress vector-based constitutive model for cohesionless soil, proposed by SHI Hong-yan et al., was applied to analyze the deformation behaviors of materials subjected to various stress paths. The result of analysis shows that the constitutive model can capture well the main deformation behavior of cohesionless soil, such as stress-strain nonlinearity,hardening property, dilatancy , stress path dependency, non- coaxiality between the principal stress and the principal strain increment directions, and the coupling of mean effective and deviatoric stress with deformation. In addition, the model can also take into account the rotation of principal stress axes and the influence of intermediate principal stress on deformation and strength of soil simultaneously. The excellent agreement between the predicted and measured behavior indicates the comprehensive applicability of the model.
New constitutive model for the study of creeping solids
Institute of Scientific and Technical Information of China (English)
王世文; 杨兆建; 冯建玲
2002-01-01
In this paper, a incremental form of constitutive laws for creeping studies are proposed. The equations are based on the concept of creep hardening surface. Damage effects were introduced to the new constitutive relations to study solids creeping effects with pre-existing damages. The present formula is easy to be adopted into other numerical procedures such as finite element methods.
Directory of Open Access Journals (Sweden)
Moens Ugo
2007-11-01
Full Text Available Abstract Background The mitogen-activated protein kinases, MAPKs for short, constitute cascades of signalling pathways involved in the regulation of several cellular processes that include cell proliferation, differentiation and motility. They also intervene in neurological processes like fear conditioning and memory. Since little remains known about the MAPK-Activated Protein Kinase, MAPKAPK5, we constructed the first MAPKAPK knockin mouse model, using a constitutive active variant of MAPKAPK5 and analyzed the resulting mice for changes in anxiety-related behaviour. Methods We performed primary SHIRPA observations during background breeding into the C57BL/6 background and assessed the behaviour of the background-bred animals on the elevated plus maze and in the light-dark test. Our results were analyzed using Chi-square tests and homo- and heteroscedatic T-tests. Results Female transgenic mice displayed increased amounts of head dips and open arm time on the maze, compared to littermate controls. In addition, they also explored further into the open arm on the elevated plus maze and were less active in the closed arm compared to littermate controls. Male transgenic mice displayed no differences in anxiety, but their locomotor activity increased compared to non-transgenic littermates. Conclusion Our results revealed anxiety-related traits and locomotor differences between transgenic mice expressing constitutive active MAPKAPK5 and control littermates.
VISCO-PLASTIC CONSTITUTIVE MODEL FOR UNIAXIAL AND MULTIAXIAL RATCHETING AT ELEVATED TEMPERATURES
Institute of Scientific and Technical Information of China (English)
G.Z.Kang; Q.Gao; J.Zhang
2004-01-01
Based on the experimental results of the ratcheting for SS304 stainless steel, a new visco-plastic cyclic constitutive model was established to describe the uniaxial and multiaxial ratcheting of the material at room and elevated temperatures within the framework of unified visco-plasticity. In the model, the temperature dependence of the ratcheting was emphasized, and the dynamic strain aging occurred in the temperature range of 400-600C for the material was taken into account particularly. Finally, the prediction capability of the developed model was checked by comparing to the corresponding experimental results.
Constitutive Model for an FCC Single-Crystal Material
Institute of Scientific and Technical Information of China (English)
DING Zhi-ping; LIU Yi-lun; YIN Ze-yong; YANG Zhi-guo; CHENG Xiao-ming
2006-01-01
Talking into account the effects that the components of tension stresses couple with components of torsion stresses when off-axis loads are applied to orthotropic materials.Hill's yield criterion for plastically orthotropic solids is modified by adding an invariant that is composed of the product item of quadratic components of the deviatoric siress tensor,and a new yield criteflon is put forward in terms of the characteristics of the face-centered cubic(FCC) single-crystal material.The correlation of prediction and experiments is very good.and the new criterion is used to predict the yield stresses of an intemal single-crystal,Nickel-based superalloy,DD3,which is more accurate than that Of Hill's at 760°C.Equivalent stress and strain that adapt to the new criterion are defined.Thinking of the yield function as a plastic potential function from the associated flow rule.the elastic-plastic constitutive model for the FCC single-crystal material is constructed,and the corresponding elastic-plastic matrix iseduced.The new yield criterion and its equivalent stress and strain will be reduced to Von Mises' yield criterion and corresponding equivalent stress and strain for isotropic materials.
Constitutive models of artificial muscles：a review
Institute of Scientific and Technical Information of China (English)
Hui-ming WANG; Shao-xing QU
2016-01-01
Artificial muscles are materials which possess muscle-like characteristics; they have many promising applications and many materials have been exploited as artificial muscles. In this review, the artificial muscles discussed are confined to die-lectric elastomers and responsive gels. We focus on their constitutive models based on free energy function theory. For dielectric elastomers, both hyperelastic and visco-hyperelastic models are involved. For responsive gels, we consider different kinds of gels, such as hydrogel, pH-sensitive gel, temperature-sensitive gel, polyelectrolyte gel, reactive gel, etc. With an accurate, relia-ble, and powerful constitutive model, exact theoretical analysis can be achieved and the important intrinsic characteristics of artificial muscle based systems can be revealed.%中文概要题目：人工肌肉本构模型的综述人工肌肉是指具有类似肌肉特性的材料，这些材料在外界激励下，可以实现大变形，且响应速度快。本文总结两类人工肌肉本构模型的研究成果：一类是介电高弹体，另一类是响应性凝胶。本文中提到的本构模型仅限于用自由能函数导出的情形。对于介电高弹体材料，分别综述超弹性模型和粘性超弹性模型。在超弹性模型中，列出目前研究中使用较多的一些本构模型的自由能函数具体表达式；比较 neo-Hookean、Gent、Arruda-Boyce和 Ogden四种模型在单轴拉伸和等双轴拉伸两种情形下的名义应力-伸长曲线；给出了考虑一些重要因素的研究模型，这些因素包括材料可压缩性、取向极化、变介电常数、热耦合、受纤维约束、流体耦合以及空气耦合等。对于响应性凝胶，分别综述水凝胶、pH 敏感性凝胶、温度敏感性凝胶、聚电解质凝胶以及反应性凝胶等的本构模型。这些精确、可靠和有效的本构模型，将有助于开展人工肌肉系统的性能分析和预测，甚至揭示
Lindemann, Stephan W.; Yost, Christian C.; Denis, Melvin M.; McIntyre, Thomas M.; Weyrich, Andrew S.; Zimmerman, Guy A.
2004-05-01
The mechanisms by which neutrophils, key effector cells of the innate immune system, express new gene products in inflammation are largely uncharacterized. We found that they rapidly translate constitutive mRNAs when activated, a previously unrecognized response. One of the proteins synthesized without a requirement for transcription is the soluble IL-6 receptor , which translocates to endothelial cells and induces a temporal switch to mononuclear leukocyte recruitment. Its synthesis is regulated by a specialized translational control pathway that is inhibited by rapamycin, a bacterial macrolide with therapeutic efficacy in transplantation, inflammatory syndromes, and neoplasia. Signal-dependent translation in activated neutrophils may be a critical mechanism for alteration of the inflammatory milieu and a therapeutic target.
Advances in Constitutive and Failure Models for Sheet Forming Simulation
Yoon, Jeong Whan; Stoughton, Thomas B.
2016-08-01
Non-Associated Flow Rule (Non-AFR) can be used as a convenient way to account for anisotropic material response in metal deformation processes, making it possible for example, to eliminate the problem of the anomalous yielding in equibiaxial tension that is mistakenly attributed to limitations of the quadratic yield function, but may instead be attributed to the Associated Flow Rule (AFR). Seeing as in Non-AFR based models two separate functions can be adopted for yield and plastic potential, there is no constraint to which models are used to describe each of them. In this work, the flexible combination of two different yield criteria as yield function and plastic potential under Non-AFR is proposed and evaluated. FE simulations were carried so as to verify the accuracy of the material directionalities predicted using these constitutive material models. The stability conditions for non-associated flow connected with the prediction of yield point elongation are also reviewed. Anisotropic distortion hardening is further incorporated under non-associated flow. It has been found that anisotropic hardening makes the noticeable improvements for both earing and spring-back predictions. This presentation is followed by a discussion of the topic of the forming limit & necking, the evidence in favor of stress analysis, and the motivation for the development of a new type of forming limit diagram based on the polar effective plastic strain (PEPS) diagram. In order to connect necking to fracture in metals, the stress-based necking limit is combined with a stress- based fracture criterion in the principal stress, which provides an efficient method for the analysis of necking and fracture limits. The concept for the PEPS diagram is further developed to cover the path-independent PEPS fracture which is compatible with the stress-based fracture approach. Thus this fracture criterion can be utilized to describe the post-necking behavior and to cover nonlinear strain-path. Fracture
Formation of algae growth constitutive relations for improved algae modeling.
Energy Technology Data Exchange (ETDEWEB)
Gharagozloo, Patricia E.; Drewry, Jessica Louise.
2013-01-01
This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.
DEFF Research Database (Denmark)
Thorborg, Jesper
of the method has been focused on high temperature processes such as casting and welding and the interest of using nonlinear constitutive stress-strain relations has grown to extend the applicability of the method. The work of implementing classical plasticity into the control volume formulation has been based...... on the $J_2$ flow theory describing an isotropic hardening material with a temperature dependent yield stress. This work has successfully been verified by comparing results to analytical solutions. Due to the comprehensive implementation in the staggered grid an alternative constitutive stress......-strain relation has been suggested. The intention of this method is to provide fast numerical results with reasonable accuracy in relation to the first order effects of the presented classical plasticity model. Application of the $J_2$ flow theory and the alternative method have shown some agreement...
Lagrangian viscoelastic flow computations using the Rivlin-Sawyers constitutive model
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
2000-01-01
A new finifte element technique for the numerical simulation of 3D time-dependent flow of viscoelastic fluid is presented. The technique is based on a Lagrangian kinematics description of the fluid flow. It represent a further development of the 3D Lagrangian integral method (3D-LIM) from an upper...... convected Maxwell fluid to a fluid described by an integral constitutive equation of the Rivlin-Sawyers type. This includes the K-BKZ model. The convergence of the method is demonstrated on the axisymmetric problem of the inflation of a polymeric membrane only restricted by a clamping ring....
A Constitutive Model for Superelastic Shape Memory Alloys Considering the Influence of Strain Rate
Directory of Open Access Journals (Sweden)
Hui Qian
2013-01-01
Full Text Available Shape memory alloys (SMAs are a relatively new class of functional materials, exhibiting special thermomechanical behaviors, such as shape memory effect and superelasticity, which enable their applications in seismic engineering as energy dissipation devices. This paper investigates the properties of superelastic NiTi shape memory alloys, emphasizing the influence of strain rate on superelastic behavior under various strain amplitudes by cyclic tensile tests. A novel constitutive equation based on Graesser and Cozzarelli’s model is proposed to describe the strain-rate-dependent hysteretic behavior of superelastic SMAs at different strain levels. A stress variable including the influence of strain rate is introduced into Graesser and Cozzarelli’s model. To verify the effectiveness of the proposed constitutive equation, experiments on superelastic NiTi wires with different strain rates and strain levels are conducted. Numerical simulation results based on the proposed constitutive equation and experimental results are in good agreement. The findings in this paper will assist the future design of superelastic SMA-based energy dissipation devices for seismic protection of structures.
Constitutive Models for Debris-bearing Ice Layers
Moore, P. L.
2013-12-01
Rock debris is incorporated within many glaciers and ice sheets, particularly in basal ice layers and englacial debris bands. Field observations and laboratory experiments have shown that debris inclusions can both strengthen and weaken ice by as much as two orders of magnitude compared to debris-free ice under the same conditions. Nevertheless, models of glacier flow usually neglect any effect of debris-bearing layers. Where debris-bearing ice is present, proper treatment of its deformation could profoundly impact model results. A three-phase mechanical model is presented that reproduces many of the key observations of debris-bearing ice rheology. First order variables in the model are limited to debris concentration, particle size, solute concentration and temperature. At low debris concentrations (less than about 40% by volume), the mixture is treated under the framework of a dispersion-strengthened metal alloy but with a fluidity that is enhanced by premelted water at ice-debris interfaces. While debris strengthens the ice by interfering with the motion of dislocations, thermally-activated detachment can reduce the effect at temperatures close to melting. At these warm temperatures, recovery aided by unfrozen interfacial water acts to weaken the mixture, an effect that is further ehnanced by the presence of solutes at particle surfaces. Whether the debris-bearing ice is stronger or weaker than debris-free ice in the model depends strongly on the specific surface area of the debris and on a parameter that describes the thermal detachment of dislocations. As debris concentrations exceed about 40%, dispersion-strengthened ice flow still governs bulk deformation but the effective viscosity is further increased by enhanced strain rates in the ice "matrix" as the average inter-particle distance declines. At still higher concentrations (greater than about 52% by volume for sand), deformation is primarily frictional. The mixture is thus treated as a dilatant Coulomb
Continuum modeling of rate-dependent granular flows in SPH
Hurley, Ryan C.; Andrade, José E.
2016-09-01
We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.
Continuum modeling of rate-dependent granular flows in SPH
Hurley, Ryan C.; Andrade, José E.
2017-01-01
We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.
Khan, Kamran
2012-11-09
We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.
A New Creep Constitutive Model for 7075 Aluminum Alloy Under Elevated Temperatures
Lin, Y. C.; Jiang, Yu-Qiang; Zhou, Hua-Min; Liu, Guan
2014-12-01
Exposure of aluminum alloy to an elastic loading, during "creep-aging forming" or other manufacturing processes at relatively high temperature, may lead to the lasting creep deformation. The creep behaviors of 7075 aluminum alloy are investigated by uniaxial tensile creep experiments over wide ranges of temperature and external stress. The results show that the creep behaviors of the studied aluminum alloy strongly depend on the creep temperature, external stress, and creep time. With the increase of creep temperature and external stress, the creep strain increases quickly. In order to overcome the shortcomings of the Bailey-Norton law and θ projection method, a new constitutive model is proposed to describe the variations of creep strain with time for the studied aluminum alloy. In the proposed model, the dependences of creep strain on the creep temperature, external stress, and creep time are well taken into account. A good agreement between the predicted and measured creep strains shows that the established creep constitutive model can give an accurate description of the creep behaviors of 7075 aluminum alloy. Meanwhile, the obtained stress exponent indicates that the creep process is controlled by the dislocation glide, which is verified by the microstructural observations.
Constitutive modeling of strain rate effects in nanocrystalline and ultrafine grained polycrystals
Gurses, Ercan
2011-05-01
We present a variational two-phase constitutive model capable of capturing the enhanced rate sensitivity in nanocrystalline (nc) and ultrafine-grained (ufg) fcc metals. The nc/ufg-material consists of a grain interior phase and a grain boundary affected zone (GBAZ). The behavior of the GBAZ is described by a rate-dependent isotropic porous plasticity model, whereas a rate-independent crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The scale bridging from a single grain to a polycrystal is done by a Taylor-type homogenization. It is shown that the enhanced rate sensitivity caused by the grain size refinement is successfully captured by the proposed model. © 2011 Elsevier Ltd. All rights reserved.
Development of a unified viscoplasticity constitutive model based on classical plasticity theory
Institute of Scientific and Technical Information of China (English)
GUAN Ping; LIU ChangChun; L(U) HeXiang
2009-01-01
The traditional unified viscoplasticity constitutive model can be only applied to metal materials. The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model, thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model. Moreover, this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method, which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials. The numerical simulation indicates that the construction should be both reasonable and practical.
Development of a unified viscoplasticity constitutive model based on classical plasticity theory
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The traditional unified viscoplasticity constitutive model can be only applied to metal materials.The study of the unified constitutive theory for metal materials has discovered the correlation between the classical plasticity theory and the unified viscoplasticity constitutive model,thus leading to the con-cepts of the classic plastic potential and yield surface in the unified constitutive model.Moreover,this research has given the continuous expression of the classical plastic multiplier and presented the corresponding constructive method,which extends its physical significance and lays down a good foundation for the application of the unified constitutive theory to the material analysis in more fields.This paper also introduces the unified constitutive model for metal materials and geo-materials.The numerical simulation indicates that the construction should be both reasonable and practical.
A nonlinear constitutive model for stress relaxation in ligaments and tendons.
Davis, Frances M; De Vita, Raffaella
2012-12-01
A novel constitutive model that describes stress relaxation in transversely isotropic soft collagenous tissues such as ligaments and tendons is presented. The model is formulated within the nonlinear integral representation framework proposed by Pipkin and Rogers (J. Mech. Phys. Solids. 16:59-72, 1968). It represents a departure from existing models in biomechanics since it describes not only the strain dependent stress relaxation behavior of collagenous tissues but also their finite strains and transverse isotropy. Axial stress-stretch data and stress relaxation data at different axial stretches are collected on rat tail tendon fascicles in order to compute the model parameters. Toward this end, the rat tail tendon fascicles are assumed to be incompressible and undergo an isochoric axisymmetric deformation. A comparison with the experimental data proves that, unlike the quasi-linear viscoelastic model (Fung, Biomechanics: Mechanics of Living Tissues. Springer, New York, 1993) the constitutive law can capture the observed nonlinearities in the stress relaxation response of rat tail tendon fascicles.
Constitutive model of rock under static-dynamic coupling loading and experimental investigation
Institute of Scientific and Technical Information of China (English)
LI Xi-bing; ZUO Yu-jun; WANG Wei-hua; MA Chun-de; ZHOU Zi-long
2006-01-01
The importance of study on constitutive model of statically loaded rock experiencing dynamic load is set forth, and the studying methods on dynamic constitutive model are classified according to the current studying status. By way of combining statistic damage model and viscoelastic model, uni-axial and multi-axial constitutive models of statically loaded rock experiencing dynamic load (static-dynamic coupling constitutive model) under intermediate strain rate are established. The verification experiment on 2D constitutive model under different static stress and dynamic stress with different frequencies is designed and performed. It is found that there is a good agreement between the experimental stress-strain curves and the theoretical stress-strain curves.
Directory of Open Access Journals (Sweden)
F. F. Mikilev
2016-01-01
Full Text Available The purpose of this study was to research the psychometrical parameters and the clinical-dynamic features of patients with schizophrenia in depending on their constitutionally-morphological type.Material and methods. The examination of 86 patients with schizophrenia who are hospitalized at Department of endogenous mental disorders of Mental Health Research Institute was conducted. The study included patients of age from 18 to 65 years old with prescription of catamnesis at least 1 year and whose state at the time of examination corresponded to the diagnostic criteria for schizophrenia from the ICD-10 (International Classification of Diseases 10th Revision. The examination included filling in a modified version of Basic Card of Standardized Description of the Patient with Schizophrenia and his Relative, Positive and Negative Syndrome Scale (PANSS, Clinical Global Impression Scale (CGI. In addition to that patients were examined using anthropometrical method by V.V. Bunak. Statistical significance of differences in the data was evaluated using the Kruskal – Wallis test by ranks, the Mann – Whitney U-test, and Pearson’s chi-squared test. The correlation analysis was performed by the Spearman’s rank correlation test. The K-Means Cluster Analysis was used to determine of the qualitative interrelation and conjugation between the clinical characteristics of the examined.The results of the study revealed that many parameters of the functioning in these patient groups have statistically significant differences. Use of the K-Means Cluster Analysis was allowed to reveal the internal structure of the data, to group the individual observations according to their degree of similarity.Conclusions. The obtained data leads to the assumption that the constitutionally-morphological type of patients has an impact on the clinical course of schizophrenia, as well as their adaptation abilities. Asthenic constitutionally-morphological type is a factor of
Gurses, Ercan
2011-12-01
In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary diffusion, grain boundary sliding and dislocation activities are considered. Effects of pressure on the grain boundary diffusion and sliding mechanisms are taken into account. Furthermore, the influence of grain size distribution on macroscopic response is studied. The model is shown to capture the fundamental mechanical characteristics of nanocrystalline metals. These include grain size dependence of the strength, i.e., both the traditional and the inverse Hall-Petch effects, the tension-compression asymmetry and the enhanced rate sensitivity. © 2011 Elsevier B.V. All rights reserved.
Selected Constitutive Models for Simulating the Hygromechanical Response of Wood
DEFF Research Database (Denmark)
Frandsen, Henrik Lund
-phase transport model. In this paper a so-called multi-Fickian model is revised with respect to the incorporated essential sorption rate model. Based on existing experimental results the sorption rate model is studied. A desorption rate model analogous to the adsorption rate model is proposed. Furthermore......, the boundary conditions are discussed based on discrepancies found for similar research on moisture transport in paper stacks. Paper III: A new sorption hysteresis model suitable for implementation into a numerical method is developed. The prevailing so-called scanning curves are modeled by closed...... in paper III is applied to two different wood species and to bleach-kraft paperboard. Paper V: The sorption hysteresis model is implemented into the multi-Fickian model allowing simultaneous simulation of non-Fickian effects and hysteresis. A key point for this implementation is definition of the condition...
THE RATE-INDEPENDENT CONSTITUTIVE MODELING FOR POROUS AND MULTI-PHASE NANOCRYSTALLINE MATERIAL
Institute of Scientific and Technical Information of China (English)
Zhou Jianqiu; Li Yuanling; Zhang Zhenzhong
2007-01-01
To determine the time-independent constitutive modeling for porous and multiphase nanocrystalline materials and understand the effects of grain size and porosity on their mechanical behavior, each phase was treated as a mixture of grain interior and grain boundary, and pores were taken as a single phase, then Budiansky's self-consistent method was used to calculate the Young's modulus of porous, possible multi-phase, nanocrystalline materials, the prediction being in good agreement with the results in the literature. Further, the established method is extended tosimulate the constitutive relations of porous and possible multi-phase nanocrystalline materials with small plastic deformation in conjunction with the secant-moduli approach and iso-strain assumption. Comparisons between the experimental grain size and porosity dependent mechanical data and the corresponding predictions using the established model show that it appears to be capable of describing the time-independent mechanical behaviors for porous and multi-phase nanocrystalline materials in a small plastic strain range. Further discussion on the modification factor, the advantages and limitations of the model developed were present.
A constitutive model for unsaturated cemented soils under cyclic loading
2008-01-01
International audience; On the basis of plastic bounding surface model, the damage theory for structured soils and unsaturated soil mechanics, an elastoplastic model for unsaturated loessic soils under cyclic loading has been elaborated. Firstly, the description of bond degradation in a damage framework is given, linking the damage of soil's structure to the accumulated strain. The Barcelona Basic Model (BBM) was considered for the suction effects. The elastoplastic model is then integrated i...
Siddiq, A.
2013-09-01
We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary affected zone (GBAZ). A crystal plasticity model that accounts for the transition from partial dislocation to full dislocation mediated plasticity is used for the grain interior. Isotropic porous plasticity model with further extension to account for failure due to the void coalescence was used for the GBAZ. The extended model contains all the deformation phases, i.e. elastic deformation, plastic deformation including deviatoric and volumetric plasticity (void growth) followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. Lastly we show the model\\'s ability to predict the damage and fracture of a dog-bone shaped specimen as observed experimentally. © 2013 Elsevier B.V.
Impact erosion prediction using the finite volume particle method with improved constitutive models
Leguizamón, Sebastián; Jahanbakhsh, Ebrahim; Maertens, Audrey; Vessaz, Christian; Alimirzazadeh, Siamak; Avellan, François
2016-11-01
Erosion damage in hydraulic turbines is a common problem caused by the high- velocity impact of small particles entrained in the fluid. In this investigation, the Finite Volume Particle Method is used to simulate the three-dimensional impact of rigid spherical particles on a metallic surface. Three different constitutive models are compared: the linear strainhardening (L-H), Cowper-Symonds (C-S) and Johnson-Cook (J-C) models. They are assessed in terms of the predicted erosion rate and its dependence on impact angle and velocity, as compared to experimental data. It has been shown that a model accounting for strain rate is necessary, since the response of the material is significantly tougher at the very high strain rate regime caused by impacts. High sensitivity to the friction coefficient, which models the cutting wear mechanism, has been noticed. The J-C damage model also shows a high sensitivity to the parameter related to triaxiality, whose calibration appears to be scale-dependent, not exclusively material-determined. After calibration, the J-C model is capable of capturing the material's erosion response to both impact velocity and angle, whereas both C-S and L-H fail.
A constitutive model for unsaturated cemented soils under cyclic loading
Yang, C; Pereira, Jean-Michel; Huang, M S
2008-01-01
On the basis of plastic bounding surface model, the damage theory for structured soils and unsaturated soil mechanics, an elastoplastic model for unsaturated loessic soils under cyclic loading has been elaborated. Firstly, the description of bond degradation in a damage framework is given, linking the damage of soil's structure to the accumulated strain. The Barcelona Basic Model (BBM) was considered for the suction effects. The elastoplastic model is then integrated into a bounding surface plasticity framework in order to model strain accumulation along cyclic loading, even under small stress levels. The validation of the proposed model is conducted by comparing its predictions with the experimental results from multi-level cyclic triaxial tests performed on a natural loess sampled beside the Northern French railway for high speed train and about 140 km far from Paris. The comparisons show the capabilities of the model to describe the behaviour of unsaturated cemented soils under cyclic loading.
Constitutive modelling of an arterial wall supported by microscopic measurements
Directory of Open Access Journals (Sweden)
Vychytil J.
2012-06-01
Full Text Available An idealized model of an arterial wall is proposed as a two-layer system. Distinct mechanical response of each layer is taken into account considering two types of strain energy functions in the hyperelasticity framework. The outer layer, considered as a fibre-reinforced composite, is modelled using the structural model of Holzapfel. The inner layer, on the other hand, is represented by a two-scale model mimicing smooth muscle tissue. For this model, material parameters such as shape, volume fraction and orientation of smooth muscle cells are determined using the microscopic measurements. The resulting model of an arterial ring is stretched axially and loaded with inner pressure to simulate the mechanical response of a porcine arterial segment during inflation and axial stretching. Good agreement of the model prediction with experimental data is promising for further progress.
Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects
Mora Cordova, Angel
2014-07-01
In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood to be the most important factor that controls the initiation of ductile fracture. We include sensitivity of stress triaxiality in a variational porous plasticity model, which was originally derived from hydrostatic expansion. Under loading conditions rather than hydrostatic deformation, we allow the critical pressure for voids to be exceeded so that the growth due to plasticity becomes dependent on the stress triaxiality. The limitations of the spherical void growth assumption are investigated. Our improved constitutive model is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is also indicated by a numerical simulation of a compact tensile (CT) test. © 2013 Elsevier Inc.
A rheological constitutive model for semiconcentrated rod suspensions in Bingham fluids
Férec, J.; Bertevas, E.; Khoo, B. C.; Ausias, G.; Phan-Thien, N.
2017-07-01
A rheological constitutive law is developed for a suspension of rigid rods in a Bingham fluid for volume fractions ranging up to the semiconcentrated regime. Based on a cell model approach, which allows expressing the shear stress on the particle surface, the particle stress contribution is derived and involves additional yield stress terms related to an ensemble average orientation distribution of the rods. As a first approach, a von Mises criterion is used to describe the composite flow threshold, which is found to be anisotropic in the sense that it depends on the rod orientation. A rod dynamics equation is also proposed and incorporates some diffusion/perturbation due to yielded regions encountered throughout the suspension. In parallel, an equivalent kinetic theory is also developed. The model provides good agreement with shear stress experiments for kaolin pastes filled with steel fibers of two different aspect ratios.
An anisotropic constitutive model with biaxial-tension coupling for woven composite reinforcements
Yao, Yuan; Huang, Xiaoshuang; Peng, Xiongqi; Gong, Youkun
2016-10-01
Based on fiber reinforced continuum mechanics theory, an anisotropic hyperelastic constitutive model with biaxial tension coupling for woven composite reinforcements is developed. Experimental data from literature are used to identify material parameters in the constitutive model for a specific balanced plain woven fabric. The developed model is validated by comparing numerical results with experimental biaxial tension data under different stretch ratios and picture-frame shear data, demonstrating that the developed constitutive model is highly suitable to characterize the highly non-linear and strongly anisotropic mechanical behaviors of woven composite reinforcements under large deformation.
Modeling and Algorithmic Approaches to Constitutively-Complex, Microstructured Fluids
Energy Technology Data Exchange (ETDEWEB)
Miller, Gregory H. [Univ. of California, Davis, CA (United States); Forest, Gregory [Univ. of California, Davis, CA (United States)
2014-05-01
We present a new multiscale model for complex fluids based on three scales: microscopic, kinetic, and continuum. We choose the microscopic level as Kramers' bead-rod model for polymers, which we describe as a system of stochastic differential equations with an implicit constraint formulation. The associated Fokker-Planck equation is then derived, and adiabatic elimination removes the fast momentum coordinates. Approached in this way, the kinetic level reduces to a dispersive drift equation. The continuum level is modeled with a finite volume Godunov-projection algorithm. We demonstrate computation of viscoelastic stress divergence using this multiscale approach.
A Thermo-Plastic-Martensite Transformation Coupled Constitutive Model for Hot Stamping
Bin, Zhu; WeiKang, Liang; Zhongxiang, Gui; Kai, Wang; Chao, Wang; Yilin, Wang; Yisheng, Zhang
2017-03-01
In this study, a thermo-plastic-martensite transformation coupled model based on the von Mises yield criterion and the associated plastic flow rule is developed to further improve the accuracy of numerical simulation during hot stamping. The constitutive model is implemented into the finite element program ABAQUS using user subroutine VUMAT. The martensite transformation, transformation-induced plasticity and volume expansion during the austenite-to-martensite transformation are included in the constitutive model. For this purpose, isothermal tensile tests are performed to obtain the flow stress, and non-isothermal tensile tests were carried out to validate the constitutive model. The non-isothermal tensile numerical simulation demonstrates that the thermo-plastic-martensite transformation coupled constitutive model provides a reasonable prediction of force-displacement curves upon loading, which is expected to be applied for modeling and simulation of hot stamping.
Drachuk, K O; Kotsjuruba, A V; Sagach, V F
2015-01-01
The objective of this study was to show the effect of H₂S donor, NaHS on the endothelium-dependent vasorelaxation, free radical state and cNOS uncoupling in old rats. In the aorta of old rats a combined oxidative and nitrosative stress develops that leads to cNOS uncoupling and decreased constitutive synthesis of the NO. That biochemical changes correlate with lowering of the endothelium-dependent relaxation of aortic smooth muscles (7.5 ± 1.4%, compared with 64.9 ± 3.5% in adults). It was found that, due to the combined inhibition of oxidative and nitrosative stress, NaHS restores constitutive de novo synthesis of NO by restoring cNOS coupling. Additionally, NaHS improves endothelium-dependent vasorelaxation by increasing (by 6.5 times) Ach-induced relaxation of aortic smooth muscles.
[Citizen constitution and social representations: reflecting about health care models].
da Silva, Sílvio Eder Dias; Ramos, Flávia Regina Souza; Martins, Cleusa Rios; Padilha, Maria Itayra; Vasconcelos, Esleane Vilela
2010-12-01
This article presents a reflection on the meaning of the terms citizenship and health, addressing the Theory of Social Representations as a strategy for implementing and evaluating health care models in Brazil. First, a brief history about the concept of citizenship is presented; then the article addresses the principles of freedom and equality according to Kant; the third section of the article shows that health is as a right of the citizen and a duty of the state. Finally, the Theory of Social Representations is emphasized as a strategy to evaluate and implement the health services provided to citizens by the current health care models in Brazil.
Shear creep characteristics and constitutive model of limestone
Institute of Scientific and Technical Information of China (English)
Yu Mei; Mao Xianbiao; Hu Xinyu
2016-01-01
The characters of limestone in weak interlayer of a high rocky slope in Xuzhou, China, are studied by shear static test and shear creep test. The results show that limestone specimens have attenuation creep properties and constant rate creep properties, almost have no accelerated creep properties. The exponen-tial type empirical formula is selected to fit creep grading curves by polynomial regression analysis method, and the square sums of the fitting results residual are in the order of 10-7. Then grade creep curves at every shear loads are set up. Combining creep rate-time curve, the creep properties of limestone are analyzed. As the physical meaning of component model is clearer, the Poytin–Thomson model is set up. Through the least square method, the optimal parameters of Poytin–Thomson model are obtained, and the sums of squared residuals belong to 10-3 order of magnitude, which can meet the accuracy requirements of engineering calculation. So the Poytin–Thomson model can reflect the shear creep char-acteristics of limestone very well.
Sintering of Multilayered Porous Structures: Part I-Constitutive Models
DEFF Research Database (Denmark)
Olevsky, Eugene; Tadesse Molla, Tesfaye; Frandsen, Henrik Lund;
2013-01-01
of all input parameters necessary for modeling sintering of bilayers using experimental techniques similar to optical dilatometry applied to each individual layer and to a symmetric trilayered porous structure based on the two-layer materials utilized in the bilayered system. Examples of sintering......Theoretical analyses of shrinkage and distortion kinetics during sintering of bilayered porous structures are carried out. The developed modeling framework is based on the continuum theory of sintering; it enables the direct assessment of the cofiring process outcomes and of the impact of process...... controlling parameters. The derived “master sintering curve”-type solutions are capable of describing and optimizing the generic sintering shrinkage and distortion kinetics for various material systems. The approach utilizes the material-specific parameters, which define the relative kinetics of layer...
A Constitutive Model for Simulating Soil-Concrete Interfaces
1986-07-01
nclude A.,a Code) Or. T. J. Ross (505) 844-9087 NTESA II DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS ORSOLETE. UNCLASSIFIED SECURITY CLASSIFICATION...concerning strain softening. Bazant , et al., (Ref. 12), incorporated strain softening into a consitutive model by using a nonlocal continuum theory...Concrete," Mechanics of Materials Vol. 3, 1984, pp. 271-294. 12. Bazant , Z. P., Belytschko, T. B., and Chang, T., "Continuum Theory for Strain
Constitutive models of faults in the viscoelastic lithosphere
Moresi, Louis; Muhlhaus, Hans; Mansour, John; Miller, Meghan
2013-04-01
Moresi and Muhlhaus (2006) presented an algorithm for describing shear band formation and evolution as a coallescence of small, planar, fricition-failure surfaces. This algorithm assumed that sliding initially occurs at the angle to the maximum compressive stress dictated by Anderson faulting theory and demonstrated that shear bands form with the same angle as the microscopic angle of initial failure. Here we utilize the same microscopic model to generate frictional slip on prescribed surfaces which represent faults of arbitrary geometry in the viscoelastic lithosphere. The faults are actually represented by anisotropic weak zones of finite width, but they are instantiated from a 2D manifold represented by a cloud of points with associated normals and mechanical/history properties. Within the hybrid particle / finite-element code, Underworld, this approach gives a very flexible mechanism for describing complex 3D geometrical patterns of faults with no need to mirror this complexity in the thermal/mechanical solver. We explore a number of examples to demonstrate the strengths and weaknesses of this particular approach including a 3D model of the deformation of Southern California which accounts for the major fault systems. L. Moresi and H.-B. Mühlhaus, Anisotropic viscous models of large-deformation Mohr-Coulomb failure. Philosophical Magazine, 86:3287-3305, 2006.
Lindemann, Stephan W.; Yost, Christian C.; Denis, Melvin M.; McIntyre, Thomas M.; Weyrich, Andrew S.; Zimmerman, Guy A.
2004-01-01
The mechanisms by which neutrophils, key effector cells of the innate immune system, express new gene products in inflammation are largely uncharacterized. We found that they rapidly translate constitutive mRNAs when activated, a previously unrecognized response. One of the proteins synthesized without a requirement for transcription is the soluble IL-6 receptor α, which translocates to endothelial cells and induces a temporal switch to mononuclear leukocyte recruitment. Its synthesis is regu...
Poisson׳s ratio of arterial wall - Inconsistency of constitutive models with experimental data.
Skacel, Pavel; Bursa, Jiri
2016-02-01
Poisson׳s ratio of fibrous soft tissues is analyzed in this paper on the basis of constitutive models and experimental data. Three different up-to-date constitutive models accounting for the dispersion of fibre orientations are analyzed. Their predictions of the anisotropic Poisson׳s ratios are investigated under finite strain conditions together with the effects of specific orientation distribution functions and of other parameters. The applied constitutive models predict the tendency to lower (or even negative) out-of-plane Poisson׳s ratio. New experimental data of porcine arterial layer under uniaxial tension in orthogonal directions are also presented and compared with the theoretical predictions and other literature data. The results point out the typical features of recent constitutive models with fibres concentrated in circumferential-axial plane of arterial layers and their potential inconsistence with some experimental data. The volumetric (in)compressibility of arterial tissues is also discussed as an eventual and significant factor influencing this inconsistency.
DEFF Research Database (Denmark)
Drozdov, Aleksey; Christiansen, Jesper de Claville; Sanporean, Catalina-Gabriela
2012-01-01
Purpose – The purpose of this paper is to perform experimental investigation and constitutive modeling of the viscoelastic and viscoplastic behavior of metallocene catalyzed polypropylene (mPP) with application to lifetime assessment under conditions of creep rupture. Design/methodology/approach ...... in long-term creep tests. Keywords Metallocene catalyzed polypropylene, Viscoelasticity, Viscoplasticity, Creep rupture, Constitutive modeling, Elastoplastic analysis, Viscosity, Creep, Physical properties of materials Paper type Research paper....../methodology/approach – Three series of experiments are conducted where the mechanical response of mPP is analyzed in tensile tests with various strain rates, relaxation tests with various strains, and creep tests with various stresses at room temperature. A constitutive model is derived for semicrystalline polymers under......Purpose – The purpose of this paper is to perform experimental investigation and constitutive modeling of the viscoelastic and viscoplastic behavior of metallocene catalyzed polypropylene (mPP) with application to lifetime assessment under conditions of creep rupture. Design...
Thermodynamic constitutive model for load-biased thermal cycling test of shape memory alloy
Energy Technology Data Exchange (ETDEWEB)
Young, Sung, E-mail: ysy@kut.ac.kr [Korea University of Technology and Education, Chonan (Korea, Republic of); Nam, Tae-Hyun, E-mail: tahynam@gnu.ac.kr [School of Materials Science and Engineering and ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)
2013-12-15
Graphical abstract: - Highlights: • Thermodynamic calculation model for martensitic transformation of shape memory alloy was proposed. • Evolution of the self-accommodation was considered independently by a rate-dependent kinetic equation. • Finite element calculation was conducted for B2–B19′ transformation of Ti–44.5Ni–5Cu–0.5 V (at.%). • Three-dimensional numerical results predict the macroscopic strain under bias loading accurately. - Abstract: This paper presents a three-dimensional calculation model for martensitic phase transformation of shape memory alloy. Constitutive model based on thermodynamic theory was provided. The average behavior was accounted for by considering the volume fraction of each martensitic variant in the material. Evolution of the volume fraction of each variant was determined by a rate-dependent kinetic equation. We assumed that nucleation rate is faster for the self-accommodation than for the stress-induced variants. Three-dimensional finite element analysis was conducted and the results were compared with the experimental data of Ti–44.5Ni–5Cu–0.5 V (at.%) alloy under bias loading.
Safari, Keivan H.; Zamani, Jamal; Guedes, Rui M.; Ferreira, Fernando J.
2016-02-01
An adiabatic constitutive model is proposed for large strain deformation of polycarbonate (PC) at high strain rates. When the strain rate is sufficiently high such that the heat generated does not have time to transfer to the surroundings, temperature of material rises. The high strain rate deformation behavior of polymers is significantly affected by temperature-dependent constants and thermal softening. Based on the isothermal model which first was introduced by Mulliken and Boyce et al. (Int. J. Solids Struct. 43:1331-1356, 2006), an adiabatic model is proposed to predict the yield and post-yield behavior of glassy polymers at high strain rates. When calculating the heat generated and the temperature changes during the step by step simulation of the deformation, temperature-dependent elastic constants are incorporated to the constitutive equations. Moreover, better prediction of softening phenomena is achieved by the new definition for softening parameters of the proposed model. The constitutive model has been implemented numerically into a commercial finite element code through a user material subroutine (VUMAT). The experimental results, obtained using a split Hopkinson pressure bar, are supported by dynamic mechanical thermal analysis (DMTA) and Decompose/Shift/Reconstruct (DSR) method. Comparison of adiabatic model predictions with experimental data demonstrates the ability of the model to capture the characteristic features of stress-strain curve of the material at very high strain rates.
Institute of Scientific and Technical Information of China (English)
寇玉亮; 陈常青; 卢天建
2011-01-01
Aluminum foam sandwich structures with the excellent mechanical and physical properties as lightweight, high specific stiffness and strength, vibration damping and energy absorption, have been wildly applied in the energy absorption device under impact. In this paper, a transverse isotropic rate-dependent constitutive model for aluminum foams has been developed for the strain rate sensitive behavior of the foams. Numerical algorithm for computing the rate-dependent constitutive model in finite element method is presented and has been coded into the commercial software package ABAQUS/Explicit through the user subroutine interface VUMAT. The numerical stability and reliability of the code are verified using a single element model and compared to available experimental results. The implemented model is then used to study the energy absorption capacity of aluminum foam core sandwich panels subject to impact loading.The effect of strain rate of the foam core is explored. Obtained results show that, with the increase of rate sensitivity parameter the energy capacity of the foam core increases and the deformation of the bottom panel decreases.%高孔隙率泡沫铝芯体三明治板具有轻质、高比刚度和减振吸能等优良的力学特性和物理特性,被广泛地应用于碰撞吸能部件上.近年来,高孔隙率泡沫铝在动态压缩下是否具有应变率敏感性成为广大学者的研究焦点.论文建立了横观各向同性率相关本构模型来描述高孔隙率泡沫铝的应变率效应,给出了有限元的计算步骤,基于ABAQUS/Explicit平台开发了子程序VUMAT,并在单个单元模型中验证了计算结果的稳定性和可靠性.将其作为三明治板芯体的材料属性,研究了不同率敏感系数对整个结构冲击吸能能力的影响.结果表明,随着率敏感系数的增加,芯体吸收的能量也随之增加,而底面面板的变形会越小,再一次验证了该子程序可以用来描述泡沫铝的应变率
Energy Technology Data Exchange (ETDEWEB)
Yu, Xinghua [ORNL; Wang, Yanli [ORNL; Crooker, Paul [Electric Power Research Institute (EPRI); Feng, Zhili [ORNL
2015-01-01
Weld residual stress is one of the primary driving forces for primary water stress corrosion cracking in dissimilar metal welds (DMWs). To mitigate tensile residual stress in DMWs, it is critical to understand residual stress distribution by modeling techniques. Recent studies have shown that weld residual stress prediction using today s DMW residual stress models strongly depends on the strain-hardening constitutive model chosen. The commonly used strain-hardening models (isotropic, kinematic, and mixed) are all time-independent and inadequate to account for the time-dependent (viscous) plastic deformation at the elevated temperatures experienced during welding. For materials with profound strain-hardening, such as stainless steels and nickel-based alloys that are widely used in nuclear reactor and piping systems, the equivalent plastic strain the determinate factor of the flow stress can be highly dependent on the recovery and recrystallization processes. These processes are in turn a strong function of temperature, time, and deformation rate. Recently, the authors proposed a new temperature- and time-dependent strain-hardening constitutive model: the dynamic strain-hardening constitutive model. The application of such a model has resulted in improved weld residual stress prediction compared to the residual stress measurement results from the contour and deep-hole drilling methods. In this study, the dynamic strain-hardening behavior of Type 304 stainless steel and Alloy 82 used in pressure vessel nozzle DMWs is experimentally determined. The kinetics of the recovery and recrystallization of flow stress are derived from experiments, resulting in a semi-empirical equation as a function of pre-strain, time, and temperature that can be used for weld residual stress modeling. The method used in this work also provides an approach to study the kinetics of recovery and recrystallization of other materials with significant strain-hardening.
Directory of Open Access Journals (Sweden)
Xiongqi Peng
2012-01-01
Full Text Available This paper presents a phenomenological thermal-mechanical viscoelastic constitutive modeling for polypropylene wood composites. Polypropylene (PP wood composite specimens are compressed at strain rates from 10−4 to 10−2 s−1 and at temperature of , , and , respectively. The mechanical responses are shown to be sensitive both to strain rate and to temperature. Based on the Maxwell viscoelastic model, a nonlinear thermal-mechanical viscoelastic constitutive model is developed for the PP wood composite by decoupling the effect of temperature with that of the strain rate. Corresponding viscoelastic parameters are obtained through curve fitting with experimental data. Then the model is used to simulate thermal compression of the PP wood composite. The predicted theoretical results coincide quite well with experimental data. The proposed constitutive model is then applied to the thermoforming simulation of an automobile interior part with the PP wood composites.
Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature
Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu
2017-08-01
A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.
Numerical Method for Modeling the Constitutive Relationship of Sand under Different Stress Paths
Institute of Scientific and Technical Information of China (English)
Ren Qingyang; Wang Jingtao
2005-01-01
A numerical method was used in order to establish the constitutive relationship of sands under different stress paths. Firstly, based on the numerical method modeling the constitutive law of sands, the elastoplastic constitutive relationship of sand was established for three paths: the constant proportion of principle stress path, the conventional triaxial compression (CTC) path, and the p=constant (TC) path. The yield lines of plastic volumetric strain and plastic generalized shear strain were given. Through visualization, the three dimensional surface of the stress-strain relationship in the whole stress field (p, q) obtained under the three paths was plotted. Also, by comparing the stress-strain surfaces and yield locus of the three stress paths, the differences were found to be obvious, which demonstrates that the influence of the stress paths on constitutive law was not neglected. The numerical modeling method overcame the difficulty of finding an analytical expression for plastic potential. The results simulated the experimental data with an accuracy of 90 % on average, so the constitutive model established in this paper provides an effective constitutive equation for this kind of engineering, reflecting the effect of practical stress paths that occur in sands.
Modeling Dependencies in Critical Infrastructures
Nieuwenhuijs, A.H.; Luiijf, H.A.M.; Klaver, M.H.A.
2009-01-01
This paper describes a model for expressing critical infrastructure dependencies. The model addresses the limitations of existing approaches with respect to clarity of definition, support for quality and the influence of operating states of critical infrastructures and environmental factors.
Ness, Christopher; Sun, Jin
2015-01-01
Shear flow of dense non-Brownian suspensions is simulated using the discrete element method taking particle contact and hydrodynamic lubrication into account. The resulting flow regimes are mapped in the parametric space of the solid volume fraction, shear rate, fluid viscosity, and particle stiffness. Below a critical volume fraction ϕc, the rheology is governed by the Stokes number, which distinguishes between viscous and inertial flow regimes. Above ϕc, a quasistatic regime exists for low and moderate shear rates. At very high shear rates, the ϕ dependence is lost, and soft-particle rheology is explored. The transitions between rheological regimes are associated with the evolving contribution of lubrication to the suspension stress. Transitions in microscopic phenomena, such as interparticle force distribution, fabric, and correlation length are found to correspond to those in the macroscopic flow. Motivated by the bulk rheology, a constitutive model is proposed combining a viscous pressure term with a dry granular model presented by Chialvo et al. [Phys. Rev. E 85, 021305 (2012), 10.1103/PhysRevE.85.021305]. The model is shown to successfully capture the flow regime transitions.
Hinkle, Adam R; Palanthandalam-Madapusi, Harish J
2009-01-01
The continuum-rod model has emerged as an efficient tool to describe the long-length-scale structural-deformations of DNA which are critical to understanding the nature of many biological processes such as gene expression. However, a significant challenge in continuum-mechanics-based modeling of DNA is to estimate its constitutive law, which follows from its interatomic bond-stiffness. Experiments and all-atom molecular dynamics (MD) simulations have suggested that the constitutive law is nonlinear and non-homogeneous (sequence-dependent) along the length of DNA. In this paper, we present an estimation method and a validation study using discrete-structure simulations. We consider a simple cantilever-rod with an artificially constructed, discrete lattice-structure which gives rise to a constitutive law. Large deformations are then simulated. An effective constitutive-law is estimated from these deformations using inverse methods. Finally, we test the estimated law by employing it in the continuum rod-model an...
Institute of Scientific and Technical Information of China (English)
John Jack P. RIEGEL III; David DAVISON
2016-01-01
Historically, there has been little correlation between the material properties used in (1) empirical formulae, (2) analytical formulations, and (3) numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014) to show how the Effective Flow Stress (EFS) strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN) (Anderson and Walker, 1991) and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical) to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D=10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a baseline with a full
Directory of Open Access Journals (Sweden)
John (Jack P. Riegel III
2016-04-01
Full Text Available Historically, there has been little correlation between the material properties used in (1 empirical formulae, (2 analytical formulations, and (3 numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014 to show how the Effective Flow Stress (EFS strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN (Anderson and Walker, 1991 and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a
Developmental Constitutionalism
Skupien, Stefan
2015-01-01
The search for adequate political and socio-economic models continues within recent constitutional reforms in Sub-Saharan post-colonial societies since 2005. This discourse goes back to the period of decolonisation but also to the transitions after 1989. Within this study, I assess the problem of representational crisis that come hand in hand with constitution making processes. Especially, I focus on the representation of different groups within the state, the safeguarding and extent of basic...
Constitutive modelling and multiaxial testing of concrete under non proportional compressive loading
Energy Technology Data Exchange (ETDEWEB)
Bouzaiene, A.; Massicotte, B. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique
1995-12-31
An experimental program was conducted to calibrate and validate an analytical model, and to determine some characteristics of the behaviour of concrete under increasing lateral confinement. A three-dimensional constitutive relation based on hypoelastic theory was developed for plain concrete under both monotonic and non-proportional loading, taking into account the effect of increasing confinement on the transition of failure mechanisms from brittle to ductile degradation under cyclic loading. The stress-strain responses predicted by the model were found to be in good agreement with the experimental results, and the constitutive relationship was found to apply well for various loading conditions. Based on these results the model was considered to offer a good compromise between simplicity and accuracy for unified constitutive models for plain concrete. 13 refs., 1 tab., 8 figs.
Constitutive Equation Models of Hot-Compressed T122 Heat Resistant Steel
Institute of Scientific and Technical Information of China (English)
CA0Jin-rong; LIUZheng—dong; CHENGShi—chang; YANGGang; XIEJian-xin
2012-01-01
Based on dislocation reaction theory and Avrami equation, a constitutive equation model was developed to describe dynamic recovery and dynamic recrystallization during hot deformation of T122 heat resistant steel, which have taken the effect of dynamic strain aging into account. Uniaxial hot compression test had been carried out over a wide range of strain rate （0.01 to 10 s-1 ） and temperature （900 to 1 200 ~C） with the help of Gleeble 3500. Obtained experimental data was applied to determine the material parameters in proposed constitutive equations of T122 steel, by using the non-linear least square regress optimization method. The calculated constitutive equations are quantita- tively in good agreement with experimentally measured curves and microstructure observation. It shows that propose constitutive equation T122 steel is able to be used to predict flow stress of T122 steel during hot deformation in aus- tenite temperature scope.
Zhang, Hong; Zhang, Zhaobin; Nakanishi, Tsuyoshi; Wan, Yi; Hiromori, Youhei; Nagase, Hisamistu; Hu, Jianying
2015-06-15
The present study investigated the human constitutive androstane receptor (CAR) binding activities of 23 phthalate esters and 10 phthalate monoesters using a fast and sensitive human CAR yeast two-hybrid assay. Of 23 phthalate esters, 16 were evaluated as positive, and the 10% relative effective concentrations (REC10) ranged from 0.28 (BBP) to 29.51 μM (DEHP), whereas no obvious binding activities were found for the phthalate esters having alkyl chains more than six carbons in length. Of 10 phthalate monoesters, only monoethyl phthalate (MEP), monoisobutyl phthalate (MIBP), and mono-(2-ethyhexyl) tetrabromophthalate (TBMEHP) elicited human CAR binding activities. The REC10 values of MEP and MIBP were 4.27 and 14.13 μM, respectively, higher than those of their corresponding phthalate esters (1.45 μM for DEP and 0.83 μM for DIBP), whereas TBMEHP (0.66 μM) was much lower than TBHP (>10(2) μM). A molecular docking method was performed to simulate the interaction modes between phthalates and human CAR, and active phthalates were found to lie at almost the same site in the human CAR pocket. The docking results suggest that the strong binding of phthalates to human CAR arises primarily from hydrophobic interactions, π-π interactions, and steric effects and that weak hydrogen bonds and weak halogen bonds greatly contribute to the high binding activity of TBMEHP. In conclusion, the current study clarified that an extensive array of phthalates are activators of human CAR.
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh; Li, Tingwen; Sun, Xin; Sundaresan, Sankaran
2016-10-01
The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and functional differences. In particular, the filtered stresses are strongly dependent on the gas-particle slip velocity. Closures for the filtered inter-phase drag, gas- and solids-phase pressures and viscosities are reported. A new model for solids stress anisotropy is also presented. These new filtered 3-D constitutive relationships are better suited to practical coarse-grid 3-D simulations of large, commercial-scale devices.
A local constitutive model with anisotropy for various homogeneous 2D biaxial deformation modes
Luding, S.; Perdahcioglu, E.S.
2011-01-01
A local constitutive model for granular materials with anisotropy is proposed and applied to different biaxial box deformation modes. The simplified version of the model (in the coordinate system of the biaxial box) involves only scalar values for hydrostatic and shear stresses, for the isotropic an
Ding, Anxin; Li, Shuxin; Wang, Jihui; Ni, Aiqing; Sun, Liangliang; Chang, Lei
2016-10-01
In this paper, the corner spring-in angles of AS4/8552 L-shaped composite profiles with different thicknesses are predicted using path-dependent constitutive law with the consideration of material properties variation due to phase change during curing. The prediction accuracy mainly depends on the properties in the rubbery and glassy states obtained by homogenization method rather than experimental measurements. Both analytical and finite element (FE) homogenization methods are applied to predict the overall properties of AS4/8552 composite. The effect of fiber volume fraction on the properties is investigated for both rubbery and glassy states using both methods. And the predicted results are compared with experimental measurements for the glassy state. Good agreement is achieved between the predicted results and available experimental data, showing the reliability of the homogenization method. Furthermore, the corner spring-in angles of L-shaped composite profiles are measured experimentally and the reliability of path-dependent constitutive law is validated as well as the properties prediction by FE homogenization method.
Wang, J. X.; Jia, P. Y.; Wang, Y. S.; Jiang, L.
2010-03-01
In this article, using Gibson-Ashby constitutive model, we suggest a new method for numerical investigation of forced convection heat transfer in porous foam metal, and try to consolidate the study for mechanical property and that for thermal characteristic. By available experimental data, we simulated to two cases, namely as the transfer in porous media for diameter is 0.6 mm and porosity is 0.402, and for diameter is 1.6 mm and porosity is 0.462. The result, from our constitutive model for single forced convection heat transfer, corresponds well with the experimental data. As for pressure drop prediction in porous is in good agreement with experiment, and the error is only 5% to 10%, but for transfer is less accurate, the error is about 20%, which is acceptable in practice. So it is done that constitutive model is used to simulate the transfer property.
Generalized in situ adaptive tabulation for constitutive model evaluation in plasticity
Energy Technology Data Exchange (ETDEWEB)
Arsenlis, A; Barton, N; Becker, R; Rudd, R
2005-04-28
A database storage, search and retrieval method of constitutive model responses for use in plasticity simulations is developed to increase the computational efficiency of finite element simulations employing complex non-linear material models. The method is based in the in situ adaptive tabulation method that has been successfully applied in the field of combustion chemistry, but is significantly modified to better handle the system of equations in plasticity. When using the database, the material response is estimated by a linear extrapolation from an appropriate database entry. This is shown to provide a response with an acceptable error tolerance. Two different example problems are chosen to demonstrate the behavior of the constitutive model estimation technique: a dynamic shock simulation, and a quasi-static inhomogeneous deformation simulation. This generalized in situ adaptive tabulation method shows promise for enabling simulations with complex multi-physics and multi-length scale constitutive descriptions.
Implementation and verification of interface constitutive model in FLAC3D
Directory of Open Access Journals (Sweden)
Hai-min WU
2011-09-01
Full Text Available Due to the complexity of soil-structure interaction, simple constitutive models typically used for interface elements in general computer programs cannot satisfy the requirements of discontinuous deformation analysis of structures that contain different interfaces. In order to simulate the strain-softening characteristics of interfaces, a nonlinear strain-softening interface constitutive model was incorporated into fast Lagrange analysis of continua in three dimensions (FLAC3D through a user-defined program in the FISH environment. A numerical simulation of a direct shear test for geosynthetic interfaces was conducted to verify that the interface model was implemented correctly. Results of the numerical tests show good agreement with the results obtained from theoretical calculations, indicating that the model incorporated into FLAC3D can simulate the nonlinear strain-softening behavior of interfaces involving geosynthetic materials. The results confirmed the validity and reliability of the improved interface model. The procedure and method of implementing an interface constitutive model into a commercial computer program also provide a reference for implementation of a new interface constitutive model in FLAC3D.
A STRESS VECTOR-BASED CONSTITUTIVE MODEL FOR COHESIONLESS SOIL (Ⅰ)-THEORY
Institute of Scientific and Technical Information of China (English)
史宏彦; 谢定义
2002-01-01
On the basis of the sufficient consideration of vectorial characteristics of stress,a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the action effects of stress vector are decomposed into the action effect of mean effective stress and that of the stress ratio vector (ratio of deviatoric stress vector to mean effective stress ). The constitutive model can take account of the influence of both numerical and directional changes of stress vector on deformation of soil simultaneously, and is applicable of both static and dynamic loading.
A viscoelastic-plastic constitutive model with Mohr-Coulomb yielding criterion for sea ice dynamics
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A new viscoelastic-plastic (VEP) constitutive model for sea ice dynamics was developed based on continuum mechanics. This model consists of four components: Kelvin-Vogit viscoelastic model, Mohr-Coulomb yielding criterion, associated normality flow rule for plastic rehololgy, and hydrostatic pressure. The numerical simulations for ice motion in an idealized rectangular basin were made using smoothed particle hydrodynamics (SPH) method, and compared with the analytical solution as well as those based on the modified viscous plastic(VP) model and static ice jam theory. These simulations show that the new VEP modelcan simulate ice dynamics accurately. The new constitutive model was further applied to simulate ice dynamics of the Bohai Sea and compared with the traditional VP, and modified VP models. The results of the VEP model are compared better with the satellite remote images, and the simulated ice conditions in the JZ20-2 oil platform area were more reasonable.
Directory of Open Access Journals (Sweden)
J. Fan
2015-01-01
Full Text Available In this essay, I mainly focus on the constitutional transplantation in the People’s Republic of China. Firstly, I briefly present the Chinese constitution-making process from the Qing dynasty to the Republic of China to show that both regimes had transplanted more or less liberal constitutional principles, rules and institutions into their domestic constitutional document. Then, because China and the Former Soviet Union shared the Marxism-Leninism, China’s 1954 Constitution borrowed almost all the constitutional articles to various extents from the 1936 Soviet constitutional code. Though few articles of the 1977 Soviet Constitution have been imported into China’s present 1982 Constitution, China’s Constitution is still influenced by the Soviet model of constitution in many aspects related to the political and legal reform in the post-Mao era. Globalization brings many challenges to present-day China’s Soviet- featured constitutional system. With China’s accession to the WTO, a qualified judicial review mechanism is required to be established by the other Member States. However, China seems not to satisfy this obligation under the framework of the present legal system. In addition, a constitutional review mechanism is still absent in China. Besides, the modern Chinese legal system keeps silent on the domestic implementation of the UN international human rights treaties in view of the fact that Chinese international law theory was molded by Soviet’s which took highly concerned on protection of its state sovereignty. Chinese authorities, on the other hand, take a vague attitude to universal human rights standards. They sometimes prefer to observe them, while in other cases, they are not willing to follow them. Besides that, the domestic effects of international law also depend on the outcomes of the struggle and compromise between the reformist and Chinese Marxist conservative.
Institute of Scientific and Technical Information of China (English)
En-xiang PU; Han FENG; Min LIU; Wen-jie ZHENG; Han DONG; Zhi-gang SONG
2016-01-01
Hot deformation behavior of superaustenitic stainless steel S32654 was investigated with hot compression tests at temperatures of 950-1 250 ℃ and strain rates of 0�001-10 s-1 .Above 1 150 ℃,with strain rate lower than 0�1 s-1 ,the flow curves exhibit nearly steady-state behavior,while at higher strain rate,continuous flow softening occurs.To provide a precise prediction of flow behavior for the alloy,the constitutive modeling considering effect of strain was derived on the basis of the obtained experimental data and constitutive relationship which incorporated Ar-rhenius term and hyperbolic-sine type equation.The material constantsα,n,Q and lnA are found to be functions of the strain and can be fitted employing eighth-order polynomial.The developed constitutive model can be employed to describe the deformation behavior of superaustenitic stainless steel S32654.
Garion, C
2001-01-01
The 300-series stainless steels are metastable austenitic alloys: martensitic transformation occurs at low temperatures and/or when plastic strain fields develop in the structures. The transformation influences the mechanical properties of the material. The present note aims at proposing a set of constitutive equations describing the plastic strain induced martensitic transformation in the stainless steels at cryogenic temperatures. The constitutive modelling shall create a bridge between the material sciences and the structural analysis. For the structures developing and accumulating plastic deformations at sub-zero temperatures, it is of primary importance to be able to predict the intensity of martensitic transformation and its effect on the material properties. In particular, the constitutive model has been applied to predict the behaviour of the components of the LHC interconnections, the so-called bellows expansion joints (the LHC mechanical compensation system).
Characterization of Models for Time-Dependent Behavior of Soils
DEFF Research Database (Denmark)
Liingaard, Morten; Augustesen, Anders; Lade, Poul V.
2004-01-01
Different classes of constitutive models have been developed to capture the time-dependent viscous phenomena ~ creep, stress relaxation, and rate effects ! observed in soils. Models based on empirical, rheological, and general stress-strain-time concepts have been studied. The first part is a r...
Constitutive model for shape memory alloys and its use in design and finite element analysis
Bose, Sudip; Santhanam, Sridhar
2002-07-01
A constitutive model for predicting the thermomechanical behavior of Shape Memory Alloys (SMAs) has been developed and validated. The model uses an approach similar to Brinson, Liang and Rogers, and Tanaka. It links key thermomechanical variables: stress, strain, temperature, and martensite fraction. A basic differential form for the SMA constitutive behavior, developed by Tanaka, forms the foundation of the model. The model is completed with a definition of the rules governing the behavior of martensite fraction. Like Brinson, the model distinguishes between de-twinned and twinned martensite. The phase transition temperatures are assumed to be a linear function of applied stress. The forward and reverse phase transformations are described by piecewise exponential functions. There are a number of parameters in the model that need to be determined using experimental data. The critical transformation temperatures are determined by resistivity measurements. All other parameters are determined by mechanical tension testing followed by nonlinear least-squares estimations. Mechanical testing consisted of displacement controlled, tension tests on Nitinol wires at several temperatures. The effectiveness of this model is demonstrated by its use in the design of an SMA actuated robotic arm. The constitutive model is used in conjunction with a lumped heat transfer model, a kinematic model, and a dynamic model to predict the behavior of the arm. Comparison between predictions and experimentally observed behavior is very good indicating a sound constitutive model. The model is also built into a finite element code that simulates pseudoelastic SMA behavior. The code considers geometric and material nonlinearities. The behavior of a simple pseudoelastic device is shown to be well predicted by the finite element code.
Coupled Hydro-Mechanical Constitutive Model for Vegetated Soils: Validation and Applications
Switala, Barbara Maria; Veenhof, Rick; Wu, Wei; Askarinejad, Amin
2016-04-01
It is well known, that presence of vegetation influences stability of the slope. However, the quantitative assessment of this contribution remains challenging. It is essential to develop a numerical model, which combines mechanical root reinforcement and root water uptake, and allows modelling rainfall induced landslides of vegetated slopes. Therefore a novel constitutive formulation is proposed, which is based on the modified Cam-clay model for unsaturated soils. Mechanical root reinforcement is modelled introducing a new constitutive parameter, which governs the evolution of the Cam-clay failure surface with the degree of root reinforcement. Evapotranspiration is modelled in terms of the root water uptake, defined as a sink term in the water flow continuity equation. The original concept is extended for different shapes of the root architecture in three dimensions, and combined with the mechanical model. The model is implemented in the research finite element code Comes-Geo, and in the commercial software Abaqus. The formulation is tested, performing a series of numerical examples, which allow validation of the concept. The direct shear test and the triaxial test are modelled in order to test the performance of the mechanical part of the model. In order to validate the hydrological part of the constitutive formulation, evapotranspiration from the vegetated box is simulated and compared with the experimental results. Obtained numerical results exhibit a good agreement with the experimental data. The implemented model is capable of reproducing results of basic geotechnical laboratory tests. Moreover, the constitutive formulation can be used to model rainfall induced landslides of vegetated slopes, taking into account the most important factors influencing the slope stability (root reinforcement and evapotranspiration).
Application of a continuum constitutive model to metallic foam DEN-specimens in compression
Onck, P.R.
2001-01-01
The behavior of double-edge notched specimens of metallic foams in compression is studied numerically. To model the constitutive behavior of the metallic foam, a recently developed phenomenological, pressure-sensitive yield surface is used. Compressive yielding in response to hydrostatic stress is i
Skacel, Pavel; Bursa, Jiri
2015-01-01
Several constitutive models have been proposed for the description of mechanical behaviour of soft tissues containing collagen fibres. Some of the commonly used approaches accounting for the dispersion of fibre orientations are based on the summation of (mechanical) contributions of differently oriented fibre families. This leads to the need of numerical integration on the sphere surface, and the related numerical consumption is the main disadvantage of this category of constitutive models. The paper is focused on the comparison of various numerical integration methods applied to a specific constitutive model applicable for arterial walls. Robustness and efficiency of several integration rules were tested with respect to application in finite element (FE) codes. Among all the analysed numerical integration rules, the best results were reached by Lebedev quadrature; the related parameters for the specific constitutive model are presented in the paper. The results were implemented into the commercial FE code ANSYS via user subroutines, and their applicability was demonstrated by an example of FE simulation with non-homogenous stress field.
Modification of a thermomechanical model to predict constitutive behavior of Al-Mg-Si alloys
Van de Langkruis, J.; Kool, W.H.; Van der Zwaag, S.
2006-01-01
A previously developed constitutive model for quantification of the effect of the condition of Mg and Si in AA6xxx alloys was used for the prediction of the flow stresses measured by plane strain compression (PSC) tests. As an extension of earlier work, two AA6xxx alloys were subjected to different
Researches on the Constitutive Models of Artificial Frozen Silt in Underground Engineering
Directory of Open Access Journals (Sweden)
Yugui Yang
2014-01-01
Full Text Available The researches on the mechanical characteristic and constitutive models of frozen soil have important meanings in structural design of deep frozen soil wall. In the present study, the triaxial compression and creep tests have been carried out, and the mechanical characteristic of frozen silt is obtained. The experiment results show that the deformation characteristic of frozen silt is related to confining pressure under conventional triaxial compression condition. The frozen silt presents strain softening in shear process; with increase of confining pressure, the strain softening characteristic gradually decreases. The creep curves of frozen silt present the decaying and the stable creep stages under low stress level; however, under high stress level, once the strain increases to a critical value, the creep strain velocity gradually increases and the specimen quickly happens to destroy. To reproduce the deformation behavior, the disturbed state elastoplastic and new creep constitutive models of frozen silt are developed. The comparisons between experimental results and calculated results from constitutive models show that the proposed constitutive models could describe the conventional triaxial compression and creep deformation behaviors of frozen silt.
Constitutive description of casting aluminum alloy based on cylindrical void-cell model
Institute of Scientific and Technical Information of China (English)
CHEN Bin; PENG Xiang-he; ZENG Xiang-guo; WU Xin-yan; SUN Shi-tao
2006-01-01
Casting aluminum alloys are highly heterogeneous materials with different types of voids that affect the mechanical properties of the material. Through the analysis ora cylindrical void-cell model the evolution equation of the voids was obtained. The evolution equation was embedded into a nonclassical elastoplastic constitutive relation, and an elastoplastic constitutive relation involving void evolution was obtained. A corresponding finite element procedure was developed and applied to the analyses of the distributions of the axial stress and porosity of notched cylindrical specimens of casting aluminum alloy A101. The computed results show good agreement with experimental data.
A phenomenological two-phase constitutive model for porous shape memory alloys
El Sayed, Tamer S.
2012-07-01
We present a two-phase constitutive model for pseudoelastoplastic behavior of porous shape memory alloys (SMAs). The model consists of a dense SMA phase and a porous plasticity phase. The overall response of the porous SMA is obtained by a weighted average of responses of individual phases. Based on the chosen constitutive model parameters, the model incorporates the pseudoelastic and pseudoplastic behavior simultaneously (commonly reported for porous SMAs) as well as sequentially (i.e. dense SMAs; pseudoelastic deformation followed by the pseudoplastic deformation until failure). The presented model also incorporates failure due to the deviatoric (shear band formation) and volumetric (void growth and coalescence) plastic deformation. The model is calibrated by representative volume elements (RVEs) with different sizes of spherical voids that are solved by unit cell finite element calculations. The overall response of the model is tested against experimental results from literature. Finally, application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement with the experimental data reported in the literature. © 2012 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Rudy Rudy
2014-04-01
Full Text Available Abstract The Constitutional Court of Indonesia issued a landmark judgment on February 2012 stipulating that the civil rights of children born out of wedlock should be recognized by their biological fathers. In June 2008, the Supreme Court of Japan issued a judgment that struck down the same issue stipulating that illegitimate child shall be acknowledged as having legal relationship with the father, and that the Nationality Act was violation of the constitution. These two judgments call comparative study on constitutional judgment and interpretation. In the specific area of constitutional interpretation, Vicki C. Jackson has argued that at least three models might broadly describe the relationships between domestic constitutions and law from trans-national sources. Firstly, the convergence model that assumes the desirability of convergence with the constitutional laws of other nations; secondly, the resistance model that relishes resistance by national constitutions from foreign influence; and the engagement model arguing that the constitution can best be viewed as a site of engagement with the trans-national, informed but not controlled by legal norms of other nations and questions they put to interpret their constitution. Based on the theory, the aim of this article is to see the models of interpretation of constitutional relationships between Indonesia and Japan while both nations give similar judgments on illegitimate child. This study will answer this question by integrating the interpretation of the judgments of The Constitutional Court of Indonesia and the Supreme Court of Japan on illegitimate Child. Hopefully, the result of this research paper may enlighten the context of constitutionalism in Asia. Abstrak Pada Februari 2012, Mahkamah Konstitusi Indonesia memberikan putusan yang bersejarah yang mengatur hak perdata setiap anak yang lahir di luar nikah agar diakui oleh ayah biologisnya. Pada Juni 2008, Mahkamah Agung Jepang mengeluarkan
Sato, K; Yuan, X-F; Kawakatsu, T
2010-02-01
Numerous numerical and experimental evidence suggest that shear banding behavior looks like first-order phase transitions. In this paper, we demonstrate that this correspondence is actually established in the so-called non-local diffusive Johnson-Segalman model (the DJS model), a typical mechanical constitutive model that has been widely used for describing shear banding phenomena. In the neighborhood of the critical point, we apply the reduction procedure based on the center manifold theory to the governing equations of the DJS model. As a result, we obtain a time evolution equation of the flow field that is equivalent to the time-dependent Ginzburg-Landau (TDGL) equations for modeling thermodynamic first-order phase transitions. This result, for the first time, provides a mathematical proof that there is an analogy between the mechanical instability and thermodynamic phase transition at least in the vicinity of the critical point of the shear banding of DJS model. Within this framework, we can clearly distinguish the metastable branch in the stress-strain rate curve around the shear banding region from the globally stable branch. A simple extension of this analysis to a class of more general constitutive models is also discussed. Numerical simulations for the original DJS model and the reduced TDGL equation is performed to confirm the range of validity of our reduction theory.
Models for dependent time series
Tunnicliffe Wilson, Granville; Haywood, John
2015-01-01
Models for Dependent Time Series addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. Whether you work in the economic, physical, or life sciences, the book shows you how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vector) time series data.The first four chapters discuss the two main pillars of the subject that have been developed over the last 60 years: vector autoregressive modeling and multivariate spectral analysis. These chapters provide the foundational mater
Directory of Open Access Journals (Sweden)
Alalade Muyiwa E.
2016-01-01
Full Text Available In order to assess the probability of foundation failure resulting from cyclic action on structures and to minimize the prediction error, various existing constitutive models considering cyclic loaded dry soils were extended to unsaturated soil conditions by the authors, thus requiring further calibration during application on existing slightly variable soil condition as well as the soil heterogeneities. The efficiency and effectiveness of these models is majorly influenced by the cyclic constitutive parameters and the soil suction. Little or no details exist in literature about the model based identification and the calibration of the constitutive parameters under cyclic loaded soils. This could be attributed to the difficulties and complexities of the inverse modeling of such complex phenomena. A wide variety of optimization strategies for the solution of the sum of least-squares problems as usually done in the field of model calibration exists, however the inverse analysis of the unsaturated soil response under oscillatory load functions has not been solved up to now. This paper gives insight into the model calibration challenges and also puts forward advanced optimization methods for the inverse modeling of cyclic loaded foundation response on unsaturated soils.
Institute of Scientific and Technical Information of China (English)
LIN Qi-quan; PENG Da-shu; ZHU Yuan-zhi
2005-01-01
An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the error back propagation(BP) algorithm was used to establish constitutive model of 2519 aluminum alloy based on the experiment data. The model results show that the systematical error is small(δ=3.3%) when the value of objective function is 0.2, the number of nodes in the hidden layer is 5 and the learning rate is 0.1. Flow stresses of the material under various thermodynamic conditions are predicted by the neural network model, and the predicted results correspond with the experimental results. A knowledge-based constitutive relation model is developed.
Thebe, T P; 12330841 - Van der Waldt, Gerrit
2014-01-01
The purpose of this article is to report on findings of an empirical investigation conducted at the Department of Justice and Constitutional Development. The aim of the investigation was to ascertain the status of current practices and challenges regarding the processes and procedures utilised for recruitment and selection. Based on these findings the article further outlines the design of a comprehensive process model for human resource recruitment and selection for the Department. The model...
Directory of Open Access Journals (Sweden)
Minárová Mária
2014-12-01
Full Text Available The paper deals with rheological models and creep and relaxation tests on matters which are represented by models. Three models based on two fundamental components (Hooke’s elastic and Newton’s viscous compounds are performed. The models originated from several fundamental matters by their parallel or serial connections. The corresponding constitutive equations are derived. The behavior of the models under the creep and relaxation tests is observed and is expressed by corresponding stress - strain formulas and illustrated in the figures.
Sacks, Michael S
2003-04-01
Structural constitutive models integrate information on tissue composition and structure, avoiding ambiguities in material characterization. However, critical structural information (such as fiber orientation) must be modeled using assumed statistical distributions, with the distribution parameters estimated from fits to the mechanical test data. Thus, full realization of structural approaches continues to be limited without direct quantitative structural information for direct implementation or to validate model predictions. In the present study, fiber orientation information obtained using small angle light scattering (SALS) was directly incorporated into a structural constitutive model based on work by Lanir (J. Biomech., v. 16, pp. 1-12, 1983). Demonstration of the model was performed using existing biaxial mechanical and fiber orientation data for native bovine pericardium (Sacks and Chuong, ABME, v.26, pp. 892-902, 1998). The structural constitutive model accurately predicted the complete measured biaxial mechanical response. An important aspect of this approach is that only a single equibiaxial test to determine the effective fiber stress-strain response and the SALS-derived fiber orientation distribution were required to determine the complete planar biaxial mechanical response. Changes in collagen fiber crimp under equibiaxial strain suggest that, at the meso-scale, fiber deformations follow the global tissue strains. This result supports the assumption of affine strain to estimate the fiber strains. However, future evaluations will have to be performed for tissue subjected to a wider range of strain to more fully validate the current approach.
Energy Technology Data Exchange (ETDEWEB)
Lee, Jinwoo [KEPCO E and C, Sungnam (Korea, Republic of); Engelhardt, Michael D. [The Univ., of Texas at Austin, Austin (United States)
2014-05-15
ASTM A992 is the most common grade of high strength steel used for building structures in the U. S. and considered to be applied in Korean nuclear power plant in an immediate future. This paper provides two constitutive models for high strength steel of ASTM A992 steel at elevated temperature to use in steel structures or steel building subjected to fire loads and thermal loads. One is the detailed full constitutive model and it has good agreements for every temperatures from room temperature to 1,000 .deg. C with increments of 100 .deg. C because it was developed using a best-fitting approach method with separated special zones; elastic, plastic plateau, strain-hardening and strain-softening regions. The curve-fitting results were helpful to derive the constitutive models of the stress-strain curves at room and elevated temperatures. The first of these models was developed for academia, and very closely fit the observed test data throughout the strain-hardening and softening zones. The second model was developed as a design model. Despite its simplicity (assumed bilinear stress-strain behavior), it captures the observed stress-strain behavior better than the Eurocode 3-1-2 provisions, most notably in terms of its predicted strain softening behavior and ultimate strains.
Daming, Nie; Zhen, Lu; Kaifeng, Zhang
2017-02-01
The constitutive models based on grain size effect are crucial for analyzing the deformation of metal foils. Previous investigations on the constitutive models concentrate on the foils whose thickness/average grain diameter (T/D) ratios are more than 3. In this study, the commercial pure titanium foils with thickness of 0.1 and 0.2 mm were employed as the experimental materials. The mechanical properties of foils with dimensions of nine different T/D ratios categorized into three ranges (T/D mechanisms of the samples with different T/D ratios were compared and analyzed. Besides, three constitutive models incorporating the surface layer effect and grain boundary strengthening effect were established for the three T/D ratio ranges correspondingly. In these models, the thickness of the surface layers is set T for T/D 3, and increases with D linearly in 1 ≤ T/D < 3. The results calculated by the three models were compared. The experiments indicate that those models are all in good agreement.
A work-hardening and softening constitutive model for sand: modified plastic strain energy approach
Institute of Scientific and Technical Information of China (English)
Fangle Peng; M.S.A. Siddiquee; Shaoming Liao
2005-01-01
The paper describes an energy-based constitutive model for sand, which is modified based on the modified plastic strain energy approach, represented by a unique relationship between the modified plastic strain energy and a stress parameter, independent of stress history. The modified plastic strain energy approach was developed based on results from a series of drained plastic strain compression tests along various stress paths on saturated dense Toyoura sand with accurate stress and strain measurements. The proposed model is coupled with an isotropically work-hardening and softening, non-associtated, elasto-plastic material description. The constitutive model concerns the inherent and stress systeminduced cross-anisotropic elastic deformation properties of sand. It is capable of simulating the deformation characteristics of stress history and stress path, the effects of pressure level, anisotropic strength and void ratio, and the strain localization.
Application of Taguchi Method and Genetic Algorithm for Calibration of Soil Constitutive Models
Directory of Open Access Journals (Sweden)
M. Yazdani
2013-01-01
Full Text Available A special inverse analysis method is established in order to calibrate soil constitutive models. Taguchi method as a systematic sensitivity analysis is conducted to determine the real values of mechanical parameters. This technique was applied on the hardening soil (as an elastoplastic constitutive model which is calibrated using the results from pressuremeter test performed on “Le Rheu” clayey sand. Meanwhile, a genetic algorithm (GA as a well-known optimization technique is used to fit the computed numerical results and observed data of the soil model. This study indicates that the Taguchi method can reasonably calibrate the soil parameters with minimum number of numerical analyses in comparison with GA which needs plenty of analyses. In addition, the contribution of each parameter on mechanical behavior of soil during the test can be determined through the Taguchi method.
Institute of Scientific and Technical Information of China (English)
Binglei Wang; Changqing Chen; Yapeng Shen
2006-01-01
A micromechanics-based finite element model for the constitutive behavior of polycrystalline ferromagnets is developed. In the model, the polycrystalline solid is assumed to comprise numerous single crystals with randomly distributed crystallographic orientations, and the single crystals, in turn, consist of ferromagnetic domains, each of which is represented by a cubic element. The dipole directions of the domains are randomly assigned to simulate the crystallographic nature of ferromagnetic polycrystals. A switching criterion for the domains is specified at the microscopic level. The macroscopic constitutive behavior is obtained by averaging the microscopic/local behavior of each domain. The developed model has been applied to the simulation of a ferromagnetic material. With appropriate material parameters adopted, hysteresis loops of the predicted magnetic induction versus magnetic field and those of the strain versus magnetic field are shown to agree well with experimental observations.
Directory of Open Access Journals (Sweden)
Guan-lin Ye
2016-09-01
Full Text Available The mechanical properties and constitutive modeling of Shanghai clays are very important for numerical analysis on geotechnical engineering in Shanghai, where continuous layers of soft clays run 30–40 m deep. The clays are divided into 5 major layers. A series of laboratory tests are carried out to investigate their mechanical properties. The top and bottom layers are overconsolidated hard clays, and the middle layers are normally consolidated or lightly overconsolidated sensitive marine clays. A constitutive model, which can describe the overconsolidation and structure of soils using only 8 parameters, is modified to simulate the test results. A rational procedure to determine the values of the material parameters and initial conditions is also proposed. The model is able to effectively reproduce both one-dimensional (1D consolidation and drained/undrained triaxial test results of Shanghai clays, with one set of parameters for each layer. From element testing and constitutive modeling, two findings are obtained. First, the decay rates of overconsolidation are smaller in overconsolidated layers than in normally consolidated layers. Second, the natural microstructure of layer 4 is relatively stable, that is, a large degree of structure is still maintained in the specimen even after 1D consolidation and drained triaxial tests. The modified model and obtained parameter values can be used for numerical analysis of geotechnical projects in Shanghai.
DEFF Research Database (Denmark)
Qing, Hai; Mishnaevsky, Leon
2010-01-01
A 3D anisotropic continuum damage model is developed for the computational analysis of the elastic–brittle behaviour of fibre-reinforced composite. The damage model is based on a set of phenomenological failure criteria for fibre-reinforced composite, which can distinguish the matrix and fibre...... failure under tensile and compressive loading. The homogenized continuum theory is adopted for the anisotropic elastic damage constitutive model. The damage modes occurring in the longitudinal and transverse directions of a ply are represented by a damage vector. The elastic damage model is implemented...
Bergström, J S; Rimnac, C M; Kurtz, S M
2003-04-01
The development of theoretical failure, fatigue, and wear models for ultra-high molecular weight polyethylene (UHMWPE) used in joint replacements has been hindered by the lack of a validated constitutive model that can accurately predict large deformation mechanical behavior under clinically relevant, multiaxial loading conditions. Recently, a new Hybrid constitutive model for unirradiated UHMWPE was developed Bergström et al., (Biomaterials 23 (2002) 2329) based on a physics-motivated framework which incorporates the governing micro-mechanisms of polymers into an effective and accurate continuum representation. The goal of the present study was to compare the predictive capability of the new Hybrid model with the J(2)-plasticity model for four conventional and highly crosslinked UHMWPE materials during multiaxial loading. After calibration under uniaxial loading, the predictive capabilities of the J(2)-plasticity and Hybrid model were tested by comparing the load-displacement curves from experimental multiaxial (small punch) tests with simulated load-displacement curves calculated using a finite element model of the experimental apparatus. The quality of the model predictions was quantified using the coefficient of determination (r(2)). The results of the study demonstrate that the Hybrid model outperforms the J(2)-plasticity model both for combined uniaxial tension and compression predictions and for simulating multiaxial large deformation mechanical behavior produced by the small punch test. The results further suggest that the parameters of the HM may be generalizable for a wide range of conventional, highly crosslinked, and thermally treated UHMWPE materials, based on the characterization of four material properties related to the elastic modulus, yield stress, rate of strain hardening, and locking stretch of the polymer chains. Most importantly, from a practical perspective, these four key material properties for the Hybrid constitutive model can be measured
Energy-based constitutive modelling of local material properties of canine aortas
Shahmirzadi, Danial; Acosta, Camilo J.; Konofagou, Elisa
2016-01-01
This study aims at determining the in vitro anisotropic mechanical behaviour of canine aortic tissue. We specifically focused on spatial variations of these properties along the axis of the vessel. We performed uniaxial stretch tests on canine aortic samples in both circumferential and longitudinal directions, as well as histological examinations to derive the tissue's fibre orientations. We subsequently characterized a constitutive model that incorporates both phenomenological and structural elements to account for macroscopic and microstructural behaviour of the tissue. We showed the two fibre families were oriented at similar angles with respect to the aorta's axis. We also found significant changes in mechanical behaviour of the tissue as a function of axial position from proximal to distal direction: the fibres become more aligned with the aortic axis from 46° to 30°. Also, the linear shear modulus of media decreased as we moved distally along the aortic axis from 139 to 64 kPa. These changes derived from the parameters in the nonlinear constitutive model agreed well with the changes in tissue structure. In addition, we showed that isotropic contribution, carried by elastic lamellae, to the total stress induced in the tissue decreases at higher stretch ratios, whereas anisotropic stress, carried by collagen fibres, increases. The constitutive models can be readily used to design computational models of tissue deformation during physiological loading cycles. The findings of this study extend the understanding of local mechanical properties that could lead to region-specific diagnostics and treatment of arterial diseases. PMID:27703701
Institute of Scientific and Technical Information of China (English)
史训清; 王志平; John HL Pang; 张学仁; 聂景旭
2002-01-01
In this study, a new unified creep constitutive relation and a modified energy-based fatigue model have been established respectively to describe the creep flow and predict the fatigue life of Sn-Pb solders. It is found that the relation successfully elucidates the creep mechanism related to current constitutive relations.The model can be used to describe the temperature and frequency dependent low cycle fatigue behavior of the solder. The relation and the model are further employed in part Ⅱ to develop the numerical simulation approach for the long-term reliability assessment of the plastic ball grid array (BGA) assembly.
Constitutive model development for lead free solder alloys at multiple specimen scales
Xiao, Qiang
A fundamental study of thermal-mechanical response of Sn3.9Ag0.6Cu at different specimen scales was conducted. The investigation includes aging effects on microstructure and tensile property. It also includes tensile creep behavior and microstructure changes. At all stages, we compared our Sn3.9Ag0.6Cu measurements with the well known 63Sn37Pb lead-tin eutectic. The constitutive models were then developed based on the experimental data. This work led to some important conclusions, which indicate that (i) the thin cast material exhibited a much finer as-quenched microstructure than the bulk material with the IMC phase restricted to a thin network. Both the bulk and thin cast materials continually softened during room temperature aging, while both materials initially softened and then subsequently hardened when aged at 120°C and 180°C. The thin cast material was in all cases significantly softer than the bulk material, and responded to aging as if it were bulk material aged at a higher temperature, (ii) the Sn3.9Ag0.6Cu alloy showed much lower absolute creep rates than the 63SnPb37. The power law defined stress exponent significantly increases with increasing stress in both the 63Sn37Pb and Sn3.9Ag0.6Cu alloys, therefore the Dorn model is unsuitable for these materials over large stress and temperature ranges. Both sets of experimental data were successfully fit with the present power law stress dependant energy barrier model and the Garofalo model, and (iii) the thin cast material is less creep-resistant than the bulk material. In the bulk material the relevant climb process occurs within a finely dispersed IMC eutectic which covers broad areas within the material. In the thin cast material the relevant climb process occurs primarily in the beta-Sn grains which continuously surround isolated, coarse IMC particles. This resulted in the activation energy of the bulk material being larger than that for the thin cast material. The strength deficiency of the thin cast
Study on damages constitutive model of rocks based on lognormal distribution
Institute of Scientific and Technical Information of China (English)
LI Shu-chun; XU Jiang; TAO Yun-qi; TANG Xiao-jun
2007-01-01
The damage constitutive relation of entire rock failure process was established using the theory of representative volume element obeying the Iognormal distribution law,and the integrated damages constitutive model of rock under triaxial compression was established. Comparing with triaxial compression test result, it shows that this model correctly reflects the relationship of stress-strain. At the same time, according to the principle of the rock fatigue failure that conforms to completely the static entire process curve, a new method of establishing cyclic fatigue damage evolution equation was discussed, this method form is simple and the physics significance is clear, it may join preferably the damage relations of the rock static entire process curve.
Unified constitutive modelling for two-phase lamellar titanium alloys at hot forming conditions
Directory of Open Access Journals (Sweden)
Yang Lei
2016-01-01
Full Text Available In this paper, a set of mechanism based unified viscoplastic constitutive equations have been established for two-phase titanium alloys with initial lamellar microstructure, which models the softening mechanisms of the alloys in hot forming conditions. The dislocation density, rotation and globularization of lamellar α-phase and their effects on flow behaviour can also be modelled. The values of material constants in the equation set have been calibrated, according to stress-strain curves and globularization fractions of lamellar α-phase obtained from compression tests at a range of temperatures and strain rates, using a genetic algorithm (GA based optimisation method. Based on the determined constitutive equations, flow stress and globularization evolution of Ti-17 and TA15 alloys at different temperatures and strain rates were predicted. Good agreements between the experimental and computed results were obtained.
A constitutive model of frozen soil with damage and numerical simulation for the coupled problem
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Based on the microcosmic mechanics of composite materials, an elastic constitutive model for frozen soil with damage is presented. For frozen sandy soil with a range of ice contents and under a range of temperature conditions, quantitative results determined by this constitutive model agree with practically measured stress-strain curves. After numerically simulating the coupled water, temperature and stress fields of channel frozen and frozen roadbed using a self-developed finite-element routine, more accurate and practical calculation results for the temperature field coupled with stress, displacement and strain fields are obtained; the results match predictions and tests undertaken by earlier researchers. Our results support the reliability of our routine for calculating interdependent physical quantities of frozen soil and for describing the relationships between them. Our program can offer necessary constraints for engineering design and construction in permafrost regions.
Directory of Open Access Journals (Sweden)
Canio Hoffarth
2017-03-01
Full Text Available A three-dimensional constitutive model has been developed for modeling orthotropic composites subject to impact loads. It has three distinct components—a deformation model involving elastic and plastic deformations; a damage model; and a failure model. The model is driven by tabular data that is generated either using laboratory tests or via virtual testing. A unidirectional composite—T800/F3900, commonly used in the aerospace industry, is used in the verification and validation tests. While the failure model is under development, these tests indicate that the implementation of the deformation and damage models in a commercial finite element program, LS-DYNA, is efficient, robust and accurate.
INVESTIGATION ON ELASTO-PLASTIC CONSTITUTIVE MODEL COUPLED WITH DAMAGE FOR LOCALIZATION PHENOMENA
Institute of Scientific and Technical Information of China (English)
沈新普; 沈国晓; 陈立新
2004-01-01
On the basis of existing plasticity-based damage model for plasticity coupled with damage for localization analysis, constitutive parameter identification was carried out through a series of numerical tests at local level. And then improvements were made on the expressions of the evolution laws of damage. Strain localization phenomena were simulated with a typical double-notched specimen under tensions. Numerical results indicate the validity of the proposed theory.
A FRACTURE-ENERGY-BASED ELASTO-SOFTENING-PLASTIC CONSTITUTIVE MODEL FOR JOINTS OF GEOMATERIALS
Institute of Scientific and Technical Information of China (English)
沈新普; 沈国晓
2002-01-01
On the basis of plasticity and fracture mechanics for quasi- brittle materials, this article presented a constitutive model for gradual softening behavior of joints of geomaterials. Corresponding numerical tests are carried out at the local level. Characteristics of the model proposed are 1 ) plastic softening and dilatancy behavior are directly related to the fracture process of joint, and much less material and model parameters are required compared with those proposed by references; 2) the process of decohesion coupled with friction al sliding at both micro-scale and macro-scale is described.
A SIMPLE CONSTITUTIVE MODEL FOR FERROELECTRIC CERAMICS UNDER ELECTRICAL/MECHANICAL LOADING
Institute of Scientific and Technical Information of China (English)
Yu Li; Yu Shouwen; Feng Xiqiao
2007-01-01
A simple phenomenological model is developed for describing the macroscopic constitutive response of ferroelectric materials based on consideration of the fact that domain switching is a progressive evolution process with loading. The volume fraction of domain switching is taken as an internal variable, which is derived from the domain nucleation theory. The proposed theory can simulate the dielectric hysteresis, reversed butterfly hysteresis, nonlinear strain-stress hysteresis, as well as electric displacement-stress relation of ferroelectric materials. Its comparison with experimental results and two other theoretical models reveals that the model presented can well predict the nonlinear hysteresis of ferroelectrics under electrical or mechanical loading.
Institute of Scientific and Technical Information of China (English)
LANG Li-hui; LI Tao; ZHOU Xian-bin; B. E. KRISTENSEN; J. DANCKERT; K. B. NIELSEN
2006-01-01
By using aluminum alloys, the properties of the material in sheet hydroforming were obtained based on the identification of parameters for constitutive models by inverse modeling in which the friction coefficients were also considered in 2D and 3D simulations. With consideration of identified simulation parameters by inverse modeling, some key process parameters including tool dimensions and pre-bulging on the forming processes in sheet hydroforming were investigated and optimized. Based on the optimized parameters, the sheet hydroforming process can be analyzed more accurately to improve the robust design. It proves that the results from simulation based on the identified parameters are in good agreement with those from experiments.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Firstly, using the damage model for rock based on Lemaitre hypothesis about strain equivalence, a new technique for measuring strength of rock micro-cells by adopting the Mohr-Coulomb criterion was developed, and a statistical damage evolution equation was established based on the property that strength of micro-cells is consistent with normal distribution function, through discussing the characteristics of random distributions for strength of micro-cells, then a statistical damage constitutive model that can simulate the full process of rock strain softening under specific confining pressure was set up. Secondly, a new method to determine the model parameters which can be applied to the situations under different confining pressures was proposed, by deeply studying the relations between the model parameters and characteristic parameters of the full stress-strain curve under different confining pressures. Therefore, a unified statistical damage constitutive model for rock softening which can reflect the effect of different confining pressures was set up. This model makes the physical property of model parameters explicit, contains only conventional mechanical parameters, and leads its application more convenient. Finally, the rationality of this model and its parameters-determining method were identified via comparative analyses between theoretical and experimental curves.
A constitutive model for elastoplastic solids containing primary and secondary voids
Fabrègue, D.; Pardoen, T.
In many ductile metallic alloys, the damage process controlled by the growth and coalescence of primary voids nucleated on particles with a size varying typically between 1 and 100 μm, is affected by the growth of much smaller secondary voids nucleated on inclusions with a size varying typically between 0.1 and 3 μm. The goal of this work is first to quantify the potential effect of the growth of these secondary voids on the coalescence of primary voids using finite element (FE) unit cell calculations and second to formulate a new constitutive model incorporating this effect. The nucleation and growth of secondary voids do essentially not affect the growth of the primary voids but mainly accelerate the void coalescence process. The drop of the ductility caused by the presence of secondary voids increases if the nucleation strain decreases and/or if their volume fraction increases and/or if the primary voids are flat. A strong coupling is indeed observed between the shape of the primary voids and the growth of the second population enhancing the anisotropy of the ductility induced by void shape effects. The new micromechanics-based coalescence condition for internal necking introduces the softening induced by secondary voids growing in the ligament between two primary voids. The FE cell calculations were used to guide and assess the development of this model. The use of the coalescence condition relies on a closed-form model for estimating the evolution of the secondary voids in the vicinity of a primary cavity. This coalescence criterion is connected to an extended Gurson model for the first population including the effect of the void aspect ratio. With respect to classical models for single void population, this new constitutive model improves the predictive potential of damage constitutive models devoted to ductile metal while requiring only two new parameters, i.e. the initial porosity of second population and a void nucleation stress, without any additional
Augustins, L.; Billardon, R.; Hild, F.
2016-09-01
The present paper details an elasto-viscoplastic constitutive model for automotive brake discs made of flake graphite cast iron. In a companion paper (Augustins et al. in Contin Mech Thermodyn, 2015), the authors proposed a one-dimensional setting appropriate for representing the complex behavior of the material (i.e., asymmetry between tensile and compressive loadings) under anisothermal conditions. The generalization of this 1D model to 3D cases on a volume element and the associated challenges are addressed. A direct transposition is not possible, and an alternative solution without unilateral conditions is first proposed. Induced anisotropic damage and associated constitutive laws are then introduced. The transition from the volume element to the real structure and the numerical implementation require a specific basis change. Brake disc simulations with this constitutive model show that unilateral conditions are needed for the friction bands. A damage deactivation procedure is therefore defined.
A finite deformation viscoelastic-viscoplastic constitutive model for self-healing materials
Shahsavari, H.; Naghdabadi, R.; Baghani, M.; Sohrabpour, S.
2016-12-01
In this paper, employing the Hencky strain, viscoelastic-viscoplastic response of self-healing materials is investigated. Considering the irreversible thermodynamics and using the effective configuration in the Continuum Damage-Healing Mechanics (CDHM), a phenomenological finite strain viscoelastic-viscoplastic constitutive model is presented. Considering finite viscoelastic and viscoplastic deformations, total deformation gradient is multiplicatively decomposed into viscoelastic and viscoplastic parts. Due to mathematical advantages and physical meaning of Hencky strain, this measure of strain is employed in the constitutive model development. In this regard, defining the damage and healing variables and employing the strain equivalence hypothesis, the strain tensor is determined in the effective configuration. Satisfying the Clausius-Duhem inequality, the evolution equations are introduced for the viscoelastic and viscoplastic strains. The damage and healing variables also evolve according to two different prescribed functions. To employ the proposed model in different loading conditions, the model is discretized in the semi-implicit form. Material parameters of the model are identified employing experimental tests on asphalt mixes available in the literature. Finally, capability of the model is demonstrated comparing the model predictions in the creep-recovery and repeated creep-recovery with the experimental results available in the literature and a good agreement between predicted and test results is revealed.
Numerical simulation of soil creep with a visco-hypoplastic constitutive model
Wang, Shun; Wu, Wei
2016-04-01
Slow-moving landslides make up a great part of geohazards in the Three Gorges reservoir (TGR) in China. Most of them move at speed of several centimeters per year (or even less) and show evidence of creep behaviour. It has been suggested that motion of creep landslides is mainly governed by the viscous properties of sheared materials forming the rupture zone, as these zones are where most of the slope deformation localizes. Understanding of creep behaviour of slipping material calls for laboratory tests as well as advanced constitutive models. For this purpose, a high order visco-hypoplastic constitutive model has been introduced. Unlike some of the visco-hypoplasric models, which consider the total strain rate as a combination of reversible strain rate and viscous strain rate respectively, such as dot{bm{e}}=dot{bm{e}}^e+dot{bm{e}}vis (where dot{bm{e}}, dot{bm{e}}e and dot{bm{e}}vis are the total strain rate ,reversible strain rate and viscous strain rate respectively), the proposed visco-hypolastic constitutive model decompose the Cauchy stress into a statical part and a dynamical part, bm{s}=hat{bm{s}}+\\check{bm{s}} (where bm{s},hat{bm{s}} and \\check{bm{s}} are total stress ,statical stress and dynamical stress respectively), whereas the strain rate has been considered as a whole. Within in this framework, stress change induced by strain acceleration can be taken into account. Moreover, compared with some special creep models, which may only valid for one or two stages of the three-state creep, i.e. primary creep, secondary creep and tertiary creep, this novel scheme is able to describe creep test with the whole three stages. This model has been also implemented into FEM code to evaluate some boundary-value problems. An explicit adaptive Rung-Kutta-Fehlberg algorithm is applied for stress-point integration. For verification of this model, numerical triaxial tests compared with laboratory tests have been conducted. Then a homogenous slope has been taken as an
Micromechanical modeling of rate-dependent behavior of Connective tissues.
Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M
2017-03-07
In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of the presented model at different strain rates for rat tail tendon (RTT) and human patellar tendon (HPT) are in good agreement with experimental data. Results of incremental stress-relaxation test are also presented to investigate both instantaneous and viscoelastic behavior of connective tissues.
Directory of Open Access Journals (Sweden)
Da-Guang Zhang
2015-10-01
Full Text Available For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao, E-mail: zhouhm@cjlu.edu.cn [College of Information Engineering, China Jiliang University, 310018, Hangzhou (China)
2015-10-15
For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications.
Energy Technology Data Exchange (ETDEWEB)
Sun, C.Y. [School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: suncy@me.ustb.edu.cn; Fang, G.; Lei, L.P.; Zeng, P. [Key Laboratory of Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)
2009-01-15
Based on the crystallographic theory of martensitic transformation and internal variable constitutive theory, a micromechanical constitutive model of martensitic transformation induced plasticity was developed. Plastic strains of product and parent phases as well as the volume fraction of each martensitic variant were considered as internal variables describing the microstructure evolution. The plasticity flow both in austenite and martensitic variants domain is described by J{sub 2} flow theory. The thermodynamic driving force acting on these internal variables was obtained through the determination of the intrinsic dissipation due to plastic flow and the growth of martensitic domains. The evolution laws of the internal variables are derived, furthermore macroscopic response due to the change of internal variables is obtained. Thermomechanical behavior of armour steel under uniaxial loading was tested which showed a good agreement with experimental results.
An elasto-plastic constitutive model of moderate sandy clay based on BC-RBFNN
Institute of Scientific and Technical Information of China (English)
彭相华; 王智超; 罗涛; 余敏; 罗迎社
2008-01-01
Application research of neural networks to geotechnical engineering has become a hotspot nowadays.General model may not reach the predicting precision in practical application due to different characteristics in different fields.In allusion to this,an elasto-plastic constitutive model based on clustering radial basis function neural network(BC-RBFNN) was proposed for moderate sandy clay according to its properties.Firstly,knowledge base was established on triaxial compression testing data;then the model was trained,learned and emulated using knowledge base;finally,predicting results of the BC-RBFNN model were compared and analyzed with those of other intelligent model.The results show that the BC-RBFNN model can alter the training and learning velocity and improve the predicting precision,which provides possibility for engineering practice on demanding high precision.
Institute of Scientific and Technical Information of China (English)
江冰; 方岱宁; 黄克智
1999-01-01
Based on micromechanics and Laplace transformation, a constitutive model of ferroelectric composites with a linear elastic and linear dielectric matrix is developed and extended to the ferroelectric composites with a viscoelastic and dielectric relaxation matrix. Thus, a constitutive model for ferroelectric composites with a viscoelastic and dielectric relaxation matrix has been set up.
Modeling local dependence in longitudinal IRT models
DEFF Research Database (Denmark)
Larsen, Maja Olsbjerg; Christensen, Karl Bang
2015-01-01
Measuring change in a latent variable over time is often done using the same instrument at several time points. This can lead to dependence between responses across time points for the same person yielding within person correlations that are stronger than what can be attributed to the latent...... variable. Ignoring this can lead to biased estimates of changes in the latent variable. In this paper we propose a method for modeling local dependence in the longitudinal 2PL model. It is based on the concept of item splitting, and makes it possible to correctly estimate change in the latent variable....
Majumder, Rupamanjari; Jangsangthong, Wanchana; Feola, Iolanda; Ypey, Dirk L; Pijnappels, Daniël A; Panfilov, Alexander V
2016-06-01
Atrial fibrillation (AF) is the most frequent form of arrhythmia occurring in the industrialized world. Because of its complex nature, each identified form of AF requires specialized treatment. Thus, an in-depth understanding of the bases of these arrhythmias is essential for therapeutic development. A variety of experimental studies aimed at understanding the mechanisms of AF are performed using primary cultures of neonatal rat atrial cardiomyocytes (NRAMs). Previously, we have shown that the distinct advantage of NRAM cultures is that they allow standardized, systematic, robust re-entry induction in the presence of a constitutively-active acetylcholine-mediated K+ current (IKACh-c). Experimental studies dedicated to mechanistic explorations of AF, using these cultures, often use computer models for detailed electrophysiological investigations. However, currently, no mathematical model for NRAMs is available. Therefore, in the present study we propose the first model for the action potential (AP) of a NRAM with constitutively-active acetylcholine-mediated K+ current (IKACh-c). The descriptions of the ionic currents were based on patch-clamp data obtained from neonatal rats. Our monolayer model closely mimics the action potential duration (APD) restitution and conduction velocity (CV) restitution curves presented in our previous in vitro studies. In addition, the model reproduces the experimentally observed dynamics of spiral wave rotation, in the absence and in the presence of drug interventions, and in the presence of localized myofibroblast heterogeneities.
FY17 Status Report on the Initial Development of a Constitutive Model for Grade 91 Steel
Energy Technology Data Exchange (ETDEWEB)
Messner, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Phan, V. -T. [Argonne National Lab. (ANL), Argonne, IL (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)
2017-07-01
Grade 91 is a candidate structural material for high temperature advanced reactor applications. Existing ASME Section III, Subsection HB, Subpart B simplified design rules based on elastic analysis are setup as conservative screening tools with the intent to supplement these screening rules with full inelastic analysis when required. The Code provides general guidelines for suitable inelastic models but does not provide constitutive model implementations. This report describes the development of an inelastic constitutive model for Gr. 91 steel aimed at fulfilling the ASME Code requirements and being included into a new Section III Code appendix, HBB-Z. A large database of over 300 experiments on Gr. 91 was collected and converted to a standard XML form. Five families of Gr. 91 material models were identified in the literature. Of these five, two are potentially suitable for use in the ASME code. These two models were implemented and evaluated against the experimental database. Both models have deficiencies so the report develops a framework for developing and calibrating an improved model. This required creating a new modeling method for representing changes in material rate sensitivity across the full ASME allowable temperature range for Gr. 91 structural components: room temperature to 650° C. On top of this framework for rate sensitivity the report describes calibrating a model for work hardening and softening in the material using genetic algorithm optimization. Future work will focus on improving this trial model by including tension/compression asymmetry observed in experiments and necessary to capture material ratcheting under zero mean stress and by improving the optimization and analysis framework.
Institute of Scientific and Technical Information of China (English)
Xuan Guo; Chenggang Zhao; Dajun Yuan; Mengshu Wang
2008-01-01
This paper builds the for mulations of hyperplastic damage theory for rate-independent geomaterials to describe the bulk and the likely damage behavior of granular materials.Using 2 kinematic internal variables and the conjugates,dissipative and yield function can be reasonably intlloduoed.A systematic constitutive presentation of 32 possible ways within the thermodynam-ical damage framework is presented,which entirely formulates the constitutive behavior through two scalar thermodynamic potentials.Combining the four common thermodynamical energyfunc-tions.two independent kinematic internal variables and the accordingly generalized stress are introduced to describe the damage behavior and structural rearrangement of the granules for any bulk deformation.A few Legendre transformations are used to establish the links between energy functions so that the complex incremental response of geomaterials can be entirely established from these four energy functions.The constitutive relations are built with the thermodynamics laws,which account for the important structural aspects of geomateriais.Some examples are pro-vided in the appendix to validate the applicability and implementation of the framework.This theory is based on previous work by Houlsby et a1.,and extends to the multi-mechanisms de-scription.This framework paves a way in developing models for specific geomateriais with an examinable basis.
Institute of Scientific and Technical Information of China (English)
张武; 唐锦春
2002-01-01
This paper establishes a piezoelectric constitutive computational approach based on generalized eigenvalue and multivariable finite element solutions with potential applications to accurate and effective analysis of layered piezoelectric microstructures of arbitrary geometries and different anisotropic materials, to ease the limitation of current computer capacity in analyzing large-scale high-frequency disturbed surface acoustic waves (DSAW) by mounted electrodes in piezoelectric devices such as microchip SAW resonators. A new incompatible generalized hybrid/mixed element GQM5 is also proposed for improving predictions of the piezoelectric surface mount thermal stresses that are shear-dominated. The (generalized) plane strain constitutive model is numerically verified for piezoelectric finite element computation. With the help of computational piezoelectricity (electro-mechanics) for general layered structures with metal electrodes and anisotropic piezoelectric substrates, some new interesting, reliable and fundamental constitutive finite element results are obtained for high-frequency piezoelectric and mechanical SAW propagations and can be used for further applications. The ST-cut FEA results agree quite well with available exact and lab solutions for free surface case.
Directory of Open Access Journals (Sweden)
Yidong Xu
Full Text Available Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson-Tvergaard-Needleman (GTN constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process.
Xu, Yidong; Qian, Chunxiang
2013-01-01
Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson-Tvergaard-Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process.
Xu, Yidong; Qian, Chunxiang
2013-01-01
Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson–Tvergaard–Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140
Directory of Open Access Journals (Sweden)
Feng Hou
2016-01-01
Full Text Available The triaxial creep tests of frozen silty clay mixed with sands were performed under different pressures, and the test results demonstrated that, under the low confining pressure, when the shear stress is lower than the long-term strength, the test specimen exhibits an attenuation creep because the strengthening effect is greater than the weakening effect. When the shear stress is higher than the long-term strength, the test specimen exhibits a nonattenuation creep due to the level of the strengthening and weakening effects change in different stages. As the confining pressure increases, the test specimens only exhibit an attenuation creep because of the enhancing strengthening effect. Both the hardening parameter and the damage variable were introduced to describe the strengthening and weakening effects, respectively, and a new creep constitutive model for frozen soil considering these effects was put forward based on the theory of elastoviscoplastic and the fractional derivative. Finally, the model parameters were analyzed and their determination method was also provided to reveal the trend of parameters according to the triaxial test results. The calculated results of the constitutive model show that the proposed model can describe the whole creep process of frozen soil well.
Zhang, Ling; Min, Junying; Wang, Bin; Lin, Jianping; Li, Fangfang; Liu, Jing
2016-03-01
In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.
Study on Constitutive Model for Root System of Korshinsk peashrub in Axial Tension
Directory of Open Access Journals (Sweden)
Guo-jian Feng
2015-12-01
Full Text Available Constitutive model for root system of Korshinsk peashrub (Caragana korshinskii Kom. in axial tension is an important tool for analyzing the mechanism of soil reinforcement of root system. This model enables a mechanical analysis on strength and deformation of root system and root-soil complex. We carried out axial tension test of root system of Korshinsk peashrub in this paper and discussed the stress-strain relation. Based on the experimental results, the constitutive model for root system of Korshinsk peashrub in axial tension was established. Results showed that: (1 When the strain was smaller than 4%, the stress-strain relation was linear for single root, corresponding to linear elastic deformation; when the strain was larger than 4%, the single root underwent plastic deformation; (2 Elastic modulus of the root system was related to root diameter by a power function. The smaller the root diameter, the higher the elastic modulus was; (3 Root diameter was related to the ultimate tensile strength of root also by a power function. The smaller the root diameter, the higher the ultimate tensile strength of root was; (4 The tensile stress-strain curve of the root system divided into ascending segment and descending segment, which was fitted by parabola and curvilinear model, respectively.
CONSTITUTIVE MODEL OF STEEL FIBRE REINFORCED CONCRETE SUBJECTED TO HIGH TEMPERATURES
Directory of Open Access Journals (Sweden)
Lukas Blesak
2016-12-01
Full Text Available Research on structural load-bearing systems exposed to elevated temperatures is an active topic in civil engineering. Carrying out a full-size experiment of a specimen exposed to fire is a challenging task considering not only the preparation labour but also the necessary costs. Therefore, such experiments are simulated using various software and computational models in order to predict the structural behaviour as exactly as possible. In this paper such a procedure, focusing on software simulation, is described in detail. The proposed constitutive model is based on the stress-strain curve and allows predicting SFRC material behaviour in bending at ambient and elevated temperature. SFRC material is represented by the initial linear behaviour, an instantaneous drop of stress after the initial crack occurs and its consequent specific ductility, which influences the overall modelled specimen behaviour under subjected loading. The model is calibrated with ATENA FEM software using experimental results.
A Multiparameter Damage Constitutive Model for Rock Based on Separation of Tension and Shear
Directory of Open Access Journals (Sweden)
YanHui Yuan
2015-01-01
Full Text Available By analysis of the microscopic damage mechanism of rock, a multiparameter elastoplastic damage constitutive model which considers damage mechanism of tension and shear is established. A revised general form of elastoplastic damage model containing damage internal variable of tensor form is derived by considering the hypothesis that damage strain is induced by the degeneration of elastic modulus. With decomposition of plastic strain introduced, the forms of tension damage variable and shear damage variable are derived, based on which effects of tension and shear damage on material’s stiffness and strength are considered simultaneously. Through the utilizing of Zienkiewicz-Pande criterion with tension limit, the specific form of the multiparameter damage model is derived. Numerical experiments show that the established model can simulate damage behavior of rock effectively.
Structural bonding-breakage constitutive model for natural unsaturated clayey soils
Cai, Guo-Qing; Zhao, Cheng-Gang; Qin, Xiao-Ming
2010-12-01
The natural clayey soils are usually structural and unsaturated, which makes their mechanical properties quite different from the remolded saturated soils. A structural constitutive model is proposed to simulate the bonding-breakage micro-mechanism. In this model, the unsaturated soil element is divided into a cementation element and a friction element according to the binary medium theory, and the stress-strain coordination for these two elements is obtained. The cementation element is regarded as elastic, whereas the friction element is regarded as elastoplastic which can be described with the Gallipoli's model. The theoretical formulation is verified with the comparative experiments of isotropic compressions on the saturated and unsaturated structural soils. Parametric analyses of the effects of damage variables on the model predictions are further carried out, which show that breakage deformation of natural clayey soils increases with the rising amount of initial defects.
Tsai, C.; Yeh, G.
2011-12-01
In this investigation, newly proposed constitutive retentions are implemented to a fractional-flow based compressible multiphase-phase flow model. With the new model, a compressible three-phase (water, non-aqueous phase liquid (NAPL) and air) flow problem is simulated. In fractional-flow approaches, the three mass balance equations written in terms of three phase pressures are transformed to those in terms of the total pressure, saturation of water, and saturation of total liquid. These three governing equations are discretized with the Galerkin finite element method (FEM). The resulted matrix equation is solved with Bi-CGSTAB. Several numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results show the presented fractional-flow based multiphase flow model is feasible and yields physically realistic solutions for compressible three-phase flow problems in porous media.
Constitutive modeling of the behavior of a sand-bentonite mixture
Energy Technology Data Exchange (ETDEWEB)
Saadat, F.
1989-01-01
The Canadian concept for disposal of nuclear fuel waste proposes a compacted mixture of sand and bentonite (known as buffer) as one of several barriers limiting radionuclide escape to the biosphere. To ensure acceptable performance of the buffer, it is necessary to understand its stress-strain-time behavior under rising groundwater pressure up to 10 MPa in the vault. High pressure triaxial laboratory tests have been performed at mean effective pressures up to 9 MPa, and porewater pressures up to 7 MPa at ambient temperatures. The results indicate that the strength of the buffer is dominated by the bentonite, and the material exhibits strain-softening behavior in shear. Three different approaches for constitutive modeling of the buffer behavior are examined in this thesis. A three-modulus anisotropic hyperelastic model is proposed for the small strain range. This model accounts for the anisotropic nature of the buffer and permits coupling of mean pressures with shear strains, or deviator stresses with volume strains. A second three-function hypoelastic model is also developed to describe constitutive relationships for straining-to-failure. The third elastic-plastic model (belonging to the Cam clay family) accounts for non-reversibility, non-linearity and dilatancy in the plastic range. In addition to these predictive models, a conceptual model is proposed based on critical state soil mechanics to provide a coherent framework for describing the behavior of buffer compacted to different densities. Finally, the interactions between buffer, container, rock and backfill are examined in the non-linear finite element analyses using the proposed elastic-plastic model for the buffer. The preliminary results suggest that swelling of the buffer against compressive backfill could potentially produce large shear strains in the buffer.
Directory of Open Access Journals (Sweden)
Lafuente Esther M
2010-09-01
Full Text Available Abstract Background Proteasomes play a central role in the major histocompatibility class I (MHCI antigen processing pathway. They conduct the proteolytic degradation of proteins in the cytosol, generating the C-terminus of CD8 T cell epitopes and MHCI-peptide ligands (P1 residue of cleavage site. There are two types of proteasomes, the constitutive form, expressed in most cell types, and the immunoproteasome, which is constitutively expressed in mature dendritic cells. Protective CD8 T cell epitopes are likely generated by the immunoproteasome and the constitutive proteasome, and here we have modeled and analyzed the cleavage by these two proteases. Results We have modeled the immunoproteasome and proteasome cleavage sites upon two non-overlapping sets of peptides consisting of 553 CD8 T cell epitopes, naturally processed and restricted by human MHCI molecules, and 382 peptides eluted from human MHCI molecules, respectively, using N-grams. Cleavage models were generated considering different epitope and MHCI-eluted fragment lengths and the same number of C-terminal flanking residues. Models were evaluated in 5-fold cross-validation. Judging by the Mathew's Correlation Coefficient (MCC, optimal cleavage models for the proteasome (MCC = 0.43 ± 0.07 and the immunoproteasome (MCC = 0.36 ± 0.06 were obtained from 12-residue peptide fragments. Using an independent dataset consisting of 137 HIV1-specific CD8 T cell epitopes, the immunoproteasome and proteasome cleavage models achieved MCC values of 0.30 and 0.18, respectively, comparatively better than those achieved by related methods. Using ROC analyses, we have also shown that, combined with MHCI-peptide binding predictions, cleavage predictions by the immunoproteasome and proteasome models significantly increase the discovery rate of CD8 T cell epitopes restricted by different MHCI molecules, including A*0201, A*0301, A*2402, B*0702, B*2705. Conclusions We have developed models that are specific
DEFF Research Database (Denmark)
Oliveira, Sergio A.; Savi, Marcelo A.; Santos, Ilmar F.
2014-01-01
The use of shape memory alloys (SMAs) in engineering applications has increased the interest of the accuracy analysis of their thermomechanical description. This work presents an uncertainty analysis related to experimental tensile tests conducted with shape memory alloy wires. Experimental data...... are compared with numerical simulations obtained from a constitutive model with internal constraints employed to describe the thermomechanical behavior of SMAs. The idea is to evaluate if the numerical simulations are within the uncertainty range of the experimental data. Parametric analysis is also developed...
A Constitutive Model for Uni-axial Compaction of Non-adhesive Corn Stalk Powder
Institute of Scientific and Technical Information of China (English)
Zhao Dong; Sun Yanling
2004-01-01
In order to study mechanical behaviors of corn stalk powder during the compaction, the yield criterion for corn stalk powder is proposed with a plasticity theory. From the stress-strain curves of uni-axial compaction test for corn stalk powder, the constitutive model, in which the equations are modified by experiments on corn stalk powder, is adopted to describe plastic behaviors of powder, and is discussed based on the incremental theory and deformation theory. The numerical results agree well with the experimental ones.
Modeling and mesoscopic damage constitutive relation of brittle short-fiber-reinforced composites
Institute of Scientific and Technical Information of China (English)
刘洪秋; 梁乃刚; 夏蒙棼
1999-01-01
Aimed at brittle composites reinforced by randomly distributed short-fibers with a relatively large aspect ratio, stiffness modulus and strength, a mesoscopic material model was proposed. Based on the statistical description,damage mechanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation distribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-behaviors of composites were quantitatively analyzed. The theoretical predictions compared favorably with the experimental results.
Andrews, Benjamin J.
The phenomena of creep and fatigue have each been thoroughly studied. More recently, attempts have been made to predict the damage evolution in engineering materials due to combined creep and fatigue loading, but these formulations have been strictly empirical and have not been used successfully outside of a narrow set of conditions. This work proposes a new creep-fatigue crack growth model based on constitutive creep equations (adjusted to experimental data) and Paris law fatigue crack growth. Predictions from this model are compared to experimental data in two steels: modified 9Cr-1Mo steel and AISI 316L stainless steel. Modified 9Cr-1Mo steel is a high-strength steel used in the construction of pressure vessels and piping for nuclear and conventional power plants, especially for high temperature applications. Creep-fatigue and pure creep experimental data from the literature are compared to model predictions, and they show good agreement. Material constants for the constitutive creep model are obtained for AISI 316L stainless steel, an alloy steel widely used for temperature and corrosion resistance for such components as exhaust manifolds, furnace parts, heat exchangers and jet engine parts. Model predictions are compared to pure creep experimental data, with satisfactory results. Assumptions and constraints inherent in the implementation of the present model are examined. They include: spatial discretization, similitude, plane stress constraint and linear elasticity. It is shown that the implementation of the present model had a non-trivial impact on the model solutions in 316L stainless steel, especially the spatial discretization. Based on these studies, the following conclusions are drawn: 1. The constitutive creep model consistently performs better than the Nikbin, Smith and Webster (NSW) model for predicting creep and creep-fatigue crack extension. 2. Given a database of uniaxial creep test data, a constitutive material model such as the one developed for
Experimental analysis and constitutive modelling of steel of A-IIIN strength class
Kruszka, Leopold; Janiszewski, Jacek
2015-09-01
Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.
An experimental study on stress-strain behavior and constitutive model of hardfill material
Wu, Mengxi; Du, Bin; Yao, Yuancheng; He, Xianfeng
2011-11-01
Hardfill is a new type of artificially cemented material for dam construction works, with a wide application prospect. Its mechanical behavior lies between concrete and rockfill materials. A series of large-scale triaxial tests are performed on hardfill specimens at different ages, and the stress-strain behavior of hardfill is further discussed. The strength and stress-strain relationship of hardfill materials show both frictional mechanism and cohesive mechanism. An age-related constitutive model of hardfill is developed, which is a parallel model consisting of two components, rockfill component and cementation component. Moreover, a comparison is made between the simulated and the experimental results, which shows that the parallel model can reflect the mechanical characteristics of both rockfill-like nonlinearity and concrete-like age relativity. In addition, a simplified method for the determination of parameters is proposed.
DEFF Research Database (Denmark)
Sonne, Mads Rostgaard; Hattel, Jesper Henri
2013-01-01
In the present work, the deformation on micro-scale of PTFE flexible stamps for nanoimprint lithography is modeled. This is achieved via a combination of proper models for the constitutive behavior as well as the frictional conditions between the deforming PTFE stamp and the steel tool. The model...... was verified through an experiment, where a PTFE sheet was deformed by a steel sphere mounted in a tensile test machine. Good agreement between simulations and experimental results is found, both regarding force–displacement and corresponding principal strain measurements. As expected, applying the correct...... frictional behavior between PTFE and steel on micro-scale is shown to be of major importance in order to accurately simulate the strain field in the deformed PTFE stamp. © 2013 Elsevier B.V. All rights reserved...
Study on the Constitutive Model of Marble Based on the Conventional Triaxial Compression Test
Institute of Scientific and Technical Information of China (English)
Tian Sheng-li; Lu Yun-de; Ge Xiu-run
2004-01-01
The RMB-150B rock mechanics test system was employed to obtain the complete stress-strain test curves under confining pressures of 0-30MPa for marble samples from Ya'an ,Sichuan province. On the basis of former study and the convention triaxial pressure test results ,the complete procedures curves which described the relationships between yielding strength、 peak strength、 residual strength and confining pressure was obtained. Taking the strain softening of rock into account, the bilinear elastic-linear softening-residual perfect plasticity four-linear model was put forward in this paper on the basis of the test results and theory of plasticity. This model was adopted to describe the behaviors of marble in different phases under triaxial compression with the constitutive equation of strain softening phase as focus. The results indicated that the theoretic model fitted in well with the test results.
Application of constitutive model considering nonlinear unloading behavior for Gen.3 AHSS
Sun, Li; Wagoner, R. H.
2013-05-01
Nonlinear unloading behavior has been reported as an important factor for accurate springback prediction. In this study, a newly proposed special component of strain: "Quasi-Plastic-Elastic" ("QPE") strain was utilized to study the springback behavior of Advanced High Strength Steels (AHSS). Several types of steels, including IF steel, DP780, TRIP780, DP980, TWIP980 and QP980 were considered in this research. The results showed that all the tested steels have following behavior: 1) QPE strain is recoverable, like elastic deformation. 2) It dissipates work, like plastic deformation. A 3-D constitutive model considering QPE behavior was implemented in Abaqus/Standard with shell element and applied to draw-bend springback test for Gen. 3 AHSS, QP980. Predictions for springback using the QPE model were more accurate compared with standard elastic-plastic models.
Djafi, Nabila; Vergnolle, Chantal; Cantrel, Catherine; Wietrzyñski, Wojciech; Delage, Elise; Cochet, Françoise; Puyaubert, Juliette; Soubigou-Taconnat, Ludivine; Gey, Delphine; Collin, Sylvie; Balzergue, Sandrine; Zachowski, Alain; Ruelland, Eric
2013-01-01
Phosphoinositide-dependent phospholipases C (PI-PLCs) are activated in response to various stimuli. They utilize substrates provided by type III-Phosphatidylinositol-4 kinases (PI4KIII) to produce inositol triphosphate and diacylglycerol (DAG) that is phosphorylated into phosphatidic acid (PA) by DAG-kinases (DGKs). The roles of PI4KIIIs, PI-PLCs, and DGKs in basal signaling are poorly understood. We investigated the control of gene expression by basal PI-PLC pathway in Arabidopsis thaliana suspension cells. A transcriptome-wide analysis allowed the identification of genes whose expression was altered by edelfosine, 30 μM wortmannin, or R59022, inhibitors of PI-PLCs, PI4KIIIs, and DGKs, respectively. We found that a gene responsive to one of these molecules is more likely to be similarly regulated by the other two inhibitors. The common action of these agents is to inhibit PA formation, showing that basal PI-PLCs act, in part, on gene expression through their coupling to DGKs. Amongst the genes up-regulated in presence of the inhibitors, were some DREB2 genes, in suspension cells and in seedlings. The DREB2 genes encode transcription factors with major roles in responses to environmental stresses, including dehydration. They bind to C-repeat motifs, known as Drought-Responsive Elements that are indeed enriched in the promoters of genes up-regulated by PI-PLC pathway inhibitors. PA can also be produced by phospholipases D (PLDs). We show that the DREB2 genes that are up-regulated by PI-PLC inhibitors are positively or negatively regulated, or indifferent, to PLD basal activity. Our data show that the DREB2 genetic pathway is constitutively repressed in resting conditions and that DGK coupled to PI-PLC is active in this process, in suspension cells and seedlings. We discuss how this basal negative regulation of DREB2 genes is compatible with their stress-triggered positive regulation.
Constitutive modeling of the passive inflation-extension behavior of the swine colon.
Patel, Bhavesh; Chen, Huan; Ahuja, Aashish; Krieger, Joshua F; Noblet, Jillian; Chambers, Sean; Kassab, Ghassan S
2017-08-31
In the present work, we propose the first structural constitutive model of the passive mechanical behavior of the swine colon that is validated against physiological inflation-extension tests, and accounts for residual strains. Sections from the spiral colon and the descending colon were considered to investigate potential regional variability. We found that the proposed constitutive model accurately captures the passive inflation-extension behavior of both regions of the swine colon (coefficient of determination R(2)=0.94±0.02). The model revealed that the circumferential muscle layer does not provide significant mechanical support under passive conditions and the circumferential load is actually carried by the submucosa layer. The stress analysis permitted by the model showed that the colon tissue can distend up to 30% radially without significant increase in the wall stresses suggesting a highly compliant behavior of the tissue. This is in-line with the requirement for the tissue to easily accommodate variable quantities of fecal matter. The analysis also showed that the descending colon is significantly more compliant than the spiral colon, which is relevant to the storage function of the descending colon. Histological analysis showed that the swine colon possesses a four-layer structure similar to the human colon, where the longitudinal muscle layer is organized into bands called taeniae, a typical feature of the human colon. The model and the estimated parameters can be used in a Finite Element framework to conduct simulations with realistic geometry of the swine colon. The resulting computational model will provide a foundation for virtual assessment of safe and effective devices for the treatment of colonic diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ma, Songyun; Scheider, Ingo; Bargmann, Swantje
2016-09-01
An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel.
Institute of Scientific and Technical Information of China (English)
苏国韶; 张小飞; 陈光强; 符兴义
2008-01-01
To determine structure and parameters of a rheological constitutive model for rocks,a new method based on differential evolution(DE) algorithm combined with FLAC3D(a numerical code for geotechnical engineering) was proposed for identification of the global optimum coupled of model structure and its parameters.At first,stochastic coupled mode was initialized,the difference in displacement between the numerical value and in-situ measurements was regarded as fitness value to evaluate quality of the coupled mode.Then the coupled-mode was updated continually using DE rule until the optimal parameters were found.Thus,coupled-mode was identified adaptively during back analysis process.The results of applications to Jinping tunnels in China show that the method is feasible and efficient for identifying the coupled-mode of constitutive structure and its parameters.The method overcomes the limitation of the traditional method and improves significantly precision and speed of displacement back analysis process.
Institute of Scientific and Technical Information of China (English)
Guangqian WANG; Xudong FU; Xingkui WANG
2005-01-01
Formulating underlying mechanisms of concentrated solid-liquid flows is essential for simulation of various industrial processes and natural phenomena. A generalized constitutive model for particle motion in flows with low to moderate solids concentrations is developed. This generalized model facilitates characterization of inelastic collisions, particle-fluid interactions, and shearing effects.Moderately concentrated simple shear flows of a sand-water mixture are analyzed, and comparisons of model predictions and experimental data are in good agreement. This model exhibits sound performance in characterizing particle motion for wide ranges of concentration and shear rate, and may supply a reasonable and competent alternative to previous models developed for dilute and rapid-granular flows when applied to moderately concentrated situations. The concentration approaches zero (C → 0) asymptote is observed at a relatively high shear rate in model predictions.Assumption of low collisional dissipation of the particle phase as C → 0 is more reasonable for this observation, compared to that without the interstitial fluid effect. Accurately modeling energy dissipation is important for characterizing the stability of dilute simple shear flows of solid-liquid mixtures. Incorporating friction forces will also facilitate improvement of the applicability of this generalized model to flows at extremely high concentrations.
Garion, C
2004-01-01
A majority of the thin-walled components subjected to intensive plastic straining at cryogenic temperatures are made of stainless steels. The examples of such components can be found in the interconnections of particle accelerators, containing the superconducting magnets, where the thermal contraction is absorbed by thin-walled, axisymetric shells called bellows expansion joints. The stainless steels show three main phenomena induced by plastic strains at cryogenic temperatures: serrated (discontinuous) yielding, gamma->alpha' phase transformation and anisotropic ductile damage. In the present paper, a coupled constitutive model of gamma->alpha' phase transformation and orthotropic ductile damage is presented. A kinetic law of phase transformation, and a kinetic law of evolution of orthotropic damage are presented. The model is extended to anisotropic plasticity comprising a constant anisotropy (texture effect), which can be classically taken into account by the Hill yield surface, and plastic strain induced ...
The SPH approach to the process of container filling based on non-linear constitutive models
Institute of Scientific and Technical Information of China (English)
Tao Jiang; Jie Ouyang; Lin Zhang; Jin-Lian Ren
2012-01-01
In this work,the transient free surface of container filling with non-linear constitutive equation's fluids is numerically investigated by the smoothed particle hydrodynamics (SPH) method.Specifically,the filling process of a square container is considered for non-linear polymer fluids based on the Cross model.The validity of the presented SPH is first verified by solving the Newtonian fluid and OldroydB fluid jet.Various phenomena in the filling process are shown,including the jet buckling,jet thinning,splashing or spluttering,steady filling.Moreover,a new phenomenon of vortex whirling is more evidently observed for the Cross model fluid compared with the Newtonian fluid case.
Energy Technology Data Exchange (ETDEWEB)
Das, Sumanta; Maroli, Amit; Singh, Sudhanshu S.; Stannard, Tyler; Xiao, Xianghui; Chawla, Nikhilesh; Neithalath, Narayanan
2016-06-01
This paper presents a microstructure-guided modeling approach to predict the effective elastic response of heterogeneous materials, and demonstrates its application toward two highly heterogeneous, uncon- ventional structural binders, i.e., iron carbonate and fly ash geopolymer. Microstructural information from synchrotron X-ray tomography (XRT) and intrinsic elastic properties of component solid phases from statistical nanoindentation are used as the primary inputs. The virtual periodic 3D microstructure reconstructed using XRT, along with periodic boundary conditions is used as a basis for strain- controlled numerical simulation scheme in the linear elastic range to predict the elastic modulus as well as the stresses in the microstructural phases. The elastic modulus of the composite material predicted from the microstructure-based constitutive modeling approach correlates very well with experimental measurements for both the materials considered. This technique efficiently links the microstructure to mechanical properties of interest and helps develop material design guidelines for novel heterogeneous composites
Directory of Open Access Journals (Sweden)
Pietruszczak Stanisław
2015-02-01
Full Text Available In this paper, the problem of modeling of mixed mode cracking in concrete structures is addressed within the context of a constitutive law with embedded discontinuity (CLED. This approach, which was originally developed for describing the propagation of localized deformation in a “smeared” sense, is enhanced here to model a discrete nature of crack propagation. The latter is achieved by coupling the CLED approach with the level-set method, which is commonly used within the framework of Extended Finite Element (XFEM. Numerical simulations of experimental tests conducted at Delft University, which involve four-point bending of a notched concrete beam under the action of two independent actuators, are presented. The results based on enhanced CLED approach are directly compared with XFEM simulations. The predictions from both these methodologies are quite consistent with the experimental data, thereby giving advantage to CLED scheme in view of its simplicity in the numerical implementation.
A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms
Sánchez, Marcelo
2016-11-30
Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.
Identification of constitutive equation in hierarchical multiscale modelling of cup drawing process
Gawad, J.; Van Bael, A.; Eyckens, P.; Samaey, G.; Van Houtte, P.; Roose, D.
2011-08-01
In this paper we discuss extensions to a hierarchical multi-scale model (HMS) of cold sheet forming processes. The HMS model is capable of predicting changes in plastic anisotropy due to the evolution of crystallographic textures. The ALAMEL polycrystal plasticity model is employed to predict the texture evolution during the plastic deformation. The same model acts as a multilevel model and provides "virtual experiments" for calibration of an analytical constitutive law. Plastic anisotropy is described by means of the Facet method, which is able to reproduce the plastic potential in the entire strain rate space. The paper presents new strategies for identification of the Facet expression that are focused on improving its accuracy in the parts of the plastic potential surface that are more extensively used by the macroscopic FE model and therefore need to be reproduced more accurately. In this work we also evaluate the applicability of identification methods that (1) rely exclusively on the plastic potential or (2) can take into consideration also the deviatioric stresses derived from the Facet expression. It is shown that both methods provide the Facet expressions that correctly approximate the plastic anisotropy predicted by the multilevel ALAMEL model.
Trabelsi, O; del Palomar, A Pérez; López-Villalobos, J L; Ginel, A; Doblaré, M
2010-01-01
Cartilage and smooth muscle constitute the main structural components of the human central airways, their mechanical properties affect the flow in the trachea and contribute to the biological function of the respiratory system. The aim of this work is to find out the mechanical passive response of the principal constituents of the human trachea under static tensile conditions and to propose constitutive models to describe their behavior. Histological analyses to characterize the tissues and mechanical tests have been made on three human trachea specimens obtained from autopsies. Uniaxial tensile tests on cartilaginous rings and smooth muscle were performed. Tracheal cartilage was considered an elastic material and its Young's modulus and Poisson's coefficient were determined fitting the experimental curves using a Neo-Hookean model. The smooth muscle was proved to behave as a reinforced hyperelastic material with two families of collagen fibers, and its non-linearity was investigated using the Holzapfel strain-energy density function for two families of fibers to fit the experimental data obtained from longitudinal and transversal cuts. For cartilage, fitting the experimental curves to an elastic model, a Young's modulus of 3.33 MPa and nu=0.49 were obtained. For smooth muscle, several parameters of the Holzapfel function were found out (C(10)=0.877 kPa, k(1)=0.154 kPa, k(2)=34.157, k(3)=0.347 kPa and k(4)=13.889) and demonstrated that the tracheal muscle was stiffer in the longitudinal direction. The better understanding of how these tissues mechanically behave is essential for a correct modeling of the human trachea, a better simulation of its response under different loading conditions, and the development of strategies for the design of new endotracheal prostheses. (c) 2009 IPEM. Published by Elsevier Ltd. All rights reserved.
Lei, Qinghua; Latham, John-Paul; Xiang, Jiansheng
2016-12-01
An empirical joint constitutive model (JCM) that captures the rough wall interaction behaviour of individual fractures associated with roughness characteristics observed in laboratory experiments is combined with the solid mechanical model of the finite-discrete element method (FEMDEM). The combined JCM-FEMDEM formulation gives realistic fracture behaviour with respect to shear strength, normal closure, and shear dilatancy and includes the recognition of fracture length influence as seen in experiments. The validity of the numerical model is demonstrated by a comparison with the experimentally established empirical solutions. A 2D plane strain geomechanical simulation is conducted using an outcrop-based naturally fractured rock model with far-field stresses loaded in two consecutive phases, i.e. take-up of isotropic stresses and imposition of two deviatoric stress conditions. The modelled behaviour of natural fractures in response to various stress conditions illustrates a range of realistic behaviour including closure, opening, shearing, dilatancy, and new crack propagation. With the increase in stress ratio, significant deformation enhancement occurs in the vicinity of fracture tips, intersections, and bends, where large apertures can be generated. The JCM-FEMDEM model is also compared with conventional approaches that neglect the scale dependency of joint properties or the roughness-induced additional frictional resistance. The results of this paper have important implications for understanding the geomechanical behaviour of fractured rocks in various engineering activities.
Institute of Scientific and Technical Information of China (English)
LIM; C.W.
2010-01-01
Nonlinear combination parametric resonance is investigated for an axially accelerating viscoelastic string.The governing equation of in-planar motion of the string is established by introducing a coordinate transform in the Eulerian equation of a string with moving boundaries.The string under investigation is constituted by the standard linear solid model in which the material,not partial,time derivative was used.The governing equation leads to the Mote model for transverse vibration by omitting the longitudinal component and higher order terms.The Kirchhoff model is derived from the Mote model by replacing the tension with the averaged tension over the string.The two models are respectively analyzed via the method of multiple scales for principal parametric resonance.The amplitudes and the existence conditions of steady-state response and its stability can be numerically determined.Numerical calculations demonstrate the effects of the string material parameters,the initial tension,and the axial speed fluctuation amplitude.The outcomes of the two models are qualitatively and quantitatively compared.
Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin
2017-02-01
The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized "n-diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K 0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.
Characterization of Models for Time-Dependent Behavior of Soils
DEFF Research Database (Denmark)
Liingaard, Morten; Augustesen, Anders; Lade, Poul V.
2004-01-01
Different classes of constitutive models have been developed to capture the time-dependent viscous phenomena ~ creep, stress relaxation, and rate effects ! observed in soils. Models based on empirical, rheological, and general stress-strain-time concepts have been studied. The first part...... is a review of the empirical relations, which apply only to problems of specific boundary conditions and frequently involve natural time alone. The second part deals with different rheological models used for describing the viscous effects in the field of solid mechanics. The rheological models are typically...... developed for metals and steel but are, to some extent, used to characterize time effects in geomaterials. The third part is a review of constitutive laws that describe not only viscous effects but also the inviscid ( rate-independent) behavior of soils, in principle, under any possible loading condition...
Dynamic mechanical behavior and the constitutive model of concrete subjected to impact loadings
Institute of Scientific and Technical Information of China (English)
2008-01-01
Based on the theory of consecutive damage mechanics, micro-mechanics, statis-tics and the visco-plastic constitutive equation of Perzyna, a coupled model of damage and plasticity is developed to describe the complex behavior of concrete subjected to impact loadings. In this model, some suppositions about deformation of the material and evolution of the damage are made. First, concrete is macro-scopically assumed to be homogeneous and consecutive, while it is microscopi-cally filled with large amounts of micro-crack and micro-void defects. Second, the damage evolution of the micro-cracks is caused by the nucleation, growth and coalescence of the micro-cracks due to the interior tensile stress in concrete, which leads to a degradation in the strength and stiffness of concrete. Third, compaction of concrete is physically a collapse of the material micro-void. It pro-duces irreversible plastic strains in the material and, at the same time, an increase in the bulk modulus. Fourth, there is no interaction between the micro-crack and the micro-void. Last, when the damage reaches a critical value, the concrete may fail totally. The model parameters for concrete are determined by plate impact ex-periments. The model predictions fit the experimental results well. So the model can be used to simulate the dynamic mechanical behavior of concrete under impact loadings.
Dynamic mechanical behavior and the constitutive model of concrete subjected to impact loadings
Institute of Scientific and Technical Information of China (English)
NING JianGuo; LIU HaiFeng; SHANG Lin
2008-01-01
Based on the theory of consecutive damage mechanics, micro-mechanics, statis-tics and the visco-plastic constitutive equation of Perzyna, a coupled model of damage and plasticity is developed to describe the complex behavior of concrete subjected to impact Ioadings. In this model, some suppositions about deformation of the material and evolution of the damage are made. First, concrete is macro-scopically assumed to be homogeneous and consecutive, while it is microscopi-cally filled with large amounts of micro-crack and micro-void defects. Second, the damage evolution of the micro-cracks is caused by the nucleation, growth and coalescence of the micro-cracks due to the interior tensile stress in concrete, which leads to a degradation in the strength and stiffness of concrete. Third, compaction of concrete is physically a collapse of the material micro-void. It pro-duces irreversible plastic strains in the material and, at the same time, an increase in the bulk modulus. Fourth, there is no interaction between the micro-crack and the micro-void. Last, when the damage reaches a critical value, the concrete may fail totally. The model parameters for concrete are determined by plate impact ex-periments. The model predictions fit the experimental results well. So the model can be used to simulate the dynamic mechanical behavior of concrete under impact loadings.
Study on the Rheological Properties and Constitutive Model of Shenzhen Mucky Soft Soil
Directory of Open Access Journals (Sweden)
Huang Wei
2014-07-01
Full Text Available In order to obtain the basic parameters of numerical analysis about the time-space effect of the deformation occurring in Shenzhen deep soft-soil foundation pit, a series of triaxial consolidated-undrained shear rheology tests on the peripheral mucky soft soil of a deep foundation pit support were performed under different confining pressures. The relations between the axial strain of the soil and time, as well as between the pore-water pressure of the soil and time, were achieved, meanwhile on the basis of analyzing the rheological properties of the soil, the relevant rheological models were built. Analysis results were proved that the rheology of Shenzhen mucky soft soil was generally viscous, elastic, and plastic, and had a low yield stress between 90 and 150 kPa. The increase in pore-water pressure made the rheological time effect of the mucky soft soil more remarkable. Thus, the drainage performance in practical engineering should be improved to its maximum possibility extent to decrease the soft-soil rheological deformation. Lastly, a six-component extended Burgers model was employed to fit the test results and the parameters of the model were determined. Findings showed that the extended Burgers model could satisfactorily simulate the various rheological stages of the mucky soft soil. The constitutive model and the determination of its parameters can be served as a foundation for the time-space effect analysis on the deformation of deep soft-soil foundation pits.
Constitutive Model Of Graded Micro-Structure Obtained Via Strain Induced Phase Transformation
Ortwein, Rafał
The literature review has been divided into three main sub-chapters. The first one is concentrated on the general information about stainless steels and their applications. It is important to perform a general overview and get an idea where the results of the present thesis could be applied. Description of all the brands of stainless steels, their microstructures and properties are important, as similar characteristics can be found in the newly created functionally graded structures. The second sub-chapter is an overview of the most important constitutive models and the experimental results for materials that undergo plastic strain induced phase transformation. Finally, the last one is devoted to functionally graded microstructures obtained via strain induced martensitic transformation – the subject of particular importance for the present thesis. As a general note, the literature review is organized mainly in a chronological order. In some cases similar publications or publications of the same Authors were...
A Damaged Constitutive Model for Rock under Dynamic and High Stress State
Directory of Open Access Journals (Sweden)
Yan-Long Li
2017-01-01
Full Text Available The main research work of this paper focuses on the theoretical prediction of the constitutive relationship for rock, concrete, and other quasi-brittle materials under dynamic and complex stress state and the influence of dynamic mechanical behavior of rock on practical engineering problems was studied. A damaged elastoplastic model (DEPM is established for the investigation and prediction of static or dynamic mechanical behavior of rock material. The mechanical behavior (brittleness or plasticity and dynamic response (due to underground impact pressure and high-velocity impact of projectile of rock under high in situ stress were investigated via the DEPM combined with the explicit finite element method. This paper suggests the influence of the brittle or plastic mechanical behavior of rock material on deep underground rock engineering.
Directory of Open Access Journals (Sweden)
Da Chen
2013-01-01
Full Text Available The mechanical properties of cement mortars subjected to wet-dry cyclic sulfate attack were studied by the compression strength test. The results showed that the ultimate compressive strength increased with number of cycles at the initial stage. However, after a certain time, it started to decrease with further increases in the number of cycles. Moreover, the concentration of the sodium sulfate solution proved to be an important factor affecting the ultimate compressive strength. Based on continuum damage mechanics theory, an elastoplastic damage constitutive model is presented to describe the mechanical behavior of cementitious materials under compressive stress. The results obtained agree well with the experimentally observed elastic, plastic, and damage characteristics of cement mortars under compressive stress.
Institute of Scientific and Technical Information of China (English)
LIU Yanfang; SHI Fazhong; XU Xiangyang
2006-01-01
Two algorithms of computing stress increment by using the elasto-plasticity constitutive model are firstly formulated, which are the Euler integration method and the radial return method.Hill'48 anisotropic yield criterion is used. The Euler integration method can not obtain more accurate computation of the stress increment as the radial return method unless enough subintervals are taken,by which the Euler integration method will take excessive computing time. Without decreasing any accuracy, the radial return method can save much time. Finally, a square cup deep drawing from NUMISHEET'93 benchmarks is simulated with a self-developed code SheetForm in order to investigate the accuracy and efficiency of the radial return method.
Harry-O'kuru, R E; Carriere, C J
2002-05-22
Asclepias syriaca L., the common milkweed, is a new industrial crop. The seed contains about 20-30 wt % of a highly unsaturated oil having unusual fatty acids. Exploring value-added products from the oil, milkweed triglycerides have been oxidized by in situ performic acid to the polyoxirane and polyhydroxy triglycerides (PHTG). The rheological properties of milkweed PHTG were characterized in various shear flows. Milkweed PHTG displayed nonlinear viscoelastic behavior at applied strains greater than 1%. Milkweed PHTG was found to obey time-strain separability. A nonlinear Wagner constitutive model was used successfully to qualitatively predict the behavior of milkweed PHTG in both start-up and cessation of steady-state shear flow.
Fan, Rong; Sacks, Michael S
2014-06-27
Computational implementation of physical and physiologically realistic constitutive models is critical for numerical simulation of soft biological tissues in a variety of biomedical applications. It is well established that the highly nonlinear and anisotropic mechanical behaviors of soft tissues are an emergent behavior of the underlying tissue microstructure. In the present study, we have implemented a structural constitutive model into a finite element framework specialized for membrane tissues. We noted that starting with a single element subjected to uniaxial tension, the non-fibrous tissue matrix must be present to prevent unrealistic tissue deformations. Flexural simulations were used to set the non-fibrous matrix modulus because fibers have little effects on tissue deformation under three-point bending. Multiple deformation modes were simulated, including strip biaxial, planar biaxial with two attachment methods, and membrane inflation. Detailed comparisons with experimental data were undertaken to insure faithful simulations of both the macro-level stress-strain insights into adaptations of the fiber architecture under stress, such as fiber reorientation and fiber recruitment. Results indicated a high degree of fidelity and demonstrated interesting microstructural adaptions to stress and the important role of the underlying tissue matrix. Moreover, we apparently resolve a discrepancy in our 1997 study (Billiar and Sacks, 1997. J. Biomech. 30 (7), 753-756) where we observed that under strip biaxial stretch the simulated fiber splay responses were not in good agreement with the experimental results, suggesting non-affine deformations may have occurred. However, by correctly accounting for the isotropic phase of the measured fiber splay, good agreement was obtained. While not the final word, these simulations suggest that affine fiber kinematics for planar collagenous tissues is a reasonable assumption at the macro level. Simulation tools such as these are
Yamakov, V.; Saether, E.; Glaessgen, E. H.
2008-01-01
Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum-atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum-atomistic interface, and continues its propagation in the atomistic environment. This study is a step towards relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.
Isothermal recovery response and constitutive model of thermoset shape memory polymers
Tan, Huifeng; Zhou, Tao; Liu, Yuyan; Lan, Lan
2012-04-01
Deformation recovery capability is one of the important indexes to examination shape memory effect of the shape memory polymers (SMPs). And the shape memory characteristic of SMPs is closely related to different phase states and mechanical properties above and below the glass transition temperature (Tg). In this paper, we investigated the strain recovery response of a thermoset shape memory epoxy resin modified by polyurethane (PU) through uniaxial compression experiments under various isothermal conditions and strain rates and developed a "three-phase" constitutive model based on phase transition concept, which including stationary phase, active phase and frozen phase. This model established the mutual transformation relationships between frozen phase and active phase of SMPs by introducing temperature switch function, which presents the stain storage and release process of SMPs under loading and changing temperature environment. Besides, the proposed model represents the SMPs deformation process of viscous hysteresis response by employing the rheological elements description of the three phases. The numerical results agree very well with experiment results of stress-strain response curve of isothermal compression/unloading test, which validated this model can predict the finite deformation behavior of SMPs.
A variational constitutive model for the distribution and interactions of multi-sized voids
Liu, Jinxing
2013-07-29
The evolution of defects or voids, generally recognized as the basic failure mechanism in most metals and alloys, has been intensively studied. Most investigations have been limited to spatially periodic cases with non-random distributions of the radii of the voids. In this study, we use a new form of the incompressibility of the matrix to propose the formula for the volumetric plastic energy of a void inside a porous medium. As a consequence, we are able to account for the weakening effect of the surrounding voids and to propose a general model for the distribution and interactions of multi-sized voids. We found that the single parameter in classical Gurson-type models, namely void volume fraction is not sufficient for the model. The relative growth rates of voids of different sizes, which can in principle be obtained through physical or numerical experiments, are required. To demonstrate the feasibility of the model, we analyze two cases. The first case represents exactly the same assumption hidden in the classical Gurson\\'s model, while the second embodies the competitive mechanism due to void size differences despite in a much simpler manner than the general case. Coalescence is implemented by allowing an accelerated void growth after an empirical critical porosity in a way that is the same as the Gurson-Tvergaard-Needleman model. The constitutive model presented here is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is shown by simulating a tensile test on a notched round bar. © 2013 The Author(s).
Constitutive Model Modification of Titanium Alloy Ti-6Al-4V Based on Dislocation Pile-up Theory
Zhang, Yi-Chuan; Zhou, Tian-Feng; Che, Jiang-Tao; Liang, Zhi-Qiang; Wang, Xi-Bin
2016-05-01
Through the Split Hopkinson Pressure Bar (SHPB) test and the quasi-static tensile test on non-standard specimen of titanium alloy Ti-6Al-4V, the rules of the mechanical property changing with the specimen size under different temperatures are summarized, and the parameters of the classical constitutive Johnson-Cook (JC) model are determined. Based on the dislocation pile-up theory, the classical constitutive JC model is modified by considering the influence of grain size, and the modified JC model is established by adding a functional term Δσ into the classical constitutive model to describe the influence of the grain. The tensile testis analyzed by the finite element method (FEM) simulation. Comparing with the experimental results, the simulation results based on the modified JC model show much better accuracy than that by the classical JC model.
Zhang, Chao; Chen, Yin-Guang
2013-03-01
Based on activated sludge model No. 2 (ASM2), the anaerobic/aerobic kinetic model of phosphorus-accumulating organisms (PAO) was established with mixed short-chain fatty acids (SCFAs) as the base substance in enhanced biological phosphorus removal process. The characteristic of the PAO model was that the anaerobic metabolism rates of glycogen degradation, poly-beta-hydroxyalkanoates synthesis and polyphosphate hydrolysis were expressed by SCFAs uptake equation, and the effects of anaerobic maintenance on kinetics and stoichiometry were considered. The PAO kinetic model was composed of 3 soluble components, 4 particulate components and a pH parameter, which constituted the matrix of stoichiometric coefficients. On the basis of PAO model, the GAO kinetic model was established, which included 7 processes, and phosphorus content influenced the aerobic metabolism only.
Chan, R W; Titze, I R
2000-01-01
The viscoelastic shear properties of human vocal fold mucosa (cover) were previously measured as a function of frequency [Chan and Titze, J. Acoust. Soc. Am. 106, 2008-2021 (1999)], but data were obtained only in a frequency range of 0.01-15 Hz, an order of magnitude below typical frequencies of vocal fold oscillation (on the order of 100 Hz). This study represents an attempt to extrapolate the data to higher frequencies based on two viscoelastic theories, (1) a quasilinear viscoelastic theory widely used for the constitutive modeling of the viscoelastic properties of biological tissues [Fung, Biomechanics (Springer-Verlag, New York, 1993), pp. 277-292], and (2) a molecular (statistical network) theory commonly used for the rheological modeling of polymeric materials [Zhu et al., J. Biomech. 24, 1007-1018 (1991)]. Analytical expressions of elastic and viscous shear moduli, dynamic viscosity, and damping ratio based on the two theories with specific model parameters were applied to curve-fit the empirical data. Results showed that the theoretical predictions matched the empirical data reasonably well, allowing for parametric descriptions of the data and their extrapolations to frequencies of phonation.
A constitutive model for plastically anisotropic solids with non-spherical voids
Keralavarma, S. M.; Benzerga, A. A.
2010-06-01
Plastic constitutive relations are derived for a class of anisotropic porous materials consisting of coaxial spheroidal voids, arbitrarily oriented relative to the embedding orthotropic matrix. The derivations are based on nonlinear homogenization, limit analysis and micromechanics. A variational principle is formulated for the yield criterion of the effective medium and specialized to a spheroidal representative volume element containing a confocal spheroidal void and subjected to uniform boundary deformation. To obtain closed form equations for the effective yield locus, approximations are introduced in the limit-analysis based on a restricted set of admissible microscopic velocity fields. Evolution laws are also derived for the microstructure, defined in terms of void volume fraction, aspect ratio and orientation, using material incompressibility and Eshelby-like concentration tensors. The new yield criterion is an extension of the well known isotropic Gurson model. It also extends previous analyses of uncoupled effects of void shape and material anisotropy on the effective plastic behavior of solids containing voids. Preliminary comparisons with finite element calculations of voided cells show that the model captures non-trivial effects of anisotropy heretofore not picked up by void growth models.
Energy Technology Data Exchange (ETDEWEB)
Kramer, Sharlotte Lorraine Bolyard; Scherzinger, William M.
2014-09-01
The Virtual Fields Method (VFM) is an inverse method for constitutive model parameter identication that relies on full-eld experimental measurements of displacements. VFM is an alternative to standard approaches that require several experiments of simple geometries to calibrate a constitutive model. VFM is one of several techniques that use full-eld exper- imental data, including Finite Element Method Updating (FEMU) techniques, but VFM is computationally fast, not requiring iterative FEM analyses. This report describes the im- plementation and evaluation of VFM primarily for nite-deformation plasticity constitutive models. VFM was successfully implemented in MATLAB and evaluated using simulated FEM data that included representative experimental noise found in the Digital Image Cor- relation (DIC) optical technique that provides full-eld displacement measurements. VFM was able to identify constitutive model parameters for the BCJ plasticity model even in the presence of simulated DIC noise, demonstrating VFM as a viable alternative inverse method. Further research is required before VFM can be adopted as a standard method for constitu- tive model parameter identication, but this study is a foundation for ongoing research at Sandia for improving constitutive model calibration.
Amyere, Mustapha; Payrastre, Bernard; Krause, Ulrike; Van Der Smissen, Patrick; Veithen, Alex; Courtoy, Pierre J
2000-01-01
Macropinocytosis results from the closure of lamellipodia generated by membrane ruffling, thereby reflecting cortical actin dynamics. Both transformation of Rat-1 fibroblasts by v-Src or K-Ras and stable transfection for expression of dominant-positive, wild-type phosphoinositide 3-kinase (PI3K) regulatory subunit p85α constitutively led to stress fiber disruption, cortical actin recruitment, extensive ruffling, and macropinosome formation, as measured by a selecti...
Amyere, Mustapha; Payrastre, B.; Krause, U.; Van Der Smissen, Patrick; Veithen, A.; Courtoy, Pierre J
2000-01-01
Macropinocytosis results from the closure of lamellipodia generated by membrane ruffling, thereby reflecting cortical actin dynamics. Both transformation of Rat-1 fibroblasts by v-Src or K-Ras and stable transfection for expression of dominant-positive, wild-type phosphoinositide 3-kinase (PI3K) regulatory subunit p85 alpha constitutively led to stress fiber disruption, cortical actin recruitment, extensive ruffling, and macropinosome formation, as measured by a selective acceleration of flui...
A constitutive-relationship model for film flow on rough fracture surfaces
Liu, H. H.
Film flow on fracture surfaces may be an important mechanism for fast flow in unsaturated fractured rocks. Incorporating this mechanism into a numerical model requires knowledge of constitutive relationships for film flow. Based on fractal concepts and a conceptual argument of Tokunaga et al. that water films could be treated as analogues to water in unsaturated porous media, a simple constitutive-relationship model has been developed. The validity of the model is supported by excellent agreements between calculation results and experimental observations for two different fracture surfaces. L'écoulement en film sur les surfaces de fracture peut être un mécanisme important pour l'écoulement rapide dans les roches fracturées non saturées. L'incorporation de ce mécanisme dans un modèle numérique nécessite la connaissance des relations fondamentales pour l'écoulement en film. Basé sur des concepts fractals et sur un argument conceptuel de Tokunaga et al. selon lequel des films d'eau peuvent être considérés comme des analogues de l'eau en milieu poreux non saturé, un modèle simple des relations fondamentales a été développé. La validité de ce modèle est confirmée grâce à une excellente concordance entre les résultats du calcul et les observations expérimentales pour deux surfaces différentes de fractures. El flujo pelicular en la superficie de las fracturas puede ser un mecanismo importante para el flujo rápido en rocas fracturadas no saturadas. Incorporarlo en un modelo numérico requiere conocer las relaciones constitutivas del flujo pelicular. Se ha desarrollado un modelo de una relación constitutiva sencilla partiendo de conceptos fractales y de un argumento conceptual de Tokunaga et al., según el cual las películas de agua pueden ser tratadas como análogos del agua en medios porosos no saturados. La validez del modelo es corroborada por los excelentes ajustes entre los resultados numéricos y las observaciones experimentales en dos
Klishas, Andrey A.
2016-01-01
The paper explores the impact of the continental system exerted on the constitutional and political evolution of both the United States and individual states and tries to characterize the development of constitutional review phenomenon within the framework of the continental legal system and the Anglo-Saxon legal system. The research stands on the…
Wang, Chuanjie; Xue, Shaoxi; Chen, Gang; Zhang, Peng
2017-02-01
In micro-scaled plastic deformation, material strength and ductile fracture behaviors of thin sheet in tension are quite different from those in macro-scale. In this study, uniaxial tensile tests of Monel 400 thin sheets with different microstructures were carried out to investigate the plastic deformation size effect in micro-scale. The experimental results indicate that the flow stress and fracture strain departure from the traditional empirical formula when there are only fewer grains across the thickness. And the number of dimples on the fracture surface is getting smaller with the decreasing ratio of specimen thickness to grain size. Then, a constitutive model based on dislocation density considering the free surface effect in micro-scale is proposed to reveal the mechanism of the flow stress size effect. In addition, a model is proposed considering the surface roughening inducing the thickness nonuniform and the decrease of micro-voids resulting from the reduction of grain boundary density with the decreasing ratio of specimen thickness to grain size. The interactive effects of the surface roughening and the decrease of micro-voids result in the earlier fracture in micro tension of the specimen with fewer grains across the thickness.
ARTIFICIAL NEURAL NETWORK MODEL OF CONSTITUTIVE RELATIONSHIP FOR 2A70 ALUMINUM ALLOY
Institute of Scientific and Technical Information of China (English)
F. Liu; D.B. Shan; Y. Lu; Y.Y. Yang
2005-01-01
The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over a wide range of temperatures 360-480℃ with strain rates of 0.01-1s-1 and the largest deformation of 60%, and the true stress of the material was obtained under the above-mentioned conditions. The experimental results shows that 2A70 aluminum alloy is a kind of aluminum alloy with the property of dynamic recovery; its flow stress declines with the increase of temperature, while its flow stress increases with the increase of strain rates. On the basis of experiments, the constitutive relationship of the 2A70 aluminum alloy was constructed using a BP artificial neural network. Comparison of the predicted values with the experimental data shows that the relative error of the trained model is less than ±3% for the sampled data while it is less than ±6% for the nonsampled data. It is evident that the model constructed by BP ANN can accurately predict the flow stress of the 2A70 alloy.
Yonten, Karma
As a multi-phase material, soil exhibits highly nonlinear, anisotropic, and inelastic behavior. While it may be impractical for one constitutive model to address all features of the soil behavior, one can identify the essential aspects of the soil's stress-strainstrength response for a particular class of problems and develop a suitable constitutive model that captures those aspects. Here, attention is given to two important features of the soil stress-strain-strength behavior: anisotropy and post-failure response. An anisotropic soil plasticity model is implemented to investigate the significance of initial and induced anisotropy on the response of geo-structures founded on cohesive soils. The model is shown to produce realistic responses for a variety of over-consolidation ratios. Moreover, the performance of the model is assessed in a boundary value problem in which a cohesive soil is subjected to the weight of a newly constructed soil embankment. Significance of incorporating anisotropy is clearly demonstrated by comparing the results of the simulation using the model with those obtained by using an isotropic plasticity model. To investigate post-failure response of soils, the issue of strain localization in geostructures is considered. Post-failure analysis of geo-structures using numerical techniques such as mesh-based or mesh-free methods is often faced with convergence issues which may, at times, lead to incorrect failure mechanisms. This is due to the fact that majority of existing constitutive models are formulated within the framework of classical continuum mechanics that leads to ill-posed governing equations at the onset of localization. To overcome this challenge, a critical state two-surface plasticity model is extended to incorporate the micro-structural mechanisms that become significant within the shear band. The extended model is implemented to study the strain localization of granular soils in drained and undrained conditions. It is demonstrated
Institute of Scientific and Technical Information of China (English)
WANG Xue-bin
2006-01-01
By using the widely used JOHNSON-COOK model and the gradient-dependent plasticity to consider microstmctural effect beyond the occurrence of shear strain localization, the distributions of local plastic shear strain and deformation in adiabatic shear band(ASB) were analyzed. The peak local plastic shear strain is proportional to the average plastic shear strain, while it is inversely proportional to the critical plastic shear strain corresponding to the peak flow shear stress. The relative plastic shear deformation between the top and base of ASB depends on the thickness of ASB and the average plastic shear strain. A parametric study was carried out to study the influence of constitutive parameters on shear strain localization. Higher values of static shear strength and work to heat conversion factor lead to lower critical plastic shear strain so that the shear localization is more apparent at the same average plastic shear strain. Higher values of strain-hardening exponent, strain rate sensitive coefficient, melting point,thermal capacity and mass density result in higher critical plastic shear strain, leading to less apparent shear localization at the same average plastic shear strain. The strain rate sensitive coefficient has a minor influence on the critical plastic shear strain, the distributions of local plastic shear strain and deformation in ASB. The effect of strain-hardening modulus on the critical plastic shear strain is not monotonous. When the maximum critical plastic shear strain is reached, the least apparent shear localization occurs.
Implicit constitutive models with a thermodynamic basis: a study of stress concentration
Bridges, C.; Rajagopal, K. R.
2015-02-01
Motivated by the recent generalization of the class of elastic bodies by Rajagopal (Appl Math 48:279-319, 2003), there have been several recent studies that have been carried out within the context of this new class. Rajagopal and Srinivasa (Proc R Soc Ser A 463:357-367, 2007, Proc R Soc Ser A: Math Phys Eng Sci 465:493-500, 2009) provided a thermodynamic basis for such models and appealing to the idea that rate of entropy production ought to be maximized they developed nonlinear rate equations of the form where T is the Cauchy stress and D is the stretching tensor as well as , where S is the Piola-Kirchhoff stress tensor and E is the Green-St. Venant strain tensor. We follow a similar procedure by utilizing the Gibb's potential and the left stretch tensor V from the Polar Decomposition of the deformation gradient, and we show that when the displacement gradient is small one arrives at constitutive relations of the form . This is, of course, in stark contrast to traditional elasticity wherein one obtains a single model, Hooke's law, when the displacement gradient is small. By solving a classical boundary value problem, with a particular form for f( T), we show that when the stresses are small, the strains are also small which is in agreement with traditional elasticity. However, within the context of our model, when the stress blows up the strains remain small, unlike the implications of Hooke's law. We use this model to study boundary value problems in annular domains to illustrate its efficacy.
Zhang, S.; Liu, H. H.; van Dijke, M. I.; Geiger, S.; Agar, S. M.
2016-12-01
The relationship between flow properties and chemical reactions is key to modeling subsurface reactive transport. This study develops closed-form equations to describe the effects of mineral precipitation and dissolution on multiphase flow properties (capillary pressure and relative permeabilities) of porous media. The model accounts for the fact that precipitation/dissolution only takes place in the water-filled part of pore space. The capillary tube concept was used to connect pore-scale changes to macroscopic hydraulic properties. Precipitation/dissolution induces changes in the pore radii of water-filled pores and consequently in the pore-size distribution. The updated pore-size distribution is converted back to a new capillary pressure-water saturation relation from which the new relative permeabilities are calculated. Pore network modeling is conducted on a Berea sandstone to validate the new continuum-scale relations. The pore network modeling results are satisfactorily predicted by the new closed-form equations. Currently the effects of chemical reactions on flow properties are represented as a relation between permeability and porosity in reactive transport modeling. Porosity is updated after chemical calculations from the change of mineral volumes, then permeability change is calculated from the porosity change using an empirical permeability-porosity relation, most commonly the Carman-Kozeny relation, or the Verma-Pruess relation. To the best of our knowledge, there are no closed-form relations available yet for the effects of chemical reactions on multi-phase flow properties, and thus currently these effects cannot be accounted for in reactive transport modeling. This work presents new constitutive relations to represent how chemical reactions affect multi-phase flow properties on the continuum scale based on the conceptual model of parallel capillary tubes. The parameters in our new relations are either pre-existing input in a multi-phase flow
Van Loocke, M; Lyons, C G; Simms, C K
2008-01-01
The compressive properties of skeletal muscle are important in impact biomechanics, rehabilitation engineering and surgical simulation. However, the mechanical behaviour of muscle tissue in compression remains poorly characterised. In this paper, the time-dependent properties of passive skeletal muscle were investigated using a combined experimental and theoretical approach. Uniaxial ramp and hold compression tests were performed in vitro on fresh porcine skeletal muscle at various rates and orientations of the tissue fibres. Results show that above a very small compression rate, the viscoelastic component plays a significant role in muscle mechanical properties; it represents approximately 50% of the total stress reached at a compression rate of 0.5% s(-1). A stiffening effect with compression rate is observed especially in directions closer to the muscle fibres. Skeletal muscle viscoelastic behaviour is thus dependent on compression rate and fibre orientation. A model is proposed to represent the observed experimental behaviour, which is based on the quasi-linear viscoelasticity framework. A previously developed strain-dependent Young's Moduli formulation was extended with Prony series to account for the tissue viscoelastic properties. Parameters of the model were obtained by fitting to stress-relaxation data obtained in the muscle fibre, cross-fibre and 45 degrees directions. The model then successfully predicted stress-relaxation behaviour at 60 degrees from the fibre direction (errors muscle behaviour at rates of 0.05% s(-1) and 5% s(-1) (errors <25%).
Context dependent DNA evolutionary models
DEFF Research Database (Denmark)
Jensen, Jens Ledet
This paper is about stochastic models for the evolution of DNA. For a set of aligned DNA sequences, connected in a phylogenetic tree, the models should be able to explain - in probabilistic terms - the differences seen in the sequences. From the estimates of the parameters in the model one can...
Schutte, Ryan J; Schutte, Soleil S; Algara, Jacqueline; Barragan, Eden V; Gilligan, Jeff; Staber, Cynthia; Savva, Yiannis A; Smith, Martin A; Reenan, Robert; O'Dowd, Diane K
2014-08-15
Hundreds of mutations in the SCN1A sodium channel gene confer a wide spectrum of epileptic disorders, requiring efficient model systems to study cellular mechanisms and identify potential therapeutic targets. We recently demonstrated that Drosophila knock-in flies carrying the K1270T SCN1A mutation known to cause a form of genetic epilepsy with febrile seizures plus (GEFS+) exhibit a heat-induced increase in sodium current activity and seizure phenotype. To determine whether different SCN1A mutations cause distinct phenotypes in Drosophila as they do in humans, this study focuses on a knock-in line carrying a mutation that causes a more severe seizure disorder termed Dravet syndrome (DS). Introduction of the DS SCN1A mutation (S1231R) into the Drosophila sodium channel gene para results in flies that exhibit spontaneous and heat-induced seizures with distinct characteristics and lower onset temperature than the GEFS+ flies. Electrophysiological studies of GABAergic interneurons in the brains of adult DS flies reveal, for the first time in an in vivo model system, that a missense DS mutation causes a constitutive and conditional reduction in sodium current activity and repetitive firing. In addition, feeding with the serotonin precursor 5-HTP suppresses heat-induced seizures in DS but not GEFS+ flies. The distinct alterations of sodium currents in DS and GEFS+ GABAergic interneurons demonstrate that both loss- and gain-of-function alterations in sodium currents are capable of causing reduced repetitive firing and seizure phenotypes. The mutation-specific effects of 5-HTP on heat-induced seizures suggest the serotonin pathway as a potential therapeutic target for DS.
Institute of Scientific and Technical Information of China (English)
江冰; 方岱宁; 黄克智
2000-01-01
Experimental analysis of ferroelectric composites with a viscoelastic and dieiectric relax-ation matrix is carried out, and the electromechanical coupling behavior of the ferroelectric composites is calculated by means of the constitutive model proposed in this paper. Comparisons between the ex-perimental results and the calculations show that the constitutive model can reflect the electromechanical coupling behavior of the ferroelectric composites. The analysis indicates that the effect of viscoelas-ticity and dieiectric relaxation of the matrix on the electromechanical coupling behavior of ferroelectric composites cannot be neglected.
Energy Technology Data Exchange (ETDEWEB)
Fan, Ya-Nan, E-mail: fanyn12@mails.tsinghua.edu.cn; Shi, Hui-Ji, E-mail: shihj@mail.tsinghua.edu.cn; Qiu, Wen-Hui
2015-09-17
Rafting and creep modeling of single crystal superalloys at high temperatures are important for the safety assessment and life prediction in practice. In this research, a new model has been developed to describe the rafting evolution and incorporated into the Cailletaud single crystal plasticity model to simulate the creep behavior. The driving force of rafting is assumed to be the relaxation of the strain energy, and it is calculated with the local stress state, a superposition of the external and misfit stress tensors. In addition, the isotropic coarsening is introduced by the cube root dependence of the microstructure periodicity on creep time based on Ostwal ripening. Then the influence of rafting on creep deformation is taken into account as the Orowan stress in the single crystal plasticity model. The capability of the proposed model is validated with creep experiments of CMSX-4 at 950 °C and 1050 °C. It is able to predict the rafting direction at complex loading conditions and evaluate the channel width during rafting. For [001] tensile creep tests, good agreement has been shown between the model predictions and experimental results at different temperatures and stress levels. The creep acceleration can be captured with this model and is attributed to the microstructure degradation caused by the precipitate coarsening.
A constitutive model of soft tissue: From nanoscale collagen to tissue continuum
Tang, Huang
2009-04-08
Soft collagenous tissue features many hierarchies of structure, starting from tropocollagen molecules that form fibrils, and proceeding to a bundle of fibrils that form fibers. Here we report the development of an atomistically informed continuum model of collagenous tissue. Results from full atomistic and molecular modeling are linked with a continuum theory of a fiber-reinforced composite, handshaking the fibril scale to the fiber and continuum scale in a hierarchical multi-scale simulation approach. Our model enables us to study the continuum-level response of the tissue as a function of cross-link density, making a link between nanoscale collagen features and material properties at larger tissue scales. The results illustrate a strong dependence of the continuum response as a function of nanoscopic structural features, providing evidence for the notion that the molecular basis for protein materials is important in defining their larger-scale mechanical properties. © 2009 Biomedical Engineering Society.
Extending the EGP constitutive model for polymer glasses to multiple relaxation times
van Breemen, L. C. A.; Klompen, E. T. J.; Govaert, L. E.; Meijer, H. E. H.
2011-10-01
The one-mode EGP (Eindhoven glassy polymer) model captures the plastic flow at yield and post-yield quantitatively, but behaves poor in the non-linear viscoelastic pre-yield region. Since a proper description here is important in cases of complex loading and unloading situations, such as e.g. in indentation and scratching, an extension to non-linear modeling is required using a spectrum of relaxation times. It is shown that such a reference spectrum can be obtained from simple tensile tests. It shifts to shorter times under the influence of stress and is independent of the two important time-dependent processes in polymers: the strain rate applied during testing and the aging time during storage and use. The multi-mode model is critically tested and proves quantitative in describing the intrinsic polymer response and, based thereupon, in predicting the correct response in tensile testing, including necking, in flat tip indentation and in notched loading.
On Eulerian constitutive equations for modeling growth and residual stresses in arteries.
Volokh, K Y
2005-06-01
Recently Volokh and Lev (2005) argued that residual stresses could appear in growing arteries because of the arterial anisotropy. This conclusion emerged from a continuum mechanics theory of growth of soft biological tissues proposed by the authors. This theory included Lagrangian constitutive equations, which were formulated directly with respect to the reference configuration. Alternatively, it is possible to formulate Eulerian constitutive equations with respect to the current configuration and to 'pull them back' to the reference configuration. Such possibility is examined in the present work. The Eulerian formulation of the constitutive equations is used for a study of arterial growth. It is shown, particularly, that bending resultants are developed in the ring cross-section of the artery. These resultants may cause the ring opening or closing after cutting the artery in vitro as it is observed in experiments. It is remarkable that the results of the present study, based on the Eulerian constitutive equations, are very similar to the results of Volokh and Lev (2005), based on the Lagrangian constitutive equations. This strengthens the authors' argument that anisotropy is a possible reason for accumulation of residual stresses in arteries. This argument appears to be invariant with respect to the mathematical description.
Uwada, Junsuke; Yoshiki, Hatsumi; Masuoka, Takayoshi; Nishio, Matomo; Muramatsu, Ikunobu
2014-07-15
The M1 muscarinic acetylcholine receptor (M1-mAChR, encoded by CHRM1) is a G-protein-coupled membrane receptor that is activated by extracellular cholinergic stimuli. Recent investigations have revealed the intracellular localization of M1-mAChR. In this study, we observed constitutive internalization of M1-mAChR in mouse neuroblastoma N1E-115 cells without agonist stimulation. Constitutive internalization depended on dynamin, clathrin and the adaptor protein-2 (AP-2) complex. A WxxI motif in the M1-mAChR C-terminus is essential for its constitutive internalization, given that replacement of W(442) or I(445) with alanine residues abolished constitutive internalization. This WxxI motif resembles YxxΦ, which is the canonical binding motif for the μ2 subunit of the AP-2 complex. The M1-mAChR C-terminal WxxI motif interacted with AP-2 μ2. W442A and I445A mutants of the M1-mAChR C-terminal sequence lost AP-2-μ2-binding activity, whereas the W442Y mutant bound more effectively than wild type. Consistent with these results, W442A and I445A M1-mAChR mutants selectively localized to the cell surface. By contrast, the W442Y receptor mutant was found only at intracellular sites. Our data indicate that the cellular distribution of M1-mAChR is governed by the C-terminal tryptophan-based motif, which mediates constitutive internalization.
Constitutive modeling of weak and strong shock-initiation of porous explosives
Energy Technology Data Exchange (ETDEWEB)
Bennett, L.S.
1998-12-31
A continuum based reactive burn model for shocked loaded high explosives has been developed that uses heterogeneous distribution of pore collapse energy to one or more of the constituents (a hot spot) as an ignition source, represents constituents with independent equations of state and has multiple competing and sequential chemical reactions. Reaction propagates from the hot spot to the remainder of the material through either a pressure or temperature dependence of heat transfer through a film layer. The reaction may be quenched by heat transfer or shock release if it is not rapid enough.
The Constitution in Other Lands.
Bill of Rights in Action, 1987
1987-01-01
Designed for classroom teaching, this document contains articles on the new constitutions of Japan, South Korea, and the Philippine Islands which were modeled in part on the U.S. Constitution. These countries' experiences with constitutional government are examined, and whether or not the U.S. Constitution can be a suitable model for other…
Strain Rate Dependent Modeling of Polymer Matrix Composites
Goldberg, Robert K.; Stouffer, Donald C.
1999-01-01
A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Strain rate dependent inelastic constitutive equations have been developed to model the polymer matrix, and have been incorporated into a micromechanics approach to analyze polymer matrix composites. The Hashin failure criterion has been implemented within the micromechanics results to predict ply failure strengths. The deformation model has been implemented within LS-DYNA, a commercially available transient dynamic finite element code. The deformation response and ply failure stresses for the representative polymer matrix composite AS4/PEEK have been predicted for a variety of fiber orientations and strain rates. The predicted results compare favorably to experimentally obtained values.
Constitutive Model for Multiaxial Ratcheting Predictions of Cyclic Softening Weld Metal
Institute of Scientific and Technical Information of China (English)
GAO Hong; CHEN Xu; JIAO Rong
2005-01-01
A series of fully reversed axial, torsional strain-controlled cyclic tests and two multiaxial ratcheting tests were conducted on weld metal specimens using an Instron8521 tension-torsional servo-controlled testing machine. The weld metal showed clear cyclic softening under axial, torsional and multiaxial loading. A modified kinematic hardening rule was proposed in which a multiaxial-loading-dependent parameter incorporated the radial evanescence term of the Burlet-Cailletaud mode with the Ohno-Wang kinematic hardening rule to predict the multiaxial ratcheting effects. The introduction of yield stress evolved with accumulated plasticity strain enables the model to predict cyclic plasticity behavior of cyclic softening or cyclic hardening materials. Thus modified model considers the isotropic hardening as well as kinematic hardening of yield surface, and it can present description of plasticity behavior and ratcheting of cyclic softening and cyclic hardening materials well under multiaxial loading.
FE FORMULATION FOR THE VISCOELASTIC BODY MODELED BY FRACTIONAL CONSTITUTIVE LAW
Institute of Scientific and Technical Information of China (English)
Zhang Wei(张卫); Nobuyuki Shimizu
2001-01-01
This paper presents finite element (FE) fornulation of the viscoelastic materials described by fractional constitutive law. The time-domain threedimensional constitutive equation is constructed. The FE equations are set up by treating the fractional operator as a special case of the hereditary integration. The equations are solved by numerical integration method. The numerical algorithm de veloped by the authors for Liouville-Riemann's fractional derivative was adopted to formulate FE procedures and extended to solve the more general case of the hereditary integration. The numerical examples were given to show the correctness and effectiveness of the integration algorithm.
Demir, Eralp
2017-01-01
A new, simple and physically consistent dislocation-density-based continuum model is developed in a large-strain crystal plasticity framework. All the constitutive laws are expressed in a simple and unique way in terms of a single state variable dislocation density. The proposed physically based model predicts experimental single-crystal stress-strain curves along different crystal directions more accurately than a classical model with widely accepted constitutive laws. The polycrystal texture predictions from the dislocation-density-based and classical models having the same single-crystal stress-strain characteristics are in good agreement with the classical model when Taylor-type homogenization is used in conjunction with enough number of grains.
Energy Technology Data Exchange (ETDEWEB)
Ian Robertson
2007-04-28
Development and validation of constitutive models for polycrystalline materials subjected to high strain-rate loading over a range of temperatures are needed to predict the response of engineering materials to in-service type conditions. To account accurately for the complex effects that can occur during extreme and variable loading conditions, requires significant and detailed computational and modeling efforts. These efforts must be integrated fully with precise and targeted experimental measurements that not only verify the predictions of the models, but also provide input about the fundamental processes responsible for the macroscopic response. Achieving this coupling between modeling and experiment is the guiding principle of this program. Specifically, this program seeks to bridge the length scale between discrete dislocation interactions with grain boundaries and continuum models for polycrystalline plasticity. Achieving this goal requires incorporating these complex dislocation-interface interactions into the well-defined behavior of single crystals. Despite the widespread study of metal plasticity, this aspect is not well understood for simple loading conditions, let alone extreme ones. Our experimental approach includes determining the high-strain rate response as a function of strain and temperature with post-mortem characterization of the microstructure, quasi-static testing of pre-deformed material, and direct observation of the dislocation behavior during reloading by using the in situ transmission electron microscope deformation technique. These experiments will provide the basis for development and validation of physically-based constitutive models. One aspect of the program involves the direct observation of specific mechanisms of micro-plasticity, as these indicate the boundary value problem that should be addressed. This focus on the pre-yield region in the quasi-static effort (the elasto-plastic transition) is also a tractable one from an
Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures
Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan
2016-06-01
The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates ( 10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass ( α ) transition and the secondary ( β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.
Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures
Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan
2017-02-01
The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates (10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass (α ) transition and the secondary (β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.
Constitutive Modeling of High-Temperature Flow Behavior of an Nb Micro-alloyed Hot Stamping Steel
Zhang, Shiqi; Feng, Ding; Huang, Yunhua; Wei, Shizhong; Mohrbacher, Hardy; Zhang, Yue
2016-03-01
The thermal deformation behavior and constitutive models of an Nb micro-alloyed 22MnB5 steel were investigated by conducting isothermal uniaxial tensile tests at the temperature range of 873-1223 K with strain rates of 0.1-10 s-1. The results indicated that the investigated steel showed typical work hardening and dynamic recovery behavior during hot deformation, and the flow stress decreased with a decrease in strain rate and/or an increase in temperature. On the basis of the experimental data, the modified Johnson-Cook (modified JC), modified Norton-Hoff (modified NH), and Arrhenius-type (AT) constitutive models were established for the subject steel. However, the flow stress values predicted by these three models revealed some remarkable deviations from the experimental values for certain experimental conditions. Therefore, a new combined modified Norton-Hoff and Arrhenius-type constitutive model (combined modified NH-AT model), which accurately reflected both the work hardening and dynamic recovery behavior of the subject steel, was developed by introducing the modified parameter k ɛ. Furthermore, the accuracy of these constitutive models was assessed by the correlation coefficient, the average absolute relative error, and the root mean square error, which indicated that the flow stress values computed by the combined modified NH-AT model were highly consistent with the experimental values (R = 0.998, AARE = 1.63%, RMSE = 3.85 MPa). The result confirmed that the combined modified NH-AT model was suitable for the studied Nb micro-alloyed hot stamping steel. Additionally, the practicability of the new model was also verified using finite element simulations in ANSYS/LS-DYNA, and the results confirmed that the new model was practical and highly accurate.
Limited dependent variable models for panel data
Charlier, E.
1997-01-01
Many economic phenomena require limited variable models for an appropriate treatment. In addition, panel data models allow the inclusion of unobserved individual-specific effects. These models are combined in this thesis. Distributional assumptions in the limited dependent variable models are
Zhou, Hao-Miao; Li, Meng-Han; Li, Xiao-Hong; Zhang, Da-Guang
2016-08-01
For a giant magnetostrictive rod under the action of multiple physical loads, such as an external magnetic field, temperature and axial pre-stress, this paper proposes a general one-dimensional nonlinear magneto-thermo-mechanical coupled constitutive model. This model is based on the Taylor expansion of the elastic Gibbs free energy of giant magnetostrictive material and thermodynamic relations from the perspective of macro continuum mechanics. Predictions made using this model are in good agreement with experimental data for magnetization and the magnetostrictive strain curve under the collective effect of pre-stress and temperature. Additionally, the model overcomes the drawback of the existing magneto-thermo-mechanical constitutive model that cannot accurately predict the magnetization and magnetostrictive strain curve for different temperatures and pre-stresses. Furthermore, the constitutive model does not contain an implicit function and is compact, and can thus be applied in both situations of tensile and compressive stress and to both positive and negative magnetostrictive materials, and it is thus appropriate for engineering applications. Comprehensive analysis shows that the model fully describes the nonlinear coupling properties of a magnetic field, magnetostrictive strain and elasticity of a magnetostrictive material subjected to stress, a magnetic field and heat.
Mechanical behaviors and damage constitutive model of ceramics under shock compression
Institute of Scientific and Technical Information of China (English)
Jianguo Ning; Huilan Ren; Ping Li
2008-01-01
One-stage light gas gun was utilized to study the dynamic mechanical properties of AD90 alumina subjected to the shock loading. Manganin gauges were adopted to obtain the stress-time histories. The velocity interferometer system for any reflector (VISAR) was used to obtain the free surface velocity profile and determine the Hugoniot elastic limit. The Hugoniot curves were fitted with the experimental data. From Hugoniot curves the compressive behaviors of AD90 alumina were found to change typically from elastic to "plastic". The dynamic mechanical behaviors for alumina under impact loadings were analyzed by using the path line principle of Lagrange analysis, including the nonlinear characteristics, the strain rate dependence, the dispersion and declination of shock wave in the material. A damage model applicable to ceramics subjected to dynamic compressive loading has been developed. The model was based on the damage micromechanics and wing crack nucleation and growth. The effects of parameters of both the micro-cracks nucleation and the initial crack size on the dynamic fracture strength were discussed. The results of the dynamic damage evolution model were compared with the experimental results and a good agreement was found.
Berkowitz, Peter
2009-01-01
After their dismal performance in election 2008, conservatives are taking stock. As they examine the causes that have driven them into the political wilderness and as they explore paths out, they should also take heart. After all, election 2008 shows that America's constitutional order is working as designed. Indeed, while sorting out their errors…
Modeling the Constitutive Relationship of Al–0.62Mg–0.73Si Alloy Based on Artificial Neural Network
Directory of Open Access Journals (Sweden)
Ying Han
2017-03-01
Full Text Available In this work, the hot deformation behavior of 6A02 aluminum alloy was investigated by isothermal compression tests conducted in the temperature range of 683–783 K and strain-rate range of 0.001–1 s−1. According to the obtained true stress–true strain curves, the constitutive relationship of the alloy was revealed by establishing the Arrhenius-type constitutive model and back-propagation (BP neural network model. It is found that the flow characteristic of 6A02 aluminum alloy is closely related to deformation temperature and strain rate, and the true stress decreases with increasing temperatures and decreasing strain rates. The hot deformation activation energy is calculated to be 168.916 kJ mol−1. The BP neural network model with one hidden layer and 20 neurons in the hidden layer is developed. The accuracy in prediction of the Arrhenius-type constitutive model and BP neural network model is eveluated by using statistics analysis method. It is demonstrated that the BP neural network model has better performance in predicting the flow stress.
Energy Technology Data Exchange (ETDEWEB)
Cai, Jun; Shi, Jiamin; Wang, Kuaishe; Wang, Wen; Wang, Qingjuan; Liu, Yingying [Xi' an Univ. of Architecture and Technology, Xi' an (China). School of Metallurgical Engineering; Li, Fuguo [Northwestern Polytechnical Univ., Xi' an (China). School of Materials Science and Engineering
2017-07-15
Constitutive analysis for hot working of Ti-6Al-4V alloy was carried out by using experimental stress-strain data from isothermal hot compression tests. A new kind of constitutive equation called a modified parallel constitutive model was proposed by considering the independent effects of strain, strain rate and temperature. The predicted flow stress data were compared with the experimental data. Statistical analysis was introduced to verify the validity of the developed constitutive equation. Subsequently, the accuracy of the proposed constitutive equations was evaluated by comparing with other constitutive models. The results showed that the developed modified parallel constitutive model based on multiple regression could predict flow stress of Ti-6Al-4V alloy with good correlation and generalization.
Energy Technology Data Exchange (ETDEWEB)
Santos, C. [California Univ., Santa Barbara, CA (United States). Dept. of Materials; Odette, G.R.; Lucas, G.E. [California Univ., Santa Barbara, CA (United States). Dept. of Mechanical and Environmental Engineering]|[California Univ., Santa Barbara, CA (United States). Dept. of Chemical and Nuclear Engineering; Yamamoto, T. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research
1998-10-01
Microhardness measurements have been of general interest in irradiated materials testing as a monitor of strength changes, and the geometry of the pile-up of material around the indentation has been found to be related to the work-hardening behavior. This relationship has been further examined here. Vickers microhardness tests were performed on a variety of metal alloys including low alloy, high Cr, and austenitic stainless steels and a Nb-Ti alloy. The pile-ups around the identations were quantified using confocal microscopy techniques. In addition, the indentation process and pile-up geometry was simulated using finite element techniques and the corresponding constitutive equations for each of the test materials. The results from these methods have been used to develop an improved understanding and quantification between the pile-up geometry and the constitutive behavior of the test material. (orig.) 10 refs.
Constitutive modelling of magnetic shape memory alloys with discrete and continuous symmetries.
Haldar, K; Lagoudas, D C
2014-09-08
A free energy-based constitutive formulation is considered for magnetic shape memory alloys. Internal state variables are introduced whose evolution describes the transition from reference state to the deformed and transformed one. We impose material symmetry restrictions on the Gibbs free energy and on the evolution equations of the internal state variables. Discrete symmetry is considered for single crystals, whereas continuous symmetry is considered for polycrystalline materials.
Energy Technology Data Exchange (ETDEWEB)
Syed, Sammiuddin [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 426 Mann Hall, Campus Box 7908, Raleigh, NC 27695-7908 (United States); Gupta, Abhinav, E-mail: agupta1@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 413 Mann Hall, Campus Box 7908, Raleigh, NC 27695-7908 (United States)
2015-12-15
Highlights: • A framework is proposed for seismic fragility assessment of Reinforced Concrete structures. • Experimentally validated finite element models are used to conduct nonlinear simulations. • Critical parameters in concrete constitutive model are identified to conduct nonlinear simulations. • Uncertainties in model parameters of concrete damage plasticity model is characterized. • Closed form expressions are used to compute the damage variables and plasticity. - Abstract: This two part manuscript proposes a framework for seismic fragility assessment of reinforced concrete structures in nuclear energy facilities. The novelty of the proposed approach lies in the characterization of uncertainties in the parameters of the material constitutive model. Concrete constitutive models that comprehensively address different damage states such as tensile cracking, compression failure, stiffness degradation, and recovery of degraded stiffness due to closing of previously formed cracks under dynamic loading are generally defined in terms of a large number of variables to characterize the plasticity and damage at material level. Over the past several years, many different studies have been presented on evaluation of fragility for reinforced concrete structures using nonlinear time history simulations. However, almost all of these studies do not consider uncertainties in the parameters of a comprehensive constitutive model. Part-I of this two-part manuscript presents a study that is used to identify uncertainties associated with the critical parameters in nonlinear concrete damage plasticity model proposed by Lubliner et al. (1989. Int. J. Solids Struct., 25(3), 299) and later modified by Lee and Fenves (1998a. J. Eng. Mech., ASCE, 124(8), 892) and Lee and Fenves (1998b. Earthquake Eng. Struct. Dyn., 27(9), 937) for the purpose of seismic fragility assessment. The limitations in implementation of the damage plasticity model within a finite element framework and
A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation
Nova, R.; Castellanza, R.; Tamagnini, C.
2003-08-01
The mechanical behaviour of bonded geomaterials is described by means of an elastoplastic strain-hardening model. The internal variables, taking into account the history of the material, depend on the plastic strains experienced and on a conveniently defined scalar measure of damage induced by weathering and/or chemical degradation.For the sake of simplicity, it is assumed that only internal variables are affected by mechanical and chemical history of the material. Despite this simplifying assumption, it can be shown that many interesting phenomena exhibited by weathered bonded geomaterials can be successfully described. For instance, (i) the transition from brittle to ductile behaviour with increasing pressure of a calcarenite with collapsing internal structure, (ii) the complex behaviour of chalk and other calcareous materials in oedometric tests, (iii) the chemically induced variation of the stress and strain state of such kind of materials, are all phenomena that can be qualitatively reproduced. Several comparisons with experimental data show that the model can capture the observed behaviour also quantitatively.
Elastic-Plastic Endochronic Constitutive Model of 0Crl7Ni4Cu4Nb Stainless Steels
Directory of Open Access Journals (Sweden)
Jinquan Guo
2016-01-01
Full Text Available We presented an elastic-plastic endochronic constitutive model of 0Crl7Ni4Cu4Nb stainless steel based on the plastic endochronic theory (which does not need the yield surface and experimental stress-strain curves. The key feature of the model is that it can precisely describe the relation of stress and strain under various loading histories, including uniaxial tension, cyclic loading-unloading, cyclic asymmetric-stress axial tension and compression, and cyclic asymmetric-stress axial tension and compression. The effects of both mean stress and amplitude of stress on hysteresis loop based on the elastic-plastic endochronic constitutive model were investigated. Compared with the experimental and calculated results, it is demonstrated that there was a good agreement between the model and the experiments. Therefore, the elastic-plastic endochronic constitutive model provides a method for the accurate prediction of mechanical behaviors of 0Crl7Ni4Cu4Nb stainless steel subjected to various loadings.
Thermomechanical Modeling of Shape Memory Alloys with Rate Dependency on the Pseudoelastic Behavior
Directory of Open Access Journals (Sweden)
Jin-Ho Roh
2014-01-01
Full Text Available The loading-rate dependency on the pseudoelastic behaviors of shape memory alloy (SMA wires is experimentally and numerically investigated. The results are analyzed to estimate the parameters for a thermomechanical constitutive model of SMA wire with strain-rate dependency of the hysteresis behavior. An analytical model of SMAs is developed by using nonconstant parameters during various strain rates. Numerical simulations are performed to demonstrate the accuracy of the improved model.
Institute of Scientific and Technical Information of China (English)
Xu-qing CHANG; Li-ying ZHANG; Yong-biao YANG; Jing-li REN
2016-01-01
Two constitutive models,the modified Johnson-Cook model and the logarithm linear relation model based on empirical approach and data analysis,were presented to illustrate compressive deformation of magnesium alloys AZ80 under multiple loading directions and strain rates.The results of stress-strain curve analysis and sensitivity in-dex analysis suggested that the stress held large fluctuations in loading direction of 90°.Model testing signified that the logarithm linear relation model was more proper than the modified Johnson-Cook model in view of relative mean square error and correlation coefficients.Moreover,numerical simulation building on established models also indica-ted that the logarithm linear model is more precise than the modified Johnson-Cook model.
Quesada A, Gabriel
2009-09-01
In the last thirty years significant changes to protect the environment have been introduced in the judicial, administrative and social systems. Costa Rica is a well known international model in the field of sustainable development, and here I present a proposal for adding environmental gaurantees to the Costa Rican Constitution. One of the most important changes in the Costa Rican judicial system has been the introduction of an environmental amendment in the Constitution (Article 50). However, it is still fundamental to introduce a Title of Environmental Guarantees in the Constitution of Costa Rica, with these components: first, the State, the public and the private sector have the duty of defending the right to a safe environment; second, public domain over environmental issues, and third, the use of the environment should be regulated by scientific and technical knowledge. If current efforts succeed, Costa Rica will be the first country in the world to include Environmental Guarantees in its Constitution. This would be an example to other nations.
Rizzello, Carlo G; Filannino, Pasquale; Di Cagno, Raffaella; Calasso, Maria; Gobbetti, Marco
2014-01-01
This study aimed at investigating the regulatory system of bacteriocin synthesis by Lactobacillus plantarum strains in vegetables and fruits in a model system. Sterile and neutralized cell-free supernatant (CFS) from L. plantarum strains grown in MRS broth showed in vitro antimicrobial activities toward various indicator strains. The highest activity was that of L. plantarum C2. The antimicrobial activity was further assayed on vegetable and fruit agar plates (solid conditions) and in juices (liquid conditions). A regulatory mechanism of bacteriocin synthesis via quorum sensing was hypothesized. The synthesis of antimicrobial compounds seemed to be constitutive under solid conditions of growth on vegetable and fruit agar plates. In contrast, it depended on the size of the inoculum when L. plantarum C2 was grown in carrot juice. Only the inoculum of ca. 9.0 log CFU ml(-1) produced detectable activity. The genes plnA, plnEF, plnG, and plnH were found in all L. plantarum strains. The genes plnJK and plnN were detected in only three or four strains. Reverse-phase high-performance liquid chromatography purification and mass spectrometry analysis revealed the presence of a mixture of eight peptides in the most active fraction of the CFS from L. plantarum C2. Active peptides were encrypted into bacteriocin precursors, such as plantaricins PlnJ/K and PlnH and PlnG, which are involved in the ABC transport system. A real-time PCR assay showed an increase in the expression of plnJK and plnG during growth of L. plantarum C2 in carrot juice.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Due to the significant thermal-mechanical effects during hot spot formation in PBX explosives,a thermodynamic constitutive model has been constructed for HMX anisotropic single crystal subjected to dynamic impact loading. The crystal plasticity model based on dislocation dynamics theory was employed to describe the anisotropic plastic behavior along the preferential slip systems. A modified equation of state (EOS) was introduced into the constitutive equations through the decomposing stress tensor and the nonlinear elasticity for materials was taken into account. The one-dimensional strain impact simulations for HMX single crystal and quasi-bicrystal were performed respectively,in which the cohesive elements were inserted over the interface areas for the latter. The predicted particle velocities for the single crystal sample agreed well with the experimental results in the literature. Furthermore,the effects of crystal orientations,interface,misorientations on localized strain,stress and temperature distributions were predicted and discussed.
Energy Technology Data Exchange (ETDEWEB)
Preece, D.S.; Thorne, B.J.
1996-03-01
The transient dynamics finite element computer program, PRONTO-3D, has been used in conjunction with a damage constitutive model to study the influence of detonation timing on rock fragmentation during blasting. The primary motivation of this study is to investigate the effectiveness of precise detonators in improving fragmentation. PRONTO-3D simulations show that a delay time of 0.0 sec between adjacent blastholes results in significantly more fragmentation than a 0.5 ms delay.
Constitutive receptor systems for drug discovery.
Chen, G; Jayawickreme, C; Way, J; Armour, S; Queen, K; Watson, C; Ignar, D; Chen, W J; Kenakin, T
1999-12-01
This paper discusses the use of constitutively active G-protein-coupled receptor systems for drug discovery. Specifically, the ternary complex model is used to define the two major theoretical advantages of constitutive receptor screening-namely, the ability to detect antagonists as well as agonists directly and the fact that constitutive systems are more sensitive to agonists. In experimental studies, transient transfection of Chinese hamster ovary cyclic AMP response element (CRE) luciferase reporter cells with cDNA for human parathyroid hormone receptor, glucagon receptor, and glucagon-like peptide (GLP-1) receptor showed cDNA concentration-dependent constitutive activity with parathyroid hormone (PTH-1) and glucagon. In contrast, no constitutive activity was observed for GLP-1 receptor, yet responses to GLP-1 indicated that receptor expression had taken place. In another functional system, Xenopus laevi melanophores transfected with cDNA for human calcitonin receptor showed constitutive activity. Nine ligands for the calcitonin receptor either increased or decreased constitutive activity in this assay. The sensitivity of the system to human calcitonin increased with increasing constitutive activity. These data indicate that, for those receptors which naturally produce constitutive activity, screening in this mode could be advantageous over other methods.
Directory of Open Access Journals (Sweden)
Jaime de Juan-Sanz
Full Text Available Inhibitory glycinergic neurotransmission is terminated by sodium and chloride-dependent plasma membrane glycine transporters (GlyTs. The mainly glial glycine transporter GlyT1 is primarily responsible for the completion of inhibitory neurotransmission and the neuronal glycine transporter GlyT2 mediates the reuptake of the neurotransmitter that is used to refill synaptic vesicles in the terminal, a fundamental role in the physiology and pathology of glycinergic neurotransmission. Indeed, inhibitory glycinergic neurotransmission is modulated by the exocytosis and endocytosis of GlyT2. We previously reported that constitutive and Protein Kinase C (PKC-regulated endocytosis of GlyT2 is mediated by clathrin and that PKC accelerates GlyT2 endocytosis by increasing its ubiquitination. However, the role of ubiquitination in the constitutive endocytosis and turnover of this protein remains unexplored. Here, we show that ubiquitination of a C-terminus four lysine cluster of GlyT2 is required for constitutive endocytosis, sorting into the slow recycling pathway and turnover of the transporter. Ubiquitination negatively modulates the turnover of GlyT2, such that increased ubiquitination driven by PKC activation accelerates transporter degradation rate shortening its half-life while decreased ubiquitination increases transporter stability. Finally, ubiquitination of GlyT2 in neurons is highly responsive to the free pool of ubiquitin, suggesting that the deubiquitinating enzyme (DUB ubiquitin C-terminal hydrolase-L1 (UCHL1, as the major regulator of neuronal ubiquitin homeostasis, indirectly modulates the turnover of GlyT2. Our results contribute to the elucidation of the mechanisms underlying the dynamic trafficking of this important neuronal protein which has pathological relevance since mutations in the GlyT2 gene (SLC6A5 are the second most common cause of human hyperekplexia.
Carstens, Maryke; McCrindle, Tyronne K; Adams, Nicolette; Diener, Anastashia; Guzha, Delroy T; Murray, Shane L; Parker, Jane E; Denby, Katherine J; Ingle, Robert A
2014-01-01
The Arabidopsis constitutive induced resistance 1 (cir1) mutant displays salicylic acid (SA)-dependent constitutive expression of defence genes and enhanced resistance to biotrophic pathogens. To further characterise the role of CIR1 in plant immunity we conducted epistasis analyses with two key components of the SA-signalling branch of the defence network, ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4). We demonstrate that the constitutive defence phenotypes of cir1 require both EDS1 and PAD4, indicating that CIR1 lies upstream of the EDS1-PAD4 regulatory node in the immune signalling network. In light of this finding we examined EDS1 expression in cir1 and observed increased protein, but not mRNA levels in this mutant, suggesting that CIR1 might act as a negative regulator of EDS1 via a post-transcriptional mechanism. Finally, as environmental temperature is known to influence the outcome of plant-pathogen interactions, we analysed cir1 plants grown at 18, 22 or 25°C. We found that susceptibility to Pseudomonas syringae pv. tomato (Pst) DC3000 is modulated by temperature in cir1. Greatest resistance to this pathogen (relative to PR-1:LUC control plants) was observed at 18°C, while at 25°C no difference in susceptibility between cir1 and control plants was apparent. The increase in resistance to Pst DC3000 at 18°C correlated with a stunted growth phenotype, suggesting that activation of defence responses may be enhanced at lower temperatures in the cir1 mutant.
Directory of Open Access Journals (Sweden)
Maryke Carstens
Full Text Available The Arabidopsis constitutive induced resistance 1 (cir1 mutant displays salicylic acid (SA-dependent constitutive expression of defence genes and enhanced resistance to biotrophic pathogens. To further characterise the role of CIR1 in plant immunity we conducted epistasis analyses with two key components of the SA-signalling branch of the defence network, ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1 and PHYTOALEXIN DEFICIENT4 (PAD4. We demonstrate that the constitutive defence phenotypes of cir1 require both EDS1 and PAD4, indicating that CIR1 lies upstream of the EDS1-PAD4 regulatory node in the immune signalling network. In light of this finding we examined EDS1 expression in cir1 and observed increased protein, but not mRNA levels in this mutant, suggesting that CIR1 might act as a negative regulator of EDS1 via a post-transcriptional mechanism. Finally, as environmental temperature is known to influence the outcome of plant-pathogen interactions, we analysed cir1 plants grown at 18, 22 or 25°C. We found that susceptibility to Pseudomonas syringae pv. tomato (Pst DC3000 is modulated by temperature in cir1. Greatest resistance to this pathogen (relative to PR-1:LUC control plants was observed at 18°C, while at 25°C no difference in susceptibility between cir1 and control plants was apparent. The increase in resistance to Pst DC3000 at 18°C correlated with a stunted growth phenotype, suggesting that activation of defence responses may be enhanced at lower temperatures in the cir1 mutant.
Constitutive modeling for Ti-6Al-4V alloy machining based on the SHPB tests and simulation
Chen, Guang; Ke, Zhihong; Ren, Chengzu; Li, Jun
2016-09-01
A constitutive model is critical for the prediction accuracy of a metal cutting simulation. The highest strain rate involved in the cutting process can be in the range of 104-106 s-1. Flow stresses at high strain rates are close to that of cutting are difficult to test via experiments. Split Hopkinson compression bar (SHPB) technology is used to study the deformation behavior of Ti-6Al-4V alloy at strain rates of 10-4-104s-1. The Johnson Cook (JC) model was applied to characterize the flow stresses of the SHPB tests at various conditions. The parameters of the JC model are optimized by using a genetic algorithm technology. The JC plastic model and the energy density-based ductile failure criteria are adopted in the proposed SHPB finite element simulation model. The simulated flow stresses and the failure characteristics, such as the cracks along the adiabatic shear bands agree well with the experimental results. Afterwards, the SHPB simulation is used to simulate higher strain rate(approximately 3×104 s-1) conditions by minimizing the size of the specimen. The JC model parameters covering higher strain rate conditions which are close to the deformation condition in cutting were calculated based on the flow stresses obtained by using the SHPB tests (10-4-104 s-1) and simulation (up to 3×104 s-1). The cutting simulation using the constitutive parameters is validated by the measured forces and chip morphology. The constitutive model and parameters for high strain rate conditions that are identical to those of cutting were obtained based on the SHPB tests and simulation.
Constitution modeling and deformation behavior of yttrium bearing TiAl alloy
Institute of Scientific and Technical Information of China (English)
CHEN Yuyong; YANG Fei; KONG Fantao; XIAO Shulong
2011-01-01
The deformation flow behaviors of Ti-45Al-5.4V-3.6Nb-0.3Y alloy at different temperatures and strain rates were studied by isothermal compressing simulation test. The apparent activation energy of deformation was calculated to be 402.096 kJ/mol and constitutive equation was established to describe the flow behavior. Microstructure and flow softening observations exhibited that Ti-45Al-5.4V-3.6Nb-0.3Y alloy had bad hot workability at low temperature (lower than 1 100 ℃) and high strain rate (higher than 0.5 s-1) characterized by localization deformation and instability. With deformation temperature higher than 1 150 ℃ and strain rate lower than 0.01 s-1, the alloy owned good hot deformability, and plenty of dynamic recrystallized grains could be observed in the deformed microstructures.
Florentin, Éric
2010-04-23
Today, the identification ofmaterialmodel parameters is based more and more on full-field measurements. This article explains how an appropriate use of the constitutive equation gap method (CEGM) can help in this context. The CEGM is a well-known concept which, until now, has been used mainly for the verification of finite element simulations. This has led to many developments, especially concerning the techniques for constructing statically admissible stress fields. The originality of the present study resides in the application of these recent developments to the identification problem. The proposed CEGM is described in detail, then evaluated through the identification of heterogeneous isotropic elastic properties. The results obtained are systematically compared with those of the equilibrium gap method, which is a well-known technique for the resolution of such identification problems. We prove that the use of the enhanced CEGM significantly improves the quality of the results. © Springer-Verlag 2010.
Wang, Jun; Moumni, Ziad; Zhang, Weihong; Xu, Yingjie; Zaki, Wael
2017-06-01
The paper presents a finite-strain constitutive model for shape memory alloys (SMAs) that accounts for thermomechanical coupling and martensite reorientation. The finite-strain formulation is based on a two-tier, multiplicative decomposition of the deformation gradient into thermal, elastic, and inelastic parts, where the inelastic deformation is further split into phase transformation and martensite reorientation components. A time-discrete formulation of the constitutive equations is proposed and a numerical integration algorithm is presented featuring proper symmetrization of the tensor variables and explicit formulation of the material and spatial tangent operators involved. The algorithm is used for finite element analysis of SMA components subjected to various loading conditions, including uniaxial, non-proportional, isothermal and adiabatic loading cases. The analysis is carried out using the FEA software Abaqus by means of a user-defined material subroutine, which is then utilized to simulate a SMA archwire undergoing large strains and rotations.
Symbolic derivation of potential based constitutive equations
Arnold, S. M.; Tan, H. Q.
1990-05-01
Structural alloys used in high temperature applications exhibit complex thermomechanical behavior that is inherently time dependent and hereditary, as the current behavior depends not only on current conditions but on the thermomechanical history. Derivation of mathematical expressions (constitutive equations) which describe this high temperature material behavior can be quite time consuming, involved, and error-prone, thus intelligent application of symbolic systems to facilitate this tedious processes can be of significant benefit. Here a computerized package, running under MACSYMA, capable of efficiently deriving potential based constitutive models, in analytical form (involving tensors, partial differentiation, invariants, and the like) is presented. Special purpose utility algorithms are designed and implemented to perform partial differentiation (chain rule), tensor manipulation, case distinction and simplification. Four constitutive theories reported in the literature are utilized to verify implementation accuracy. It is expected that this symbolic package can and will provide a significant incentive to the development of new constitutive theories.
Directory of Open Access Journals (Sweden)
Ge Zhang
Full Text Available Intravascular-thrombosis and extravascular-lipid-deposit are the two key pathogenic events considered to interrupt intraosseous blood supply during development of steroid-associated osteonecrosis (ON. However, there are no clinically employed agents capable of simultaneously targeting these two key pathogenic events. The present experimental study demonstrated that constitutional flavonoid glycosides derived from herb Epimedium (EF, composed of seven flavonoid compounds with common stem nuclear exerted dose-dependent effect on inhibition of both thrombosis and lipid-deposition and accordingly reducing incidence of steroid-associated ON in rabbits, which was not via direct action by themselves rather by their common metabolite on potential cellular targets involved in the two pathogenic pathways. The underlying mechanism could be explained by counteracting endothelium injury and excessive adipogenesis. These findings encourage designing clinical trials to investigate potential of EF in prevention of steroid-associated ON.
DEFF Research Database (Denmark)
Anyfantis, Konstantinos; Tsouvalis, Nicholas G.
2013-01-01
criterion and damage propagation with the linear energetic fracture criterion. For verification and validation purposes of the proposed laws and mixed-mode model, steel adherends have been adhesively bonded with a structural ductile adhesive material in order to fabricate a series of single and double strap......In this paper, a new traction-separation law is developed that represents the constitutive relation of ductile adhesive materials in Modes I, II, and III. The proposed traction-separation laws model the elastic, plastic, and failure material response of a ductile adhesive layer. Initially...
Bentil, Sarah A; Dupaix, Rebecca B
2014-02-01
The ability of the fractional Zener constitutive model to predict the behavior of postmortem swine brain tissue was examined in this work. Understanding tissue behavior attributed to degradation is invaluable in many fields such as the forensic sciences or cases where only cadaveric tissue is available. To understand how material properties change with postmortem age, the fractional Zener model was considered as it includes parameters to describe brain stiffness and also the parameter α, which quantifies the viscoelasticity of a material. The relationship between the viscoelasticity described by α and tissue degradation was examined by fitting the model to data collected in a previous study (Bentil, 2013). This previous study subjected swine neural tissue to in vitro unconfined compression tests using four postmortem age groups (week). All samples were compressed to a strain level of 10% using two compressive rates: 1mm/min and 5mm/min. Statistical analysis was used as a tool to study the influence of the fractional Zener constants on factors such as tissue degradation and compressive rate. Application of the fractional Zener constitutive model to the experimental data showed that swine neural tissue becomes less stiff with increased postmortem age. The fractional Zener model was also able to capture the nonlinear viscoelastic features of the brain tissue at low strain rates. The results showed that the parameter α was better correlated with compressive rate than with postmortem age. © 2013 Published by Elsevier Ltd.
Domkin, Konstantin
2005-01-01
Correct description of the material behaviour is an extra challenge in simulation of the materials processing and manufacturing processes such as metal forming. Material models must account for varying strain, strain rate and temperature, and changing microstructure. This study is devoted to the physically based models of metal plasticity - dislocation density models, their numerical implementation and parameter identification. The basic concepts of dislocation density modelling are introduce...
Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam
2016-11-01
Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.
Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam
2017-08-01
Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.
Institute of Scientific and Technical Information of China (English)
Song Guquan; Sun Qingping; Hwang Kehchih
2000-01-01
The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy (SMA) are studied by a microstructure-based constitutive model developed in this paper. The model is established on the following basis: (1) the transformation conditions of the unconstrained single crystal SMA microdomaln (to be distinguished from the bulk single crystal), which serve as the local criterion for the derivation of overall transformation yield conditions of the polycrystal; (2) the micro-to macro-transition scheme by which the connection between the polycrystal aggregates and the single crystal microdomain is established and the macroscopic transformation conditions of the polycrystal SMA are derived;(3) the quantitative incorporation of three microstructure factors ( i.e., nucleation, growth and orientation distribution of martensite) into the modeling. These microstructural factors are intrinsic of specific polycrystal SMA systems and the role of each factor in the macroscopic constitutive response is quantitatively modeled. It is demonstrated that the interplay of these factors will result in different macroscopic transformation kinematics and kinetics which are responsible for the observed macroscopic stress-strain hardening or softening response, the latter will lead to the localization and propagation of transformation bands in TiNi SMA.
Directory of Open Access Journals (Sweden)
Song Wei-Dong
2013-01-01
Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.
Temperature dependent extension of a hysteresis model
Sixdenier, Fabien; MESSAL, Oualid; Hilal, Alaa; Martin, Christian; Raulet, Marie-Ange
2015-01-01
International audience; Some soft magnetic materials (like ferrites but not only) are strongly dependent of the temperature. In order to predict their behaviour in electrical devices, engineers need hysteresis models able to take into account the temperature. This paper is an attempt to take into account the temperature in an existing model of hysteresis through its parameters. Variations of some parameters are issued from Weiss’s works and others have to be fitted numerically. Simulation res...
Constitutive Laws and Failure Models for Compact Bones Subjected to Dynamic Loading
Pithioux, M; Jean, M
2002-01-01
Many biological tissues, such as bones and ligaments, are fibrous. The geometrical structure of these tissues shows that they exhibit a similar hierarchy in their ultra-structure and macro-structure. The aim of this work is to develop a model to study the failure of fibrous structures subjected to dynamic loading. The important feature of this model is that it describes failure in terms of the loss of cohesion between fibres. We have developed a model based on the lamellar structure of compact bone with fibres oriented at 0 degrees, 45 degrees and 90 degrees to the longitudinal axis of the bone, and have studied the influence of the model parameters on the failure process. Bone porosity and joint stress force at failure were found to be the most significant parameters. Using least square resolution, we deduced a phenomenological model of the lamellar structure. Finally, experimental results were found to be comparable with our numerical model.
Environmental dependence in the ellipsoidal collapse model
Desjacques, Vincent
2007-01-01
N-body simulations have demonstrated a correlation between the properties of haloes and their environment. In this paper, we assess whether the ellipsoidal collapse model can produce a similar dependence. First, we explore the statistical correlation that originates from Gaussian initial conditions. We derive analytic expressions for a number of joint statistics of the shear tensor and estimate the sensitivity of the local characteristics of the shear to the global geometry of the large scale environment. Next, we concentrate on the dynamical aspect of the environmental dependence using a simplified model that takes into account the interaction between a collapsing halo and its environment. We find that the tidal force exerted by the surrounding mass distribution causes haloes embedded in overdense regions to virialize earlier. An effective density threshold whose shape depends on the large scale density provides a good description of this environmental effect. We show that, using this approach, a correlation...
Directory of Open Access Journals (Sweden)
Mica Grujicic
2016-05-01
Full Text Available The present work deals with the development of material constitutive models for creep-deformation and creep-rupture of SiC/SiC ceramic-matrix composites (CMCs under general three-dimensional stress states. The models derived are aimed for use in finite element analyses of the performance, durability and reliability of CMC turbine blades used in gas-turbine engines. Towards that end, one set of available experimental data pertaining to the effect of stress magnitude and temperature on the time-dependent creep deformation and rupture, available in the open literature, is used to derive and parameterize material constitutive models for creep-deformation and creep-rupture. The two models derived are validated by using additional experimental data, also available in the open literature. To enable the use of the newly-developed CMC creep-deformation and creep-rupture models within a structural finite-element framework, the models are implemented in a user-material subroutine which can be readily linked with a finite-element program/solver. In this way, the performance and reliability of CMC components used in high-temperature high-stress applications, such as those encountered in gas-turbine engines can be investigated computationally. Results of a preliminary finite-element analysis concerning the creep-deformation-induced contact between a gas-turbine engine blade and the shroud are presented and briefly discussed in the last portion of the paper. In this analysis, it is assumed that: (a the blade is made of the SiC/SiC CMC; and (b the creep-deformation behavior of the SiC/SiC CMC can be represented by the creep-deformation model developed in the present work.
A constitutive model for the anelastic behavior of Advanced High Strength Steels
Torkabadi, A.; Liempt, van P.; Meinders, V.T.; Boogaard, van den A.H.
2015-01-01
In this work a physically based model describing the anelastic behaviour and nonlinear unloading in Advanced High Strength Steels (AHSS) is proposed. The model is fitted to the experimental data obtained from uni-axial tests on a dual-phase high strength steel grade (HCT780). The results show a good
Directory of Open Access Journals (Sweden)
Kavitha Gowrishankar
Full Text Available Monoclonal antibodies against immune checkpoint blockade have proven to be a major success in the treatment of melanoma. The programmed death receptor-1 ligand-1 (PD-L1 expression on melanoma cells is believed to have an inhibitory effect on T cell responses and to be an important escape mechanism from immune attack. Previous studies have shown that PD-L1 can be expressed constitutively or can be induced by IFN-γ secreted by infiltrating lymphocytes. In the present study we have investigated the mechanism underlying these two modes of PD-L1 expression in melanoma cells including cells that had acquired resistance to the BRAF inhibitor vemurafenib. PD-L1 expression was examined by flow cytometry and immunoblotting. Specific inhibitors and siRNA knockdown approaches were used to examine the roles of the RAF/ MEK, PI3K, NF-κB, STAT3 and AP1/ c-Jun pathways. IFN-γ inducible expression of PD-L1 was dependent on NF-κB as shown by inhibition with BMS-345541, an inhibitor of IκB and the BET protein inhibitor I-BET151, as well as by siRNA knockdown of NF-κB subunits. We were unable to implicate the BRAF/MEK pathway as major regulators in PD-L1 expression on vemurafenib resistant cells. Similarly the PI3K/AKT pathway and the transcription factors STAT3 and c-Jun had only minor roles in IFN-γ induced expression of PD-L1. The mechanism underlying constitutive expression remains unresolved. We suggest these results have significance in selection of treatments that can be used in combination with monoclonal antibodies against PD1, to enhance their effectiveness and to reduce inhibitory effects melanoma cells have against cytotoxic T cell activity.
Unified viscoplastic constitutive equations and their applications
Lindholm, U. S.
1987-01-01
Unified constitutive equations for time- and temperature-dependent metallic plastic deformation have been applied in FEM simulations of forming processes; increasingly powerful computational tools and physical models are being used to numerically model complex engineering problems. Once confidence has been gained through adequate verification, these numerical models will increasingly replace experimental models. Attention is presently given to the contributions made by physical metallurgy, continuum mechanics, and computational mechanics.
Energy Technology Data Exchange (ETDEWEB)
FOSSUM,ARLO F.; FREDRICH,JOANNE T.
2000-04-01
This report documents the development of constitutive material models for the overburden formations, reservoir formations, and underlying strata at the Lost Hills oil field located about 45 miles northwest of Bakersfield in Kern County, California. Triaxial rock mechanics tests were performed on specimens prepared from cores recovered from the Lost Hills field, and included measurements of axial and radial stresses and strains under different load paths. The tested intervals comprise diatomaceous sands of the Etchegoin Formation and several diatomite types of the Belridge Diatomite Member of the Monterey Formation, including cycles both above and below the diagenetic phase boundary between opal-A and opal-CT. The laboratory data are used to drive constitutive parameters for the Extended Sandler-Rubin (ESR) cap model that is implemented in Sandia's structural mechanics finite element code JAS3D. Available data in the literature are also used to derive ESR shear failure parameters for overburden formations. The material models are being used in large-scale three-dimensional geomechanical simulations of the reservoir behavior during primary and secondary recovery.
Integrating models that depend on variable data
Banks, A. T.; Hill, M. C.
2016-12-01
Models of human-Earth systems are often developed with the goal of predicting the behavior of one or more dependent variables from multiple independent variables, processes, and parameters. Often dependent variable values range over many orders of magnitude, which complicates evaluation of the fit of the dependent variable values to observations. Many metrics and optimization methods have been proposed to address dependent variable variability, with little consensus being achieved. In this work, we evaluate two such methods: log transformation (based on the dependent variable being log-normally distributed with a constant variance) and error-based weighting (based on a multi-normal distribution with variances that tend to increase as the dependent variable value increases). Error-based weighting has the advantage of encouraging model users to carefully consider data errors, such as measurement and epistemic errors, while log-transformations can be a black box for typical users. Placing the log-transformation into the statistical perspective of error-based weighting has not formerly been considered, to the best of our knowledge. To make the evaluation as clear and reproducible as possible, we use multiple linear regression (MLR). Simulations are conducted with MatLab. The example represents stream transport of nitrogen with up to eight independent variables. The single dependent variable in our example has values that range over 4 orders of magnitude. Results are applicable to any problem for which individual or multiple data types produce a large range of dependent variable values. For this problem, the log transformation produced good model fit, while some formulations of error-based weighting worked poorly. Results support previous suggestions fthat error-based weighting derived from a constant coefficient of variation overemphasizes low values and degrades model fit to high values. Applying larger weights to the high values is inconsistent with the log
A comparison of hyperelastic constitutive models applicable to brain and fat tissues.
Mihai, L Angela; Chin, LiKang; Janmey, Paul A; Goriely, Alain
2015-09-06
In some soft biological structures such as brain and fat tissues, strong experimental evidence suggests that the shear modulus increases significantly under increasing compressive strain, but not under tensile strain, whereas the apparent Young's elastic modulus increases or remains almost constant when compressive strain increases. These tissues also exhibit a predominantly isotropic, incompressible behaviour. Our aim is to capture these seemingly contradictory mechanical behaviours, both qualitatively and quantitatively, within the framework of finite elasticity, by modelling a soft tissue as a homogeneous, isotropic, incompressible, hyperelastic material and comparing our results with available experimental data. Our analysis reveals that the Fung and Gent models, which are typically used to model soft tissues, are inadequate for the modelling of brain or fat under combined stretch and shear, and so are the classical neo-Hookean and Mooney-Rivlin models used for elastomers. However, a subclass of Ogden hyperelastic models are found to be in excellent agreement with the experiments. Our findings provide explicit models suitable for integration in large-scale finite-element computations.
Zhou, Peng; Ma, Qingxian
2017-03-01
The compression deformation of 30Cr2Ni4MoV steel at different temperatures and strain rates is carried out on Gleeble 1500 thermal mechanical simulation tester. Based on the experimental flow curves, the strain hardening rate curves ( θ = dσ/ dɛ versus σ) are derived, from which the characteristic stresses and strains are identified. Meanwhile, the dependences of the characteristic stresses and strains on Zener-Hollomon parameter are determined and the results show that the value of the critical stress of dynamic recrystallization is close to the value of the steady stress. With the aid of the experimental flow curves, the Avrami equation is employed to describe the kinetics of dynamic recrystallization. The time exponent ( n) is expressed as a power law function of Zener-Hollomon parameter and the Avrami constant ( k) is determined as a function of half of the time for the complete dynamic recrystallization ( t 50). Furthermore, a constitutive model is presented based on the rule of mixtures when the dynamic recrystallization occurs. Validation of the constitutive model is implemented and the simulated results agree well with the experimental results.
A homogenization-based constitutive model for two-dimensional viscoplastic porous media
Danas, Kostas; Idiart, Martin I.; Ponte Castañeda, Pedro
2008-01-01
An approximate model based on the so-called 'second-order' nonlinear homogenization method is proposed to estimate the effective behavior of viscoplastic porous materials exhibiting transversely isotropic symmetry. The model is constructed in such a way that it reproduces exactly the behavior of a 'composite-cylinder assemblage' in the limit of in-plane hydrostatic loading, and therefore coincides with the hydrostatic limit of Gurson's criterion for plastic porous materials. As a consequence, the new model improves on earlier 'second-order' homogenization estimates, which have been found to be overly stiff at sufficiently high triaxialities and nonlinearities. The proposed model is compared with exact results obtained for a special class of porous materials with sequentially laminated microstructures. The agreement is found to be excellent for the entire range of stress triaxialities, and all values of the porosity and nonlinearity considered. To cite this article: K. Danas et al., C. R. Mecanique 336 (2008).
A critical review of constitutive models for solders in electronic packaging
National Research Council Canada - National Science Library
Chen, Gang; Zhao, Xiaochen; Wu, Hao
2017-01-01
.... Because the failure of the whole electronic packaging is often induced by the failure of solders, modeling and simulation of solder joint performance are quite important in ensuring the quality...
Modeling and Algorithmic Approaches to Constitutively-Complex, Micro-structured Fluids
Energy Technology Data Exchange (ETDEWEB)
Forest, Mark Gregory [University of North Carolina at Chapel Hill
2014-05-06
The team for this Project made significant progress on modeling and algorithmic approaches to hydrodynamics of fluids with complex microstructure. Our advances are broken down into modeling and algorithmic approaches. In experiments a driven magnetic bead in a complex fluid accelerates out of the Stokes regime and settles into another apparent linear response regime. The modeling explains the take-off as a deformation of entanglements, and the longtime behavior is a nonlinear, far-from-equilibrium property. Furthermore, the model has predictive value, as we can tune microstructural properties relative to the magnetic force applied to the bead to exhibit all possible behaviors. Wave-theoretic probes of complex fluids have been extended in two significant directions, to small volumes and the nonlinear regime. Heterogeneous stress and strain features that lie beyond experimental capability were studied. It was shown that nonlinear penetration of boundary stress in confined viscoelastic fluids is not monotone, indicating the possibility of interlacing layers of linear and nonlinear behavior, and thus layers of variable viscosity. Models, algorithms, and codes were developed and simulations performed leading to phase diagrams of nanorod dispersion hydrodynamics in parallel shear cells and confined cavities representative of film and membrane processing conditions. Hydrodynamic codes for polymeric fluids are extended to include coupling between microscopic and macroscopic models, and to the strongly nonlinear regime.
Constitution of a catchment virtual observatory for sharing flow and transport models outputs
Thomas, Zahra; Rousseau-Gueutin, Pauline; Kolbe, Tamara; Abbott, Benjamin W.; Marçais, Jean; Peiffer, Stefan; Frei, Sven; Bishop, Kevin; Pichelin, Pascal; Pinay, Gilles; de Dreuzy, Jean-Raynald
2016-12-01
Predicting hydrological catchment behavior based on measurable (and preferably widely available) catchment characteristics has been one of the main goals of hydrological modelling. Residence time distributions provide synoptic information about catchment functioning and can be useful metrics to predict their behaviors. Moreover, residence time distributions highlight a wide range of characteristic scales (spatial and temporal) and mixing processes. However, catchment-specific heterogeneity means that the link between residence time distributions and catchment characteristics is complex. Investigating this link for a wide range of catchments could reveal the role of topography, geology, land-use, climate and other factors in controlling catchment hydrology. Meaningful comparison is often challenging given the diversity of data and model structures and formats. To address this need, we are introducing a new virtual platform called Catchment virtual Observatory for Sharing flow and transport models outputs (COnSOrT). The goal of COnSOrT is to promote catchment intercomparison by sharing calibrated model outputs. Compiling commensurable results in COnSOrT will help evaluate model performance, quantify inter-catchment controls on hydrology, and identify research gaps and priorities in catchment science. Researchers interested in sharing or using calibrated model results are invited to participate in the virtual observatory. Participants may test post-processing methods on a wide range of catchment environments to evaluate the generality of their findings.
Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models.
Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz; Demer, Joseph L
2011-12-01
Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain-stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5-2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01-0.5 s(-1) strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multi-mode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus.
Constitutive modeling of the aging viscoelastic properties of portland cement paste
Grasley, Zachary C.; Lange, David A.
2007-12-01
Analytical approaches for modeling aging viscoelastic behavior of concrete include the time-shift approach (analogous to time-temperature superposition), the solidification theory, and the dissolution-precipitation approach. The aging viscoelastic properties of concrete are generally attributed solely to the cement paste phase since the aggregates are typically linear elastic. In this study, the aging viscoelastic behavior of four different cement pastes has been measured and modeled according to both the time-shift approach and the solidification theory. The inability of each individual model to fully characterize the aging viscoelastic response of the materials provides insight into the mechanisms for aging of the viscoelastic properties of cement paste and concrete. A model that considers aging due to solidification in combination with inherent aging of the cement paste gel (modeled using the time-shift approach) more accurately predicted the aging viscoelastic behavior of portland cement paste than either the solidification or time-shift approaches independently. The results provide evidence that solidification and other intrinsic gel aging mechanisms are concurrently active in the aging process of cementitious materials.
Water retention behaviour of compacted bentonites: experimental observations and constitutive model
Directory of Open Access Journals (Sweden)
Dieudonne Anne-Catherine
2016-01-01
Full Text Available Bentonite-based materials are studied as potential barriers for the geological disposal of radioactive waste. In this context, the hydro-mechanical behaviour of the engineered barrier is first characterized by free swelling conditions followed by constant volume conditions. This paper presents an experimental study conducted in order to characterize the water retention behaviour of a compacted MX-80 bentonite/sand mixture. Then, based on observations of the material double structure and the water retention mechanisms in compacted bentonites, a new water retention model is proposed. The model considers adsorbed water in the microstructure and capillary water in the aggregate-porosity. The model is calibrated and validated against the experimental data. It is used for better understanding competing effects between volume change and water uptake observed during hydration under free swelling conditions.
A validated 3D microstructure-based constitutive model of coronary artery adventitia.
Chen, Huan; Guo, Xiaomei; Luo, Tong; Kassab, Ghassan S
2016-07-01
A structure-based model that accurately predicts micro- or macromechanical behavior of blood vessels is necessary to understand vascular physiology. Based on recently measured microstructural data, we propose a three-dimensional microstructural model of coronary adventitia that incorporates the elastin and collagen distributions throughout the wall. The role of ground substance was found to be negligible under physiological axial stretch λz = 1.3, based on enzyme degradation of glycosaminoglycans in swine coronary adventitia (n = 5). The thick collagen bundles of outer adventitia (n = 4) were found to be undulated and unengaged at physiological loads, whereas the inner adventitia consisted of multiple sublayers of entangled fibers that bear the majority of load at higher pressures. The microstructural model was validated against biaxial (inflation and extension) experiments of coronary adventitia (n = 5). The model accurately predicted the nonlinear responses of the adventitia, even at high axial force (axial stretch ratio λz = 1.5). The model also enabled a reliable estimation of material parameters of individual fibers that were physically reasonable. A sensitivity analysis was performed to assess the effect of using mean values of the distributions for fiber orientation and waviness as opposed to the full distributions. The simplified mean analysis affects the fiber stress-strain relation, resulting in incorrect estimation of mechanical parameters, which underscores the need for measurements of fiber distribution for a rigorous analysis of fiber mechanics. The validated structure-based model of coronary adventitia provides a deeper understanding of vascular mechanics in health and can be extended to disease conditions.
Directory of Open Access Journals (Sweden)
Ryś Maciej
2014-09-01
Full Text Available In this work, a macroscopic material model for simulation two distinct dissipative phenomena taking place in FCC metals and alloys at low temperatures: plasticity and phase transformation, is presented. Plastic yielding is the main phenomenon occurring when the yield stress is reached, resulting in nonlinear response of the material during loading. The phase transformation process leads to creation of two-phase continuum, where the parent phase coexists with the inclusions of secondary phase. An identification of the model parameters, based on uniaxial tension test at very low temperature, is also proposed.
Artificial neural network model of constitutive relations for shock-prestrained copper
Institute of Scientific and Technical Information of China (English)
杨扬; 朱远志; 李正华; 张新明; 杨立斌; 陈志永
2001-01-01
Data from the deformation on Split-Hopkinson Bar were used for constructing an artificial neural network model. When putting the thermodynamic parameters of the metals into the trained network model, the corresponding yielding stress can be predicted. The results show that the systematic error is small when the objective function is 0.5, the number of the nodes in the hidden layer is 6 and the learning rate is about 0.1, and the accuracy of the rate-error is less than 3%.
Brisson, Elodie; Desplats, Henri; Carre, Patrick; Keryvin, Vincent; Rogeon, Philippe; Feulvarch, Eric; Bonhomme, Alexandre
2016-12-01
During resistance sintering (RS) of a conductive porous material, effective electrical and thermal conductivities have a great influence on the thermal gradients inside the matter, which could induce heterogeneous microstructures. Part I of this investigation focused on the characterization of the effective conductivities of AgSnO2 during sintering conditions, with the understanding of the relations between their evolutions and the microstructure. In Part II, the emphasis is on the development of appropriate constitutive equations able to describe the evolutions of the effective conductivities of AgSnO2 during RS. This work proposes constitutive equations taking into account the two main mechanisms, identified in Part I, which modify the contact conditions between the particles. The first mechanism corresponds to viscoplastic deformations of particles. A creep behavior law is used to calculate the macroscopic deformation and the densification kinetics. The second one deals with bonding diffusion under the effect of temperature, which decreases the contact resistance between the particles. As no specific effect of current has been highlighted in the case of AgSnO2, the effective conductivities' behavior laws are available for RS and for hot pressing (HP). Relationships for effective conductivities are included in the numerical HP model and combined with governing laws. Finite element analyses are compared to experimental results obtained from HP tests to validate and discuss the model.
Sommer, Gerhard; Eder, Maximilian; Kovacs, Laszlo; Pathak, Heramb; Bonitz, Lars; Mueller, Christoph; Regitnig, Peter; Holzapfel, Gerhard A
2013-11-01
A preoperative simulation of soft tissue deformations during plastic and reconstructive surgery is desirable to support the surgeon's planning and to improve surgical outcomes. The current development of constitutive adipose tissue models, for the implementation in multilayer computational frameworks for the simulation of human soft tissue deformations, has proved difficult because knowledge of the required mechanical parameters of fat tissue is limited. Therefore, for the first time, human abdominal adipose tissues were mechanically investigated by biaxial tensile and triaxial shear tests. The results of this study suggest that human abdominal adipose tissues under quasi-static and dynamic multiaxial loadings can be characterized as a nonlinear, anisotropic and viscoelastic soft biological material. The nonlinear and anisotropic features are consequences of the material's collagenous microstructure. The aligned collagenous septa observed in histological investigations causes the anisotropy of the tissue. A hyperelastic model used in this study was appropriate to represent the quasi-static multiaxial mechanical behavior of fat tissue. The constitutive parameters are intended to serve as a basis for soft tissue simulations using the finite element method, which is an apparent method for obtaining promising results in the field of plastic and reconstructive surgery.
Xiao, Dan; Peng, Xiaoyan; Liang, Xiaopeng; Deng, Ying; Xu, Guofu; Yin, Zhimin
2017-05-01
Hot compression tests of as-homogenized Al-Zn-Mg-Cu alloy were performed at the deformation temperature range of 350-450 °C and the strain rate range of 0.001-1 s-1. The Arrhenius-type constitutive equation and the Avrami-type model were established to predict the flow behaviors of the alloy respectively. The processing map at the true strain of 0.92 was developed to evaluate the workability of the alloy and the related microstructures were investigated. The results show that the Avrami-type model has a higher accuracy to predict flow stress than the Arrhenius-type constitutive equation. The stable deformation occurs under high temperature or low strain rate mainly owing to the dynamic recrystallization. Flow instability is prone to occur under the condition of low temperature and high strain rate due to the initiation and the propagation of micro-cracks. According to the processing map and corresponding microstructure characteristics, the optimum processing parameters are in the temperature range of 380-405 °C and the strain rate range of 0.006-0.035 s-1.
2006-06-24
1018 steel, 6061 Al and OFHC Cu. They argued that the infra-red measurement generally underestimated the conversion ratio (70% of conversion of work...O.-G., Hopperstad, O.S., Malo, K.A., Pedersen, K. O., 2002. Modelling of plastic anisotropy in heat-treated aluminium extrusions. J. Mat
Constitutive equations for the Doi-Edwards model without independent alignment
DEFF Research Database (Denmark)
Hassager, Ole; Hansen, Rasmus
2010-01-01
We present two representations of the Doi-Edwards model without Independent Alignment explicitly expressed in terms of the Finger strain tensor, its inverse and its invariants. The two representations provide explicit expressions for the stress prior to and after Rouse relaxation of chain stretch...
2016-03-31
solver, which is applied to the fully coarsened levelM grid, uses J = aKnM arithmetic operations, where a and n are constants, andKM is the total number...Mohammadnejad and AR Khoei. Hydro-mechanical modeling of cohesive crack propa- gation in multiphase porous media using the extended finite element
1992-02-04
Eartquake Engineering, Chang, C.S., Chang, Y. and Kabir, M.G. (1991b), "Micromechanics Modelling for the Stress-Strain-Strength Behavior of Granular Materials...Principal Stress on the Strength of Sand," Proceedings of the Seventh International Conference on Soil Mechanics and Foundation Engineering, Mexico
Directory of Open Access Journals (Sweden)
Zein Shaban Ibrahim
2013-01-01
Full Text Available Cytochrome P450 enzymes, CYP3A and CYP1A are major drug metabolizing enzymes in the liver. CYP3A enzymes have a major role in the metabolism of 30-40% of all used drugs. CYP1A2 is a key enzyme having an important role in the metabolic clearance of 5% of currently marketed drugs. CYP1A2 participates in the metabolic activation of chemical mutagens in cooked food, therefore its activity is suspected to be one of the possible risk factors determining the carcinogenicity of heterocyclic amines in human beings. In a previous report, we have reported the induction of CYP3A2 and the inhibition of CYP1A2 by Fibrate (CFA and proved CYP1A2 inhibition to be PPARÎ±-dependent. CYP3A2 and CYP1A2 have been reported to be induced in the liver by Phenobarbital (PB while Fibrates was reported to induce CYP3A2. However the exact mechanism of the induction of CYP3A2 by CFA and PB and induction of CYP1A2 by PB has not been clarified yet whether it is through Constitutive Androstane Receptor (CAR or other receptor as PPARÎ± or Pregnane X Receptor (PXR. We treated Wistar female rats (with normal expression of CAR protein and Wistar femal Kyoto rats (with low expression of CAR protein with PB and Clofibric Acid (CFA. PB caused a high CYP3A2 induction in Wistar female rats and a low induction in (WKY indicating that PB induced CYP3A2 in a CAR-dependent manner. Interestingly, PB treatment induced CYP1A2 in Wistar female rats and failed to induce it in (WKY indicating that the induction of CYP1A2 by PB to be CAR-dependent. Moreover CFA induced CYP3A2 protein similarly in both rat strains indicating that CYP3A2 induction by Fibrates is CAR-independent and most probably to be PXR or PPARÎ±-dependent. For the best of our knowledge this is the first report that shows a clear evidence of the CAR-dependent induction of CYP1A2 and CYP3A2 by PB and the CAR-independent induction of CYP3A2 by fibrates.
Constitutive modeling of stress-driven grain growth in nanocrystalline metals
Gürses, Ercan
2013-02-08
In this work, we present a variational multiscale model for grain growth in face-centered cubic nanocrystalline (nc) metals. In particular, grain-growth-induced stress softening and the resulting relaxation phenomena are addressed. The behavior of the polycrystal is described by a conventional Taylor-type averaging scheme in which the grains are treated as two-phase composites consisting of a grain interior phase and a grain boundary-affected zone. Furthermore, a grain-growth law that captures the experimentally observed characteristics of the grain coarsening phenomena is proposed. To this end, the grain size is not taken as constant and varies according to the proposed stress-driven growth law. Several parametric studies are conducted to emphasize the influence of the grain-growth rule on the overall macroscopic response. Finally, the model is shown to provide a good description of the experimentally observed grain-growth-induced relaxation in nc-copper. © 2013 IOP Publishing Ltd.
Predictive Modeling of the Constitutive Response of Precipitation Hardened Ni-Rich NiTi
Cox, A.; Franco, B.; Wang, S.; Baxevanis, T.; Karaman, I.; Lagoudas, D. C.
2017-03-01
The effective thermomechanical response of precipitation hardened near-equiatomic Ni-rich NiTi alloys is predicted on the basis of composition and heat treatment using a microscale-informed model. The model takes into account the structural effects of the precipitates (precipitate volume fraction, elastic properties, elastic mismatch between the precipitates and the matrix, and coherency stresses due to the lattice mismatch between the precipitates and the matrix) on the reversible martensitic transformation under load as well as the chemical effects resulting from the Ni-depletion of the matrix during precipitate growth. The post-aging thermomechanical response is predicted based on finite element simulations on representative microstructures, using the response of the solutionized material and time-temperature-martensitic transformation temperature maps. The predictions are compared with experiments for materials of different initial compositions and heat treatments and reasonably good agreement is demonstrated for relatively low precipitate volume fractions.
Grujicic, Mica; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.
2016-05-01
Material constitutive models for creep deformation and creep rupture of the SiC/SiC ceramic-matrix composites (CMCs) under general three-dimensional stress states have been developed and parameterized using one set of available experimental data for the effect of stress magnitude and temperature on the time-dependent creep deformation and rupture. To validate the models developed, another set of available experimental data was utilized for each model. The models were subsequently implemented in a user-material subroutine and coupled with a commercial finite element package in order to enable computational analysis of the performance and durability of CMC components used in high-temperature high-stress applications, such as those encountered in gas-turbine engines. In the last portion of the work, the problem of creep-controlled contact of a gas-turbine engine blade with the shroud is investigated computationally. It is assumed that the blade is made of the SiC/SiC CMC, and that the creep behavior of this material can be accounted for using the material constitutive models developed in the present work. The results clearly show that the blade-tip/shroud clearance decreases and ultimately becomes zero (the condition which must be avoided) as a function of time. In addition, the analysis revealed that if the blade is trimmed at its tip to enable additional creep deformation before blade-tip/shroud contact, creep-rupture conditions can develop in the region of the blade adjacent to its attachment to the high-rotational-speed hub.
High-Strain-Rate Constitutive Characterization and Modeling of Metal Matrix Composites
2014-03-07
impact fracture of carbon fiber reinforced 7075 -T6 aluminum matrix composite , Materials Transactions, Japan Institute of Metals, 41, 1055-1063...MODELING OF METAL MATRIX COMPOSITES Report Title The mechanical response of three different types of materials are examined: unidirectionally...conditions. This report also documents some of the highlights of the material response of Saffil filled aluminum matrix composite and a Nextel satin
Knock-in model of Dravet syndrome reveals a constitutive and conditional reduction in sodium current
Schutte, Ryan J.; Schutte, Soleil S.; Algara, Jacqueline; Barragan, Eden V.; Gilligan, Jeff; Staber, Cynthia; Savva, Yiannis A.; Smith, Martin A.; Reenan, Robert; O'Dowd, Diane K.
2014-01-01
Hundreds of mutations in the SCN1A sodium channel gene confer a wide spectrum of epileptic disorders, requiring efficient model systems to study cellular mechanisms and identify potential therapeutic targets. We recently demonstrated that Drosophila knock-in flies carrying the K1270T SCN1A mutation known to cause a form of genetic epilepsy with febrile seizures plus (GEFS+) exhibit a heat-induced increase in sodium current activity and seizure phenotype. To determine whether different SCN1A m...
Ryś Maciej
2014-01-01
In this work, a macroscopic material model for simulation two distinct dissipative phenomena taking place in FCC metals and alloys at low temperatures: plasticity and phase transformation, is presented. Plastic yielding is the main phenomenon occurring when the yield stress is reached, resulting in nonlinear response of the material during loading. The phase transformation process leads to creation of two-phase continuum, where the parent phase coexists with the inclusions of secondary phase....
Meta-Theoretical Contributions to the Constitution of a Model-Based Didactics of Science
Ariza, Yefrin; Lorenzano, Pablo; Adúriz-Bravo, Agustín
2016-10-01
There is nowadays consensus in the community of didactics of science (i.e. science education understood as an academic discipline) regarding the need to include the philosophy of science in didactical research, science teacher education, curriculum design, and the practice of science education in all educational levels. Some authors have identified an ever-increasing use of the concept of `theoretical model', stemming from the so-called semantic view of scientific theories. However, it can be recognised that, in didactics of science, there are over-simplified transpositions of the idea of model (and of other meta-theoretical ideas). In this sense, contemporary philosophy of science is often blurred or distorted in the science education literature. In this paper, we address the discussion around some meta-theoretical concepts that are introduced into didactics of science due to their perceived educational value. We argue for the existence of a `semantic family', and we characterise four different versions of semantic views existing within the family. In particular, we seek to contribute to establishing a model-based didactics of science mainly supported in this semantic family.
Meta-Theoretical Contributions to the Constitution of a Model-Based Didactics of Science
Ariza, Yefrin; Lorenzano, Pablo; Adúriz-Bravo, Agustín
2016-07-01
There is nowadays consensus in the community of didactics of science (i.e. science education understood as an academic discipline) regarding the need to include the philosophy of science in didactical research, science teacher education, curriculum design, and the practice of science education in all educational levels. Some authors have identified an ever-increasing use of the concept of `theoretical model', stemming from the so-called semantic view of scientific theories. However, it can be recognised that, in didactics of science, there are over-simplified transpositions of the idea of model (and of other meta-theoretical ideas). In this sense, contemporary philosophy of science is often blurred or distorted in the science education literature. In this paper, we address the discussion around some meta-theoretical concepts that are introduced into didactics of science due to their perceived educational value. We argue for the existence of a `semantic family', and we characterise four different versions of semantic views existing within the family. In particular, we seek to contribute to establishing a model-based didactics of science mainly supported in this semantic family.
A heuristic model of alcohol dependence.
Directory of Open Access Journals (Sweden)
Zhen Qi
Full Text Available BACKGROUND: Substance dependence poses a critical health problem. Sadly, its neurobiological mechanisms are still unclear, and this lack of real understanding is reflected in insufficient treatment options. It has been hypothesized that alcohol effects are due to an imbalance between neuroexcitatory and neuroinhibitory amino acids. However, glutamate and GABA interact with other neurotransmitters, which form a complicated network whose functioning evades intuition and should be investigated systemically with methods of biomedical systems analysis. METHODS AND RESULTS: We present a heuristic model of neurotransmitters that combines a neurochemical interaction matrix at the biochemical level with a mobile describing the balances between pairs of neurotransmitters at the physiological and behavioral level. We investigate the effects of alcohol on the integrated neurotransmitter systems at both levels. The model simulation results are consistent with clinical and experimental observations. The model demonstrates that the drug diazepam for symptoms of alcohol withdrawal effectively reduces the imbalances between neurotransmitters. Moreover, the acetylcholine signal is suggested as a novel target for treatment of symptoms associated with alcohol withdrawal. CONCLUSIONS: Efficient means of integrating clinical symptoms across multiple levels are still scarce and difficult to establish. We present a heuristic model of systemic neurotransmitter functionality that permits the assessment of genetic, biochemical, and pharmacological perturbations. The model can serve as a tool to represent clinical and biological observations and explore various scenarios associated with alcohol dependence and its treatments. It also is very well suited for educational purposes.
Colour dependence of zodiacal light models
Giese, R. H.; Hanner, M. S.; Leinert, C.
1973-01-01
Colour models of the zodiacal light in the ecliptic have been calculated for both dielectric and metallic particles in the sub-micron and micron size range. Two colour ratios were computed, a blue ratio and a red ratio. The models with a size distribution proportional to s to the -2.5 power ds (where s is the particle radius) generally show a colour close to the solar colour and almost independent of elongation. Especially in the blue colour ratio there is generally no significant dependence on the lower cutoff size (0.1-1 micron). The main feature of absorbing particles is a reddening at small elongations. The models for size distributions proportional to s to the -4 power ds show larger departures from solar colour and more variation with model parameters. Colour measurements, including red and near infra-red, therefore are useful to distinguish between flat and steep size spectra and to verify the presence of slightly absorbing particles.
BASIC SOLUTION FOR THE THREE-PHASE COMPOSITE CONSTITUTIVE MODEL IN ANTIPLANE PIEZOELECTRICITY
Institute of Scientific and Technical Information of China (English)
Wang Xu; Shen Yapeng
2000-01-01
A basic solution in series form for the three-phase composite cylindrical model in antiplane piezoelectricity subjected to the action of a singularity in the intermediate matrix region is presented. The so lution is obtained through the complex potential approach in conjunction with the techniques of analytical con tinuation, singularity analysis, Laurent series expansion in an annular region and Cauchy integral formulae, etc. Based on the complex potentials obtained, explicit expressions for the distribution of stress and electric displacement in the three regions are also derived.
DEFF Research Database (Denmark)
Enevoldsen, Marie Sand; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt
2011-01-01
Cigarette smoking is the leading self-inflicted risk factor for cardiovascular diseases; it causes arterial stiffening with serious sequelea including atherosclerosis and abdominal aortic aneurysms. This work presents a new interpretation of arterial stiffening caused by smoking based on data...... caused by smoking was reflected by consistent increase in an elastin-associated parameter and moreover by marked increase in the collagen-associated parameters. That is, we suggest that arterial stiffening due to cigarette smoking appears to be isotropic, which may allow simpler phenomenological models...
DEFF Research Database (Denmark)
Enevoldsen, Majken; Henneberg, K-A; Jensen, J A
2011-01-01
Cigarette smoking is the leading self-inflicted risk factor for cardiovascular diseases; it causes arterial stiffening with serious sequelea including atherosclerosis and abdominal aortic aneurysms. This work presents a new interpretation of arterial stiffening caused by smoking based on data...... by smoking was reflected by consistent increase in an elastin-associated parameter and moreover by marked increase in the collagen-associated parameters. That is, we suggest that arterial stiffening due to cigarette smoking appears to be isotropic, which may allow simpler phenomenological models to capture...
The influence of jet-grout constitutive modelling in excavation analyses
Ciantia, M.; Arroyo Alvarez de Toledo, Marcos; Castellanza, R; Gens Solé, Antonio
2012-01-01
A bonded elasto-plastic soil model is employed to characterize cement-treated clay in the finite element analysis of an excavation on soft clay supported with a soil-cement slab at the bottom. The soft clay is calibrated to represent the behaviour of Bangkok soft clay. A parametric study is run for a series of materials characterised by increasing cement content in the clay-cement mixture. The different mixtures are indirectly specified by means of their unconfined compressive strength. A ...
Brewer, Paul Duffield; Habtemichael, Estifanos N; Romenskaia, Irina; Mastick, Cynthia Corley; Coster, Adelle C F
2016-01-08
The RabGAP AS160/TBC1D4 controls exocytosis of the insulin-sensitive glucose transporter Glut4 in adipocytes. Glut4 is internalized and recycled through a highly regulated secretory pathway in these cells. Glut4 also cycles through a slow constitutive endosomal pathway distinct from the fast transferrin (Tf) receptor recycling pathway. This slow constitutive pathway is the only Glut4 cycling pathway in undifferentiated fibroblasts. The α2-macroglobulin receptor LRP1 cycles with Glut4 and the Tf receptor through all three exocytic pathways. To further characterize these pathways, the effects of knockdown of AS160 substrates on the trafficking kinetics of Glut4, LRP1, and the Tf receptor were measured in adipocytes and fibroblasts. Rab10 knockdown decreased cell surface Glut4 in insulin-stimulated adipocytes by 65%, but not in basal adipocytes or in fibroblasts. This decrease was due primarily to a 62% decrease in the rate constant of Glut4 exocytosis (kex), although Rab10 knockdown also caused a 1.4-fold increase in the rate constant of Glut4 endocytosis (ken). Rab10 knockdown in adipocytes also decreased cell surface LRP1 by 30% by decreasing kex 30-40%. There was no effect on LRP1 trafficking in fibroblasts or on Tf receptor trafficking in either cell type. These data confirm that Rab10 is an AS160 substrate that limits exocytosis through the highly insulin-responsive specialized secretory pathway in adipocytes. They further show that the slow constitutive endosomal (fibroblast) recycling pathway is Rab10-independent. Thus, Rab10 is a marker for the specialized pathway in adipocytes. Interestingly, mathematical modeling shows that Glut4 traffics predominantly through the specialized Rab10-dependent pathway both before and after insulin stimulation.
Constitutive modeling of the dynamic-tensile-extrusion test of PTFE
Resnyansky, A. D.; Brown, E. N.; Trujillo, C. P.; Gray, G. T.
2017-01-01
Use of polymers in defense, aerospace and industrial applications under extreme loading conditions makes prediction of the behavior of these materials very important. Crucial to this is knowledge of the physical damage response in association with phase transformations during loading and the ability to predict this via multi-phase simulation accounting for thermodynamical non-equilibrium and strain rate sensitivity. The current work analyzes Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) experiments on polytetrafluoroethylene (PTFE). In particular, the phase transition during loading and subsequent tension are analyzed using a two-phase rate sensitive material model implemented in the CTH hydrocode. The calculations are compared with experimental high-speed photography. Deformation patterns and their link with changing loading modes are analyzed numerically and correlated to the test observations. It is concluded that the phase transformation is not as critical to the response of PTFE under Dyn-Ten-Ext loading as it is during the Taylor rod impact testing.
Svendsen, B.; Hutter, K.; Laloui, L.
This work deals with the thermodynamic formulation of constitutive models for materials whose quasi-static behaviour is governed by internal friction, e.g., dry granular materials. The process of internal friction is represented here phenomenologically with the help of a second-order, symmetric-tensor-valued internal variable. A general class of models for the evolution of this variable is considered, including as special cases a hypoelastic-like form for this relation as well as the hypoplastic form of Kolymbas (1991). The thermodynamic formulation is carried out in the context of the Müller-Liu entropy principle. Among other things, it is shown that for the hypoelastic-type models, a true equilibrium inelastic Cauchy stress exists. On the other hand, such a stress does not exist for the hypoplastic model due to its rate-independence and incremental non-linearity. With the help of a slight generalization of the notion of thermodynamic equilibrium, i.e., to thermodynamic ``quasi-equilibrium,'' however, such a Cauchy stress can be formulated for the hypoplastic model. As it turns out, this quasi-equilibrium for the Cauchy stress represents a thermodynamic generalization of the so-called quasi-static stress postulated for example by Goddard (1986) in the context of his viscoplastic model for a frictional-dissipative, and in particular for granular, materials.
结构性黄土的修正Duncan-Chang模型%Modified Duncan-Chang model of constitutive loess
Institute of Scientific and Technical Information of China (English)
唐玉龙; 周飞飞
2012-01-01
In order to realize the unification of investigation of structural feature of intact collapsible loess with that of constitutive model and solve the problem of positive definiteness of tangent stiffness matrix of softening stress-strain curves, the pattern of structural damage of intact structural loess caused by moistening consolidation and shearing deformation was investigated in the condition of different water content and consolidation pressure, and a modified Duncan-Chang constitutive model of collapse loess was established. In this nonlinear constitutive model, the damage of soil structure caused by moisture addition and load application was taken into consideration and the moisture content was taken as an important variable to calculate the tangent modulus of current strain state with a bunch of hyperbolas with identical initial tangent modulus and different ultimate strength. By so doing, the stress-strain curve of structural loess could be described in a unified way with the strain-induced hardening and softening, and a new method of deformation and strength calculation was formed for the case of intact collapsible loess with coupled moisture addition and stress changing.%为了实现原状湿陷性黄土结构性与其本构模型研究的统一,解决软化型应力-应变曲线的切线刚度矩阵正定性问题,通过研究原状结构性黄土在不同含水率和固结围压条件下由增湿、固结作用和剪切变形引起的结构性损伤规律,建立可以反映结构性变化的修正非线性Duncan-Chang模型.该模型考虑了增湿和加荷对土体结构的损伤破坏,把含水率作为一个重要的变量,用一族具有相同初始切线模量和不同极限强度的双曲线来求取当前应变状态处的切线模量,能够统一描述结构性黄土的应变软化和硬化型应力-应变关系曲线,形成解决原状湿陷性黄土增湿和应力耦合条件下变形及强度计算问题的新方法.
Synthesis and enzymatic hydrolysis of esters, constituting simple models of soft drugs.
Graffner-Nordberg, M; Sjödin, K; Tunek, A; Hallberg, A
1998-04-01
One way to minimise systemic side effects of drugs is to design molecules, soft drugs, in such a way that they are metabolically inactivated rapidly after having acted on their pharmacological target. Hydrolases (esterases, peptidases, lipases, glycosidases, etc.) are enzymes well suited to use for drug inactivation since they are ubiquitously distributed. Insertion of ester bonds susceptible to enzymatic cleavage may represent one approach to make the action of a drug more restricted to the site of application. The present study describes the chemical synthesis of fourteen model compounds comprising a bicyclic aromatic unit connected by an ester-containing bridge to another aromatic ring. Initial attempts to define a) the tissue selectivity of the hydrolytic metabolism and b) the molecular structural factors affecting the rate of enzymatic ester cleavage are presented. The data show that human and rat liver fractions were more active than human duodenal mucosa and human blood leukocytes at hydrolysing the compounds. The rank order of the compounds was, however, very similar in the different biological systems. Commercially available pig liver carboxyl esterase and cholesterol esterase both reasonably well predict the rank order in the tissue fractions.
Institute of Scientific and Technical Information of China (English)
WANG Gang; JI Shun-ying; LV He-xiang; YUE Qian-jin
2006-01-01
Based on the characteristics of sea ice drifting and ridging at meso-small scale, the Drucker-Prager (D-P) yield criteria was introduced into the Viscoelastic-Plastic (VEP) constitutive model for the study of sea ice dynamics. In this model, the Kelvin-Vogit viscoelastic model was adopted in the elastic stage, and the associated normal flow rule was used in the plastic stage. Using the VEP model, the sea ice ridging process was simulated in an idealized rectangular basin, and the simulation results show that the simulated ice ridge thickness is consistent with the analytical solution. Moreover, the VEP model with the D-P yield criteria was also applied for the sea ice simulation of Bohai Sea, and the ice thickness, concentration, velocity, and ice stress were obtained in 48 h. The simulated thickness distributions agree well with the satellite images. The singular problem in the Mohr-Coulomb (M-C) yield criteria was overcome by the D-P yield criteria, and the computational efficiency was also improved. In the numerical simulations described above, the smoothed particle hydrodynamics was applied.
Kelly, Alex; Stebner, Aaron P.; Bhattacharya, Kaushik
2016-12-01
A constitutive model to describe macroscopic elastic and transformation behaviors of polycrystalline shape-memory alloys is formulated using an internal variable thermodynamic framework. In a departure from prior phenomenological models, the proposed model treats initiation, growth kinetics, and saturation of transformation distinctly, consistent with physics revealed by recent multi-scale experiments and theoretical studies. Specifically, the proposed approach captures the macroscopic manifestations of three micromechanial facts, even though microstructures are not explicitly modeled: (1) Individual grains with favorable orientations and stresses for transformation are the first to nucleate martensite, and the local nucleation strain is relatively large. (2) Then, transformation interfaces propagate according to growth kinetics to traverse networks of grains, while previously formed martensite may reorient. (3) Ultimately, transformation saturates prior to 100% completion as some unfavorably-oriented grains do not transform; thus the total transformation strain of a polycrystal is modest relative to the initial, local nucleation strain. The proposed formulation also accounts for tension-compression asymmetry, processing anisotropy, and the distinction between stress-induced and temperature-induced transformations. Consequently, the model describes thermoelastic responses of shape-memory alloys subject to complex, multi-axial thermo-mechanical loadings. These abilities are demonstrated through detailed comparisons of simulations with experiments.
Xu, Jinsheng; Han, Long; Zheng, Jian; Chen, Xiong; Zhou, Changsheng
2017-02-01
A thermo-damage-viscoelastic model for hydroxyl-terminated polybutadiene (HTPB) composite propellant with consideration for the effect of temperature was implemented in ABAQUS. The damage evolution law of the model has the same form as the crack growth equation for viscoelastic materials, and only a single damage variable S is considered. The HTPB propellant was considered as an isotropic material, and the deviatoric and volumetric strain-stress relations are decoupled and described by the bulk and shear relaxation moduli, respectively. The stress update equations were expressed by the principal stresses σ_{ii}R and the rotation tensor M, the Jacobian matrix in the global coordinate system J_{ijkl} was obtained according to the fourth-order tensor transformation rules. Two models having complex stress states were used to verify the accuracy of the constitutive model. The test results showed good agreement with the strain responses of characteristic points measured by a contactless optical deformation test system, which illustrates that the thermo-damage-viscoelastic model perform well at describing the mechanical properties of an HTPB propellant.
Institute of Scientific and Technical Information of China (English)
Aizhao Zhou; Tinghao Lu
2009-01-01
The behavior of soil-structure interface plays a major role in the definition of soil-structure interaction. In this paper a bi-potential surface elasto-plastic model for soil-structure interface is proposed in order to describe the interface deformation behavior, including strain softening and normal dilatancy. The model is formulated in the framework of generalized potential theory, in which the soil-structure interface problem is regard as a two-dimensional mathematical problem in stress field, and plastic state equations are used to replace the traditional field surface. The relation curves of shear stress and tangential strain are fitted by a piecewise function composed by hyperbolic functions and hyperbolic secant functions, while the relation curves of normal strain and tangential strain are fitted by another piecewise function composed by quadratic functions and hyperbolic secant functions. The approach proposed has the advantage of deriving an elasto-plastic constitutive matrix without postulating the plastic potential functions and yield surface. Moreover, the mathematical principle is clear, and the entire model parameters can be identified by experimental tests. Finally, the predictions of the model have been compared with experimental results obtained from simple shear tests under normal stresses, and results show the model is reasonable and practical.
Choi, Jisik; Lee, Jinwoo; Lee, Myoung-Gyu; Barlat, Frederic
2016-08-01
The reduction of springback for a U-shaped channel using a double drawing process was investigated. In this test, the punch strokes of the 1st and 2nd stamping steps were controlled and each followed by unloading. The simulations were conducted using kinematic and distortional hardening models, which were implemented into a finite element (FE) code to describe the Bauschinger effect and its associated anisotropic hardening effects during strain path change. In addition to the usual mechanical characterization tests, in-plane compression- tension experiments were conducted on DP980 and TWIP980 to determine the constitutive parameters pertaining to load reversal. Experimental and FE simulated results of the channel shape were compared for both materials in order to understand the effect of anisotropic hardening under non-proportional loading on springback.
Stohastic Properties of Plasticity Based Constitutive Law for Concrete
DEFF Research Database (Denmark)
Frier, Christian; Sørensen, John Dalsgaard
1998-01-01
The purpose of this paper is to obtain a stochastic model for the parameters in a constitutive model for concrete based on associated plasticity theory and with emphasis placed on the pre-failure range. The constitutive model is based on a Drucker Prager yield surface augmented by a Rankine cut......-off criterion. The statistics of the material parameters are obtained by applying biaxial test results for plane concrete slabs to the constitutive model using the maximum likelihood method. Response surfaces are used to obtain the statistics for a parameter depending on other previously obtained parameters...
Stochastic Properties of Plasticity Based Constitutive Law for Concrete
DEFF Research Database (Denmark)
Frier, Christian; Sørensen, John Dalsgaard
The purpose of this paper is to obtain a stochastic model for the parameters in a constitutive model for concrete based on associated plasticity theory and with emphasis placed on the pre-failure range. The constitutive model is based on a Drucker Prager yield surface augmented by a Rankine cut......-off criterion. The statistics of the material parameters are obtained by applying biaxial test results for plane concrete slabs to the constitutive model using the maximum likelihood method. Response surfaces are used to obtain the statistics for a parameter depending on other previously obtained parameters...
Directory of Open Access Journals (Sweden)
Scheila Cristiane Thomé
2013-12-01
Full Text Available The aim of this article is to analyze the problems found by Husserl regarding the application of the constitution scheme of “apprehension-content of apprehension” as a model of understanding the deepest levels (tiefsten Stufe of time constitution. Such analysis will deal with the first period, in which Husserl investigates in a systematic way time constitution, i.e. in texts from Husserliana X (1893-1917. Firstly, in texts from Husserliana X, Husserl applies the scheme of constitution apprehension-content of apprehension as a way to describe all temporal constitution. Secondly (from 1909 on Husserl observes that the application of this interpretative scheme to describe the lowest levels (untersten Stufen of temporal constitution leads to serious problems, such as an inevitable infinite regression and a fall into an understanding founded on “prejudices of the now”. To overcome such obstacles, Husserl tried to deepen his analysis of the lowest level of temporal constitution and found out that the absolute flow (and its own modes of consciousness, viz., primal impression, retention, protention is the last level of all constitution of temporality.
Stanifer, Megan L; Rippert, Anja; Kazakov, Alexander; Willemsen, Joschka; Bucher, Delia; Bender, Silke; Bartenschlager, Ralf; Binder, Marco; Boulant, Steeve
2016-12-01
Intestinal epithelial cells (IECs) constitute the primary barrier that separates us from the outside environment. These cells, lining the surface of the intestinal tract, represent a major challenge that enteric pathogens have to face. How IECs respond to viral infection and whether enteric viruses have developed strategies to subvert IECs innate immune response remains poorly characterized. Using mammalian reovirus (MRV) as a model enteric virus, we found that the intermediate subviral particles (ISVPs), which are formed in the gut during the natural course of infection by proteolytic digestion of the reovirus virion, trigger reduced innate antiviral immune response in IECs. On the contrary, infection of IECs by virions induces a strong antiviral immune response that leads to cellular death. Additionally, we determined that virions can be sensed by both TLR and RLR pathways while ISVPs are sensed by RLR pathways only. Interestingly, we found that ISVP infected cells secrete TGF-β acting as a pro-survival factor that protects IECs against virion induced cellular death. We propose that ISVPs represent a reovirus strategy to initiate primary infection of the gut by subverting IECs innate immune system and by counteracting cellular-death pathways. © 2016 John Wiley & Sons Ltd.
Energy Technology Data Exchange (ETDEWEB)
Beckmoeller, S.; Schubert, F.; Penkalla, H.J.; Nickel, H.; Breitbach, G.
1994-06-01
To enhance the high temperature potential of Superalloys for applications in stationary gas turbines a new concept is required for the prediction of the service life of the blades with an improved method for inelastic analysis. The applicability of the microstructural dependent constitutive equations, which has been developed at the IWE of the KFA, are discussed for a structural analysis of an internally cooled IN 738 LC turbine blade. For the multiaxial confirmation of the model tension-torsion experiments and experiments with precision casted internally cooled model turbine blades were carried out. The blades were exposed to temperature transients and tension stresses to simulate the centrifugal forces. For the mathematical analysis the constitutive equations were implemented into the Finite Elemente Code ABAQUS. A two dimensional mesh was used. At first, the temperature distribution in the blade was calculated based on the temperatures measured at certain points during the experiments. After the temperature distribution was known, it was possible to calculate the stresses and inelastic strains at every point of the model structure. The comparison of the experiments with the calculations, using the constitutive equations of Penkalla, showed a good conformity. For the life time prediction by experiments with short holding times, an elastic analysis could be used. But for experiments with long holding times creep is more dominant and has to be considered. (orig.) [Deutsch] Fuer die optimale Nutzung der Eigenschaften neuer hochwarmfester Superlegierungen reicht die herkoemmliche Auslegung dann nicht mehr aus, wenn ein Bauteil komplizierten Temperatur- und Belastungszyklen ausgesetzt ist. Die Beurteilung des Betriebsverhaltens und der Lebensdauer solcher Bauteile bedarf neuer Konzepte. Ein solches Bauteil ist die innengekuehlte Turbinenschaufel einer modernen stationaeren Gasturbine. Im Rahmen dieser Arbeit wurde die Anwendbarkeit des strukturabhaengigen
Clarke, J D; Aarts, N; Feys, B J; Dong, X; Parker, J E
2001-05-01
The systemic acquired resistance (SAR) response in Arabidopsis is characterized by the accumulation of salicylic acid (SA), expression of the pathogenesis-related (PR) genes, and enhanced resistance to virulent bacterial and oomycete pathogens. The cpr (constitutive expressor of PR genes) mutants express all three SAR phenotypes. In addition, cpr5 and cpr6 induce expression of PDF1.2, a defense-related gene associated with activation of the jasmonate/ethylene-mediated resistance pathways. cpr5 also forms spontaneous lesions. In contrast, the eds1 (enhanced disease susceptibility) mutation abolishes race-specific resistance conferred by a major subclass of resistance (R) gene products in response to avirulent pathogens. eds1 plants also exhibit increased susceptibility to virulent pathogens. Epistasis experiments were designed to explore the relationship between the cpr- and EDS1-mediated resistance pathways. We found that a null eds1 mutation suppresses the disease resistance phenotypes of both cpr1 and cpr6. In contrast, eds1 only partially suppresses resistance in cpr5, leading us to conclude that cpr5 expresses both EDS1-dependent and EDS1-independent components of plant disease resistance. Although eds1 does not prevent lesion formation on cpr5 leaves, it alters their appearance and reduces their spread. This phenotypic difference is associated with increased pathogen colonization of cpr5 eds1 plants compared to cpr5. The data allow us to place EDS1 as a necessary downstream component of cpr1- and cpr6-mediated responses, but suggest a more complex relationship between EDS1 and cpr5 in plant defense.
Directory of Open Access Journals (Sweden)
Nabila eDjafi
2013-08-01
Full Text Available Phosphoinositide-dependent phospholipases C (PI-PLCs are activated in response to various stimuli. They utilize substrates provided by type III-Phosphatidylinositol-4 kinases (PI4KIII to produce inositol triphosphate and diacylglycerol (DAG that is phosphorylated into phosphatidic acid (PA by DAG-kinases (DGKs. The roles of PI4KIIIs, PI-PLCs and DGKs in basal signalling are poorly understood. We investigated the control of gene expression by basal PI-PLC pathway in Arabidopsis thaliana suspension cells. A transcriptome-wide analysis allowed the identification of genes whose expression was altered by edelfosine, 30 µM wortmannin or R59022, inhibitors of PI-PLCs, PI4KIIIs and DGKs, respectively. We found that a gene responsive to one of these molecules is more likely to be similarly regulated by the other two inhibitors. The common action of these agents is to inhibit PA formation, showing that basal PI-PLCs act, in part, on gene expression through their coupling to DGKs. Amongst the genes up-regulated in presence of the inhibitors, were some DREB2 genes, in suspension cells and in seedlings. The DREB2 genes encode transcription factors with major roles in responses to environmental stresses, including dehydration. They bind to C-repeat motifs, known as Drought-Responsive Elements, that are indeed enriched in the promoters of genes up-regulated by PI-PLC pathway inhibitors. PA can also be produced by phospholipases D (PLDs. We show that the DREB2 genes that are up-regulated by PI-PLC inhibitors are positively or negatively regulated, or indifferent, to PLD basal activity. Our data show that the DREB2 genetic pathway is constitutively repressed in resting conditions and that DGK coupled to PI-PLC is active in this process, in suspension cells and seedlings. We discuss how this basal negative regulation of DREB2 genes is compatible with their stress-triggered positive regulation.
Animal models of alcohol and drug dependence
Directory of Open Access Journals (Sweden)
Cleopatra S. Planeta
2013-01-01
Full Text Available Drug addiction has serious health and social consequences. In the last 50 years, a wide range of techniques have been developed to model specific aspects of drug-taking behaviors and have greatly contributed to the understanding of the neurobiological basis of drug abuse and addiction. In the last two decades, new models have been proposed in an attempt to capture the more genuine aspects of addiction-like behaviors in laboratory animals. The goal of the present review is to provide an overview of the preclinical procedures used to study drug abuse and dependence and describe recent progress that has been made in studying more specific aspects of addictive behavior in animals.
Yu, Chao; Kang, Guozheng; Kan, Qianhua
2017-06-01
A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite Mt and detwinned martensite Md, as well as the phase transitions occurring between each pair of phases (A→ M t, Mt→ A, A→ M d, Md→ A, and Mt→ M d) are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases ( A, Mt, and Md) and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model.
Tutyshkin, Nikolai D.; Lofink, Paul; Müller, Wolfgang H.; Wille, Ralf; Stahn, Oliver
2016-09-01
On the basis of the physical concepts of void formation, nucleation, and growth, generalized constitutive equations are formulated for a tensorial model of plastic damage in metals based on three invariants. The multiplicative decomposition of the metric transformation tensor and a thermodynamically consistent formulation of constitutive relations leads to a symmetric second-order damage tensor with a clear physical meaning. Its first invariant determines the damage related to plastic dilatation of the material due to growth of the voids. The second invariant of the deviatoric damage tensor is related to the change in void shape. The third invariant of the deviatoric tensor describes the impact of the stress state on damage (Lode angle), including the effect of rotating the principal axes of the stress tensor (Lode angle change). The introduction of three measures with related physical meaning allows for the description of kinetic processes of strain-induced damage with an equivalent parameter in a three-dimensional vector space, including the critical condition of ductile failure. Calculations were performed by using experimentally determined material functions for plastic dilatation and deviatoric strain at the mesoscale, as well as three-dimensional graphs for plastic damage of steel DC01. The constitutive parameter was determined from tests in tension, compression, and shear by using scanning electron microscopy, which allowed to vary the Lode angle over the full range of its values [InlineEquation not available: see fulltext.]. In order to construct the three-dimensional plastic damage curve for a range of triaxiality parameters -1 ≤ ST ≤ 1 and of Lode angles [InlineEquation not available: see fulltext.], we used our own, as well as systematized published experimental data. A comparison of calculations shows a significant effect of the third invariant (Lode angle) on equivalent damage. The measure of plastic damage, based on three invariants, can be useful
Tutyshkin, Nikolai D.; Lofink, Paul; Müller, Wolfgang H.; Wille, Ralf; Stahn, Oliver
2017-01-01
On the basis of the physical concepts of void formation, nucleation, and growth, generalized constitutive equations are formulated for a tensorial model of plastic damage in metals based on three invariants. The multiplicative decomposition of the metric transformation tensor and a thermodynamically consistent formulation of constitutive relations leads to a symmetric second-order damage tensor with a clear physical meaning. Its first invariant determines the damage related to plastic dilatation of the material due to growth of the voids. The second invariant of the deviatoric damage tensor is related to the change in void shape. The third invariant of the deviatoric tensor describes the impact of the stress state on damage (Lode angle), including the effect of rotating the principal axes of the stress tensor (Lode angle change). The introduction of three measures with related physical meaning allows for the description of kinetic processes of strain-induced damage with an equivalent parameter in a three-dimensional vector space, including the critical condition of ductile failure. Calculations were performed by using experimentally determined material functions for plastic dilatation and deviatoric strain at the mesoscale, as well as three-dimensional graphs for plastic damage of steel DC01. The constitutive parameter was determined from tests in tension, compression, and shear by using scanning electron microscopy, which allowed to vary the Lode angle over the full range of its values [InlineEquation not available: see fulltext.]. In order to construct the three-dimensional plastic damage curve for a range of triaxiality parameters -1 ≤ ST ≤ 1 and of Lode angles [InlineEquation not available: see fulltext.], we used our own, as well as systematized published experimental data. A comparison of calculations shows a significant effect of the third invariant (Lode angle) on equivalent damage. The measure of plastic damage, based on three invariants, can be useful
Increased opioid dependence in a mouse model of panic disorder
Directory of Open Access Journals (Sweden)
Xavier Gallego
2010-02-01
Full Text Available Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3. Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 locus coeruleus neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met5-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in locus coeruleus and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients.
Patel, Asha Parbhu; Deacon, Andrew; Getti, Giulia
2014-04-01
Green fluorescent protein (GFP)-parasite transfectants have been widely used as a tool for studying disease pathogenesis in several protozoan models and their application in drug screening assays has increased rapidly. In the past decade, the expression of GFP has been established in several Leishmania species, mostly for in vitro studies. The current work reports generation of four transgenic parasites constitutively expressing GFP (Leishmania mexicana, Leishmania aethiopica, Leishmania tropica and Leishmania major) and their validation as a representative model of infection. This is the first report where stable expression of GFP has been achieved in L. aethiopica and L. tropica. Integration of GFP was accomplished through homologous recombination of the expression construct, pRib1.2αNEOαGFP downstream of the 18S rRNA promoter in all species. A homogeneous and high level expression of GFP was detected in both the promastigote and the intracellular amastigote stages. All transgenic species showed the same growth pattern, ability to infect mammalian host cells and sensitivity to reference drugs as their wild type counterparts. All four transgenic Leishmania are confirmed as models for in vitro and possibly in vivo infections and represent an ideal tool for medium throughput testing of compound libraries.
Energy Technology Data Exchange (ETDEWEB)
Maiti, A [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dinh, L. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-11-16
Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation-, thermal-, and electrical barriers. External factors like mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a Materials Science point of view it is highly desirable to understand, effect, and manipulate such property changes in a controlled manner. In this report we summarize our modeling efforts on a polysiloxane elastomer TR-55, which is an important component in several of our systems, and representative of a wide class of filled rubber materials. The primary aging driver in this work has been γ-radiation, and a variety of modeling approaches have been employed, including constitutive, mesoscale, and population-based models. The work utilizes diverse experimental data, including mechanical stress-strain and compression set measurements, as well as MWD measurements using multiquantum NMR.
Flavour Dependent Gauged Radiative Neutrino Mass Model
Baek, Seungwon; Yagyu, Kei
2015-01-01
We propose a one-loop induced radiative neutrino mass model with anomaly free flavour dependent gauge symmetry: $\\mu$ minus $\\tau$ symmetry $U(1)_{\\mu-\\tau}$. A neutrino mass matrix satisfying current experimental data can be obtained by introducing a weak isospin singlet scalar boson that breaks $U(1)_{\\mu-\\tau}$ symmetry, an inert doublet scalar field, and three right-handed neutrinos in addition to the fields in the standard model. We find that a characteristic structure appears in the neutrino mass matrix: two-zero texture form which predicts three non-zero neutrino masses and three non-zero CP-phases which can be determined five well measured experimental inputs of two squared mass differences and three mixing angles. Furthermore, it is clarified that only the inverted mass hierarchy is allowed in our model. In a favored parameter set from the neutrino sector, the discrepancy in the muon anomalous magnetic moment between the experimental data and the the standard model prediction can be explained by the ...
Hu, Yumei; Zhu, Hao; Zhu, W. D.; Li, Changlong; Pi, Yangjun
2017-10-01
The focus of this work is the accurate prediction of dynamic mechanical performances of a multi-ribbed belt span. An overlay constitutive model, which consists of hyperelastic, viscoelastic and elastoplastic parts coupled in parallel, is established to describe mechanical properties of carbon-black-filled rubber material used in the belt. A uniaxial tensile test and a uniaxial compressional test are conducted to obtain the hyperelastic material parameters of the constitutive model, and a simple dynamic shear test is used to identify the viscoplastic material parameters via a standard genetic algorithm. Finite element (FE) simulations with the constitutive model are performed to simulate static and hysteretic dynamic characteristics of rubber specimens in these tests. By comparing the simulation results with experiments, the accuracy of the constitutive model and its material parameters is validated. A three-dimensional FE model based on the constitutive model is established to predict both longitudinal and transverse dynamic performances of the multi-ribbed belt span and its good agreements with experimental results are achieved.
Bayesian Network Models for Local Dependence among Observable Outcome Variables
Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli
2009-01-01
Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task, which may be dependent. This article explores four design patterns for modeling locally dependent observations: (a) no context--ignores dependence among observables; (b) compensatory context--introduces…
García, A; Peña, E; Laborda, A; Lostalé, F; De Gregorio, M A; Doblaré, M; Martínez, M A
2011-07-01
The present study focusses on the determination, comparison and constitutive modelling of the passive mechanical properties of the swine carotid artery over very long stretches in both proximal and distal regions. Special attention is paid to the histological and mechanical variations of these properties depending on the proximity to the heart. The results can have clinical relevance, especially in the research field of intravascular device design. Before the final clinical trials on humans, research in the vascular area is conducted on animal models, swine being the most common due to the similarities between the human and swine cardiovascular systems as well as the fact that the swine size is suitable for testing devices, in this case endovascular carotid systems. The design of devices usually involves numerical techniques, and an important feature is the appropriate modelling of the mechanical properties of the vessel. Fourteen carotid swine arteries were harvested just after sacrifice and cyclic uniaxial tension tests in longitudinal and circumferential directions were performed for distal and proximal samples. The stress-stretch curves obtained were fitted with a hyperelastic anisotropic model. Stress-free configuration states were also analyzed. Finally, human and swine samples were processed in a histological laboratory and images were used to quantify their microconstituents. The statistical analysis revealed significant differences between the mechanical behavior of proximal and distal locations in the circumferential but not in the longitudinal direction. Circumferential direction samples show clear differences both in residual stretches and tensile curves between the two locations, while the features of longitudinal specimens are independent of the axial position. The statistical analysis provides significant evidence of changes depending on the position of the sample, mainly in elastin and SMC quantification.
Zhao, Jifeng; Kontsevoi, Oleg Y.; Xiong, Wei; Smith, Jacob
2017-05-01
In this work, a multi-scale computational framework has been established in order to investigate, refine and validate constitutive behaviors in the context of the Gurson-Tvergaard-Needleman (GTN) void mechanics model. The eXtended Finite Element Method (XFEM) has been implemented in order to (1) develop statistical volume elements (SVE) of a matrix material with subscale inclusions and (2) to simulate the multi-void nucleation process due to interface debonding between the matrix and particle phases. Our analyses strongly suggest that under low stress triaxiality the nucleation rate of the voids f˙ can be well described by a normal distribution function with respect to the matrix equivalent stress (σe), as opposed to that proposed (σbar + 1 / 3σkk) in the original form of the single void GTN model. The modified form of the multi-void nucleation model has been validated based on a series of numerical experiments with different loading conditions, material properties, particle shape/size and spatial distributions. The utilization of XFEM allows for an invariant finite element mesh to represent varying microstructures, which implies suitability for drastically reducing complexity in generating the finite element discretizations for large stochastic arrays of microstructure configurations. The modified form of the multi-void nucleation model is further applied to study high strength steels by incorporating first principles calculations. The necessity of using a phenomenological interface separation law has been fully eliminated and replaced by the physics-based cohesive relationship obtained from Density Functional Theory (DFT) calculations in order to provide an accurate macroscopic material response.
Energy Technology Data Exchange (ETDEWEB)
Maiti, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Small, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duoss, E. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearson, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, T. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Maxwell, R. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-12-08
Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component in our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.
DEFF Research Database (Denmark)
Lyngaa, Rikke Birgitte; Nørregaard, K.; Kristensen, Martin;
2010-01-01
Epstein-Barr virus (EBV) open reading frame BILF1 encodes a seven trans-membrane (TM) G protein-coupled receptor that signals with high constitutive activity through G alpha(i) (Beisser et al., 2005; Paulsen et al., 2005). In this paper, the transforming potential of BILF1 is investigated in vitro...
Torfs, Elena; Balemans, Sophie; Locatelli, Florent; Diehl, Stefan; Bürger, Raimund; Laurent, Julien; François, Pierre; Nopens, Ingmar
2017-03-01
Advanced 1-D models for Secondary Settling Tanks (SSTs) explicitly account for several phenomena that influence the settling process (such as hindered settling and compression settling). For each of these phenomena a valid mathematical expression needs to be selected and its parameters calibrated to obtain a model that can be used for operation and control. This is, however, a challenging task as these phenomena may occur simultaneously. Therefore, the presented work evaluates several available expressions for hindered settling based on long-term batch settling data. Specific attention is paid to the behaviour of these hindered settling functions in the compression region in order to evaluate how the modelling of sludge compression is influenced by the choice of a certain hindered settling function. The analysis shows that the exponential hindered settling forms, which are most commonly used in traditional SST models, not only account for hindered settling but partly lump other phenomena (compression) as well. This makes them unsuitable for advanced 1-D models that explicitly include each phenomenon in a modular way. A power-law function is shown to be more appropriate to describe the hindered settling velocity in advanced 1-D SST models.
Operant alcohol self-administration in dependent rats: focus on the vapor model.
Vendruscolo, Leandro F; Roberts, Amanda J
2014-05-01
Alcoholism (alcohol dependence) is characterized by a compulsion to seek and ingest alcohol (ethanol), loss of control over intake, and the emergence of a negative emotional state during withdrawal. Animal models are critical in promoting our knowledge of the neurobiological mechanisms underlying alcohol dependence. Here, we review the studies involving operant alcohol self-administration in rat models of alcohol dependence and withdrawal with the focus on the alcohol vapor model. In 1996, the first articles were published reporting that rats made dependent on alcohol by exposure to alcohol vapors displayed increased operant alcohol self-administration during acute withdrawal compared with nondependent rats (i.e., not exposed to alcohol vapors). Since then, it has been repeatedly demonstrated that this model reliably produces physical and motivational symptoms of alcohol dependence. The functional roles of various systems implicated in stress and reward, including opioids, dopamine, corticotropin-releasing factor (CRF), glucocorticoids, neuropeptide Y (NPY), γ-aminobutyric acid (GABA), norepinephrine, and cannabinoids, have been investigated in the context of alcohol dependence. The combination of models of alcohol withdrawal and dependence with operant self-administration constitutes an excellent tool to investigate the neurobiology of alcoholism. In fact, this work has helped lay the groundwork for several ongoing clinical trials for alcohol dependence. Advantages and limitations of this model are discussed, with an emphasis on what future directions of great importance could be.
Brunnberg, Sara; Andersson, Patrik; Poellinger, Lorenz; Hanberg, Annika
2011-12-01
The dioxin/aryl hydrocarbon receptor (AhR) mediates most toxic effects of dioxins. In utero/lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) impairs fetal/neonatal development and the developing male reproductive tract are among the most sensitive tissues. TCDD causes antiestrogenic responses in rodent mammary gland and uterus and in human breast cancer cell lines in the presence of estrogen. Also, more recently an estrogen-like effect of TCDD/AhR has been suggested in the absence of estrogen. A transgenic mouse expressing a constitutively active AhR (CA-AhR) was developed as a model mimicking a situation of constant exposure to AhR agonists. Male and female reproductive tissues of CA-AhR mice were characterized for some of the effects commonly seen after dioxin exposure. Sexually mature CA-AhR female mice showed decreased uterus weight, while an uterotrophic assay in immature CA-AhR mice resulted in increased uterus weight. In immature mice, both TCDD-exposure and CA-AhR increased the expression of the estrogen receptor target gene Cathepsin D. When co-treated with 17β-estradiol no increase in Cathepsin D levels occurred in either TCDD-exposed or CA-AhR mice. In sexually mature male CA-AhR mice the weights of testis and ventral prostate were decreased and the epididymal sperm reserve was reduced. The results of the present study are in accordance with previous studies on dioxin-exposed rodents in that an activated AhR (here CA-AhR) leads to antiestrogenic effects in the presence of estrogen, but to estrogenic effects in the absence of estrogen. These results suggest the CA-AhR mouse model as a useful tool for studies of continuous low activity of the AhR from early development, resembling the human exposure situation.
Energy Technology Data Exchange (ETDEWEB)
Pellacani, Filippo
2012-12-04
A local mechanistic model for bubble coalescence and breakup for the one-group interfacial area transport equation has been developed, in agreement and within the limits of the current understanding, based on an exhaustive survey of the theory and of the state of the art models for bubble dynamics simulation. The new model has been tested using the commercial 3D CFD code ANSYS CFX. Upward adiabatic turbulent air-water bubbly flow has been simulated and the results have been compared with the data obtained in the experimental facility PUMA. The range of the experimental data available spans between 0.5 to 2 m/s liquid velocity and 5 to 15 % volume fraction. For the implementation of the models, both the monodispersed and the interfacial area transport equation approaches have been used. The first one to perform a detailed analysis of the forces and models to reproduce the dynamic of the dispersed phase adequately and to be used in the next phases of the work. Also two different bubble induced turbulence models have been tested to consider the effect of the presence of the gas phase on the turbulence of the liquid phase. The interfacial area transport equation has been successfully implemented into the CFD code and the state of the art breakup and coalescence models have been used for simulation. The limitations of the actual theory have been shown and a new bubble interactions model has been developed. The simulations showed that a considerable improvement is achieved if compared to the state of the art closure models. Limits in the implementation derive from the actual understanding and formulation of the bubbly dynamics. A strong dependency on the interfacial non-drag force models and coefficients have been shown. More experimental and theory work needs to be done in this field to increase the prediction capability of the simulation tools regarding the distribution of the phases along the pipe radius.
基于ABAQUS的非线性粘弹性本构模型二次开发%Developing of Nonlinear Viscoelastic Constitutive Model Based on ABAQUS
Institute of Scientific and Technical Information of China (English)
彭云
2011-01-01
基于大型非线性有限元软件ABAQUS/EXPLICIT所提供的用户材料子程序接口VUMAT,对非线性粘弹性本构模型进行二次开发.通过标准犬骨单轴拉伸算例,验证了子程序的有效性,弥补了ABAQUS仅含线性粘弹性本构模型的不足.文中详述了材料子程序开发流程,探讨了涉及的诸多实用技术,可为用户扩充ABAQUS的材料模型提供参考.%Based on the subroutine VUMAT, user - defined material model in the nonlinear FEM software ABAQUS/EXPIiCIT, a nonlinear viscoelastic constitutive model is developed. The validity of the subroutine has been proven through the standard uniaxial ten-sile model. The shortage of ABAQUS which only has linear viscoelastic constitutive model is remedied. This paper presents the process of developing a material constitutive model and some useful technology. It can be referred for extending the material constitutive model in ABAQUS.
Yan, Liangming; An, Di; Shi, Ge; Bian, Mingzhe; Khanra, Asit Kumar; Wang, Huiting
2017-05-01
Isothermal and constant strain rate compression tests of as-homogenized Mg-5.9Zn-1.6Zr-1.6Nd-0.9Y alloy were performed by using Gleeble-3800 thermo-mechanical simulator at temperature between 523 and 723 K and strain rate range from 0.001 to 1 s-1, respectively. The deformation behavior of the alloy at elevated temperature was investigated. A strain-dependent constitutive model based on the Arrhenius model and back-propagation neural network (BPNN) model of the flow stress was established. The predictability of the two models was evaluated by average absolute relative error (AARE) and correlation coefficient ( R c), respectively. The results show that the BPNN model has more accurate predictability than strain-dependent constitutive model. Processing maps are obtained according to the principles of the dynamic materials modeling and microstructures of the compressed samples. The microstructure of the samples was observed by optical microscope and electron backscattered diffraction. Processing maps show that the instability domain is at a strain rate of range of 0.015-1 s-1 and a temperature between 523 and 623 K. The alloy has good workability at 630-700 K and 0.008-0.1 s-1, wherein dynamic recrystallization occurs.
Mourad, Hashem M.; Bronkhorst, Curt A.; Addessio, Francis L.; Cady, Carl M.; Brown, Donald W.; Chen, Shuh Rong; Gray, George T.
2014-05-01
The present paper focuses on the development of a fully implicit, incrementally objective integration algorithm for a hypoelastic formulation of -viscoplasticity, which employs the mechanical threshold strength model to compute the material's flow stress, taking into account its dependence on strain rate and temperature. Heat generation due to high-rate viscoplastic deformation is accounted for, assuming adiabatic conditions. The implementation of the algorithm is discussed, and its performance is assessed in the contexts of implicit and explicit dynamic finite element analysis, with the aid of example problems involving a wide range of loading rates. Computational results are compared to experimental data, showing very good agreement.
Modeling local item dependence with the hierarchical generalized linear model.
Jiao, Hong; Wang, Shudong; Kamata, Akihito
2005-01-01
Local item dependence (LID) can emerge when the test items are nested within common stimuli or item groups. This study proposes a three-level hierarchical generalized linear model (HGLM) to model LID when LID is due to such contextual effects. The proposed three-level HGLM was examined by analyzing simulated data sets and was compared with the Rasch-equivalent two-level HGLM that ignores such a nested structure of test items. The results demonstrated that the proposed model could capture LID and estimate its magnitude. Also, the two-level HGLM resulted in larger mean absolute differences between the true and the estimated item difficulties than those from the proposed three-level HGLM. Furthermore, it was demonstrated that the proposed three-level HGLM estimated the ability distribution variance unaffected by the LID magnitude, while the two-level HGLM with no LID consideration increasingly underestimated the ability variance as the LID magnitude increased.
Directory of Open Access Journals (Sweden)
Li Jun
2015-02-01
Full Text Available In this work, a macroscopic non-linear constitutive model accounting for damage, inelastic strain and unilateral behavior is proposed for the 2D plain-woven C/SiC composite. A set of scalar damage variables and a new thermodynamic potential expression are introduced in the framework of continuum damage mechanics. In the deduced constitutive equations, the material’s progressive damage deactivation behavior during the compression loading is described by a continuous function, and different deactivation rates under uniaxial and biaxial compression loadings are also considered. In damage evolution laws, the coupling effect among the damage modes and impediment effect of compression stress on the development of shear damage in different plane stress states are taken into account. Besides, the general plasticity theory is applied to describing the evolution of inelastic strain in tension and/or shear stress state. The Tsai–Wu failure criterion is adopted for strength analysis. Additionally, the material model is implemented as a user-defined material subroutine (UMAT and linked to the ABAQUS finite element software, and its performance is demonstrated through several numerical examples.
Directory of Open Access Journals (Sweden)
Georgina L Hold
Full Text Available Dysregulated Toll-Like Receptor (TLR signalling and genetic polymorphisms in these proteins are linked to many human diseases. We investigated TLR4 functional variants D299G and T399I to assess the impact on LPS-induced responsiveness in comparison to wild-type TLR4. The mechanism by which this occurs in unclear as these SNPs do not lie within the lipid A binding domain or dimerisation sites of the LPS-TLR4/MD2 receptor complexes. Transfection of TLR4D299G, TLR4T399I or TLR4D299G. T399I into HEK cells resulted in constitutive activation of an NF-κB reporter gene and a blunting of the LPS-induced reporter activation compared to WT-TLR4. Unstimulated human monocyte/macrophages, from patients with the D299G and T399I SNPs demonstrated a downregulation of many genes, particularly Tram/Trif signalling pathway constitutents compared to the TLR4 wild-type subjects supporting the concept of basal receptor activity. Monocyte/macrophages from carriers of the TLR4 D299G and T399I polymorphisms stimulated with LPS showed >6 fold lower levels of NF-κB and ∼12 fold higher IFN-β gene expression levels compared to wild-type subjects (P<0.05; MWU test and dramatically altered resultant cytokine profiles. We conclude that these TLR4 SNPs affect constitutive receptor activity which impacts on the hosts ability to respond to LPS challenge leading to a dysregulated sub-optimal immune response to infection.
Directory of Open Access Journals (Sweden)
Guillermo Fernández‐Collazo
2014-08-01
Full Text Available La respuesta mecánica de las paredes arteriales se modifica como consecuencia del envejecimiento y el desarrollo de enfermedades. Estos cambios se ven reflejados en modificaciones en su estructura, composición, resistencia y forma. La predicción de su comportamiento en dependencia de su estado fisiológico usando modelos biomecánicos se muestra como una potente herramienta en el tratamiento y diagnóstico de aneurismas, ateroesclerosis, hipertensión arterial entre otras. Realizando un profundo análisis de la literatura consultada se presenta un estudio bibliográfico de los modelos constitutivos de paredes arteriales en su respuesta pasiva, clasificándolos y destacando sus principales ventajas, desventajas y la evolución de estos desde los puramente fenomenológicos hasta los más complejos.Palabras claves: modelos, arterias, respuesta pasiva, biomecánica._______________________________________________________________________________AbstractThe mechanical response of arterial walls is modified as a result of aging and disease development. These changes are reflected in changes in its composition, strength, shape and structure. The prediction of their behavior, depending on their physiological state used biomechanical models is shown as a powerful tool in the treatment and diagnosis of aneurysms, atherosclerosis, hypertensionand others. It´s presented in its passive response, a profound analysis of the literature and the bibliographic review of the constitutive models of arterial walls, classifying and highlighting their main advantages, disadvantages and the volution from purely phenomenological to the most complex response.Key words: models, artery, passive response, biomechanics.
Lippert, Florian
2017-01-01
The idea that works of literature and art provide readers and viewers with "constitutive gaps" – to be "filled" by the recipient, who thereby participates in the construction of meaning – has been discussed throughout the history of modern aesthetic theory. Early film theory (Henri Bergson, Béla
Lippert, Florian
2017-01-01
The idea that works of literature and art provide readers and viewers with "constitutive gaps" – to be "filled" by the recipient, who thereby participates in the construction of meaning – has been discussed throughout the history of modern aesthetic theory. Early film theory (Henri Bergson, Béla Bál
Strain Rate Dependant Material Model for Orthotropic Metals
Vignjevic, Rade
2016-08-01
In manufacturing processes anisotropic metals are often exposed to the loading with high strain rates in the range from 102 s-1 to 106 s-1 (e.g. stamping, cold spraying and explosive forming). These types of loading often involve generation and propagation of shock waves within the material. The material behaviour under such a complex loading needs to be accurately modelled, in order to optimise the manufacturing process and achieve appropriate properties of the manufactured component. The presented research is related to development and validation of a thermodynamically consistent physically based constitutive model for metals under high rate loading. The model is capable of modelling damage, failure and formation and propagation of shock waves in anisotropic metals. The model has two main parts: the strength part which defines the material response to shear deformation and an equation of state (EOS) which defines the material response to isotropic volumetric deformation [1]. The constitutive model was implemented into the transient nonlinear finite element code DYNA3D [2] and our in house SPH code. Limited model validation was performed by simulating a number of high velocity material characterisation and validation impact tests. The new damage model was developed in the framework of configurational continuum mechanics and irreversible thermodynamics with internal state variables. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Tuller and Bucher [3], Klepaczko [4] was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model Follansbee and Kocks [5], 1988; Chen and Gray [6] which was used to control evolution of flow stress during plastic deformation. In
Energy Technology Data Exchange (ETDEWEB)
Gutierrez, V.; Roeorp, R.; Carsi, M.; Ruano, O. A.
2013-07-01
A new numerical algorithm has been developed, based on Newton's method, for optimizing the parameters of a new strain dependent constitutive equation, based on the Garofalo equation. The adjustment is direct, with second order algorithms, for an equation derived from that of Garofalo with a nonlinear objective function. This new optimization algorithm has been applied to creep data of two magnesium alloys AZ80 and AZ61, having an unusual plastic behavior. A certain pseudo-stationary exists in the curves studied, in the sense that the usual deformation states are not manifested in an obvious way. The parameters of the new constitutive equation, dependent on strain, have been determined for these alloys. For analyzing the precision of the parameters and the accuracy of modeling of the stress-strain curves, a statistical treatment has been applied which allows assessing the quality of the constitutive equation proposed and the consistency of these parameters. Stress-strain curves have been compared with the modeling results, reaching a good agreement between the experimental data and the resulting modeling. (Author)
Troilo, Albino; Benson, Erica K; Esposito, Davide; Garibsingh, Rachel-Ann A; Reddy, E Premkumar; Mungamuri, Sathish Kumar; Aaronson, Stuart A
2016-05-17
The evolutionarily conserved Hippo inhibitory pathway plays critical roles in tissue homeostasis and organ size control, while mutations affecting certain core components contribute to tumorigenesis. Here we demonstrate that proliferation of Hippo pathway mutant human tumor cells exhibiting high constitutive TEAD transcriptional activity was markedly inhibited by dominant negative TEAD4, which did not inhibit the growth of Hippo wild-type cells with low levels of regulatable TEAD-mediated transcription. The tankyrase inhibitor, XAV939, identified in a screen for inhibitors of TEAD transcriptional activity, phenocopied these effects independently of its other known functions by stabilizing angiomotin and sequestering YAP in the cytosol. We also identified one intrinsically XAV939 resistant Hippo mutant tumor line exhibiting lower and less durable angiomotin stabilization. Thus, angiomotin stabilization provides a new mechanism for targeting tumors with mutations in Hippo pathway core components as well as a biomarker for sensitivity to such therapy.
A Bounding Surface Plasticity Model for Intact Rock Exhibiting Size-Dependent Behaviour
Masoumi, Hossein; Douglas, Kurt J.; Russell, Adrian R.
2016-01-01
A new constitutive model for intact rock is presented recognising that rock strength, stiffness and stress-strain behaviour are affected by the size of the rock being subjected to loading. The model is formulated using bounding surface plasticity theory. It is validated against a new and extensive set of unconfined compression and triaxial compression test results for Gosford sandstone. The samples tested had diameters ranging from 19 to 145 mm and length-to-diameter ratios of 2. The model captures the continuous nonlinear stress-strain behaviour from initial loading, through peak strength to large shear strains, including transition from brittle to ductile behaviour. The size dependency was accounted for through a unified size effect law applied to the unconfined compressive strength—a key model input parameter. The unconfined compressive strength increases with sample size before peaking and then decreasing with further increasing sample size. Inside the constitutive model two hardening laws act simultaneously, each driven by plastic shear strains. The elasticity is stress level dependent. Simple linear loading and bounding surfaces are adopted, defined using the Mohr-Coulomb criterion, along with a non-associated flow rule. The model simulates well the stress-strain behaviour of Gosford sandstone at confining pressures ranging from 0 to 30 MPa for the variety of sample sizes considered.
utilizing constitutional values in constitutional comparison
African Journals Online (AJOL)
Administrator
review, the separation of powers, democratic processes, etc. ... 2 The approach to constitutional comparison followed here, is more extensively dealt with ..... race, national or ethnic origin, color, religion, sex, age or mental or physical disability.
Blaise, A.; André, S.; Delobelle, P.; Meshaka, Y.; Cunat, C.
2016-11-01
Exact measurements of the rheological parameters of time-dependent materials are crucial to improve our understanding of their intimate relation to the internal bulk microstructure. Concerning solid polymers and the apparently simple determination of Young's modulus in tensile tests, international standards rely on basic protocols that are known to lead to erroneous values. This paper describes an approach allowing a correct measurement of the instantaneous elastic modulus of polymers by a tensile test. It is based on the use of an appropriate reduced model to describe the behavior of the material up to great strains, together with well-established principles of parameter estimation in engineering science. These principles are objective tools that are used to determine which parameters of a model can be correctly identified according to the informational content of a given data set. The assessment of the methodology and of the measurements is accomplished by comparing the results with those obtained from two other physical experiments, probing the material response at small temporal and length scales, namely, ultrasound measurements with excitation at 5 MHz and modulated nanoindentation tests over a few nanometers of amplitude.
Continuous-Time Modeling with Spatial Dependence
Oud, J.H.L.; Folmer, H.; Patuelli, R.; Nijkamp, P.
2012-01-01
(Spatial) panel data are routinely modeled in discrete time (DT). However, compelling arguments exist for continuous-time (CT) modeling of (spatial) panel data. Particularly, most social processes evolve in CT, so that statistical analysis in DT is an oversimplification, gives an incomplete
Continuous-Time Modeling with Spatial Dependence
Oud, J.; Folmer, H.; Patuelli, R.; Nijkamp, P.
(Spatial) panel data are routinely modeled in discrete time (DT). However, compelling arguments exist for continuous-time (CT) modeling of (spatial) panel data. Particularly, most social processes evolve in CT, so that statistical analysis in DT is an oversimplification, gives an incomplete
Directory of Open Access Journals (Sweden)
Milad S. Bitar
2012-05-01
An indolent non-healing wound and insulin and/or insulin-like growth factor (IGF1 resistance are cardinal features of diabetes, inflammation and hypercortisolemia. Little is known about why these phenomena occur in so many contexts. Do the various triggers that induce insulin and/or IGF1 resistance and retard wound healing act through a common mechanism? Cultured dermal fibroblasts from rats and full-thickness excisional wounds were used as models to test the premise that reactive oxygen species (ROS play a causal role in the development of IGF1 resistance and impaired wound healing under different but pathophysiologically relevant clinical settings, including diabetes, dexamethasone-induced hypercortisolemia and TNFα-induced inflammation. In normal fibroblasts, IGF1 initiated a strong degree of phosphorylation of insulin receptor substrate 1 (IRS1 (Tyr612 and Akt (Ser473, concomitantly with increased PI3K activity. This phenomenon seemed to be attenuated in fibroblasts that had phenotypic features of diabetes, inflammation or hypercortisolemia. Notably, these cells also exhibited an increase in the activity of the ROS–phospho-JNK (p-JNK–p-IRS1 (Ser307 axis. The above-mentioned defects were reflected functionally by attenuation in IGF1-dependent stimulation of key fibroblast functions, including collagen synthesis and cell proliferation, migration and contraction. The effects of IGF1 on glucose disposal and cutaneous wound healing were also impaired in diabetic or hypercortisolemic rats. The ROS suppressors EUK-134 and α-lipoic acid, or small interfering RNA (siRNA-mediated silencing of JNK expression, restored IGF1 sensitivity both in vitro and in vivo, and also ameliorated the impairment in IGF1-mediated wound responses during diabetes, inflammation and hypercortisolemia. Our data advance the notion that ROS constitute a convergence nexus for the development of IGF1 resistance and impaired wound healing under different but pathophysiologically relevant
Bitar, Milad S; Al-Mulla, Fahd
2012-05-01
An indolent non-healing wound and insulin and/or insulin-like growth factor (IGF1) resistance are cardinal features of diabetes, inflammation and hypercortisolemia. Little is known about why these phenomena occur in so many contexts. Do the various triggers that induce insulin and/or IGF1 resistance and retard wound healing act through a common mechanism? Cultured dermal fibroblasts from rats and full-thickness excisional wounds were used as models to test the premise that reactive oxygen species (ROS) play a causal role in the development of IGF1 resistance and impaired wound healing under different but pathophysiologically relevant clinical settings, including diabetes, dexamethasone-induced hypercortisolemia and TNFα-induced inflammation. In normal fibroblasts, IGF1 initiated a strong degree of phosphorylation of insulin receptor substrate 1 (IRS1) (Tyr612) and Akt (Ser473), concomitantly with increased PI3K activity. This phenomenon seemed to be attenuated in fibroblasts that had phenotypic features of diabetes, inflammation or hypercortisolemia. Notably, these cells also exhibited an increase in the activity of the ROS-phospho-JNK (p-JNK)-p-IRS1 (Ser307) axis. The above-mentioned defects were reflected functionally by attenuation in IGF1-dependent stimulation of key fibroblast functions, including collagen synthesis and cell proliferation, migration and contraction. The effects of IGF1 on glucose disposal and cutaneous wound healing were also impaired in diabetic or hypercortisolemic rats. The ROS suppressors EUK-134 and α-lipoic acid, or small interfering RNA (siRNA)-mediated silencing of JNK expression, restored IGF1 sensitivity both in vitro and in vivo, and also ameliorated the impairment in IGF1-mediated wound responses during diabetes, inflammation and hypercortisolemia. Our data advance the notion that ROS constitute a convergence nexus for the development of IGF1 resistance and impaired wound healing under different but pathophysiologically relevant
Institute of Scientific and Technical Information of China (English)
Zhenjun He; Yupu Song
2008-01-01
An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including α = σ2 : σ3 = 0.00 : -1, -0.20 : -1, -0.30 : -1, -0.40 : -1, -0.50 : -1, -0.75 : -1, -1.00 : -1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm × 100 mm × 100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement.
The spin dependent odderon in the diquark model
Szymanowski, Lech
2016-01-01
In this short note, we report a di-quark model calculation for the spin dependent odderon and demonstrate that the asymmetrical color source distribution in the transverse plane of a transversely polarized hadron plays an essential role in yielding the spin dependent odderon. This calculation confirms the earlier finding that the spin dependent odderon is closely related to the parton orbital angular momentum.
Fixed transaction costs and modelling limited dependent variables
Hempenius, A.L.
1994-01-01
As an alternative to the Tobit model, for vectors of limited dependent variables, I suggest a model, which follows from explicitly using fixed costs, if appropriate of course, in the utility function of the decision-maker.
1991-05-22
hypoelasticity , plasticity, and viscoplasticity. Despite the large number of models there has been no consensus within the research community on the best...AD-A238 091 FosR-- C)1 0 19 IIIIII1IIII111 11111111l A STUDY OF THE BEHAVIOR AND MICROMECHANICAL MODELLING OF GRANULAR SOIL VOLUME I A CONSTITUTIVE...COVERED IMay 22, 1991 Final 1/6/ 89-5/15/91 4 TITLE AND SUBTITILI S. FUNDING NUMIEgRS A Study of the Behavior and Micromechanical Modelling of Grant
Modeling Cycle Dependence in Credit Insurance
Directory of Open Access Journals (Sweden)
Anisa Caja
2014-03-01
Full Text Available Business and credit cycles have an impact on credit insurance, as they do on other businesses. Nevertheless, in credit insurance, the impact of the systemic risk is even more important and can lead to major losses during a crisis. Because of this, the insurer surveils and manages policies almost continuously. The management actions it takes limit the consequences of a downturning cycle. However, the traditional modeling of economic capital does not take into account this important feature of credit insurance. This paper proposes a model aiming to estimate future losses of a credit insurance portfolio, while taking into account the insurer’s management actions. The model considers the capacity of the credit insurer to take on less risk in the case of a cycle downturn, but also the inverse, in the case of a cycle upturn; so, losses are predicted with a more dynamic perspective. According to our results, the economic capital is over-estimated when not considering the management actions of the insurer.
Goldberg, Robert K.
2000-01-01
There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.
An Object Extraction Model Using Association Rules and Dependence Analysis
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Extracting objects from legacy systems is a basic step insystem's obje ct-orientation to improve the maintainability and understandability of the syst e ms. A new object extraction model using association rules an d dependence analysis is proposed. In this model data are classified by associat ion rules and the corresponding operations are partitioned by dependence analysis.
A random energy model for size dependence : recurrence vs. transience
Külske, Christof
1998-01-01
We investigate the size dependence of disordered spin models having an infinite number of Gibbs measures in the framework of a simplified 'random energy model for size dependence'. We introduce two versions (involving either independent random walks or branching processes), that can be seen as gener
A novel dependency language model for information retrieval
Institute of Scientific and Technical Information of China (English)
CAI Ke-ke; BU Jia-jun; CHEN Chun; QIU Guang
2007-01-01
This paper explores the application of term dependency in information retrieval (IR) and proposes a novel dependency retrieval model. This retrieval model suggests an extension to the existing language modeling (LM) approach to IR by introducing dependency models for both query and document. Relevance between document and query is then evaluated by reference to the Kullback-Leibler divergence between their dependency models. This paper introduces a novel hybrid dependency structure, which allows integration of various forms of dependency within a single framework. A pseudo relevance feedback based method is also introduced for constructing query dependency model. The basic idea is to use query-relevant top-ranking sentences extracted from the top documents at retrieval time as the augmented representation of query, from which the relationships between query terms are identified. A Markov Random Field (MRF) based approach is presented to ensure the relevance of the extracted sentences,which utilizes the association features between query terms within a sentence to evaluate the relevance of each sentence. This dependency retrieval model was compared with other traditional retrieval models. Experiments indicated that it produces significant improvements in retrieval effectiveness.
Concurrent Lexicalized Dependency Parsing The ParseTalk Model
Broeker, N; Schacht, S; Broeker, Norbert; Hahn, Udo; Schacht, Susanne
1994-01-01
A grammar model for concurrent, object-oriented natural language parsing is introduced. Complete lexical distribution of grammatical knowledge is achieved building upon the head-oriented notions of valency and dependency, while inheritance mechanisms are used to capture lexical generalizations. The underlying concurrent computation model relies upon the actor paradigm. We consider message passing protocols for establishing dependency relations and ambiguity handling.
Jaime de Juan-Sanz; Enrique Núñez; Beatriz López-Corcuera; Carmen Aragón
2013-01-01
Inhibitory glycinergic neurotransmission is terminated by sodium and chloride-dependent plasma membrane glycine transporters (GlyTs). The mainly glial glycine transporter GlyT1 is primarily responsible for the completion of inhibitory neurotransmission and the neuronal glycine transporter GlyT2 mediates the reuptake of the neurotransmitter that is used to refill synaptic vesicles in the terminal, a fundamental role in the physiology and pathology of glycinergic neurotransmission. Indeed, inhi...
Directory of Open Access Journals (Sweden)
Dong-Hoon Lee
2010-11-01
Full Text Available Genomic imprints-parental allele-specific DNA methylation marks at the differentially methylated regions (DMRs of imprinted genes-are erased and reestablished in germ cells according to the individual's sex. Imprint establishment at paternally methylated germ line DMRs occurs in fetal male germ cells. In prospermatogonia, the two unmethylated alleles exhibit different rates of de novo methylation at the H19/Igf2 imprinting control region (ICR depending on parental origin. We investigated the nature of this epigenetic memory using bisulfite sequencing and allele-specific ChIP-SNuPE assays. We found that the chromatin composition in fetal germ cells was biased at the ICR between the two alleles with the maternally inherited allele exhibiting more H3K4me3 and less H3K9me3 than the paternally inherited allele. We determined genetically that the chromatin bias, and also the delayed methylation establishment in the maternal allele, depended on functional CTCF insulator binding sites in the ICR. Our data suggest that, in primordial germ cells, maternally inherited allele-specific CTCF binding sets up allele-specific chromatin differences at the ICR. The erasure of these allele-specific chromatin marks is not complete before the process of de novo methylation imprint establishment begins. CTCF-dependent allele-specific chromatin composition imposes a maternal allele-specific delay on de novo methylation imprint establishment at the H19/Igf2 ICR in prospermatogonia.
Directory of Open Access Journals (Sweden)
Dong-Hoon Lee
2010-11-01
Full Text Available Genomic imprints-parental allele-specific DNA methylation marks at the differentially methylated regions (DMRs of imprinted genes-are erased and reestablished in germ cells according to the individual's sex. Imprint establishment at paternally methylated germ line DMRs occurs in fetal male germ cells. In prospermatogonia, the two unmethylated alleles exhibit different rates of de novo methylation at the H19/Igf2 imprinting control region (ICR depending on parental origin. We investigated the nature of this epigenetic memory using bisulfite sequencing and allele-specific ChIP-SNuPE assays. We found that the chromatin composition in fetal germ cells was biased at the ICR between the two alleles with the maternally inherited allele exhibiting more H3K4me3 and less H3K9me3 than the paternally inherited allele. We determined genetically that the chromatin bias, and also the delayed methylation establishment in the maternal allele, depended on functional CTCF insulator binding sites in the ICR. Our data suggest that, in primordial germ cells, maternally inherited allele-specific CTCF binding sets up allele-specific chromatin differences at the ICR. The erasure of these allele-specific chromatin marks is not complete before the process of de novo methylation imprint establishment begins. CTCF-dependent allele-specific chromatin composition imposes a maternal allele-specific delay on de novo methylation imprint establishment at the H19/Igf2 ICR in prospermatogonia.
1989-01-01
This document contains major provisions of the constitution adopted by Brazil on 5 October 1988. This constitution seeks to promote the welfare of all citizens without discrimination. The equality of all citizens is guaranteed, and the equal rights of women are specifically mentioned. Property rights are also guaranteed and defined. Female inmates are granted the right to remain with their children while breast feeding. Workers are guaranteed a minimum wage, a family allowance for dependents, maternity/paternity leave, specific incentives to protect the labor market for women, retirement benefits, free day care for preschool-age children, pay equity, and equal rights between tenured and sporadically employed workers. Agrarian reform provisions are given, including the authority to expropriate land. Social and economic policies to promote health are called for, and public health services are to be decentralized, to be integrated, and to foster community participation. Pension plan and social assistance provisions are outlined as are duties of the state in regard to education. The amount of money to be dedicated to education is set out, and a national educational plan is called for to achieve such goals as the eradication of illiteracy, the universalization of school attendance, the improvement of instruction, and the provision of vocational training. Specific measures are set out to protect and preserve the environment. Family policy deals with issues of marriage, the definition of a family, divorce, the right to family planning services, and the deterrence of domestic violence. Social protection provisions cover mothers and children, handicapped persons, and protection of minors. Finally, the customs and rights of Indians are protected, with special provisions given to protect land tenure and to protect the rights of Indians in water resource development and prospecting and mining activities.
Modeling cancer progression via pathway dependencies.
Directory of Open Access Journals (Sweden)
Elena J Edelman
2008-02-01
Full Text Available Cancer is a heterogeneous disease often requiring a complexity of alterations to drive a normal cell to a malignancy and ultimately to a metastatic state. Certain genetic perturbations have been implicated for initiation and progression. However, to a great extent, underlying mechanisms often remain elusive. These genetic perturbations are most likely reflected by the altered expression of sets of genes or pathways, rather than individual genes, thus creating a need for models of deregulation of pathways to help provide an understanding of the mechanisms of tumorigenesis. We introduce an integrative hierarchical analysis of tumor progression that discovers which a priori defined pathways are relevant either throughout or in particular steps of progression. Pathway interaction networks are inferred for these relevant pathways over the steps in progression. This is followed by the refinement of the relevant pathways to those genes most differentially expressed in particular disease stages. The final analysis infers a gene interaction network for these refined pathways. We apply this approach to model progression in prostate cancer and melanoma, resulting in a deeper understanding of the mechanisms of tumorigenesis. Our analysis supports previous findings for the deregulation of several pathways involved in cell cycle control and proliferation in both cancer types. A novel finding of our analysis is a connection between ErbB4 and primary prostate cancer.
The transverse momentum dependent distribution functions in the bag model
Energy Technology Data Exchange (ETDEWEB)
Avakian, Harut; Efremov, Anatoly; Schweitzer, Peter; Yuan, Feng
2010-01-29
Leading and subleading twist transverse momentum dependent parton distribution functions (TMDs) are studied in a quark model framework provided by the bag model. A complete set of relations among different TMDs is derived, and the question is discussed how model-(in)dependent such relations are. A connection of the pretzelosity distribution and quark orbital angular momentum is derived. Numerical results are presented, and applications for phenomenology discussed. In particular, it is shown that in the valence-x region the bag model supports a Gaussian Ansatz for the transverse momentum dependence of TMDs.
Transverse momentum dependent distribution functions in the bag model
Energy Technology Data Exchange (ETDEWEB)
Avakian, Harut A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Efremov, A. V. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Schweitzer, P. [Univ. of Connecticut, Storrs, CT (United States); Yuan, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). RIKEN Research Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2010-04-01
Leading and subleading twist transverse momentum dependent parton distribution functions (TMDs) are studied in a quark model framework provided by the bag model. A complete set of relations among different TMDs is derived, and the question is discussed how model-(in)dependent such relations are. A connection of the pretzelosity distribution and quark orbital angular momentum is derived. Numerical results are presented, and applications for phenomenology discussed. In particular, it is shown that in the valence-x region the bag model supports a Gaussian Ansatz for the transverse momentum dependence of TMDs.
Modeling Light-Dependent Biofilm Morphology
Kernan, Chase; Huang, Jean; Christianson, Rebecca
2013-03-01
Bacterial aggregates on submerged substrates can produce complex biofilm morphologies that are subject to environmental and metabolic factors. We develop a reductionistic cellular automata model of these structures with the intent of guiding experimentation and explaining prior results. We focus on reproducing the columnar and ``mushroom'' phases of aerobic R. palustris and light-sensitive anaerobic R. palustris, respectively. This light sensitivity requires the novel inclusion of a characteristic light penetration depth in addition to surface tension and media penetration parameters. We quantitatively divide this parameter space into roughly four morphological phases--columnar, mushroom, uniform, and irregular--by examining the resultant convexity defect distribution, horizontal correlation, and coverage as a function of height. Finally, we both validate experimental evidence of these phases and suggest new parameter regimes to investigate empirically.
Directory of Open Access Journals (Sweden)
Sarah M Wilson
2014-07-01
Full Text Available Activity-dependent neurite outgrowth is a highly complex, regulated process with important implications for neuronal circuit remodeling in development as well as in seizure-induced sprouting in epilepsy. Recent work has linked outgrowth to collapsin response mediator protein 2 (CRMP2, an intracellular phosphoprotein originally identified as axon guidance and growth cone collapse protein. The neurite outgrowth promoting function of CRMP2 is regulated by its phosphorylation state. In this study, depolarization (potassium chloride-driven activity increased the level of active CRMP2 by decreasing its phosphorylation by GSK3β via a reduction in priming by Cdk5. To determine the contribution of CRMP2 in activity-driven neurite outgrowth, we screened a limited set of compounds for their ability to reduce neurite outgrowth but not modify voltage-gated sodium channel (VGSC biophysical properties. This led to the identification of (S-lacosamide ((S-LCM, a stereoisomer of the clinically used antiepileptic drug (R-LCM (Vimpat®, as a novel tool for preferentially targeting CRMP2-mediated neurite outgrowth. Whereas (S-LCM was ineffective in targeting VGSCs, the presumptive pharmacological targets of (R-LCM, (S-LCM was more efficient than (R-LCM in subverting neurite outgrowth. Biomolecular interaction analyses revealed that (S-LCM bound to wildtype CRMP2 with low micromolar affinity, similar to (R-LCM. Through the use of this novel tool, the activity-dependent increase in neurite outgrowth observed following depolarization was characterized to be reliant on CRMP2 function. Knockdown of CRMP2 by siRNA in cortical neurons resulted in reduced CRMP2-dependent neurite outgrowth; incubation with (S-LCM phenocopied this effect. Other CRMP2-mediated processes were unaffected. (S-LCM subverted neurite outgrowth not by affecting the canonical CRMP2-tubulin association but rather by impairing the ability of CRMP2 to promote tubulin polymerization, events that are
Directory of Open Access Journals (Sweden)
Li-Chih Yang
2015-09-01
Full Text Available The hot deformation behavior of a Fe–22Cr–25Ni–3.5W–3Cu–1.5Co super-austenitic stainless steel was investigated using isothermal compression tests with a wide range of temperatures (1173–1373 K and strain rates (0.1–10 s−1. The results showed that all the flow curves gradually turned to balanced stress state without notable peak stress characteristics during the entire deformation, which indicated that the dynamic recovery behavior played a main restoration mechanism in the steel. Modeling constitutive equations relating to the temperature, strain rate and flow stress were proposed to determine the materials constants and activation energy necessary for deformation. In order to give the precise predicted values of the flow behavior, the influence of strain was identified using polynomial functions. The relationship of flow stress, temperature and strain rate was represented by the Zener-Hollomon parameter including the Arrhenius term. The predicted results validated that the developed constitutive equations can describe high temperature flow behavior well. Furthermore, a modified Zener-Hollomon parameter map of the studied steel was developed to clarify the restoration mechanism based on the constitutive modeling data and microstructural observation.
Dukes, R.
2014-01-01
This article explores the argument that the idea of the labour constitution, as developed by Hugo Sinzheimer, offers a useful perspective for thinking about labour law today. With reference to the work of Wolfgang Streeck and Karl Polanyi, it highlights the potential benefits of the labour constitution as a framework for analysis. With a view to developing and updating Sinzheimer’s blueprint for a – national – labour constitution, it then engages with two lines of theoretical enquiry into the...
Dependence of Two-proton Radioactivity on Nuclear Pairing Models
Oishi, Tomohiro; Pastore, Alessandro
2016-01-01
The sensitivity of two-proton emitting decays to the nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the $^6$Be nucleus assuming $\\alpha + p + p$ configuration, and its decay process is described as a time-evolution of the three-body resonance state. A noticeable model-dependence of two-proton decay width is found by utilizing schematic density-dependent contact (SDDC) and the finite-range Minnesota pairing models. The model-dependence with the SDDC pairing interaction can be understood from the density distribution of the resonance state, which reflects a synergy of participating interactions. Our result suggests that two-proton decay width may be a suitable reference quantity to sophisticate the nuclear pairing model beyond the nucleon driplines.
Dependability breakeven point mathematical model for production - quality strategy support
Vilcu, Adrian; Verzea, Ion; Chaib, Rachid
2016-08-01
This paper connects the field of dependability system with the production-quality strategies through a new mathematical model based on breakeven points. The novelties consist in the identification of the parameters of dependability system which, in safety control, represents the degree to which an item is capable of performing its required function at any randomly chosen time during its specified operating period disregarding non-operation related influences, as well as the analysis of the production-quality strategies, defining a mathematical model based on a new concept - dependability breakeven points, model validation on datasets and shows the practical applicability of this new approach.
Handling the Dependence of Claim Severities with Copula Models
Directory of Open Access Journals (Sweden)
Yulia Resti
2010-01-01
Full Text Available Problem statement: Several studies have been carried out on the modeling of claim severity data in actuarial literature as well as in insurance practice. Since it is well established that the claim cost distributions generally have positive support and are positively skewed, the regression models of Gamma and Lognormal have been used by practitioners for modeling claim severities. However, the fitting of claim severities via regression models assumes that the claim types are independent. Approach: In this study, independent assumption between claim types will be investigated as we will consider three types of Malaysian motor insurance claims namely Third Party Body Injury (TPBI, Third Party Property Damage (TPPD and Own Damage (OD and applied the normal, t, Frank and Clayton copulas for modeling dependence structures between these claim types. Results: The AIC and BIC indicated that the Clayton is the best copula for modeling dependence between TPBI and OD claims and between TPPD and OD claims, whereas the t-copula is the best copula for modeling dependence between TPBI and TPPD claims. Conclusion: This study modeled the dependence between insurance claim types using copulas on the Malaysian motor insurance claim severity data. The main advantage of using copula is that each marginal distribution can be specified independently based on the distribution of individual variable and then joined by the copula which takes into account the dependence between these variables. Based on the results, the estimated of copula parameter for claim severities indicate that the dependence between claim types is significant.
Badel, Pierre; Lessner, Susan; Sutton, Michael A; 10.1080/10255842.2011.586945
2012-01-01
The role of mechanics is known to be of primary order in many arterial diseases; however, determining mechanical properties of arteries remains a challenge. This paper discusses the identifiability of the passive mechanical properties of a mouse carotid artery, taking into account the orientation of collagen fibres in the medial and adventitial layers. On the basis of 3D digital image correlation measurements of the surface strain during an inflation/extension test, an inverse identification method is set up. It involves a 3D finite element mechanical model of the mechanical test and an optimisation algorithm. A two-layer constitutive model derived from the Holzapfel model is used, with five and then seven parameters. The five-parameter model is successfully identified providing layer-specific fibre angles. The seven-parameter model is over parameterised, yet it is shown that additional data from a simple tension test make the identification of refined layer-specific data reliable.
A Structural Equation Approach to Models with Spatial Dependence
Oud, J.H.L.; Folmer, H.
2008-01-01
We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it poss
A structural equation approach to models with spatial dependence
Oud, J.H.L.; Folmer, H.
2008-01-01
We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it poss
1985-04-22
conceptual. Cap model users often determine or refine the model parameters by trial and error. The drained hypoelastic incremental unloading/reloading bulk...32) yields ln(a + bx - y) = ln(cedx) = ln c - dx (R .33 See Figure (R.5c). The cap model response to prescribed strain inputs is hypoelastic , provided...The AFWL engineering model is hypoelastic -perfectly plastic in shear, and hypoelastic in compression. A hypoelastic material is one for which the stress
Modeling Stakeholder/Value Dependency through Mean Failure Cost
Energy Technology Data Exchange (ETDEWEB)
Aissa, Anis Ben [University of Tunis, Belvedere, Tunisia; Abercrombie, Robert K [ORNL; Sheldon, Frederick T [ORNL; Mili, Ali [New Jersey Insitute of Technology
2010-01-01
In an earlier series of works, Boehm et al. discuss the nature of information system dependability and highlight the variability of system dependability according to stakeholders. In a recent paper, the dependency patterns of this model are analyzed. In our recent works, we presented a stakeholder dependent quantitative security model, where we quantify security for a given stakeholder by the mean of the loss incurred by the stakeholder as a result of security threats. We show how this mean can be derived from the security threat configuration (represented as a vector of probabilities that reflect the likelihood of occurrence of the various security threats). We refer to our security metric as MFC, for Mean Failure Cost. In this paper, we analyze Boehm's model from the standpoint of the proposed metric, and show whether, to what extent, and how our metric addresses the issues raised by Boehm's Stakeholder/Value definition of system dependability.
Effect of the Parameters in Duncan-Chang Constitutive Model%Duncan-Chang模型中各参数影响因素分析
Institute of Scientific and Technical Information of China (English)
张波
2011-01-01
The geotechnical Duncan-Chang constitutive model is introduced into ANSYS software by using the User Programmable Features of ANSYS. The increment method is utilized to testify the reliability of the introduced model through simulating the triaxial test of soil, and the effect on the calculation results of the eight parameters in Duncan-Chang model is given, which has much wider reference value for geotechnical engineering problems. The relative solution method can supply important reference for other constitutive models to be introduced and be analyzed in ANSYS program.%利用ANSYS软件的用户可编程特性(UPFs),将岩土Duncan-Chang本构模型导入了大型有限元软件ANSYS中,采用增量算法,用三轴实验模型对导入的本构关系进行了计算仿真验证,分析了八个参数的变化对计算结果的影响,对岩土工程问题具有更广泛的参考价值,有关处理方法也为其它本构模型在ANSYS中实现及分析提供了参考.
A Multilevel Testlet Model for Dual Local Dependence
Jiao, Hong; Kamata, Akihito; Wang, Shudong; Jin, Ying
2012-01-01
The applications of item response theory (IRT) models assume local item independence and that examinees are independent of each other. When a representative sample for psychometric analysis is selected using a cluster sampling method in a testlet-based assessment, both local item dependence and local person dependence are likely to be induced.…
EMPIRICAL LIKELIHOOD FOR LINEAR MODELS UNDER m-DEPENDENT ERRORS
Institute of Scientific and Technical Information of China (English)
QinYongsong; JiangBo; LiYufang
2005-01-01
In this paper，the empirical likelihood confidence regions for the regression coefficient in a linear model are constructed under m-dependent errors. It is shown that the blockwise empirical likelihood is a good way to deal with dependent samples.
Boolean Queries and Term Dependencies in Probabilistic Retrieval Models.
Croft, W. Bruce
1986-01-01
Proposes approach to integrating Boolean and statistical systems where Boolean queries are interpreted as a means of specifying term dependencies in relevant set of documents. Highlights include series of retrieval experiments designed to test retrieval strategy based on term dependence model and relation of results to other work. (18 references)…
Institute of Scientific and Technical Information of China (English)
Yujie LIU; Qing GAO; Guozheng KANG
2011-01-01
Based on the time-dependent strain cyclic characteristics and fatigue behaviors of SS304 stainless steel under multi-axial cyclic loading at 700℃, and in the frameof unified visoco-plastic cyclic constitutive model and continuum damage mechanics theory, the damage-coupled multi-axial time-dependent constitutive model and fatigue failure model were proposed. In the model, the evolution equation of damage was introduced in and the time-dependent effects, e.g. holding time, loading rate, were taken into account. The model was applied to the simulation of whole-life cyclic deformation behaviors and prediction of LCF life for SS304 stainless steel in multiaxial time-dependent low cycle fatigue tests. It is shown that the simulated results agree well with experimental ones.
On the Temperature Dependence of the UNIQUAC/UNIFAC Models
DEFF Research Database (Denmark)
Skjold-Jørgensen, Steen; Rasmussen, Peter; Fredenslund, Aage
1980-01-01
Local composition models for the description of the properties of liquid mixtures do not in general give an accurate representation of excess Gibbs energy and excess enthalpy simultaneously. The introduction of temperature dependent interaction parameters leads to considerable improvements...
Energy Technology Data Exchange (ETDEWEB)
Wattanachanya, Lalita, E-mail: lalita_md@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok (Thailand); Wang, Liping, E-mail: lipingwang05@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Millard, Susan M., E-mail: susan.millard@mater.uq.edu.au [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Lu, Wei-Dar, E-mail: weidar_lu@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); O’Carroll, Dylan, E-mail: dylancocarroll@gmail.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Hsiao, Edward C., E-mail: Edward.Hsiao@ucsf.edu [Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA (United States); Conklin, Bruce R., E-mail: bconklin@gladstone.ucsf.edu [Gladstone Institute of Cardiovascular Disease, San Francisco, CA (United States); Department of Medicine, University of California, San Francisco, CA (United States); Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA (United States); Nissenson, Robert A., E-mail: Robert.Nissenson@ucsf.edu [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States)
2015-05-01
G protein-coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active G{sub s}-coupled GPCR, under the control of the 2.3 kb Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone of femurs. Here, we further evaluated the effects of enhanced G{sub s} signaling in OBs on intramembranous bone formation by examining calvariae of 1- and 9-week-old Col1(2.3)/Rs1 mice and characterized the in vivo gene expression specifically occurring in osteoblasts with activated G{sub s} G protein-coupled receptor signaling, at the cellular level rather than in a whole bone. Rs1 calvariae displayed a dramatic increase in bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space while Osteocalcin was expressed predominantly in cells along bone surfaces, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb Col I promoter could influence early OB commitment, differentiation, and/or proliferation. Gene expression analysis of calvarial OBs revealed that genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. The set of G{sub s}-GPCRs and other GPCRs that may contribute to the observed skeletal phenotype and candidate paracrine mediators of the effect of G{sub s} signaling in OBs were also determined. Our results identify novel detailed in vivo cellular changes of the anabolic response of the skeleton to G{sub s} signaling in mature OBs. - Highlights: • OB expression of an engineered G{sub s}-coupled receptor dramatically increases bone mass. • We investigated the changes in gene expression in vivo in enhanced OB G{sub s} signaling. • Genes in cell cycle and transcription were increased in
一类新的超弹性--循环塑性本构模型%A NEW FORMULATION OF CONSTITUTIVE MODEL FOR HYPERELASTIC-CYCLIC PLASTICITY
Institute of Scientific and Technical Information of China (English)
孟令凯; 周长东; 郭坤鹏; 张晓阳
2016-01-01
Until now, a number of classical hyperelastic-finite plasticity constitutive models have been proposed. How-ever, most of them are based on the classical Armstrong-Frederick kinematic hardening rule in consideration of the complexity brought by the introduction of the intermediate configuration in the hyperelasticity theory. Hence, based on the existed constitutive theories, the methodology of Lion decomposition theory was extended utilizing the notion of the multi-mechanism process and clearly put forward the conception of the multi-intermediate configuration. Furthermore, the classical concept of the objectivity in the continuum mechanics for better application to the hyperelasticity theory was generalized and then a new hyperelastic-finite plastic constitutive model was proposed. The new constitutive model not only meets the thermal dynamic laws but also can incorporate several classical kinematic hardening rules which were usu-ally adopted in cyclic plasticity of infinitesimal deformation theory (e.g. the A-F model, Chaboche model, O-W model and the K-O model, etc.). Therefore, this model corresponding to finite deformation problems contains two typical char-acteristics adopted by infinitesimal deformation theory: the additive decomposition property and step mutation feature of the backstress on the critical surface. Thus, the present model can be treated as parallel to the corresponding form in the small deformation case. Finally, the situation accounting for Karim-Ohno kinematic hardening rule is under specific consideration and compared with the hypoelasticity constitutive model.%目前，很多经典的超弹性-有限塑性本构模型已被提出，但由于超弹性理论中中间构型的引入使得随动硬化法则相对复杂，故多数文献均采用的是经典的Armstrong-Frederick (A-F)随动硬化法则。本文基于已有的本构理论,利用多机制过程的概念拓展了Lion塑性变形分解理论，明确提出了多重中间构型
Greenhut, Stephanie; Jones, Megan
2010-01-01
On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to participate…
Interpreting the Constitution.
Brennan, William J., Jr.
1987-01-01
Discusses constitutional interpretations relating to capital punishment and protection of human dignity. Points out the document's effectiveness in creating a new society by adapting its principles to current problems and needs. Considers two views of the Constitution that lead to controversy over the legitimacy of judicial decisions. (PS)
Greenhut, Stephanie; Jones, Megan
2010-01-01
On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to…
Teaching About the Constitution.
White, Charles S.
1988-01-01
Reviews "The U.S. Constitution Then and Now," a two-unit program using the integrated database and word processing capabilities of AppleWorks. For grades 7-12, the units simulate the constitutional convention and the principles of free speech and privacy. Concludes that with adequate time, the program can provide a potentially powerful…
Greenhut, Stephanie; Jones, Megan
2010-01-01
On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to…
A PRACTICAL CONFINED CONCRETE CONSTITUTIVE MODEL UNDER UNIAXIAL HYSTERESIS LOAD%箍筋约束混凝土单轴滞回本构实用模型
Institute of Scientific and Technical Information of China (English)
齐虎; 李云贵; 吕西林
2011-01-01
To develop a constitutive model for confined concrete under uniaxial hysteresis load, six kinds of typical models were studied and compared by the use of ABAQUS UMAT. Through the comparison between model calculations and experimental results of these models, the accuracy and computational efficiency of each model were investigated considering three aspects： compression skeleton curve, compression hysteresis curve, and tension hysteresis curve. Finally, a practical concrete uniaxial constitutive model for hysteretic loading was developed, which is capable of considering complex loading paths by using Mander model in compression skeleton, proposed model in compression range of hysteresis curve and Teng-Zou mode in tension range hysteresis curve.%该文深入研究了箍筋约束混凝土单轴滞回本构模型，并利用ABAQUS-2次开发功能对6种典型的模型进行计算分析。通过各模型计算结果与试验结果的比较以及各模型之间的比较，从受压骨架曲线，受压滞回曲线，受拉滞回曲线3个方面，研究了各模型的准确性和计算效率。在对比分析的基础上，建立了一个与实验符合较好、且考虑复杂加载路径的混凝土单轴滞回实用本构模型。该模型受压骨架曲线采用Mander模型，受压滞回曲线采用本文提出的模型，受拉滞回曲线采用腾-邹模型。
Cluster-size dependent randomization traffic flow model
Institute of Scientific and Technical Information of China (English)
Gao Kun; Wang Bing-Hong; Fu Chuan-Ji; Lu Yu-Feng
2007-01-01
In order to exhibit the meta-stable states, several slow-to-start rules have been investigated as modification to Nagel-Schreckenberg (NS) model. These models can reproduce some realistic phenomena which are absent in the original NS model. But in these models, the size of cluster is still not considered as a useful parameter. In real traffic,the slow-to-start motion of a standing vehicle often depends on the degree of congestion which can be measured by the clusters'size. According to this idea, we propose a cluster-size dependent slow-to-start model based on the speeddependent slow-to-start rule (VDR) model. It gives expected results through simulations. Comparing with the VDR model, our new model has a better traffic efficiency and shows richer complex characters.
Generalized linear models for categorical and continuous limited dependent variables
Smithson, Michael
2013-01-01
Introduction and OverviewThe Nature of Limited Dependent VariablesOverview of GLMsEstimation Methods and Model EvaluationOrganization of This BookDiscrete VariablesBinary VariablesLogistic RegressionThe Binomial GLMEstimation Methods and IssuesAnalyses in R and StataExercisesNominal Polytomous VariablesMultinomial Logit ModelConditional Logit and Choice ModelsMultinomial Processing Tree ModelsEstimation Methods and Model EvaluationAnalyses in R and StataExercisesOrdinal Categorical VariablesModeling Ordinal Variables: Common Practice versus Best PracticeOrdinal Model AlternativesCumulative Mod
A time-dependent phenomenological model for cell mechano-sensing.
Borau, Carlos; Kamm, Roger D; García-Aznar, José Manuel
2014-04-01
Adherent cells normally apply forces as a generic means of sensing and responding to the mechanical nature of their surrounding environment. How these forces vary as a function of the extracellular rigidity is critical to understanding the regulatory functions that drive important phenomena such as wound healing or muscle contraction. In recognition of this fact, experiments have been conducted to understand cell rigidity-sensing properties under known conditions of the extracellular environment, opening new possibilities for modeling this active behavior. In this work, we provide a physics-based constitutive model taking into account the main structural components of the cell to reproduce its most significant contractile properties such as the traction forces exerted as a function of time and the extracellular stiffness. This model shows how the interplay between the time-dependent response of the acto-myosin contractile system and the elastic response of the cell components determines the mechano-sensing behavior of single cells.
Directory of Open Access Journals (Sweden)
Borowiec Anna
2016-03-01
Full Text Available Computer Aided Engineering (CAE is commonly used in modern design of the various types of structures. There are two main issues/aspects that should be consider while using CAE in Geotechnics: the basic theory and material model. The paper deals with a problem of choosing the proper constitutive relationships which according to the authors are equally important in obtaining correct and reasonable results. This problem is illustrated by an example of dynamic calculations of fully saturated non-cohesive soils where liquefaction phenomenon is most likely to occur.
Detecting Character Dependencies in Stochastic Models of Evolution.
Chakrabarty, Deeparnab; Kannan, Sampath; Tian, Kevin
2016-03-01
Stochastic models of biological evolution generally assume that different characters (runs of the stochastic process) are independent and identically distributed. In this article we determine the asymptotic complexity of detecting dependence for some fairly general models of evolution, but simple models of dependence. A key difference from much of the previous work is that our algorithms work without knowledge of the tree topology. Specifically, we consider various stochastic models of evolution ranging from the common ones used by biologists (such as Cavender-Farris-Neyman and Jukes-Cantor models) to very general ones where evolution of different characters can be governed by different transition matrices on each edge of the evolutionary tree (phylogeny). We also consider several models of dependence between two characters. In the most specific model, on each edge of the phylogeny the joint distribution of the dependent characters undergoes a perturbation of a fixed magnitude, in a fixed direction from what it would be if the characters were evolving independently. More general dependence models don't require such a strong "signal." Instead they only require that on each edge, the perturbation of the joint distribution has a significant component in a specific direction. Our main results are nearly tight bounds on the induced or operator norm of the transition matrices that would allow us to detect dependence efficiently for most models of evolution and dependence that we consider. We make essential use of a new concentration result for multistate random variables of a Markov random field on arbitrary trivalent trees: We show that the random variable counting the number of leaves in any particular state has variance that is subquadratic in the number of leaves.