Constitutive model with time-dependent deformations
DEFF Research Database (Denmark)
Krogsbøll, Anette
1998-01-01
are common in time as well as size. This problem is adressed by means of a new constitutive model for soils. It is able to describe the behavior of soils at different deformation rates. The model defines time-dependent and stress-related deformations separately. They are related to each other and they occur...... was the difference in time scale between the geological process of deposition (millions of years) and the laboratory measurements of mechanical properties (minutes or hours). In addition, the time scale relevant to the production history of the oil field was interesting (days or years)....
Development of constitutive model for composites exhibiting time dependent properties
International Nuclear Information System (INIS)
Pupure, L; Joffe, R; Varna, J; Nyström, B
2013-01-01
Regenerated cellulose fibres and their composites exhibit highly nonlinear behaviour. The mechanical response of these materials can be successfully described by the model developed by Schapery for time-dependent materials. However, this model requires input parameters that are experimentally determined via large number of time-consuming tests on the studied composite material. If, for example, the volume fraction of fibres is changed we have a different material and new series of experiments on this new material are required. Therefore the ultimate objective of our studies is to develop model which determines the composite behaviour based on behaviour of constituents of the composite. This paper gives an overview of problems and difficulties, associated with development, implementation and verification of such model
DEFF Research Database (Denmark)
Sales-Cruz, Mauricio; Piccolo, Chiara; Heitzig, Martina
2011-01-01
covered, illustrating several models such as the Wilson equation and NRTL equation, along with their solution strategies. A section shows how to use experimental data to regress the property model parameters using a least squares approach. A full model analysis is applied in each example that discusses...... the degrees of freedom, dependent and independent variables and solution strategy. Vapour-liquid and solid-liquid equilibrium is covered, and applications to droplet evaporation and kinetic models are given....
Constitutive modeling for uniaxial time-dependent ratcheting of SS304 stainless steel
International Nuclear Information System (INIS)
Kan Qianhua; Kang Guozheng; Zhang Juan
2007-01-01
Based on the experimental results of uniaxial time-dependent ratcheting behavior of SS304 stainless steel at room temperature and 973K, a new time-dependent constitutive model was proposed. The model describes the time-dependent ratcheting by adding a static/thermal recovery into the Abdel-Karim-Ohno non-linear kinematic hardening rule. The capability of the model to describe the time-dependent ratcheting was discussed by comparing the simulations with the corresponding experimental results. It is shown that the revised unified viscoplastic model can simulate the time-dependent ratcheting reasonably both at room and high temperatures. (authors)
Development of a temperature-dependent cyclic plasticity constitutive model for SUS304 steel
International Nuclear Information System (INIS)
Takahashi, Yukio
1990-01-01
Development of an accurate inelastic constitutive model is required to improve the accuracy of inelastic analysis for structural components used in the inelastic region. Based on two fundamental assumptions derived from physical interpretation of temperature dependency of the plastic deformation behavior of type 304 stainless steel, a temperature-dependent cyclic plastic constitutive model is constructed here. Particular emphasis is placed on the modeling of enhanced hardening caused by the dynamic strain aging effect observed in some temperature regimes. Constants and functions involved in the model are determined based on the deformation characteristics observed in the low-cycle fatigue tests conducted at room temperature through 600degC. Several comparisons of model predictions with experimental data show the effectiveness of the present model in non-isothermal condition as well as in isothermal condition between room temperature and 600degC. (author)
A unified dislocation density-dependent physical-based constitutive model for cold metal forming
Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.
2017-10-01
Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.
International Nuclear Information System (INIS)
Kim, Ji-Hoon; Kim, Daeyong; Han, Heung Nam; Barlat, F.; Lee, Myoung-Gyu
2013-01-01
High strain rate tensile tests were conducted for three advanced high strength steels: DP780, DP980 and TRIP780. A high strain rate tensile test machine was used for applying the strain rate ranging from 0.1/s to 500/s. Details of the measured stress–strain responses were comparatively analyzed for the DP780 and TRIP780 steels which show similar microstructural feature and ultimate tensile strength, but different strengthening mechanisms. The experimental observations included: usual strain rate dependent plastic flow stress behavior in terms of the yield stress (YS), the ultimate tensile strength (UTS), the uniform elongation (UE) and the total elongation (TE) which were observed for the three materials. But, higher strain hardening rate at early plastic strain under quasi-static condition than that of some increased strain rates was featured for TRIP780 steel, which might result from more active transformation during deformation with lower velocity. The uniform elongation that explains the onset of instability and the total elongation were larger in case of TRIP steel than the DP steel for the whole strain rate range, but interestingly the fracture strain measured by the reduction of area (RA) method showed that the TRIP steel has lower values than DP steel. The fractographs using scanning electron microscopy (SEM) at the fractured surfaces were analyzed to relate measured fracture strain and the microstructural difference of the two materials during the process of fracture under various strain rates. Finally, constitutive modeling for the plastic flow stresses under various strain rates was provided in this study. The proposed constitutive law could represent both Hollomon-like and Voce-like hardening laws and the ratio between the two hardening types was efficiently controlled as a function of strain rate. The new strength model was validated successfully under various strain rates for several grades of steels such as mild steels, DP780, TRIP780, DP980 steels.
Energy Technology Data Exchange (ETDEWEB)
Hammerand, Daniel Carl; Scherzinger, William Mark
2007-09-01
The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented
Directory of Open Access Journals (Sweden)
Leng Fei
2008-09-01
Full Text Available This paper discusses the seismic analysis of concrete dams with consideration of material nonlinearity. Based on a consistent rate-dependent model and two thermodynamics-based models, two thermodynamics-based rate-dependent constitutive models were developed with consideration of the influence of the strain rate. They can describe the dynamic behavior of concrete and be applied to nonlinear seismic analysis of concrete dams taking into account the rate sensitivity of concrete. With the two models, a nonlinear analysis of the seismic response of the Koyna Gravity Dam and the Dagangshan Arch Dam was conducted. The results were compared with those of a linear elastic model and two rate-independent thermodynamics-based constitutive models, and the influences of constitutive models and strain rate on the seismic response of concrete dams were discussed. It can be concluded from the analysis that, during seismic response, the tensile stress is the control stress in the design and seismic safety evaluation of concrete dams. In different models, the plastic strain and plastic strain rate of concrete dams show a similar distribution. When the influence of the strain rate is considered, the maximum plastic strain and plastic strain rate decrease.
Crushed Salt Constitutive Model
International Nuclear Information System (INIS)
Callahan, G.D.
1999-01-01
The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well
Dorfmann, A. Luis; Woods, William A; Trimmer, Barry A
2007-01-01
Experimental data on the passive mechanical properties of the ventral interior lateral muscle of the tobacco hornworm caterpillar, Manduca sexta, are reported. The stress–deformation response of the Manduca muscle is shown to be nonlinear pseudo-elastic, capable of large deformations and subject to stress softening during initial loading cycles. The muscle passive mechanical properties also depend on multiple time-dependent processes. In particular, we show new experimental data from cyclic l...
Mokhatar, S. N.; Sonoda, Y.; Kamarudin, A. F.; Noh, M. S. Md; Tokumaru, S.
2018-04-01
The main objective of this paper is to explore the effect of confining pressure in the compression and tension zone by simulating the behaviour of reinforced concrete/mortar structures subjected to the impact load. The analysis comprises the numerical simulation of the influences of high mass low speed impact weight dropping on concrete structures, where the analyses are incorporated with meshless method namely as Smoothed Particle Hydrodynamics (SPH) method. The derivation of the plastic stiffness matrix of Drucker-Prager (DP) that extended from Von-Mises (VM) yield criteria to simulate the concrete behaviour were presented in this paper. In which, the displacements for concrete/mortar structures are assumed to be infinitesimal. Furthermore, the influence of the different material model of DP and VM that used numerically for concrete and mortar structures are also discussed. Validation upon existing experimental test results is carried out to investigate the effect of confining pressure, it is found that VM criterion causes unreal impact failure (flexural cracking) of concrete structures.
Liu, Jinxing
2012-11-27
Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes the influence of voids with a single parameter, namely the void-volume fraction, excluding any possible effects of the void-size distribution. We extend our newly proposed model including the multi-sized void (MSV) effect and the void-interaction effect for the capability of working for both moderate and high loading rate cases, where either rate dependence or microinertia becomes considerable or even dominant. Parametric studies show that the MSV-related competitive mechanism among void growth leads to the dependence of the void growth rate on void size, which directly influences the void\\'s contribution to the total energy composition. We finally show that the stress-strain constitutive behavior is also affected by this MSV-related competitive mechanism. The stabilizing effect due to rate sensitivity and microinertia is emphasized. © 2013 IOP Publishing Ltd.
Rock salt constitutive modeling
International Nuclear Information System (INIS)
Nickell, R.E.
1980-01-01
The Serata model is the best operational model available today because it incorporates: (1) a yield function to demarcate between viscoelastic and viscoplastic behavior of rock salt; (2) a pressure and temperature dependence for yield stresses; and (3) a standard linear solid, which can be readily extended into the non-linear regime, to represent creep behavior. Its only deficiencies appear to be the lack of secondary creep behavior (a free dashpot) and some unsettling arbitrariness about the Poisson's ratio (ν → 0.5) argument for viscoplasticity. The Sandia/WIPP model will have good primary and secondary creep capability, but lacks the viscoplastic behavior. In some cases, estimated inelastic strains may be underpredicted. If a creep acceleration mechanism associated with brine inclusions is observed, this model may require extensive revision. Most of the other models available (SAI, RE-SPEC, etc.) are only useful for short-term calculations, because they employ temporal power law (t/sup n/) primary creep representations. These models are unsatisfactory because they cannot represent dual mechanisms with differing characteristic times. An approach based upon combined creep and plasticity is recommended in order to remove the remaining deficiency in the Serata model. DOE/Sandia/WIPP should be encouraged to move aggressively in this regard
Constitutive model for porous materials
International Nuclear Information System (INIS)
Weston, A.M.; Lee, E.L.
1982-01-01
A simple pressure versus porosity compaction model is developed to calculate the response of granular porous bed materials to shock impact. The model provides a scheme for calculating compaction behavior when relatively limited material data are available. While the model was developed to study porous explosives and propellants, it has been applied to a much wider range of materials. The early development of porous material models, such as that of Hermann, required empirical dynamic compaction data. Erkman and Edwards successfully applied the early theory to unreacted porous high explosives using a Gruneisen equation of state without yield behavior and without trapped gas in the pores. Butcher included viscoelastic rate dependance in pore collapse. The theoretical treatment of Carroll and Holt is centered on the collapse of a circular pore and includes radial inertia terms and a complex set of stress, strain and strain rate constitutive parameters. Unfortunately data required for these parameters are generally not available. The model described here is also centered on the collapse of a circular pore, but utilizes a simpler elastic-plastic static equilibrium pore collapse mechanism without strain rate dependence, or radial inertia terms. It does include trapped gas inside the pore, a solid material flow stress that creates both a yield point and a variation in solid material pressure with radius. The solid is described by a Mie-Gruneisen type EOS. Comparisons show that this model will accurately estimate major mechanical features which have been observed in compaction experiments
Constitutive Modelling in Geomechanics Introduction
Puzrin, Alexander M
2012-01-01
The purpose of this book is to bridge the gap between the traditional Geomechanics and Numerical Geotechnical Modelling with applications in science and practice. Geomechanics is rarely taught within the rigorous context of Continuum Mechanics and Thermodynamics, while when it comes to Numerical Modelling, commercially available finite elements or finite differences software utilize constitutive relationships within the rigorous framework. As a result, young scientists and engineers have to learn the challenging subject of constitutive modelling from a program manual and often end up with using unrealistic models which violate the Laws of Thermodynamics. The book is introductory, by no means does it claim any completeness and state of the art in such a dynamically developing field as numerical and constitutive modelling of soils. The author gives basic understanding of conventional continuum mechanics approaches to constitutive modelling, which can serve as a foundation for exploring more advanced theories....
Sitarenios Panagiotis; Kavvadas Michael
2016-01-01
The Modified Cam Clay model is extended to account for the behaviour of unsaturated soils using Bishop’s stress. To describe the Loading – Collapse behaviour, the model incorporates a compressibility framework with suction and degree of saturation dependent compression lines. For simplicity, the present paper describes the model in the triaxial stress space with characteristic simulations of constant suction compression and triaxial tests, as well as wetting tests. The model reproduces an evo...
International Nuclear Information System (INIS)
Tanaka, Eiichi; Yamada, Hiroshi
1993-01-01
The purpose of the present paper is to elucidate inelastic behavior of modified 9Cr-1Mo steel as a candidate material for the next-generation fast breeder reactor and to provide the information for the formulation of a unified constitutive model. For this purpose, cyclic creep, mechanical ratchetting and amplitude history dependence of cyclic hardening were first examined at 550degC. As a result, systematic cyclic creep and mechanical ratchetting behavior were observed under various loading conditions, and little amplitude history dependence was found. Then these results were simulated by three unified constitutive models, i.e. the Chaboche, Bodner-Partom and modified Chaboche models. The simulated results show that these models cannot describe the cyclic creep and mechanical ratchetting behavior with high accuracy, but succeed in describing the inelastic behavior of amplitude variation experiments. (author)
Directory of Open Access Journals (Sweden)
Sitarenios Panagiotis
2016-01-01
Full Text Available The Modified Cam Clay model is extended to account for the behaviour of unsaturated soils using Bishop’s stress. To describe the Loading – Collapse behaviour, the model incorporates a compressibility framework with suction and degree of saturation dependent compression lines. For simplicity, the present paper describes the model in the triaxial stress space with characteristic simulations of constant suction compression and triaxial tests, as well as wetting tests. The model reproduces an evolving post yield compressibility under constant suction compression, and thus, can adequately describe a maximum of collapse.
Liu, Jinxing; El Sayed, Tamer S.
2012-01-01
Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes
Constitutive Models for Shape Memory Alloy Polycrystals
Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.
1996-01-01
Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.
Constitutive modeling of metastable austenitic stainless steel
Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Khan, A.
2010-01-01
A physically based, macroscale constitutive model has been developed that can describe the complex mechanical behavior of metastable austenitic stainless steels. In the developed model a generalized model for the mechanically induced martensitic transformation is introduced. Mechanical tests have
Constitutive model for reinforced concrete
Feenstra, P.H.; Borst, de R.
1995-01-01
A numerical model is proposed for reinforced-concrete behavior that combines the commonly accepted ideas from modeling plain concrete, reinforcement, and interaction behavior in a consistent manner. The behavior of plain concrete is govern by fracture-energy-level-based formulation both in tension
Elastic-plastic constitutive modeling of concrete
International Nuclear Information System (INIS)
Takahashi, Y.
1983-03-01
The need to understand concrete behavior under high temperatures in the nuclear industry has become rather accute. For this purpose, a constitutive model of concrete especially developed for this severe environment is indispensable. This report reviews the presently available constitutive models of concrete at standard-temperature conditions and considers their advantages and drawbacks. A rather simple but effective approach is selected to treat concrete behavior at high temperatures. Special emphasis is devoted to the modeling of concrete up to and including failure. The derived constitutive model is checked with biaxial and triaxial benchmark experimental results. Very good agreement is obtained
generalized constitutive model for stabilized quick clay
African Journals Online (AJOL)
QUICK CLAY. PANCRAS MUGISHAGWE BUJULU AND GUSTAV GRIMSTAD. ABSTRACT. An experimentally-based two yield surface constitutive model for cemented quick clay has been ... Clay Model, the Koiter Rule and two Mapping Rules. .... models, where a mobilization formulation is used, this is independent of q.
Crushed-salt constitutive model update
International Nuclear Information System (INIS)
Callahan, G.D.; Loken, M.C.; Mellegard, K.D.; Hansen, F.D.
1998-01-01
Modifications to the constitutive model used to describe the deformation of crushed salt are presented in this report. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--defined previously but used separately are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. New creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from the shear consolidation tests and a combination of the shear and hydrostatic consolidation tests produced two sets of material parameter values for the model. The change in material parameter values from test group to test group indicates the empirical nature of the model but demonstrates improvement over earlier work with the previous models. Key improvements are the ability to capture lateral strain reversal and better resolve parameter values. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the model to predict the test data, the model appears to capture the creep consolidation behavior of crushed salt quite well
Crushed-salt constitutive model update
Energy Technology Data Exchange (ETDEWEB)
Callahan, G.D.; Loken, M.C.; Mellegard, K.D. [RE/SPEC Inc., Rapid City, SD (United States); Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States)
1998-01-01
Modifications to the constitutive model used to describe the deformation of crushed salt are presented in this report. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--defined previously but used separately are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. New creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from the shear consolidation tests and a combination of the shear and hydrostatic consolidation tests produced two sets of material parameter values for the model. The change in material parameter values from test group to test group indicates the empirical nature of the model but demonstrates improvement over earlier work with the previous models. Key improvements are the ability to capture lateral strain reversal and better resolve parameter values. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the model to predict the test data, the model appears to capture the creep consolidation behavior of crushed salt quite well.
A model for TRIP steel constitutive behaviour
Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Menari, G
2011-01-01
A constitutive model is developed for TRIP steel. This is a steel which contains three or four different phases in its microstructure. One of the phases in TRIP steels is metastable austenite (Retained Austenite) which transforms to martensite upon deformation. The accompanying transformation strain
Constitutive Modeling for Sheet Metal Forming
International Nuclear Information System (INIS)
Barlat, Frederic
2005-01-01
This paper reviews aspects of the plastic behaviour common in sheet metals. Macroscopic and microscopic phenomena occurring during plastic deformation are described succinctly. Constitutive models of plasticity suitable for applications to forming, are discussed in a very broad manner. Approaches to plastic anisotropy are described in a somewhat more detailed manner
Evaluation of constitutive models for crushed salt
International Nuclear Information System (INIS)
Callahan, G.D.; Loken, M.C.; Hurtado, L.D.; Hansen, F.D.
1996-01-01
Three constitutive models are recommended as candidates for describing the deformation of crushed salt. These models are generalized to three-dimensional states of stress to include the effects of mean and deviatoric stress and modified to include effects of temperature, grain size, and moisture content. A database including hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant (WIPP) and southeastern New Mexico salt is used to determine material parameters for the models. To evaluate the capability of the models, parameter values obtained from fitting the complete database are used to predict the individual tests. Finite element calculations of a WIPP shaft with emplaced crushed salt demonstrate the model predictions
On constitutive modelling in finite element analysis
International Nuclear Information System (INIS)
Bathe, K.J.; Snyder, M.D.; Cleary, M.P.
1979-01-01
This compact contains a brief introduction to the problems involved in constitutive modeling as well as an outline of the final paper to be submitted. Attention is focussed on three important areas: (1) the need for using theoretically sound material models and the importance of recognizing the limitations of the models, (2) the problem of developing stable and effective numerical representations of the models, and (3) the necessity for selection of an appropriate finite element mesh that can capture the actual physical response of the complete structure. In the final paper, we will be presenting our recent research results pertaining to each of these problem areas. (orig.)
Constitutive relations for multiphase flow modeling
Energy Technology Data Exchange (ETDEWEB)
Jacobs, H.; Vaeth, L.; Thurnay, K. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik
1998-01-01
The constitutive relations that are used in the three-field fluid dynamics code IVA-KA for determining the drag in three-phase mixtures and the heat transferred by radiation are described together with some comparisons of calculational results with experiments. In these experiments (QUEOS), large quantities of solid particles are injected into water. Potential deficiencies of the present drag model are discussed. (author)
Preliminary Test for Constitutive Models of CAP
Energy Technology Data Exchange (ETDEWEB)
Choo, Yeon Joon; Hong, Soon Joon; Hwang, Su Hyun; Lee, Keo Hyung; Kim, Min Ki; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Ha, Sang Jun; Choi, Hoon [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)
2010-05-15
The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. As a part of this project, CAP (Containment Analysis Package) code has been developing for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (vapor, continuous liquid and dispersed drop) for the assessment of containment specific phenomena, and is featured by assessment capabilities in multi-dimensional and lumped parameter thermal hydraulic cell. Thermal hydraulics solver was developed and has a significant progress now. Implementation of the well proven constitutive models and correlations are essential in other for a containment code to be used with the generalized or optimized purposes. Generally, constitutive equations are composed of interfacial and wall transport models and correlations. These equations are included in the source terms of the governing field equations. In order to develop the best model and correlation package of the CAP code, various models currently used in major containment analysis codes, such as GOTHIC, CONTAIN2.0 and CONTEMPT-LT are reviewed. Several models and correlations were incorporated for the preliminary test of CAP's performance and test results and future plans to improve the level of execution besides will be discussed in this paper
Preliminary Test for Constitutive Models of CAP
International Nuclear Information System (INIS)
Choo, Yeon Joon; Hong, Soon Joon; Hwang, Su Hyun; Lee, Keo Hyung; Kim, Min Ki; Lee, Byung Chul; Ha, Sang Jun; Choi, Hoon
2010-01-01
The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. As a part of this project, CAP (Containment Analysis Package) code has been developing for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (vapor, continuous liquid and dispersed drop) for the assessment of containment specific phenomena, and is featured by assessment capabilities in multi-dimensional and lumped parameter thermal hydraulic cell. Thermal hydraulics solver was developed and has a significant progress now. Implementation of the well proven constitutive models and correlations are essential in other for a containment code to be used with the generalized or optimized purposes. Generally, constitutive equations are composed of interfacial and wall transport models and correlations. These equations are included in the source terms of the governing field equations. In order to develop the best model and correlation package of the CAP code, various models currently used in major containment analysis codes, such as GOTHIC, CONTAIN2.0 and CONTEMPT-LT are reviewed. Several models and correlations were incorporated for the preliminary test of CAP's performance and test results and future plans to improve the level of execution besides will be discussed in this paper
Constitutive modelling of composite biopolymer networks.
Fallqvist, B; Kroon, M
2016-04-21
The mechanical behaviour of biopolymer networks is to a large extent determined at a microstructural level where the characteristics of individual filaments and the interactions between them determine the response at a macroscopic level. Phenomena such as viscoelasticity and strain-hardening followed by strain-softening are observed experimentally in these networks, often due to microstructural changes (such as filament sliding, rupture and cross-link debonding). Further, composite structures can also be formed with vastly different mechanical properties as compared to the individual networks. In this present paper, we present a constitutive model presented in a continuum framework aimed at capturing these effects. Special care is taken to formulate thermodynamically consistent evolution laws for dissipative effects. This model, incorporating possible anisotropic network properties, is based on a strain energy function, split into an isochoric and a volumetric part. Generalisation to three dimensions is performed by numerical integration over the unit sphere. Model predictions indicate that the constitutive model is well able to predict the elastic and viscoelastic response of biological networks, and to an extent also composite structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scaling and constitutive relationships in downcomer modeling
International Nuclear Information System (INIS)
Daly, B.J.; Harlow, F.H.
1978-12-01
Constitutive relationships to describe mass and momentum exchange in multiphase flow in a pressurized water reactor downcomer are presented. Momentum exchange between the phases is described by the product of the flux of momentum available for exchange and the effective area for interaction. The exchange of mass through condensation is assumed to occur along a distinct condensation boundary separating steam at saturation temperature from water in which the temperature falls off roughly linearly with distance from the boundary. Because of the abundance of nucleation sites in a typical churning flow in a downcomer, we propose an equilibrium evaporation process that produces sufficient steam per unit time to keep the water perpetually cooled to the saturation temperature. The transport equations, constitutive models, and boundary conditions used in the K-TIF numerical method are nondimensionalized to obtain scaling relationships for two-phase flow in the downcomer. The results indicate that, subject to idealized thermodynamic and hydraulic constraints, exact mathematical scaling can be achieved. Experiments are proposed to isolate the effects of parameters that contribute to mass, momentum, and energy exchange between the phases
Initiating the judicial review in the European model of constitutional justice
Stojanović Dragan
2014-01-01
Judicial review is the core competence of the constitutional judicature in Europe, which is largely shaped by the Austrian and German models of constitutional justice. In that context, the issue of initiating the constitutional review of legislation is extremely important. Depending on the subject who is authorized to initiate this proceeding, the constitutional review may be twofold: the abstract control and the incidental control. The former type of constitutional review is generally initia...
Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils
DEFF Research Database (Denmark)
Jakobsen, Kim Parsberg
of a constitutive model for soil is based on a profound knowledge of the soil behaviour upon loading. In the present study it is attempted to get a better understanding of the soil behaviour bv performing a number of triaxial compression tests on sand. The stress-strain behaviour of sand depends strongly......This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...... and subsequently dilates during shear. The change in the volumetric behaviour of the soil skeleton is commonly referred to as the characteristic state. The stress ratio corresponding to the characteristic state is independent of the mean normal effective stress and the relative density, but depends on the stress...
Mechanical characterization and constitutive modeling of Mg alloy sheets
International Nuclear Information System (INIS)
Mekonen, M. Nebebe; Steglich, D.; Bohlen, J.; Letzig, D.; Mosler, J.
2012-01-01
Highlights: ► Material characterization of the Mg alloys AZ31 and ZE10 at elevated temperatures. ► Distortion of the yield locus does not depend on the strain rate. ► Novel constitutive model suitable for the analysis of sheet forming of magnesium. ► Strain-dependent r-values are included within the model. ► The model is thermodynamically consistent and accounts for distortional hardening. - Abstract: In this paper, an experimental mechanical characterization of the magnesium alloys ZE10 and AZ31 is performed and a suitable constitutive model is established. The mechanical characterization is based on uniaxial tensile tests. In order to avoid poor formability at room temperature, the tests were conducted at elevated temperature (200 °C). The uniaxial tensile tests reveal sufficient ductility allowing sheet forming processes at this temperature. The differences in yield stresses and plastic strain ratios (r-values) confirm the anisotropic response of the materials under study. The constitutive model is established so that the characteristic mechanical features observed in magnesium alloys such as anisotropy and compression-tension asymmetry can be accommodated. This model is thermodynamically consistent, incorporates rate effect, is formulated based on finite strain plasticity theory and is applicable in sheet forming simulations of magnesium alloys. More precisely, a model originally proposed by Cazacu and Barlat in 2004 and later modified to account for the evolution of the material anisotropy is rewritten in a thermodynamically consistent framework. The calibrated constitutive model is shown to capture the characteristic mechanical features observed in magnesium alloy sheets.
Selected Constitutive Models for Simulating the Hygromechanical Response of Wood
DEFF Research Database (Denmark)
Frandsen, Henrik Lund
, the boundary conditions are discussed based on discrepancies found for similar research on moisture transport in paper stacks. Paper III: A new sorption hysteresis model suitable for implementation into a numerical method is developed. The prevailing so-called scanning curves are modeled by closed......-form expressions, which only depend on the current relative humidity of the air and current moisture content of the wood. Furthermore, the expressions for the scanning curves are formulated independent of the temperature and species-dependent boundary curves. Paper IV: The sorption hysteresis model developed...... are discussed. The constitutive moisture transport models are coupled with a heat transport model yielding terms that describe the so-called Dufour and Sorret effects, however, with multiple phases and hysteresis included. Paper VII: In this paper the modeling of transverse couplings in creep of wood...
Advances in triaxial constitutive modeling of concrete
International Nuclear Information System (INIS)
Bazant, Z.P.
1981-01-01
The paper describes in a summary fashion recent developments, questions, and trends in the mathematical modeling of short-time nonlinear triaxial behavior of concrete, which is of considerable importance for a realistic and reliable prediction of the behavior of nuclear concrete structures. Attention is focused on the problems of internal friction, dilatancy, effect of microcracking, and path-dependence of response. Some typical responses are illustrated graphically. (orig.)
Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag
Energy Technology Data Exchange (ETDEWEB)
Massoudi, Mehrdad [National Energy Technology Laboratory; Wang, Ping
2013-02-07
The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.
Constitutive modeling of salt behavior: State of the technology
International Nuclear Information System (INIS)
Munson, D.E.; Wawersik, W.R.
1992-01-01
The modern investigation of the thermomechanical behavior of salt started in the mid-1930's and, for what appears to be a very narrow discipline, ''salt mechanics'' has acquired considerable technical depth and sophistication. The last three decades have been especially productive in constitutive model development and laboratory investigations of time-dependent creep behavior. This has been largely due ot anticipated use of domal or bedded salt deposits as sites for radioactive waste repositories and to expanded need for hydrocarbon and feedback storage caverns. Salt is an interesting material, in that it is ''metal-like''; and, therefore, constitutive modeling can draw upon a large body of metal deformation information to arrive at appropriate models of behavior. Testing apparatus and methods have centered on either uniaxial or triaxial compression to obtain steady state and transient creep responses. Flow and fracture potentials have been defined. Validation attempts of the models against field data, although limited, have proved promising. The objective here is to summarize the state-of-the-technology of the constitutive modeling of salt behavior or ''salt mechanics.''
Constitutive modelling in the range of inelastic deformations
International Nuclear Information System (INIS)
Bruhns, O.T.; White, P.S.; Chaboche, J.L.; Eikhoff, J.V.D.
1988-01-01
The main objective of this report is to describe the state of the art in constitutive modelling in the range of inelastic deformations, with particular consideration of the practical use of these models in the field of fast reactors, rather than to formulate new models. An outline is given of the constitutive equations for high-temperature reactor materials developed at the Oak Ridge National Laboratory. Two forms of equations are considered, a semi-classical treatment in terms of separate plasticity and creep and unified equations in which the classical plasticity does not explicitly occur. The fraction model originally proposed by Besseling is described. The basic concept of this model is that the material is thought to be subdivided into a number of parallel fractions, each with simple conventional properties. The more complicated behaviour of real material is thus approximated by choosing a number of parallel fractions with suitable models and model parameters. Three time-independent formulations of plasticity are considered and compared. Attention is focused on the kinematic hardening in the multi-yield surface theory of Mroz and the non-linear kinematic rule intensively used at Enset and Onera. Some connections are pointed out with the two-surface model of Dafalias and Popov, and the range of applicability of the different models is studied in detail. Finally, the constitutive equations of the Interatom model are presented. They are mainly based on the concept of overstresses, expressing the rate-dependence of the material by the magnitude of these overstresses. This model furthermore comprises a combination of general non-linear isotropic and kinematic hardening, with a smooth transition from isotropic to kinematic hardening as a function of process time
Constitutive modelling of sandvik 1RK91
Datta, K.; Datta, K.; Hommes, M.; Post, J.; Geijselaers, Hubertus J.M.; Huetink, Han; Beyer, J.; Onate, E; Owen, D.R.J
2003-01-01
A physically based constitutive equation is being developed for the maraging stainless steel Sandvik 1RK91. The steel is used to make precision parts. These parts are formed through multistage forming operations and heat treatments from cold rolled and annealed sheets. The specific alloy is designed
Towards Viscoplastic Constitutive Models for Cosserat Rods
Dörlich Vanessa; Linn Joachim; Scheffer Tobias; Diebels Stefan
2016-01-01
Flexible, slender structures like cables, hoses or wires can be described by the geometrically exact Cosserat rod theory. Due to their complex multilayer structure, consisting of various materials, viscoplastic behavior has to be expected for cables under load. Classical experiments like uniaxial tension, torsion or three-point bending already show that the behavior of e.g. electric cables is viscoplastic. A suitable constitutive law for the observed load case is crucial for a realistic simul...
Constitutional Justice Procedure in Lithuania: a Search for Optimal Model
Pūraitė-Andrikienė, Dovilė
2017-01-01
The dissertation systematically analyzes the preconditions for optimising the existing constitutional justice model, i.e. whether the current model meets the expectations of Lithuanian society and the legal community, corresponds to the capabilities of the legal system, and is in line with the tendencies of constitutional justice in European states, identifies the problematic aspects of the existing constitutional justice model and brings forward proposals regarding how the legal regulation c...
Towards Viscoplastic Constitutive Models for Cosserat Rods
Directory of Open Access Journals (Sweden)
Dörlich Vanessa
2016-06-01
Full Text Available Flexible, slender structures like cables, hoses or wires can be described by the geometrically exact Cosserat rod theory. Due to their complex multilayer structure, consisting of various materials, viscoplastic behavior has to be expected for cables under load. Classical experiments like uniaxial tension, torsion or three-point bending already show that the behavior of e.g. electric cables is viscoplastic. A suitable constitutive law for the observed load case is crucial for a realistic simulation of the deformation of a component. Consequently, this contribution aims at a viscoplastic constitutive law formulated in the terms of sectional quantities of Cosserat rods. Since the loading of cables in applications is in most cases not represented by these mostly uniaxial classical experiments, but rather multiaxial, new experiments for cables have to be designed. They have to illustrate viscoplastic effects, enable access to (viscoplastic material parameters and account for coupling effects between different deformation modes. This work focuses on the design of such experiments.
Constitutive Modeling of Geomaterials Advances and New Applications
Zhang, Jian-Min; Zheng, Hong; Yao, Yangping
2013-01-01
The Second International Symposium on Constitutive Modeling of Geomaterials: Advances and New Applications (IS-Model 2012), is to be held in Beijing, China, during October 15-16, 2012. The symposium is organized by Tsinghua University, the International Association for Computer Methods and Advances in Geomechanics (IACMAG), the Committee of Numerical and Physical Modeling of Rock Mass, Chinese Society for Rock Mechanics and Engineering, and the Committee of Constitutive Relations and Strength Theory, China Institution of Soil Mechanics and Geotechnical Engineering, China Civil Engineering Society. This Symposium follows the first successful International Workshop on Constitutive Modeling held in Hong Kong, which was organized by Prof. JH Yin in 2007. Constitutive modeling of geomaterials has been an active research area for a long period of time. Different approaches have been used in the development of various constitutive models. A number of models have been implemented in the numerical analyses of geote...
A thermomechanical crystal plasticity constitutive model for ultrasonic consolidation
Siddiq, Amir; El Sayed, Tamer S.
2012-01-01
We present a micromechanics-based thermomechanical constitutive model to simulate the ultrasonic consolidation process. Model parameters are calibrated using an inverse modeling approach. A comparison of the simulated response and experimental
Mathematical modeling and the two-phase constitutive equations
International Nuclear Information System (INIS)
Boure, J.A.
1975-01-01
The problems raised by the mathematical modeling of two-phase flows are summarized. The models include several kinds of equations, which cannot be discussed independently, such as the balance equations and the constitutive equations. A review of the various two-phase one-dimensional models proposed to date, and of the constitutive equations they imply, is made. These models are either mixture models or two-fluid models. Due to their potentialities, the two-fluid models are discussed in more detail. To avoid contradictions, the form of the constitutive equations involved in two-fluid models must be sufficiently general. A special form of the two-fluid models, which has particular advantages, is proposed. It involves three mixture balance equations, three balance equations for slip and thermal non-equilibriums, and the necessary constitutive equations [fr
A comparative study of the constitutive models for silicon carbide
Ding, Jow-Lian; Dwivedi, Sunil; Gupta, Yogendra
2001-06-01
Most of the constitutive models for polycrystalline silicon carbide were developed and evaluated using data from either normal plate impact or Hopkinson bar experiments. At ISP, extensive efforts have been made to gain detailed insight into the shocked state of the silicon carbide (SiC) using innovative experimental methods, viz., lateral stress measurements, in-material unloading measurements, and combined compression shear experiments. The data obtained from these experiments provide some unique information for both developing and evaluating material models. In this study, these data for SiC were first used to evaluate some of the existing models to identify their strength and possible deficiencies. Motivated by both the results of this comparative study and the experimental observations, an improved phenomenological model was developed. The model incorporates pressure dependence of strength, rate sensitivity, damage evolution under both tension and compression, pressure confinement effect on damage evolution, stiffness degradation due to damage, and pressure dependence of stiffness. The model developments are able to capture most of the material features observed experimentally, but more work is needed to better match the experimental data quantitatively.
Towards a Simple Constitutive Model for Bread Dough
Tanner, Roger I.
2008-07-01
Wheat flour dough is an example of a soft solid material consisting of a gluten (rubbery) network with starch particles as a filler. The volume fraction of the starch filler is high-typically 60%. A computer-friendly constitutive model has been lacking for this type of material and here we report on progress towards finding such a model. The model must describe the response to small strains, simple shearing starting from rest, simple elongation, biaxial straining, recoil and various other transient flows. A viscoelastic Lodge-type model involving a damage function. which depends on strain from an initial reference state fits the given data well, and it is also able to predict the thickness at exit from dough sheeting, which has been a long-standing unsolved puzzle. The model also shows an apparent rate-dependent yield stress, although no explicit yield stress is built into the model. This behaviour agrees with the early (1934) observations of Schofield and Scott Blair on dough recoil after unloading.
Spherocylindrical microplane constitutive model for shale and other anisotropic rocks
Li, Cunbao; Caner, Ferhun C.; Chau, Viet T.; Bažant, Zdeněk P.
2017-06-01
Constitutive equations for inelastic behavior of anisotropic materials have been a challenge for decades. Presented is a new spherocylindrical microplane constitutive model that meets this challenge for the inelastic fracturing behavior of orthotropic materials, and particularly the shale, which is transversely isotropic and is important for hydraulic fracturing (aka fracking) as well as many geotechnical structures. The basic idea is to couple a cylindrical microplane system to the classical spherical microplane system. Each system is subjected to the same strain tensor while their stress tensors are superposed. The spherical phase is similar to the previous microplane models for concrete and isotropic rock. The integration of stresses over spherical microplanes of all spatial orientations relies on the previously developed optimal Gaussian integration over a spherical surface. The cylindrical phase, which is what creates the transverse isotropy, involves only microplanes that are normal to plane of isotropy, or the bedding layers, and enhance the stiffness and strength in that plane. Unlike all the microplane models except the spectral one, the present one can reproduce all the five independent elastic constants of transversely isotropic shales. Vice versa, from these constants, one can easily calculate all the microplane elastic moduli, which are all positive if the elastic in-to-out-of plane moduli ratio is not too big (usually less than 3.75, which applies to all shales). Oriented micro-crack openings, frictional micro-slips and bedding plane behavior can be modeled more intuitively than with the spectral approach. Data fitting shows that the microplane resistance depends on the angle with the bedding layers non-monotonically, and compressive resistance reaches a minimum at 60°. A robust algorithm for explicit step-by-step structural analysis is formulated. Like all microplane models, there are many material parameters, but they can be identified sequentially
A phenomenological constitutive model for low density polyurethane foams
International Nuclear Information System (INIS)
Neilsen, M.K.; Morgan, H.S.; Krieg, R.D.
1987-04-01
Results from a series of hydrostatic and triaxial compression tests which were performed on polyurethane foams are presented in this report. These tests indicate that the volumetric and deviatoric parts of the foam behavior are strongly coupled. This coupling behavior could not be captured with any of several commonly used plasticity models. Thus, a new constitutive model was developed. This new model was based on a decomposition of the foam response into two parts: (1) response of the polymer skeleton, and (2) response of the air inside the cells. The air contribution was completely volumetric. The new constitutive model was implemented in two finite element codes, SANCHO and PRONTO. Results from a series of analyses completed with these codes indicated that the new constitutive model captured all of the foam behaviors that had been observed in the experiments. Finally, a typical dynamic problem was analyzed using the new constitutive model and other constitutive models to demonstrate differences between the models. Results from this series of analyses indicated that the new constitutive model generated displacement and acceleration predictions that were between predictions obtained using the other models. This result was expected. 9 refs., 45 figs., 4 tabs
Interaction with epsin 1 regulates the constitutive clathrin-dependent internalization of ErbB3.
Szymanska, Monika; Fosdahl, Anne Marthe; Raiborg, Camilla; Dietrich, Markus; Liestøl, Knut; Stang, Espen; Bertelsen, Vibeke
2016-06-01
In contrast to other members of the EGF receptor family, ErbB3 is constitutively internalized in a clathrin-dependent manner. Previous studies have shown that ErbB3 does not interact with the coated pit localized adaptor complex 2 (AP-2), and that ErbB3 lacks two AP-2 interacting internalization signals identified in the EGF receptor. Several other clathrin-associated sorting proteins which may recruit cargo into coated pits have, however, been identified, and the study was performed to identify adaptors needed for constitutive internalization of ErbB3. A high-throughput siRNA screen was used to identify adaptor proteins needed for internalization of ErbB3. Upon knock-down of candidate proteins internalization of ErbB3 was identified using an antibody-based internalization assay combined with automatic fluorescence microscopy. Among 29 candidates only knock-down of epsin 1 turned out to inhibit ErbB3. Epsin 1 has ubiquitin interacting motifs (UIMs) and we show that ErbB3 interacts with an epsin 1 deletion mutant containing these UIMs. In support of an ErbB3-epsin 1 UIM dependent interaction, we show that ErbB3 is constitutively ubiquitinated, but that both ubiquitination and the ErbB3-epsin 1 interaction increase upon ligand binding. Altogether the results are consistent with a model whereby both constitutive and ligand-induced internalization of ErbB3 are regulated through interaction with epsin 1. Internalization is an important regulator of growth factor receptor mediated signaling and the current study identify mechanisms regulating plasma membrane turnover of ErbB3. Copyright © 2016 Elsevier B.V. All rights reserved.
Study on the constitutive model for jointed rock mass.
Directory of Open Access Journals (Sweden)
Qiang Xu
Full Text Available A new elasto-plastic constitutive model for jointed rock mass, which can consider the persistence ratio in different visual angle and anisotropic increase of plastic strain, is proposed. The proposed the yield strength criterion, which is anisotropic, is not only related to friction angle and cohesion of jointed rock masses at the visual angle but also related to the intersection angle between the visual angle and the directions of the principal stresses. Some numerical examples are given to analyze and verify the proposed constitutive model. The results show the proposed constitutive model has high precision to calculate displacement, stress and plastic strain and can be applied in engineering analysis.
Remarks on ConstitutiveModeling of Nanofluids
Energy Technology Data Exchange (ETDEWEB)
Massoudi, Mehrdad; Tran X. Phuoc
2012-01-01
Nanofluids are made by adding nanoscale particles in low volumetric fractions to a fluid in order to enhance or improve their rheological, mechanical, optical, and thermal properties. The base fluid can be any liquid such as oil, water, ethylene glycol, or conventional fluid mixtures. Limited available studies on nanofluid viscosity have been reported [1-19]. In most of these studies, the behavior of the viscosity and the shear stress of nanofluids have been interpreted using the widely used empirical model developed by Casson [20].
Evaluation of potential crushed-salt constitutive models
International Nuclear Information System (INIS)
Callahan, G.D.; Loken, M.C.; Sambeek, L.L. Van; Chen, R.; Pfeifle, T.W.; Nieland, J.D.; Hansen, F.D.
1995-12-01
Constitutive models describing the deformation of crushed salt are presented in this report. Ten constitutive models with potential to describe the phenomenological and micromechanical processes for crushed salt were selected from a literature search. Three of these ten constitutive models, termed Sjaardema-Krieg, Zeuch, and Spiers models, were adopted as candidate constitutive models. The candidate constitutive models were generalized in a consistent manner to three-dimensional states of stress and modified to include the effects of temperature, grain size, and moisture content. A database including hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt was used to determine material parameters for the candidate constitutive models. Nonlinear least-squares model fitting to data from the hydrostatic consolidation tests, the shear consolidation tests, and a combination of the shear and hydrostatic tests produces three sets of material parameter values for the candidate models. The change in material parameter values from test group to test group indicates the empirical nature of the models. To evaluate the predictive capability of the candidate models, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the models to predict the test data, the Spiers model appeared to perform slightly better than the other two candidate models. The work reported here is a first-of-its kind evaluation of constitutive models for reconsolidation of crushed salt. Questions remain to be answered. Deficiencies in models and databases are identified and recommendations for future work are made. 85 refs
Constitutive modeling of shock response of PTFE
Energy Technology Data Exchange (ETDEWEB)
Brown, Eric N [Los Alamos National Laboratory; Reanyansky, Anatoly D [DSTO, AUSTRALIA; Bourne, Neil K [AWE, UK; Millett, Jeremy C F [AWE, UK
2009-01-01
The PTFE (polytetrafluoroethylene) material is complex and attracts attention of the shock physics researchers because it has amorphous and crystalline components. In turn, the crystalline component has four known phases with the high pressure transition to phase III. At the same time, as has been recently studied using spectrometry, the crystalline region is growing with load. Stress and velocity shock-wave profiles acquired recently with embedded gauges demonstrate feature that may be related to impedance mismatches between the regions subjected to some transitions resulting in density and modulus variations. We consider the above mentioned amorphous-to-crystalline transition and the high pressure Phase II-to-III transitions as possible candidates for the analysis. The present work utilizes a multi-phase rate sensitive model to describe shock response of the PTFE material. One-dimensional experimental shock wave profiles are compared with calculated profiles with the kinetics describing the transitions. The objective of this study is to understand the role of the various transitions in the shock response of PTFE.
A Mathematical Approach to Establishing Constitutive Models for Geomaterials
Directory of Open Access Journals (Sweden)
Guang-hua Yang
2013-01-01
Full Text Available The mathematical foundation of the traditional elastoplastic constitutive theory for geomaterials is presented from the mathematical point of view, that is, the expression of stress-strain relationship in principal stress/strain space being transformed to the expression in six-dimensional space. A new framework is then established according to the mathematical theory of vectors and tensors, which is applicable to establishing elastoplastic models both in strain space and in stress space. Traditional constitutive theories can be considered as its special cases. The framework also enables modification of traditional constitutive models.
Constitutive relationships and models in continuum theories of multiphase flows
International Nuclear Information System (INIS)
Decker, R.
1989-09-01
In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included
A New Material Constitutive Model for Predicting Cladding Failure
Energy Technology Data Exchange (ETDEWEB)
Rashid, Joe; Dunham, Robert [ANATECH Corp., San Diego, CA (United States); Rashid, Mark [University of California Davis, Davis, CA (United States); Machiels, Albert [EPRI, Palo Alto, CA (United States)
2009-06-15
following dry storage, for which the development of valid failure criteria would require major efforts. 2. Cladding as a Three-Phase Composite with Constitutively Modeled Damage: In a three-phase composite, there are two distinct damage mechanisms represented in the model: in the first, strain normal to the platelets results in a progressive loss of stress-carrying capacity in both the matrix and the platelet phases, on the plane of the platelets. In the second damage mechanism, the degree of damage associated with one hydride orientation is dependent upon the amount of hydrides in the other, perpendicular orientation. This introduces coupling between the radial and circumferential hydrides that depends on the relative volume fraction of each. This coupled inter-dependence of damage is mathematically formulated as a continuous process assuming both hydride orientations to be always present, even if one of the hydride phases has zero volume-fraction. This mathematical construct allows the evolution of damage to gradually shift from one phase orientation to another, and the magnitude of this shift would depend on the relative volume fraction of each phase. 3. Model Predictions and Comparison to Data: The model is applied to the analysis of a cladding specimen irradiated to an average hydrogen concentration of 206 ppm and pressure tested at 25 deg. C. The second example is a hydrided cladding specimen with uniform distribution of circumferential hydrides, subjected to radial hydride treatment by cooling from 300 deg. C under a hoop stress of 225 MPa. The measured stress-strain response is not available, but the total elongation data are {approx}17.5% in the axial direction and {approx}1.5% in the hoop direction, which illustrates the strong effect of radial hydrides. (authors)
Directory of Open Access Journals (Sweden)
Despotović Ljubiša M.
2004-01-01
Full Text Available In this paper the authors give a comparative analysis of territorial organization of authorities in five constitutional models for Serbia. The paper consists of the following chapters: Introduction, Outline of the Constitution of Kingdom of Serbia, Basic Principles of the New Constitution of Serbia - DSS, Outline of Constitution of Republic of Serbia - DS Constitutional Solutions for Serbia - BCLJP, Project of Constitution of Republic of Serbia - Forum iuris, Conclusion. The analysis of territorial organization of authorities has been seen in the context of the processes of transition and archiving the important principles of civil society and civil autonomies.
Constitutive Modelling of Resins in the Stiffness Domain
Klasztorny, M.
2004-09-01
An analytic method for inverting the constitutive compliance equations of viscoelasticity for resins is developed. These equations describe the HWKK/H rheological model, which makes it possible to simulate, with a good accuracy, short-, medium- and long-term viscoelastic processes in epoxy and polyester resins. These processes are of first-rank reversible isothermal type. The time histories of deviatoric stresses are simulated with three independent strain history functions of fractional and normal exponential types. The stiffness equations are described by two elastic and six viscoelastic constants having a clear physic meaning (three long-term relaxation coefficients and three relaxation times). The time histories of axiatoric stresses are simulated as perfectly elastic. The inversion method utilizes approximate constitutive stiffness equations of viscoelasticity for the HWKK/H model. The constitutive compliance equations for the model are a basis for determining the exact complex shear stiffness, whereas the approximate constitutive stiffness equations are used for determining the approximate complex shear stiffness. The viscoelastic constants in the stiffness domain are derived by equating the exact and approximate complex shear stiffnesses. The viscoelastic constants are obtained for Epidian 53 epoxy and Polimal 109 polyester resins. The accuracy of the approximate constitutive stiffness equations are assessed by comparing the approximate and exact complex shear stiffnesses. The constitutive stiffness equations for the HWKK/H model are presented in uncoupled (shear/bulk) and coupled forms. Formulae for converting the constants of shear viscoelasticity into the constants of coupled viscoelasticity are given as well.
A three-dimensional constitutive model for shape memory alloy
International Nuclear Information System (INIS)
Zhou, Bo; Yoon, Sung-Ho; Leng, Jin-Song
2009-01-01
Shape memory alloy (SMA) has a wide variety of practical applications due to its unique super-elasticity and shape memory effect. It is of practical interest to establish a constitutive model which predicts its phase transformation and mechanical behaviors. In this paper, a new three-dimensional phase transformation equation, which predicts the phase transformation behaviors of SMA, is developed based on the results of a differential scanning calorimetry (DSC) test. It overcomes both limitations: that Zhou's phase transformation equations fail to describe the phase transformation from twinned martensite to detwinned martensite of SMA and Brinson's phase transformation equation fails to express the influences of phase transformation peak temperatures on the phase transformation behaviors of SMA. A new three-dimensional constitutive equation, which predicts the mechanical behaviors associated with the super-elasticity and shape memory effect of SMA, is developed on the basis of thermodynamics and solid mechanics. Results of numerical simulations show that the new constitutive model, which includes the new phase transformation equation and constitutive equation, can predict the phase transformation and mechanical behaviors associated with the super-elasticity and shape memory effect of SMA precisely and comprehensively. It is proved that Brinson's constitutive model of SMA can be considered as one special case of the new constitutive model
Constitutive NADPH-Dependent Electron Transferase Activity of the Nox4 Dehydrogenase Domain?
Nisimoto, Yukio; Jackson, Heather M.; Ogawa, Hisamitsu; Kawahara, Tsukasa; Lambeth, J. David
2010-01-01
NADPH oxidase 4 (Nox4) is constitutively active, while Nox2 requires the cytosolic regulatory subunits p47 phox and p67 phox and activated Rac with activation by phorbol 12-myristate 13-acetate (PMA). This study was undertaken to identify the domain on Nox4 that confers constitutive activity. Lysates from Nox4-expressing cells exhibited constitutive NADPH- but not NADH-dependent hydrogen peroxide production with a K m for NADPH of 55 ? 10 ?M. The concentration of Nox4 in cell lysates was esti...
Review of constitutive models and failure criteria for concrete
Energy Technology Data Exchange (ETDEWEB)
Seo, Jeong Moon; Choun, Young Sun [Korea Atomic Energy Research Institute, Taejeon (Korea)
2000-03-01
The general behavior, constitutive models, and failure criteria of concrete are reviewed. The current constitutive models for concrete cannot satisfy all of mechanical behavior of concrete. Among several constitutive models, damage models are recommended to describe properly the structural behavior of concrete containment buildings, because failure modes and post-failure behavior are important in containment buildings. A constitutive model which can describe the concrete behavior in tension is required because the containment buildings will reach failure state due to ultimate internal pressure. Therefore, a thorough study on the behavior and models under tension stress state in concrete and reinforced concrete has to be performed. There are two types of failure criteria in containment buildings: structural failure criteria and leakage failure criteria. For reinforced or prestressed concrete containment buildings, concrete cracking does not mean the structural failure of containment building because the reinforcement or post-tensioning system is able to resist tensile stress up to yield stress. Therefore leakage failure criteria will be prior to structural failure criteria, and a strain failure criterion for concrete has to be established. 120 refs., 59 figs., 1 tabs. (Author)
Target Soil Impact Verification: Experimental Testing and Kayenta Constitutive Modeling.
Energy Technology Data Exchange (ETDEWEB)
Broome, Scott Thomas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Flint, Gregory Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Dewers, Thomas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Newell, Pania [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-11-01
This report details experimental testing and constitutive modeling of sandy soil deformation under quasi - static conditions. This is driven by the need to understand constitutive response of soil to target/component behavior upon impact . An experimental and constitutive modeling program was followed to determine elastic - plastic properties and a compressional failure envelope of dry soil . One hydrostatic, one unconfined compressive stress (UCS), nine axisymmetric compression (ACS) , and one uniaxial strain (US) test were conducted at room temperature . Elastic moduli, assuming isotropy, are determined from unload/reload loops and final unloading for all tests pre - failure and increase monotonically with mean stress. Very little modulus degradation was discernable from elastic results even when exposed to mean stresses above 200 MPa . The failure envelope and initial yield surface were determined from peak stresses and observed onset of plastic yielding from all test results. Soil elasto - plastic behavior is described using the Brannon et al. (2009) Kayenta constitutive model. As a validation exercise, the ACS - parameterized Kayenta model is used to predict response of the soil material under uniaxial strain loading. The resulting parameterized and validated Kayenta model is of high quality and suitable for modeling sandy soil deformation under a range of conditions, including that for impact prediction.
A constitutive model for concrete under dynamic loading
International Nuclear Information System (INIS)
Suaris, W.; Shah, S.P.
1983-01-01
A continuous damage theory for the quasistatic and dynamic behaviour of concrete is presented. The continuous damage theory is rational choice for use in predicing the dynamic behaviour of concrete as the strain-rate effects that have been observed for concrete can to a large extent be attributed to the rate-sensitivity of the microcracking process. A vectorial representation is adopted for the damage to account for the planar nature of the microcracks in concrete. Damage is treated as an internal state variable influencing the free energy of the material and the constitutive equations and the damage evolution equations are derived consistently using thermodynamic considerations. The developed constitutive model is then calibrated by using test results in flexure and compression over a range of strain-rates. The constitutive model is also shown to be capable of predicting certain other experimentally observed characteristics of the dynamic response of concrete. (orig./HP)
Constitutive modeling of multiphase materials including phase transformations
Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Khan, A.S.; Meredith, C; Farrokh, B
2011-01-01
A constitutive model is developed for materials involving two or more different phases in their microstructure such as DP (Dual Phase) or TRIP (TRansformation Induced Plasticity) steels. Homogenization of the response of the phases is achieved by the Mean-Field method. One of the phases in TRIP
Polynomial constitutive model for shape memory and pseudo elasticity
International Nuclear Information System (INIS)
Savi, M.A.; Kouzak, Z.
1995-01-01
This paper reports an one-dimensional phenomenological constitutive model for shape memory and pseudo elasticity using a polynomial expression for the free energy which is based on the classical Devonshire theory. This study identifies the main characteristics of the classical theory and introduces a simple modification to obtain better results. (author). 9 refs., 6 figs
Constitutive basis of the MDCF model for rock salt
International Nuclear Information System (INIS)
Fossum, A.F.; Munson, D.E.; Chan, K.S.; Bodner, S.R.
1996-01-01
All valid constitutive equations must satisfy two general invariance principles as well several other principles. In this paper the MDCF (Multimechanism Deformation Coupled Fracture) model for rock salt is shown to be thermodynamically consistent, coordinate invariant, frame indifferent, and physically admissible. Additionally, the stress rates used in the formulation are shown to be kinematically consistent with the Cauchy stress rates
A thermomechanical crystal plasticity constitutive model for ultrasonic consolidation
Siddiq, Amir
2012-01-01
We present a micromechanics-based thermomechanical constitutive model to simulate the ultrasonic consolidation process. Model parameters are calibrated using an inverse modeling approach. A comparison of the simulated response and experimental results for uniaxial tests validate and verify the appropriateness of the proposed model. Moreover, simulation results of polycrystalline aluminum using the identified crystal plasticity based material parameters are compared qualitatively with the electron back scattering diffraction (EBSD) results reported in the literature. The validated constitutive model is then used to simulate the ultrasonic consolidation process at sub-micron scale where an effort is exerted to quantify the underlying micromechanisms involved during the ultrasonic consolidation process. © 2011 Elsevier B.V. All rights reserved.
Development of a phenomenological constitutive model for polyurethane foams
International Nuclear Information System (INIS)
Neilsen, M.K.; Morgan, H.S.; Krieg, R.D.; Yoshimura, H.R.
1989-01-01
Rigid, closed-cell, polyurethane foam is used in impact limiters in nuclear waste transport containers. During a hypothetical nuclear waste transport accident, the foam is expected to absorb a significant amount of impact energy by undergoing large inelastic volume reductions. Consequently, the crushing of polyurethane foams must be well characterized and accurately modeled to properly analyze a transport container accident. At the request of Sandia National Laboratories, a series of uniaxial, hydrostatic and triaxial compression tests on polyurethane foams were performed by the New Mexico Engineering Research Institute (NMERI). The combination of hydrostatic and triaxial tests was chosen to provide sufficient data to characterize both the volumetric and deviatoric behaviors of the foams and the coupling between the two responses. Typical results from the NMERI tests are included in this paper. A complete description of these tests can be found in Neilsen et al., 1987. Constitutive models that have been used in the past to model foam did not capture some important foam behaviors observed in the NMERI tests. Therefore, a new constitutive model for rigid, closed-cell, polyurethane foams was developed and implemented in two finite element codes. Development of the new model is discussed in this paper. Also, results from analyses with the new model and other constitutive models are presented to demonstrate differences between the various models. 4 refs., 6 figs., 1 tab
Simulating sympathetic detonation using the hydrodynamic models and constitutive equations
Energy Technology Data Exchange (ETDEWEB)
Kim, Bo Hoon; Kim, Min Sung; Yoh, Jack J. [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Sun, Tae Boo [Hanwha Corporation Defense Rand D Center, Daejeon (Korea, Republic of)
2016-12-15
A Sympathetic detonation (SD) is a detonation of an explosive charge by a nearby explosion. Most of times it is unintended while the impact of blast fragments or strong shock waves from the initiating donor explosive is the cause of SD. We investigate the SD of a cylindrical explosive charge (64 % RDX, 20 % Al, 16 % HTPB) contained in a steel casing. The constitutive relations for high explosive are obtained from a thermo-chemical code that provides the size effect data without the rate stick data typically used for building the rate law and equation of state. A full size SD test of eight pallet-packaged artillery shells is performed that provides the pressure data while the hydrodynamic model with proper constitutive relations for reactive materials and the fragmentation model for steel casing is conducted to replicate the experimental findings. The work presents a novel effort to accurately model and reproduce the sympathetic detonation event with a reduced experimental effort.
Constitutive modeling of the rheological behavior of platelet suspensions
Sommer, Drew E.
Compression molding of chopped fiber composites is used to manufacture complex 3D geometries with high fiber volume fractions of 50-60% and long, discontinuous fibers and thermoplastic matrices. When prepreg, chopped into platelets, is used as a charge material, the individual platelets remain intact during the molding process and flow relative to one another, as experimental observations show. Heterogeneity of the platelet/resin suspension cannot be considered at the structural scale of molding simulation. Instead, the suspension should be idealized into the homogenized anisotropic and viscous system which obeys the prescribed anisotropic stress-strain rate constitutive relation. The viscosity tensor of the aforementioned constitutive law was analytically evaluated in this work through the representative volume element (RVE) based analysis. An idealized microstructure of platelets was developed to perform such an analysis. The platelets were aligned and arranged in a planar configuration with periodic boundary conditions. Analytic expressions for the effective, anisotropic viscosities were derived by micromechanical analysis for the idealized microstructure of rigid platelets. In this analysis, the load transfer mechanisms and their contribution to the viscosity of the platelet assembly were investigated. The kinematic assumption of linear velocity distributions consistent with the mechanism of shearing rate was adopted. While the platelets were assumed to be rigid, the resin was taken as an incompressible, isotropic fluid which provided for the platelet-to-platelet load transfer. Strain rate and temperature dependence were included by modeling the polymer matrix as a Carreau fluid. Shear strain in the resin was developed due to the relative motion of adjacent platelets. The resin shear strain rate was expressed in terms of the corresponding platelet velocities. Equilibrium of the platelet was used to relate the applied far-field stress to the average strain rate
International Nuclear Information System (INIS)
Xu, Zejian; Huang, Fenglei
2012-01-01
Both descriptive and predictive capabilities of five physically based constitutive models (PB, NNL, ZA, VA, and RK) are investigated and compared systematically, in characterizing plastic behavior of the 603 steel at temperatures ranging from 288 to 873 K, and strain rates ranging from 0.001 to 4500 s −1 . Determination of the constitutive parameters is introduced in detail for each model. Validities of the established models are checked by strain rate jump tests performed under different loading conditions. The results show that the RK and NNL models have better performance in the description of material behavior, especially the work-hardening effect, while the PB and VA models predict better. The inconsistency that is observed between the capabilities of description and prediction of the models indicates the existence of the minimum number of required fitting data, reflecting the degree of a model's requirement for basic data in parameter calibration. It is also found that the description capability of a model is dependent to a large extent on both its form and the number of its constitutive parameters, while the precision of prediction relies largely on the performance of description. In the selection of constitutive models, the experimental data and the constitutive models should be considered synthetically to obtain a better efficiency in material behavior characterization
Constitutive model and electroplastic analysis of structures under cyclic loading
International Nuclear Information System (INIS)
Wang, X.; Lei, Y; Du, Q.
1989-01-01
Many engineering structures in nuclear reactors, thermal power stations, chemical plants and aerospace vehicles are subjected to cyclic mechanic-thermal loading, which is the main cause of structural fatigue failure. Over the past twenty years, designers and researchers have paid great attention to the research on life prediction and elastoplastic analysis of structures under cyclic loading. One of the key problems in elastoplastic analysis is to construct a reasonable constitutive model for cyclic plasticity. In the paper, the constitutive equations are briefly outlined. Then, the model is implemented in a finite element code to predict the response of cyclic loaded structural components such as a double-edge-notched plate, a grooved bar and a nozzle in spherical shell. Numerical results are compared with those from other theories and experiments
Constitutive modeling of coronary artery bypass graft with incorporated torsion
Czech Academy of Sciences Publication Activity Database
Horný, L.; Chlup, Hynek; Žitný, R.; Adámek, T.
2009-01-01
Roč. 49, č. 2 (2009), s. 273-277 ISSN 0543-5846 R&D Projects: GA ČR(CZ) GA106/08/0557 Institutional research plan: CEZ:AV0Z20760514 Keywords : coronary artery bypass graft * constitutive model * digital image correlation Subject RIV: BJ - Thermodynamics Impact factor: 0.439, year: 2009 http://web.tuke.sk/sjf-kamam/mmams2009/contents.pdf
Modeling of rock friction 1. Experimental results and constitutive equations
International Nuclear Information System (INIS)
Dieterich, J.H.
1979-01-01
Direct shear experiments on ground surfaces of a granodiorite from Raymond, California, at normal stresses of approx.6 MPa demonstrate that competing time, displacement, and velocity, effects control rock friction. It is proposed that the strength of the population of points of contacts between sliding surfaces determines frictional strength and that the population of contacts changes continuously with displacements. Previous experiments demonstrate that the strength of the contacts increases with the age of the contacts. The present experiments establish that a characteristic displacement, proportional to surface roughness, is required to change the population of contacts. Hence during slip the average age of the points of contact and therefore frictional strength decrease as slip velocity increases. Displacement weakening and consequently the potential for unstable slip occur whenever displacement reduces the average age of the contacts. In addition to this velocity dependency, which arises from displacement dependency and time dependency, the experiments also show a competing but transient increase in friction whenever slip velocity increases. Creep of the sliding surface at stresses below that for steady state slip also observed. Constitutive relationships are developed that permit quantitative simulation of the friction versus displacement data as a function of surface roughness and for different time and velocity histories. Unstable slip in experiments is controlled by these constitutive effects and by the stiffness of the experimental system. It is argued that analogous properties control earthquake instability
Modification of the Integrated Sasang Constitutional Diagnostic Model
Directory of Open Access Journals (Sweden)
Jiho Nam
2017-01-01
Full Text Available In 2012, the Korea Institute of Oriental Medicine proposed an objective and comprehensive physical diagnostic model to address quantification problems in the existing Sasang constitutional diagnostic method. However, certain issues have been raised regarding a revision of the proposed diagnostic model. In this paper, we propose various methodological approaches to address the problems of the previous diagnostic model. Firstly, more useful variables are selected in each component. Secondly, the least absolute shrinkage and selection operator is used to reduce multicollinearity without the modification of explanatory variables. Thirdly, proportions of SC types and age are considered to construct individual diagnostic models and classify the training set and the test set for reflecting the characteristics of the entire dataset. Finally, an integrated model is constructed with explanatory variables of individual diagnosis models. The proposed integrated diagnostic model significantly improves the sensitivities for both the male SY type (36.4% → 62.0% and the female SE type (43.7% → 64.5%, which were areas of limitation of the previous integrated diagnostic model. The ideas of these new algorithms are expected to contribute not only to the scientific development of Sasang constitutional medicine in Korea but also to that of other diagnostic methods for traditional medicine.
A variational multiscale constitutive model for nanocrystalline materials
Gurses, Ercan
2011-03-01
This paper presents a variational multi-scale constitutive model in the finite deformation regime capable of capturing the mechanical behavior of nanocrystalline (nc) fcc metals. The nc-material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary effected zone (GBAZ). A rate-independent isotropic porous plasticity model is employed to describe the GBAZ, whereas a crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The constitutive models of both phases are formulated in a small strain framework and extended to finite deformation by use of logarithmic and exponential mappings. Assuming the rule of mixtures, the overall behavior of a given grain is obtained via volume averaging. The scale transition from a single grain to a polycrystal is achieved by Taylor-type homogenization where a log-normal grain size distribution is assumed. It is shown that the proposed model is able to capture the inverse HallPetch effect, i.e., loss of strength with grain size refinement. Finally, the predictive capability of the model is validated against experimental results on nanocrystalline copper and nickel. © 2010 Elsevier Ltd. All rights reserved.
Micromechanics and constitutive modeling of connective soft tissues.
Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M
2016-07-01
In this paper, a micromechanical model for connective soft tissues based on the available histological evidences is developed. The proposed model constituents i.e. collagen fibers and ground matrix are considered as hyperelastic materials. The matrix material is assumed to be isotropic Neo-Hookean while the collagen fibers are considered to be transversely isotropic hyperelastic. In order to take into account the effects of tissue structure in lower scales on the macroscopic behavior of tissue, a strain energy density function (SEDF) is developed for collagen fibers based on tissue hierarchical structure. Macroscopic response and properties of tissue are obtained using the numerical homogenization method with the help of ABAQUS software. The periodic boundary conditions and the proposed constitutive models are implemented into ABAQUS using the DISP and the UMAT subroutines, respectively. The existence of the solution and stable material behavior of proposed constitutive model for collagen fibers are investigated based on the poly-convexity condition. Results of the presented micromechanics model for connective tissues are compared and validated with available experimental data. Effects of geometrical and material parameters variation at microscale on macroscopic mechanical behavior of tissues are investigated. The results show that decrease in collagen content of the connective tissues like the tendon due to diseases leads 20% more stretch than healthy tissue under the same load which can results in connective tissue malfunction and hypermobility in joints. Copyright © 2016 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Kumar, V; Mukherjee, S [Cornell Univ., Ithaca, N.Y. (USA)
1977-03-01
A computational technique in terms of stress, strain and displacement rates is presented for the solution of boundary value problems for metallic structural elements at uniform elevated temperatures subjected to time varying loads. This method can accommodate any number of constitutive relations with state variables recently proposed by other researchers to model the inelastic deformation of metallic media at elevated temperatures. Numerical solutions are obtained for several structural elements subjected to steady loads. The constitutive relations used for these numerical solutions are due to Hart. The solutions are discussed in the context of the computational scheme and Hart's theory.
A Temperature-Dependent Hysteresis Model for Relaxor Ferroelectric Compounds
National Research Council Canada - National Science Library
Raye, Julie K; Smith, Ralph C
2004-01-01
This paper summarizes the development of a homogenized free energy model which characterizes the temperature-dependent hysteresis and constitutive nonlinearities inherent to relaxor ferroelectric materials...
Constitutive Modelling of Resins in the Compliance Domain
Klasztorny, M.
2004-07-01
A rheological HWKK/H model for resins is developed taking into consideration the up-to-date analyses of experimental results. Constitutive compliance equations of linear are formulated for this model in the shear/bulk form, which describes, among other things, the first-rank reversible isothermal creep. The shear (distorsional) deformations are simulated with three independent stress history functions of fractional and normal exponential types. The volume deformations are simulated as perfectly elastic. The model is described by two elastic and six viscoelastic constants, namely three long-term creep coefficients and three retardation times. The constitutive compliance equations of viscoealsticity for resins are also formulated in the coupled form. Formulae for converting the constants of shear/bulk (uncoupled) viscoelasticity into the constants of coupled viscoelasticity are given too. An algorithm for identifying the material constants, based on the creep of uniaxially tensioned bar samples, is formulated in a way that gives unique results. The material constants are fiund for Epidian 53 epoxy and Polimal 109 polyester resins. The creep processes, simulated based on the experimental data, are presented graphically for both the resins examined.
A constitutive model for magnetostriction based on thermodynamic framework
International Nuclear Information System (INIS)
Ho, Kwangsoo
2016-01-01
This work presents a general framework for the continuum-based formulation of dissipative materials with magneto–mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature. - Highlights: • A thermodynamically consistent model is proposed to describe the magneto-mechanical coupling effect. • Internal state variables are introduced to capture the dissipative material response. • The evolution rate of the magnetostrictive strain is derived through thermodynamic and dissipation potentials.
A thermodynamically and microscopically motivated constitutive model for piezoceramics
International Nuclear Information System (INIS)
Kamlah, M.; Wang, Z.
2003-07-01
This progress report presents a thermodynamically and microscopically motivated constitutive model for piezoceramics within the framework of a research project supported by the Deutsche Forschungsgemeinschaft. This project is aimed at developing a finite element tool for the analysis of piezoceramic components taking into account the full range of large signal electromechanical hysteresis effects exhibited by these materials. Such a tool is necessary for the stress analysis being the basis for a reliability assessment of piezoceramic devices subject to domain switching processes. In a first step, the hysteresis phenomena of piezoceramics and their microscopic origin were discussed, and the phenomena to be described were selected. Concerning the balance laws, the simplest form consisting of balance of momentum and Gauss' Law was derived by physically motivated assumptions step by step from nonlinear thermomechanics and Maxwell's Equations. Revision of the current literature revealed that a commonly accepted thermodynamic framework for phenomenological modeling has been established in the international scientific discussion. (orig.)
Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain.
Nisimoto, Yukio; Jackson, Heather M; Ogawa, Hisamitsu; Kawahara, Tsukasa; Lambeth, J David
2010-03-23
NADPH oxidase 4 (Nox4) is constitutively active, while Nox2 requires the cytosolic regulatory subunits p47(phox) and p67(phox) and activated Rac with activation by phorbol 12-myristate 13-acetate (PMA). This study was undertaken to identify the domain on Nox4 that confers constitutive activity. Lysates from Nox4-expressing cells exhibited constitutive NADPH- but not NADH-dependent hydrogen peroxide production with a K(m) for NADPH of 55 +/- 10 microM. The concentration of Nox4 in cell lysates was estimated using Western blotting and allowed calculation of a turnover of approximately 200 mol of H(2)O(2) min(-1) (mol of Nox4)(-1). A chimeric protein (Nox2/4) consisting of the Nox2 transmembrane (TM) domain and the Nox4 dehydrogenase (DH) domain showed H(2)O(2) production in the absence of cytosolic regulatory subunits. In contrast, chimera Nox4/2, consisting of the Nox4 TM and Nox2 DH domains, exhibited PMA-dependent activation that required coexpression of regulatory subunits. Nox DH domains from several Nox isoforms were purified and evaluated for their electron transferase activities. Nox1 DH, Nox2 DH, and Nox5 DH domains exhibited barely detectable activities toward artificial electron acceptors, while the Nox4 DH domain exhibited significant rates of reduction of cytochrome c (160 min(-1), largely superoxide dismutase-independent), ferricyanide (470 min(-1)), and other electron acceptors (artificial dyes and cytochrome b(5)). Rates were similar to those observed for H(2)O(2) production by the Nox4 holoenzyme in cell lysates. The activity required added FAD and was seen with NADPH but not NADH. These results indicate that the Nox4 DH domain exists in an intrinsically activated state and that electron transfer from NADPH to FAD is likely to be rate-limiting in the NADPH-dependent reduction of oxygen by holo-Nox4.
Constitutive model for evaluation of nuclear containment structures
Energy Technology Data Exchange (ETDEWEB)
Gocevski, Vladimir [Hydro-Quebec, 75 Rene-Levesque Boulevard, West Montreal, QC H2Z 1A4 (Canada)
2006-09-15
The paper presents the new constitutive relations for a homogenized reinforced concrete material. Two-stage homogenization procedure is described, i.e. prior to cracking (Phase I) and after cracking (Phase II) of the concrete matrix. Hence, the localization phenomenon and the 'size effect' are properly described. The constitutive law incorporated in the main algorithm of the commercially available finite element code COSMOS/M is further discussed. The model is applied to simulate some relevant aging mechanisms. Therefore, in the proposed paper the assessment of the prestressed concrete aging of the containment structure of Gentilly-2 nuclear power plant using an advanced numerical procedure will be presented. Aging mechanisms considered possible are discussed, the present conditions are assessed and the mechanisms that are likely to impair proper future functioning of the structure are identified. The results of the numerical analysis of the reinforced concrete structure subjected to loads such as thermal and seismic loads are presented and discussed. Attention is given to the analysis of the effects of concrete swelling due to alkali-aggregate reaction. The paper also includes an evaluation of a potential damage in the context of a high velocity impact of a commercial aircraft into the containment structure. (author)
Experimental investigation and constitutive model for lime mudstone.
Wang, Junbao; Liu, Xinrong; Zhao, Baoyun; Song, Zhanping; Lai, Jinxing
2016-01-01
In order to investigate the mechanical properties of lime mudstone, conventional triaxial compression tests under different confining pressures (0, 5, 15 and 20 MPa) are performed on lime mudstone samples. The test results show that, from the overall perspective of variation law, the axial peak stress, axial peak strain and elastic modulus of lime mudstone tend to gradually increase with increasing confining pressure. In the range of tested confining pressure, the variations in axial peak stress and elastic modulus with confining pressure can be described with linear functions; while the variation in axial peak strain with confining pressure can be reflected with a power function. To describe the axial stress-strain behavior in failure process of lime mudstone, a new constitutive model is proposed, with the model characteristics analyzed and the parameter determination method put forward. Compared with Wang' model, only one parameter n is added to the new model. The comparison of predicted curves from the model and test data indicates that the new model can preferably simulate the strain softening property of lime mudstone and the axial stress-strain response in rock failure process.
Material constitutive model for jointed rock mass behavior
International Nuclear Information System (INIS)
Thomas, R.K.
1980-11-01
A material constitutive model is presented for jointed rock masses which exhibit preferred planes of weakness. This model is intended for use in finite element computations. The immediate application is the thermomechanical modelling of a nuclear waste repository in hard rock, but the model seems appropriate for a variety of other static and dynamic geotechnical problems as well. Starting with the finite element representations of a two-dimensional elastic body, joint planes are introduced in an explicit manner by direct modification of the material stiffness matrix. A novel feature of this approach is that joint set orientations, lengths and spacings are readily assigned through the sampling of a population distribution statistically determined from field measurement data. The result is that the fracture characteristics of the formations have the same statistical distribution in the model as is observed in the field. As a demonstration of the jointed rock mass model, numerical results are presented for the example problem of stress concentration at an underground opening
Triaxial constitutive model for plain and reinforced concrete behavior
Kang, Hong Duk
Inelastic failure analysis of concrete structures has been one of the central issues in concrete mechanics. Especially, the effect of confinement has been of great importance to capture the transition from brittle to ductile fracture of concrete under triaxial loading scenarios. Moreover, it has been a difficult task to implement numerically material descriptions which are susceptible to loss of stability and localization. Consequently, it has been a challenge to develop comprehensive material formulations of concrete, which consider the full spectrum of loading histories which the material in a real structure is subjected to. A new triaxial constitutive model of concrete is presented that not only describes the hardening/softening behavior of concrete in tension and low confined compression, but also captures the transition from brittle to ductile failure under high confinement. The concrete model is based on a loading surface that is Csp1-continuous, and that closes smoothly in equitriaxial compression, while the deviatoric trace expands from a triangular to a circular shape with increasing confinement. The plastic potential has a different curvature from the plastic loading function for non-associativity in order to reduce excessive inelastic dilatancy. In the thesis, the results of deformation and localization analyses for various loading histories are presented in the constitutive study. In addition, studies of associativity and non-associativity, and two-invariant versus three-invariant formulations are performed. At the structural level the triaxial concrete model is used to predict the nonlinear response behavior of a reinforced concrete column subject to axial and lateral loadings.
Mechanical tests for validation of seismic isolation elastomer constitutive models
International Nuclear Information System (INIS)
Kulak, R.F.; Hughes, T.H.
1992-01-01
High damping laminated elastomeric bearings are becoming the preferred device for seismic isolation of large buildings and structures, such as nuclear power plants. The key component of these bearings is a filled natural rubber elastomer. This material exhibits nonlinear behavior within the normal design range. The material damping cannot be classified as either viscous or hysteritic, but it seems to fall somewhere in between. This paper describes a series of tests that can be used to characterize the mechanical response of these elastomers. The tests are designed to determine the behavior of the elastomer in the time scale of the earthquake, which is typically from 30 to 60 seconds. The test results provide data for use in determining the material parameters associated with nonlinear constitutive models. 4 refs
Constitutive model of discontinuous plastic flow at cryogenic temperatures
Skoczen, B; Bielski, J; Marcinek, D
2010-01-01
FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. Some of these materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha) and evolution of micro-damage. The constitutive model presented in the paper is focused on the discontinuous plastic flow (serrated yielding) and takes into account the relevant thermodynamic background. The discontinuous plastic flow reflecting the DSA effect is described by the mechanism of local catastrophic failure of Lomer-Cottrell (LC) locks under the stress fields related to the accumulating edge dislocations (below the transition temperature from the screw dislocations to the edge dislocations mode T-1). The failure of LC locks leads to mass...
Structural characterization and viscoelastic constitutive modeling of skin.
Sherman, Vincent R; Tang, Yizhe; Zhao, Shiteng; Yang, Wen; Meyers, Marc A
2017-04-15
A fascinating material, skin has a tensile response which exhibits an extended toe region of minimal stress up to nominal strains that, in some species, exceed 1, followed by significant stiffening until a roughly linear region. The large toe region has been attributed to its unique structure, consisting of a network of curved collagen fibers. Investigation of the structure of rabbit skin reveals that it consists of layers of wavy fibers, each one with a characteristic orientation. Additionally, the existence of two preferred layer orientations is suggested based on the results of small angle X-ray scattering. These observations are used to construct a viscoelastic model consisting of collagen in two orientations, which leads to an in-plane anisotropic response. The structure-based model presented incorporates the elastic straightening and stretching of fibrils, their rotation towards the tensile axis, and the viscous effects which occur in the matrix of the skin due to interfibrillar and interlamellar sliding. The model is shown to effectively capture key features which dictate the mechanical response of skin. Examination by transmission and scanning electron microscopy of rabbit dermis enabled the identification of the key elements in its structure. The organization of collagen fibrils into flat fibers was identified and incorporated into a constitutive model that reproduces the mechanical response of skin. This enhanced quantitative predictive capability can be used in the design of synthetic skin and skin-like structures. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Constitutive modeling and control of 1D smart composite structures
Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro
1998-07-01
Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.
Failure Behavior and Constitutive Model of Weakly Consolidated Soft Rock
Directory of Open Access Journals (Sweden)
Wei-ming Wang
2013-01-01
Full Text Available Mining areas in western China are mainly located in soft rock strata with poor bearing capacity. In order to make the deformation failure mechanism and strength behavior of weakly consolidated soft mudstone and coal rock hosted in Ili No. 4 mine of Xinjiang area clear, some uniaxial and triaxial compression tests were carried out according to the samples of rocks gathered in the studied area, respectively. Meanwhile, a damage constitutive model which considered the initial damage was established by introducing a damage variable and a correction coefficient. A linearization process method was introduced according to the characteristics of the fitting curve and experimental data. The results showed that samples under different moisture contents and confining pressures presented completely different failure mechanism. The given model could accurately describe the elastic and plastic yield characteristics as well as the strain softening behavior of collected samples at postpeak stage. Moreover, the model could precisely reflect the relationship between the elastic modulus and confining pressure at prepeak stage.
Directory of Open Access Journals (Sweden)
Moens Ugo
2007-11-01
Full Text Available Abstract Background The mitogen-activated protein kinases, MAPKs for short, constitute cascades of signalling pathways involved in the regulation of several cellular processes that include cell proliferation, differentiation and motility. They also intervene in neurological processes like fear conditioning and memory. Since little remains known about the MAPK-Activated Protein Kinase, MAPKAPK5, we constructed the first MAPKAPK knockin mouse model, using a constitutive active variant of MAPKAPK5 and analyzed the resulting mice for changes in anxiety-related behaviour. Methods We performed primary SHIRPA observations during background breeding into the C57BL/6 background and assessed the behaviour of the background-bred animals on the elevated plus maze and in the light-dark test. Our results were analyzed using Chi-square tests and homo- and heteroscedatic T-tests. Results Female transgenic mice displayed increased amounts of head dips and open arm time on the maze, compared to littermate controls. In addition, they also explored further into the open arm on the elevated plus maze and were less active in the closed arm compared to littermate controls. Male transgenic mice displayed no differences in anxiety, but their locomotor activity increased compared to non-transgenic littermates. Conclusion Our results revealed anxiety-related traits and locomotor differences between transgenic mice expressing constitutive active MAPKAPK5 and control littermates.
A crystallographic constitutive model for Ni3Al (L12) intermetallics
International Nuclear Information System (INIS)
Choi, Y.S.; Dimiduk, D.M.; Uchic, M.D.; Parthasarathy, T.A.
2005-01-01
A constitutive model was developed in order to capture the unique thermo-mechanical flow behavior of L1 2 -structured Ni 3 (Al, X) alloys. This model utilized a framework for flow-stress partitioning, which was previously proposed by Ezz and Hirsch, and incorporated a model for exhaustion hardening proposed by Caillard. The simulation results well represent the major aspects of the thermo-mechanical flow behavior of Ni 3 (Al, X) alloys, such as a flow-stress anomaly, its strain dependence and a work-hardening rate anomaly. Selected limitations are discussed along with our current efforts toward extending the present model
Nonlinear electro-magneto-mechanical constitutive modelling of monolayer graphene
Sfyris, D.; Sfyris, G. I.; Bustamante, R.
2016-04-01
Using the classical theory of invariants for the specific class of graphene's symmetry, we constitutively characterize electro-magneto-mechanical interactions of graphene at continuum level. Graphene's energy depends on five arguments: the Finger strain tensor, the curvature tensor, the shift vector, the effective electric field intensity and the effective magnetic induction. The Finger strain tensor describes in- surface phenomena, the curvature tensor is responsible for the out-of-surface motions, while the shift vector is used due to the fact that graphene is a multilattice. The electric and the magnetic fields are described by the effective electric field intensity and the effective magnetic induction, respectively. An energy with the above arguments that also respects graphene's symmetries is found to have 42 invariants. Using these invariants, we evaluate all relevant measures by finding derivatives of the energy with respect to the five arguments of the energy. We also lay down the field equations that should be satisfied. These are the Maxwell equations, the momentum equation, the moment of momentum equation and the equation ruling the shift vector. Our framework is general enough to capture fully coupled processes in the finite deformation regime.
A new constitutive model for prediction of impact rates response of polypropylene
Directory of Open Access Journals (Sweden)
Buckley C.P.
2012-08-01
Full Text Available This paper proposes a new constitutive model for predicting the impact rates response of polypropylene. Impact rates, as used here, refer to strain rates greater than 1000 1/s. The model is a physically based, three-dimensional constitutive model which incorporates the contributions of the amorphous, crystalline, pseudo-amorphous and entanglement networks to the constitutive response of polypropylene. The model mathematics is based on the well-known Glass-Rubber model originally developed for glassy polymers but the arguments have herein been extended to semi-crystalline polymers. In order to predict the impact rates behaviour of polypropylene, the model exploits the well-known framework of multiple processes yielding of polymers. This work argues that two dominant viscoelastic relaxation processes – the alpha- and beta-processes – can be associated with the yield responses of polypropylene observed at low-rate-dominant and impact-rates dominant loading regimes. Compression test data on polypropylene have been used to validate the model. The study has found that the model predicts quite well the experimentally observed nonlinear rate-dependent impact response of polypropylene.
Lindemann, Stephan W.; Yost, Christian C.; Denis, Melvin M.; McIntyre, Thomas M.; Weyrich, Andrew S.; Zimmerman, Guy A.
2004-05-01
The mechanisms by which neutrophils, key effector cells of the innate immune system, express new gene products in inflammation are largely uncharacterized. We found that they rapidly translate constitutive mRNAs when activated, a previously unrecognized response. One of the proteins synthesized without a requirement for transcription is the soluble IL-6 receptor , which translocates to endothelial cells and induces a temporal switch to mononuclear leukocyte recruitment. Its synthesis is regulated by a specialized translational control pathway that is inhibited by rapamycin, a bacterial macrolide with therapeutic efficacy in transplantation, inflammatory syndromes, and neoplasia. Signal-dependent translation in activated neutrophils may be a critical mechanism for alteration of the inflammatory milieu and a therapeutic target.
A constitutive model for the forces of a magnetic bearing including eddy currents
Taylor, D. L.; Hebbale, K. V.
1993-01-01
A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.
Constitutive modeling of fiber-reinforced cement composites
Boulfiza, Mohamed
a diffused damage is more appropriate in the pre-peak regime whereas, NLFM is more suitable in the post-peak stage where the opening and propagation of a major crack will control the response of the material and not a deformation in a continuum sense as opposed to the pre-cracking zone. Tensile and compressive tests have been carried out for the sole purpose of calibrating the constitutive models proposed and/or developed in this thesis for FRC materials. The suitability of the models in predicting the response of different structural members has been performed by comparing the models' forecasts with experimental results carried out by the author, as well as experimental results from the literature. The different models proposed in this thesis have the possibility to account for the presence of fibers in the matrix, and give fairly good results for both high fiber volume fractions (vsb{f}≥2%) and low fiber volume fractions (vsb{f}concrete substrate-FRC repair materials by the introduction of a zero thickness layer of interface elements to account for the interface properties which usually control the effectiveness of the repair material. ftnsp1NLFM: Non Linear Fracture Mechanics.
Formation of algae growth constitutive relations for improved algae modeling.
Energy Technology Data Exchange (ETDEWEB)
Gharagozloo, Patricia E.; Drewry, Jessica Louise.
2013-01-01
This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.
Potential constitutive models for salt: Survey of phenomenology, micromechanisms, and equations
International Nuclear Information System (INIS)
Senseny, P.E.; Hansen, F.D.
1987-12-01
Results are given of a literature survey performed to document the thermomechanical phenomena and micromechanical processes observed for salt over the ranges of stress and temperature of interest for a high-level nuclear repository. The elastic and thermal expansion behavior of salt can be readily modeled by the generalized Duhamel Neumann form of Hooke's law with temperature-dependent elastic constants and coefficient of thermal expansion. Inelastic deformation is primarily viscoplastic, but also has a brittle component. The observed phenomenological behavior of salt occurs because of micromechanical processes. To the extent that these processes have been studied, a summary of deformation mechanisms in natural salt is included in this report. Eight constitutive models that appear to be capable of modeling the viscoplastic deformation have been selected from the literature. Two models have been selected to model brittle deformation. Insufficient data are available to develop a model for failure. 92 refs., 39 figs., 6 tabs
International Nuclear Information System (INIS)
Silvestre, Alexandra; Laigle, Francois
2012-01-01
Document available in extended abstract form only. With its long experience in applied numerical modeling, EDF-CIH initiated, ten years ago, the development of a specific constitutive model to reproduce the rock's mechanical behavior during underground cavity excavation. However, this model is not only dedicated to underground openings behavior simulation but it is also established on classical concepts admitted in soils and rocks mechanic. The need to develop this constitutive model, called L and K, first appeared in finding that modeling usually applied by engineers and research units to design underground openings were not be able to find physical behavior and phenomena observed on openings and sites, such as: - The state of stress influence on the development of particular ultimate mechanisms (spalling or squeezing), - The difficulty to identify interpretation criteria for considering, with a pragmatic point of view, the opening security level, according to a stability criterion, - The difficulty to understand and to find delayed degradation and rupture, - The difficulty to simulate the behavior of supports, like grouted bolting, for which the behavior is highly linked to the massif's one. This model was the subject of three thesis: two consecutive ones to establish the concepts and the mathematical formulation, and a third one destined to apply the model in and Hydro-Mechanical configuration. From a conceptual point of view, the constitutive model has to reproduce 'reference' behaviour, characteristic of rock mass, observed on laboratory tests or on feedback from openings. These types of behaviour are mainly: - A non-linear maximum strength threshold, with a friction and dilation angle depending on the state of stress, - The specific evolution of the dilation angle, with a maximal value corresponding to a stress threshold physically linked to the initiation of a bifurcation mode, - The total cancellation of the cohesion for high strains, - The total
A Constitutive Model for Superelastic Shape Memory Alloys Considering the Influence of Strain Rate
Directory of Open Access Journals (Sweden)
Hui Qian
2013-01-01
Full Text Available Shape memory alloys (SMAs are a relatively new class of functional materials, exhibiting special thermomechanical behaviors, such as shape memory effect and superelasticity, which enable their applications in seismic engineering as energy dissipation devices. This paper investigates the properties of superelastic NiTi shape memory alloys, emphasizing the influence of strain rate on superelastic behavior under various strain amplitudes by cyclic tensile tests. A novel constitutive equation based on Graesser and Cozzarelli’s model is proposed to describe the strain-rate-dependent hysteretic behavior of superelastic SMAs at different strain levels. A stress variable including the influence of strain rate is introduced into Graesser and Cozzarelli’s model. To verify the effectiveness of the proposed constitutive equation, experiments on superelastic NiTi wires with different strain rates and strain levels are conducted. Numerical simulation results based on the proposed constitutive equation and experimental results are in good agreement. The findings in this paper will assist the future design of superelastic SMA-based energy dissipation devices for seismic protection of structures.
New mesoscopic constitutive model for deformation of pearlitic steels up to moderate strains
Alkorta, J.; Martínez-Esnaola, J. M.; de Jaeger, P.; Gil Sevillano, J.
2017-07-01
A new constitutive model for deformation of pearlitic steels has been developed that describes the mechanical behaviour and microstructural evolution of lamellar multi-colony pearlite. The model, a two-phase continuum model, considers the plastic anisotropy of ferrite derived from its lamellar structure but ignores any anisotropy associated with cementite and does not consider the crystal structure of either constituent. The resulting plastic constitutive equation takes into account a dependence on both the pearlitic spacing (arising from the confined slip of dislocations in the lamellae) and on strengthening from the evolving intra-lamellar dislocation density. A Kocks-Mecking strain hardening/recovery model is used for the lamellar ferrite, whereas perfect-plastic behaviour is assumed for cementite. The model naturally captures the microstructural evolution and the internal micro-stresses developed due to the different mechanical behaviour of both phases. The model is also able to describe the lamellar evolution (orientation and interlamellar spacing) with good accuracy. The role of plastic anisotropy in the ferritic phase has also been studied, and the results show that anisotropy has an important impact on both microstructural evolution and strengthening of heavily drawn wires.
Khan, Kamran
2012-11-09
We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.
National Research Council Canada - National Science Library
Castafieda, P
2000-01-01
Constitutive models were developed and implemented numerically to account for the evolution of microstructure and anisotropy in finite-deformation processes involving porous and composite materials...
National Research Council Canada - National Science Library
Clayton, J. D
2006-01-01
Presented is a constitutive framework for modeling the dynamic response of polycrystalline microstructures, posed in a thermodynamically consistent manner and accounting for finite deformation, strain...
Constitutive modeling of strain rate effects in nanocrystalline and ultrafine grained polycrystals
Gurses, Ercan; El Sayed, Tamer S.
2011-01-01
We present a variational two-phase constitutive model capable of capturing the enhanced rate sensitivity in nanocrystalline (nc) and ultrafine-grained (ufg) fcc metals. The nc/ufg-material consists of a grain interior phase and a grain boundary affected zone (GBAZ). The behavior of the GBAZ is described by a rate-dependent isotropic porous plasticity model, whereas a rate-independent crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The scale bridging from a single grain to a polycrystal is done by a Taylor-type homogenization. It is shown that the enhanced rate sensitivity caused by the grain size refinement is successfully captured by the proposed model. © 2011 Elsevier Ltd. All rights reserved.
Constitutive modeling of strain rate effects in nanocrystalline and ultrafine grained polycrystals
Gurses, Ercan
2011-05-01
We present a variational two-phase constitutive model capable of capturing the enhanced rate sensitivity in nanocrystalline (nc) and ultrafine-grained (ufg) fcc metals. The nc/ufg-material consists of a grain interior phase and a grain boundary affected zone (GBAZ). The behavior of the GBAZ is described by a rate-dependent isotropic porous plasticity model, whereas a rate-independent crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The scale bridging from a single grain to a polycrystal is done by a Taylor-type homogenization. It is shown that the enhanced rate sensitivity caused by the grain size refinement is successfully captured by the proposed model. © 2011 Elsevier Ltd. All rights reserved.
Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model
International Nuclear Information System (INIS)
Baladi, G.Y.
1977-01-01
During the past few decades the dramatic growth of computer technology has been paralleled by an increasing degree of complexity in material constitutive modeling. This paper documents the numerical implementation of one of these models, specifically a transverse-isotropic, inelastic, work-hardening constitutive model which is developed elsewhere by the author. (Auth.)
Directory of Open Access Journals (Sweden)
F. F. Mikilev
2016-01-01
Full Text Available The purpose of this study was to research the psychometrical parameters and the clinical-dynamic features of patients with schizophrenia in depending on their constitutionally-morphological type.Material and methods. The examination of 86 patients with schizophrenia who are hospitalized at Department of endogenous mental disorders of Mental Health Research Institute was conducted. The study included patients of age from 18 to 65 years old with prescription of catamnesis at least 1 year and whose state at the time of examination corresponded to the diagnostic criteria for schizophrenia from the ICD-10 (International Classification of Diseases 10th Revision. The examination included filling in a modified version of Basic Card of Standardized Description of the Patient with Schizophrenia and his Relative, Positive and Negative Syndrome Scale (PANSS, Clinical Global Impression Scale (CGI. In addition to that patients were examined using anthropometrical method by V.V. Bunak. Statistical significance of differences in the data was evaluated using the Kruskal – Wallis test by ranks, the Mann – Whitney U-test, and Pearson’s chi-squared test. The correlation analysis was performed by the Spearman’s rank correlation test. The K-Means Cluster Analysis was used to determine of the qualitative interrelation and conjugation between the clinical characteristics of the examined.The results of the study revealed that many parameters of the functioning in these patient groups have statistically significant differences. Use of the K-Means Cluster Analysis was allowed to reveal the internal structure of the data, to group the individual observations according to their degree of similarity.Conclusions. The obtained data leads to the assumption that the constitutionally-morphological type of patients has an impact on the clinical course of schizophrenia, as well as their adaptation abilities. Asthenic constitutionally-morphological type is a factor of
Constitutive Models for Design of Sustainable Concrete Structures
Brozovsky, J.; Cajka, R.; Koktan, J.
2018-04-01
The paper deals with numerical models of reinforced concrete which are expected to be useful to enhance design of sustainable reinforced concrete structures. That is, the models which can deliver higher precision of results than the linear elastic models but which are still feasible for engineering practice. Such models can be based on an elastic-plastic material. The paper discusses properties of such models. A material model based of the Chen criteria and the Ohtani hardening model for concrete was selected for further development. There is also given a comparison of behaviour of such model with behaviour of a more complex smeared crack model which is based on principles of fracture mechanics.
Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts
Directory of Open Access Journals (Sweden)
Saeed Tourchi
2015-04-01
Full Text Available A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existing model for saturated clays originally proposed by the authors. The saturated clays model was formulated in the framework of critical state soil mechanics and modified Cam-clay model. The existing model has been generalized to simulate the experimentally observed behavior of unsaturated clays by introducing Bishop's stress and suction as independent stress parameters and modifying the hardening rule and yield criterion to take into account the role of suction. Also, according to previous studies, an increase in temperature causes a reduction in specific volume. A reduction in suction (wetting for a given confining stress may induce an irreversible volumetric compression (collapse. Thus an increase in suction (drying raises a specific volume i.e. the movement of normal consolidation line (NCL to higher values of void ratio. However, some experimental data confirm the assumption that this reduction is dependent on the stress level of soil element. A generalized approach considering the effect of stress level on the magnitude of clays thermal dependency in compression plane is proposed in this study. The number of modeling parameters is kept to a minimum, and they all have clear physical interpretations, to facilitate the usefulness of model for practical applications. A step-by-step procedure used for parameter calibration is also described. The model is finally evaluated using a comprehensive set of experimental data for the thermo-mechanical behavior of unsaturated soils.
Formulation and Implementation of a Constitutive Model for Soft Rock
Hickman, Randall John
2004-01-01
Petroleum reservoirs located in the Norwegian sector of the North Sea have undergone unexpected subsidence of great magnitude (> 10 m) during more than 30 years of petroleum recovery operations. Historical laboratory investigations have shown that the subsidence is due to the mechanical behavior and mechanical properties of chalk. Chalk behavior is characterized by elastoplasticity, including pore collapse, shear failure, and tensile failure mechanisms; rate-dependence; and pore fluid depende...
Development of an artificial neural network model integrated with constitutive and FEM models
International Nuclear Information System (INIS)
Kong, L.X.; Hodgson, P.D.
2000-01-01
Although the standard error of IPANN model developed by Kong and Hodgson is lower than the constitutive model, it is found that the prediction of reaction force and torque during rolling with FEM is less accurate for IPANN model in some deformation regions. It is the summation of the product of the strain and stress in the deformation range, which contributes most to the precise prediction. An ANN model is therefore, developed in this work by integrating both the IPANN and FEM models. It is found that the integrated IPANN and FEM model is the most accurate model. (author)
A new constitutive model for prediction of springback in sheet metal forming
International Nuclear Information System (INIS)
Appiah, E.; Jain, M.
2004-01-01
With advances in computer capabilities, cost of sheet metal forming has being reducing mainly due to the reduction of trial and error approaches. At the moment, a complete process can be simulated on computer and appropriate forming conditions optimized before actual industrial forming process is carried out. While formability predictions have improved, the problem of springback exhibited by most metal, including aluminum alloy AA6111-T4, after forming persist and often leads to significant part fit-up problems during assembly. There are a number of factors that affect springback and perhaps the most significant one is constitutive equation. In this paper springback predicted by six advanced kinematic models are evaluated. In addition an improved constitutive kinematic model is presented. It is shown that by adding stress correction term (SCT) to Armstrong-Frederick model a relatively simple and yet accurate stress prediction could be obtained. The SCT was developed with the assumption that the yield surface remains convex, yield center depends on translation, size and shape variations of the yield surface. The model is implemented in a commercial finite element code (ABAQUS/Standard) via its user material interface (UMAT). Numerical simulations of U-bending were performed using automotive aluminum sheet material (AA6111-T4). It was noted that springback has inverse relationship with residual stress
Gurses, Ercan
2011-12-01
In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary diffusion, grain boundary sliding and dislocation activities are considered. Effects of pressure on the grain boundary diffusion and sliding mechanisms are taken into account. Furthermore, the influence of grain size distribution on macroscopic response is studied. The model is shown to capture the fundamental mechanical characteristics of nanocrystalline metals. These include grain size dependence of the strength, i.e., both the traditional and the inverse Hall-Petch effects, the tension-compression asymmetry and the enhanced rate sensitivity. © 2011 Elsevier B.V. All rights reserved.
A stable computational scheme for stiff time-dependent constitutive equations
International Nuclear Information System (INIS)
Shih, C.F.; Delorenzi, H.G.; Miller, A.K.
1977-01-01
Viscoplasticity and creep type constitutive equations are increasingly being employed in finite element codes for evaluating the deformation of high temperature structural members. These constitutive equations frequently exhibit stiff regimes which makes an analytical assessment of the structure very costly. A computational scheme for handling deformation in stiff regimes is proposed in this paper. By the finite element discretization, the governing partial differential equations in the spatial (x) and time (t) variables are reduced to a system of nonlinear ordinary differential equations in the independent variable t. The constitutive equations are expanded in a Taylor's series about selected values of t. The resulting system of differential equations are then integrated by an implicit scheme which employs a predictor technique to initiate the Newton-Raphson procedure. To examine the stability and accuracy of the computational scheme, a series of calculations were carried out for uniaxial specimens and thick wall tubes subjected to mechanical and thermal loading. (Auth.)
Constitutive model for a stress- and thermal-induced phase transition in a shape memory polymer
International Nuclear Information System (INIS)
Guo, Xiaogang; Liu, Liwu; Liu, Yanju; Zhou, Bo; Leng, Jinsong
2014-01-01
Recently, increasing applications of shape memory polymers have pushed forward the development of appropriate constitutive models for smart materials such as the shape memory polymer. During the heating process, the phase transition, which is a continuous time-dependent process, happens in the shape memory polymer, and various individual phases will form at different configuration temperatures. In addition, these phases can generally be divided into two parts: the frozen and active phase (Liu Y et al 2006 Int. J. Plast. 22 279–313). During the heating or cooling process, the strain will be stored or released with the occurring phase transition between these two parts. Therefore, a shape memory effect emerges. In this paper, a new type of model was developed to characterize the variation of the volume fraction in a shape memory polymer during the phase transition. In addition to the temperature variation, the applied stress was also taken as a significant influence factor on the phase transition. Based on the experimental results, an exponential equation was proposed to describe the relationship between the stress and phase transition temperature. For the sake of describing the mechanical behaviors of the shape memory polymer, a three-dimensional constitutive model was established. Also, the storage strain, which was the key factor of the shape memory effect, was also discussed in detail. Similar to previous works, we first explored the effect of applied stress on storage strain. Through comparisons with the DMA and the creep experimental results, the rationality and accuracy of the new phase transition and constitutive model were finally verified. (paper)
Constitutive modeling of two phase materials using the Mean Field method for homogenization
Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.
2010-01-01
A Mean-Field homogenization framework for constitutive modeling of materials involving two distinct elastic-plastic phases is presented. With this approach it is possible to compute the macroscopic mechanical behavior of this type of materials based on the constitutive models of the constituent
2016-03-31
AFRL-AFOSR-VA-TR-2016-0309 Predictive simulation of material failure using peridynamics- advanced constitutive modeling, verification , and validation... Self -explanatory. 8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g...for public release. Predictive simulation of material failure using peridynamics-advanced constitutive modeling, verification , and validation John T
A physically-based constitutive model for SA508-III steel: Modeling and experimental verification
Energy Technology Data Exchange (ETDEWEB)
Dong, Dingqian [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030 (China); Chen, Fei, E-mail: feechn@gmail.com [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030 (China); Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Cui, Zhenshan, E-mail: cuizs@sjtu.edu.cn [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Huashan Rd., Shanghai 200030 (China)
2015-05-14
Due to its good toughness and high weldability, SA508-III steel has been widely used in the components manufacturing of reactor pressure vessels (RPV) and steam generators (SG). In this study, the hot deformation behaviors of SA508-III steel are investigated by isothermal hot compression tests with forming temperature of (950–1250)°C and strain rate of (0.001–0.1)s{sup −1}, and the corresponding flow stress curves are obtained. According to the experimental results, quantitative analysis of work hardening and dynamic softening behaviors is presented. The critical stress and critical strain for initiation of dynamic recrystallization are calculated by setting the second derivative of the third order polynomial. Based on the classical stress–dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of SA508-III steel. Comparisons between the predicted and measured flow stress indicate that the established physically-based constitutive model can accurately characterize the hot deformations for the steel. Furthermore, a successful numerical simulation of the industrial upsetting process is carried out by implementing the developed constitutive model into a commercial software, which evidences that the physically-based constitutive model is practical and promising to promote industrial forging process for nuclear components.
A physically-based constitutive model for SA508-III steel: Modeling and experimental verification
International Nuclear Information System (INIS)
Dong, Dingqian; Chen, Fei; Cui, Zhenshan
2015-01-01
Due to its good toughness and high weldability, SA508-III steel has been widely used in the components manufacturing of reactor pressure vessels (RPV) and steam generators (SG). In this study, the hot deformation behaviors of SA508-III steel are investigated by isothermal hot compression tests with forming temperature of (950–1250)°C and strain rate of (0.001–0.1)s −1 , and the corresponding flow stress curves are obtained. According to the experimental results, quantitative analysis of work hardening and dynamic softening behaviors is presented. The critical stress and critical strain for initiation of dynamic recrystallization are calculated by setting the second derivative of the third order polynomial. Based on the classical stress–dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of SA508-III steel. Comparisons between the predicted and measured flow stress indicate that the established physically-based constitutive model can accurately characterize the hot deformations for the steel. Furthermore, a successful numerical simulation of the industrial upsetting process is carried out by implementing the developed constitutive model into a commercial software, which evidences that the physically-based constitutive model is practical and promising to promote industrial forging process for nuclear components
Influence of constitutive models on ground motion predictions
International Nuclear Information System (INIS)
Baron, M.L.; Nelson, I.; Sandler, I.
1973-01-01
In recent years, the development of mathematical models for the study of ground shock effects in soil, or rock media, or both, has made important progress. Three basic types of advanced models have been studied: (1) elastic ideally plastic models, (2) variable moduli models and (3) elastic nonideally plastic capped models. The ground shock response in the superseismic range of a 1-MT air burst on a homogeneous halfspace of a soil is considered. Each of the three types of models was fitted to laboratory test data and calculations were made for each case. The results from all three models are comparable only when the stress paths in uniaxial strain are comparable for complete load-unload cycles. Otherwise, major differences occur in the lateral motions and stresses. Consequently, material property laboratory data now include the stress path whenever possible for modeling purposes. (U.S.)
A variational multiscale constitutive model for nanocrystalline materials
Gurses, Ercan; El Sayed, Tamer S.
2011-01-01
grain interior phase and a grain boundary effected zone (GBAZ). A rate-independent isotropic porous plasticity model is employed to describe the GBAZ, whereas a crystal-plasticity model which accounts for the transition from partial dislocation to full
Correction of Flow Curves and Constitutive Modelling of a Ti-6Al-4V Alloy
Directory of Open Access Journals (Sweden)
Ming Hu
2018-04-01
Full Text Available Isothermal uniaxial compressions of a Ti-6Al-4V alloy were carried out in the temperature range of 800–1050 °C and strain rate range of 0.001–1 s−1. The effects of friction between the specimen and anvils as well as the increase in temperature caused by the high strain rate deformation were considered, and flow curves were corrected as a result. Constitutive models were discussed based on the corrected flow curves. The correlation coefficient and average absolute relative error for the strain compensated Arrhenius-type constitutive model are 0.986 and 9.168%, respectively, while the values for a modified Johnson-Cook constitutive model are 0.924 and 22.673%, respectively. Therefore, the strain compensated Arrhenius-type constitutive model has a better prediction capability than a modified Johnson-Cook constitutive model.
Constitutive Modeling of the Mechanical Properties of Optical Fibers
Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.
1998-01-01
Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.
Nonequilibrium constitutive models for RELAP5/MOD2
International Nuclear Information System (INIS)
Lin, J.C.; Trapp, J.A.; Riemke, R.A.; Ransom, V.H.
1983-01-01
RELAP5/MOD2 is a new version of RELAP5 containing improved modeling features that provide a generic pressurized-water transient simulation capability. In particular, the nonequilibrium modeling capability has been generalized to include conditions that occur in operational transients including repressurization and emergency-feed-water injection with loss-of-coolant accidents. The improvements include addition of a second energy equation to the hydrodynamic model, addition of nonequilibrium heat-transfer models, and the associated nonequilibrium vapor-generation models. The objective of this paper is to describe these models and to report the developmental assessment results obtained from similar of several separate effects experiments. The assessment shows that RELAP5 calculated results are in good agreement with data and the nonequilibrium phenomena are properly modeled
Constitutive modelling of an arterial wall supported by microscopic measurements
Directory of Open Access Journals (Sweden)
Vychytil J.
2012-06-01
Full Text Available An idealized model of an arterial wall is proposed as a two-layer system. Distinct mechanical response of each layer is taken into account considering two types of strain energy functions in the hyperelasticity framework. The outer layer, considered as a fibre-reinforced composite, is modelled using the structural model of Holzapfel. The inner layer, on the other hand, is represented by a two-scale model mimicing smooth muscle tissue. For this model, material parameters such as shape, volume fraction and orientation of smooth muscle cells are determined using the microscopic measurements. The resulting model of an arterial ring is stretched axially and loaded with inner pressure to simulate the mechanical response of a porcine arterial segment during inflation and axial stretching. Good agreement of the model prediction with experimental data is promising for further progress.
Siddiq, A.
2013-09-01
We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline material is modeled as a two-phase material consisting of a grain interior phase and a grain boundary affected zone (GBAZ). A crystal plasticity model that accounts for the transition from partial dislocation to full dislocation mediated plasticity is used for the grain interior. Isotropic porous plasticity model with further extension to account for failure due to the void coalescence was used for the GBAZ. The extended model contains all the deformation phases, i.e. elastic deformation, plastic deformation including deviatoric and volumetric plasticity (void growth) followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. Lastly we show the model\\'s ability to predict the damage and fracture of a dog-bone shaped specimen as observed experimentally. © 2013 Elsevier B.V.
Constitutive model development needs for reactor safety thermal-hydraulic codes
International Nuclear Information System (INIS)
Kelly, J.M.
1998-01-01
of interest, the void fraction, is shown to be the result of the interaction between three separate constitutive models: interfacial friction, interfacial heat transfer, and wall nucleation models. The wall nucleation model, which gives the value for the net vapor generation rate in a 'near wall' region is an artifact of the chosen numerical treatment and its development depends on the model chosen for the bulk interfacial condensation model. The potential for compensating errors in the interaction of these three models is discussed and the need stated to 'get the right answer for the right reasons'. The subcooled boiling experiments conducted at McMasters University are then used as an example of how one can independently assess such interacting models and a number of deficiencies in the RELAP5 model for subcooled boiling are identified for low pressure applications. A strong case is also made for taking code assessment to a more fundamental level where the under-pinnings of the constitutive models are themselves assessed (e.g., the bubble diameter used in an interfacial heat transfer model). Finally, a summary of modeling needs for passive reactor designs is given based on the experience garnered during the USNRCs program to evaluate the applicability of the RELAP5 code for SBLOCA analysis of the proposed AP600 design. Specific modeling challenges identified for our current generation of thermal-hydraulic codes include: Thermal Front Tracking; Mixture Level Tracking; Thermal Stratification and Mixing; Cold Leg Thermal Stratification; Critical Flow; Phase Separation and Entrainment at Tees; Low Pressure Boiling; Low Pressure Void Fraction. The above list contains items in which both the numerical representation of a phenomena and the associated physical models need improvement. A systematic long-term effort to upgrade the models and correlations will be undertaken by the USNRC. Priorities for model upgrades will be established and a quantitative review of the
Constitutive modeling of void-growth-based tensile ductile failures with stress triaxiality effects
Mora Cordova, Angel
2014-07-01
In most metals and alloys, the evolution of voids has been generally recognized as the basic failure mechanism. Furthermore, stress triaxiality has been found to influence void growth dramatically. Besides strain intensity, it is understood to be the most important factor that controls the initiation of ductile fracture. We include sensitivity of stress triaxiality in a variational porous plasticity model, which was originally derived from hydrostatic expansion. Under loading conditions rather than hydrostatic deformation, we allow the critical pressure for voids to be exceeded so that the growth due to plasticity becomes dependent on the stress triaxiality. The limitations of the spherical void growth assumption are investigated. Our improved constitutive model is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is also indicated by a numerical simulation of a compact tensile (CT) test. © 2013 Elsevier Inc.
Gurses, Ercan; El Sayed, Tamer S.
2011-01-01
In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary
Studies on mechanical behavior of bentonite for development of the constitutive model
International Nuclear Information System (INIS)
Sasakura, Tsuyoshi; Kuroyanagi, Mikio; Okamoto, Michitaka
2002-02-01
To integrate the system for evaluation of long-term hydraulic condition in near field of TRU waste disposal, series of laboratory tests were conducted to investigate the effect of (1) cation exchange of Na-bentonite for Ca ion, and (2) the swelling behavior of bentonite, on its mechanical and hydraulic properties. For the purpose of this study, same lot of bentonite was used in a series of tests to obtain consistent data. A constitutive model of clayey materials, called Cam-clay model, was expanded conceptually to express the effects mentioned above. The research results of this year are summarized below; 1) Some basic properties such as cation exchange capacity, particle density, grain size distribution, compaction-characteristics and water content were obtained. To examine the effect of previous swelling history of bentonite on its swelling characteristics and hydraulic and mechanical properties, specimens, which generated swelling deformation to various volumetric strain levels, were specially prepared and used in the following tests. Swelling pressure tests, swelling deformation tests, permeability tests were conducted to observe one dimensional swelling characteristics and hydraulic properties of Na-bentonite and Ca-bentonite. High-pressured triaxial consolidated-undrained (CU) compression tests and high-pressured consolidation tests were also carried out to investigate the compression, swelling, and shearing behavior of each type of bentonite. 2) As indicated in previous studies, two important phenomena (1) bentonite possesses remarkable swelling capacity, (2) cation exchange of Na-bentonite for Ca-ion lead increasing of hydraulic conductivity, were confirmed in the test results. From the swelling deformation test results and published data, it was found that swelling capacity of bentonite has no dependency on previous swelling history and it could be easily expressed as a function of void ratio e. It was also confirmed that swelling pressure and water
Constitutive Model Calibration via Autonomous Multiaxial Experimentation (Postprint)
2016-09-17
ABSTRACT (Maximum 200 words) Modern plasticity models contain numerous parameters that can be difficult and time consuming to fit using current...Abstract Modern plasticity models contain numerous parameters that can be difficult and time consuming to fit using current methods. Additional...complexity, is a difficult and time consuming process that has historically be a separate process from the experimental testing. As such, additional
Stochastic isotropic hyperelastic materials: constitutive calibration and model selection
Mihai, L. Angela; Woolley, Thomas E.; Goriely, Alain
2018-03-01
Biological and synthetic materials often exhibit intrinsic variability in their elastic responses under large strains, owing to microstructural inhomogeneity or when elastic data are extracted from viscoelastic mechanical tests. For these materials, although hyperelastic models calibrated to mean data are useful, stochastic representations accounting also for data dispersion carry extra information about the variability of material properties found in practical applications. We combine finite elasticity and information theories to construct homogeneous isotropic hyperelastic models with random field parameters calibrated to discrete mean values and standard deviations of either the stress-strain function or the nonlinear shear modulus, which is a function of the deformation, estimated from experimental tests. These quantities can take on different values, corresponding to possible outcomes of the experiments. As multiple models can be derived that adequately represent the observed phenomena, we apply Occam's razor by providing an explicit criterion for model selection based on Bayesian statistics. We then employ this criterion to select a model among competing models calibrated to experimental data for rubber and brain tissue under single or multiaxial loads.
Directory of Open Access Journals (Sweden)
Huabing Li
2016-09-01
Full Text Available Hot deformation behavior and microstructure evolution of 2707 hyper duplex stainless steel (HDSS were investigated through hot compression tests in the temperature range of 900–1250 °C and strain rate range of 0.01–10 s−1. The results showed that the flow behavior strongly depended on strain rate and temperature, and flow stress increased with increasing strain rate and decreasing temperature. At lower temperatures, many precipitates appeared in ferrite and distributed along the deformation direction, which could restrain processing of discontinuous dynamic recrystallization (DRX because of pinning grain boundaries. When the temperature increased to 1150 °C, the leading softening behaviors were dynamic recovery (DRV in ferrite and discontinuous DRX in austenite. When the temperature reached 1250 °C, softening behavior was mainly DRV in ferrite. The increase of strain rate was conducive to the occurrence of discontinuous DRX in austenite. A constitutive equation at peak strain was established and the results indicated that 2707 HDSS had a higher Q value (569.279 kJ·mol−1 than other traditional duplex stainless steels due to higher content of Cr, Mo, Ni, and N. Constitutive modeling considering strain was developed to model the hot deformation behavior of 2707 HDSS more accurately, and the correlation coefficient and average absolute relative error were 0.992 and 5.22%, respectively.
Zeng, Hao; Xie, Zhimin; Gu, Jianping; Sun, Huiyu
2018-03-01
A new thermomechanical network transition constitutive model is proposed in the study to describe the viscoelastic behavior of shape memory polymers (SMPs). Based on the microstructure of semi-crystalline SMPs, a new simplified transformation equation is proposed to describe the transform of transient networks. And the generalized fractional Maxwell model is introduced in the paper to estimate the temperature-dependent storage modulus. In addition, a neo-KAHR theory with multiple discrete relaxation processes is put forward to study the structural relaxation of the nonlinear thermal strain in cooling/heating processes. The evolution equations of the time- and temperature-dependent stress and strain response are developed. In the model, the thermodynamical and mechanical characteristics of SMPs in the typical thermomechanical cycle are described clearly and the irreversible deformation is studied in detail. Finally, the typical thermomechanical cycles are simulated using the present constitutive model, and the simulation results agree well with the experimental results.
[Chinese constitution research and the practice of 4P medical model].
Wang, Ji; Wang, Qi
2012-05-01
The aim of modern medicine is transforming from disease to health. Thus the medical model of 4P was proposed in recent years. 4P includes preventive, predictive, personalized, and participatory medical model. In constitution theory of Chinese medicine, there are three main ideas. The first one is: constitutions can be divided to nine types in the Chinese population. Prevention and treatment of disease can be divided according to the constitutional type. This reflects personalized or individualized of 4P. The second one is: certain constitution is correlated to certain disease. So constitution differentiation can be used to predict the occurrence of any kind disease. The third one is: Disease can be prevented through regulating correlated constitutions. And during the course of constitution differentiation, the object of service or patients can participate in the whole course. In summary, the research of Chinese medical constitution embodies the application and practice of 4P medical model. And it provided reference for studying and developing other subjects under the present medical model.
Sintering of Multilayered Porous Structures: Part I-Constitutive Models
DEFF Research Database (Denmark)
Olevsky, Eugene; Tadesse Molla, Tesfaye; Frandsen, Henrik Lund
2013-01-01
Theoretical analyses of shrinkage and distortion kinetics during sintering of bilayered porous structures are carried out. The developed modeling framework is based on the continuum theory of sintering; it enables the direct assessment of the cofiring process outcomes and of the impact of process...
Mechanical properties of brain tissue: characterisation and constitutive modelling
Dommelen, van J.A.W.; Hrapko, M.; Peters, G.W.M.; Kamkin, A.; Kiseleva, I.
2009-01-01
The head is often considered as the most critical region of the human body for life-threatening injuries sustained in accidents. In order to develop effective protective measures, a better understanding of the process of injury development in the brain is required. Finite Element (FE) models are
Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.
2018-01-01
Elastomers are known to exhibit viscoelastic behavior under deformation, which is linked to the diffusion processes of the highly mobile and flexible polymer chains. Inspired by the theories of polymer dynamics, a micro-macro constitutive model is developed to study the viscoelastic behaviors and the relaxation process of elastomeric materials under large deformation, in which the material parameters all have a microscopic foundation or a microstructural justification. The proposed model incorporates the nonlinear material viscosity into the continuum finite-deformation viscoelasticity theories which represent the polymer networks of elastomers with an elastic ground network and a few viscous subnetworks. The developed modeling framework is capable of adopting most of strain energy density functions for hyperelastic materials and thermodynamics evolution laws of viscoelastic solids. The modeling capacity of the framework is outlined by comparing the simulation results with the experimental data of three commonly used elastomeric materials, namely, VHB4910, HNBR50 and carbon black (CB) filled elastomers. The comparison shows that the stress responses and some typical behaviors of filled and unfilled elastomers can be quantitatively predicted by the model with suitable strain energy density functions. Particularly, the strain-softening effect of elastomers could be explained by the deformation-dependent (nonlinear) viscosity of the polymer chains. The presented modeling framework is expected to be useful as a modeling platform for further study on the performance of different type of elastomeric materials.
Constitutive relations describing creep deformation for multi-axial time-dependent stress states
McCartney, L. N.
1981-02-01
A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.
International Nuclear Information System (INIS)
Hirano, Toru; Seno, Yasuhiro; Nakama, Shigeo; Okubo, Seisuke
2008-01-01
Toki granite was tested to obtain parameters for the constitutive equation. The testing method was uniaxial compressive loading at the moderate a constant strain rate that is decreased after yielding to obtain the complete stress-strain curve. In addition, two kinds of the strain rate were alternately switched to obtain the parameter n from one specimen. The n represents the strength time-dependence in the constitutive equation. The second parameter m can be obtained by fitting the experimental stress-strain curve to the calculated curve. The m accounts for the behavior after yielding. According to the results, Toki granite has n=52 and m=60, showing relatively weak time-dependence of creep failure. (author)
Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping
2018-06-01
As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.
The HIV1 protein Vpr acts to enhance constitutive DCAF1-dependent UNG2 turnover.
Directory of Open Access Journals (Sweden)
Xiaoyun Wen
Full Text Available The HIV1 protein Vpr assembles with and acts through an ubiquitin ligase complex that includes DDB1 and cullin 4 (CRL4 to cause G2 cell cycle arrest and to promote degradation of both uracil DNA glycosylase 2 (UNG2 and single-strand selective mono-functional uracil DNA glycosylase 1 (SMUG1. DCAF1, an adaptor protein, is required for Vpr-mediated G2 arrest through the ubiquitin ligase complex. In work described here, we used UNG2 as a model substrate to study how Vpr acts through the ubiquitin ligase complex. We examined whether DCAF1 is essential for Vpr-mediated degradation of UNG2 and SMUG1. We further investigated whether Vpr is required for recruiting substrates to the ubiquitin ligase or acts to enhance its function and whether this parallels Vpr-mediated G2 arrest.We found that DCAF1 plays an important role in Vpr-independent UNG2 and SMUG1 depletion. UNG2 assembled with the ubiquitin ligase complex in the absence of Vpr, but Vpr enhanced this interaction. Further, Vpr-mediated enhancement of UNG2 degradation correlated with low Vpr expression levels. Vpr concentrations exceeding a threshold blocked UNG2 depletion and enhanced its accumulation in the cell nucleus. A similar dose-dependent trend was seen for Vpr-mediated cell cycle arrest.This work identifies UNG2 and SMUG1 as novel targets for CRL4(DCAF1-mediated degradation. It further shows that Vpr enhances rather than enables the interaction between UNG2 and the ubiquitin ligase. Vpr augments CRL4(DCAF1-mediated UNG2 degradation at low concentrations but antagonizes it at high concentrations, allowing nuclear accumulation of UNG2. Further, the protein that is targeted to cause G2 arrest behaves much like UNG2. Our findings provide the basis for determining whether the CRL4(DCAF1 complex is alone responsible for cell cycle-dependent UNG2 turnover and will also aid in establishing conditions necessary for the identification of additional targets of Vpr-enhanced degradation.
van Kempen, Thomas H S; Donders, Wouter P; van de Vosse, Frans N; Peters, Gerrit W M
2016-04-01
The mechanical properties determine to a large extent the functioning of a blood clot. These properties depend on the composition of the clot and have been related to many diseases. However, the various involved components and their complex interactions make it difficult at this stage to fully understand and predict properties as a function of the components. Therefore, in this study, a constitutive model is developed that describes the viscoelastic behavior of blood clots with various compositions. Hereto, clots are formed from whole blood, platelet-rich plasma and platelet-poor plasma to study the influence of red blood cells, platelets and fibrin, respectively. Rheological experiments are performed to probe the mechanical behavior of the clots during their formation. The nonlinear viscoelastic behavior of the mature clots is characterized using a large amplitude oscillatory shear deformation. The model is based on a generalized Maxwell model that accurately describes the results for the different rheological experiments by making the moduli and viscosities a function of time and the past and current deformation. Using the same model with different parameter values enables a description of clots with different compositions. A sensitivity analysis is applied to study the influence of parameter variations on the model output. The relative simplicity and flexibility make the model suitable for numerical simulations of blood clots and other materials showing similar behavior.
Thermodynamic constitutive model for load-biased thermal cycling test of shape memory alloy
International Nuclear Information System (INIS)
Young, Sung; Nam, Tae-Hyun
2013-01-01
Graphical abstract: - Highlights: • Thermodynamic calculation model for martensitic transformation of shape memory alloy was proposed. • Evolution of the self-accommodation was considered independently by a rate-dependent kinetic equation. • Finite element calculation was conducted for B2–B19′ transformation of Ti–44.5Ni–5Cu–0.5 V (at.%). • Three-dimensional numerical results predict the macroscopic strain under bias loading accurately. - Abstract: This paper presents a three-dimensional calculation model for martensitic phase transformation of shape memory alloy. Constitutive model based on thermodynamic theory was provided. The average behavior was accounted for by considering the volume fraction of each martensitic variant in the material. Evolution of the volume fraction of each variant was determined by a rate-dependent kinetic equation. We assumed that nucleation rate is faster for the self-accommodation than for the stress-induced variants. Three-dimensional finite element analysis was conducted and the results were compared with the experimental data of Ti–44.5Ni–5Cu–0.5 V (at.%) alloy under bias loading
Siddiq, A.; El Sayed, Tamer S.
2013-01-01
We present a variational multiscale constitutive model that accounts for intergranular failure in nanocrystalline fcc metals due to void growth and coalescence in the grain boundary region. Following previous work by the authors, a nanocrystalline
Khan, Kamran; El Sayed, Tamer S.
2012-01-01
We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer
A phenomenological two-phase constitutive model for porous shape memory alloys
El Sayed, Tamer S.; Gurses, Ercan; Siddiq, Amir Mohammed
2012-01-01
, application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement
Implementation of a Unified Constitutive Model into the ABAQUS Finite Element Package
National Research Council Canada - National Science Library
Wescott, R
1999-01-01
Unified constitutive models have previously been developed at AMRL and implemented into the PAFEC and ABAQUS Finite Element packages to predict the stress-strain response of structures that undergo...
Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.
Demirci, Nagehan; Tönük, Ergin
2014-01-01
During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.
Homogenized global nonlinear constitutive model for RC panels under cyclic loadings
International Nuclear Information System (INIS)
Huguet, Miquel; Voldoire, Francois; Kotronis, Panagiotis; Erlicher, Silvano
2014-01-01
A new nonlinear stress resultant global constitutive model for RC panels is presented. Concrete damage, concrete stress transfer at cracks and bond-slip stress are the main nonlinear effects identified at the local scale that constitute the basis for the construction of the stress resultant global model through an analytical homogenization technique. The closed form solution is obtained using general functions for the previous phenomena. (authors)
Comparative studies on constitutive models for cohesive interface cracks of quasi-brittle materials
International Nuclear Information System (INIS)
Shen Xinpu; Shen Guoxiao; Zhou Lin
2005-01-01
In this paper, Concerning on the modelling of quasi-brittle fracture process zone at interface crack of quasi-brittle materials and structures, typical constitutive models of interface cracks were compared. Numerical calculations of the constitutive behaviours of selected models were carried out at local level. Aiming at the simulation of quasi-brittle fracture of concrete-like materials and structures, the emphases of the qualitative comparisons of selected cohesive models are focused on: (1) the fundamental mode I and mode II behaviours of selected models; (2) dilatancy properties of the selected models under mixed mode fracture loading conditions. (authors)
International Nuclear Information System (INIS)
Yaguchi, Masatsugu; Takahashi, Yukio
2001-01-01
A series of ratchetting deformation tests was conducted on modified 9Cr-1Mo steel at 550degC under uniaxial and multiaxial stress conditions. Ratchetting behavior depended on various parameters such as mean stress, stress/strain rate and those range, hold time and prior cyclic deformation. Under uniaxial conditions, untraditional ratchetting behavior was observed; the ratchetting deformation rate was the fastest when the stress ratio was equal to -1, while no ratchetting deformation was predicted by conventional constitutive models. In order to discuss the reason for this untraditional ratchetting behavior, a lot of monotonic compression tests were conducted and compared with tension data. The material showed a difference of deformation resistance of about 30 MPa between tension and compression at high strain rates. Furthermore, the authors' previous model and Ohno-Wang model were applied to the test conditions to evaluate their description capability for ratchetting behavior of the material. It was shown that the authors' model has a tendency to overestimate the ratchetting deformation and that the Ohno-Wang model has a tendency to underestimate the uniaxial ratchetting deformation at small stress rates. (author)
First positive reactions to cannabis constitute a priority risk factor for cannabis dependence.
Le Strat, Yann; Ramoz, Nicolas; Horwood, John; Falissard, Bruno; Hassler, Christine; Romo, Lucia; Choquet, Marie; Fergusson, David; Gorwood, Philip
2009-10-01
To assess the association between first reactions to cannabis and the risk of cannabis dependence. A cross-sectional population-based assessment in 2007. A campus in a French region (Champagne-Ardennes). A total of 1472 participants aged 18-21 years who reported at least one life-time cannabis consumption, of 3056 students who were screened initially [the Susceptibility Addiction Gene Environment (SAGE) study]. Positive and negative effects of first cannabis consumptions, present cannabis dependence and related risk factors were assessed through questionnaires. The effects of first cannabis consumptions were associated dose-dependently with cannabis dependence at age 18-21 years, both according to the transversal approach of the SAGE study and to the prospective cohort of the Christchurch Health and Development Study (CHDS) assessed at the age of 25 years. Participants of the SAGE study who reported five positive effects of their first cannabis consumption had odds of life-time cannabis dependence that were 28.7 (95% confidence interval: 14.6-56.5) higher than those who reported no positive effects. This association remains significant after controlling for potentially confounding factors, including individual and familial variables. This study suggests an association between positive reactions to first cannabis uses and risk of life-time cannabis dependence, this variable having a central role among, and through, other risk factors. © 2009 The Authors. Journal compilation © 2009 Society for the Study of Addiction.
Method to determine the optimal constitutive model from spherical indentation tests
Directory of Open Access Journals (Sweden)
Tairui Zhang
2018-03-01
Full Text Available The limitation of current indentation theories was investigated and a method to determine the optimal constitutive model through spherical indentation tests was proposed. Two constitutive models, the Power-law and the Linear-law, were used in Finite Element (FE calculations, and then a set of indentation governing equations was established for each model. The load-depth data from the normal indentation depth was used to fit the best parameters in each constitutive model while the data from the further loading part was compared with those from FE calculations, and the model that better predicted the further deformation was considered the optimal one. Moreover, a Yang’s modulus calculation model which took the previous plastic deformation and the phenomenon of pile-up (or sink-in into consideration was also proposed to revise the original Sneddon-Pharr-Oliver model. The indentation results on six materials, 304, 321, SA508, SA533, 15CrMoR, and Fv520B, were compared with tensile ones, which validated the reliability of the revised E calculation model and the optimal constitutive model determination method in this study. Keywords: Optimal constitutive model, Spherical indentation test, Finite Element calculations, Yang’s modulus
Cyber Epidemic Models with Dependences
Xu, Maochao; Da, Gaofeng; Xu, Shouhuai
2016-01-01
Studying models of cyber epidemics over arbitrary complex networks can deepen our understanding of cyber security from a whole-system perspective. In this paper, we initiate the investigation of cyber epidemic models that accommodate the {\\em dependences} between the cyber attack events. Due to the notorious difficulty in dealing with such dependences, essentially all existing cyber epidemic models have assumed them away. Specifically, we introduce the idea of Copulas into cyber epidemic mode...
A constitutive model for the mechanical characterization of the plantar fascia.
Natali, Arturo N; Pavan, Piero G; Stecco, Carla
2010-10-01
A constitutive model is proposed to describe the mechanical behavior of the plantar fascia. The mechanical characterization of the plantar fascia regards the role in the foot biomechanics and it is involved in many alterations of its functional behavior, both of mechanical and nonmechanical origin. The structural conformation of the plantar fascia in its middle part is characterized by the presence of collagen fibers reinforcing the tissue along a preferential orientation, which is that supporting the major loading. According to this anatomical evidence, the tissue is described by developing an isotropic fiber-reinforced constitutive model and since the elastic response of the fascia is here considered, the constitutive model is based on the theory of hyperelasticity. The model is consistent with a kinematical description of large strains mechanical behavior, which is typical of soft tissues. A fitting procedure of the constitutive model is implemented making use of experimental curves taken from the literature and referring to specimens of human plantar fascia. A satisfactory fitting of the tensile behavior of the plantar fascia has been performed, showing that the model correctly interprets the mechanical behavior of the tissue in the light of comparison to experimental data at disposal. A critical analysis of the model with respect to the problem of the identification of the constitutive parameters is proposed as the basis for planning a future experimental investigation of mechanical behavior of the plantar fascia.
Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature
Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu
2017-10-01
A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.
The one-parameter-model - a constitutive equation applied to a heat resistant alloy
International Nuclear Information System (INIS)
Schwarze, E.; Schuster, H.; Nickel, H.
1992-01-01
In the present work a constitutive model earlier developed and used to predict experimental results of hot tests and fatigue tests from creep experiments of metallic materials were modified to comply with the properties of a high temperature resistant material. The improved model accounts for the properties of a material developing a density and a structure of dislocation lines which are capable of interactions with particles (carbides) from a second phase. The time and temperature dependent evolution of the carbide structure has been described by an equation which explains the formation of seeds as well as their growths (Ostwald ripening). The extended model was applied to Incoloy 800H which is known to develop a carbide structure. Therefore hot tensile and fatigue tests, creep and relaxation experiments using the heats ADU and BAK (KFA specifications) at temperature between 800deg C and 900deg C were performed including both solution treated specimens and specimens heat treated for 10, 100 and 1000 hours. As compared with the results from tensile tests where the carbide structures play a subordinated role, alternately, these structures have a decisive influence on the creep properties of specimens during the primary creep phase, i.e. low stresses and high temperatures. (orig.) [de
Ding, Anxin; Li, Shuxin; Wang, Jihui; Ni, Aiqing; Sun, Liangliang; Chang, Lei
2016-10-01
In this paper, the corner spring-in angles of AS4/8552 L-shaped composite profiles with different thicknesses are predicted using path-dependent constitutive law with the consideration of material properties variation due to phase change during curing. The prediction accuracy mainly depends on the properties in the rubbery and glassy states obtained by homogenization method rather than experimental measurements. Both analytical and finite element (FE) homogenization methods are applied to predict the overall properties of AS4/8552 composite. The effect of fiber volume fraction on the properties is investigated for both rubbery and glassy states using both methods. And the predicted results are compared with experimental measurements for the glassy state. Good agreement is achieved between the predicted results and available experimental data, showing the reliability of the homogenization method. Furthermore, the corner spring-in angles of L-shaped composite profiles are measured experimentally and the reliability of path-dependent constitutive law is validated as well as the properties prediction by FE homogenization method.
Constitutive modeling of intrinsic and oxygen-contaminated silicon monocrystals in easy glide
Cochard, J.; Yonenaga, I.; Gouttebroze, S.; M'Hamdi, M.; Zhang, Z. L.
2010-11-01
We generalize in this work the constitutive model for silicon crystals of Alexander and Haasen. Strain-rate and temperature dependency of the mechanical behavior of intrinsic crystals are correctly accounted for into stage I of hardening. We show that the steady-state of deformation in stage I is very well reproduced in a wide range of temperature and strain rate. The case of extrinsic crystals containing high levels of dissolved oxygen is examined. The introduction of an effective density of mobile dislocations dependent on the unlocking stress created by oxygen atoms gathered at the dislocation cores is combined to an alteration of the dislocation multiplication rate, due to pinning of the dislocation line by oxygen atoms. This increases the upper yield stress with the bulk oxygen concentration in agreement with experimental observations. The fraction of effectively mobile dislocations is found to decay exponentially with the unlocking stress. Finally, the influence of oxygen migration back onto the dislocations from the bulk on the stress distribution in silicon bars is investigated.
Directory of Open Access Journals (Sweden)
John (Jack P. Riegel III
2016-04-01
Full Text Available Historically, there has been little correlation between the material properties used in (1 empirical formulae, (2 analytical formulations, and (3 numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014 to show how the Effective Flow Stress (EFS strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN (Anderson and Walker, 1991 and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a
Constitutive modeling for analysis and design of aluminum sheet forming processes
International Nuclear Information System (INIS)
Barlat, F.; Chung, K.; Yoon, J-W.; Choi, S-H.
2000-01-01
Finite element modeling (FEM) technology is one of the most powerful tools used to design new products, i.e. appliances, automotive, rigid packaging and aerospace parts, etc., and processes. However, FEM users need data and models to characterize the materials used to fabricate the new products. In fact, they need more information than the traditional and standard yield strength, ultimate strength, elongation, etc. Constitutive models and their associated coefficients represent a new way to describe material properties, a way that can be used by FEM users. In order to help manufacturers use more aluminum alloy sheet in their products, appropriate material models are needed to analyze and design specifically for these materials. This work describes a methodology that provides phenomenological constitutive equations based on three main microstructure components of aluminum alloys: dislocation density, second-phase particles and crystallographic texture. Examples of constitutive equations and their applications to numerical sheet forming process analysis and design are provided in this work. (author)
High Temperature Mechanical Constitutive Modeling of a High-Nb TiAl Alloy
Directory of Open Access Journals (Sweden)
DONG Chengli
2018-02-01
Full Text Available Uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep experiments of a novel high-Nb TiAl alloy (i.e. Ti-45Al-8Nb-0.2W-0.2B-0.02Y (atom fraction/% were conducted at 750℃ to obtain its tested data and curves. Based on Chaboche visco-plasticity unified constitutive model, Ohno-Wang modified non-linear kinematic hardening was introduced in Chaboche constitutive model to describe the cyclic hardening/softening, and Kachanov damage was coupled in Chaboche constitutive model to characterize the accelerated creep stage. The differential equations of the constitutive model discretized by explicit Euler method were compiled in to ABAQUS/UMAT to simulate the mechanical behavior of high-Nb TiAl alloy at different test conditions. The results show that Chaboche visco-plasticity unified constitutive model considering both Ohno-Wang modified non-linear kinematic hardening and Kachanov damage is able to simulate the uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep behavior of high-Nb TiAl alloy and has high accuracy.
Constitutive models for concrete and finite element analysis of prestressed concrete reactor vessels
International Nuclear Information System (INIS)
Smith, P.D.; Anderson, C.A.
1977-01-01
Two constitutive models for concrete are discussed. For short-term loads, the orthotropic variable modulus model is described, and for long-term loads a viscoelastic model utilizing a Dirichlet series approximation for the creep compliance function is summarized. The orthotropic variable modulus model is demonstrated in an analysis of a PCRV head with penetrations. The viscoelastic model is illustrated with a simulation of a prestressed concrete cylinder subject to non-uniform temperatures
Thermo-mechanical constitutive modeling of unsaturated clays based on the critical state concepts
Tourchi, Saeed; Hamidi, Amir
2015-01-01
A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existing model for saturated clays originally proposed by the authors. The saturated clays model was formulated in the framework of critical state soil mechanics and modified Cam-clay model. The existing model has been generalized to simulate the experimentally observed behavior of unsaturated clays by introducing Bishop's stress and suction as independent stress parameters and modifying the hardening rul...
Method to determine the optimal constitutive model from spherical indentation tests
Zhang, Tairui; Wang, Shang; Wang, Weiqiang
2018-03-01
The limitation of current indentation theories was investigated and a method to determine the optimal constitutive model through spherical indentation tests was proposed. Two constitutive models, the Power-law and the Linear-law, were used in Finite Element (FE) calculations, and then a set of indentation governing equations was established for each model. The load-depth data from the normal indentation depth was used to fit the best parameters in each constitutive model while the data from the further loading part was compared with those from FE calculations, and the model that better predicted the further deformation was considered the optimal one. Moreover, a Yang's modulus calculation model which took the previous plastic deformation and the phenomenon of pile-up (or sink-in) into consideration was also proposed to revise the original Sneddon-Pharr-Oliver model. The indentation results on six materials, 304, 321, SA508, SA533, 15CrMoR, and Fv520B, were compared with tensile ones, which validated the reliability of the revised E calculation model and the optimal constitutive model determination method in this study.
International Nuclear Information System (INIS)
Baladi, G.Y.; Akers, S.A.
1981-01-01
The purpose of the theoretical investigation was to develop an appropriate elastic-plastic effective-stress constitutive model and the necessary numerical algorithms for seabed sediments for use in computer code simulations of both early-time dynamic penetration of waste canisters and late-time hole closure. The purpose of the experimental program was to provide high-pressure dynamic stress-strain and strength properties for seabed sediments of interest, which in conjunction with data provided by the University of Rhode Island (URI), could be used to guide the development and verification of a constitutive model for such materials. The results of the theoretical program are documented in Part I of this report, which contains four chapters. The fundamental basis of elastic-plastic constitutive models is presented in Chapter 1. The numerical implementation of the elastic-plastic models is discussed in Chapter 2. The development of the effective-stress constitutive model for seabed sediments is presented in Chapter 3. The behavior of this effective-stress model under hydrostatic and triaxial compression test conditions is illustrated in Chapter 4. Part II deals with the experimental program and includes five chapters. Chapter 1 deals with background geotechnical information regarding the physical properties of seabed sediments and presents the scope of the experimental program. Testing equipment and specimen preparation are described in Chapter 2. Chapter 3 outlines test procedures and techniques. Test results are presented in Chapter 4. Representative constitutive properties for Pacific illite are given in Chapter 5. Comparison of the final effective-stress constitutive model fits with laboratory test data are presented in Part III. The numerical values of the material model constants for Pacific illite are also summarized therein. Part IV contains a summary and recommendations for future work
A visco-hyperelastic constitutive model and its application in bovine tongue tissue.
Yousefi, Ali-Akbar Karkhaneh; Nazari, Mohammad Ali; Perrier, Pascal; Panahi, Masoud Shariat; Payan, Yohan
2018-04-11
Material properties of the human tongue tissue have a significant role in understanding its function in speech, respiration, suckling, and swallowing. Tongue as a combination of various muscles is surrounded by the mucous membrane and is a complicated architecture to study. As a first step before the quantitative mechanical characterization of human tongue tissues, the passive biomechanical properties in the superior longitudinal muscle (SLM) and the mucous tissues of a bovine tongue have been measured. Since the rate of loading has a sizeable contribution to the resultant stress of soft tissues, the rate dependent behavior of tongue tissues has been investigated via uniaxial tension tests (UTTs). A method to determine the mechanical properties of transversely isotropic tissues using UTTs and inverse finite element (FE) method has been proposed. Assuming the strain energy as a general nonlinear relationship with respect to the stretch and the rate of stretch, two visco-hyperelastic constitutive laws (CLs) have been proposed for isotropic and transversely isotropic soft tissues to model their stress-stretch behavior. Both of them have been implemented in ABAQUS explicit through coding a user-defined material subroutine called VUMAT and the experimental stress-stretch points have been well tracked by the results of FE analyses. It has been demonstrated that the proposed laws make a good description of the viscous nature of tongue tissues. Reliability of the proposed models has been compared with similar nonlinear visco-hyperelastic CLs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Experimental verification of a discrete memory constitutive model for 316 stainless steel
International Nuclear Information System (INIS)
Elleuch, M.N.; Han, S.; Wack, B.F.
1983-01-01
To identify the behaviour of high strength material, like metals, the torsion test of a circular tube is the most efficient: it allows a three-dimensional path to be followed, in the stress space for example, by adding an axial force and an internal pressure to the torque. The quality of identification depends on the quality of the experimental tests and the quality of the test deformation description: this is important since the application of a torque implies that the tube will follow a rotational solicitation path. Theoretical studies of finite deformations indicate that the torsion is accompagnied by second order effects, and particularly by an axial displacement (Pointing effect). The material behaviour description by a hereditary type constitutive model of discrete memory (M.D. model) show that these second order effects can cumulate and give ratchet phenomena. We consider only the essential features of 316 L stainless steel, i.e. the mechanical hysteresis and strain hardening; we will neglect here-in the viscosity effect, and the experimental tests were conducted at low rate. (orig./RW)
International Nuclear Information System (INIS)
Siddiq, A; Rahimi, S
2013-01-01
Intergranular stress corrosion cracking (IGSCC) is a fracture mechanism in sensitised austenitic stainless steels exposed to critical environments where the intergranular cracks extends along the network of connected susceptible grain boundaries. A constitutive model is presented to estimate the maximum intergranular crack growth by taking into consideration the materials mechanical properties and microstructure characters distribution. This constitutive model is constructed based on the assumption that each grain is a two phase material comprising of grain interior and grain boundary zone. The inherent micro-mechanisms active in the grain interior during IGSCC is based on crystal plasticity theory, while the grain boundary zone has been modelled by proposing a phenomenological constitutive model motivated from cohesive zone modelling approach. Overall, response of the representative volume is calculated by volume averaging of individual grain behaviour. Model is assessed by performing rigorous parametric studies, followed by validation and verification of the proposed constitutive model using representative volume element based FE simulations reported in the literature. In the last section, model application is demonstrated using intergranular stress corrosion cracking experiments which shows a good agreement
Modelling of constitutive behavior of sand in the low stress regime: an implementation of SANISAND
DEFF Research Database (Denmark)
Latini, Chiara; Zania, Varvara; Tamagnini, Claudio
2017-01-01
The paper provides background information for the modification of SANISAND (2004) constitutive model in order to capture the mechanical behavior of sand in the low stress regime. In the implementation of this model in finite element programs, computational difficulties arise due to the gradient...
Random cyclic constitutive models of 0Cr18Ni10Ti pipe steel
International Nuclear Information System (INIS)
Zhao Yongxiang; Yang Bing
2004-01-01
Experimental study is performed on the random cyclic constitutive relations of a new pipe stainless steel, 0Cr18Ni10Ti, by an incremental strain-controlled fatigue test. In the test, it is verified that the random cyclic constitutive relations, like the wide recognized random cyclic strain-life relations, is an intrinsic fatigue phenomenon of engineering materials. Extrapolating the previous work by Zhao et al, probability-based constitutive models are constructed, respectively, on the bases of Ramberg-Osgood equation and its modified form. Scattering regularity and amount of the test data are taken into account. The models consist of the survival probability-strain-life curves, the confidence strain-life curves, and the survival probability-confidence-strain-life curves. Availability and feasibility of the models have been indicated by analysis of the present test data
Models for dependent time series
Tunnicliffe Wilson, Granville; Haywood, John
2015-01-01
Models for Dependent Time Series addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. Whether you work in the economic, physical, or life sciences, the book shows you how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vector) time series data.The first four chapters discuss the two main pillars of the subject that have been developed over the last 60 years: vector autoregressive modeling and multivariate spectral analysis. These chapters provide the foundational mater
Implementation and verification of interface constitutive model in FLAC3D
Directory of Open Access Journals (Sweden)
Hai-min Wu
2011-09-01
Full Text Available Due to the complexity of soil-structure interaction, simple constitutive models typically used for interface elements in general computer programs cannot satisfy the requirements of discontinuous deformation analysis of structures that contain different interfaces. In order to simulate the strain-softening characteristics of interfaces, a nonlinear strain-softening interface constitutive model was incorporated into fast Lagrange analysis of continua in three dimensions (FLAC3D through a user-defined program in the FISH environment. A numerical simulation of a direct shear test for geosynthetic interfaces was conducted to verify that the interface model was implemented correctly. Results of the numerical tests show good agreement with the results obtained from theoretical calculations, indicating that the model incorporated into FLAC3D can simulate the nonlinear strain-softening behavior of interfaces involving geosynthetic materials. The results confirmed the validity and reliability of the improved interface model. The procedure and method of implementing an interface constitutive model into a commercial computer program also provide a reference for implementation of a new interface constitutive model in FLAC3D.
Constitutive model of creep in polycrystalline halite based on workhardening and recovery
International Nuclear Information System (INIS)
Munson, D.E.
1993-01-01
A multimechanism constitutive model of creep has been developed which incorporates the workhardening and recovery transient creep behavior. This model has been applied to the creep of polycrystalline halite. The specific application of the model is in the calculation of the closure of underground rooms in layered salt deposits. Through the use of finite element calculations, this model, with appropriate laboratory material parameters and a Tresca flow potential, has predicted the measured closure of a number of large in situ experimental rooms
International Nuclear Information System (INIS)
Niemiec, W.
1985-01-01
In the literature of distributed parameter modelling of real processes is not considered the class of multicomponent chemical processes in gas, fluid and solid phase. The aim of paper is constitutive distributed parameter physicochemical model, constructed on kinetics and phenomenal analysis of multicomponent chemical processes in gas, fluid and solid phase. The mass, energy and momentum aspects of these multicomponent chemical reactions and adequate phenomena are utilized in balance operations, by conditions of: constitutive invariance for continuous media with space and time memories, reciprocity principle for isotropic and anisotropic nonhomogeneous media with space and time memories, application of definitions of following derivative and equation of continuity, to the construction of systems of partial differential constitutive state equations, in the following derivative forms for gas, fluid and solid phase. Couched in this way all physicochemical conditions of multicomponent chemical processes in gas, fluid and solid phase are new form of constitutive distributed parameter model for automatics and its systems of equations are new form of systems of partial differential constitutive state equations in sense of phenomenal distributed parameter control
Development and Validation of a Constitutive Model for Dental Composites during the Curing Process
Wickham Kolstad, Lauren
Debonding is a critical failure of a dental composites used for dental restorations. Debonding of dental composites can be determined by comparing the shrinkage stress of to the debonding strength of the adhesive that bonds it to the tooth surface. It is difficult to measure shrinkage stress experimentally. In this study, finite element analysis is used to predict the stress in the composite during cure. A new constitutive law is presented that will allow composite developers to evaluate composite shrinkage stress at early stages in the material development. Shrinkage stress and shrinkage strain experimental data were gathered for three dental resins, Z250, Z350, and P90. Experimental data were used to develop a constitutive model for the Young's modulus as a function of time of the dental composite during cure. A Maxwell model, spring and dashpot in series, was used to simulate the composite. The compliance of the shrinkage stress device was also taken into account by including a spring in series with the Maxwell model. A coefficient of thermal expansion was also determined for internal loading of the composite by dividing shrinkage strain by time. Three FEA models are presented. A spring-disk model validates that the constitutive law is self-consistent. A quarter cuspal deflection model uses separate experimental data to verify that the constitutive law is valid. Finally, an axisymmetric tooth model is used to predict interfacial stresses in the composite. These stresses are compared to the debonding strength to check if the composite debonds. The new constitutive model accurately predicted cuspal deflection data. Predictions for interfacial bond stress in the tooth model compare favorably with debonding characteristics observed in practice for dental resins.
Garion, C
2001-01-01
The 300-series stainless steels are metastable austenitic alloys: martensitic transformation occurs at low temperatures and/or when plastic strain fields develop in the structures. The transformation influences the mechanical properties of the material. The present note aims at proposing a set of constitutive equations describing the plastic strain induced martensitic transformation in the stainless steels at cryogenic temperatures. The constitutive modelling shall create a bridge between the material sciences and the structural analysis. For the structures developing and accumulating plastic deformations at sub-zero temperatures, it is of primary importance to be able to predict the intensity of martensitic transformation and its effect on the material properties. In particular, the constitutive model has been applied to predict the behaviour of the components of the LHC interconnections, the so-called bellows expansion joints (the LHC mechanical compensation system).
Entropic Constitutive Relation and Modeling for Fourier and Hyperbolic Heat Conductions
Directory of Open Access Journals (Sweden)
Shu-Nan Li
2017-12-01
Full Text Available Most existing phenomenological heat conduction models are expressed by temperature and heat flux distributions, whose definitions might be debatable in heat conductions with strong non-equilibrium. The constitutive relations of Fourier and hyperbolic heat conductions are here rewritten by the entropy and entropy flux distributions in the frameworks of classical irreversible thermodynamics (CIT and extended irreversible thermodynamics (EIT. The entropic constitutive relations are then generalized by Boltzmann–Gibbs–Shannon (BGS statistical mechanics, which can avoid the debatable definitions of thermodynamic quantities relying on local equilibrium. It shows a possibility of modeling heat conduction through entropic constitutive relations. The applicability of the generalizations by BGS statistical mechanics is also discussed based on the relaxation time approximation, and it is found that the generalizations require a sufficiently small entropy production rate.
Directory of Open Access Journals (Sweden)
J. Fan
2015-01-01
Full Text Available In this essay, I mainly focus on the constitutional transplantation in the People’s Republic of China. Firstly, I briefly present the Chinese constitution-making process from the Qing dynasty to the Republic of China to show that both regimes had transplanted more or less liberal constitutional principles, rules and institutions into their domestic constitutional document. Then, because China and the Former Soviet Union shared the Marxism-Leninism, China’s 1954 Constitution borrowed almost all the constitutional articles to various extents from the 1936 Soviet constitutional code. Though few articles of the 1977 Soviet Constitution have been imported into China’s present 1982 Constitution, China’s Constitution is still influenced by the Soviet model of constitution in many aspects related to the political and legal reform in the post-Mao era. Globalization brings many challenges to present-day China’s Soviet- featured constitutional system. With China’s accession to the WTO, a qualified judicial review mechanism is required to be established by the other Member States. However, China seems not to satisfy this obligation under the framework of the present legal system. In addition, a constitutional review mechanism is still absent in China. Besides, the modern Chinese legal system keeps silent on the domestic implementation of the UN international human rights treaties in view of the fact that Chinese international law theory was molded by Soviet’s which took highly concerned on protection of its state sovereignty. Chinese authorities, on the other hand, take a vague attitude to universal human rights standards. They sometimes prefer to observe them, while in other cases, they are not willing to follow them. Besides that, the domestic effects of international law also depend on the outcomes of the struggle and compromise between the reformist and Chinese Marxist conservative.
Constitutive modeling of quench-hardenable boron steel with tailored properties
Eller, Tom K.; Greve, Lars; Anders, Michael T.; Medricky, Miloslav; Hatscher, Ansgar; Meinders, Timo; van den Boogaard, Ton; Volk, W.
2013-01-01
In this work, a material model is presented that predicts the crash-relevant constitutive behavior of quench-hardenable boron steel 22MnB5 as function of material hardness. Three sets of sheets of 22MnB5 are heat treated such that their as-treated microstructures are close to fully martensitic,
Lagrangian viscoelastic flow computations using the Rivlin-Sawyers constitutive model
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
2000-01-01
convected Maxwell fluid to a fluid described by an integral constitutive equation of the Rivlin-Sawyers type. This includes the K-BKZ model. The convergence of the method is demonstrated on the axisymmetric problem of the inflation of a polymeric membrane only restricted by a clamping ring....
Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels
Energy Technology Data Exchange (ETDEWEB)
Sun Mingyue, E-mail: mysun@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Luhan, Hao; Shijian, Li; Dianzhong, Li; Yiyi, Li [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)
2011-11-15
Highlights: > A series of flow stress constitutive equations for SA508-3 steel were successfully established. > The experimental results under different conditions have validated the constitutive equations. > An industrial application of the model was present to simulate a large conical shell forging process. - Abstract: Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.
Researches on the Constitutive Models of Artificial Frozen Silt in Underground Engineering
Directory of Open Access Journals (Sweden)
Yugui Yang
2014-01-01
Full Text Available The researches on the mechanical characteristic and constitutive models of frozen soil have important meanings in structural design of deep frozen soil wall. In the present study, the triaxial compression and creep tests have been carried out, and the mechanical characteristic of frozen silt is obtained. The experiment results show that the deformation characteristic of frozen silt is related to confining pressure under conventional triaxial compression condition. The frozen silt presents strain softening in shear process; with increase of confining pressure, the strain softening characteristic gradually decreases. The creep curves of frozen silt present the decaying and the stable creep stages under low stress level; however, under high stress level, once the strain increases to a critical value, the creep strain velocity gradually increases and the specimen quickly happens to destroy. To reproduce the deformation behavior, the disturbed state elastoplastic and new creep constitutive models of frozen silt are developed. The comparisons between experimental results and calculated results from constitutive models show that the proposed constitutive models could describe the conventional triaxial compression and creep deformation behaviors of frozen silt.
Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels
International Nuclear Information System (INIS)
Sun Mingyue; Hao Luhan; Li Shijian; Li Dianzhong; Li Yiyi
2011-01-01
Highlights: → A series of flow stress constitutive equations for SA508-3 steel were successfully established. → The experimental results under different conditions have validated the constitutive equations. → An industrial application of the model was present to simulate a large conical shell forging process. - Abstract: Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.
Numerical model for verification of constitutive laws of blood vessel wall
Czech Academy of Sciences Publication Activity Database
Macková, H.; Chlup, Hynek; Žitný, R.
-, 2/1 (2007), s. 66-66 ISSN 1880-9863 Institutional research plan: CEZ:AV0Z20760514 Keywords : constitutive law * numerical model * pulse wave velocity Subject RIV: BK - Fluid Dynamics http://www.jstage.jst.go.jp/browse/jbse/2/Suppl.1/_contents
A fractal derivative constitutive model for three stages in granite creep
Directory of Open Access Journals (Sweden)
R. Wang
Full Text Available In this paper, by replacing the Newtonian dashpot with the fractal dashpot and considering damage effect, a new constitutive model is proposed in terms of time fractal derivative to describe the full creep regions of granite. The analytic solutions of the fractal derivative creep constitutive equation are derived via scaling transform. The conventional triaxial compression creep tests are performed on MTS 815 rock mechanics test system to verify the efficiency of the new model. The granite specimen is taken from Beishan site, the most potential area for the China’s high-level radioactive waste repository. It is shown that the proposed fractal model can characterize the creep behavior of granite especially in accelerating stage which the classical models cannot predict. The parametric sensitivity analysis is also conducted to investigate the effects of model parameters on the creep strain of granite. Keywords: Beishan granite, Fractal derivative, Damage evolution, Scaling transformation
Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model
International Nuclear Information System (INIS)
Baladi, G.Y.
1978-01-01
The numerical implementation of a transverse-isotropic inelastic, work-hardening plastic constitutive model is documented. A brief review of the model is presented first to facilitate the understanding of its numerical implementation. This model is formulated in terms of 'pseudo' stress invariants, so that the incremental stress-strain relationship can be readily incorporated into existing finite-difference or infinite-element computer codes. The anisotropic model reduces to its isotropic counterpart without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. A typical example of the model and its behavior in uniaxial strain and triaxial compression is presented. (Auth.)
International Nuclear Information System (INIS)
Jarali, Chetan S; Raja, S; Upadhya, A R
2010-01-01
Materials design involving the thermomechanical constitutive modeling of shape memory alloy (SMA) and shape memory polymer (SMP) composites is a key topic in the development of smart adaptive shape memory composites (SASMC). In this work, a constitutive model for SASMC is developed. First, a one-dimensional SMA model, which can simulate the pseudoelastic (PE) and shape memory effects (SME) is presented. Subsequently, a one-dimensional SMP model able to reproduce the SME is addressed. Both SMA and SMP models are based on a single internal state variable, namely the martensite fraction and the frozen fraction, which can be expressed as a function of temperature. A consistent form of the analytical solution for the SMP model is obtained using the fourth-order Runge–Kutta method. Finally, the SASMC constitutive model is proposed, following two analytical homogenization approaches. One approach is based on an equivalent inclusion method and the other approach is the rule of mixtures. The SMA and SMP constitutive models are validated independently with experimental results. However, the validation of the composite model is performed using the two homogenization approaches and a close agreement in results is observed. Results regarding the isothermal and thermomechanical stress–strain responses are analyzed as a function of SMA volume fraction. Further, it is concluded that the proposed composite model is able to reproduce consistently the overall composite response by taking into consideration not only the phase transformations, variable modulus and transformation stresses in SMA but also the variable modulus, the evolution of stored strain and thermal strain in the SMP
A phenomenological two-phase constitutive model for porous shape memory alloys
El Sayed, Tamer S.
2012-07-01
We present a two-phase constitutive model for pseudoelastoplastic behavior of porous shape memory alloys (SMAs). The model consists of a dense SMA phase and a porous plasticity phase. The overall response of the porous SMA is obtained by a weighted average of responses of individual phases. Based on the chosen constitutive model parameters, the model incorporates the pseudoelastic and pseudoplastic behavior simultaneously (commonly reported for porous SMAs) as well as sequentially (i.e. dense SMAs; pseudoelastic deformation followed by the pseudoplastic deformation until failure). The presented model also incorporates failure due to the deviatoric (shear band formation) and volumetric (void growth and coalescence) plastic deformation. The model is calibrated by representative volume elements (RVEs) with different sizes of spherical voids that are solved by unit cell finite element calculations. The overall response of the model is tested against experimental results from literature. Finally, application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement with the experimental data reported in the literature. © 2012 Elsevier B.V. All rights reserved.
A constitutive model and numerical simulation of sintering processes at macroscopic level
Wawrzyk, Krzysztof; Kowalczyk, Piotr; Nosewicz, Szymon; Rojek, Jerzy
2018-01-01
This paper presents modelling of both single and double-phase powder sintering processes at the macroscopic level. In particular, its constitutive formulation, numerical implementation and numerical tests are described. The macroscopic constitutive model is based on the assumption that the sintered material is a continuous medium. The parameters of the constitutive model for material under sintering are determined by simulation of sintering at the microscopic level using a micro-scale model. Numerical tests were carried out for a cylindrical specimen under hydrostatic and uniaxial pressure. Results of macroscopic analysis are compared against the microscopic model results. Moreover, numerical simulations are validated by comparison with experimental results. The simulations and preparation of the model are carried out by Abaqus FEA - a software for finite element analysis and computer-aided engineering. A mechanical model is defined by the user procedure "Vumat" which is developed by the first author in Fortran programming language. Modelling presented in the paper can be used to optimize and to better understand the process.
Numerical implementation of a transverse-isotropic inelastic, work-hardening constitutive model
International Nuclear Information System (INIS)
Baladi, G.Y.
1977-01-01
This paper documents the numerical implementation of a model, specifically a transverse-isotropic, inelastic, work-hardening constitutive model. A brief overview of the mathematical formulation of the model is presented to facilitate the understanding of its numerical implementation. The model is based on incremental flow theories for materials which have time- and temperature-independent properties and which are capable of undergoing small plastic as well as small elastic strain at each loading increment. In addition, the model is written in terms of 'pseudo' stress invariants so that the incremental anisotropic stress-strain relationship can be readily incorporated into existing finite-difference or finite-element computer codes. The isotropic version of the model is retrieved without any changes in the mathematical formulation or in the numerical implementation (algorithm) of the model. Various methods exist for incorporating inelastic constitutive models into computer programs. The method presented in this paper is appropriate for both finite-difference and finite-element codes, and is applicable for solving static as wall as dynamic problems. This method expresses the material constitutive properties as a matrix of coefficients, C (generalized tangent moduli), which relates incremental stresses to incremental strains. It possesses desirable convergence properties. In either finite-difference or finite-element applications the input quantities are the initial stress components, obtained at the end of the previous strain increment, and the new strain increments. The output quantities are the new values of the stress components
International Nuclear Information System (INIS)
Fossum, A.F.; Brodsky, N.S.; Chan, K.S.; Munson, D.E.
1992-01-01
Recent concern over the potential for creep induced development of a damaged rock zone adjacent to shafts and rooms at the Waste Isolation Pilot Plant (WIPP) has motivated the formulation of a coupled constitutive description of continuum salt creep and damage. This constitutive model gives time-dependent inelastic flow and pressure-sensitive damage in crystalline solids. Initially the constitutive model was successfully used to simulate multiaxial, i.e. true triaxial, experiments obtained at relatively high, 2.5 to 20 MPa, confining pressures. Predictions of the complete creep curve, including the heretofore unmodeled tertiary creep, were also demonstrated. However, comparisons of model predictions with data were hampered because the bulk of the creep data existing on WIPP salt was intentionally obtained under confining pressures typically greater than 15 MPa, in an attempt to match the underground in situ lithostatic pressure level. It was realized that the high confining pressures suppressed tertiary creep and resulted in better defined steady state creep responses. To address the tertiary creep process directly, a number of creep tests were conducted at lower confining pressures for the explicit purpose of creating dilatant behavior
Energy Technology Data Exchange (ETDEWEB)
Zhu, Ruihua; Liu, Qing [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Jinfeng, E-mail: lijinfeng@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xiang, Sheng [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Chen, Yonglai; Zhang, Xuhu [Aerospace Research Institute of Materials and Processing Technology, Beijing 100076 (China)
2015-11-25
Dynamic restoration mechanism of 2050 Al–Li alloy and its constitutive model were investigated by means of hot compression simulation in the deformation temperature ranging from 340 to 500 °C and at strain rates of 0.001–10 s{sup −1}. The microstructures of the compressed samples were observed using optical microscopy and transmission electron microscopy. On the base of dislocation density theory and Avrami kinetics, a physically based constitutive model was established. The results show that dynamic recovery (DRV) and dynamic recrystallization (DRX) are co-responsible for the dynamic restoration during the hot compression process under all compression conditions. The dynamic precipitation (DPN) of T1 and σ phases was observed after the deformation at 340 °C. This is the first experimental evidence for the DPN of σ phase in Al–Cu–Li alloys. The particle stimulated nucleation of DRX (PSN-DRX) due to the large Al–Cu–Mn particle was also observed. The error analysis suggests that the established constitutive model can adequately describe the flow stress dependence on strain rate, temperature and strain during the hot deformation process. - Highlights: • The experimental evidence for the DPN of σ phase in Al–Cu–Li alloys was found. • The PSN-DRX due to the large Al–Cu–Mn particle was observed. • A novel method was proposed to calculated the stress multiplier α.
Characterization of Models for Time-Dependent Behavior of Soils
DEFF Research Database (Denmark)
Liingaard, Morten; Augustesen, Anders; Lade, Poul V.
2004-01-01
Different classes of constitutive models have been developed to capture the time-dependent viscous phenomena ~ creep, stress relaxation, and rate effects ! observed in soils. Models based on empirical, rheological, and general stress-strain-time concepts have been studied. The first part....... Special attention is paid to elastoviscoplastic models that combine inviscid elastic and time-dependent plastic behavior. Various general elastoviscoplastic models can roughly be divided into two categories: Models based on the concept of overstress and models based on nonstationary flow surface theory...
International Nuclear Information System (INIS)
Zhang, Bin; Yang, Gang
2014-01-01
A two dimensional (2D) micromorphic model is developed for monolayer hexagonal boron nitride (h-BN). Theoretical expressions of phonon dispersions for 2D crystals are derived based on the simplified governing equations of specialized three dimensional micromorphic crystals. The constitutive constants of governing equations of the h-BN micromorphic model are determined, which is performed by fitting the available phonon dispersions data of experimental measurements and first-principles calculations with our theoretical expressions. The obtained Young’s modulus and Poisson’s ratio of h-BN are comparable with the results of ab initio calculations and inelastic x-ray scattering experiments, thus the constitutive relations of the h-BN model are verified, which also indicates that mechanical properties of monolayer h-BN could be characterized by our 2D micromorphic model
BENNIS, M; DE BUHAN, P
2003-01-01
A two-phase continuum description of reinforced soil structures is proposed in which the soil mass and the reinforcement network are treated as mutually interacting superposed media. The equations governing such a model are developed in the context of elastoplasticity, with special emphasis put on the soil/reinforcement interaction constitutive law. As shown in an illustrative example, such a model paves the way for numerically efficient design methods of reinforced soil structures.
DEFF Research Database (Denmark)
Thorborg, Jesper
, however, is constituted by the implementation of the $J_2$ flow theory in the control volume method. To apply the control volume formulation on the process of hardening concrete viscoelastic stress-strain models has been examined in terms of various rheological models. The generalized 3D models are based...... on two different suggestions in the literature, that is compressible or incompressible behaviour of the viscos response in the dashpot element. Numerical implementation of the models has shown very good agreement with corresponding analytical solutions. The viscoelastic solid mechanical model is used...
A constitutive model for representing coupled creep, fracture, and healing in rock salt
International Nuclear Information System (INIS)
Chan, K.S.; Bodner, S.R.; Munson, D.E.; Fossum, A.F.
1996-01-01
The development of a constitutive model for representing inelastic flow due to coupled creep, damage, and healing in rock salt is present in this paper. This model, referred to as Multimechanism Deformation Coupled Fracture model, has been formulated by considering individual mechanisms that include dislocation creep, shear damage, tensile damage, and damage healing. Applications of the model to representing the inelastic flow and fracture behavior of WIPP salt subjected to creep, quasi-static loading, and damage healing conditions are illustrated with comparisons of model calculations against experimental creep curves, stress-strain curves, strain recovery curves, time-to-rupture data, and fracture mechanism maps
A nonlinear magneto-thermo-elastic coupled hysteretic constitutive model for magnetostrictive alloys
International Nuclear Information System (INIS)
Jin Ke; Kou Yong; Zheng Xiaojing
2012-01-01
This paper presents a general hysteretic constitutive law of nonlinear magneto-thermo-elastic coupling for magnetostrictive alloys. The model considered here is thermodynamically motivated and based on the Gibbs free energy function. A nonlinear part of the elastic strain arising from magnetic domain rotation induced by the pre-stress is taken into account. Furthermore, the movement of the domain walls is incorporated to describe hysteresis based on Jiles–Atherton's model. Then a set of closed and analytical expressions of the constitutive law for the magnetostrictive rods and films are obtained, and the parameters appearing in the model can be determined by those measurable experiments in mechanics and physics. Comparing this model with other existing models in this field, the quantitative results show that the relationships obtained here are more effective to describe the effects of the pre-stress or in-plane residual stress and ambient temperature on the magnetization or the magnetostriction hysteresis loops. - Highlights: ► A general hysteretic constitutive law of nonlinear magneto-thermo-elastic coupling for magnetostrictive materials is proposed. ► Model is thermodynamically motivated and the reversible magnetic domain rotation and irreversible domain wall motion are taken. ► The predictions are in good accordance with the experimental data including both rods and films. ► Magnetostrictive alloys are sensitive to environment temperature and pre-stress or residual stress.
3D phenomenological constitutive modeling of shape memory alloys based on microplane theory
International Nuclear Information System (INIS)
Mehrabi, R; Kadkhodaei, M
2013-01-01
This paper concerns 3D phenomenological modeling of shape memory alloys using microplane theory. In the proposed approach, transformation is assumed to be the only source of inelastic strain in 1D constitutive laws considered for any generic plane passing through a material point. 3D constitutive equations are derived by generalizing the 1D equations using a homogenization technique. In the developed model, inelastic strain is explicitly stated in terms of the martensite volume fraction. To compare this approach with incremental constitutive models, such an available model is applied in its 1D integral form to the microplane formulation, and it is shown that both the approaches produce similar results for different uniaxial loadings. A nonproportional loading is then studied, and the results are compared with those obtained from an available model in which the inelastic strain is divided into two separate portions for transformation and reorientation. A good agreement is seen between the results of the two approaches, indicating the capability of the proposed microplane formulation in predicting reorientation phenomena in shape memory alloys. The results of the model are compared with available experimental results for a nonproportional loading path, and a good agreement is seen between the findings. (paper)
Application of symbolic computations to the constitutive modeling of structural materials
Arnold, Steven M.; Tan, H. Q.; Dong, X.
1990-01-01
In applications involving elevated temperatures, the derivation of mathematical expressions (constitutive equations) describing the material behavior can be quite time consuming, involved and error-prone. Therefore intelligent application of symbolic systems to faciliate this tedious process can be of significant benefit. Presented here is a problem oriented, self contained symbolic expert system, named SDICE, which is capable of efficiently deriving potential based constitutive models in analytical form. This package, running under DOE MACSYMA, has the following features: (1) potential differentiation (chain rule), (2) tensor computations (utilizing index notation) including both algebraic and calculus; (3) efficient solution of sparse systems of equations; (4) automatic expression substitution and simplification; (5) back substitution of invariant and tensorial relations; (6) the ability to form the Jacobian and Hessian matrix; and (7) a relational data base. Limited aspects of invariant theory were also incorporated into SDICE due to the utilization of potentials as a starting point and the desire for these potentials to be frame invariant (objective). The uniqueness of SDICE resides in its ability to manipulate expressions in a general yet pre-defined order and simplify expressions so as to limit expression growth. Results are displayed, when applicable, utilizing index notation. SDICE was designed to aid and complement the human constitutive model developer. A number of examples are utilized to illustrate the various features contained within SDICE. It is expected that this symbolic package can and will provide a significant incentive to the development of new constitutive theories.
Hartl, D. J.; Lagoudas, D. C.
2009-10-01
The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.
Directory of Open Access Journals (Sweden)
Guan-lin Ye
2016-09-01
Full Text Available The mechanical properties and constitutive modeling of Shanghai clays are very important for numerical analysis on geotechnical engineering in Shanghai, where continuous layers of soft clays run 30–40 m deep. The clays are divided into 5 major layers. A series of laboratory tests are carried out to investigate their mechanical properties. The top and bottom layers are overconsolidated hard clays, and the middle layers are normally consolidated or lightly overconsolidated sensitive marine clays. A constitutive model, which can describe the overconsolidation and structure of soils using only 8 parameters, is modified to simulate the test results. A rational procedure to determine the values of the material parameters and initial conditions is also proposed. The model is able to effectively reproduce both one-dimensional (1D consolidation and drained/undrained triaxial test results of Shanghai clays, with one set of parameters for each layer. From element testing and constitutive modeling, two findings are obtained. First, the decay rates of overconsolidation are smaller in overconsolidated layers than in normally consolidated layers. Second, the natural microstructure of layer 4 is relatively stable, that is, a large degree of structure is still maintained in the specimen even after 1D consolidation and drained triaxial tests. The modified model and obtained parameter values can be used for numerical analysis of geotechnical projects in Shanghai.
International Nuclear Information System (INIS)
Hartl, D J; Lagoudas, D C
2009-01-01
The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation
International Nuclear Information System (INIS)
Alves, J.L.; Oliveira, M.C.; Menezes, L.F.
2004-01-01
Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results
Cerfontaine, B.; Charlier, R.; Collin, F.; Taiebat, M.
2017-10-01
Old mines or caverns may be used as reservoirs for fuel/gas storage or in the context of large-scale energy storage. In the first case, oil or gas is stored on annual basis. In the second case pressure due to water or compressed air varies on a daily basis or even faster. In both cases a cyclic loading on the cavern's/mine's walls must be considered for the design. The complexity of rockwork geometries or coupling with water flow requires finite element modelling and then a suitable constitutive law for the rock behaviour modelling. This paper presents and validates the formulation of a new constitutive law able to represent the inherently cyclic behaviour of rocks at low confinement. The main features of the behaviour evidenced by experiments in the literature depict a progressive degradation and strain of the material with the number of cycles. A constitutive law based on a boundary surface concept is developed. It represents the brittle failure of the material as well as its progressive degradation. Kinematic hardening of the yield surface allows the modelling of cycles. Isotropic softening on the cohesion variable leads to the progressive degradation of the rock strength. A limit surface is introduced and has a lower opening than the bounding surface. This surface describes the peak strength of the material and allows the modelling of a brittle behaviour. In addition a fatigue limit is introduced such that no cohesion degradation occurs if the stress state lies inside this surface. The model is validated against three different rock materials and types of experiments. Parameters of the constitutive laws are calibrated against uniaxial tests on Lorano marble, triaxial test on a sandstone and damage-controlled test on Lac du Bonnet granite. The model is shown to reproduce correctly experimental results, especially the evolution of strain with number of cycles.
International Nuclear Information System (INIS)
Li, Huiping; He, Lianfang; Zhao, Guoqun; Zhang, Lei
2013-01-01
Constitutive relationship of boron steel is one of the most necessary mathematical models in the numerical simulation of hot stamping; it describes the relationship of the flow stress with strain, strain rate and temperature. In order to attain the constitutive relationship of boron steel B1500HS, four types of samples with microstructure of austenite, ferrite+pearlite, bainite or martensite are prepared by the Gleeble 1500D thermo-mechanical simulator. Isothermal uniaxial tension testings for these specimens are performed at 20–900 °C at the strain rates of 0.01 s –1 , 0.1 s –1 , 1.0 s –1 and 10 s –1 by Gleeble 1500D, and the true stress–strain curves at the relative conditions are gained. The experimental results show that, the flow stress of samples with relative microstructure rises with the decrease of the deformation temperature, and with the increase of the strain rate. The modified Arrhenius model is used to describe the hot deformation of samples with austenite microstructure, and the modified Johnson–Cook model is used to describe the deformation process of samples with ferrite+pearlite, bainite or martensite microstructure. The constitutive equations depending on the strain, strain rate and temperature are attained by the regression analysis for the experimental data of flow stress, strain, strain rate, temperature, etc. The comparison of the computational data and the experimental results shows that, the computational data using the constitutive relationships are well consistent with the experimental data
An engineering, multiscale constitutive model for fiber-forming collagen in tension.
Annovazzi, Lorella; Genna, Francesco
2010-01-01
This work proposes a nonlinear constitutive model for a single collagen fiber. Fiber-forming collagen can exhibit different hierarchies of basic units, called fascicles, bundles, fibrils, microfibrils, and so forth, down to the molecular (tropocollagen) level. Exploiting the fact that at each hierarchy level the microstructure can be seen, at least approximately, as that of a wavy, or crimped, extensible cable, the proposed stress-strain model considers a given number of levels, each of which contributes to the overall mechanical behavior according to its own geometrical features (crimp, or waviness), as well as to the basic mechanical properties of the tropocollagen. The crimp features at all levels are assumed to be random variables, whose statistical integration furnishes a stress-strain curve for a collagen fiber. The soundness of this model-the first, to the Authors' knowledge, to treat a single collagen fiber as a microstructured nonlinear structural element-is checked by its application to collagen fibers for which experimental results are available: rat tail tendon, periodontal ligament, and engineered ones. Here, no attempt is made to obtain a stress-strain law for generic collagenous tissues, which exhibit specific features, often much more complex than those of a single fiber. However, it is trivial to observe that the availability of a sound, microstructurally based constitutive law for a single collagen fiber (but applicable at any sub-level, or to any other material with a similar microstructure) is essential for assembling complex constitutive models for any collagenous fibrous tissue.
Constitutional Models of Semi-Presidential Systems of Government in Russia and Poland
Directory of Open Access Journals (Sweden)
Davor Boban
2006-01-01
Full Text Available The establishment of new political systems in Central and Eastern Europe after the collapse of communist regimes implied a decision on a new system of government instead of the earlier proclaimed assembly system. The position of the framers of the Constitution on the need for a strong institution of state presidency during the transition process, and the correlation of forces between diff erent actors in the political arena, have resulted in the establishment of the semi-presidential system in many of these countries. In Russia and Poland, with the fi rst modifi cations of their Constitutions, some elements of semi-presidentialism were adopted, and then the whole concept of semi-presidentialism has been accepted. The constitutional models in the two countries are compatible with the criteria of semi-presidential systems – they have a dual structure of the executive branch of government and a fi xed term of the state president elected on the general elections and politically unaccountable to the parliament. The political practice in these countries during the last fi fteen years has shown diff erent eff ects of the established system. In Russia, the state president dominated so much over the political system that the system was virtually presidential, while in Poland the constitutional changes in 1990, 1992 and 1997 have resulted in the change of the correlation of forces within the dual structure of the executive branch of government.
Micromechanical modeling of rate-dependent behavior of Connective tissues.
Fallah, A; Ahmadian, M T; Firozbakhsh, K; Aghdam, M M
2017-03-07
In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of the presented model at different strain rates for rat tail tendon (RTT) and human patellar tendon (HPT) are in good agreement with experimental data. Results of incremental stress-relaxation test are also presented to investigate both instantaneous and viscoelastic behavior of connective tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Canio Hoffarth
2017-03-01
Full Text Available A three-dimensional constitutive model has been developed for modeling orthotropic composites subject to impact loads. It has three distinct components—a deformation model involving elastic and plastic deformations; a damage model; and a failure model. The model is driven by tabular data that is generated either using laboratory tests or via virtual testing. A unidirectional composite—T800/F3900, commonly used in the aerospace industry, is used in the verification and validation tests. While the failure model is under development, these tests indicate that the implementation of the deformation and damage models in a commercial finite element program, LS-DYNA, is efficient, robust and accurate.
Czech Academy of Sciences Publication Activity Database
Frost, Miroslav; Benešová, B.; Sedlák, P.
2016-01-01
Roč. 21, č. 3 (2016), s. 358-382 ISSN 1081-2865 R&D Projects: GA ČR GA13-13616S; GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : shape memory alloys * constitutive model * generalized standard materials * dissipation * energetic solution Subject RIV: BA - General Mathematics Impact factor: 2.953, year: 2016 http://mms.sagepub.com/content/21/3/358
International Nuclear Information System (INIS)
Jansohn, W.
1997-10-01
This report deals with the formulation and numerical integration of constitutive models in the framework of finite deformation thermomechanics. Based on the concept of dual variables, plasticity and viscoplasticity models exhibiting nonlinear kinematic hardening as well as nonlinear isotropic hardening rules are presented. Care is taken that the evolution equations governing the hardening response fulfill the intrinsic dissipation inequality in every admissible process. In view of the development of an efficient numerical integration procedure, simplified versions of these constitutive models are supposed. In these versions, the thermoelastic strains are assumed to be small and a simplified kinematic hardening rule is considered. Additionally, in view of an implementation into the ABAQUS finite element code, the elasticity law is approximated by a hypoelasticity law. For the simplified onstitutive models, an implicit time-integration algorithm is developed. First, in order to obtain a numerical objective integration scheme, use is made of the HUGHES-WINGET-Algorithm. In the resulting system of ordinary differential equations, it can be distinguished between three differential operators representing different physical effects. The structure of this system of differential equations allows to apply an operator split scheme, which leads to an efficient integration scheme for the constitutive equations. By linearizing the integration algorithm the consistent tangent modulus is derived. In this way, the quadratic convergence of Newton's method used to solve the basic finite element equations (i.e. the finite element discretization of the governing thermomechanical field equations) is preserved. The resulting integration scheme is implemented as a user subroutine UMAT in ABAQUS. The properties of the applied algorithm are first examined by test calculations on a single element under tension-compression-loading. For demonstrating the capabilities of the constitutive theory
A physically based constitutive model for a V-4Cr-4Ti alloy
International Nuclear Information System (INIS)
Donahue, E.G.; Odette, G.R.; Lucas, G.E.
2000-01-01
A constitutive model for low-to-intermediate temperatures, strains, and strain rates is developed for the program heat of V-4Cr-4Ti. The basic form of the model is derived from more general dislocation-based models of yield stress and strain hardening. The physically based forms are fit to a database derived from tensile tests carried out over a wide range of temperatures and strain rates. Yield and post-yield strain-hardening contributions to the flow stress are additive. The yield stress has both thermally activated and athermal components. The former is described by a two-mechanism activated dislocation slip model, with contributions that appear to arise from both lattice friction (at lower temperatures) and dislocation pinning by interstitial impurities (at higher temperatures). The yield stress data can be correlated using a strain rate-compensated temperature. The model uses a temperature-weighted average of the two mechanisms. Post-yield strain hardening was found to be approximately athermal. Strain hardening is fit to a two-component modified Voce-type saturating flow stress model. The constitutive model is also used to determine the flow stability limits as estimates of uniform tensile strains. The relatively compact, but mechanism-based, semi-empirical model has a number of both fundamental and practical advantages that are briefly outlined
Tengattini, Alessandro; Das, Arghya; Nguyen, Giang D.; Viggiani, Gioacchino; Hall, Stephen A.; Einav, Itai
2014-10-01
This is the first of two papers introducing a novel thermomechanical continuum constitutive model for cemented granular materials. Here, we establish the theoretical foundations of the model, and highlight its novelties. At the limit of no cement, the model is fully consistent with the original Breakage Mechanics model. An essential ingredient of the model is the use of measurable and micro-mechanics based internal variables, describing the evolution of the dominant inelastic processes. This imposes a link between the macroscopic mechanical behavior and the statistically averaged evolution of the microstructure. As a consequence this model requires only a few physically identifiable parameters, including those of the original breakage model and new ones describing the cement: its volume fraction, its critical damage energy and bulk stiffness, and the cohesion.
Constitutive modelling of creep in a long fiber random glass mat thermoplastic composite
Dasappa, Prasad
The primary objective of this proposed research is to characterize and model the creep behaviour of Glass Mat Thermoplastic (GMT) composites under thermo-mechanical loads. In addition, tensile testing has been performed to study the variability in mechanical properties. The thermo-physical properties of the polypropylene matrix including crystallinity level, transitions and the variation of the stiffness with temperature have also been determined. In this work, the creep of a long fibre GMT composite has been investigated for a relatively wide range of stresses from 5 to 80 MPa and temperatures from 25 to 90°C. The higher limit for stress is approximately 90% of the nominal tensile strength of the material. A Design of Experiments (ANOVA) statistical method was applied to determine the effects of stress and temperature in the random mat material which is known for wild experimental scatter. Two sets of creep tests were conducted. First, preliminary short-term creep tests consisting of 30 minutes creep followed by recovery were carried out over a wide range of stresses and temperatures. These tests were carried out to determine the linear viscoelastic region of the material. From these tests, the material was found to be linear viscoelastic up-to 20 MPa at room temperature and considerable non-linearities were observed with both stress and temperature. Using Time-Temperature superposition (TTS) a long term master curve for creep compliance for up-to 185 years at room temperature has been obtained. Further, viscoplastic strains were developed in these tests indicating the need for a non-linear viscoelastic viscoplastic constitutive model. The second set of creep tests was performed to develop a general non-linear viscoelastic viscoplastic constitutive model. Long term creep-recovery tests consisting of 1 day creep followed by recovery has been conducted over the stress range between 20 and 70 MPa at four temperatures: 25°C, 40°C, 60°C and 80°C. Findley's model
International Nuclear Information System (INIS)
Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao
2015-01-01
For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications
International Nuclear Information System (INIS)
Combescure, Christelle
2013-01-01
Safety reassessments are periodically performed on the EDF nuclear power plants and the recent seismic reassessments leaded to the necessity of taking into account the non-linear behaviour of materials when modeling and simulating industrial structures of these power plants under seismic solicitations. A large proportion of these infrastructures is composed of reinforced concrete buildings, including reinforced concrete slabs and walls, and literature seems to be poor on plate modeling dedicated to seismic applications for this material. As for the few existing models dedicated to these specific applications, they present either a lack of dissipation energy in the material behaviour, or no micromechanical approach that justifies the parameters needed to properly describe the model. In order to provide a constitutive model which better represents the reinforced concrete plate behaviour under seismic loadings and whose parameters are easier to identify for the civil engineer, a constitutive model dedicated to reinforced concrete plates under seismic solicitations is proposed: the DHRC (Dissipative Homogenised Reinforced Concrete) model. Justified by a periodic homogenisation approach, this model includes two dissipative phenomena: damage of concrete matrix and internal sliding at the interface between steel rebar and surrounding concrete. An original coupling term between damage and sliding, resulting from the homogenisation process, induces a better representation of energy dissipation during the material degradation. The model parameters are identified from the geometric characteristics of the plate and a restricted number of material characteristics, allowing a very simple use of the model. Numerical validations of the DHRC model are presented, showing good agreement with experimental behaviour. A one dimensional simplification of the DHRC model is proposed, allowing the representation of reinforced concrete bars and simplified models of rods and wire mesh
Energy Technology Data Exchange (ETDEWEB)
Sun, C.Y. [School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: suncy@me.ustb.edu.cn; Fang, G.; Lei, L.P.; Zeng, P. [Key Laboratory of Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)
2009-01-15
Based on the crystallographic theory of martensitic transformation and internal variable constitutive theory, a micromechanical constitutive model of martensitic transformation induced plasticity was developed. Plastic strains of product and parent phases as well as the volume fraction of each martensitic variant were considered as internal variables describing the microstructure evolution. The plasticity flow both in austenite and martensitic variants domain is described by J{sub 2} flow theory. The thermodynamic driving force acting on these internal variables was obtained through the determination of the intrinsic dissipation due to plastic flow and the growth of martensitic domains. The evolution laws of the internal variables are derived, furthermore macroscopic response due to the change of internal variables is obtained. Thermomechanical behavior of armour steel under uniaxial loading was tested which showed a good agreement with experimental results.
International Nuclear Information System (INIS)
Sun, C.Y.; Fang, G.; Lei, L.P.; Zeng, P.
2009-01-01
Based on the crystallographic theory of martensitic transformation and internal variable constitutive theory, a micromechanical constitutive model of martensitic transformation induced plasticity was developed. Plastic strains of product and parent phases as well as the volume fraction of each martensitic variant were considered as internal variables describing the microstructure evolution. The plasticity flow both in austenite and martensitic variants domain is described by J 2 flow theory. The thermodynamic driving force acting on these internal variables was obtained through the determination of the intrinsic dissipation due to plastic flow and the growth of martensitic domains. The evolution laws of the internal variables are derived, furthermore macroscopic response due to the change of internal variables is obtained. Thermomechanical behavior of armour steel under uniaxial loading was tested which showed a good agreement with experimental results
International Nuclear Information System (INIS)
Oliveira, M.C.; Menezes, L. F.; Alves, J.L.; Chaparro, B.M.
2005-01-01
The main goal of this work is to determine the influence of the work hardening model in the numerical prediction of springback. This study will be performed according with the specifications of the first phase of the 'Benchmark 3' of the Numisheet'2005 Conference: the 'Channel Draw'. Several work hardening constitutive models are used in order to allow a better description of the different material mechanical behavior. Two are classical pure isotropic hardening models described by a power law (Swift) or a Voce type saturation equation. Those two models were also combined with a non-linear (Lemaitre and Chaboche) kinematic hardening rule. The final one is the Teodosiu microstructural hardening model. The study is performed for two commonly used steels of the automotive industry: mild (DC06) and dual phase (DP600) steels. The mechanical characterization, as well as the constitutive parameters identification of each work hardening models, was performed by LPMTM, based on an appropriate set of experimental data such as uniaxial tensile tests, monotonic and Bauschinger simple shear tests and orthogonal strain path tests, all at various orientations with respect to the rolling direction. All the simulations were carried out with the CEMUC's home code DD3IMP (contraction of 'Deep Drawing 3-D IMPlicit code')
A New Equivalent Statistical Damage Constitutive Model on Rock Block Mixed Up with Fluid Inclusions
Directory of Open Access Journals (Sweden)
Xiao Chen
2018-01-01
Full Text Available So far, there are few studies concerning the effect of closed “fluid inclusions” on the macroscopic constitutive relation of deep rock. Fluid-matrix element (FME is defined based on rock element in statistical damage model. The properties of FME are related to the size of inclusions, fluid properties, and pore pressure. Using FME, the equivalent elastic modulus of rock block containing fluid inclusions is obtained with Eshelby inclusion theory and the double M-T homogenization method. The new statistical damage model of rock is established on the equivalent elastic modulus. Besides, the porosity and confining pressure are important influencing factors of the model. The model reflects the initial damage (void and fluid inclusion and the macroscopic deformation law of rock, which is an improvement of the traditional statistical damage model. Additionally, the model can not only be consistent with the rock damage experiment date and three-axis compression experiment date of rock containing pore water but also describe the locked-in stress experiment in rock-like material. It is a new fundamental study of the constitutive relation of locked-in stress in deep rock mass.
FY17 Status Report on the Initial Development of a Constitutive Model for Grade 91 Steel
Energy Technology Data Exchange (ETDEWEB)
Messner, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Phan, V. -T. [Argonne National Lab. (ANL), Argonne, IL (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)
2017-07-01
Grade 91 is a candidate structural material for high temperature advanced reactor applications. Existing ASME Section III, Subsection HB, Subpart B simplified design rules based on elastic analysis are setup as conservative screening tools with the intent to supplement these screening rules with full inelastic analysis when required. The Code provides general guidelines for suitable inelastic models but does not provide constitutive model implementations. This report describes the development of an inelastic constitutive model for Gr. 91 steel aimed at fulfilling the ASME Code requirements and being included into a new Section III Code appendix, HBB-Z. A large database of over 300 experiments on Gr. 91 was collected and converted to a standard XML form. Five families of Gr. 91 material models were identified in the literature. Of these five, two are potentially suitable for use in the ASME code. These two models were implemented and evaluated against the experimental database. Both models have deficiencies so the report develops a framework for developing and calibrating an improved model. This required creating a new modeling method for representing changes in material rate sensitivity across the full ASME allowable temperature range for Gr. 91 structural components: room temperature to 650° C. On top of this framework for rate sensitivity the report describes calibrating a model for work hardening and softening in the material using genetic algorithm optimization. Future work will focus on improving this trial model by including tension/compression asymmetry observed in experiments and necessary to capture material ratcheting under zero mean stress and by improving the optimization and analysis framework.
Constitutive Modelling and Deformation Band Angle Predictions for High Porosity Sandstones
Richards, M. C.; Issen, K. A.; Ingraham, M. D.
2017-12-01
The development of a field-scale deformation model requires a constitutive framework that is capable of representing known material behavior and able to be calibrated using available mechanical response data. This work employs the principle of hyperplasticity (e.g., Houlsby and Puzrin, 2006) to develop such a constitutive framework for high porosity sandstone. Adapting the works of Zimmerman et al. (1986) and Collins and Houlsby (1997), the mechanical data set of Ingraham et al. (2013 a, b) was used to develop a specific constitutive framework for Castlegate sandstone, a high porosity fluvial-deposited reservoir analog rock. Using the mechanical data set of Ingraham et al. (2013 a, b), explicit expressions and material parameters of the elastic moduli and strain tensors were obtained. With these expressions, analytical and numerical techniques were then employed to partition the total mechanical strain into elastic, coupled, and plastic strain components. With the partitioned strain data, yield surfaces in true-stress space, coefficients of internal friction, dilatancy factors, along with the theorectical predictions of the deformation band angles were obtained. These results were also evaluated against band angle values obtained from a) measurements on specimen jackets (Ingraham et al., 2013a), b) plane fits through located acoustic emissions (AE) events (Ingraham et al. 2013b), and c) X-ray micro-computed tomography (micro-CT) calculations.
Energy Technology Data Exchange (ETDEWEB)
Lester, Brian T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-01-19
A new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. As a result through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.
Zhang, Ling; Min, Junying; Wang, Bin; Lin, Jianping; Li, Fangfang; Liu, Jing
2016-03-01
In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.
Energy Technology Data Exchange (ETDEWEB)
Lester, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-01-19
Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.
Endochronic constitutive model for general hysteretic response of soils. Final report
International Nuclear Information System (INIS)
Read, H.E.; Valanis, K.C.
1979-01-01
A new endochronic theory of plasticity is presented which can accurately describe the mechanical response of hysteretic materials to complex, three-dimensional deformation histories, including cyclic deformation. The theory is based on several new advancements in the endochronic framework, which broaden its predictive scope. Various features of the resulting model are illustrated, including its ability to describe (1) cyclic simple shear of dry sand and wet clay over many cycles of deformation, (2) response of a real soil (McCormick Ranch soil) to the standard laboratory soil tests, and (3) response of McCormick Ranch soil to cyclic triaxial tests. It is believed that this is the first constitutive model that has demonstrated the capability to realistically describe, for a given soil, both standard laboratory tests and cyclic response under three-dimensional loading conditions. The constitutive model presented here should allow more meaningful analyses to be made in many areas of soil response, particularly for ground motion and soil-structure interaction due to to other seimsic disturbances. The proposed model also has wide application to other materials, such as metals, and could provide improved descriptions of the response of various metallic components under transient loads
Examination of constitutive model for evaluating long-term mechanical behavior of buffer. 3
International Nuclear Information System (INIS)
Takaji, Kazuhiko; Shigeno, Yoshimasa; Shimogouchi, Takafumi; Shiratake, Toshikazu; Tamura, Hirokuni
2004-02-01
On the R and D of the high-level radioactive waste repository, it is essential that Engineered Barrier System (EBS) is stable mechanically over a long period of time for maintaining each ability required to EBS. After closing the repository, the various external forces will be affected to buffer intricately for a long period of time. So, to make clear the mechanical deformation behavior of buffer against the external force is important, because of carrying out safety assessment of EBS accurately. In this report, several sets of parameters are chosen for the previously selected two constitutive models, Sekiguchi-Ohta model and Adachi-Oka model, and the element tests and mock-up tests are simulated using these parameters. Through the simulation, applicability of the constitutive models and parameters is examined. Moreover, simulation analyses of EBS using these parameters is examined. Moreover, simulation analyses of EBS using these parameters were carried out, and mechanical behavior is evaluated over a long period of time. Analysis estimated the amount of settlement of the over pack, the stress state of buffer material, the reaction force to a base rock, etc., and the result that EBS is mechanically stable over a long period of time was obtained. Next, in order to prove analyses results a side, literature survey was conducted about geological age, the dynamics history of a Smectite layer. The outline plan was drawn up about the natural analogue verification method and preliminary examination was performed about the applicability of Freezing Sampling'. (author)
A constitutive rheological model for agglomerating blood derived from nonequilibrium thermodynamics
Tsimouri, Ioanna Ch.; Stephanou, Pavlos S.; Mavrantzas, Vlasis G.
2018-03-01
Red blood cells tend to aggregate in the presence of plasma proteins, forming structures known as rouleaux. Here, we derive a constitutive rheological model for human blood which accounts for the formation and dissociation of rouleaux using the generalized bracket formulation of nonequilibrium thermodynamics. Similar to the model derived by Owens and co-workers ["A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow," J. Fluid Mech. 617, 327-354 (2008)] through polymer network theory, each rouleau in our model is represented as a dumbbell; the corresponding structural variable is the conformation tensor of the dumbbell. The kinetics of rouleau formation and dissociation is treated as in the work of Germann et al. ["Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions," J. Non-Newton. Fluid Mech. 196, 51-57 (2013)] by assuming a set of reversible reactions, each characterized by a forward and a reverse rate constant. The final set of evolution equations for the microstructure of each rouleau and the expression for the stress tensor turn out to be very similar to those of Owens and co-workers. However, by explicitly considering a mechanism for the formation and breakage of rouleaux, our model further provides expressions for the aggregation and disaggregation rates appearing in the final transport equations, which in the kinetic theory-based network model of Owens were absent and had to be specified separately. Despite this, the two models are found to provide similar descriptions of experimental data on the size distribution of rouleaux.
CONSTITUTIVE MODEL OF STEEL FIBRE REINFORCED CONCRETE SUBJECTED TO HIGH TEMPERATURES
Directory of Open Access Journals (Sweden)
Lukas Blesak
2016-12-01
Full Text Available Research on structural load-bearing systems exposed to elevated temperatures is an active topic in civil engineering. Carrying out a full-size experiment of a specimen exposed to fire is a challenging task considering not only the preparation labour but also the necessary costs. Therefore, such experiments are simulated using various software and computational models in order to predict the structural behaviour as exactly as possible. In this paper such a procedure, focusing on software simulation, is described in detail. The proposed constitutive model is based on the stress-strain curve and allows predicting SFRC material behaviour in bending at ambient and elevated temperature. SFRC material is represented by the initial linear behaviour, an instantaneous drop of stress after the initial crack occurs and its consequent specific ductility, which influences the overall modelled specimen behaviour under subjected loading. The model is calibrated with ATENA FEM software using experimental results.
Xu, Yidong; Qian, Chunxiang
2013-01-01
Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson–Tvergaard–Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140
International Nuclear Information System (INIS)
Pugh, C.E.; Robinson, D.N.
1977-01-01
The paper addresses some important features of the inelastic behavior of 2 1 / 4 Cr--1Mo steel and indicates a mathematical framework that is capable of representing these types of response. While the constitutive model discussed embraces capabilities beyond those of equations presently used in design analyses; their implementation into practicable analysis methods (such as finite-element programs) is more demanding. For example, in the case of slow time-dependent deformations, the equations governing accumulation of the inelastic strain components and the evolution of the tensorial state variable α are intimately coupled. A part of recommending any such model for use in design must be a quantitative assessment of the economic feasibility of implementation
Directory of Open Access Journals (Sweden)
Kee Hoon Sohn
2014-10-01
Full Text Available Plant nucleotide-binding leucine-rich repeat (NB-LRR disease resistance (R proteins recognize specific "avirulent" pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs. How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4 and RRS1 (resistance to Ralstonia solanacearum 1, function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1 mutant encodes an RRS1 allele (RRS1SLH1 with a single amino acid (leucine insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed
A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials
International Nuclear Information System (INIS)
Zhou Haomiao; Zhou Youhe; Zheng Xiaojing; Ye Qiang; Wei Jing
2009-01-01
In this paper, a new general nonlinear magnetostrictive constitutive model is proposed for soft ferromagnetic materials, and it can predict magnetostrictive strain and magnetization curves under various pre-stresses. From the viewpoint of magnetic domain, it is based on the important physical fact that a nonlinear part of the elastic strain produced by magnetic domain wall motion under a pre-stress is responsible for the change of the maximum magnetostrictive strain in accordance with the pre-stress. Then the reduction of magnetostrictive strain from the maximum is caused by the domain rotation. Meanwhile, the magnetization under various pre-stresses in this model is introduced by magnetostrictive effect under the same pre-stress. A simplified 3-D model is put forward by means of linearizing the nonlinear function, i.e. the nonlinear part of the elastic strain produced by domain wall motion, and by using the quartic of magnetization to describe domain rotation. Besides, for the convenience of engineering applications, two-dimensional (plate or film) and one-dimensional (rod) models are also given for isotropic materials and their application ranges are discussed too. In comparison with the experimental data of Kuruzar and Jiles, it is found that this model can predict magnetostrictive strain and magnetization curves under various pre-stresses. The numerical simulation further illustrates that the new model can effectively describe the effects of the pre-stress or residual stress on the magnetization and magnetostrictive strain curves. Additionally, this model can be degenerated to the existing magnetostrictive constitutive model for giant magnetostrictive materials (GMM), i.e. a special soft ferromagnetic material
Directory of Open Access Journals (Sweden)
Lafuente Esther M
2010-09-01
Full Text Available Abstract Background Proteasomes play a central role in the major histocompatibility class I (MHCI antigen processing pathway. They conduct the proteolytic degradation of proteins in the cytosol, generating the C-terminus of CD8 T cell epitopes and MHCI-peptide ligands (P1 residue of cleavage site. There are two types of proteasomes, the constitutive form, expressed in most cell types, and the immunoproteasome, which is constitutively expressed in mature dendritic cells. Protective CD8 T cell epitopes are likely generated by the immunoproteasome and the constitutive proteasome, and here we have modeled and analyzed the cleavage by these two proteases. Results We have modeled the immunoproteasome and proteasome cleavage sites upon two non-overlapping sets of peptides consisting of 553 CD8 T cell epitopes, naturally processed and restricted by human MHCI molecules, and 382 peptides eluted from human MHCI molecules, respectively, using N-grams. Cleavage models were generated considering different epitope and MHCI-eluted fragment lengths and the same number of C-terminal flanking residues. Models were evaluated in 5-fold cross-validation. Judging by the Mathew's Correlation Coefficient (MCC, optimal cleavage models for the proteasome (MCC = 0.43 ± 0.07 and the immunoproteasome (MCC = 0.36 ± 0.06 were obtained from 12-residue peptide fragments. Using an independent dataset consisting of 137 HIV1-specific CD8 T cell epitopes, the immunoproteasome and proteasome cleavage models achieved MCC values of 0.30 and 0.18, respectively, comparatively better than those achieved by related methods. Using ROC analyses, we have also shown that, combined with MHCI-peptide binding predictions, cleavage predictions by the immunoproteasome and proteasome models significantly increase the discovery rate of CD8 T cell epitopes restricted by different MHCI molecules, including A*0201, A*0301, A*2402, B*0702, B*2705. Conclusions We have developed models that are specific
DEFF Research Database (Denmark)
Oliveira, Sergio A.; Savi, Marcelo A.; Santos, Ilmar F.
2014-01-01
The use of shape memory alloys (SMAs) in engineering applications has increased the interest of the accuracy analysis of their thermomechanical description. This work presents an uncertainty analysis related to experimental tensile tests conducted with shape memory alloy wires. Experimental data...... are compared with numerical simulations obtained from a constitutive model with internal constraints employed to describe the thermomechanical behavior of SMAs. The idea is to evaluate if the numerical simulations are within the uncertainty range of the experimental data. Parametric analysis is also developed...
International Nuclear Information System (INIS)
Balon, J.E.
1986-03-01
The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The August 1983 meeting of the ERG reviewed a RE/SPEC technical report containing a review of eight constitutive laws that have been proposed to model the creep of salt over the ranges of stress and temperature anticipated in a nuclear repository. This report documents the ERG's comments and recommendations on this subject and the ONWI responses to the specific points raised by the ERG
Constitutive Relation of Engineering Material Based on SIR Model and HAM
Directory of Open Access Journals (Sweden)
Haoxiang He
2014-01-01
Full Text Available As an epidemic mathematical model, the SIR model represents the transition of the Susceptible, Infected, and Recovered. The profound implication of the SIR model is viewed as the propagation and dynamic evolutionary process of the different internal components and the characteristics in a complex system subject to external effect. The uniaxial stress-strain curve of engineering material represents the basic constitutive relation, which also represents the damage propagation in the units of the damaged member. Hence, a novel dynamic stress-strain model is established based on the SIR model. The analytical solution and the approximate solution for the proposed model are represented according to the homotopy analysis method (HAM, and the relationship of the solution and the size effect and the strain rate is discussed. In addition, an experiment on the size effect of confined concrete is carried out and the solution of SIR model is suitable for simulation. The results show that the mechanical mechanism of the parameters of the uniaxial stress-strain model proposed in this paper reflects the actual characteristics of the materials. The solution of the SIR model can fully and accurately show the change of the mechanical performance and the influence of the size effect and the strain rate.
Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em
2018-06-01
We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.
Constitutive modeling of the passive inflation-extension behavior of the swine colon.
Patel, Bhavesh; Chen, Huan; Ahuja, Aashish; Krieger, Joshua F; Noblet, Jillian; Chambers, Sean; Kassab, Ghassan S
2018-01-01
In the present work, we propose the first structural constitutive model of the passive mechanical behavior of the swine colon that is validated against physiological inflation-extension tests, and accounts for residual strains. Sections from the spiral colon and the descending colon were considered to investigate potential regional variability. We found that the proposed constitutive model accurately captures the passive inflation-extension behavior of both regions of the swine colon (coefficient of determination R 2 =0.94±0.02). The model revealed that the circumferential muscle layer does not provide significant mechanical support under passive conditions and the circumferential load is actually carried by the submucosa layer. The stress analysis permitted by the model showed that the colon tissue can distend up to 30% radially without significant increase in the wall stresses suggesting a highly compliant behavior of the tissue. This is in-line with the requirement for the tissue to easily accommodate variable quantities of fecal matter. The analysis also showed that the descending colon is significantly more compliant than the spiral colon, which is relevant to the storage function of the descending colon. Histological analysis showed that the swine colon possesses a four-layer structure similar to the human colon, where the longitudinal muscle layer is organized into bands called taeniae, a typical feature of the human colon. The model and the estimated parameters can be used in a Finite Element framework to conduct simulations with realistic geometry of the swine colon. The resulting computational model will provide a foundation for virtual assessment of safe and effective devices for the treatment of colonic diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Łagan, Sylwia D; Liber-Kneć, Aneta
2017-01-01
The aim of the study was an estimation of the possibility of using hyperelastic material models to fit experimental data obtained in the tensile test for the swine skin tissue. The uniaxial tensile tests of samples taken from the abdomen and back of a pig was carried out. The mechanical properties of the skin such as the mean Young's modulus, the mean maximum stress and the mean maximum elongation were calculated. The experimental data have been used to identify the parameters in specific strain-energy functions given in seven constitutive models of hyperelastic materials: neo-Hookean, Mooney-Rivlin, Ogden, Yeoh, Martins, Humphrey and Veronda-Westmann. An analysis of errors in fitting of theoretical and experimental data was done. Comparison of load -displacement curves for the back and abdomen regions of skin taken showed a different scope of both the mean maximum loading forces and the mean maximum elongation. Samples which have been prepared from the abdominal area had lower values of the mean maximum load compared to samples from the spine area. The reverse trend was observed during the analysis of the values of elongation. An analysis of the accuracy of model fitting to the experimental data showed that, the least accurate were the model of neo- -Hookean, model of Mooney-Rivlin for the abdominal region and model of Veronda-Westmann for the spine region. An analysis of seven hyperelastic material models showed good correlations between the experimental and the theoretical data for five models.
Constitutive and life modeling of single crystal blade alloys for root attachment analysis
Meyer, T. G.; Mccarthy, G. J.; Favrow, L. H.; Anton, D. L.; Bak, Joe
1988-01-01
Work to develop fatigue life prediction and constitutive models for uncoated attachment regions of single crystal gas turbine blades is described. At temperatures relevant to attachment regions, deformation is dominated by slip on crystallographic planes. However, fatigue crack initiation and early crack growth are not always observed to be crystallographic. The influence of natural occurring microporosity will be investigated by testing both hot isostatically pressed and conventionally cast PWA 1480 single crystal specimens. Several differnt specimen configurations and orientations relative to the natural crystal axes are being tested to investigate the influence of notch acuity and the material's anisotropy. Global and slip system stresses in the notched regions were determined from three dimensional stress analyses and will be used to develop fatigue life prediction models consistent with the observed lives and crack characteristics.
Garion, C
2004-01-01
A majority of the thin-walled components subjected to intensive plastic straining at cryogenic temperatures are made of stainless steels. The examples of such components can be found in the interconnections of particle accelerators, containing the superconducting magnets, where the thermal contraction is absorbed by thin-walled, axisymetric shells called bellows expansion joints. The stainless steels show three main phenomena induced by plastic strains at cryogenic temperatures: serrated (discontinuous) yielding, gamma->alpha' phase transformation and anisotropic ductile damage. In the present paper, a coupled constitutive model of gamma->alpha' phase transformation and orthotropic ductile damage is presented. A kinetic law of phase transformation, and a kinetic law of evolution of orthotropic damage are presented. The model is extended to anisotropic plasticity comprising a constant anisotropy (texture effect), which can be classically taken into account by the Hill yield surface, and plastic strain induced ...
A constitutive model for AS4/PEEK thermoplastic composites under cyclic loading
Rui, Yuting; Sun, C. T.
1990-01-01
Based on the basic and essential features of the elastic-plastic response of the AS4/PEEK thermoplastic composite subjected to off-axis cyclic loadings, a simple rate-independent constitutive model is proposed to describe the orthotropic material behavior for cyclic loadings. A one-parameter memory surface is introduced to distinguish the virgin deformation and the subsequent deformation process and to characterize the loading range effect. Cyclic softening is characterized by the change of generalized plastic modulus. By the vanishing yield surface assumption, a yield criterion is not needed and it is not necessary to consider loading and unloading separately. The model is compared with experimental results and good agreement is obtained.
A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms
Sánchez, Marcelo
2016-11-30
Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.
Constitutive Modeling of the High-Temperature Flow Behavior of α-Ti Alloy Tube
Lin, Yanli; Zhang, Kun; He, Zhubin; Fan, Xiaobo; Yan, Yongda; Yuan, Shijian
2018-05-01
In the hot metal gas forming process, the deformation conditions, such as temperature, strain rate and deformation degree, are often prominently changed. The understanding of the flow behavior of α-Ti seamless tubes over a relatively wide range of temperatures and strain rates is important. In this study, the stress-strain curves in the temperature range of 973-1123 K and the initial strain rate range of 0.0004-0.4 s-1 were measured by isothermal tensile tests to conduct a constitutive analysis and a deformation behavior analysis. The results show that the flow stress decreases with the decrease in the strain rate and the increase of the deformation temperature. The Fields-Backofen model and Fields-Backofen-Zhang model were used to describe the stress-strain curves. The Fields-Backofen-Zhang model shows better predictability on the flow stress than the Fields-Backofen model, but there exists a large deviation in the deformation condition of 0.4 s-1. A modified Fields-Backofen-Zhang model is proposed, in which a strain rate term is introduced. This modified Fields-Backofen-Zhang model gives a more accurate description of the flow stress variation under hot forming conditions with a higher strain rate up to 0.4 s-1. Accordingly, it is reasonable to adopt the modified Fields-Backofen-Zhang model for the hot forming process which is likely to reach a higher strain rate, such as 0.4 s-1.
Sensitive analysis and modifications to reflood-related constitutive models of RELAP5
International Nuclear Information System (INIS)
Li Dong; Liu Xiaojing; Yang Yanhua
2014-01-01
Previous system code calculation reveals that the cladding temperature is underestimated and quench front appears too early during reflood process. To find out the parameters shows important effect on the results, sensitive analysis is performed on parameters of constitutive physical models. Based on the phenomenological and theoretical analysis, four parameters are selected: wall to vapor film boiling heat transfer coefficient, wall to liquid film boiling heat transfer coefficient, dry wall interfacial friction coefficient and minimum droplet diameter. In order to improve the reflood simulation ability of RELAP5 code, the film boiling heat transfer model and dry wall interfacial friction model which are corresponding models of those influential parameters are studied. Modifications have been made and installed into RELAP5 code. Six tests of FEBA are simulated by RELAP5 to study the predictability of reflood-related physical models. A dispersed flow film boiling heat transfer (DFFB) model is applied when void fraction is above 0.9. And a factor is multiplied to the post-CHF drag coefficient to fit the experiment better. Finally, the six FEBA tests are calculated again so as to assess the modifications. Better results are obtained which prove the advantage of the modified models. (author)
Development of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations
Energy Technology Data Exchange (ETDEWEB)
Ohnuki, Akira; Akimoto, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kamo, Hideki
1996-11-01
In order to perform design calculations for a passive safety reactor with good accuracy by a multidimensional two-fluid model, we developed an analysis code, ACE-3D, which can apply for evaluation of constitutive equations. The developed code has the following features: 1. The basic equations are based on 3-dimensional two-fluid model and the orthogonal or the cylindrical coordinate system can be selected. The fluid system is air-water or steam-water. 2. The basic equations are formulated by the finite-difference scheme of staggered mesh. The convection term is formulated by an upwind scheme and the diffusion term by a center-difference scheme. 3. Semi-implicit numerical scheme is adopted and the mass and the energy equations are treated equally in convergent steps for Jacobi equations. 4. The interfacial stress term consists of drag force, life force, turbulent dispersion force, wall force and virtual mass force. 5. A {kappa}-{epsilon} turbulent model for bubbly flow is incorporated as the turbulent model. The predictive capability of ACE-3D has been verified using a data-base for bubbly flow in a small-scale vertical pipe. In future, the constitutive equations will be improved with a data-base in a large vertical pipe developed in our laboratory and we have a plan to construct a reliable analytical tool through the improvement work, the progress of calculational speed with vector and parallel processing, the assessments for phase change terms and so on. This report describes the outline for the basic equations and the finite-difference equations in ACE-3D code and also the outline for the program structure. Besides, the results for the assessments of ACE-3D code for the small-scale pipe are summarized. (author)
Development of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations
International Nuclear Information System (INIS)
Ohnuki, Akira; Akimoto, Hajime; Kamo, Hideki.
1996-11-01
In order to perform design calculations for a passive safety reactor with good accuracy by a multidimensional two-fluid model, we developed an analysis code, ACE-3D, which can apply for evaluation of constitutive equations. The developed code has the following features: 1. The basic equations are based on 3-dimensional two-fluid model and the orthogonal or the cylindrical coordinate system can be selected. The fluid system is air-water or steam-water. 2. The basic equations are formulated by the finite-difference scheme of staggered mesh. The convection term is formulated by an upwind scheme and the diffusion term by a center-difference scheme. 3. Semi-implicit numerical scheme is adopted and the mass and the energy equations are treated equally in convergent steps for Jacobi equations. 4. The interfacial stress term consists of drag force, life force, turbulent dispersion force, wall force and virtual mass force. 5. A κ-ε turbulent model for bubbly flow is incorporated as the turbulent model. The predictive capability of ACE-3D has been verified using a data-base for bubbly flow in a small-scale vertical pipe. In future, the constitutive equations will be improved with a data-base in a large vertical pipe developed in our laboratory and we have a plan to construct a reliable analytical tool through the improvement work, the progress of calculational speed with vector and parallel processing, the assessments for phase change terms and so on. This report describes the outline for the basic equations and the finite-difference equations in ACE-3D code and also the outline for the program structure. Besides, the results for the assessments of ACE-3D code for the small-scale pipe are summarized. (author)
Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy
Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing
2018-02-01
Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.
A History of constitutive modeling via molecular dynamics: Shock waves in fluids and gases
Directory of Open Access Journals (Sweden)
Holian B.L.
2011-01-01
Full Text Available From its inception in the mid-Fifties, the method of molecular-dynamics (MD computer simulations has been used to probe the foundations of statistical mechanics, first for equilibrium equation-of-state averages, and then for transport properties from equilibrium fluctuations. Traditional statistical mechanical theoreticians were shocked to see that this new-fangled computational physics approach was feasible, even with incredibly tiny samples (on the order of a hundred atoms. When direct measurement of transport coefficients by non-equilibrium molecular dynamics (NEMD was proposed in the early Seventies, even greater resistance was encountered from the traditionalists – though evidence for convergence with the equilibrium fluctuation method gradually accumulated. In the late Seventies and early Eighties, shock-wave simulations by NEMD made it possible to test directly the principal continuum constitutive theory for fluids, namely, Navier-Stokes viscous flow and Fourier’s Law of heat conduction. To everyone’s surprise – and the consternation of many – NEMD, once again, demonstrated that continuum theory applies at embarrassingly small (atomistic time and length scales. We pursue this early line of work into the modern era, showing how NEMD shock-wave simulations can still provide surprising insights and improvements upon our understanding of constitutive modeling.
Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin
2017-02-01
The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized "n-diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K 0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.
A Constitutive Model for Strain-Controlled Strength Degradation of Rockmasses (SDR)
Kalos, A.; Kavvadas, M.
2017-11-01
The paper describes a continuum, rate-independent, incremental plasticity constitutive model applicable in weak rocks and heavily fractured rockmasses, where mechanical behaviour is controlled by rockmass strength rather than structural features (discontinuities). The model describes rockmass structure by a generalised Hoek-Brown Structure Envelope (SE) in the stress space. Stress paths inside the SE are nonlinear and irreversible to better simulate behaviour at strains up to peak strength and under stress reversals. Stress paths on the SE have user-controlled volume dilatancy (gradually reducing to zero at large shear strains) and can model post-peak strain softening of brittle rockmasses via a structure degradation (damage) mechanism triggered by accumulated plastic shear strains. As the SE may strain harden with plastic strains, ductile behaviour can also be modelled. The model was implemented in the Finite Element Code Simulia ABAQUS and was applied in plane strain (2D) excavation of a cylindrical cavity (tunnel) to predict convergence-confinement curves. It is shown that small-strain nonlinearity, variable volume dilatancy and post-peak hardening/softening strongly affect the predicted curves, resulting in corresponding differences of lining pressures in real tunnel excavations.
Directory of Open Access Journals (Sweden)
Tumanyants Yeranuhi S.
2018-03-01
Full Text Available In article some aspects of the constitutional reforms of the Republic of Armenia which guarantee the realization of the principle of self-dependence judicial authority are considered. In particular, questions concerning the activity of the Supreme judicial council (the assignee of present Council of justice as the guarantee of self-dependence of judicial authorities, and the procedure of selection (appointment of judges are separated. Changes which have been made during the constitutional reform are also considered, the assessment to the carried-out reforms based on the recommendations of the international organizations and the international documents is given. On the basis of the comprehensive analysis practical recommendations about the direction of further improvement of the legislation concerning realization of the principle of self-dependence of judicial authority, in particular concerning activity of the Supreme judicial council and the procedure of selection (appointment of judges are offered.
Harry-O'kuru, R E; Carriere, C J
2002-05-22
Asclepias syriaca L., the common milkweed, is a new industrial crop. The seed contains about 20-30 wt % of a highly unsaturated oil having unusual fatty acids. Exploring value-added products from the oil, milkweed triglycerides have been oxidized by in situ performic acid to the polyoxirane and polyhydroxy triglycerides (PHTG). The rheological properties of milkweed PHTG were characterized in various shear flows. Milkweed PHTG displayed nonlinear viscoelastic behavior at applied strains greater than 1%. Milkweed PHTG was found to obey time-strain separability. A nonlinear Wagner constitutive model was used successfully to qualitatively predict the behavior of milkweed PHTG in both start-up and cessation of steady-state shear flow.
Constitutive Model Of Graded Micro-Structure Obtained Via Strain Induced Phase Transformation
Ortwein, Rafał
The literature review has been divided into three main sub-chapters. The first one is concentrated on the general information about stainless steels and their applications. It is important to perform a general overview and get an idea where the results of the present thesis could be applied. Description of all the brands of stainless steels, their microstructures and properties are important, as similar characteristics can be found in the newly created functionally graded structures. The second sub-chapter is an overview of the most important constitutive models and the experimental results for materials that undergo plastic strain induced phase transformation. Finally, the last one is devoted to functionally graded microstructures obtained via strain induced martensitic transformation – the subject of particular importance for the present thesis. As a general note, the literature review is organized mainly in a chronological order. In some cases similar publications or publications of the same Authors were...
Constant strain rate experiments and constitutive modeling for a class of bitumen
Reddy, Kommidi Santosh; Umakanthan, S.; Krishnan, J. Murali
2012-08-01
The mechanical properties of bitumen vary with the nature of the crude source and the processing methods employed. To understand the role of the processing conditions played in the mechanical properties, bitumen samples derived from the same crude source but processed differently (blown and blended) are investigated. The samples are subjected to constant strain rate experiments in a parallel plate rheometer. The torque applied to realize the prescribed angular velocity for the top plate and the normal force applied to maintain the gap between the top and bottom plate are measured. It is found that when the top plate is held stationary, the time taken by the torque to be reduced by a certain percentage of its maximum value is different from the time taken by the normal force to decrease by the same percentage of its maximum value. Further, the time at which the maximum torque occurs is different from the time at which the maximum normal force occurs. Since the existing constitutive relations for bitumen cannot capture the difference in the relaxation times for the torque and normal force, a new rate type constitutive model, incorporating this response, is proposed. Although the blended and blown bitumen samples used in this study correspond to the same grade, the mechanical responses of the two samples are not the same. This is also reflected in the difference in the values of the material parameters in the model proposed. The differences in the mechanical properties between the differently processed bitumen samples increase further with aging. This has implications for the long-term performance of the pavement.
Haueis, Philipp; Slaby, Jan
2017-01-01
The term "connectome" is commonly taken to describe a complete map of neural connections in a nervous system of a given species. This chapter provides a critical perspective on the role of connectomes in neuroscientific practice and asks how the connectomic approach fits into a larger context in which network thinking permeates technology, infrastructure, social life, and the economy. In the first part of this chapter, we argue that, seen from the perspective of ongoing research, the notion of connectomes as "complete descriptions" is misguided. Our argument combines Rachel Ankeny's analysis of neuroanatomical wiring diagrams as "descriptive models" with Hans-Jörg Rheinberger's notion of "epistemic objects," i.e., targets of research that are still partially unknown. Combining these aspects we conclude that connectomes are constitutively epistemic objects: there just is no way to turn them into permanent and complete technical standards because the possibilities to map connection properties under different modeling assumptions are potentially inexhaustible. In the second part of the chapter, we use this understanding of connectomes as constitutively epistemic objects in order to critically assess the historical and political dimensions of current neuroscientific research. We argue that connectomics shows how the notion of the "brain as a network" has become the dominant metaphor of contemporary brain research. We further point out that this metaphor shares (potentially problematic) affinities to the form of contemporary "network societies." We close by pointing out how the relation between connectomes and networks in society could be used in a more fruitful manner. © 2017 Elsevier B.V. All rights reserved.
Constitutive modeling of an electrospun tubular scaffold used for vascular tissue engineering.
Hu, Jin-Jia
2015-08-01
In this study, we sought to model the mechanical behavior of an electrospun tubular scaffold previously reported for vascular tissue engineering with hyperelastic constitutive equations. Specifically, the scaffolds were made by wrapping electrospun polycaprolactone membranes that contain aligned fibers around a mandrel in such a way that they have microstructure similar to the native arterial media. The biaxial stress-stretch data of the scaffolds made of moderately or highly aligned fibers with three different off-axis fiber angles α (30°, 45°, and 60°) were fit by a phenomenological Fung model and a series of structurally motivated models considering fiber directions and fiber angle distributions. In particular, two forms of fiber strain energy in the structurally motivated model for a linear and a nonlinear fiber stress-strain relation, respectively, were tested. An isotropic neo-Hookean strain energy function was also added to the structurally motivated models to examine its contribution. The two forms of fiber strain energy did not result in significantly different goodness of fit for most groups of the scaffolds. The absence of the neo-Hookean term in the structurally motivated model led to obvious nonlinear stress-stretch fits at a greater axial stretch, especially when fitting data from the scaffolds with a small α. Of the models considered, the Fung model had the overall best fitting results; its applications are limited because of its phenomenological nature. Although a structurally motivated model using the nonlinear fiber stress-strain relation with the neo-Hookean term provided fits comparably as good as the Fung model, the values of its model parameters exhibited large within-group variations. Prescribing the dispersion of fiber orientation in the structurally motivated model, however, reduced the variations without compromising the fits and was thus considered to be the best structurally motivated model for the scaffolds. It appeared that the
International Nuclear Information System (INIS)
Sham, Sam; Walker, Kevin P.
2008-01-01
The expected service life of the Next Generation Nuclear Plant is 60 years. Structural analyses of the Intermediate Heat Exchanger (IHX) will require the development of unified viscoplastic constitutive models that address the material behavior of Alloy 617, a construction material of choice, over a wide range of strain rates. Many unified constitutive models employ a yield stress state variable which is used to account for cyclic hardening and softening of the material. For low stress values below the yield stress state variable these constitutive models predict that no inelastic deformation takes place which is contrary to experimental results. The ability to model creep deformation at low stresses for the IHX application is very important as the IHX operational stresses are restricted to very small values due to the low creep strengths at elevated temperatures and long design lifetime. This paper presents some preliminary work in modeling the unified viscoplastic constitutive behavior of Alloy 617 which accounts for the long term, low stress, creep behavior and the hysteretic behavior of the material at elevated temperatures. The preliminary model is presented in one-dimensional form for ease of understanding, but the intent of the present work is to produce a three-dimensional model suitable for inclusion in the user subroutines UMAT and USERPL of the ABAQUS and ANSYS nonlinear finite element codes. Further experiments and constitutive modeling efforts are planned to model the material behavior of Alloy 617 in more detail
A variational constitutive model for the distribution and interactions of multi-sized voids
Liu, Jinxing
2013-07-29
The evolution of defects or voids, generally recognized as the basic failure mechanism in most metals and alloys, has been intensively studied. Most investigations have been limited to spatially periodic cases with non-random distributions of the radii of the voids. In this study, we use a new form of the incompressibility of the matrix to propose the formula for the volumetric plastic energy of a void inside a porous medium. As a consequence, we are able to account for the weakening effect of the surrounding voids and to propose a general model for the distribution and interactions of multi-sized voids. We found that the single parameter in classical Gurson-type models, namely void volume fraction is not sufficient for the model. The relative growth rates of voids of different sizes, which can in principle be obtained through physical or numerical experiments, are required. To demonstrate the feasibility of the model, we analyze two cases. The first case represents exactly the same assumption hidden in the classical Gurson\\'s model, while the second embodies the competitive mechanism due to void size differences despite in a much simpler manner than the general case. Coalescence is implemented by allowing an accelerated void growth after an empirical critical porosity in a way that is the same as the Gurson-Tvergaard-Needleman model. The constitutive model presented here is validated through good agreements with experimental data. Its capacity for reproducing realistic failure patterns is shown by simulating a tensile test on a notched round bar. © 2013 The Author(s).
Constitutive modeling of a nickel base superalloy -with a focus on gas turbine applications
Energy Technology Data Exchange (ETDEWEB)
Almroth, Per
2003-05-01
Gas turbines are used where large amounts of energy is needed, typically as engines in aircraft, ferries and power plants. From an efficiency point of view it is desirable to increase the service temperature as much as possible. One of the limiting factors is then the maximum allowable metal temperatures in the turbine stages, primarily in the blades of the first stage, that are exposed to the highest gas temperatures. Specially designed materials are used to cope with these severe conditions, such as the nickel base superalloy IN792. In order to be able to design the components for higher temperatures and tighter tolerances, a detailed understanding and computationel models of the material behaviour is needed. The models presented in this work have been developed with the objective of being physically well motivated, and with the intention of avoiding excessive numbers of parameters. The influence of the parameters should also be as easy as possible to interpret. The models are to describe the behaviour of IN792, under conditions typically found for a gas turbine blade. Specifically the high- and intermediate temperature isothermal modelling of IN792 have been addressed. One main issue when characterising the material and calibrating the models is the use of relevant tests, that are representative of component conditions. Therefore isothermal tests with an eye on the typical environment of a turbine blade have been planned and performed. Using numerical optimization techniques the material parameters for the isothermal behaviour of IN792 at 650 deg and 850 deg have been estimated. The good overall calibration results for these specific temperatures, using the presented modeling concept and nonstandard constitutive tests, suggests that the model can describe the behaviour of IN792 in gas turbine hot part applications.
A Dislocation based Constitutive Model for Warm Forming of Aluminum Sheet
Kurukuri, S.; Ghosh, M.; van den Boogaard, Antonius H.
2008-01-01
The formability of aluminum sheet can be improved considerably by increasing the temperature. At elevated temperatures, the mechanical response of the material becomes strain rate dependent. To accurately simulate warm forming of aluminum sheet, a material model is required that incorporates the
International Nuclear Information System (INIS)
Niemiec, W.
1985-01-01
The problem under consideration is to find common physicochemical conditions of kinetics and phenomena of multicomponent chemical processes in fluid- and solidphase, deciding yield and quality of final products of these processes. The paper is devoted to the construction of a fundamental distributed parameter constitutive theory of physicochemical modelling of these chemical processes treated from the view of isotropic and anisotropic nonhomogeneous media with space and time memories. On the basis of definition of derivative and constitutive equations of continuity, original system of partial differential constitutive state equations are deduced
Modeling dependencies in product families with COVAMOF
Sinnema, Marco; Deelstra, Sybren; Nijhuis, Jos; Bosch, Jan; Riebisch, M; Tabeling, P; Zorn, W
2006-01-01
Many variability modeling approaches consider only formalized dependencies, i.e. in- or exclude relations between variants. However, in real industrial product families, dependencies are often much more complicated. In this paper, we discuss the product derivation problems associated with
Context dependent DNA evolutionary models
DEFF Research Database (Denmark)
Jensen, Jens Ledet
This paper is about stochastic models for the evolution of DNA. For a set of aligned DNA sequences, connected in a phylogenetic tree, the models should be able to explain - in probabilistic terms - the differences seen in the sequences. From the estimates of the parameters in the model one can...... start to make biologically interpretations and conclusions concerning the evolutionary forces at work. In parallel with the increase in computing power, models have become more complex. Starting with Markov processes on a space with 4 states, and extended to Markov processes with 64 states, we are today...... studying models on spaces with 4n (or 64n) number of states with n well above one hundred, say. For such models it is no longer possible to calculate the transition probability analytically, and often Markov chain Monte Carlo is used in connection with likelihood analysis. This is also the approach taken...
Klishas, Andrey A.
2016-01-01
The paper explores the impact of the continental system exerted on the constitutional and political evolution of both the United States and individual states and tries to characterize the development of constitutional review phenomenon within the framework of the continental legal system and the Anglo-Saxon legal system. The research stands on the…
International Nuclear Information System (INIS)
Wassilew, C.
1989-11-01
This report gives an overall evaluation of several in-reactor deformation and creep-rupture experiments performed in BR-2, FFTF, and Rapsodie on pressurised tubes of the stabilized austenitic stainless steels 1.4970, 1.4981, 1.4988, and the nickel base alloy Hastelloy-X. The irradiation induced deformation processes observed in the components operating in a neutron environment can be divided into two main groups: 1. volume conserving creep and 2. volumetric swelling. Since the observed deformation as well as damage accumulating phenomena are caused by the same constrained generated and free disposable point defects and helium atoms, it is obvious and advisable to analyze, and to model simultaneously the ensemble of the elementary mechanisms and processes effective at the same time. Phenomenological models based on the thermodynamics of irreversible processes have been developed, with the aim of: 1. grasping the partial relationships between the external variables and the response functions (creep, swelling, creep driven swelling, and time to rupture), 2. fathoming the rate-controlling mechanisms, 3. providing insight into the structural details and changes occurring during the deformation and the damage accumulating processes, 4. integrating the damage accumulating processes comprehensively, and 5. formulating the constitutive equations required to describe the elementary processes that generate plastic deformations as well as damage accumulation. (orig./MM)
Paradigm Change: Alternate Approaches to Constitutive and Necking Models for Sheet Metal Forming
International Nuclear Information System (INIS)
Stoughton, Thomas B.; Yoon, Jeong Whan
2011-01-01
This paper reviews recent work proposing paradigm changes for the currently popular approach to constitutive and failure modeling, focusing on the use of non-associated flow rules to enable greater flexibility to capture the anisotropic yield and flow behavior of metals using less complex functions than those needed under associated flow to achieve that same level of fidelity to experiment, and on the use of stress-based metrics to more reliably predict necking limits under complex conditions of non-linear forming. The paper discusses motivating factors and benefits in favor of both associated and non-associated flow models for metal forming, including experimental, theoretical, and practical aspects. This review is followed by a discussion of the topic of the forming limits, the limitations of strain analysis, the evidence in favor of stress analysis, the effects of curvature, bending/unbending cycles, triaxial stress conditions, and the motivation for the development of a new type of forming limit diagram based on the effective plastic strain or equivalent plastic work in combination with a directional parameter that accounts for the current stress condition.
A constitutive model for the flow through an assembly of circular section rods
International Nuclear Information System (INIS)
Moeller, S.V.
1979-08-01
The determination of the flow through an uniform array of rod bundle is made by means of the Continuum Theories of Mixtures, which gives balance equations for the system. The hypotheses of isothermal and fully developed turbulent flow are made. Constitutive equations for the resistive force are determined from Jakob's and Rowe's correlations, and its behaviour analysed for a standard case. Comparison of these equations with Bottgenbach's experiments shows good agreement of the direction of the pressure, although direct comparison between present theory and his theory is not possible. For the confirmation of the model an experiment is performed, this consisting of measuring pressure drop (Euler's Number) in the axial and transverse direction of a random array rod bundle at various angles as functions of velocity (Reynold's Number), which has good agreement, except on axial direction. At last, a sample problem is formulated with the purpose of showing the applicability of the model, this being the determination of pressure field due to the influence of a baffle. (Author) [pt
Implicit constitutive models with a thermodynamic basis: a study of stress concentration
Bridges, C.; Rajagopal, K. R.
2015-02-01
Motivated by the recent generalization of the class of elastic bodies by Rajagopal (Appl Math 48:279-319, 2003), there have been several recent studies that have been carried out within the context of this new class. Rajagopal and Srinivasa (Proc R Soc Ser A 463:357-367, 2007, Proc R Soc Ser A: Math Phys Eng Sci 465:493-500, 2009) provided a thermodynamic basis for such models and appealing to the idea that rate of entropy production ought to be maximized they developed nonlinear rate equations of the form where T is the Cauchy stress and D is the stretching tensor as well as , where S is the Piola-Kirchhoff stress tensor and E is the Green-St. Venant strain tensor. We follow a similar procedure by utilizing the Gibb's potential and the left stretch tensor V from the Polar Decomposition of the deformation gradient, and we show that when the displacement gradient is small one arrives at constitutive relations of the form . This is, of course, in stark contrast to traditional elasticity wherein one obtains a single model, Hooke's law, when the displacement gradient is small. By solving a classical boundary value problem, with a particular form for f( T), we show that when the stresses are small, the strains are also small which is in agreement with traditional elasticity. However, within the context of our model, when the stress blows up the strains remain small, unlike the implications of Hooke's law. We use this model to study boundary value problems in annular domains to illustrate its efficacy.
A plastic damage model with stress triaxiality-dependent hardening
International Nuclear Information System (INIS)
Shen Xinpu; Shen Guoxiao; Zhou Lin
2005-01-01
Emphases of this study were placed on the modelling of plastic damage behaviour of prestressed structural concrete, with special attention being paid to the stress-triaxiality dependent plastic hardening law and the corresponding damage evolution law. A definition of stress triaxiality was proposed and introduced in the model presented here. Drucker-Prager -type plasticity was adopted in the formulation of the plastic damage constitutive equations. Numerical validations were performed for the proposed plasticity-based damage model with a driver subroutine developed in this study. The predicted stress-strain behaviour seems reasonably accurate for the uniaxial tension and uniaxial compression compared with the experimental data reported in references. Numerical calculations of compressions under various hydrostatic stress confinements were carried out in order to validate the stress triaxiality dependent properties of the model. (authors)
Desyatova, Anastasia; MacTaggart, Jason; Poulson, William; Deegan, Paul; Lomneth, Carol; Sandip, Anjali; Kamenskiy, Alexey
2017-06-01
Open and endovascular treatments for peripheral arterial disease are notorious for high failure rates. Severe mechanical deformations experienced by the femoropopliteal artery (FPA) during limb flexion and interactions between the artery and repair materials play important roles and may contribute to poor clinical outcomes. Computational modeling can help optimize FPA repair, but these simulations heavily depend on the choice of constitutive model describing the arterial behavior. In this study finite element model of the FPA in the standing (straight) and gardening (acutely bent) postures was built using computed tomography data, longitudinal pre-stretch and biaxially determined mechanical properties. Springs and dashpots were used to represent surrounding tissue forces associated with limb flexion-induced deformations. These forces were then used with age-specific longitudinal pre-stretch and mechanical properties to obtain deformed FPA configurations for seven age groups. Four commonly used invariant-based constitutive models were compared to determine the accuracy of capturing deformations and stresses in each age group. The four-fiber FPA model most accurately portrayed arterial behavior in all ages, but in subjects younger than 40 years, the performance of all constitutive formulations was similar. In older subjects, Demiray (Delfino) and classic two-fiber Holzapfel-Gasser-Ogden formulations were better than the Neo-Hookean model for predicting deformations due to limb flexion, but both significantly overestimated principal stresses compared to the FPA or Neo-Hookean models.
Wang, Xiuyan; Zheng, Liyu; Wu, Jinming; Tang, Binbin; Zhang, Mengqin; Zhu, Debin; Lin, Xianfan
2017-06-01
Increased plasma levels of bilirubin have been reported in rat models and patients with alcoholic liver disease (ALD). The constitutive androstane receptor (CAR) is a known xenobiotic receptor, which induces the detoxification and transport of bilirubin. In the present study, the bilirubin transport regulatory mechanisms, and the role of CAR activation in hepatic and extrahepatic bilirubin clearance were investigated in a murine model of ALD. The mice were fed a Lieber-DeCarli ethanol diet or an isocaloric control diet for 4 weeks, followed by the administration of CAR agonists, 1,4-bis-[2‑(3,5-dichlorpyridyloxy)]benzene (TCPOBOP) and phenobarbital (PB), and their vehicles to examine the effect of the pharmacological activation of CAR on serum levels of bilirubin and on the bilirubin clearance pathway in ALD by serological survey, western blotting and reverse transcription‑quantitative polymerase chain reaction. The results showed that chronic ethanol ingestion impaired the nuclear translocation of CAR, which was accompanied by elevated serum levels of bilirubin, suppression of the expression of hepatic and renal organic anion transporting polypeptide (OATP) 1A1 and hepatic multidrug resistance‑associated protein 2 (MRP2), and induction of the expression of UDP-glucuronosyltransferase (UGT) 1A1. The activation of CAR by TCPOBOP and PB resulted in downregulation of the serum levels of bilirubin followed by selective upregulation of the expression levels of OATP1A1, OATP1A4, UGT1A1 and MRP2 in ALD. These results revealed the bilirubin transport regulatory mechanisms and highlighted the importance of CAR in modulating the bilirubin clearance pathway in the ALD mouse model.
Directory of Open Access Journals (Sweden)
Jommi Cristina
2016-01-01
Full Text Available Desiccation cracks are usually thought to start from the surface of an evaporating soil layer, and the available simplified models for crack initiation and propagation are based on this hypothesis. On the contrary, experimental results on a Dutch river clay showed that cracks in an evaporating soil layer may start and propagate below the surface, confirming earlier findings by other researchers. A simple one-dimensional model was set up to analyse the consequences of different hypotheses about the material behaviour on the crack onset in a homogenous soil layer undergoing surface drying. The results of the model show that dependence of the material behaviour on the rate of water content change is a necessary requirement for cracks to initiate below the surface. The conclusion suggests that, to properly understand cracking in an evaporating soil layer, an intrinsic time scale for the mechanical response must be accounted for, among all the other factors which were previously highlighted by other researchers. The key factor to predict crack onset below the surface is the dependence of the drying branch of the water retention curve of the compressible soil on the rate of drying, which would be justified by a rate dependent fabric evolution.
Constitutive equations for cracked reinforced concrete based on a refined model
International Nuclear Information System (INIS)
Geistefeldt, H.
1977-01-01
In this paper a refined nonlinear three-dimensional mechanical model for reinforced concrete is presented which can include the effects, depending on the given state of stress. The model is composed of three model-elements: component u-uncracked reinforced concrete with perfect bond (stiffness equal to the sum of the stiffnesses of concrete and reinforcement), component r-reinforcement free in surrounding concrete (reinforcement and concrete are having equal normal strains in noncracked directions and equal shear strains), component c-crack-part (shear stiffnesses in cracks is equal to the sum of shear stiffnesses of the reinforcement mesh, interface shear transfer and dowel action in cracks). The stress tensor of all components is equal to the global stress tensor. The strains are different from component to component corresponding to the local strain distribution in cracked reinforced concrete. For example the uniaxial behavior of reinforced concrete is modelled out of three springs k(u), k(r) and k(c) in series each having variable length l(u), l(r) or l(c). The uncracked structure is represented by k(u) only, l(r) and l(c) are zero. After cracking l(r) and l(c) are growing with the tensile load. When concrete tension stiffness between cracks has diminished, l(u) has reached the zero-value. The stress-dependent weights of the components in the model are derived from uniaxial theory and uniaxial test results
Constitutive modelling of the undrained shear strength of fine grained soils containing gas
Energy Technology Data Exchange (ETDEWEB)
Grozic, J.L.H. [Calgary Univ., AB (Canada); Nadim, F.; Kvalstad, T.J. [Norwegian Geotechnical Inst., Oslo (Norway)
2002-07-01
The behaviour of fine grained gassy soils was studied in order to develop a technique to quantitatively evaluate geohazards. Gas can occur in seabeds either in solution in pore water, undissolved in the form of gas filled voids, or as gas hydrates. In offshore soils, the degree of saturation is generally greater than 90 per cent, resulting in a soil structure with a continuous water phase and a discontinuous gas phase. The presence of methane gas will impact the strength of the soil, which alters its resistance to submarine sliding. This paper presents a constitutive model for determining the undrained shear strength of fine-grained gassy soils to assess the stability of deep water marine slopes for offshore developments. Methane gas is shown to have a beneficial effect on the soil strength in compressive loading, but the peak strength is achieved at larger deformations. The increased strength is a result of compression and solution gas which cause partial drainage and reduced pore pressures. The undrained shear strength of gassy soils was shown to increase with increasing initial consolidation stress, increasing volumetric coefficient of solubility, and increasing initial void ratio. 9 refs., 3 tabs., 6 figs.
Das, Arghya; Tengattini, Alessandro; Nguyen, Giang D.; Viggiani, Gioacchino; Hall, Stephen A.; Einav, Itai
2014-10-01
We study the mechanical failure of cemented granular materials (e.g., sandstones) using a constitutive model based on breakage mechanics for grain crushing and damage mechanics for cement fracture. The theoretical aspects of this model are presented in Part I: Tengattini et al. (2014), A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables, Part I - Theory (Journal of the Mechanics and Physics of Solids, 10.1016/j.jmps.2014.05.021). In this Part II we investigate the constitutive and structural responses of cemented granular materials through analyses of Boundary Value Problems (BVPs). The multiple failure mechanisms captured by the proposed model enable the behavior of cemented granular rocks to be well reproduced for a wide range of confining pressures. Furthermore, through comparison of the model predictions and experimental data, the micromechanical basis of the model provides improved understanding of failure mechanisms of cemented granular materials. In particular, we show that grain crushing is the predominant inelastic deformation mechanism under high pressures while cement failure is the relevant mechanism at low pressures. Over an intermediate pressure regime a mixed mode of failure mechanisms is observed. Furthermore, the micromechanical roots of the model allow the effects on localized deformation modes of various initial microstructures to be studied. The results obtained from both the constitutive responses and BVP solutions indicate that the proposed approach and model provide a promising basis for future theoretical studies on cemented granular materials.
International Nuclear Information System (INIS)
Anderson, C.A.; Smith, P.D.
1979-01-01
Numerical prediction of the behavior of prestressed concrete reactor vessels (PCRVs) under static, dynamic and long term loadings is complicated by the currently ill-defined behavior of concrete under stress and the three-dimensional nature of PCRVs. Which constitutive model most closely approximates the behavior of concrete in PCRVs under load has not yet been decided. Many equations for accurately modeling the three-dimensional behavior of PCRVs tax the capability of a most up-to-date computing system. The main purpose of this paper is to compare the characteristics of two constitutive models which have been proposed for concrete, variable modulus cracking model and elastic-plastic model. Moreover, the behavior of typical concrete structures was compared, the materials of which obey these constitutive laws. The response to internal pressure of PCRV structure, the constitutive models for concrete, the test problems using a thick-walled concrete ring and a rectangular concrete plate, and the analysis of an axisymmetric concrete pressure vessel PV-26 using the variable modulus cracking model of the ADINA code are explained. The variable modulus cracking model can predict the behavior of reinforced concrete structures well into the range of nonlinear behavior. (Kako, I.)
Dependency models and probability of joint events
International Nuclear Information System (INIS)
Oerjasaeter, O.
1982-08-01
Probabilistic dependencies between components/systems are discussed with reference to a broad classification of potential failure mechanisms. Further, a generalized time-dependency model, based on conditional probabilities for estimation of the probability of joint events and event sequences is described. The applicability of this model is clarified/demonstrated by various examples. It is concluded that the described model of dependency is a useful tool for solving a variety of practical problems concerning the probability of joint events and event sequences where common cause and time-dependent failure mechanisms are involved. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Fan, Ya-Nan, E-mail: fanyn12@mails.tsinghua.edu.cn; Shi, Hui-Ji, E-mail: shihj@mail.tsinghua.edu.cn; Qiu, Wen-Hui
2015-09-17
Rafting and creep modeling of single crystal superalloys at high temperatures are important for the safety assessment and life prediction in practice. In this research, a new model has been developed to describe the rafting evolution and incorporated into the Cailletaud single crystal plasticity model to simulate the creep behavior. The driving force of rafting is assumed to be the relaxation of the strain energy, and it is calculated with the local stress state, a superposition of the external and misfit stress tensors. In addition, the isotropic coarsening is introduced by the cube root dependence of the microstructure periodicity on creep time based on Ostwal ripening. Then the influence of rafting on creep deformation is taken into account as the Orowan stress in the single crystal plasticity model. The capability of the proposed model is validated with creep experiments of CMSX-4 at 950 °C and 1050 °C. It is able to predict the rafting direction at complex loading conditions and evaluate the channel width during rafting. For [001] tensile creep tests, good agreement has been shown between the model predictions and experimental results at different temperatures and stress levels. The creep acceleration can be captured with this model and is attributed to the microstructure degradation caused by the precipitate coarsening.
Mańkowski, J.; Lipnicki, J.
2017-08-01
The authors tried to identify the parameters of numerical models of digital materials, which are a kind of composite resulting from the manufacture of the product in 3D printers. With the arrangement of several heads of the printer, the new material can result from mixing of materials with radically different properties, during the process of producing single layer of the product. The new material has properties dependent on the base materials properties and their proportions. Digital materials tensile characteristics are often non-linear and qualify to be described by hyperelastic materials models. The identification was conducted based on the results of tensile tests models, its various degrees coefficients of the polynomials to various degrees coefficients of the polynomials. The Drucker's stability criterion was also examined. Fourteen different materials were analyzed.
Directory of Open Access Journals (Sweden)
Mańkowski J.
2017-08-01
Full Text Available The authors tried to identify the parameters of numerical models of digital materials, which are a kind of composite resulting from the manufacture of the product in 3D printers. With the arrangement of several heads of the printer, the new material can result from mixing of materials with radically different properties, during the process of producing single layer of the product. The new material has properties dependent on the base materials properties and their proportions. Digital materials tensile characteristics are often non-linear and qualify to be described by hyperelastic materials models. The identification was conducted based on the results of tensile tests models, its various degrees coefficients of the polynomials to various degrees coefficients of the polynomials. The Drucker’s stability criterion was also examined. Fourteen different materials were analyzed.
A constitutive model of soft tissue: From nanoscale collagen to tissue continuum
Tang, Huang
2009-04-08
Soft collagenous tissue features many hierarchies of structure, starting from tropocollagen molecules that form fibrils, and proceeding to a bundle of fibrils that form fibers. Here we report the development of an atomistically informed continuum model of collagenous tissue. Results from full atomistic and molecular modeling are linked with a continuum theory of a fiber-reinforced composite, handshaking the fibril scale to the fiber and continuum scale in a hierarchical multi-scale simulation approach. Our model enables us to study the continuum-level response of the tissue as a function of cross-link density, making a link between nanoscale collagen features and material properties at larger tissue scales. The results illustrate a strong dependence of the continuum response as a function of nanoscopic structural features, providing evidence for the notion that the molecular basis for protein materials is important in defining their larger-scale mechanical properties. © 2009 Biomedical Engineering Society.
MINI-TRAC code: a driver program for assessment of constitutive equations of two-fluid model
International Nuclear Information System (INIS)
Akimoto, Hajime; Abe, Yutaka; Ohnuki, Akira; Murao, Yoshio
1991-05-01
MINI-TRAC code, a driver program for assessment of constitutive equations of two-fluid model, has been developed to perform assessment and improvement of constitutive equations of two-fluid model widely and efficiently. The MINI-TRAC code uses one-dimensional conservation equations for mass, momentum and energy based on the two-fluid model. The code can work on a personal computer because it can be operated with a core memory size less than 640 KB. The MINI-TRAC code includes constitutive equations of TRAC-PF1/MOD1 code, TRAC-BF1 code and RELAP5/MOD2 code. The code is modulated so that one can easily change constitutive equations to perform a test calculation. This report is a manual of the MINI-TRAC code. The basic equations, numerics, constitutive, equations included in the MINI-TRAC code will be described. The user's manual such as input description will be presented. The program structure and contents of main variables will also be mentioned in this report. (author)
Constitutive equations for cracked reinforced concrete based on a refined model
International Nuclear Information System (INIS)
Geistefeldt, H.
1977-01-01
Nonlinear numerical methods to calculate structures of reinforced concrete or of prestressed concrete are mostly based on two idealizing assumptions: tension stiffness perpendicular to cracks is equal to the stiffness of reinforcement alone and shear modulus is taken as constant. In real reinforced concrete structures concrete contributes to the tension-stiffness perpendicular to cracks and thus to the global stiffness matrix because of bond action between concrete and reinforcement and shear transfer in cracks is depending on stresses acting in cracks. Only few authors are taking these aspects into account and only with rough semiempirical assumptions. In this paper a refined nonlinear three-dimensional mechanical model for reinforced concrete is presented which can include these effects, hitherto neglected, depending on the given state of stress. The model is composed of three model-elements: component u - uncracked reinforced concrete with perfect bond (stiffness equal to the sum of the stiffnesses of concrete and reinforcement), component r - reinforcement free in surrounding concrete (reinforcement and concrete are having equal normal strains in noncracked directions and equal shear strains), component c - crack-part (shear stiffnesses in cracks is equal to the sum of shear stiffnesses of the reinforcement mesh, interface shear transfer and dowel action in cracks). (Auth.)
Directory of Open Access Journals (Sweden)
Lisa Trisciuoglio
Full Text Available A number of nuclear events occur during apoptosis, including DNA laddering, nuclear lamina breakdown, phosphorylation of histones H2B and histone H2AX, and the tight binding to chromatin of HMGB1 and CAD, the nuclease responsible for DNA laddering. We have performed an epistasis analysis to investigate whether these events cluster together in pathways. We find that all depend directly or indirectly on caspase-3 activation. CAD activation, H2AX phosphorylation and DNA laddering cluster together into a pathway, but all other events appear to be independent of each other downstream of caspase-3, and likely evolved subject to different functional pressures.
Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures
Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan
2017-02-01
The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates (10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass (α ) transition and the secondary (β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.
Temperature Dependent Models of Semiconductor Devices for ...
African Journals Online (AJOL)
The paper presents an investigation of the temperature dependent model of a diode and bipolar transistor built-in to the NAP-2 program and comparison of these models with experimentally measured characteristics of the BA 100 diode and BC 109 transistor. The detail of the modelling technique has been discussed and ...
Constitutive relations for nuclear reactor core materials
International Nuclear Information System (INIS)
Zaverl, F. Jr.; Lee, D.
1978-01-01
A strain rate dependent constitutive equation is proposed which is capable of describing inelastic deformation behavior of anisotropic metals, such as Zircaloys, under complex loading conditions. The salient features of the constitutive equations are that they describe history dependent inelastic deformation behaviour of anisotropic metals under three-dimensional stress states in the presence of fast neutron flux. It is shown that the general form of the constitutive relations is consistent with experimental observations made under both unirradiated and irradiated conditions. The utility of the model is demonstrated by examining the analytical results obtained for a segment of tubing undergoing different loading histories in a reactor. (Auth.)
Boek, E.S.; Padding, J.T.; Anderson, V.J.; Tardy, P.M.J.; Crawshaw, J.P.; Pearson, J.R.A.
2005-01-01
We carry out a stability analysis of the Bautista-Manero (B-M) constitutive equations for extensional flow of wormlike micelles. We show that all solutions for the steady-state extensional viscosity ¿E are unstable when the elongational rates e exceed some critical value. In some cases the only real
Learning Bayesian Dependence Model for Student Modelling
Directory of Open Access Journals (Sweden)
Adina COCU
2008-12-01
Full Text Available Learning a Bayesian network from a numeric set of data is a challenging task because of dual nature of learning process: initial need to learn network structure, and then to find out the distribution probability tables. In this paper, we propose a machine-learning algorithm based on hill climbing search combined with Tabu list. The aim of learning process is to discover the best network that represents dependences between nodes. Another issue in machine learning procedure is handling numeric attributes. In order to do that, we must perform an attribute discretization pre-processes. This discretization operation can influence the results of learning network structure. Therefore, we make a comparative study to find out the most suitable combination between discretization method and learning algorithm, for a specific data set.
Ji, Cheng; Wang, Zilin; Wu, Chenhui; Zhu, Miaoyong
2018-04-01
According to the calculation results of a 3D thermomechanical-coupled finite-element (FE) model of GCr15 bearing steel bloom during a heavy reduction (HR) process, the variation ranges in the strain rate and strain under HR were described. In addition, the hot deformation behavior of the GCr15 bearing steel was studied over the temperature range from 1023 K to 1573 K (750 °C to 1300 °C) with strain rates of 0.001, 0.01, and 0.1 s-1 in single-pass thermosimulation compression experiments. To ensure the accuracy of the constitutive model, the temperature range was divided into two temperature intervals according to the fully austenitic temperature of GCr15 steel [1173 K (900 °C)]. Two sets of material parameters for the constitutive model were derived based on the true stress-strain curves of the two temperature intervals. A flow stress constitutive model was established using a revised Arrhenius-type constitutive equation, which considers the relationships among the material parameters and true strain. This equation describes dynamic softening during hot compression processes. Considering the effect of glide and climb on the deformation mechanism, the Arrhenius-type constitutive equation was modified by a physically based approach. This model is the most accurate over the temperatures ranging from 1173 K to 1573 K (900 °C to 1300 °C) under HR deformation conditions (ignoring the range from 1273 K to 1573 K (1000 °C to 1300 °C) with a strain rate of 0.1 s-1). To ensure the convergence of the FE calculation, an approximated method was used to estimate the flow stress at temperatures greater than 1573 K (1300 °C).
A Constitutive Model for Flow-Induced Anisotropic Behavior of Viscoelastic Complex Fluids
International Nuclear Information System (INIS)
Zhu, H.; De Kee, D.
2008-01-01
Flow-induced structural anisotropy could result when a complex fluid system is removed from equilibrium by means of hydrodynamic forces. In this paper, a general theory is developed to model flow induced anisotropic behavior of complex viscoelastic systems, e.g. polymer solutions/melts and suspensions. The rheological properties are characterized by viscosity and relaxation time tensors. We consider a second-rank tensor as a measure of the microstructure. We consider the effect of the flow on the structural changes: i.e. the evolution of the microstructure tensor is governed by a relaxation-type differential equation. We also propose that the viscosity and the relaxation time tensors depend on the second-rank microstructure tensor. That is as the microstructure tensor changes with the applied rate of deformation, the viscosity and relaxation time tensors evolve accordingly. As an example we consider elongational flow of two complex fluids
Kroon, M.
2011-11-01
Rubbers and soft biological tissues may undergo large deformations and are also viscoelastic. The formulation of constitutive models for these materials poses special challenges. In several applications, especially in biomechanics, these materials are also relatively thin, implying that in-plane stresses dominate and that plane stress may therefore be assumed. In the present paper, a constitutive model for viscoelastic materials in the finite strain regime and under the assumption of plane stress is proposed. It is assumed that the relaxation behaviour in the direction of plane stress can be treated separately, which makes it possible to formulate evolution laws for the plastic strains on explicit form at the same time as incompressibility is fulfilled. Experimental results from biomechanics (dynamic inflation of dog aorta) and rubber mechanics (biaxial stretching of rubber sheets) were used to assess the proposed model. The assessment clearly indicates that the model is fully able to predict the experimental outcome for these types of material.
Berkowitz, Peter
2009-01-01
After their dismal performance in election 2008, conservatives are taking stock. As they examine the causes that have driven them into the political wilderness and as they explore paths out, they should also take heart. After all, election 2008 shows that America's constitutional order is working as designed. Indeed, while sorting out their errors…
DEFF Research Database (Denmark)
Enevoldsen, Majken; Henneberg, K-A; Jensen, J A
2011-01-01
these effects using a single stiffening parameter similar to the approach in isotropic continuum damage mechanics. There is a pressing need, however, for more detailed histological information coupled with more complete biaxial mechanical data for a broader range of systemic arteries....... published for rat pulmonary arteries. A structurally motivated "four fiber family" constitutive relation was used to fit the available biaxial data and associated best-fit values of material parameters were estimated using multivariate nonlinear regression. Results suggested that arterial stiffening caused...
Modeling the Constitutive Relationship of Al–0.62Mg–0.73Si Alloy Based on Artificial Neural Network
Directory of Open Access Journals (Sweden)
Ying Han
2017-03-01
Full Text Available In this work, the hot deformation behavior of 6A02 aluminum alloy was investigated by isothermal compression tests conducted in the temperature range of 683–783 K and strain-rate range of 0.001–1 s−1. According to the obtained true stress–true strain curves, the constitutive relationship of the alloy was revealed by establishing the Arrhenius-type constitutive model and back-propagation (BP neural network model. It is found that the flow characteristic of 6A02 aluminum alloy is closely related to deformation temperature and strain rate, and the true stress decreases with increasing temperatures and decreasing strain rates. The hot deformation activation energy is calculated to be 168.916 kJ mol−1. The BP neural network model with one hidden layer and 20 neurons in the hidden layer is developed. The accuracy in prediction of the Arrhenius-type constitutive model and BP neural network model is eveluated by using statistics analysis method. It is demonstrated that the BP neural network model has better performance in predicting the flow stress.
International Nuclear Information System (INIS)
Syed, Sammiuddin; Gupta, Abhinav
2015-01-01
Highlights: • A framework is proposed for seismic fragility assessment of Reinforced Concrete structures. • Experimentally validated finite element models are used to conduct nonlinear simulations. • Critical parameters in concrete constitutive model are identified to conduct nonlinear simulations. • Uncertainties in model parameters of concrete damage plasticity model is characterized. • Closed form expressions are used to compute the damage variables and plasticity. - Abstract: This two part manuscript proposes a framework for seismic fragility assessment of reinforced concrete structures in nuclear energy facilities. The novelty of the proposed approach lies in the characterization of uncertainties in the parameters of the material constitutive model. Concrete constitutive models that comprehensively address different damage states such as tensile cracking, compression failure, stiffness degradation, and recovery of degraded stiffness due to closing of previously formed cracks under dynamic loading are generally defined in terms of a large number of variables to characterize the plasticity and damage at material level. Over the past several years, many different studies have been presented on evaluation of fragility for reinforced concrete structures using nonlinear time history simulations. However, almost all of these studies do not consider uncertainties in the parameters of a comprehensive constitutive model. Part-I of this two-part manuscript presents a study that is used to identify uncertainties associated with the critical parameters in nonlinear concrete damage plasticity model proposed by Lubliner et al. (1989. Int. J. Solids Struct., 25(3), 299) and later modified by Lee and Fenves (1998a. J. Eng. Mech., ASCE, 124(8), 892) and Lee and Fenves (1998b. Earthquake Eng. Struct. Dyn., 27(9), 937) for the purpose of seismic fragility assessment. The limitations in implementation of the damage plasticity model within a finite element framework and
Energy Technology Data Exchange (ETDEWEB)
Syed, Sammiuddin [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 426 Mann Hall, Campus Box 7908, Raleigh, NC 27695-7908 (United States); Gupta, Abhinav, E-mail: agupta1@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 413 Mann Hall, Campus Box 7908, Raleigh, NC 27695-7908 (United States)
2015-12-15
Highlights: • A framework is proposed for seismic fragility assessment of Reinforced Concrete structures. • Experimentally validated finite element models are used to conduct nonlinear simulations. • Critical parameters in concrete constitutive model are identified to conduct nonlinear simulations. • Uncertainties in model parameters of concrete damage plasticity model is characterized. • Closed form expressions are used to compute the damage variables and plasticity. - Abstract: This two part manuscript proposes a framework for seismic fragility assessment of reinforced concrete structures in nuclear energy facilities. The novelty of the proposed approach lies in the characterization of uncertainties in the parameters of the material constitutive model. Concrete constitutive models that comprehensively address different damage states such as tensile cracking, compression failure, stiffness degradation, and recovery of degraded stiffness due to closing of previously formed cracks under dynamic loading are generally defined in terms of a large number of variables to characterize the plasticity and damage at material level. Over the past several years, many different studies have been presented on evaluation of fragility for reinforced concrete structures using nonlinear time history simulations. However, almost all of these studies do not consider uncertainties in the parameters of a comprehensive constitutive model. Part-I of this two-part manuscript presents a study that is used to identify uncertainties associated with the critical parameters in nonlinear concrete damage plasticity model proposed by Lubliner et al. (1989. Int. J. Solids Struct., 25(3), 299) and later modified by Lee and Fenves (1998a. J. Eng. Mech., ASCE, 124(8), 892) and Lee and Fenves (1998b. Earthquake Eng. Struct. Dyn., 27(9), 937) for the purpose of seismic fragility assessment. The limitations in implementation of the damage plasticity model within a finite element framework and
Modelling dependable systems using hybrid Bayesian networks
International Nuclear Information System (INIS)
Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter
2008-01-01
A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems
Energy Technology Data Exchange (ETDEWEB)
Cai, Jun; Shi, Jiamin; Wang, Kuaishe; Wang, Wen; Wang, Qingjuan; Liu, Yingying [Xi' an Univ. of Architecture and Technology, Xi' an (China). School of Metallurgical Engineering; Li, Fuguo [Northwestern Polytechnical Univ., Xi' an (China). School of Materials Science and Engineering
2017-07-15
Constitutive analysis for hot working of Ti-6Al-4V alloy was carried out by using experimental stress-strain data from isothermal hot compression tests. A new kind of constitutive equation called a modified parallel constitutive model was proposed by considering the independent effects of strain, strain rate and temperature. The predicted flow stress data were compared with the experimental data. Statistical analysis was introduced to verify the validity of the developed constitutive equation. Subsequently, the accuracy of the proposed constitutive equations was evaluated by comparing with other constitutive models. The results showed that the developed modified parallel constitutive model based on multiple regression could predict flow stress of Ti-6Al-4V alloy with good correlation and generalization.
Elastic-Plastic Endochronic Constitutive Model of 0Crl7Ni4Cu4Nb Stainless Steels
Directory of Open Access Journals (Sweden)
Jinquan Guo
2016-01-01
Full Text Available We presented an elastic-plastic endochronic constitutive model of 0Crl7Ni4Cu4Nb stainless steel based on the plastic endochronic theory (which does not need the yield surface and experimental stress-strain curves. The key feature of the model is that it can precisely describe the relation of stress and strain under various loading histories, including uniaxial tension, cyclic loading-unloading, cyclic asymmetric-stress axial tension and compression, and cyclic asymmetric-stress axial tension and compression. The effects of both mean stress and amplitude of stress on hysteresis loop based on the elastic-plastic endochronic constitutive model were investigated. Compared with the experimental and calculated results, it is demonstrated that there was a good agreement between the model and the experiments. Therefore, the elastic-plastic endochronic constitutive model provides a method for the accurate prediction of mechanical behaviors of 0Crl7Ni4Cu4Nb stainless steel subjected to various loadings.
Accounting for Local Dependence with the Rasch Model: The Paradox of Information Increase.
Andrich, David
Test theories imply statistical, local independence. Where local independence is violated, models of modern test theory that account for it have been proposed. One violation of local independence occurs when the response to one item governs the response to a subsequent item. Expanding on a formulation of this kind of violation between two items in the dichotomous Rasch model, this paper derives three related implications. First, it formalises how the polytomous Rasch model for an item constituted by summing the scores of the dependent items absorbs the dependence in its threshold structure. Second, it shows that as a consequence the unit when the dependence is accounted for is not the same as if the items had no response dependence. Third, it explains the paradox, known, but not explained in the literature, that the greater the dependence of the constituent items the greater the apparent information in the constituted polytomous item when it should provide less information.
Directory of Open Access Journals (Sweden)
Jaime de Juan-Sanz
Full Text Available Inhibitory glycinergic neurotransmission is terminated by sodium and chloride-dependent plasma membrane glycine transporters (GlyTs. The mainly glial glycine transporter GlyT1 is primarily responsible for the completion of inhibitory neurotransmission and the neuronal glycine transporter GlyT2 mediates the reuptake of the neurotransmitter that is used to refill synaptic vesicles in the terminal, a fundamental role in the physiology and pathology of glycinergic neurotransmission. Indeed, inhibitory glycinergic neurotransmission is modulated by the exocytosis and endocytosis of GlyT2. We previously reported that constitutive and Protein Kinase C (PKC-regulated endocytosis of GlyT2 is mediated by clathrin and that PKC accelerates GlyT2 endocytosis by increasing its ubiquitination. However, the role of ubiquitination in the constitutive endocytosis and turnover of this protein remains unexplored. Here, we show that ubiquitination of a C-terminus four lysine cluster of GlyT2 is required for constitutive endocytosis, sorting into the slow recycling pathway and turnover of the transporter. Ubiquitination negatively modulates the turnover of GlyT2, such that increased ubiquitination driven by PKC activation accelerates transporter degradation rate shortening its half-life while decreased ubiquitination increases transporter stability. Finally, ubiquitination of GlyT2 in neurons is highly responsive to the free pool of ubiquitin, suggesting that the deubiquitinating enzyme (DUB ubiquitin C-terminal hydrolase-L1 (UCHL1, as the major regulator of neuronal ubiquitin homeostasis, indirectly modulates the turnover of GlyT2. Our results contribute to the elucidation of the mechanisms underlying the dynamic trafficking of this important neuronal protein which has pathological relevance since mutations in the GlyT2 gene (SLC6A5 are the second most common cause of human hyperekplexia.
DEFF Research Database (Denmark)
Enevoldsen, Marie Sand; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt
2011-01-01
to capture these effects using a single stiffening parameter similar to the approach in isotropic continuum damage mechanics. There is a pressing need, however, for more detailed histological information coupled with more complete biaxial mechanical data for a broader range of systemic arteries....... published for rat pulmonary arteries. A structurally motivated ‘‘four fiber family’’ constitutive relation was used to fit the available biaxial data and associated best-fit values of material parameters were estimated using multivariate nonlinear regression. Results suggested that arterial stiffening...
Rizzello, Carlo G.; Filannino, Pasquale; Calasso, Maria; Gobbetti, Marco
2014-01-01
This study aimed at investigating the regulatory system of bacteriocin synthesis by Lactobacillus plantarum strains in vegetables and fruits in a model system. Sterile and neutralized cell-free supernatant (CFS) from L. plantarum strains grown in MRS broth showed in vitro antimicrobial activities toward various indicator strains. The highest activity was that of L. plantarum C2. The antimicrobial activity was further assayed on vegetable and fruit agar plates (solid conditions) and in juices (liquid conditions). A regulatory mechanism of bacteriocin synthesis via quorum sensing was hypothesized. The synthesis of antimicrobial compounds seemed to be constitutive under solid conditions of growth on vegetable and fruit agar plates. In contrast, it depended on the size of the inoculum when L. plantarum C2 was grown in carrot juice. Only the inoculum of ca. 9.0 log CFU ml−1 produced detectable activity. The genes plnA, plnEF, plnG, and plnH were found in all L. plantarum strains. The genes plnJK and plnN were detected in only three or four strains. Reverse-phase high-performance liquid chromatography purification and mass spectrometry analysis revealed the presence of a mixture of eight peptides in the most active fraction of the CFS from L. plantarum C2. Active peptides were encrypted into bacteriocin precursors, such as plantaricins PlnJ/K and PlnH and PlnG, which are involved in the ABC transport system. A real-time PCR assay showed an increase in the expression of plnJK and plnG during growth of L. plantarum C2 in carrot juice. PMID:24242246
Criterion of Semi-Markov Dependent Risk Model
Institute of Scientific and Technical Information of China (English)
Xiao Yun MO; Xiang Qun YANG
2014-01-01
A rigorous definition of semi-Markov dependent risk model is given. This model is a generalization of the Markov dependent risk model. A criterion and necessary conditions of semi-Markov dependent risk model are obtained. The results clarify relations between elements among semi-Markov dependent risk model more clear and are applicable for Markov dependent risk model.
Souza, Paul M.; Beladi, Hossein; Singh, Rajkumar P.; Hodgson, Peter D.; Rolfe, Bernard
2018-05-01
This paper developed high-temperature deformation constitutive models for a Ti6Al4V alloy using an empirical-based Arrhenius equation and an enhanced version of the authors' physical-based EM + Avrami equations. The initial microstructure was a partially equiaxed α + β grain structure. A wide range of experimental data was obtained from hot compression of the Ti6Al4 V alloy at deformation temperatures ranging from 720 to 970 °C, and at strain rates varying from 0.01 to 10 s-1. The friction- and adiabatic-corrected flow curves were used to identify the parameter values of the constitutive models. Both models provided good overall accuracy of the flow stress. The generalized modified Arrhenius model was better at predicting the flow stress at lower strain rates. However, the model was inaccurate in predicting the peak strain. In contrast, the enhanced physical-based EM + Avrami model revealed very good accuracy at intermediate and high strain rates, but it was also better at predicting the peak strain. Blind sample tests revealed that the EM + Avrami maintained good predictions on new (unseen) data. Thus, the enhanced EM + Avrami model may be preferred over the Arrhenius model to predict the flow behavior of Ti6Al4V alloy during industrial forgings, when the initial microstructure is partially equiaxed.
International Nuclear Information System (INIS)
Vella, G.; Maio, P.A. Di; Giammusso, R.; Tincani, A.; Orco, G. Dell
2006-01-01
Within the framework of the activities promoted by European Fusion Development Agreement on the technology of the Helium Cooled Pebble Bed Test Blanket Module to be irradiated in one of the ITER equatorial ports, attention has been focused on the theoretical modelling of the thermo-mechanical constitutive behaviour of both beryllium and lithiated ceramics pebble beds, that are envisaged to act respectively as neutron multiplier and tritium breeder. The thermo-mechanical behaviour of the pebble beds and their nuclear performances in terms of tritium production depend on the reactor relevant conditions (heat flux and neutron wall load), the pebble sizes and the breeder cell geometries (bed thickness, pebble packing factor, bed overall thermal conductivity). ENEA-Brasimone and the Department of Nuclear Engineering (DIN) of the Palermo University have performed intense research activities intended to investigate fusion-relevant pebble bed thermo-mechanical behaviour by adopting both experimental and theoretical approaches. In particular, ENEA has carried out several experimental campaigns on small scale mock-ups tested in out-of-pile conditions, while DIN has developed a proper constitutive model that has been implemented on commercial FEM code, for the prediction of the thermal and mechanical performances of fusion-relevant pebble beds and for the comparison with the experimental results of the ENEA tests. In that framework, HELICA mock-up has been set-up and tested to investigate the behaviour of pebble bed in reactor-relevant geometries, providing useful data sets to be numerically reproduced by means of the DIN constitutive model, contributing to its assessment. The paper presents the constitutive model developed and the main experimental results of two test campaigns on HELICA mock-up carried out at HE-FUS 3 facility of ENEA Brasimone, the geometry of the mock-up, the adopted thermal and mechanical boundary conditions and the test operating conditions. The most
Florentin, Éric
2010-04-23
Today, the identification ofmaterialmodel parameters is based more and more on full-field measurements. This article explains how an appropriate use of the constitutive equation gap method (CEGM) can help in this context. The CEGM is a well-known concept which, until now, has been used mainly for the verification of finite element simulations. This has led to many developments, especially concerning the techniques for constructing statically admissible stress fields. The originality of the present study resides in the application of these recent developments to the identification problem. The proposed CEGM is described in detail, then evaluated through the identification of heterogeneous isotropic elastic properties. The results obtained are systematically compared with those of the equilibrium gap method, which is a well-known technique for the resolution of such identification problems. We prove that the use of the enhanced CEGM significantly improves the quality of the results. © Springer-Verlag 2010.
and density-dependent quark mass model
Indian Academy of Sciences (India)
Since a fair proportion of such dense proto stars are likely to be ... the temperature- and density-dependent quark mass (TDDQM) model which we had em- ployed in .... instead of Tc ~170 MeV which is a favoured value for the ud matter [26].
A constitutive model of soft tissue: From nanoscale collagen to tissue continuum
Tang, Huang; Buehler, Markus J.; Moran, Brian
2009-01-01
dependence of the continuum response as a function of nanoscopic structural features, providing evidence for the notion that the molecular basis for protein materials is important in defining their larger-scale mechanical properties. © 2009 Biomedical
Lewiński, Paweł M.; Dudziak, Sławomir
2018-01-01
In the paper, two kinds of constitutive models for ground and structure were adopted for the nonlinear interaction analysis of the RC cylindrical tank with subsoil. The paper discusses deformational and incremental approaches to a nonlinear FE analysis of soil-structure interaction including the description of behaviour of the RC structure and the subsoil under short-term loading. Moreover, a non-linear elastic-brittle-plastic analysis of RC axisymmetric structures using finite element iterative techniques is presented. The constitutive laws for concrete and subsoil are developed in compliance with the deformational and plastic flow theories of plasticity. Two examples of an FE analysis of soil-structure interaction were performed and the results were analysed.
Wang, Jun; Moumni, Ziad; Zhang, Weihong; Xu, Yingjie; Zaki, Wael
2017-06-01
The paper presents a finite-strain constitutive model for shape memory alloys (SMAs) that accounts for thermomechanical coupling and martensite reorientation. The finite-strain formulation is based on a two-tier, multiplicative decomposition of the deformation gradient into thermal, elastic, and inelastic parts, where the inelastic deformation is further split into phase transformation and martensite reorientation components. A time-discrete formulation of the constitutive equations is proposed and a numerical integration algorithm is presented featuring proper symmetrization of the tensor variables and explicit formulation of the material and spatial tangent operators involved. The algorithm is used for finite element analysis of SMA components subjected to various loading conditions, including uniaxial, non-proportional, isothermal and adiabatic loading cases. The analysis is carried out using the FEA software Abaqus by means of a user-defined material subroutine, which is then utilized to simulate a SMA archwire undergoing large strains and rotations.
Elastoplastic constitutive models parameters for unsaturated compacted bentonite sand buffer (BSB)
International Nuclear Information System (INIS)
Priyanto, D.; Man, A.; Dixon, D.; Blatz, J.
2010-01-01
(ps) of the BSB is defined from laboratory tests to be 0.31 MPa for s = 10 MPa results in k ∼ 0.031, where k is the slope of ps-line describing an increase of tensile strength with suction. The BBM assumes that ps continues to increase with suction. Considering that for s > s 0 , p o and λ(s) become constant for BSB, ps should also be constant for s > 30 MPa and results in k ∼ 0 for s > 30 MPa. Finally, the yield surface in p-s space under isotropic loading condition (q = 0) has the LC-, ps-, and SI-lines as the boundaries. The results of triaxial tests monitored during shearing with various p-q stress paths and constant suction within a range of 0-125 MPa are used to determine the yield and critical state functions. Two types of failures (e.g., ductile and brittle) depending on the p-s-q stress states were observed. Critical state slopes M interpreted from these test results show that M increases with s for s < s 0 and becomes constant for s > s 0 . The original BBM assumed that M is a constant. Based on this observation, a bi-linear function is created. This function has M increasing with s from ∼ 0.3 to 1.1 for s ∼ 0 to 30 MPa and remaining constant M for s > 30 MPa. This paper introduces two modifications of the original BBM to simulate BSB by creating two bi-linear functions for M and p s (i.e., M = M(s) and k = k(s)). Stress volume relationship in p-s-v space and critical state surface in p-s-q space created using this model match the results of laboratory test results. In some computer codes, implementation of an elastoplastic model requires substitution of p with the Bishop's effective stress (p' = p + S r .s), where S r is the degree of saturation. The magnitude of the BBM parameters in p-q-s space will change when p'-s-v space is used. This paper will discuss the transformation of these parameters. Finally, this set of BBM parameters is used to simulate the H-M behaviour of the BSB in triaxial tests using a computer code (e.g., FLAC
Constitutive modelling of creep-ageing behaviour of peak-aged aluminium alloy 7050
Directory of Open Access Journals (Sweden)
Yang Yo-Lun
2015-01-01
Full Text Available The creep-ageing behaviour of a peak-aged aluminium alloy 7050 was investigated under different stress levels at 174 ∘C for up to 8 h. Interrupted creep tests and tensile tests were performed to investigate the influences of creep-ageing time and applied stress on yield strength. The mechanical testing results indicate that the material exhibits an over-ageing behaviour which increases with the applied stress level during creep-ageing. As creep-ageing time approaches 8 h, the material's yield strength under different stress levels gradually converge, which suggests that the difference in mechanical properties under different stress conditions can be minimised. This feature can be advantageous in creep-age forming to the formed components such that uniformed mechanical properties across part area can be achieved. A set of constitutive equations was calibrated using the mechanical test results and the alloy-specific material constants were obtained. A good agreement is observed between the experimental and calibrated results.
Aggarwal, Ankush
2017-08-01
Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress-strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics.
Bentil, Sarah A; Dupaix, Rebecca B
2014-02-01
The ability of the fractional Zener constitutive model to predict the behavior of postmortem swine brain tissue was examined in this work. Understanding tissue behavior attributed to degradation is invaluable in many fields such as the forensic sciences or cases where only cadaveric tissue is available. To understand how material properties change with postmortem age, the fractional Zener model was considered as it includes parameters to describe brain stiffness and also the parameter α, which quantifies the viscoelasticity of a material. The relationship between the viscoelasticity described by α and tissue degradation was examined by fitting the model to data collected in a previous study (Bentil, 2013). This previous study subjected swine neural tissue to in vitro unconfined compression tests using four postmortem age groups (week). All samples were compressed to a strain level of 10% using two compressive rates: 1mm/min and 5mm/min. Statistical analysis was used as a tool to study the influence of the fractional Zener constants on factors such as tissue degradation and compressive rate. Application of the fractional Zener constitutive model to the experimental data showed that swine neural tissue becomes less stiff with increased postmortem age. The fractional Zener model was also able to capture the nonlinear viscoelastic features of the brain tissue at low strain rates. The results showed that the parameter α was better correlated with compressive rate than with postmortem age. © 2013 Published by Elsevier Ltd.
Czech Academy of Sciences Publication Activity Database
Pivokonský, Radek; Filip, Petr; Zelenková, Jana
2016-01-01
Roč. 104, č. 8 (2016), s. 171-178 ISSN 0032-3861 Institutional support: RVO:67985874 Keywords : LAOS * fourier transform rheology * Giesekus model * PTT model * modified XPP model * poly(ethylene oxide) Subject RIV: BK - Fluid Dynamics Impact factor: 3.684, year: 2016
van Kempen, T. H. S.; Donders, W. P.; van de Vosse, F. N.; Peters, G. W. M.
2016-01-01
The mechanical properties determine to a large extent the functioning of a blood clot. These properties depend on the composition of the clot and have been related to many diseases. However, the various involved components and their complex interactions make it difficult at this stage to fully
Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam
2017-08-01
Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.
Directory of Open Access Journals (Sweden)
Song Wei-Dong
2013-01-01
Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.
Directory of Open Access Journals (Sweden)
Yang J.
2015-01-01
Full Text Available By combining the nonlinear finite element analysis techniques and crystal plasticity theory, the macroscopic mechanical behaviour of crystalline material, the texture evolution and earing-type characteristics are simulated accurately. In this work, a crystal plasticity model exhibiting deformation twinning is introduced based on crystal plasticity theory and saturation-type hardening laws for FCC metal Fe-22Mn-0.6C TWIP steel. Based on the CPFE model and parameters which have been determined for TWIP steel, a simplified finite element model for deep drawing is promoted by using crystal plasticity constitutive model. The earing characteristics in typical deep-drawing process are simulated well. Further, the drawing forces are calculated and compared to the experimental results from reference. Meanwhile, the impacts of drawing coefficient and initial texture on the earing characteristics are investigated for controlling the earing.
The Finite Strain Johnson Cook Plasticity and Damage Constitutive Model in ALEGRA.
Energy Technology Data Exchange (ETDEWEB)
Sanchez, Jason James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2018-02-01
A finite strain formulation of the Johnson Cook plasticity and damage model and it's numerical implementation into the ALEGRA code is presented. The goal of this work is to improve the predictive material failure capability of the Johnson Cook model. The new implementation consists of a coupling of damage and the stored elastic energy as well as the minimum failure strain criteria for spall included in the original model development. This effort establishes the necessary foundation for a thermodynamically consistent and complete continuum solid material model, for which all intensive properties derive from a common energy. The motivation for developing such a model is to improve upon ALEGRA's present combined model framework. Several applications of the new Johnson Cook implementation are presented. Deformation driven loading paths demonstrate the basic features of the new model formulation. Use of the model produces good comparisons with experimental Taylor impact data. Localized deformation leading to fragmentation is produced for expanding ring and exploding cylinder applications.
An improved non-affine Arruda-Boyce type constitutive model for collagen networks
Cioroianu, A.R.; Spiesz, E.M.; Storm, C.
2013-01-01
This work investigates, by means of computational modeling, the mechanical properties of soft collagen tissues on the basis of elasticity theory. Bio-polymer networks are structurally disordered and thus compelled to deform non-affine. To capture that in our computational modeling, we supplement the
Colour dependence of zodiacal light models
Giese, R. H.; Hanner, M. S.; Leinert, C.
1973-01-01
Colour models of the zodiacal light in the ecliptic have been calculated for both dielectric and metallic particles in the sub-micron and micron size range. Two colour ratios were computed, a blue ratio and a red ratio. The models with a size distribution proportional to s to the -2.5 power ds (where s is the particle radius) generally show a colour close to the solar colour and almost independent of elongation. Especially in the blue colour ratio there is generally no significant dependence on the lower cutoff size (0.1-1 micron). The main feature of absorbing particles is a reddening at small elongations. The models for size distributions proportional to s to the -4 power ds show larger departures from solar colour and more variation with model parameters. Colour measurements, including red and near infra-red, therefore are useful to distinguish between flat and steep size spectra and to verify the presence of slightly absorbing particles.
Lateral strength force of URM structures based on a constitutive model for interface element
Directory of Open Access Journals (Sweden)
A.H. Akhaveissy
Full Text Available This paper presents the numerical implementation of a new proposed interface model for modeling the behavior of mortar joints in masonry walls. Its theoretical framework is fully based on the plasticity theory. The Von Mises criterion is used to simulate the behavior of brick and stone units. The interface laws for contact elements are formulated to simulate the softening behavior of mortar joints under tensile stress; a normal linear cap model is also used to limit compressive stress. The numerical predictions based on the proposed model for the behavior of interface elements correlate very highly with test data. A new explicit formula based on results of proposed interface model is also presented to estimate the strength of unreinforced masonry structures. The closed form solution predicts the ultimate lateral load of unreinforced masonry walls less error percentage than ATC and FEMA-307. Consequently, the proposed closed form solution can be used satisfactorily to analyze unreinforced masonry structures.
Energy Technology Data Exchange (ETDEWEB)
Rashid, J.Y.; Dunham, R.S. [ANATECH (United States); Demma, A. [Electric Power Research Institute - EPRI (United States)
2011-07-01
Demonstration of component functionality requires analytical simulations of reactor internals behavior. Towards that aim, EPRI has undertaken the development of irradiated material constitutive model and damage criteria for use in global and local finite-element based functionality analysis methodology. The constitutive behavioral regimes of irradiated stainless steel types 316 and 304 materials included in the model consist of: elastic-plastic material response considering irradiation hardening of the stress-strain curve, irradiation creep, stress relaxation, and void swelling. IASCC and degradation of ductility with irradiation are the primary damage mechanisms considered in the model. The material behavior model development consists of two parts: the first part is a user-material subroutine that can interface with a general-purpose finite element computer program to adapt it to the special-purpose of functionality analysis of reactor internals. The second part is a user utility in the form of Excel Spread sheets that permit users to extract a given property, e.g. the elastic-plastic stress-strain curve, creep curve, or void-swelling curve, as function of the relevant independent variables. The development of the model takes full advantage of the significant work that has been undertaken within EPRI's Material Reliability Program (MRP) to improve the knowledge of the material properties of irradiated stainless steels. Data from EPRI's MRP database have been utilized to develop equations that characterize the yield strength, ultimate tensile strength, uniform elongation, total elongation, reduction in area, void swelling and irradiation creep of stainless steels in a PWR environment. It is noted that, while the development of the model's equations has been statistically faithful to the material database, approximations were introduced in the model to ensure appropriate conservatism in the model's application consistently with accepted
The Dependent Poisson Race Model and Modeling Dependence in Conjoint Choice Experiments
Ruan, Shiling; MacEachern, Steven N.; Otter, Thomas; Dean, Angela M.
2008-01-01
Conjoint choice experiments are used widely in marketing to study consumer preferences amongst alternative products. We develop a class of choice models, belonging to the class of Poisson race models, that describe a "random utility" which lends itself to a process-based description of choice. The models incorporate a dependence structure which…
Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models.
Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz; Demer, Joseph L
2011-12-01
Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain-stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5-2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01-0.5 s(-1) strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multi-mode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus.
International Nuclear Information System (INIS)
Boure, Jean.
1978-05-01
From both the theoretical and the practical points of view, the problem of constitutive laws is a part and parcel of the modeling problem. In particular, the necessity to restore in the model, through topological laws, some of the information lost during the usual averaging process is emphasized. It is shown that the customary 'void fraction' topological law Psub(V)=Psub(L) should be proscribed whenever propagation phenomena are involved. A new void fraction topological law is proposed. The limitations of the current assumption of constant pressure within any phase in any cross section are also illustrated. The importance of proximity effects (neighborhood and history effects, related to characteristic lengths and times) is brought out. It results in the importance of the mathematical form of the constitutive laws. Various approaches to the constitutive law problem and possible mathematical forms for the transfer laws are reviewed. The simplest form (transfert terms as functions of the dependent variables only) may have some usefulness if interpretation of the results in terms of propagation phenomena is banned. A good compromise between the necessity to take proximity effects into account and to obtain a tractable set of equations is carried out when so called 'differential terms' are introduced in the transfer laws. The last part of the paper is devoted to some restrictions, which are imposed to the transfer terms because of some basic principles: indifference to Galilean changes of frame and to some changes of origins, second law of thermodynamics and assumption of local thermodynamic equilibrium, closure constraints. Practical recommendations are formulated [fr
Directory of Open Access Journals (Sweden)
Larissa Carvalho Trojan Serpe
Full Text Available Introduction : This study aims to evaluate the influence of the biomechanical behavior of the midpalatal suture (MPS during the rapid maxillary expansion (RME when modeled by the Finite Element Method. Methods Four simulation alternatives are discussed and, for each analysis, the suture is considered as a functional unit with a different mechanical behavior: (i without MPS elements, (ii MPS with Young's modulus (E equal to 1 MPa, (ii MPS with E equal to 0.01 MPa and (iv MPS with bilinear elastic behavior. Results The stress analysis showed that, when MPS is not considered in the model, stress peaks are reduced in magnitude and their distribution is restricted to a smaller area when compared to the model with the inclusion of MPS (E=1 MPa. The increased suture stiffness also has a direct influence on MPS displacements after 30 expander activations. Conclusion The consideration of the MPS in RME computer models influences greatly the calculated displacements between the suture bone ends, even as the stress levels in maxillary structures. Furthermore, as proposed for the described model, the elastic bilinear behavior assigned to MPS allows coherent prediction of stresses and displacements results, being a good representation for this suture overall behavior.
Water retention behaviour of compacted bentonites: experimental observations and constitutive model
Directory of Open Access Journals (Sweden)
Dieudonne Anne-Catherine
2016-01-01
Full Text Available Bentonite-based materials are studied as potential barriers for the geological disposal of radioactive waste. In this context, the hydro-mechanical behaviour of the engineered barrier is first characterized by free swelling conditions followed by constant volume conditions. This paper presents an experimental study conducted in order to characterize the water retention behaviour of a compacted MX-80 bentonite/sand mixture. Then, based on observations of the material double structure and the water retention mechanisms in compacted bentonites, a new water retention model is proposed. The model considers adsorbed water in the microstructure and capillary water in the aggregate-porosity. The model is calibrated and validated against the experimental data. It is used for better understanding competing effects between volume change and water uptake observed during hydration under free swelling conditions.
DEFF Research Database (Denmark)
Gagliardi, M; Maynard, S; Bojovic, B
2001-01-01
The CEF-4/9E3 chemokine gene is expressed constitutively in chicken embryo fibroblasts (CEF) transformed by the Rous sarcoma virus (RSV). This aberrant induction is controlled at the transcriptional and post-transcriptional levels. Transcriptional activation depends on multiple elements of the CEF....../EBPbeta binds to a second element located in proximity of the TRE. A mutation of this distal CAAT box impaired the activation of the CEF-4 promoter by pp60(v-src) indicating that this element is also part of the SRU. Using the RCASBP retroviral vector, we expressed a dominant negative mutant of C....../EBPbeta (designated Delta184-C/EBPbeta) in RSV-transformed CEF. Delta184-C/EBPbeta decreased the accumulation of the CEF-4 mRNA and activation of the CEF-4 promoter by pp60(v-src). The induction of the Cox-2 gene (CEF-147) was also reduced by Delta184-C/EBPbeta. The effect of the dominant negative mutant was observed...
Directory of Open Access Journals (Sweden)
Ryś Maciej
2014-09-01
Full Text Available In this work, a macroscopic material model for simulation two distinct dissipative phenomena taking place in FCC metals and alloys at low temperatures: plasticity and phase transformation, is presented. Plastic yielding is the main phenomenon occurring when the yield stress is reached, resulting in nonlinear response of the material during loading. The phase transformation process leads to creation of two-phase continuum, where the parent phase coexists with the inclusions of secondary phase. An identification of the model parameters, based on uniaxial tension test at very low temperature, is also proposed.
Constitutive equations for the Doi-Edwards model without independent alignment
DEFF Research Database (Denmark)
Hassager, Ole; Hansen, Rasmus
2010-01-01
We present two representations of the Doi-Edwards model without Independent Alignment explicitly expressed in terms of the Finger strain tensor, its inverse and its invariants. The two representations provide explicit expressions for the stress prior to and after Rouse relaxation of chain stretch......, respectively. The maximum deviations from the exact representations in simple shear, biaxial extension and uniaxial extension are of order 2%. Based on these two representations, we propose a framework for Doi-Edwards models including chain stretch in the memory integral form....
Peña, Estefania; Calvo, B; Martínez, M A; Martins, P; Mascarenhas, T; Jorge, R M N; Ferreira, A; Doblaré, M
2010-02-01
In this paper, the viscoelastic mechanical properties of vaginal tissue are investigated. Using previous results of the authors on the mechanical properties of biological soft tissues and newly experimental data from uniaxial tension tests, a new model for the viscoelastic mechanical properties of the human vaginal tissue is proposed. The structural model seems to be sufficiently accurate to guarantee its application to prediction of reliable stress distributions, and is suitable for finite element computations. The obtained results may be helpful in the design of surgical procedures with autologous tissue or prostheses.
Constitutive modeling of stress-driven grain growth in nanocrystalline metals
Gü rses, Ercan; Wafai, Husam; El Sayed, Tamer S.
2013-01-01
the influence of the grain-growth rule on the overall macroscopic response. Finally, the model is shown to provide a good description of the experimentally observed grain-growth-induced relaxation in nc-copper. © 2013 IOP Publishing Ltd.
Experiments, constitutive modeling and FE simulations of the impact behavior of Molybdenum
Kleiser, Geremy; Revil-Baudard, Benoit
For polycrystalline high-purity molybdenum the feasibility of a Taylor test is questionable because the very large tensile stresses generated at impact would result in disintegration of the specimen. We report an experimental investigation and new model to account simultaneously for the experimentally observed anisotropy, tension-compression asymmetry and strain-rate sensitivity of this material. To ensure high-fidelity predictions, a fully-implicit algorithm was used for implementing the new model in the FE code ABAQUS. Based on model predictions, the impact velocity range was established for which specimens may be recovered. Taylor impact tests in this range (140-165 m/s) were successfully conducted for different specimen taken along the rolling direction (RD), the transverse direction and 45o to the RD. Comparison between the measured profiles of impact specimens and FE model predictions show excellent agreement. Furthermore, simulations were performed to gain understanding of the dynamic event: time evolution of the pressure, the extent of plastic deformation, distribution of plastic strain rates, and transition to quasi-stable deformation occurs.
DEFF Research Database (Denmark)
Qing, Hai; Mishnaevsky, Leon
2010-01-01
in a computational finite element framework, which is capable of predicting initial failure, subsequent progressive damage up to final collapse. Crack band model and viscous regularization are applied to depress the convergence difficulties associated with strain softening behaviours. To verify the accuracy...
Freedom of Expression: Importing European & US Constitutional Models in Transitional Democracies
Belavusau, U.
2013-01-01
This book considers the issue of free speech in transitional democracies focusing on the socio-legal developments in the Czech Republic, Hungary, and Poland. In showing how these Central and Eastern European countries have engaged with free speech models imported from the Council of Europe / EU and
Sokolis, Dimitrios P; Sassani, Sofia G
2013-05-01
Other than its transport role, the large bowel performs numerous sophisticated functions, e.g. water, electrolyte, and vitamin absorption, optimized by its contractile properties and passive recoil capacity, but these properties have attracted limited attention than has been the case for other parts of the gastrointestinal tract. Accordingly, we investigated in vitro the pseudo-elastic properties of tubular specimens from the ascending, mid, and descending colon, and the rectum of healthy Wistar rats under passive quasi-static conditions and a physiologic range of pressures/axial stretches. A neo-Hookean and five-fiber family model was chosen as a microstructure-based material model for its efficiency in producing accurate representations of the three-dimensional inflation/extension data in relation to the underlying microstructure. Guided by our optical microscopy observations, this model took account of isotropic elastin properties and multi-directional collagen organization, but suffered from parameter covariance. Moreover, the contributions to the total model of the neo-Hookean and circumferential-fiber family were negligible, given the tiny amounts of elastin and circumferentially-arranged collagen fibers that were disclosed histologically, and the contributions of the diagonal and radial-fiber families to data representation were similar. The multiaxial response of the intestinal wall was fit equally accurately but without over-parameterization problems by the neo-Hookean and three-fiber (diagonal and axial) family model. The preferred alignment of collagen fibers towards the axial direction bestowed increased axial stiffness to the tissue. The mid colon was the stiffest region by virtue of its greatest material parameters, as validated by its higher collagen content than that of the distal regions. The present findings generate a more cohesive understanding of the large bowel in histomechanical terms, with potential for clinical and biomedical applications
Directory of Open Access Journals (Sweden)
Min Liu
2018-03-01
Full Text Available 20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft forging due to its strength, toughness, and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under a high temperature were not studied. For this article, hot compression experiments under temperatures of 850–1200 °C and strain rates of 0.01 s−1–1 s−1 were conducted using a Gleeble-1500D thermo-mechanical simulator. Flow stress-strain curves and microstructure after hot compression were obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relationship and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 solid steel ingot.
International Nuclear Information System (INIS)
Martin, M.; Shen, T.; Thadhani, N.N.
2008-01-01
Instrumented anvil-on-rod impact experiments were performed to access the applicability of this approach for validating a constitutive strength model for dynamic, transient-state deformation and elastic-plastic wave interactions in vanadium, 21-6-9 stainless steel, titanium, and Ti-6Al-4V. In addition to soft-catching the impacted rod-shaped samples, their transient deformation states were captured by high-speed imaging, and velocity interferometry was used to record the sample back (free) surface velocity and monitor elastic-plastic wave interactions. Simulations utilizing AUTODYN-2D hydrocode with Steinberg-Guinan constitutive equation were used to generate simulated free surface velocity traces and final/transient deformation profiles for comparisons with experiments. The simulations were observed to under-predict the radial strain for bcc vanadium and fcc steel, but over-predict the radial strain for hcp titanium and Ti-6Al-4V. The correlations illustrate the applicability of the instrumented anvil-on-rod impact test as a method for providing robust model validation based on the entire deformation event, and not just the final deformed state
Sommer, Gerhard; Eder, Maximilian; Kovacs, Laszlo; Pathak, Heramb; Bonitz, Lars; Mueller, Christoph; Regitnig, Peter; Holzapfel, Gerhard A
2013-11-01
A preoperative simulation of soft tissue deformations during plastic and reconstructive surgery is desirable to support the surgeon's planning and to improve surgical outcomes. The current development of constitutive adipose tissue models, for the implementation in multilayer computational frameworks for the simulation of human soft tissue deformations, has proved difficult because knowledge of the required mechanical parameters of fat tissue is limited. Therefore, for the first time, human abdominal adipose tissues were mechanically investigated by biaxial tensile and triaxial shear tests. The results of this study suggest that human abdominal adipose tissues under quasi-static and dynamic multiaxial loadings can be characterized as a nonlinear, anisotropic and viscoelastic soft biological material. The nonlinear and anisotropic features are consequences of the material's collagenous microstructure. The aligned collagenous septa observed in histological investigations causes the anisotropy of the tissue. A hyperelastic model used in this study was appropriate to represent the quasi-static multiaxial mechanical behavior of fat tissue. The constitutive parameters are intended to serve as a basis for soft tissue simulations using the finite element method, which is an apparent method for obtaining promising results in the field of plastic and reconstructive surgery. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Constitutive modeling of stress-driven grain growth in nanocrystalline metals
Gürses, Ercan
2013-02-08
In this work, we present a variational multiscale model for grain growth in face-centered cubic nanocrystalline (nc) metals. In particular, grain-growth-induced stress softening and the resulting relaxation phenomena are addressed. The behavior of the polycrystal is described by a conventional Taylor-type averaging scheme in which the grains are treated as two-phase composites consisting of a grain interior phase and a grain boundary-affected zone. Furthermore, a grain-growth law that captures the experimentally observed characteristics of the grain coarsening phenomena is proposed. To this end, the grain size is not taken as constant and varies according to the proposed stress-driven growth law. Several parametric studies are conducted to emphasize the influence of the grain-growth rule on the overall macroscopic response. Finally, the model is shown to provide a good description of the experimentally observed grain-growth-induced relaxation in nc-copper. © 2013 IOP Publishing Ltd.
Meta-Theoretical Contributions to the Constitution of a Model-Based Didactics of Science
Ariza, Yefrin; Lorenzano, Pablo; Adúriz-Bravo, Agustín
2016-10-01
There is nowadays consensus in the community of didactics of science (i.e. science education understood as an academic discipline) regarding the need to include the philosophy of science in didactical research, science teacher education, curriculum design, and the practice of science education in all educational levels. Some authors have identified an ever-increasing use of the concept of `theoretical model', stemming from the so-called semantic view of scientific theories. However, it can be recognised that, in didactics of science, there are over-simplified transpositions of the idea of model (and of other meta-theoretical ideas). In this sense, contemporary philosophy of science is often blurred or distorted in the science education literature. In this paper, we address the discussion around some meta-theoretical concepts that are introduced into didactics of science due to their perceived educational value. We argue for the existence of a `semantic family', and we characterise four different versions of semantic views existing within the family. In particular, we seek to contribute to establishing a model-based didactics of science mainly supported in this semantic family.
Energy Technology Data Exchange (ETDEWEB)
Tang, Bingtao, E-mail: tbtsh@hotmail.com [School of Materials Science and Engineering, Shandong Jianzhu University, Shandong, Jinan 250101 (China); State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Hunan, Changsha 410082 (China); Yuan, Zhengjun; Cheng, Gang [School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan 250101 (China); Huang, Lili; Zheng, Wei [School of Materials Science and Engineering, Shandong Jianzhu University, Shandong, Jinan 250101 (China); Xie, Hui [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Hunan, Changsha 410082 (China)
2013-11-15
Hot stamping of quenchable ultra high strength steels currently represents a standard forming technology in the automotive industry for the manufacture of safety and crash relevant components. Recently, hot stamping of Tailor-Welded Blanks (TWBs) is proposed to meet the environmental and safety requirements by supplying car structural body components with functionally optimized and tailored mechanical properties. In this paper, an appropriate partner material for the quenchenable boron steel B1500HS based on the phase transformation and deformation behavior under process relevant conditions is determined. It is generally accepted that the mechanical properties for joint partner after quenching process should meet the following requirements. The value of yield strength (YS) should be between 350 and 500 MPa. The ultimate tensile strength (UTS) should be within the limits of 500–650 MPa, and the total elongation (TEL) until rupture should be higher than 13%. Two kinds of High Strength Low Alloy (HSLA) cold rolled steels B340LA and B410LA are chosen for verification of which one is appropriate as joint partner. Microhardness is measured and metallographic is investigated on different base materials and corresponding weld seams. It is pointed out that the B340LA steel is an appropriate joint partner with ideal thermal and mechanical properties. An optimized Arrhenius constitutive law is implemented to improve the characterization and description of the mechanical properties of the base and joint partner, as well as the weld seam in austenitic state. The comparisons with simplified Hensel–Spittel constitutive model show the optimized Arrhenius constitutive law describes the experimental data fairly well.
International Nuclear Information System (INIS)
Tang, Bingtao; Yuan, Zhengjun; Cheng, Gang; Huang, Lili; Zheng, Wei; Xie, Hui
2013-01-01
Hot stamping of quenchable ultra high strength steels currently represents a standard forming technology in the automotive industry for the manufacture of safety and crash relevant components. Recently, hot stamping of Tailor-Welded Blanks (TWBs) is proposed to meet the environmental and safety requirements by supplying car structural body components with functionally optimized and tailored mechanical properties. In this paper, an appropriate partner material for the quenchenable boron steel B1500HS based on the phase transformation and deformation behavior under process relevant conditions is determined. It is generally accepted that the mechanical properties for joint partner after quenching process should meet the following requirements. The value of yield strength (YS) should be between 350 and 500 MPa. The ultimate tensile strength (UTS) should be within the limits of 500–650 MPa, and the total elongation (TEL) until rupture should be higher than 13%. Two kinds of High Strength Low Alloy (HSLA) cold rolled steels B340LA and B410LA are chosen for verification of which one is appropriate as joint partner. Microhardness is measured and metallographic is investigated on different base materials and corresponding weld seams. It is pointed out that the B340LA steel is an appropriate joint partner with ideal thermal and mechanical properties. An optimized Arrhenius constitutive law is implemented to improve the characterization and description of the mechanical properties of the base and joint partner, as well as the weld seam in austenitic state. The comparisons with simplified Hensel–Spittel constitutive model show the optimized Arrhenius constitutive law describes the experimental data fairly well
He, Zhitao; Chen, Wufan; Wang, Fenghua; Feng, Miaolin
2017-11-01
A kinematic hardening constitutive model is presented, in which a modified form of von Mises yield function is adopted, and the initial asymmetric tension and compression yield stresses of magnesium (Mg) alloys at room temperature (RT) are considered. The hardening behavior was classified into slip, twinning, and untwinning deformation modes, and these were described by two forms of back stress to capture the mechanical response of Mg sheet alloys under cyclic loading tests at RT. Experimental values were obtained for AZ31B-O and AZ31B sheet alloys under both tension-compression-tension (T-C-T) and compression-tension (C-T) loadings to calibrate the parameters of back stresses in the proposed model. The predicted parameters of back stresses in the twinning and untwinning modes were expressed as a cubic polynomial. The predicted curves based on these parameters showed good agreement with the tests.
Identification of Constitutive Parameters Using Inverse Strategy Coupled to an ANN Model
International Nuclear Information System (INIS)
Aguir, H.; Chamekh, A.; BelHadjSalah, H.; Hambli, R.
2007-01-01
This paper deals with the identification of material parameters using an inverse strategy. In the classical methods, the inverse technique is generally coupled with a finite element code which leads to a long computing time. In this work an inverse strategy coupled with an ANN procedure is proposed. This method has the advantage of being faster than the classical one. To validate this approach an experimental plane tensile and bulge tests are used in order to identify material behavior. The ANN model is trained from finite element simulations of the two tests. In order to reduce the gap between the experimental responses and the numerical ones, the proposed method is coupled with an optimization procedure to identify material parameters for the AISI304. The identified material parameters are the hardening curve and the anisotropic coefficients
Resistance to fire of walls constituted by hollow blocks: Experiments and thermal modeling
International Nuclear Information System (INIS)
Al Nahhas, F.; Ami Saada, R.; Bonnet, G.; Delmotte, P.
2007-01-01
The thermo-mechanical behavior of masonry walls is investigated from both experimental and theoretical points of view. Fire tests have been performed in order to evaluate the thermo-mechanical resistance of masonry wall submitted to a vertical load (13 ton/m) and exposed to temperatures ranging from 20 to 1200 o C. As a result we measure the temperature evolution inside the wall and evaluate the vertical and lateral displacements of this wall during heating for a period of 6 h. These results are affected significantly by phase-change phenomena which appeared as a plateau around o C in temperature-time curves. A theoretical model was then developed to describe the experimental results taking in to account convection, conduction and radiation phenomena inside the wall. In addition, liquid water migration using an enthalpic method is considered
Yu, Chao; Kang, Guozheng; Kan, Qianhua
2015-09-01
Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.
Pieczyska, Elżbieta A.; Kowalewski, Zbigniew L.; Dunić, Vladimir Lj.
2017-12-01
This paper presents an investigation of thermomechanical effects related to the phenomena of stress relaxation occurring in TiNi SMA subjected to modified program of displacement-controlled tension. The deformation data were taken from testing machine, whereas the temperature changes accompanying the exothermic/endothermic martensite forward/reverse transformation were measured by infrared camera. At the advanced stages of the transformations, the strain was kept constant for a few minutes and the SMA load and temperature were recorded continuously. As a consequence, the stress and temperature changed significantly during the loading stops. A large stress drop, caused by the transformation, was observed during the relaxation stage in both courses of the SMA loading and unloading. Moreover, the non-uniform temperature distribution, reflecting macroscopically inhomogeneous transformation, lapsed while the strain was kept constant, yet restarted at the end of the relaxation stop and developed at the reloading stage. Along with the experimental results, the mechanical and thermal responses induced by the transformation were obtained by 3D coupled thermomechanical numerical analysis, realized in partitioned approach. Latent heat production was correlated with an amount of the martensitic volume fraction. The stress and temperature drops recorded during the experiment were satisfactorily reproduced by the model proposed for the SMA thermomechanical coupling.
Directory of Open Access Journals (Sweden)
Nabila eDjafi
2013-08-01
Full Text Available Phosphoinositide-dependent phospholipases C (PI-PLCs are activated in response to various stimuli. They utilize substrates provided by type III-Phosphatidylinositol-4 kinases (PI4KIII to produce inositol triphosphate and diacylglycerol (DAG that is phosphorylated into phosphatidic acid (PA by DAG-kinases (DGKs. The roles of PI4KIIIs, PI-PLCs and DGKs in basal signalling are poorly understood. We investigated the control of gene expression by basal PI-PLC pathway in Arabidopsis thaliana suspension cells. A transcriptome-wide analysis allowed the identification of genes whose expression was altered by edelfosine, 30 µM wortmannin or R59022, inhibitors of PI-PLCs, PI4KIIIs and DGKs, respectively. We found that a gene responsive to one of these molecules is more likely to be similarly regulated by the other two inhibitors. The common action of these agents is to inhibit PA formation, showing that basal PI-PLCs act, in part, on gene expression through their coupling to DGKs. Amongst the genes up-regulated in presence of the inhibitors, were some DREB2 genes, in suspension cells and in seedlings. The DREB2 genes encode transcription factors with major roles in responses to environmental stresses, including dehydration. They bind to C-repeat motifs, known as Drought-Responsive Elements, that are indeed enriched in the promoters of genes up-regulated by PI-PLC pathway inhibitors. PA can also be produced by phospholipases D (PLDs. We show that the DREB2 genes that are up-regulated by PI-PLC inhibitors are positively or negatively regulated, or indifferent, to PLD basal activity. Our data show that the DREB2 genetic pathway is constitutively repressed in resting conditions and that DGK coupled to PI-PLC is active in this process, in suspension cells and seedlings. We discuss how this basal negative regulation of DREB2 genes is compatible with their stress-triggered positive regulation.
Increased opioid dependence in a mouse model of panic disorder
Directory of Open Access Journals (Sweden)
Xavier Gallego
2010-02-01
Full Text Available Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3. Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 locus coeruleus neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met5-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in locus coeruleus and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients.
Xu, Jinsheng; Han, Long; Zheng, Jian; Chen, Xiong; Zhou, Changsheng
2017-11-01
A thermo-damage-viscoelastic model for hydroxyl-terminated polybutadiene (HTPB) composite propellant with consideration for the effect of temperature was implemented in ABAQUS. The damage evolution law of the model has the same form as the crack growth equation for viscoelastic materials, and only a single damage variable S is considered. The HTPB propellant was considered as an isotropic material, and the deviatoric and volumetric strain-stress relations are decoupled and described by the bulk and shear relaxation moduli, respectively. The stress update equations were expressed by the principal stresses σ_{ii}R and the rotation tensor M, the Jacobian matrix in the global coordinate system J_{ijkl} was obtained according to the fourth-order tensor transformation rules. Two models having complex stress states were used to verify the accuracy of the constitutive model. The test results showed good agreement with the strain responses of characteristic points measured by a contactless optical deformation test system, which illustrates that the thermo-damage-viscoelastic model perform well at describing the mechanical properties of an HTPB propellant.
Directory of Open Access Journals (Sweden)
Liang Chen
2018-01-01
Full Text Available Based on the triaxial test, the elasto-perfectly plastic strain-softening damage model (EPSDM is proposed as a new four-stage constitutive model. Compared with traditional models, such as the elasto-brittle-plastic model (EBM, elasto-strain-softening model (ESM, elasto-perfectly plastic model (EPM, and elasto-peak plastic-brittle plastic model (EPBM, this model incorporates both the plastic bearing capacity and strain-softening characteristics of rock mass. Moreover, a new closed-form solution of the circular tunnel is presented for the stress and displacement distribution, and a plastic shear strain increment is introduced to define the critical condition where the strain-softening zone begins to occur. The new analysis solution obtained in this paper is a series of results rather than one specific solution; hence, it is suitable for a wide range of rock masses and engineering structures. The numerical simulation has been used to verify the correctness of the EPSDM. The parametric studies are also conducted to investigate the effects of supporting resistance, residual cohesion, dilation angle, strain-softening coefficient, plastic shear strain increment, and yield parameter on the result. It is shown that when the supporting resistance is fully released, both the post-peak failure radii and surface displacement could be summarized as EBM > EPBM > ESM > EPSDM > EPM; the dilation angle in the damage zone had the highest influence on the surface displacement, whereas the dilation angle in the perfectly plastic zone had the lowest influence; the strain-softening coefficient had the most significant effect on the damage zone radii; the EPSDM is recommended as the optimum model for support design and stability evaluation of the circular tunnel excavated in the perfectly plastic strain-softening rock mass.
Energy Technology Data Exchange (ETDEWEB)
Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Antusek, Andrej [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Faculty of Materials Science and Technology, Slovak University of Technology in Bratislava, Paulinska 16, 917 24 Trnava (Slovakia); Parlinska-Wojtan, Magdalena [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); University of Rzeszow, Institute of Physics, ul. Rejtana 16a, 35-959 Rzeszow (Poland); Bissig, Vinzenz [Kirsten Soldering AG, Hinterbergstrasse 32, CH-6330 Cham (Switzerland)
2012-10-29
Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.
Pervaiz, S.; Anwar, S.; Kannan, S.; Almarfadi, A.
2018-04-01
Ti6Al4V is known as difficult-to-cut material due to its inherent properties such as high hot hardness, low thermal conductivity and high chemical reactivity. Though, Ti6Al4V is utilized by industrial sectors such as aeronautics, energy generation, petrochemical and bio-medical etc. For the metal cutting community, competent and cost-effective machining of Ti6Al4V is a challenging task. To optimize cost and machining performance for the machining of Ti6Al4V, finite element based cutting simulation can be a very useful tool. The aim of this paper is to develop a finite element machining model for the simulation of Ti6Al4V machining process. The study incorporates material constitutive models namely Power Law (PL) and Johnson – Cook (JC) material models to mimic the mechanical behaviour of Ti6Al4V. The study investigates cutting temperatures, cutting forces, stresses, and plastic strains with respect to different PL and JC material models with associated parameters. In addition, the numerical study also integrates different cutting tool rake angles in the machining simulations. The simulated results will be beneficial to draw conclusions for improving the overall machining performance of Ti6Al4V.
Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.
2015-10-01
We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.
Energy Technology Data Exchange (ETDEWEB)
Maiti, A [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dinh, L. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-11-16
Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation-, thermal-, and electrical barriers. External factors like mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a Materials Science point of view it is highly desirable to understand, effect, and manipulate such property changes in a controlled manner. In this report we summarize our modeling efforts on a polysiloxane elastomer TR-55, which is an important component in several of our systems, and representative of a wide class of filled rubber materials. The primary aging driver in this work has been γ-radiation, and a variety of modeling approaches have been employed, including constitutive, mesoscale, and population-based models. The work utilizes diverse experimental data, including mechanical stress-strain and compression set measurements, as well as MWD measurements using multiquantum NMR.
Zhao, Jun; Quan, Guo-Zheng; Pan, Jia; Wang, Xuan; Wu, Dong-Sen; Xia, Yu-Feng
2018-01-01
Constitutive model of materials is one of the most requisite mathematical model in the finite element analysis, which describes the relationships of flow behaviors with strain, strain rate and temperature. In order to construct such constitutive relationships of ultra-high-strength BR1500HS steel at medium and low temperature regions, the true stress-strain data over a wide temperature range of 293-873 K and strain rate range of 0.01-10 s-1 were collected from a series of isothermal uniaxial tensile tests. The experimental results show that stress-strain relationships are highly non-linear and susceptible to three parameters involving temperature, strain and strain rate. By considering the impacts of strain rate and temperature on strain hardening, a modified constitutive model based on Johnson-Cook model was proposed to characterize flow behaviors in medium and low temperature ranges. The predictability of the improved model was also evaluated by the relative error (W(%)), correlation coefficient (R) and average absolute relative error (AARE). The R-value and AARE-value for modified constitutive model at medium and low temperature regions are 0.9915 & 1.56 % and 0.9570 & 5.39 %, respectively, which indicates that the modified constitutive model can precisely estimate the flow behaviors for BR1500HS steel in the medium and low temperature regions.
Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models
Haslauer, C. P.; Bárdossy, A.
2017-12-01
A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.
System reliability time-dependent models
International Nuclear Information System (INIS)
Debernardo, H.D.
1991-06-01
A probabilistic methodology for safety system technical specification evaluation was developed. The method for Surveillance Test Interval (S.T.I.) evaluation basically means an optimization of S.T.I. of most important system's periodically tested components. For Allowed Outage Time (A.O.T.) calculations, the method uses system reliability time-dependent models (A computer code called FRANTIC III). A new approximation, which was called Independent Minimal Cut Sets (A.C.I.), to compute system unavailability was also developed. This approximation is better than Rare Event Approximation (A.E.R.) and the extra computing cost is neglectible. A.C.I. was joined to FRANTIC III to replace A.E.R. on future applications. The case study evaluations verified that this methodology provides a useful probabilistic assessment of surveillance test intervals and allowed outage times for many plant components. The studied system is a typical configuration of nuclear power plant safety systems (two of three logic). Because of the good results, these procedures will be used by the Argentine nuclear regulatory authorities in evaluation of technical specification of Atucha I and Embalse nuclear power plant safety systems. (Author) [es
International Nuclear Information System (INIS)
Zhou, Hao-Miao; Li, Chao; Xuan, Li-Ming; Zhao, Ji-Xiang; Wei, Jing
2011-01-01
This paper analyzes the magnetoelectric (ME) response around the resonance frequency in the magnetostrictive/piezoelectric/magnetostrictive (MPM) magnetoelectric laminate composites. Following the equivalent circuit method and considering the mechanical loss, we select the nonlinear magnetostrictive constitutive model to present a novel explicit nonlinear expression for the resonant magnetoelectric (ME) coefficient of the magnetoelectric laminate composites. Compared with the experimental results, the predicted resonant ME coefficient of the explicit expression shows a good agreement both qualitatively and quantitatively. Also, when the electromechanical coupling factor of the piezoelectric material, k 31 p , is small, this explicit expression can be reduced to the existing model. On this basis, this paper considers and predicts the magnetoelectric conversion characteristics of the magnetoelectric laminate composites, calculates and analyzes the influences of the thickness ratio of magnetostrictive layer and piezoelectric material, bias magnetic field, and saturation magnetostrictive coefficient on the resonant ME coefficient. This research can provide a theoretical basis for the preparation of magnetoelectric devices with good magnetoelectric conversion characteristics, such as magnetoelectric sensors, energy harvesting transducers, microwave devices etc
Karimi, Alireza; Navidbakhsh, Mahdi; Haghighatnama, Maedeh; Haghi, Afsaneh Motevalli
2015-01-01
The skin, being a multi-layered material, is responsible for protecting the human body from the mechanical, bacterial, and viral insults. The skin tissue may display different mechanical properties according to the anatomical locations of a body. However, these mechanical properties in different anatomical regions and at different loading directions (axial and circumferential) of the mice body to date have not been determined. In this study, the axial and circumferential loads were imposed on the mice skin samples. The elastic modulus and maximum stress of the skin tissues were measured before the failure occurred. The nonlinear mechanical behavior of the skin tissues was also computationally investigated through a suitable constitutive equation. Hyperelastic material model was calibrated using the experimental data. Regardless of the anatomic locations of the mice body, the results revealed significantly different mechanical properties in the axial and circumferential directions and, consequently, the mice skin tissue behaves like a pure anisotropic material. The highest elastic modulus was observed in the back skin under the circumferential direction (6.67 MPa), while the lowest one was seen in the abdomen skin under circumferential loading (0.80 MPa). The Ogden material model was narrowly captured the nonlinear mechanical response of the skin at different loading directions. The results help to understand the isotropic/anisotropic mechanical behavior of the skin tissue at different anatomical locations. They also have implications for a diversity of disciplines, i.e., dermatology, cosmetics industry, clinical decision making, and clinical intervention.
DEFF Research Database (Denmark)
Lyngaa, Rikke Birgitte; Nørregaard, K.; Kristensen, Martin
2010-01-01
Epstein-Barr virus (EBV) open reading frame BILF1 encodes a seven trans-membrane (TM) G protein-coupled receptor that signals with high constitutive activity through G alpha(i) (Beisser et al., 2005; Paulsen et al., 2005). In this paper, the transforming potential of BILF1 is investigated in vitro...
A model for rate-dependent but time-independent material behavior in cyclic plasticity
International Nuclear Information System (INIS)
Dafalias, Y.F.; Ramey, M.R.; Sheikh, I.
1977-01-01
It is the purpose of this paper to present a model for rate-dependent but time independent material behavior under cyclic loading in the plastic range. What is referred to as time independent behavior here, is the absence of creep and relaxation phenomena from the behavior of the model. The notion of plastic internal variables (piv) is introduced, as properly invariant scalars or second order tensors, whose constitutive relations are rate-type equations not necessarily homogeneous of oder one in the rates, as it would be required for independent plasticity. The concept of a yield surface in the strain space and a loading function in terms of the total strain rate is introduced, where the sign of the loading function defines zero or non-zero value of the rate of piv. Thus rate dependence is achieved without time dependent behavior (no creep or relaxation). In addition, discrete memory parameters associated with the most recent event of unloading-reloading in different directions enter the constitutive relations for the piv. A particular form of the constitutive relations is assumed, where the rate of piv is a linear combination of the strain rate components, with coefficients depending on the second invariant of the strain rate tensor, which can be viewed as a scalar measure of the rate of deformation in the multiaxial case and a direct generalization of the uniaxial strain rate. This leads to a particularly simple form of the constitutive relations resembling the ones for rate independent plasticity. The uniaxial counterpart would be a relation between the plastic strain rate (as one of the piv) and the total strain rate through a plastic modulus which depends on the strain rate, the piv, and the discrete memory parameters
The Uses and Dependency Model of Mass Communication.
Rubin, Alan M.; Windahl, Sven
1986-01-01
Responds to criticism of the uses and gratification model by proposing a modified model integrating the dependency perspective. Suggests that this integrated model broadens the heuristic application of the earlier model. (MS)
Energy Technology Data Exchange (ETDEWEB)
Maiti, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Small, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duoss, E. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearson, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, T. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Maxwell, R. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-12-08
Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component in our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.
International Nuclear Information System (INIS)
Rashidi Othman; Fatimah Azzahra Mohd Zaifuddin; Norazian Mohd Hassan
2015-01-01
Phyto hormone abscisic acid (ABA) plays a regulatory role in many physiological processes in plants and is regulated and controlled by specific key factors or genes. Different environmental stress conditions such as water, drought, cold, light, and temperature result in increased amounts of ABA. The action of ABA involves modification of gene expression and analysis of in vitro callus model system cultures revealed several potential of constitutive, institutive and up-regulation acting regulatory mechanisms. Therefore, this study was aimed at establishing in vitro cultures as potential research tools to study the regulatory mechanisms of the carotenoid biosynthesis in selected plant species through a controlled environment. The presence and absence of zeaxanthin and neoxanthin in callus cultures and intact plants could be explained by changes in gene expression in response to stress. Abiotic stress can alter gene expression and trigger cellular metabolism in plants. This study suggested that the key factors which involved in regulatory mechanisms of individual carotenoid biosynthesis in a particular biology system of plants can be either be silenced or activated. Therefore, based on the results in this study environmental stress is made possible for enhancement or enrichment of certain carotenoid of interest in food crops without altering the genes. (author)
International Nuclear Information System (INIS)
Zhu, Yuping; Gu, Yunling; Liu, Hongguang
2015-01-01
Directional solidification technology has been widely used to improve the properties of polycrystalline Ni 2 MnGa materials. Mechanical training can adjust the internal organizational structures of the materials, reduce the stress of twin boundaries motion, and then result in larger strain at lower outfield levels. In this paper, we test the microscopic structure of Ni 2 MnGa polycrystalline ferromagnetic shape memory alloy produced by directional solidification and compress it along two axes successively for mechanical training. The influences of pre-compressive stresses on the temperature-induced strains are analyzed. The macroscopic mechanical behaviors show anisotropy. According to the generating mechanism of the macroscopic strain, a three-dimensional constitutive model is established. Based on thermodynamic method, the kinetic equations of the martensitic transformation and inverse transformation are presented considering the driving force and energy dissipation. The prediction curves of temperature-induce strains along two different directions are investigated. And the results coincide well with the experiment data. It well explains the macroscopic anisotropy mechanical behaviors and fits for using in engineering
Essential Medicines in National Constitutions
Toebes, Brigit; Hogerzeil, Hans
2016-01-01
Abstract A constitutional guarantee of access to essential medicines has been identified as an important indicator of government commitment to the progressive realization of the right to the highest attainable standard of health. The objective of this study was to evaluate provisions on access to essential medicines in national constitutions, to identify comprehensive examples of constitutional text on medicines that can be used as a model for other countries, and to evaluate the evolution of constitutional medicines-related rights since 2008. Relevant articles were selected from an inventory of constitutional texts from WHO member states. References to states’ legal obligations under international human rights law were evaluated. Twenty-two constitutions worldwide now oblige governments to protect and/or to fulfill accessibility of, availability of, and/or quality of medicines. Since 2008, state responsibilities to fulfill access to essential medicines have expanded in five constitutions, been maintained in four constitutions, and have regressed in one constitution. Government commitments to essential medicines are an important foundation of health system equity and are included increasingly in state constitutions. PMID:27781006
International Nuclear Information System (INIS)
Koo, Gyeong Hoi; Lee, Jae Han
2007-01-01
In this paper, the inelastic constitutive models for the simulations of the cyclic softening behavior of the modified 9Cr-1Mo steel, which has a significant cyclic softening characteristic especially in elevated temperature regions, are investigated in detail. To do this, the plastic modulus, which primarily governs the calculation scheme of the plasticity, is formulated for the inelastic constitutive models such as the Armstrong-Frederick model, Chaboche model, and Ohno-Wang model. By implementing the extracted plastic modulus and the consistency conditions into the computer program, the inelastic constitutive parameters are identified to present the best fit of the uniaxial cyclic test data by strain-controlled simulations. From the computer simulations by using the obtained constitutive parameters, it is found that the Armstrong-Frederick model is simple to use but it causes significant overestimated strain results when compared with the Chaboche and the Ohno-Wang models. And from the ratcheting simulation results, it is found that the cyclic softening behavior of the modified 9Cr-1Mo steel can invoke a ratcheting instability when the applied cyclic loads exceed a certain level of the ratchet loading condition
International Nuclear Information System (INIS)
Pellacani, Filippo
2012-01-01
A local mechanistic model for bubble coalescence and breakup for the one-group interfacial area transport equation has been developed, in agreement and within the limits of the current understanding, based on an exhaustive survey of the theory and of the state of the art models for bubble dynamics simulation. The new model has been tested using the commercial 3D CFD code ANSYS CFX. Upward adiabatic turbulent air-water bubbly flow has been simulated and the results have been compared with the data obtained in the experimental facility PUMA. The range of the experimental data available spans between 0.5 to 2 m/s liquid velocity and 5 to 15 % volume fraction. For the implementation of the models, both the monodispersed and the interfacial area transport equation approaches have been used. The first one to perform a detailed analysis of the forces and models to reproduce the dynamic of the dispersed phase adequately and to be used in the next phases of the work. Also two different bubble induced turbulence models have been tested to consider the effect of the presence of the gas phase on the turbulence of the liquid phase. The interfacial area transport equation has been successfully implemented into the CFD code and the state of the art breakup and coalescence models have been used for simulation. The limitations of the actual theory have been shown and a new bubble interactions model has been developed. The simulations showed that a considerable improvement is achieved if compared to the state of the art closure models. Limits in the implementation derive from the actual understanding and formulation of the bubbly dynamics. A strong dependency on the interfacial non-drag force models and coefficients have been shown. More experimental and theory work needs to be done in this field to increase the prediction capability of the simulation tools regarding the distribution of the phases along the pipe radius.
International Nuclear Information System (INIS)
Tanaka, Eiichi; Mizuno, Mamoru.
1993-01-01
The purposes of this paper are to elucidate fundamental material properties of modified 9Cr-1 Mo steel as a candidate material for next-generation fast breeder reactors and to obtain information for the formulation of a practical unified constitutive model. For these purposes, monotonous tension, uniaxial symmetric cycles, uniaxial symmetric cycles with hold time, creep, stress control uniaxial symmetric cycles, cyclic relaxation and circular cyclic loading tests are performed. Then these results are simulated by two unified constitutive models, i.e. the Chaboche model and Bodner-Partom model. The results of simulation show that the Chaboche model can describe all the experimental results with relatively high accuracy, and that the identification of material constants of the model is easy. The Bodner-Partom model can similarly describe the results, but the determination of material constants is difficult. (author)
Directory of Open Access Journals (Sweden)
Georgina L Hold
Full Text Available Dysregulated Toll-Like Receptor (TLR signalling and genetic polymorphisms in these proteins are linked to many human diseases. We investigated TLR4 functional variants D299G and T399I to assess the impact on LPS-induced responsiveness in comparison to wild-type TLR4. The mechanism by which this occurs in unclear as these SNPs do not lie within the lipid A binding domain or dimerisation sites of the LPS-TLR4/MD2 receptor complexes. Transfection of TLR4D299G, TLR4T399I or TLR4D299G. T399I into HEK cells resulted in constitutive activation of an NF-κB reporter gene and a blunting of the LPS-induced reporter activation compared to WT-TLR4. Unstimulated human monocyte/macrophages, from patients with the D299G and T399I SNPs demonstrated a downregulation of many genes, particularly Tram/Trif signalling pathway constitutents compared to the TLR4 wild-type subjects supporting the concept of basal receptor activity. Monocyte/macrophages from carriers of the TLR4 D299G and T399I polymorphisms stimulated with LPS showed >6 fold lower levels of NF-κB and ∼12 fold higher IFN-β gene expression levels compared to wild-type subjects (P<0.05; MWU test and dramatically altered resultant cytokine profiles. We conclude that these TLR4 SNPs affect constitutive receptor activity which impacts on the hosts ability to respond to LPS challenge leading to a dysregulated sub-optimal immune response to infection.
Modelling comonotonic group-life under dependent decrement causes
Wang, Dabuxilatu
2011-01-01
Comonotonicity had been a extreme case of dependency between random variables. This article consider an extension of single life model under multiple dependent decrement causes to the case of comonotonic group-life.
Strain Rate Dependant Material Model for Orthotropic Metals
International Nuclear Information System (INIS)
Vignjevic, Rade
2016-01-01
In manufacturing processes anisotropic metals are often exposed to the loading with high strain rates in the range from 10"2 s"-"1 to 10"6 s"-"1 (e.g. stamping, cold spraying and explosive forming). These types of loading often involve generation and propagation of shock waves within the material. The material behaviour under such a complex loading needs to be accurately modelled, in order to optimise the manufacturing process and achieve appropriate properties of the manufactured component. The presented research is related to development and validation of a thermodynamically consistent physically based constitutive model for metals under high rate loading. The model is capable of modelling damage, failure and formation and propagation of shock waves in anisotropic metals. The model has two main parts: the strength part which defines the material response to shear deformation and an equation of state (EOS) which defines the material response to isotropic volumetric deformation [1]. The constitutive model was implemented into the transient nonlinear finite element code DYNA3D [2] and our in house SPH code. Limited model validation was performed by simulating a number of high velocity material characterisation and validation impact tests. The new damage model was developed in the framework of configurational continuum mechanics and irreversible thermodynamics with internal state variables. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Tuller and Bucher [3], Klepaczko [4] was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model Follansbee and Kocks [5], 1988; Chen and Gray [6] which was used to control evolution of flow stress during plastic
A short note on multivariate dependence modeling
Czech Academy of Sciences Publication Activity Database
Bína, V.; Jiroušek, Radim
2013-01-01
Roč. 49, č. 3 (2013), s. 420-432 ISSN 0023-5954 Grant - others:GA ČR(CZ) GAP403/12/2175 Program:GA Institutional support: RVO:67985556 Keywords : multivariate distribution * dependence * copula Subject RIV: IN - Informatics, Computer Science Impact factor: 0.563, year: 2013 http://library.utia.cas.cz/separaty/2014/MTR/jirousek-0427848.pdf
Modelling the dependability in Network Function Virtualisation
Lin, Wenqi
2017-01-01
Network Function Virtualization has been brought up to allow the TSPs to have more possibilities and flexibilities to provision services with better load optimizing, energy utilizing and dynamic scaling. Network functions will be decoupled from the underlying dedicated hardware into software instances that run on commercial off-the-shelf servers. However, the development is still at an early stage and the dependability concerns raise by the virtualization of the network functions are touched ...
Rank dependent expected utility models of tax evasion.
Erling Eide
2001-01-01
In this paper the rank-dependent expected utility theory is substituted for the expected utility theory in models of tax evasion. It is demonstrated that the comparative statics results of the expected utility, portfolio choice model of tax evasion carry over to the more general rank dependent expected utility model.
International Nuclear Information System (INIS)
Lu, W.R.; Gao, C.Y.; Ke, Y.L.
2014-01-01
The two-phase metallic composites, composed by the metallic particulate reinforcing phase and the metallic matrix phase, have attracted a lot of attention in recent years for their excellent material properties. However, the constitutive modeling of two-phase metallic composites is still lacking currently. Most used models for them are basically oriented for single-phase homogeneous metallic materials, and have not considered the microstructural evolution of the components in the composite. This paper develops a new constitutive model for two-phase metallic composites based on the thermally activated dislocation motion mechanism and the volume fraction evolution. By establishing the relation between microscopic volume fraction and macroscopic state variables (strain, strain rate and temperature), the evolution law of volume fraction during the plastic deformation in two-phase composites is proposed for the first time and introduced into the new model. Then the new model is applied to a typical two-phase tungsten-based composite – 93W–4.9Ni–2.1Fe tungsten heavy alloy. It has been found that our model can effectively describe the plastic deformation behaviors of the tungsten-based composite, because of the introduction of volume fraction evolution and the connecting of macroscopic state variables and micromechanical characteristics in the constitutive model. The model's validation by experimental data indicates that our new model can provide a satisfactory prediction of flow stress for two-phase metallic composites, which is better than conventional single-phase homogeneous constitutive models including the Johnson–Cook (JC), Khan–Huang–Liang (KHL), Nemat-Nasser–Li (NNL), Zerilli–Armstrong (ZA) and Voyiadjis–Abed (VA) models
Directory of Open Access Journals (Sweden)
Guillermo Fernández‐Collazo
2014-08-01
Full Text Available La respuesta mecánica de las paredes arteriales se modifica como consecuencia del envejecimiento y el desarrollo de enfermedades. Estos cambios se ven reflejados en modificaciones en su estructura, composición, resistencia y forma. La predicción de su comportamiento en dependencia de su estado fisiológico usando modelos biomecánicos se muestra como una potente herramienta en el tratamiento y diagnóstico de aneurismas, ateroesclerosis, hipertensión arterial entre otras. Realizando un profundo análisis de la literatura consultada se presenta un estudio bibliográfico de los modelos constitutivos de paredes arteriales en su respuesta pasiva, clasificándolos y destacando sus principales ventajas, desventajas y la evolución de estos desde los puramente fenomenológicos hasta los más complejos.Palabras claves: modelos, arterias, respuesta pasiva, biomecánica._______________________________________________________________________________AbstractThe mechanical response of arterial walls is modified as a result of aging and disease development. These changes are reflected in changes in its composition, strength, shape and structure. The prediction of their behavior, depending on their physiological state used biomechanical models is shown as a powerful tool in the treatment and diagnosis of aneurysms, atherosclerosis, hypertensionand others. It´s presented in its passive response, a profound analysis of the literature and the bibliographic review of the constitutive models of arterial walls, classifying and highlighting their main advantages, disadvantages and the volution from purely phenomenological to the most complex response.Key words: models, artery, passive response, biomechanics.
International Nuclear Information System (INIS)
Inoue, T.; Ohno, N.; Suzuki, A.; Igari, T.
1987-01-01
The authorization of constitutive models under plasticity-creep condition and life estimation methods in fatigue-creep regime is expected to be achieved from the viewpoint of design purposes of high temperature components of reactor structures. The present Subcommittee has performed the cooperative project consisting of the following two parts: (A) To review and evaluate inelastic constitutive models relevant to the material response under plasticity-creep interaction and (B) to recommend some adequate methods to estimate material life under fatigue-creep interaction by taking account of the effect of plasticity-creep interaction on the stress-strain hysteresis loops. The material treated is normalized and tempered 2 1/4 Cr-1Mo steel at 600 0 C. The part (A) plays a preliminary role for the part (B), since the constitutive models examined in the part (A) were used to describe the stress-strain hysteresis loops necessary to predict analytically the lives under fatigue-creep interaction. In the part (A), thererfore, it is important to check how accurately the constitutive models simulate the stress-strain hysteresis loops especially by taking account of the effect of plasticity-creep interaction. (orig./GL)
International Nuclear Information System (INIS)
Chen, Ming-Song; Lin, Y.C.; Li, Kuo-Kuo; Chen, Jian
2016-01-01
In authors' previous work (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0371-6, 2016), the nonlinear unloading behavior of a typical Ni-based superalloy was investigated by hot compressive experiments with intermediate unloading-reloading cycles. The characters of unloading curves were discussed in detail, and a new elasto-viscoplastic constitutive model was proposed to describe the nonlinear unloading behavior of the studied Ni-based superalloy. Still, the functional relationships between the deformation temperature, strain rate, pre-strain and the parameters of the proposed constitutive model need to be established. In this study, the effects of deformation temperature, strain rate and pre-strain on the parameters of the new constitutive model proposed in authors' previous work (Chen et al. 2016) are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate and pre-strain. (orig.)
Musaeva, Z A; Khapaev, B A; Fedotova, A V; Oknin, V Iu
1999-01-01
Clinical-psychologic study, spectral analysis of heart rate variability, 24-h monitoring of arterial pressure (AP) were performed in 20 patients with chronic constitutional arterial hypotension and in 18 patients with neurogenic syncopal states. Both groups were characterised by considerable manifestations of the syndrome of autonomic dystonia, by emotional-personal disorders that correlated with elevated level of slow-waves of the second order in heart rhythms' spectrum. That testified activation of supersegmental sympathetic-adrenal systems. Disorders in sympathetic-parasympathetic correlations were specific in each group. In patients with arterial hypotension disorder of circadian rhythm was observed in the form of superfluous decrease of diastolic AP during sleep. Circadian rhythms in patients with neurogenic syncopes have parameters characteristic for normals showing a preverved chronobiologic AP regulation. A role of the alterations revealed in pathogenesis of arterial hypotensionis discussed.
The Constitutional Amendment Process
Chism, Kahlil
2005-01-01
This article discusses the constitutional amendment process. Although the process is not described in great detail, Article V of the United States Constitution allows for and provides instruction on amending the Constitution. While the amendment process currently consists of six steps, the Constitution is nevertheless quite difficult to change.…
Constitutional Rights in Indonesia
Judhariksawan
2018-01-01
The constitution is fundamental to the life of the modern state as a major foothold in state governance. Includes the guarantee of constitutional rights of citizens. The The constitution is the basis of state organizers to be implemented so that the state is obliged to guarantee the fulfillment of citizens' constitutional rights. Human rights have become an important part of the modern constitution. This study will describe how human rights guarantees become part of consti...
The spin dependent odderon in the diquark model
Energy Technology Data Exchange (ETDEWEB)
Szymanowski, Lech [National Centre for Nuclear Research (NCBJ), Warsaw (Poland); Zhou, Jian, E-mail: jzhou@sdu.edu.cn [School of Physics, & Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan, Shandong 250100 (China); Nikhef and Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, NL-1081 HV Amsterdam (Netherlands)
2016-09-10
In this short note, we report a di-quark model calculation for the spin dependent odderon and demonstrate that the asymmetrical color source distribution in the transverse plane of a transversely polarized hadron plays an essential role in yielding the spin dependent odderon. This calculation confirms the earlier finding that the spin dependent odderon is closely related to the parton orbital angular momentum.
Constitutional changes and the dilemmas of constitutionalism
Directory of Open Access Journals (Sweden)
Arsen Bačić
2009-01-01
Full Text Available The need to develop constitutional mechanisms whose aim is to resolve fundamental relations in society demands the widest possible inclusion of all of society’s active participants in the discussion on the need to adopt or revise the Constitution. The opening of every new round of constitutional changes is of great importance because it always unlocks certain new and important questions. The answers to those questions should be offered by state authority (policy and civil society including science and its disciplines. In this paper, the author mentions several topics which are of interest in the current discussion on the significance of current constitutional changes for the future of the development of constitutionalism and democracy in the Republic of Croatia. These are above all topics of political and legal constitutionalism and suggestions linked to strengthening the independence of judicial powers. The author advocates consistent application of constitutional control and check mechanisms which exclude all insularity of judicial powers in relation to democratic control.
Fixed transaction costs and modelling limited dependent variables
Hempenius, A.L.
1994-01-01
As an alternative to the Tobit model, for vectors of limited dependent variables, I suggest a model, which follows from explicitly using fixed costs, if appropriate of course, in the utility function of the decision-maker.
Modeling spatial processes with unknown extremal dependence class
Huser, Raphaë l G.; Wadsworth, Jennifer L.
2017-01-01
Many environmental processes exhibit weakening spatial dependence as events become more extreme. Well-known limiting models, such as max-stable or generalized Pareto processes, cannot capture this, which can lead to a preference for models
Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam
2018-03-01
The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.
Modeling Cycle Dependence in Credit Insurance
Directory of Open Access Journals (Sweden)
Anisa Caja
2014-03-01
Full Text Available Business and credit cycles have an impact on credit insurance, as they do on other businesses. Nevertheless, in credit insurance, the impact of the systemic risk is even more important and can lead to major losses during a crisis. Because of this, the insurer surveils and manages policies almost continuously. The management actions it takes limit the consequences of a downturning cycle. However, the traditional modeling of economic capital does not take into account this important feature of credit insurance. This paper proposes a model aiming to estimate future losses of a credit insurance portfolio, while taking into account the insurer’s management actions. The model considers the capacity of the credit insurer to take on less risk in the case of a cycle downturn, but also the inverse, in the case of a cycle upturn; so, losses are predicted with a more dynamic perspective. According to our results, the economic capital is over-estimated when not considering the management actions of the insurer.
International Nuclear Information System (INIS)
Inoue, T.; Ohno, N.; Suzuki, A.; Igari, T.
1987-01-01
In order to evaluate the validity of existing inelastic constitutive models under the condition of plasticity-creep interaction, ten kinds of constitutive models were applied to sixteen bench mark problems of four categories, and the calculated results were compared with the experiments of 2 1/4Cr-1Mo steel at 600 0 C. The present bench mark project provides the following remarks: (1) The strain rate effect on the stress-strain relation can be represented, in some degree, even by a simple superposition model of classical type, and some of unified models describe the saturation of increase in flow stress with higher strain rate. (2) The characteristics of the plasticity-creep interaction were predicted by the modified superposition model as well as by unified ones in the actual calculations for the propounded problems. (3) Although the sophisticated unified constitutive models tend to give qualitatively better results, the complicated procedures in determining material parameters from the data of conventional tests need some improvements. The subcommittee has been reorganized to focus her attention in applying thus developed results under uniaxial stress state to multiaxial one, and the out-put will be expected to report in a couple of years
Unanimous Constitutional Consent and the Immigration Problem
Josten, Stefan D.; Zimmermann, Klaus W.
2004-01-01
This paper utilizes the cross-cutting cleavages approach to evaluate the probability of a unanimous constitutional consent and, based on these results, discusses the implications of immigration on an existing constitutional consent. It is shown that previous conclusions of beneficial effects stemming from a multitude of political dimensions for a unanimous constitutional consent crucially depend on the assumption of an extreme mode of intrapersonal compensation of constitutional majority and ...
Modeling Precipitation Dependent Forest Resilience in India
Das, P.; Behera, M. D.; Roy, P. S.
2018-04-01
The impact of long term climate change that imparts stress on forest could be perceived by studying the regime shift of forest ecosystem. With the change of significant precipitation, forest may go through density change around globe at different spatial and temporal scale. The 100 class high resolution (60 meter spatial resolution) Indian vegetation type map was used in this study recoded into four broad categories depending on phrenology as (i) forest, (ii) scrubland, (iii) grassland and (iv) treeless area. The percentage occupancy of forest, scrub, grass and treeless were observed as 19.9 %, 5.05 %, 1.89 % and 7.79 % respectively. Rest of the 65.37 % land area was occupied by the cropland, built-up, water body and snow covers. The majority forest cover were appended into a 5 km × 5 km grid, along with the mean annual precipitation taken from Bioclim data. The binary presence and absence of different vegetation categories in relates to the annual precipitation was analyzed to calculate their resilience expressed in probability values ranging from 0 to 1. Forest cover observed having resilience probability (Pr) < 0.3 in only 0.3 % (200 km2) of total forest cover in India, which was 4.3 % < 0.5 Pr. Majority of the scrubs and grass (64.92 % Pr < 0.5) from North East India which were the shifting cultivation lands showing low resilience, having their high tendency to be transform to forest. These results have spatial explicitness to highlight the resilient and non-resilient distribution of forest, scrub and grass, and treeless areas in India.
MODELING PRECIPITATION DEPENDENT FOREST RESILIENCE IN INDIA
Directory of Open Access Journals (Sweden)
P. Das
2018-04-01
Full Text Available The impact of long term climate change that imparts stress on forest could be perceived by studying the regime shift of forest ecosystem. With the change of significant precipitation, forest may go through density change around globe at different spatial and temporal scale. The 100 class high resolution (60 meter spatial resolution Indian vegetation type map was used in this study recoded into four broad categories depending on phrenology as (i forest, (ii scrubland, (iii grassland and (iv treeless area. The percentage occupancy of forest, scrub, grass and treeless were observed as 19.9 %, 5.05 %, 1.89 % and 7.79 % respectively. Rest of the 65.37 % land area was occupied by the cropland, built-up, water body and snow covers. The majority forest cover were appended into a 5 km × 5 km grid, along with the mean annual precipitation taken from Bioclim data. The binary presence and absence of different vegetation categories in relates to the annual precipitation was analyzed to calculate their resilience expressed in probability values ranging from 0 to 1. Forest cover observed having resilience probability (Pr < 0.3 in only 0.3 % (200 km2 of total forest cover in India, which was 4.3 % < 0.5 Pr. Majority of the scrubs and grass (64.92 % Pr < 0.5 from North East India which were the shifting cultivation lands showing low resilience, having their high tendency to be transform to forest. These results have spatial explicitness to highlight the resilient and non-resilient distribution of forest, scrub and grass, and treeless areas in India.
A random energy model for size dependence : recurrence vs. transience
Külske, Christof
1998-01-01
We investigate the size dependence of disordered spin models having an infinite number of Gibbs measures in the framework of a simplified 'random energy model for size dependence'. We introduce two versions (involving either independent random walks or branching processes), that can be seen as
Stability analysis for a general age-dependent vaccination model
International Nuclear Information System (INIS)
El Doma, M.
1995-05-01
An SIR epidemic model of a general age-dependent vaccination model is investigated when the fertility, mortality and removal rates depends on age. We give threshold criteria of the existence of equilibriums and perform stability analysis. Furthermore a critical vaccination coverage that is sufficient to eradicate the disease is determined. (author). 12 refs
Constitutive relation of concrete containing meso-structural characteristics
Directory of Open Access Journals (Sweden)
Li Guo
Full Text Available A constitutive model of concrete is proposed based on the mixture theory of porous media within thermodynamic framework. By treating concrete as a multi-phase multi-component mixture, we constructed the constitutive functions for elastic, interfacial, and plastic strain energy respectively. A constitutive law of concrete accommodating internal micro-cracks and interfacial boundaries was established. The peak stress predicted with the developed model depends primarily on the volume ratio of aggregate, and the results explain very well reported experimental phenomena. The strain-stress curve under uniaxial loading was found in a good agreement with experimental data for concrete with three different mixing proportions. Keywords: Constitutive model of concrete, Mixture theory of porous media, Meso-structure, Interfacial energy
International Nuclear Information System (INIS)
Zhang, Yijun; Cheng, Yang-Tse; Grummon, David S.
2007-01-01
Indentation-induced shape memory and superelastic effects are recently discovered thermo-mechanical behaviors that may find important applications in many areas of science and engineering. Theoretical understanding of these phenomena is challenging because both martensitic phase transformation and slip plasticity exist under complex contact loading conditions. In this paper, we develop a three-dimensional constitutive model of shape memory alloys with plasticity. Spherical indentation-induced superelasticity in a NiTi shape memory alloy was simulated and compared to experimental results on load-displacement curves and recovery ratios. We show that shallow indents have complete recovery upon unloading, where the size of the phase transformation region is about two times the contact radius. Deep indents have only partial recovery when plastic deformation becomes more prevalent in the indent-affected zone
International Nuclear Information System (INIS)
Jaber, M Ben; Mehrez, S; Ghazouani, O
2014-01-01
In this paper, a new 1D constitutive model for shape memory alloy using strain and temperature as control variables is presented. The new formulation is restricted to the 1D stress case and takes into account the martensite reorientation and the asymmetry of the SMA behavior in tension and compression. Numerical implementation of the new model in a finite element code was conducted. The numerical results for superelastic behavior in tension and compression tests are presented and were compared to experimental data taken from the literature. Other numerical tests are presented, showing the model’s ability to reproduce the main aspects of SMA behavior such as the shape memory effect and the martensite reorientation under cyclic loading. Finally, to demonstrate the utility of the new constitutive model, a dynamic test of a bi-clamped SMA bending beam under forced oscillation is described. (paper)
Incorporating Pass-Phrase Dependent Background Models for Text-Dependent Speaker verification
DEFF Research Database (Denmark)
Sarkar, Achintya Kumar; Tan, Zheng-Hua
2018-01-01
-dependent. We show that the proposed method significantly reduces the error rates of text-dependent speaker verification for the non-target types: target-wrong and impostor-wrong while it maintains comparable TD-SV performance when impostors speak a correct utterance with respect to the conventional system......In this paper, we propose pass-phrase dependent background models (PBMs) for text-dependent (TD) speaker verification (SV) to integrate the pass-phrase identification process into the conventional TD-SV system, where a PBM is derived from a text-independent background model through adaptation using...... the utterances of a particular pass-phrase. During training, pass-phrase specific target speaker models are derived from the particular PBM using the training data for the respective target model. While testing, the best PBM is first selected for the test utterance in the maximum likelihood (ML) sense...
Constitutive equation of butter at static loading
Directory of Open Access Journals (Sweden)
Šárka Nedomová
2008-01-01
Full Text Available This study focuses on the constitutive modelling of finite deformation in the commercially obtained butter (composition is 83 % of milk fat at the temperature 17–20 °C. The specimens from the butter (height L0=14.6 mm and diameter 20 mm have been compressed between two parallel metal plates at a fixed crosshead speed 20 mm/min using of the testing device TIRA TEST. The force F and the deformation ∆L are measured during compression and both quantities are recorded. The experimental records force F – displacement (deformation were obtained. These records have been transformed into stress–strain dependences and into true stress–true strain. The basic data on the strain behaviour of a butter under low strain rates have been obtained. Experimental results show that the behaviour of butter can be described by a hyperelastic material model. In this model, the quasi–static response is defined by compressible hyperelasticity, whereby the strain energy potential is assumed to be representable by a newly proposed polynomial series with three independent parameters. The material parameters in the constitutive model are determined from compression test. A comparison of predictions based on the proposed constitutive equation with experiments shows that the model is able to describe the strain behaviour of the butter examined.
Directory of Open Access Journals (Sweden)
Dong-Hoon Lee
2010-11-01
Full Text Available Genomic imprints-parental allele-specific DNA methylation marks at the differentially methylated regions (DMRs of imprinted genes-are erased and reestablished in germ cells according to the individual's sex. Imprint establishment at paternally methylated germ line DMRs occurs in fetal male germ cells. In prospermatogonia, the two unmethylated alleles exhibit different rates of de novo methylation at the H19/Igf2 imprinting control region (ICR depending on parental origin. We investigated the nature of this epigenetic memory using bisulfite sequencing and allele-specific ChIP-SNuPE assays. We found that the chromatin composition in fetal germ cells was biased at the ICR between the two alleles with the maternally inherited allele exhibiting more H3K4me3 and less H3K9me3 than the paternally inherited allele. We determined genetically that the chromatin bias, and also the delayed methylation establishment in the maternal allele, depended on functional CTCF insulator binding sites in the ICR. Our data suggest that, in primordial germ cells, maternally inherited allele-specific CTCF binding sets up allele-specific chromatin differences at the ICR. The erasure of these allele-specific chromatin marks is not complete before the process of de novo methylation imprint establishment begins. CTCF-dependent allele-specific chromatin composition imposes a maternal allele-specific delay on de novo methylation imprint establishment at the H19/Igf2 ICR in prospermatogonia.
Constitutional reform as process
Schultze, Rainer-Olaf (Prof.)
2000-01-01
Constitutional reform as process. - In: The politics of constitutional reform in North America / Rainer-Olaf Schultze ... (eds.). - Opladen : Leske + Budrich, 2000. - S. 11-31. - (Politikwissenschaftliche paperbacks ; 30)
A model for rate-dependent but time-independent material behavior in cyclic plasticity
International Nuclear Information System (INIS)
Dafalias, Y.F.; Ramey, M.R.; Sheikh, I.
1977-01-01
This paper presents a model for rate-dependent but time independent material behavior under cyclic loading in the plastic range. What is referred to as time independent behavior here, is the absence of creep and relaxation phenomena from the behavior of the model. The notion of plastic internal variables (piv) is introduced, as properly invariant scalars or second order tensors, whose constitutive relations are rate-type equations not necessarily homogeneous of order one in the rates, as it would be required for independent plasticity. The concept of a yield surface in the strain space and a loading function in terms of the total strain rate is introduced, where the sign of the loading function defines zero or non-zero value of the rate of piv. Thus rate dependence is achieved without time dependent behaviour (no creep or relaxation). In addition, discrete memory parameters associated with the most recent event of unloading-reloading in different directions enter the constitutive relations for the piv. (Auth.)
International Nuclear Information System (INIS)
Shigeno, Yoshimasa; Namikawa, Tsutomu; Takaji, Kazuhiko
2002-02-01
On the R and D of the high-level radioactive waste repository, it is essential that Engineered Barrier System (EBS) is stable mechanically over a long period of time for maintaining ability required to EBS. After closing the repository, the external force is affected to buffer for a long period of time. So, it is necessary to make clear the mechanical deformation behavior of buffer to the external force, because of carrying out safety assessment of EBS accurately. In this report, the applicable constitutive model have been narrowed down from within many one for clay proposed up to the present, from the viewpoint of adoption possibility to the evaluation of the long-term mechanical behavior for buffer. To put it concretely, the investigation of constitutive models for clay, the applicability confirmation of the representative model by analysis using test data, and the proposal of experimental method available for simulation analysis is carried out. The results of the elemental test simulations using Adachi-Oka model and Sekiguchi-Ohta model as the representative model of ''Over stress model'' and Flow surface model'' are as follows. Both of the models are not make much difference. A limited part of the test results is expressed suitably according to the appropriate decision of viscous parameters, but the blanket behavior of each tests is not expressed suitably in either model. (author)
Time-dependent Hartree approximation and time-dependent harmonic oscillator model
International Nuclear Information System (INIS)
Blaizot, J.P.
1982-01-01
We present an analytically soluble model for studying nuclear collective motion within the framework of the time-dependent Hartree (TDH) approximation. The model reduces the TDH equations to the Schroedinger equation of a time-dependent harmonic oscillator. Using canonical transformations and coherent states we derive a few properties of the time-dependent harmonic oscillator which are relevant for applications. We analyse the role of the normal modes in the time evolution of a system governed by TDH equations. We show how these modes couple together due to the anharmonic terms generated by the non-linearity of the theory. (orig.)
Constitutional orders in multinational firms
DEFF Research Database (Denmark)
Hull Kristensen, Peer; Morgan, Glenn
Multinationals are faced with the problem of how to coordinate different actors and stop `fiefdoms' emerging that inhibits the achievement of transnational cooperation? We identify this as a problem of `constitutional ordering' in the firm. Drawing on Varieties of Capitalism approaches, we explore...... how multinationals from different contexts seek to create constitutional orders. We argue that the models which exist appear to be destructive of coordination. We explore the implications for MNCs....
International Nuclear Information System (INIS)
Bardelcik, Alexander; Worswick, Michael J.; Wells, Mary A.
2014-01-01
Highlights: • Gleeble tests were conducted to quench and simultaneously deform boron steel. • Different as-quenched vol. fractions of martensite, bainite and ferrite were observed. • Low to int. strain rate tensile tests were conducted on the as-quenched materials. • The presence of ferrite improved the uniform elongation, hardening rate and toughness. • A rate sensitive const. model was developed for varying vol fract. mart/bain/ferrite. - Abstract: This paper examines the relationship between as-formed microstructure and mechanical properties of a hot stamped boron steel used in automotive structural applications. Boron steel sheet metal blanks were austenized and quenched at cooling rates of 30 °C/s, 15 °C/s and 10 °C/s within a Gleeble thermal–mechanical simulator. For each cooling rate condition, the blanks were simultaneously deformed at temperatures of 600 °C and 800 °C. A strain of approximately 0.20 was imposed in the middle of the blanks, from which miniature tensile specimens were extracted. Depending on the cooling rate and deformation temperature imposed on the specimens, some of the as-quenched microstructures consisted of predominantly martensite and bainite, while others consisted of martensite, bainite and ferrite. Optical and SEM metallographraphic techniques were used to quantify the area fractions of the phases present and quasi-static (0.003 s −1 ) uniaxial tests were conducted on the miniature tensile specimens. The results revealed that an area fraction of ferrite greater than 6% led to an increased uniform elongation and an increase in n-value without affecting the strength of the material for equivalent hardness levels. This finding resulted in improved energy absorption due to the presence of ferrite and showed that a material with a predominantly bainitic microstructure containing 16% ferrite (with 257 HV) resulted in a 28% increase in energy absorption when compared to a material condition that was fully bainitic with
Transnational Constitutional Law
Zumbansen, P (Peer); K.I. Bhatt (Kinnari)
2018-01-01
textabstractThis chapter provides an overview of the emerging field of transnational constitutional law (TCL). Whilst questions of constitutional law are typically discussed in the context of a specific domestic legal setting, a salient strategy of TCL is to understand constitutional law and its
Directory of Open Access Journals (Sweden)
Sarah M Wilson
2014-07-01
Full Text Available Activity-dependent neurite outgrowth is a highly complex, regulated process with important implications for neuronal circuit remodeling in development as well as in seizure-induced sprouting in epilepsy. Recent work has linked outgrowth to collapsin response mediator protein 2 (CRMP2, an intracellular phosphoprotein originally identified as axon guidance and growth cone collapse protein. The neurite outgrowth promoting function of CRMP2 is regulated by its phosphorylation state. In this study, depolarization (potassium chloride-driven activity increased the level of active CRMP2 by decreasing its phosphorylation by GSK3β via a reduction in priming by Cdk5. To determine the contribution of CRMP2 in activity-driven neurite outgrowth, we screened a limited set of compounds for their ability to reduce neurite outgrowth but not modify voltage-gated sodium channel (VGSC biophysical properties. This led to the identification of (S-lacosamide ((S-LCM, a stereoisomer of the clinically used antiepileptic drug (R-LCM (Vimpat®, as a novel tool for preferentially targeting CRMP2-mediated neurite outgrowth. Whereas (S-LCM was ineffective in targeting VGSCs, the presumptive pharmacological targets of (R-LCM, (S-LCM was more efficient than (R-LCM in subverting neurite outgrowth. Biomolecular interaction analyses revealed that (S-LCM bound to wildtype CRMP2 with low micromolar affinity, similar to (R-LCM. Through the use of this novel tool, the activity-dependent increase in neurite outgrowth observed following depolarization was characterized to be reliant on CRMP2 function. Knockdown of CRMP2 by siRNA in cortical neurons resulted in reduced CRMP2-dependent neurite outgrowth; incubation with (S-LCM phenocopied this effect. Other CRMP2-mediated processes were unaffected. (S-LCM subverted neurite outgrowth not by affecting the canonical CRMP2-tubulin association but rather by impairing the ability of CRMP2 to promote tubulin polymerization, events that are
Model dependence of isospin sensitive observables at high densities
Energy Technology Data Exchange (ETDEWEB)
Guo, Wen-Mei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Science, Huzhou Teachers College, Huzhou 313000 (China); Yong, Gao-Chan, E-mail: yonggaochan@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Yongjia [School of Science, Huzhou Teachers College, Huzhou 313000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Qingfeng [School of Science, Huzhou Teachers College, Huzhou 313000 (China); Zhang, Hongfei [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zuo, Wei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2013-10-07
Within two different frameworks of isospin-dependent transport model, i.e., Boltzmann–Uehling–Uhlenbeck (IBUU04) and Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport models, sensitive probes of nuclear symmetry energy are simulated and compared. It is shown that neutron to proton ratio of free nucleons, π{sup −}/π{sup +} ratio as well as isospin-sensitive transverse and elliptic flows given by the two transport models with their “best settings”, all have obvious differences. Discrepancy of numerical value of isospin-sensitive n/p ratio of free nucleon from the two models mainly originates from different symmetry potentials used and discrepancies of numerical value of charged π{sup −}/π{sup +} ratio and isospin-sensitive flows mainly originate from different isospin-dependent nucleon–nucleon cross sections. These demonstrations call for more detailed studies on the model inputs (i.e., the density- and momentum-dependent symmetry potential and the isospin-dependent nucleon–nucleon cross section in medium) of isospin-dependent transport model used. The studies of model dependence of isospin sensitive observables can help nuclear physicists to pin down the density dependence of nuclear symmetry energy through comparison between experiments and theoretical simulations scientifically.
A continuum mechanics constitutive framework for transverse isotropic soft tissues
Garcia-Gonzalez, D.; Jérusalem, A.; Garzon-Hernandez, S.; Zaera, R.; Arias, A.
2018-03-01
In this work, a continuum constitutive framework for the mechanical modelling of soft tissues that incorporates strain rate and temperature dependencies as well as the transverse isotropy arising from fibres embedded into a soft matrix is developed. The constitutive formulation is based on a Helmholtz free energy function decoupled into the contribution of a viscous-hyperelastic matrix and the contribution of fibres introducing dispersion dependent transverse isotropy. The proposed framework considers finite deformation kinematics, is thermodynamically consistent and allows for the particularisation of the energy potentials and flow equations of each constitutive branch. In this regard, the approach developed herein provides the basis on which specific constitutive models can be potentially formulated for a wide variety of soft tissues. To illustrate this versatility, the constitutive framework is particularised here for animal and human white matter and skin, for which constitutive models are provided. In both cases, different energy functions are considered: Neo-Hookean, Gent and Ogden. Finally, the ability of the approach at capturing the experimental behaviour of the two soft tissues is confirmed.
Modeling spatial processes with unknown extremal dependence class
Huser, Raphaël G.
2017-03-17
Many environmental processes exhibit weakening spatial dependence as events become more extreme. Well-known limiting models, such as max-stable or generalized Pareto processes, cannot capture this, which can lead to a preference for models that exhibit a property known as asymptotic independence. However, weakening dependence does not automatically imply asymptotic independence, and whether the process is truly asymptotically (in)dependent is usually far from clear. The distinction is key as it can have a large impact upon extrapolation, i.e., the estimated probabilities of events more extreme than those observed. In this work, we present a single spatial model that is able to capture both dependence classes in a parsimonious manner, and with a smooth transition between the two cases. The model covers a wide range of possibilities from asymptotic independence through to complete dependence, and permits weakening dependence of extremes even under asymptotic dependence. Censored likelihood-based inference for the implied copula is feasible in moderate dimensions due to closed-form margins. The model is applied to oceanographic datasets with ambiguous true limiting dependence structure.
Parameter dependence and outcome dependence in dynamical models for state vector reduction
International Nuclear Information System (INIS)
Ghirardi, G.C.; Grassi, R.; Butterfield, J.; Fleming, G.N.
1993-01-01
The authors apply the distinction between parameter independence and outcome independence to the linear and nonlinear models of a recent nonrelativistic theory of continuous state vector reduction. It is shown that in the nonlinear model there is a set of realizations of the stochastic process that drives the state vector reduction for which parameter independence is violated for parallel spin components in the EPR-Bohm setup. Such a set has an appreciable probability of occurrence (∼ 1/2). On the other hand, the linear model exhibits only extremely small parameter dependence effects. Some specific features of the models are investigated and it is recalled that, as has been pointed out recently, to be able to speak of definite outcomes (or equivalently of possessed objective elements of reality) at finite times, the criteria for their attribution to physical systems must be slightly changed. The concluding section is devoted to a detailed discussion of the difficulties met when attempting to take, as a starting point for the formulation of a relativistic theory, a nonrelativistic scheme which exhibits parameter dependence. Here the authors derive a theorem which identifies the precise sense in which the occurrence of parameter dependence forbids a genuinely relativistic generalization. Finally, the authors show how the appreciable parameter dependence of the nonlinear model gives rise to problems with relativity, while the extremely weak parameter dependence of the linear model does not give rise to any difficulty, provided the appropriate criteria for the attribution of definite outcomes are taken into account. 19 refs
Taylor, Zeike A; Kirk, Thomas B; Miller, Karol
2007-10-01
The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.
UNDERSTANDING INFORMAL CONSTITUTIONAL CHANGE
Directory of Open Access Journals (Sweden)
Stephen M. Griffin
2016-01-01
Full Text Available Amid much recent American work on the problem of informal constitutional change, this article stakes out a distinctive position. I argue that theories of constitutional change in the US must address the question of the relationship between the “small c” and “big C” Constitution and treat seriously the possibility of conflict between them. I stress the unavoidable role the text of the Constitution and structural doctrines of federalism and separation of powers play in this relationship and thus in constitutional change, both formal and informal. I therefore counsel against theories that rely solely on a practice-based approach or analogies between “small c” constitutional developments and British or Commonwealth traditions of the “unwritten” constitution and constitutional “conventions.” The alternative I advocate is to approach constitutional change from a historicist perspective that focuses attention on state building and the creation of new institutional capacities. This approach will allow us to make progress by highlighting that there can be multiple constitutional orders in a given historical era, thus accounting for the conflictual nature of contemporary constitutional development in the US.
A Structural Equation Approach to Models with Spatial Dependence
Oud, Johan H. L.; Folmer, Henk
We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it
A structural equation approach to models with spatial dependence
Oud, J.H.L.; Folmer, H.
2008-01-01
We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it
A Structural Equation Approach to Models with Spatial Dependence
Oud, J.H.L.; Folmer, H.
2008-01-01
We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it
1989-01-01
This document contains major provisions of the constitution adopted by Brazil on 5 October 1988. This constitution seeks to promote the welfare of all citizens without discrimination. The equality of all citizens is guaranteed, and the equal rights of women are specifically mentioned. Property rights are also guaranteed and defined. Female inmates are granted the right to remain with their children while breast feeding. Workers are guaranteed a minimum wage, a family allowance for dependents, maternity/paternity leave, specific incentives to protect the labor market for women, retirement benefits, free day care for preschool-age children, pay equity, and equal rights between tenured and sporadically employed workers. Agrarian reform provisions are given, including the authority to expropriate land. Social and economic policies to promote health are called for, and public health services are to be decentralized, to be integrated, and to foster community participation. Pension plan and social assistance provisions are outlined as are duties of the state in regard to education. The amount of money to be dedicated to education is set out, and a national educational plan is called for to achieve such goals as the eradication of illiteracy, the universalization of school attendance, the improvement of instruction, and the provision of vocational training. Specific measures are set out to protect and preserve the environment. Family policy deals with issues of marriage, the definition of a family, divorce, the right to family planning services, and the deterrence of domestic violence. Social protection provisions cover mothers and children, handicapped persons, and protection of minors. Finally, the customs and rights of Indians are protected, with special provisions given to protect land tenure and to protect the rights of Indians in water resource development and prospecting and mining activities.
Factor copula models for data with spatio-temporal dependence
Krupskii, Pavel
2017-10-13
We propose a new copula model for spatial data that are observed repeatedly in time. The model is based on the assumption that there exists a common factor that affects the measurements of a process in space and in time. Unlike models based on multivariate normality, our model can handle data with tail dependence and asymmetry. The likelihood for the proposed model can be obtained in a simple form and therefore parameter estimation is quite fast. Simulation from this model is straightforward and data can be predicted at any spatial location and time point. We use simulation studies to show different types of dependencies, both in space and in time, that can be generated by this model. We apply the proposed copula model to hourly wind data and compare its performance with some classical models for spatio-temporal data.
Factor copula models for data with spatio-temporal dependence
Krupskii, Pavel; Genton, Marc G.
2017-01-01
We propose a new copula model for spatial data that are observed repeatedly in time. The model is based on the assumption that there exists a common factor that affects the measurements of a process in space and in time. Unlike models based on multivariate normality, our model can handle data with tail dependence and asymmetry. The likelihood for the proposed model can be obtained in a simple form and therefore parameter estimation is quite fast. Simulation from this model is straightforward and data can be predicted at any spatial location and time point. We use simulation studies to show different types of dependencies, both in space and in time, that can be generated by this model. We apply the proposed copula model to hourly wind data and compare its performance with some classical models for spatio-temporal data.
Directory of Open Access Journals (Sweden)
Miranda Staples
2016-09-01
Full Text Available Alcohol use disorder currently affects approximately 18 million Americans, with at least half of these individuals having significant cognitive impairments subsequent to their chronic alcohol use. This is most widely apparent as frontal cortex dependent cognitive dysfunction, where executive function and decision making are severely compromised, as well as hippocampus dependent cognitive dysfunction, where contextual and temporal reasoning are negatively impacted. This review discusses the relevant clinical literature to support the theory that cognitive recovery in tasks dependent on the prefrontal cortex and hippocampus is temporally different across extended periods of abstinence from alcohol. Additional studies from preclinical models are discussed to support clinical findings. Finally, the unique cellular composition of the hippocampus and cognitive impairment dependent on the hippocampus is highlighted in the context of alcohol dependence.
Directory of Open Access Journals (Sweden)
Li-Chih Yang
2015-09-01
Full Text Available The hot deformation behavior of a Fe–22Cr–25Ni–3.5W–3Cu–1.5Co super-austenitic stainless steel was investigated using isothermal compression tests with a wide range of temperatures (1173–1373 K and strain rates (0.1–10 s−1. The results showed that all the flow curves gradually turned to balanced stress state without notable peak stress characteristics during the entire deformation, which indicated that the dynamic recovery behavior played a main restoration mechanism in the steel. Modeling constitutive equations relating to the temperature, strain rate and flow stress were proposed to determine the materials constants and activation energy necessary for deformation. In order to give the precise predicted values of the flow behavior, the influence of strain was identified using polynomial functions. The relationship of flow stress, temperature and strain rate was represented by the Zener-Hollomon parameter including the Arrhenius term. The predicted results validated that the developed constitutive equations can describe high temperature flow behavior well. Furthermore, a modified Zener-Hollomon parameter map of the studied steel was developed to clarify the restoration mechanism based on the constitutive modeling data and microstructural observation.
Andrews, Rachel E; Galileo, Deni S; Martin-DeLeon, Patricia A
2015-11-01
Deletion of the gene encoding the widely conserved plasma membrane calcium ATPase 4 (PMCA4), a major Ca(2+) efflux pump, leads to loss of sperm motility and male infertility in mice. PMCA4's partners in sperm and how its absence exerts its effect on fertility are unknown. We hypothesize that in sperm PMCA4 interacts with endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) which are rapidly activated by Ca(2+), and that these fertility-modulating proteins are present in prostasomes, which deliver them to sperm. We show that in human sperm PMCA4 is present on the acrosome, inner acrosomal membrane, posterior head, neck, midpiece and the proximal principal piece. PMCA4 localization showed inter- and intra-individual variation and was most abundant at the posterior head/neck junction, co-localizing with NOSs. Co-immunoprecipitations (Co-IP) revealed a close association of PMCA4 and the NOSs in Ca(2+) ionophore-treated sperm but much less so in uncapacitated untreated sperm. Fluorescence resonance energy transfer (FRET) showed a similar Ca(2+)-related association: PMCA4 and the NOSs are within 10 nm apart, and preferentially so in capacitated, compared with uncapacitated, sperm. FRET efficiencies varied, being significantly (P < 0.001) higher at high cytosolic Ca(2+) concentration ([Ca(2+)]c) in capacitated sperm than at low [Ca(2+)]c in uncapacitated sperm for the PMCA4-eNOS complex. These dynamic interactions were not seen for PMCA4-nNOS complexes, which had the highest FRET efficiencies. Further, along with Ca(2+)/CaM-dependent serine kinase (CASK), PMCA4 and the NOSs are present in the seminal plasma, specifically in prostasomes where Co-IP showed complexes similar to those in sperm. Finally, flow cytometry demonstrated that following co-incubation of sperm and seminal plasma, PMCA4 and the NOSs can be delivered in vitro to sperm via prostasomes. Our findings indicate that PMCA4 interacts simultaneously with the NOSs preferentially at
From dysfunction to adaptation: an interactionist model of dependency.
Bornstein, Robert F
2012-01-01
Contrary to clinical lore, a dependent personality style is associated with active as well as passive behavior and may be adaptive in certain contexts (e.g., in fostering compliance with medical and psychotherapeutic treatment regimens). The cognitive/interactionist model conceptualizes dependency-related responding in terms of four components: (a) motivational (a marked need for guidance, support, and approval from others); (b) cognitive (a perception of oneself as powerless and ineffectual); (c) affective (a tendency to become anxious when required to function autonomously); and (d) behavioral (use of diverse self-presentation strategies to strengthen ties to potential caregivers). Clinicians' understanding of the etiology and dynamics of dependency has improved substantially in recent years; current challenges include delineating useful subtypes of dependency, developing valid symptom criteria for Dependent Personality Disorder in DSM-5 and beyond, and working effectively with dependent patients in the age of managed care.
Transnational Constitutional Law
Zumbansen, P (Peer); Bhatt, Kinnari
2018-01-01
textabstractThis chapter provides an overview of the emerging field of transnational constitutional law (TCL). Whilst questions of constitutional law are typically discussed in the context of a specific domestic legal setting, a salient strategy of TCL is to understand constitutional law and its values by placing them ‘in context’ with existing and evolving cultural norms and political, social and economic discourses and struggles. Drawing on socio-legal investigations into the relationships ...
A simple shear limited, single size, time dependent flocculation model
Kuprenas, R.; Tran, D. A.; Strom, K.
2017-12-01
This research focuses on the modeling of flocculation of cohesive sediment due to turbulent shear, specifically, investigating the dependency of flocculation on the concentration of cohesive sediment. Flocculation is important in larger sediment transport models as cohesive particles can create aggregates which are orders of magnitude larger than their unflocculated state. As the settling velocity of each particle is determined by the sediment size, density, and shape, accounting for this aggregation is important in determining where the sediment is deposited. This study provides a new formulation for flocculation of cohesive sediment by modifying the Winterwerp (1998) flocculation model (W98) so that it limits floc size to that of the Kolmogorov micro length scale. The W98 model is a simple approach that calculates the average floc size as a function of time. Because of its simplicity, the W98 model is ideal for implementing into larger sediment transport models; however, the model tends to over predict the dependency of the floc size on concentration. It was found that the modification of the coefficients within the original model did not allow for the model to capture the dependency on concentration. Therefore, a new term within the breakup kernel of the W98 formulation was added. The new formulation results is a single size, shear limited, and time dependent flocculation model that is able to effectively capture the dependency of the equilibrium size of flocs on both suspended sediment concentration and the time to equilibrium. The overall behavior of the new model is explored and showed align well with other studies on flocculation. Winterwerp, J. C. (1998). A simple model for turbulence induced flocculation of cohesive sediment. .Journal of Hydraulic Research, 36(3):309-326.
Semantic concept-enriched dependence model for medical information retrieval.
Choi, Sungbin; Choi, Jinwook; Yoo, Sooyoung; Kim, Heechun; Lee, Youngho
2014-02-01
In medical information retrieval research, semantic resources have been mostly used by expanding the original query terms or estimating the concept importance weight. However, implicit term-dependency information contained in semantic concept terms has been overlooked or at least underused in most previous studies. In this study, we incorporate a semantic concept-based term-dependence feature into a formal retrieval model to improve its ranking performance. Standardized medical concept terms used by medical professionals were assumed to have implicit dependency within the same concept. We hypothesized that, by elaborately revising the ranking algorithms to favor documents that preserve those implicit dependencies, the ranking performance could be improved. The implicit dependence features are harvested from the original query using MetaMap. These semantic concept-based dependence features were incorporated into a semantic concept-enriched dependence model (SCDM). We designed four different variants of the model, with each variant having distinct characteristics in the feature formulation method. We performed leave-one-out cross validations on both a clinical document corpus (TREC Medical records track) and a medical literature corpus (OHSUMED), which are representative test collections in medical information retrieval research. Our semantic concept-enriched dependence model consistently outperformed other state-of-the-art retrieval methods. Analysis shows that the performance gain has occurred independently of the concept's explicit importance in the query. By capturing implicit knowledge with regard to the query term relationships and incorporating them into a ranking model, we could build a more robust and effective retrieval model, independent of the concept importance. Copyright © 2013 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Shigeno, Yoshimasa; Namikawa, Tsutomu; Takaji, Kazuhiko
2003-02-01
On the R and D of the high-level radioactive waste repository, it is essential that Engineered Barrier System (EBS) is stable mechanically over a long period of time for maintaining each ability required to EBS. After closing the repository, the various external forces will be affected to buffer intricately for a long period of time. So, to make clear the mechanical deformation behavior of buffer against the external force is important, because of carrying out safety assessment of EBS accurately. In this report, reversal sets of parameters are chosen for the previously selected constitutive models, Sekiguchi-Ohta model and Adachi-Oka model and the element tests are simulated using these parameters. Through the simulation, applicability of the constitutive models and these parameters is examined. Using these parameters, sensitivity analysis of prototype EBS model is also done. Analysis is carried out with two cases. 1: Settlement of the over with no corrosion expansion. 2: Settlement of the over pack with corrosion expansion. The results of the analysis area as follows. Settlement by the weight is mainly affected by the viscous parameters. The whole destruction of the EBS does not occur with any set of applicable parameters. Viscous parameters are important to evaluate the effect of the over pack expansion on surrounding rocks. (author)
Brands, D.W.A.; Peters, G.W.M.; Bovendeerd, P.H.M.
2004-01-01
Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. CurrentFE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model
Modeling of the angular dependence of plasma etching
International Nuclear Information System (INIS)
Guo Wei; Sawin, Herbert H.
2009-01-01
An understanding of the angular dependence of etching yield is essential to investigate the origins of sidewall roughness during plasma etching. In this article the angular dependence of polysilicon etching in Cl 2 plasma was modeled as a combination of individual angular-dependent etching yields for ion-initiated processes including physical sputtering, ion-induced etching, vacancy generation, and removal. The modeled etching yield exhibited a maximum at ∼60 degree sign off-normal ion angle at low flux ratio, indicative of physical sputtering. It transformed to the angular dependence of ion-induced etching with the increase in the neutral-to-ion flux ratio. Good agreement between the modeling and the experiments was achieved for various flux ratios and ion energies. The variation of etching yield in response to the ion angle was incorporated in the three-dimensional profile simulation and qualitative agreement was obtained. The surface composition was calculated and compared to x-ray photoelectron spectroscopy (XPS) analysis. The modeling indicated a Cl areal density of 3x10 15 atoms/cm 2 on the surface that is close to the value determined by the XPS analysis. The response of Cl fraction to ion energy and flux ratio was modeled and correlated with the etching yields. The complete mixing-layer kinetics model with the angular dependence effect will be used for quantitative surface roughening analysis using a profile simulator in future work.
An inventory model with dependent product demands and returns
Kiesmüller, G.P.; Laan, van der E.P.
2001-01-01
In this paper an inventory model for a single reusable product is investigated, in which the random returns depend explicitly on the demand stream. Further, the model distinguishes itself from most other research in this field by considering leadtimes and a finite planning horizon. We show that
Multivariate operational risk: dependence modelling with Lévy copulas
Böcker, K. and Klüppelberg, C.
2015-01-01
Simultaneous modelling of operational risks occurring in different event type/business line cells poses the challenge for operational risk quantification. Invoking the new concept of L´evy copulas for dependence modelling yields simple approximations of high quality for multivariate operational VAR.
A temperature dependent slip factor based thermal model for friction
Indian Academy of Sciences (India)
This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power required, the ...
Variance-based sensitivity indices for models with dependent inputs
International Nuclear Information System (INIS)
Mara, Thierry A.; Tarantola, Stefano
2012-01-01
Computational models are intensively used in engineering for risk analysis or prediction of future outcomes. Uncertainty and sensitivity analyses are of great help in these purposes. Although several methods exist to perform variance-based sensitivity analysis of model output with independent inputs only a few are proposed in the literature in the case of dependent inputs. This is explained by the fact that the theoretical framework for the independent case is set and a univocal set of variance-based sensitivity indices is defined. In the present work, we propose a set of variance-based sensitivity indices to perform sensitivity analysis of models with dependent inputs. These measures allow us to distinguish between the mutual dependent contribution and the independent contribution of an input to the model response variance. Their definition relies on a specific orthogonalisation of the inputs and ANOVA-representations of the model output. In the applications, we show the interest of the new sensitivity indices for model simplification setting. - Highlights: ► Uncertainty and sensitivity analyses are of great help in engineering. ► Several methods exist to perform variance-based sensitivity analysis of model output with independent inputs. ► We define a set of variance-based sensitivity indices for models with dependent inputs. ► Inputs mutual contributions are distinguished from their independent contributions. ► Analytical and computational tests are performed and discussed.
Model-driven dependability assessment of software systems
Bernardi, Simona; Petriu, Dorina C
2013-01-01
In this book, the authors present cutting-edge model-driven techniques for modeling and analysis of software dependability. Most of them are based on the use of UML as software specification language. From the software system specification point of view, such techniques exploit the standard extension mechanisms of UML (i.e., UML profiling). UML profiles enable software engineers to add non-functional properties to the software model, in addition to the functional ones. The authors detail the state of the art on UML profile proposals for dependability specification and rigorously describe the t
Global asymptotic stability of density dependent integral population projection models.
Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart
2012-02-01
Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.
Energy based model for temperature dependent behavior of ferromagnetic materials
International Nuclear Information System (INIS)
Sah, Sanjay; Atulasimha, Jayasimha
2017-01-01
An energy based model for temperature dependent anhysteretic magnetization curves of ferromagnetic materials is proposed and benchmarked against experimental data. This is based on the calculation of macroscopic magnetic properties by performing an energy weighted average over all possible orientations of the magnetization vector. Most prior approaches that employ this method are unable to independently account for the effect of both inhomogeneity and temperature in performing the averaging necessary to model experimental data. Here we propose a way to account for both effects simultaneously and benchmark the model against experimental data from ~5 K to ~300 K for two different materials in both annealed (fewer inhomogeneities) and deformed (more inhomogeneities) samples. This demonstrates that this framework is well suited to simulate temperature dependent experimental magnetic behavior. - Highlights: • Energy based model for temperature dependent ferromagnetic behavior. • Simultaneously accounts for effect of temperature and inhomogeneities. • Benchmarked against experimental data from 5 K to 300 K.
Watanabe, Hiroki; Kobayashi, Yo; Hashizume, Makoto; Fujie, Masakatsu G
2009-01-01
Radio frequency ablation (RFA) has increasingly been used over the past few years and RFA treatment is minimally invasive for patients. However, it is difficult for operators to control the precise formation of coagulation zones due to inadequate imaging modalities. With this in mind, an ablation system using numerical simulation to analyze the temperature distribution of the organ is needed to overcome this deficiency. The objective of our work is to develop a temperature dependent thermophysical liver model. First, an overview is given of the development of the thermophysical liver model. Second, a simulation to evaluate the effect of temperature dependence of the thermophysical properties of the liver is explained. Finally, the result of the simulation, which indicated that the temperature dependence of thermophysical properties accounts for temperature differences influencing the accuracy of RFA treatment is described.
Energy Technology Data Exchange (ETDEWEB)
Wattanachanya, Lalita, E-mail: lalita_md@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok (Thailand); Wang, Liping, E-mail: lipingwang05@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Millard, Susan M., E-mail: susan.millard@mater.uq.edu.au [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Lu, Wei-Dar, E-mail: weidar_lu@yahoo.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); O’Carroll, Dylan, E-mail: dylancocarroll@gmail.com [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States); Hsiao, Edward C., E-mail: Edward.Hsiao@ucsf.edu [Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, CA (United States); Conklin, Bruce R., E-mail: bconklin@gladstone.ucsf.edu [Gladstone Institute of Cardiovascular Disease, San Francisco, CA (United States); Department of Medicine, University of California, San Francisco, CA (United States); Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA (United States); Nissenson, Robert A., E-mail: Robert.Nissenson@ucsf.edu [Endocrine Research Unit, Veterans Affairs Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, CA (United States)
2015-05-01
G protein-coupled receptor (GPCR) signaling in osteoblasts (OBs) is an important regulator of bone formation. We previously described a mouse model expressing Rs1, an engineered constitutively active G{sub s}-coupled GPCR, under the control of the 2.3 kb Col I promoter. These mice showed a dramatic age-dependent increase in trabecular bone of femurs. Here, we further evaluated the effects of enhanced G{sub s} signaling in OBs on intramembranous bone formation by examining calvariae of 1- and 9-week-old Col1(2.3)/Rs1 mice and characterized the in vivo gene expression specifically occurring in osteoblasts with activated G{sub s} G protein-coupled receptor signaling, at the cellular level rather than in a whole bone. Rs1 calvariae displayed a dramatic increase in bone volume with partial loss of cortical structure. By immunohistochemistry, Osterix was detected in cells throughout the inter-trabecular space while Osteocalcin was expressed predominantly in cells along bone surfaces, suggesting the role of paracrine mediators secreted from OBs driven by 2.3 kb Col I promoter could influence early OB commitment, differentiation, and/or proliferation. Gene expression analysis of calvarial OBs revealed that genes affected by Rs1 signaling include those encoding proteins important for cell differentiation, cytokines and growth factors, angiogenesis, coagulation, and energy metabolism. The set of G{sub s}-GPCRs and other GPCRs that may contribute to the observed skeletal phenotype and candidate paracrine mediators of the effect of G{sub s} signaling in OBs were also determined. Our results identify novel detailed in vivo cellular changes of the anabolic response of the skeleton to G{sub s} signaling in mature OBs. - Highlights: • OB expression of an engineered G{sub s}-coupled receptor dramatically increases bone mass. • We investigated the changes in gene expression in vivo in enhanced OB G{sub s} signaling. • Genes in cell cycle and transcription were increased in
A sequence-dependent rigid-base model of DNA
Gonzalez, O.; Petkevičiutė, D.; Maddocks, J. H.
2013-02-01
A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can
A sequence-dependent rigid-base model of DNA.
Gonzalez, O; Petkevičiūtė, D; Maddocks, J H
2013-02-07
A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can
Energy Technology Data Exchange (ETDEWEB)
Chen, Ming-Song; Li, Kuo-Kuo [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Lin, Y.C. [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Central South University, Light Alloy Research Institute, Changsha (China); Chen, Jian [Changsha University of Science and Technology, School of Energy and Power Engineering, Key Laboratory of Efficient and Clean Energy Utilization, Changsha (China)
2016-09-15
The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain. (orig.)
International Nuclear Information System (INIS)
Chen, Ming-Song; Li, Kuo-Kuo; Lin, Y.C.; Chen, Jian
2016-01-01
The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain. (orig.)
Competition And Antitrust Law In Ecuadorian Constitution
Marcelo Marín Sevilla
2013-01-01
This work allows us to establish the Economic Constitution and the Competition Law (C.L) in the Constitution. Additionally, the paper analyzes whether the rules outlined in the C. L. and in doctrine are consistent and appropriate with the Constitution of Ecuador. The Competition and Antitrust Laws has rules for investigating and punishing the cartels, the abuses of power market (dominant position), the rules for merger control, the behaviors of Abuse of economic dependence, and unfair competi...
Ren, Sicong; Mazière, Matthieu; Forest, Samuel; Morgeneyer, Thilo F.; Rousselier, Gilles
2017-12-01
One of the most successful models for describing the Portevin-Le Chatelier effect in engineering applications is the Kubin-Estrin-McCormick model (KEMC). In the present work, the influence of dynamic strain ageing on dynamic recovery due to dislocation annihilation is introduced in order to improve the KEMC model. This modification accounts for additional strain hardening rate due to limited dislocation annihilation by the diffusion of solute atoms and dislocation pinning at low strain rate and/or high temperature. The parameters associated with this novel formulation are identified based on tensile tests for a C-Mn steel at seven temperatures ranging from 20 °C to 350 °C. The validity of the model and the improvement compared to existing models are tested using 2D and 3D finite element simulations of the Portevin-Le Chatelier effect in tension.
Nuclear symmetry energy in density dependent hadronic models
International Nuclear Information System (INIS)
Haddad, S.
2008-12-01
The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)
Directory of Open Access Journals (Sweden)
Borowiec Anna
2016-03-01
Full Text Available Computer Aided Engineering (CAE is commonly used in modern design of the various types of structures. There are two main issues/aspects that should be consider while using CAE in Geotechnics: the basic theory and material model. The paper deals with a problem of choosing the proper constitutive relationships which according to the authors are equally important in obtaining correct and reasonable results. This problem is illustrated by an example of dynamic calculations of fully saturated non-cohesive soils where liquefaction phenomenon is most likely to occur.
International Nuclear Information System (INIS)
Anderson, C.A.; Smith, P.D.
1978-01-01
The variable modulus-cracking model is capable of predicting the behavior of reinforced concrete structures (such as the reinforced plate under transverse pressure described previously) well into the range of nonlinear behavior including the prediction of the ultimate load. For unreinforced thick-walled concrete vessels under internal pressure the use of elastic--plastic concrete models in finite element codes enhances the apparent ductility of the vessels in contrast to variable modulus-cracking models that predict nearly instantaneous rupture whenever the tensile strength at the inner wall is exceeded. For unreinforced thick-walled end slabs representative of PCRV heads, the behavior predicted by finite element codes using variable modulus-cracking models is much stiffer in the nonlinear range than that observed experimentally. Although the shear type failures and crack patterns that are observed experimentally are predicted by such concrete models, the ultimate load carrying capacity and vessel-ductility are significantly underestimated. It appears that such models do not adequately model such features as aggregate interlock that could lead to an enhanced vessel reserve strength and ductility
USING COPULAS TO MODEL DEPENDENCE IN SIMULATION RISK ASSESSMENT
Energy Technology Data Exchange (ETDEWEB)
Dana L. Kelly
2007-11-01
Typical engineering systems in applications with high failure consequences such as nuclear reactor plants often employ redundancy and diversity of equipment in an effort to lower the probability of failure and therefore risk. However, it has long been recognized that dependencies exist in these redundant and diverse systems. Some dependencies, such as common sources of electrical power, are typically captured in the logic structure of the risk model. Others, usually referred to as intercomponent dependencies, are treated implicitly by introducing one or more statistical parameters into the model. Such common-cause failure models have limitations in a simulation environment. In addition, substantial subjectivity is associated with parameter estimation for these models. This paper describes an approach in which system performance is simulated by drawing samples from the joint distributions of dependent variables. The approach relies on the notion of a copula distribution, a notion which has been employed by the actuarial community for ten years or more, but which has seen only limited application in technological risk assessment. The paper also illustrates how equipment failure data can be used in a Bayesian framework to estimate the parameter values in the copula model. This approach avoids much of the subjectivity required to estimate parameters in traditional common-cause failure models. Simulation examples are presented for failures in time. The open-source software package R is used to perform the simulations. The open-source software package WinBUGS is used to perform the Bayesian inference via Markov chain Monte Carlo sampling.
Dependence of two-proton radioactivity on nuclear pairing models
Oishi, Tomohiro; Kortelainen, Markus; Pastore, Alessandro
2017-10-01
Sensitivity of two-proton emitting decay to nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the 6Be nucleus assuming α +p +p configuration, and its decay process is described as a time evolution of the three-body resonance state. For a proton-proton subsystem, a schematic density-dependent contact (SDDC) pairing model is employed. From the time-dependent calculation, we observed the exponential decay rule of a two-proton emission. It is shown that the density dependence does not play a major role in determining the decay width, which can be controlled only by the asymptotic strength of the pairing interaction. This asymptotic pairing sensitivity can be understood in terms of the dynamics of the wave function driven by the three-body Hamiltonian, by monitoring the time-dependent density distribution. With this simple SDDC pairing model, there remains an impossible trinity problem: it cannot simultaneously reproduce the empirical Q value, decay width, and the nucleon-nucleon scattering length. This problem suggests that a further sophistication of the theoretical pairing model is necessary, utilizing the two-proton radioactivity data as the reference quantities.
Energy Technology Data Exchange (ETDEWEB)
Beliaev, J.; Trunov, N.; Tschekin, I. [OKB Gidropress (Russian Federation); Luther, W. [GRS Garching (Germany); Spolitak, S. [RNC-KI (Russian Federation)
1995-12-31
Currently the ATHLET code is widely applied for modelling of several Power Plants of WWER type with horizontal steam generators. A main drawback of all these applications is the insufficient verification of the models for the steam generator. This paper presents the nodalization schemes for the secondary side of the steam generator, the results of stationary calculations, and preliminary comparisons to experimental data. The consideration of circulation in the water inventory of the secondary side is proved to be necessary. (orig.). 3 refs.
Energy Technology Data Exchange (ETDEWEB)
Beliaev, J; Trunov, N; Tschekin, I [OKB Gidropress (Russian Federation); Luther, W [GRS Garching (Germany); Spolitak, S [RNC-KI (Russian Federation)
1996-12-31
Currently the ATHLET code is widely applied for modelling of several Power Plants of WWER type with horizontal steam generators. A main drawback of all these applications is the insufficient verification of the models for the steam generator. This paper presents the nodalization schemes for the secondary side of the steam generator, the results of stationary calculations, and preliminary comparisons to experimental data. The consideration of circulation in the water inventory of the secondary side is proved to be necessary. (orig.). 3 refs.
2014-06-01
and XY -plane, respectively. In practice, however, we found even with strict demands on convergence criteria (in the implicit case) or small time steps...however, the geometry of an intervertebral disc or a muscle captured from imaging, may not be the “ elastically neutral” or stress-free reference...given by Ḟ . One early model for muscle was developed by A. V. Hill in 1938 (32). A description of Hill’s model appears in chapter 18 of the textbook
Development of constitutive equations for nuclear reactor core materials
International Nuclear Information System (INIS)
Lee, D.; Zaverl, F. Jr.; Plaza-Meyer, E.
1980-01-01
A set of strain rate dependent constitutive equations has been described which is capable of predicting deformation behavior of anisotropic metals under complex loading conditions with or without the presence of a neutron flux. The important feature of the constitutive equations is that they describe history dependent plastic deformation behavior of anisotropic metals under three-dimensional stress states. Since the analytical model accounts for the effect of prior deformation history at all times, it is capable of handling consecutive or simultaneous loading histories, such as post-irradiation loading, in-pile loading, etc. It is demonstrated that the general form of the constitutive relations is consistent with experimental observations made for Zircaloys under both unirradiated and irradiated conditions. (orig.)
Numerical modeling of the thickness dependence of zinc die-cast materials
Page, Maria Angeles Martinez; Ruf, Matthias; Hartmann, Stefan
2017-11-01
Zinc die casting alloys show varying material properties over the thickness in their final solid state, which causes a change in the mechanical response for specimens with different thicknesses. In this article, we propose a modeling concept to account for the varying porosity in the constitutive modeling. The material properties are effectively incorporated by combining a partial differential equation describing the distribution of the pores by a structural parameter with the Mori-Tanaka approach for linear elasticity. The distribution of the porosity is determined by polished cut images, for which the procedure is explained in detail. Finite element simulations of the coupled system incorporating the thickness dependence show the applicability of this approach.
Directory of Open Access Journals (Sweden)
Qiao Lyu
2018-01-01
Full Text Available CO2 is a very promising fluid for drilling and nonaqueous fracturing, especially for CO2-enhanced shale gas recovery. Brittleness is a very important characteristic to evaluate the drillability and fracability. However, there is not much relevant research works on the influence of CO2 and CO2-based fluids on shale’s brittleness been carried out. Therefore, a series of strength tests were conducted to obtain the stress-strain characteristics of shale soaked in different phases of CO2 including subcritical or supercritical CO2 with formation of water for different time intervals (10 days, 20 days, and 30 days. Two damage constitutive equations based on the power function distribution and Weibull distribution were established to predict the threshold stress for both intact and soaked shale samples. Based on the results, physical and chemical reactions during the imbibition cause reductions of shales’ peak axial strength (20.79%~61.52% and Young’s modulus (13.14%~62.44%. Weibull distribution-based constitutive model with a damage threshold value of 0.8 has better agreement with the experiments than that of the power function distribution-based constitutive model. The energy balance method together with the Weibull distribution-based constitutive model is applied to calculate the brittleness values of samples with or without soaking. The intact shale sample has the highest BI value of 0.9961, which is in accordance with the high percentage of brittleness minerals of the shale samples. The CO2-NaCl-shale interactions during the imbibition decrease the brittleness values. Among the three soaking durations, the minimum brittleness values occur on samples with 20 days’ imbibition in subcritical and supercritical CO2 + NaCl solutions and the reductions of which are 2.08% and 2.49%, respectively. Subcritical/supercritical CO2 + NaCl imbibition has higher effect on shale’s strength and Young’s modulus than on the brittleness. The
System of systems dependability – Theoretical models and applications examples
International Nuclear Information System (INIS)
Bukowski, L.
2016-01-01
The aim of this article is to generalise the concept of 'dependability' in a way, that could be applied to all types of systems, especially the system of systems (SoS), operating under both normal and abnormal work conditions. In order to quantitatively assess the dependability we applied service continuity oriented approach. This approach is based on the methodology of service engineering and is closely related to the idea of resilient enterprise as well as to the concept of disruption-tolerant operation. On this basis a framework for evaluation of SoS dependability has been developed in a static as well as dynamic approach. The static model is created as a fuzzy logic-oriented advisory expert system and can be particularly useful at the design stage of SoS. The dynamic model is based on the risk oriented approach, and can be useful both at the design stage and for management of SoS. The integrated model of dependability can also form the basis for a new definition of the dependability engineering, namely as a superior discipline to reliability engineering, safety engineering, security engineering, resilience engineering and risk engineering. - Highlights: • A framework for evaluation of system of systems dependability is presented. • The model is based on the service continuity concept and consists of two parts. • The static part can be created as a fuzzy logic-oriented advisory expert system. • The dynamic, risk oriented part, is related to the concept of throughput chain. • A new definition of dependability engineering is proposed.
International Nuclear Information System (INIS)
Park, Byoung Yoon; Hansen, Francis D.
2004-01-01
The regulatory compliance determination for the Waste Isolation Pilot Plant includes the consideration of room closure. Elements of the geomechanical processes include salt creep, gas generation and mechanical deformation of the waste residing in the rooms. The WIPP was certified as complying with regulatory requirements based in part on the implementation of room closure and material models for the waste. Since the WIPP began receiving waste in 1999, waste packages have been identified that are appreciably more robust than the 55-gallon drums characterized for the initial calculations. The pipe overpack comprises one such waste package. This report develops material model parameters for the pipe overpack containers by using axisymmetrical finite element models. Known material properties and structural dimensions allow well constrained models to be completed for uniaxial, triaxial, and hydrostatic compression of the pipe overpack waste package. These analyses show that the pipe overpack waste package is far more rigid than the originally certified drum. The model parameters developed in this report are used subsequently to evaluate the implications to performance assessment calculations
Garion, C; Sgobba, Stefano
2006-01-01
The present paper is focused on constitutive modelling and identification of parameters of the relevant model of plastic strain- induced martensitic transformation in austenitic stainless steels at low temperatures. The model used to describe the FCCrightward arrow BCC phase transformation in austenitic stainless steels is based on the assumption of linearization of the most intensive part of the transformation curve. The kinetics of phase transformation is described by three parameters: transformation threshold (p/sub xi/), slope (A) and saturation level (xi/sub L/). It is assumed that the phase transformation is driven by the accumulated plastic strain p. In addition, the intensity of plastic deformation is strongly coupled to the phase transformation via the description of mixed kinematic /isotropic linear plastic hardening based on the Mori-Tanaka homogenization. The theory of small strains is applied. Small strain fields, corresponding to phase transformation, are decomposed into the volumic and the shea...
Directory of Open Access Journals (Sweden)
Carvalho Leonardo JM
2000-01-01
Full Text Available Aotus is one of the WHO-recommended primate models for studies in malaria, and several species can be infected with Plasmodium falciparum or P. vivax. Here we describe the successful infection of the species A. infulatus from eastern Amazon with blood stages of P. falciparum. Both intact and splenectomized animals were susceptible to infection; the intact ones were able to keep parasitemias at lower levels for several days, but developed complications such as severe anemia; splenectomized monkeys developed higher parasitemias but no major complications. We conclude that A. infulatus is susceptible to P. falciparum infection and may represent an alternative model for studies in malaria.
Constitutional compatibility of energy systems
International Nuclear Information System (INIS)
Rossnagel, A.
1983-01-01
The paper starts from the results of the Enquiry Commission on 'Future Nuclear Energy Policy' of the 8th Federal German Parliament outlining technically feasible energy futures in four 'pathways'. For the purpose of the project, which was to establish the comparative advantages and disadvantages of different energy systems, these four scenarios were reduced to two alternatives: cases K (= nuclear energy) and S (= solar energy). The question to Ge put is: Which changes within our legal system will be ushered in by certain technological developments and how do these changes relate to the legal condition intended so far. Proceeding in this manner will not lead to the result of a nuclear energy system or a solar energy system being in conformity or in contradiction with the constitutional law, but will provide a catalogue of implications orientated to the aims of legal standards: a person deciding in favour of a nuclear energy system or a solar energy system supports this or that development of constitutional policy, and a person purishing this or that aim of legal policy should be consistent and decide in favour of this or that energy system. The investigation of constitutional compatibility leads to the question what effects different energy systems will have on the forms of political intercourse laid down in the constitutional law, which are orientated to models of a liberal constitutional tradition of citizens. (orig./HSCH) [de
An age dependent model for radium metabolism in man.
Johnson, J R
1983-01-01
The model developed by a Task Group of Committee 2 of ICRP to describe Alkaline Earth Metabolism in Adult Man (ICRP Publication 20) has been modified so that recycling is handled explicitly, and retention in mineral bone is represented by second compartments rather than by the product of a power function and an exponential. This model has been extended to include all ages from birth to adult man, and has been coupled with modified "ICRP" lung and G.I. tract models so that activity in organs can be calculated as functions of time during or after exposures. These activities, and age dependent "specific effective energy" factors, are then used to calculate age dependent dose rates, and dose commitments. This presentation describes this work, with emphasis on the model parameters and results obtained for radium.
International Nuclear Information System (INIS)
Boure, J.A.
1981-01-01
From both the theoretical and the practical points of view, the problem of constitutive laws is part and parcel of the modeling problem. In particular, the necessity to restore in the model, through topological laws, some of the information lost during the usual averaging process is emphasized. A new void fraction topological law is proposed. The limitations of the current assumption of uniform pressure within each phase in any cross section are also illustrated. The importance of proximity effects (neighborhood and history effects, related to characteristic lengths and times) is brought out. It results in the importance of the mathematical form of the constitutive laws. Possible mathematical forms for the transfer laws are reviewed. The last part of the paper is devoted to some restrictions, which are imposed on the transfer terms because of some basic principles: Indifference to Galilean changes of frame and to some changes of origins, second law of thermodynamics and hypothesis of local thermodynamic equilibrium, closure constraints. Practical recommendations are formulated
Model-Based Dependability Analysis of Physical Systems with Modelica
Directory of Open Access Journals (Sweden)
Andrea Tundis
2017-01-01
Full Text Available Modelica is an innovative, equation-based, and acausal language that allows modeling complex physical systems, which are made of mechanical, electrical, and electrotechnical components, and evaluates their design through simulation techniques. Unfortunately, the increasing complexity and accuracy of such physical systems require new, more powerful, and flexible tools and techniques for evaluating important system properties and, in particular, the dependability ones such as reliability, safety, and maintainability. In this context, the paper describes some extensions of the Modelica language to support the modeling of system requirements and their relationships. Such extensions enable the requirement verification analysis through native constructs in the Modelica language. Furthermore, they allow exporting a Modelica-based system design as a Bayesian Network in order to analyze its dependability by employing a probabilistic approach. The proposal is exemplified through a case study concerning the dependability analysis of a Tank System.
Directory of Open Access Journals (Sweden)
Barthélémy Romain
2015-01-01
Full Text Available Metallic foams have known a keen interest in the last decades. Their ability to undergo very large deformations while transmitting low stress levels make them capable of performing functions of protective layers against intense loadings and of energy absorbers, for instance. The behaviour of metal foams varies considerably between quasi-static and dynamic regimes. Those differences can be linked to the strain-rate sensitivity of the skeleton material and to micro-inertial effects (induced by the crushing of the foam cells. In the present work, a micromechanical model has been developed to take into account micro-inertia effects on the macroscopic behaviour of closed-cell foams under dynamic loading conditions. The proposed modelling is based on the dynamic homogenisation procedure introduced by Molinari and Mercier (J. Mech. Phys. Solids 49 (2001 1497–1516. Within this framework, the macrostress is the sum of two terms. The first one is a static stress, that can be described with any existing model of metal foam. The second contribution is a dynamic stress related to micro-inertia effects. Considering an initially spherical shell as a Representative Volume Element (RVE of the foam material, a closed-form expression of the dynamic stress was obtained. The proposed modelling was applied to shock propagation in aluminium foams (it should however be noted that the present theory is not restricted to uniaxial deformation but can be applied to arbitrary loadings. From experimental data of the literature, it is observed that incorporating micro-inertia effects allows one to achieve a better description of the foam shock response. This indicates that micro-inertia may have a significant influence on the dynamic behaviour of metallic foams.
Best of Three Worlds : Towards Sound Architectural Dependability Models
Boudali, Hichem; Haverkort, Boudewijn R.; Kuntz, Matthias; Stoelinga, Mariëlle
This paper surveys the most prominent formalisms for availability and reliability analysis and discusses the pros and cons of these approaches. Based on our findings, we outline a solution that unites the merits of the existing approaches into a sound architectural dependability model.
Model Transformation for a System of Systems Dependability Safety Case
Murphy, Judy; Driskell, Steve
2011-01-01
The presentation reviews the dependability and safety effort of NASA's Independent Verification and Validation Facility. Topics include: safety engineering process, applications to non-space environment, Phase I overview, process creation, sample SRM artifact, Phase I end result, Phase II model transformation, fault management, and applying Phase II to individual projects.
Modeling motoneuron firing properties: dependency on size and calcium dynamics
van der Heyden, M. J.; Hilgevoord, A. A.; Bour, L. J.; Ongerboer de Visser, B. W.
1994-01-01
The origin of functional differences between motoneurons of varying size was investigated by employing a one-compartmental motoneuron model containing a slow K+ conductance dependent on the intracellular calcium concentration. The size of the cell was included as an explicit parameter. Simulations
A flexible model for actuarial risks under dependence
Albers, Willem/Wim; Kallenberg, W.C.M.; Lukocius, V.
Methods for computing risk measures, such as stop-loss premiums, tacitly assume independence of the underlying individual risks. This can lead to huge errors even when only small dependencies occur. In the present paper, a general model is developed which covers what happens in practice in a
Time dependent mechanical modeling for polymers based on network theory
Energy Technology Data Exchange (ETDEWEB)
Billon, Noëlle [MINES ParisTech, PSL-Research University, CEMEF – Centre de mise en forme des matériaux, CNRS UMR 7635, CS 10207 rue Claude Daunesse 06904 Sophia Antipolis Cedex (France)
2016-05-18
Despite of a lot of attempts during recent years, complex mechanical behaviour of polymers remains incompletely modelled, making industrial design of structures under complex, cyclic and hard loadings not totally reliable. The non linear and dissipative viscoelastic, viscoplastic behaviour of those materials impose to take into account non linear and combined effects of mechanical and thermal phenomena. In this view, a visco-hyperelastic, viscoplastic model, based on network description of the material has recently been developed and designed in a complete thermodynamic frame in order to take into account those main thermo-mechanical couplings. Also, a way to account for coupled effects of strain-rate and temperature was suggested. First experimental validations conducted in the 1D limit on amorphous rubbery like PMMA in isothermal conditions led to pretty goods results. In this paper a more complete formalism is presented and validated in the case of a semi crystalline polymer, a PA66 and a PET (either amorphous or semi crystalline) are used. Protocol for identification of constitutive parameters is described. It is concluded that this new approach should be the route to accurately model thermo-mechanical behaviour of polymers using a reduced number of parameters of some physical meaning.
Blume, Martin; Hliscs, Marion; Rodriguez-Contreras, Dayana; Sanchez, Marco; Landfear, Scott; Lucius, Richard; Matuschewski, Kai; Gupta, Nishith
2011-04-01
Glucose is considered essential for erythrocytic stages of the malaria parasite, Plasmodium falciparum. Importance of sugar and its permease for hepatic and sexual stages of Plasmodium, however, remains elusive. Moreover, increasing global resistance to current antimalarials necessitates the search for novel drugs. Here, we reveal that hexose transporter 1 (HT1) of Plasmodium berghei can transport glucose (K(m)~87 μM), mannose (K(i)~93 μM), fructose (K(i)~0.54 mM), and galactose (K(i)~5 mM) in Leishmania mexicana mutant and Xenopus laevis; and, therefore, is functionally equivalent to HT1 of P. falciparum (Glc, K(m)~175 μM; Man, K(i)~276 μM; Fru, K(i)~1.25 mM; Gal, K(i)~5.86 mM). Notably, a glucose analog, C3361, attenuated hepatic (IC(50)~15 μM) and ookinete development of P. berghei. The PbHT1 could be ablated during intraerythrocytic stages only by concurrent complementation with PbHT1-HA or PfHT1. Together; these results signify that PbHT1 and glucose are required for the entire life cycle of P. berghei. Accordingly, PbHT1 is expressed in the plasma membrane during all parasite stages. To permit a high-throughput screening of PfHT1 inhibitors and their subsequent in vivo assessment, we have generated Saccharomyces cerevisiae mutant expressing codon-optimized PfHT1, and a PfHT1-dependent Δpbht1 parasite strain. This work provides a platform to facilitate the development of drugs against malaria, and it suggests a disease-control aspect by reducing parasite transmission.
A two-stage constitutive model of X12CrMoWVNbN10-1-1 steel during elevated temperature
Zhu, Luobei; He, Jianli; Zhang, Ying
2018-02-01
In order to clarify the competition between work hardening (WH) caused by dislocation movements and the dynamic softening result from dynamic recovery (DRV) and dynamic recrystallization (DRX), a new two-stage flow stress model of X12CrMoWVNbN10-1-1 (X12) ferrite heat-resistant steel was established to describe the whole hot deformation behavior. And the parameters were determined by the experimental data operated on a Gleeble-3800 thermo- mechanical simulation. In this constitutive model, a single internal variable dislocation density evolution model is used to describe the influence of WH and DRV to flow stress. The DRX kinetic dynamic model can express accurately the contribution of DRX to the decline of flow stress, which was established on the Avrami equation. Furthermore, The established new model was compared with Fields-Bachofen (F-B) model and experimental data. The results indicate the new two-stage flow stress model can more accurately represent the hot deformation behavior of X12 ferrite heat-resistant steel, and the average error is only 0.0995.
Probabilistic estimation of the constitutive parameters of polymers
Directory of Open Access Journals (Sweden)
Siviour C.R.
2012-08-01
Full Text Available The Mulliken-Boyce constitutive model predicts the dynamic response of crystalline polymers as a function of strain rate and temperature. This paper describes the Mulliken-Boyce model-based estimation of the constitutive parameters in a Bayesian probabilistic framework. Experimental data from dynamic mechanical analysis and dynamic compression of PVC samples over a wide range of strain rates are analyzed. Both experimental uncertainty and natural variations in the material properties are simultaneously considered as independent and joint distributions; the posterior probability distributions are shown and compared with prior estimates of the material constitutive parameters. Additionally, particular statistical distributions are shown to be effective at capturing the rate and temperature dependence of internal phase transitions in DMA data.
Constitutive behaviour of mixed mode loaded adhesive layer
DEFF Research Database (Denmark)
Högberg, J.L.; Sørensen, Bent F.; Stigh, U.
2007-01-01
in the failure process zone. The constitutive behaviour of the adhesive layer is obtained by a so called inverse method and fitting an existing mixed mode cohesive model, which uses a coupled formulation to describe a mode dependent constitutive behaviour. The cohesive parameters are determined by optimizing......Mixed mode testing of adhesive layer is performed with the Mixed mode double Cantilever Bean? specimen. During the experiments, the specimens are loaded by transversal and/or shear forces; seven different mode mixities are tested. The J-integral is used to evaluate the energy dissipation...
Model dependence of the 2H electric dipole moment
International Nuclear Information System (INIS)
Afnan, I. R.; Gibson, B. F.
2010-01-01
Background: Direct measurement of the electric dipole moment (EDM) of the neutron is in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the 3 P 1 channel, the latter being sensitive to the off-shell behavior of the 3 P 1 amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short-range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the 2 H EDM until such time as a measurement better than 10% is obtained.
Modeling the time-changing dependence in stock markets
International Nuclear Information System (INIS)
Frezza, Massimiliano
2012-01-01
The time-changing dependence in stock markets is investigated by assuming the multifractional process with random exponent (MPRE) as model for actual log price dynamics. By modeling its functional parameter S(t, ω) via the square root process (S.R.) a twofold aim is obtained. From one hand both the main financial and statistical properties shown by the estimated S(t) are captured by surrogates, on the other hand this capability reveals able to model the time-changing dependence shown by stocks or indexes. In particular, a new dynamical approach to interpreter market mechanisms is given. Empirical evidences are offered by analysing the behaviour of the daily closing prices of a very known index, the Industrial Average Dow Jones (DJIA), beginning on March,1990 and ending on February, 2005.
On the Temperature Dependence of the UNIQUAC/UNIFAC Models
DEFF Research Database (Denmark)
Skjold-Jørgensen, Steen; Rasmussen, Peter; Fredenslund, Aage
1980-01-01
of the simultaneous correlation. The temperature dependent parameters have, however, little physical meaning and very odd results are frequently obtained when the interaction parameters obtained from excess enthalpy information alone are used for the prediction of vapor-liquid equilibria. The UNIQUAC/UNIFAC models...... parameters based on excess enthalpy data, and the prediction of excess enthalpy information from only one isothermal set of vapor-liquid equilibrium data is qualitatively acceptable. A parameter table for the modified UNIFAC model is given for the five main groups: CH2, C = C, ACH, ACCH2 and CH2O.......Local composition models for the description of the properties of liquid mixtures do not in general give an accurate representation of excess Gibbs energy and excess enthalpy simultaneously. The introduction of temperature dependent interaction parameters leads to considerable improvements...
International Nuclear Information System (INIS)
Choi, K.S.; Liu, W.N.; Sun, X.; Khaleel, M.A.
2009-01-01
We study the ultimate ductility and failure modes of a commercial transformation-induced plasticity (TRIP) 800 steel under different loading conditions with an advanced microstructure-based finite-element analysis. The representative volume element (RVE) for the TRIP 800 under examination is developed based on an actual microstructure obtained from scanning electron microscopy. The ductile failure of the TRIP 800 under different loading conditions is predicted in the form of plastic strain localization without any prescribed failure criteria for the individual phases. This indicates that the microstructure-level inhomogeneity of the various constituent phases can be the key factor influencing the final ductility of the TRIP 800 steel under different loading conditions. Comparisons of the computational results with experimental measurements suggest that the microstructure-based modeling approach accurately captures the overall macroscopic behavior of the TRIP 800 steel under different loading and boundary conditions.