WorldWideScience

Sample records for dependent bold functional

  1. Multi-regional investigation of the relationship between functional MRI blood oxygenation level dependent (BOLD activation and GABA concentration.

    Directory of Open Access Journals (Sweden)

    Ashley D Harris

    Full Text Available Several recent studies have reported an inter-individual correlation between regional GABA concentration, as measured by MRS, and the amplitude of the functional blood oxygenation level dependent (BOLD response in the same region. In this study, we set out to investigate whether this coupling generalizes across cortex. In 18 healthy participants, we performed edited MRS measurements of GABA and BOLD-fMRI experiments using regionally related activation paradigms. Regions and tasks were the: occipital cortex with a visual grating stimulus; auditory cortex with a white noise stimulus; sensorimotor cortex with a finger-tapping task; frontal eye field with a saccade task; and dorsolateral prefrontal cortex with a working memory task. In contrast to the prior literature, no correlation between GABA concentration and BOLD activation was detected in any region. The origin of this discrepancy is not clear. Subtle differences in study design or insufficient power may cause differing results; these and other potential reasons for the discrepant results are discussed. This negative result, although it should be interpreted with caution, has a larger sample size than prior positive results, and suggests that the relationship between GABA and the BOLD response may be more complex than previously thought.

  2. Quantitative multi-modal functional MRI with blood oxygenation level dependent exponential decays adjusted for flow attenuated inversion recovery (BOLDED AFFAIR)

    NARCIS (Netherlands)

    Hyder, Fahmeed; Renken, Remco; Kennan, Richard P; Rothman, Douglas L

    2000-01-01

    A magnetic resonance imaging (MRI) method is described that allows interleaved measurements of transverse (R(2)(*) and R(2)) and longitudinal (R(1)) relaxation rates of tissue water in conjunction with spin labeling. The image-contrasts are intrinsically blood oxygenation level dependent (BOLD) and

  3. Cortical depth dependence of the BOLD initial dip and poststimulus undershoot in human visual cortex at 7 Tesla

    NARCIS (Netherlands)

    Siero, JCW; Hendrikse, J; Hoogduin, Hans; Petridou, N; Luijten, Peter; Donahue, Manus J.

    2015-01-01

    PurposeOwing to variability in vascular dynamics across cerebral cortex, blood-oxygenation-level-dependent (BOLD) spatial and temporal characteristics should vary as a function of cortical-depth. Here, the positive response, initial dip (ID), and post-stimulus undershoot (PSU) of the BOLD response i

  4. Negative BOLD signal changes in ipsilateral primary somatosensory cortex are associated with perfusion decreases and behavioral evidence for functional inhibition

    DEFF Research Database (Denmark)

    Schäfer, Katharina; Blankenburg, Felix; Kupers, Ron

    2012-01-01

    -increase for the finger is due to functional inhibition (Kastrup et al., 2008) than to changes in selective attention. In conclusion, our data provide evidence that stimulus-induced reductions in relative rCBF may underlie the negative BOLD signal, which in turn may reflect increments in functional inhibition.......We used functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) to study the negative blood oxygenation level dependent (BOLD) signal and its underlying blood flow changes in healthy human subjects. This was combined with psychophysiological measurements to test...... that the negative BOLD signal is associated with functional inhibition. Electrical stimulation of the median nerve at 7Hz evoked robust negative BOLD signals in the primary somatosensory cortex (SI) ipsilateral to stimulation, and positive BOLD signals in contralateral SI. The negative BOLD signal in ipsilateral SI...

  5. BOLD signal and functional connectivity associated with loving kindness meditation.

    Science.gov (United States)

    Garrison, Kathleen A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2014-05-01

    Loving kindness is a form of meditation involving directed well-wishing, typically supported by the silent repetition of phrases such as "may all beings be happy," to foster a feeling of selfless love. Here we used functional magnetic resonance imaging to assess the neural substrate of loving kindness meditation in experienced meditators and novices. We first assessed group differences in blood oxygen level-dependent (BOLD) signal during loving kindness meditation. We next used a relatively novel approach, the intrinsic connectivity distribution of functional connectivity, to identify regions that differ in intrinsic connectivity between groups, and then used a data-driven approach to seed-based connectivity analysis to identify which connections differ between groups. Our findings suggest group differences in brain regions involved in self-related processing and mind wandering, emotional processing, inner speech, and memory. Meditators showed overall reduced BOLD signal and intrinsic connectivity during loving kindness as compared to novices, more specifically in the posterior cingulate cortex/precuneus (PCC/PCu), a finding that is consistent with our prior work and other recent neuroimaging studies of meditation. Furthermore, meditators showed greater functional connectivity during loving kindness between the PCC/PCu and the left inferior frontal gyrus, whereas novices showed greater functional connectivity during loving kindness between the PCC/PCu and other cortical midline regions of the default mode network, the bilateral posterior insula lobe, and the bilateral parahippocampus/hippocampus. These novel findings suggest that loving kindness meditation involves a present-centered, selfless focus for meditators as compared to novices.

  6. Abnormal functional MRI BOLD contrast in the vegetative state after severe traumatic brain injury.

    Science.gov (United States)

    Heelmann, Volker; Lippert-Grüner, Marcela; Rommel, Thomas; Wedekind, Christoph

    2010-06-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal consciousness close to the vegetative state were studied clinically, electrophysiologically, and by means of functional magnetic resonance imaging. Visual, sensory, and acoustic paradigms were used for stimulation. In three patients examined less than 2 months after trauma, a consistent decrease in blood oxygen level dependent (BOLD) signal ('negative activation') was observed for visual stimulation; one case even showed a decrease in BOLD activation for all three activation paradigms. In the remaining three cases examined more than 6 months after trauma, visual stimulation yielded positive BOLD contrast or no activation. In all cases, sensory stimulation was followed by a decrease in BOLD signal or no activation, whereas auditory stimulation failed to elicit any activation with the exception of one case. Functional magnetic resonance imaging in the vegetative state indicates retained yet abnormal brain function; this abnormality can be attributed to the impairment of cerebral vascular autoregulation or an increase in the energy consumption of activated neocortex in severe traumatic brain injury.

  7. Transfer function between EEG and BOLD signals of epileptic activity

    Directory of Open Access Journals (Sweden)

    Marco eLeite

    2013-01-01

    Full Text Available Simultaneous EEG-fMRI recordings have seen growing application in the evaluation of epilepsy, namely in the characterization of brain networks related to epileptic activity. In EEG-correlated fMRI studies, epileptic events are usually described as boxcar signals based on the timing information retrieved from the EEG, and subsequently convolved with a heamodynamic response function to model the associated BOLD changes. Although more flexible approaches may allow a higher degree of complexity for the haemodynamics, the issue of how to model these dynamics based on the EEG remains an open question. In this work, a new methodology for the integration of simultaneous EEG-fMRI data in epilepsy is proposed, which incorporates a transfer function from the EEG to the BOLD signal. Independent component analysis (ICA of the EEG is performed, and a number of metrics expressing different models of the EEG-BOLD transfer function are extracted from the resulting time courses. These metrics are then used to predict the fMRI data and to identify brain areas associated with the EEG epileptic activity. The methodology was tested on both ictal and interictal EEG-fMRI recordings from one patient with a hypothalamic hamartoma. When compared to the conventional analysis approach, plausible, consistent and more significant activations were obtained. Importantly, frequency-weighted EEG metrics yielded superior results than those weighted solely on the EEG power, which comes in agreement with previous literature. Reproducibility, specificity and sensitivity should be addressed in an extended group of patients in order to further validate the proposed methodology and generalize the presented proof of concept.

  8. Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations.

    Directory of Open Access Journals (Sweden)

    Gaelle Bettus

    Full Text Available In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD signal derived from resting state functional magnetic resonance imaging (fMRI reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG and resting-state functional MRI (fMRI in 5 patients suffering from intractable temporal lobe epilepsy (TLE. Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal. This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional

  9. Increased BOLD sensitivity in the orbitofrontal cortex using slice-dependent echo times at 3 T.

    Science.gov (United States)

    Domsch, Sebastian; Linke, Julia; Heiler, Patrick M; Kroll, Alexander; Flor, Herta; Wessa, Michèle; Schad, Lothar R

    2013-02-01

    Functional magnetic resonance imaging (fMRI) exploits the blood oxygenation level dependent (BOLD) effect to detect neuronal activation related to various experimental paradigms. Some of these, such as reversal learning, involve the orbitofrontal cortex and its interaction with other brain regions like the amygdala, striatum or dorsolateral prefrontal cortex. These paradigms are commonly investigated with event-related methods and gradient echo-planar imaging (EPI) with short echo time of 27 ms. However, susceptibility-induced signal losses and image distortions in the orbitofrontal cortex are still a problem for this optimized sequence as this brain region consists of several slices with different optimal echo times. An EPI sequence with slice-dependent echo times is suitable to maximize BOLD sensitivity in all slices and might thus improve signal detection in the orbitofrontal cortex. To test this hypothesis, we first optimized echo times via BOLD sensitivity simulation. Second, we measured 12 healthy volunteers using a standard EPI sequence with an echo time of 27 ms and a modified EPI sequence with echo times ranging from 22 ms to 47 ms. In the orbitofrontal cortex, the number of activated voxels increased from 87 ± 44 to 549 ± 83 and the maximal t-value increased from 4.4 ± 0.3 to 5.4 ± 0.3 when the modified EPI was used. We conclude that an EPI with slice-dependent echo times may be a valuable tool to mitigate susceptibility artifacts in event-related whole-brain fMRI studies with a focus on the orbitofrontal cortex.

  10. Echo-time and field strength dependence of BOLD reactivity in veins and parenchyma using flow-normalized hypercapnic manipulation.

    Directory of Open Access Journals (Sweden)

    Christina Triantafyllou

    Full Text Available While the BOLD (Blood Oxygenation Level Dependent contrast mechanism has demonstrated excellent sensitivity to neuronal activation, its specificity with regards to differentiating vascular and parenchymal responses has been an area of ongoing concern. By inducing a global increase in Cerebral Blood Flow (CBF, we examined the effect of magnetic field strength and echo-time (TE on the gradient-echo BOLD response in areas of cortical gray matter and in resolvable veins. In order to define a quantitative index of BOLD reactivity, we measured the percent BOLD response per unit fractional change in global gray matter CBF induced by inhaling carbon dioxide (CO(2. By normalizing the BOLD response to the underlying CBF change and determining the BOLD response as a function of TE, we calculated the change in R(2(* (ΔR(2(* per unit fractional flow change; the Flow Relaxation Coefficient, (FRC for 3T and 1.5T in parenchymal and large vein compartments. The FRC in parenchymal voxels was 1.76±0.54 fold higher at 3T than at 1.5T and was 2.96±0.66 and 3.12±0.76 fold higher for veins than parenchyma at 1.5T and 3T respectively, showing a quantitative measure of the increase in specificity to parenchymal sources at 3T compared to 1.5T. Additionally, the results allow optimization of the TE to prioritize either maximum parenchymal BOLD response or maximum parenchymal specificity. Parenchymal signals peaked at TE values of 62.0±11.5 ms and 41.5±7.5 ms for 1.5T and 3T, respectively, while the response in the major veins peaked at shorter TE values; 41.0±6.9 ms and 21.5±1.0 ms for 1.5T and 3T. These experiments showed that at 3T, the BOLD CNR in parenchymal voxels exceeded that of 1.5T by a factor of 1.9±0.4 at the optimal TE for each field.

  11. Functional Connectivity in MRI Is Driven by Spontaneous BOLD Events.

    Directory of Open Access Journals (Sweden)

    Thomas W Allan

    Full Text Available Functional brain signals are frequently decomposed into a relatively small set of large scale, distributed cortical networks that are associated with different cognitive functions. It is generally assumed that the connectivity of these networks is static in time and constant over the whole network, although there is increasing evidence that this view is too simplistic. This work proposes novel techniques to investigate the contribution of spontaneous BOLD events to the temporal dynamics of functional connectivity as assessed by ultra-high field functional magnetic resonance imaging (fMRI. The results show that: 1 spontaneous events in recognised brain networks contribute significantly to network connectivity estimates; 2 these spontaneous events do not necessarily involve whole networks or nodes, but clusters of voxels which act in concert, forming transiently synchronising sub-networks and 3 a task can significantly alter the number of localised spontaneous events that are detected within a single network. These findings support the notion that spontaneous events are the main driver of the large scale networks that are commonly detected by seed-based correlation and ICA. Furthermore, we found that large scale networks are manifestations of smaller, transiently synchronising sub-networks acting dynamically in concert, corresponding to spontaneous events, and which do not necessarily involve all voxels within the network nodes oscillating in unison.

  12. Resting state functional connectivity in perfusion imaging: correlation maps with BOLD connectivity and resting state perfusion.

    Directory of Open Access Journals (Sweden)

    Roberto Viviani

    Full Text Available Functional connectivity is a property of the resting state that may provide biomarkers of brain function and individual differences. Classically, connectivity is estimated as the temporal correlation of spontaneous fluctuations of BOLD signal. We investigated differences in connectivity estimated from the BOLD and CBF signal present in volumes acquired with arterial spin labeling technique in a large sample (N = 265 of healthy individuals. Positive connectivity was observable in both BOLD and CBF signal, and was present in the CBF signal also at frequencies lower than 0.009 Hz, here investigated for the first time. Negative connectivity was more variable. The validity of positive connectivity was confirmed by the existence of correlation across individuals in its intensity estimated from the BOLD and CBF signal. In contrast, there was little or no correlation across individuals between intensity of connectivity and mean perfusion levels, suggesting that these two biomarkers correspond to distinct sources of individual differences.

  13. NMDA-dependent mechanisms only affect the BOLD response in the rat dentate gyrus by modifying local signal processing

    Science.gov (United States)

    Tiede, Regina; Krautwald, Karla; Fincke, Anja; Angenstein, Frank

    2012-01-01

    The role of N-methyl--aspartate (NMDA) receptor-mediated mechanisms in the formation of a blood oxygen level-dependent (BOLD) response was studied using electrical stimulation of the right perforant pathway. Stimulation of this fiber bundle triggered BOLD responses in the right hippocampal formation and in the left entorhinal cortex. The perforant pathway projects to and activates the dentate gyrus monosynaptically, activation in the contralateral entorhinal cortex is multisynaptic and requires forwarding and processing of signals. Application of the NMDA receptor antagonist MK801 during stimulation had no effect on BOLD responses in the right dentate gyrus, but reduced the BOLD responses in the left entorhinal cortex. In contrast, application of MK801 before the first stimulation train reduced the BOLD response in both regions. Electrophysiological recordings revealed that the initial stimulation trains changed the local processing of the incoming signals in the dentate gyrus. This altered electrophysiological response was not further changed by a subsequent application of MK801, which is in agreement with an unchanged BOLD response. When MK801 was present during the first stimulation train, a dissimilar electrophysiological response pattern was observed and corresponds to an altered BOLD response, indicating that NMDA-dependent mechanisms indirectly affect the BOLD response, mainly via modifying local signal processing and subsequent propagation. PMID:22167232

  14. Subject specific BOLD fMRI respiratory and cardiac response functions obtained from global signal.

    Science.gov (United States)

    Falahpour, Maryam; Refai, Hazem; Bodurka, Jerzy

    2013-05-15

    Subtle changes in either breathing pattern or cardiac pulse rate alter blood oxygen level dependent functional magnetic resonance imaging signal (BOLD fMRI). This is problematic because such fluctuations could possibly not be related to underlying neuronal activations of interest but instead the source of physiological noise. Several methods have been proposed to eliminate physiological noise in BOLD fMRI data. One such method is to derive a template based on average multi-subject data for respiratory response function (RRF) and cardiac response function (CRF) by simultaneously utilizing an external recording of cardiac and respiratory waveforms with the fMRI. Standard templates can then be used to model, map, and remove respiration and cardiac fluctuations from fMRI data. Utilizing these does not, however, account for intra-subject variations in physiological response. Thus, performing a more individualized approach for single subject physiological noise correction becomes more desirable, especially for clinical purposes. Here we propose a novel approach that employs subject-specific RRF and CRF response functions obtained from the whole brain or brain tissue-specific global signals (GS). Averaging multiple voxels in global signal computation ensures physiological noise dominance over thermal and system noise in even high-spatial-resolution fMRI data, making the GS suitable for deriving robust estimations of both RRF and CRF for individual subjects. Using these individualized response functions instead of standard templates based on multi-subject averages judiciously removes physiological noise from the data, assuming that there is minimal neuronal contribution in the derived individualized filters. Subject-specific physiological response functions obtained from the GS better maps individuals' physiological characteristics.

  15. Whole-brain three-dimensional T2-weighted BOLD functional magnetic resonance imaging at 7 Tesla.

    Science.gov (United States)

    Hua, Jun; Qin, Qin; van Zijl, Peter C M; Pekar, James J; Jones, Craig K

    2014-12-01

    A new acquisition scheme for T2-weighted spin-echo BOLD fMRI is introduced. It uses a T2-preparation module to induce blood-oxygenation-level-dependent (BOLD) contrast, followed by a single-shot three-dimensional (3D) fast gradient-echo readout with short echo time (TE). It differs from most spin-echo BOLD sequences in that BOLD contrast is generated before the readout, which eliminates the "dead time" due to long TE required for T2 contrast, and substantially improves acquisition efficiency. This approach, termed "3D T2prep-GRE," was implemented at 7 Tesla (T) with a typical spatial (2.5 × 2.5 × 2.5 mm(3) ) and temporal (TR = 2.3 s) resolution for functional MRI (fMRI) and whole-brain coverage (55 slices), and compared with the widely used 2D spin-echo EPI sequence. In fMRI experiments of simultaneous visual/motor activities, 3D T2prep-GRE showed minimal distortion and little signal dropout across the whole brain. Its lower power deposition allowed greater spatial coverage (55 versus 17 slices with identical TR, resolution and power level), temporal SNR (60% higher) and CNR (35% higher) efficiency than 2D spin-echo EPI. It also showed smaller T2* contamination. This approach is expected to be useful for ultra-high field fMRI, especially for regions near air cavities. The concept of using T2-preparation to generate BOLD contrast can be combined with many other sequences at any field strength. © 2013 Wiley Periodicals, Inc.

  16. Task-related BOLD responses and resting-state functional connectivity during physiological clamping of end-tidal CO(2).

    Science.gov (United States)

    Madjar, C; Gauthier, C J; Bellec, P; Birn, R M; Brooks, J C W; Hoge, R D

    2012-05-15

    Carbon dioxide (CO(2)), a potent vasodilator, is known to have a significant impact on the blood-oxygen level dependent (BOLD) signal. With the growing interest in studying synchronized BOLD fluctuations during the resting state, the extent to which the apparent synchrony is due to variations in the end-tidal pressure of CO(2) (PETCO(2)) is an important consideration. CO(2)-related fluctuations in BOLD signal may also represent a potential confound when studying task-related responses, especially if breathing depth and rate are affected by the task. While previous studies of the above issues have explored retrospective correction of BOLD fluctuations related to arterial PCO(2), here we demonstrate an alternative approach based on physiological clamping of the arterial CO(2) level to a near-constant value. We present data comparing resting-state functional connectivity within the default-mode-network (DMN), as well as task-related BOLD responses, acquired in two conditions in each subject: 1) while subject's PETCO(2) was allowed to vary spontaneously; and 2) while controlling subject's PETCO(2) within a narrow range. Strong task-related responses and areas of maximal signal correlation in the DMN were not significantly altered by suppressing fluctuations in PETCO(2). Controlling PETCO(2) did, however, improve the performance of retrospective physiological noise correction techniques, allowing detection of additional regions of task-related response and resting-state connectivity in highly vascularized regions such as occipital cortex. While these results serve to further rule out systemic physiological fluctuations as a significant source of apparent resting-state network connectivity, they also demonstrate that fluctuations in arterial CO(2) are one of the factors limiting sensitivity in task-based and resting-state fMRI, particularly in regions of high vascular density. This must be considered when comparing subject groups who might exhibit differences in

  17. Sampling rate dependence of correlation at long time lags in BOLD fMRI measurements on humans and gel phantoms.

    Science.gov (United States)

    Mikkelsen, Kaare B; Lund, Torben E

    2013-01-01

    The aim of this study is to investigate the effects of sampling rate on Hurst exponents derived from Blood Oxygenation Level Dependent functional Magnetic Resonance Imaging (BOLD fMRI) resting state time series. fMRI measurements were performed on 2 human subjects and a selection of gel phantoms. From these, Hurst exponents were calculated. It was found that low sampling rates induced non-trivial exponents at sharp material transitions, and that Hurst exponents of human measurements had a strong TR-dependence. The findings are compared to theoretical considerations regarding the fractional Gaussian noise model and resampling, and it is found that the implications are problematic. This result should have a direct influence on the way future studies of low-frequency variation in BOLD fMRI data are conducted, especially if the fractional Gaussian noise model is considered. We recommend either using a different model (examples of such are referenced in the conclusion), or standardizing experimental procedures along an optimal sampling rate.

  18. Blood Flow and Brain Function: Investigations of neurovascular coupling using BOLD fMRI at 7 tesla

    NARCIS (Netherlands)

    Siero, J.C.W.

    2013-01-01

    The advent of ultra high field (7 tesla) MRI systems has opened the possibility to probe biological processes of the human body in great detail. Especially for studying brain function using BOLD fMRI there is a large benefit from the increased magnetic field strength. BOLD fMRI is the working horse

  19. Fractal Analysis of Brain Blood Oxygenation Level Dependent (BOLD) Signals from Children with Mild Traumatic Brain Injury (mTBI)

    Science.gov (United States)

    Dona, Olga; DeMatteo, Carol; Connolly, John F.

    2017-01-01

    Background Conventional imaging techniques are unable to detect abnormalities in the brain following mild traumatic brain injury (mTBI). Yet patients with mTBI typically show delayed response on neuropsychological evaluation. Because fractal geometry represents complexity, we explored its utility in measuring temporal fluctuations of brain resting state blood oxygen level dependent (rs-BOLD) signal. We hypothesized that there could be a detectable difference in rs-BOLD signal complexity between healthy subjects and mTBI patients based on previous studies that associated reduction in signal complexity with disease. Methods Fifteen subjects (13.4 ± 2.3 y/o) and 56 age-matched (13.5 ± 2.34 y/o) healthy controls were scanned using a GE Discovery MR750 3T MRI and 32-channel RF-coil. Axial FSPGR-3D images were used to prescribe rs-BOLD (TE/TR = 35/2000ms), acquired over 6 minutes. Motion correction was performed and anatomical and functional images were aligned and spatially warped to the N27 standard atlas. Fractal analysis, performed on grey matter, was done by estimating the Hurst exponent using de-trended fluctuation analysis and signal summation conversion methods. Results and Conclusions Voxel-wise fractal dimension (FD) was calculated for every subject in the control group to generate mean and standard deviation maps for regional Z-score analysis. Voxel-wise validation of FD normality across controls was confirmed, and non-Gaussian voxels (3.05% over the brain) were eliminated from subsequent analysis. For each mTBI patient, regions where Z-score values were at least 2 standard deviations away from the mean (i.e. where |Z| > 2.0) were identified. In individual patients the frequently affected regions were amygdala (p = 0.02), vermis(p = 0.03), caudate head (p = 0.04), hippocampus(p = 0.03), and hypothalamus(p = 0.04), all previously reported as dysfunctional after mTBI, but based on group analysis. It is well known that the brain is best modeled as a complex

  20. Deconvolution analyses with tent functions reveal delayed and long-sustained increases of BOLD signals with acupuncture stimulation.

    Science.gov (United States)

    Murase, Tomokazu; Umeda, Masahiro; Fukunaga, Masaki; Tanaka, Chuzo; Higuchi, Toshihiro

    2013-01-01

    We used deconvolution analysis to examine temporal changes in brain activity after acupuncture stimulation and assess brain responses without expected reference functions. We also examined temporal changes in brain activity after sham acupuncture (noninsertive) and scrubbing stimulation. We divided 26 healthy right-handed adults into a group of 13 who received real acupuncture with manual manipulation and a group of 13 who received both tactical stimulations. Functional magnetic resonance imaging (fMRI) sequences consisted of four 15-s stimulation blocks (ON) interspersed between one 30-s and four 45-s rest blocks (OFF) for a total scanning time of 270 s. We analyzed data by using Statistical Parametric Mapping 8 (SPM8), MarsBaR, and Analysis of Functional NeuroImages (AFNI) software. For statistical analysis, we used 3dDeconvolve, part of the AFNI package, to extract the impulse response functions (IRFs) of the fMRI signals on a voxel-wise basis, and we tested the time courses of the extracted IRFs for the stimulations. We found stimulus-specific impulse responses of blood oxygen level-dependent (BOLD) signals in various brain regions. We observed significantly delayed and long-sustained increases of BOLD signals in several brain regions following real acupuncture compared to sham acupuncture and palm scrubbing, which we attribute to peripheral nocireceptors, flare responses, and processing of the central nervous system. Acupuncture stimulation induced continued activity that was stronger than activity after the other stimulations. We used tent function deconvolution to process fMRI data for acupuncture stimulation and found delayed increasing and delayed decreasing changes in BOLD signal in the somatosensory areas and areas related to pain perception. Deconvolution analyses with tent functions are expected to be useful in extracting complicated and associated brain activity that is delayed and sustained for a long period after various stimulations.

  1. A nonlinear BOLD model accounting for refractory effect by applying the longitudinal relaxation in NMR to the linear BOLD model.

    Science.gov (United States)

    Jung, Kwan-Jin

    2009-09-01

    A mathematical model to regress the nonlinear blood oxygen level-dependent (BOLD) fMRI signal has been developed by incorporating the refractory effect into the linear BOLD model of the biphasic gamma variate function. The refractory effect was modeled as a relaxation of two separate BOLD capacities corresponding to the biphasic components of the BOLD signal in analogy with longitudinal relaxation of magnetization in NMR. When tested with the published fMRI data of finger tapping, the nonlinear BOLD model with the refractory effect reproduced the nonlinear BOLD effects such as reduced poststimulus undershoot and saddle pattern in a prolonged stimulation as well as the reduced BOLD signal for repetitive stimulation.

  2. Cerebral blood oxygenation changes during neuronal activation in stroke patients measured by near infrared spectroscopy and BOLD-functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Yoshihiro; Fukaya, Chikashi; Sakatani, Kaoru; Katayama, Yoichi [Nihon Univ., Tokyo (Japan). School of Medicine

    2002-03-01

    Blood Oxygenation Level Dependent (BOLD)-fMRI images areas of activation by detecting a reduced concentration of deoxyhemoglobin during neuronal activity, which is caused by a larger increase in O{sub 2} delivery as compared to O{sub 2} consumption in normal adults. In the present study, near infrared spectroscopy demonstrated an increase of deoxyhemoglobin associated with increases of oxyhemoglobin and total hemoglobin in activation areas of stroke patients, whereas BOLD-fMRI failed to image such activation areas. The findings obtained have serious implications for the application of BOLD-fMRI to patients with brain disorders, since BOLD-fMRI may overlook neuronal activities in these patients. (author)

  3. Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32-channel head array coil at 1.5 Tesla.

    Science.gov (United States)

    Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J

    2009-01-01

    Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy.

  4. Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience.

    Science.gov (United States)

    Hall, Catherine N; Howarth, Clare; Kurth-Nelson, Zebulun; Mishra, Anusha

    2016-10-01

    Cognitive neuroscience depends on the use of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to probe brain function. Although commonly used as a surrogate measure of neuronal activity, BOLD signals actually reflect changes in brain blood oxygenation. Understanding the mechanisms linking neuronal activity to vascular perfusion is, therefore, critical in interpreting BOLD. Advances in cellular neuroscience demonstrating differences in this neurovascular relationship in different brain regions, conditions or pathologies are often not accounted for when interpreting BOLD. Meanwhile, within cognitive neuroscience, the increasing use of high magnetic field strengths and the development of model-based tasks and analyses have broadened the capability of BOLD signals to inform us about the underlying neuronal activity, but these methods are less well understood by cellular neuroscientists. In 2016, a Royal Society Theo Murphy Meeting brought scientists from the two communities together to discuss these issues. Here, we consolidate the main conclusions arising from that meeting. We discuss areas of consensus about what BOLD fMRI can tell us about underlying neuronal activity, and how advanced modelling techniques have improved our ability to use and interpret BOLD. We also highlight areas of controversy in understanding BOLD and suggest research directions required to resolve these issues.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  5. Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience

    Science.gov (United States)

    Howarth, Clare; Kurth-Nelson, Zebulun; Mishra, Anusha

    2016-01-01

    Cognitive neuroscience depends on the use of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to probe brain function. Although commonly used as a surrogate measure of neuronal activity, BOLD signals actually reflect changes in brain blood oxygenation. Understanding the mechanisms linking neuronal activity to vascular perfusion is, therefore, critical in interpreting BOLD. Advances in cellular neuroscience demonstrating differences in this neurovascular relationship in different brain regions, conditions or pathologies are often not accounted for when interpreting BOLD. Meanwhile, within cognitive neuroscience, the increasing use of high magnetic field strengths and the development of model-based tasks and analyses have broadened the capability of BOLD signals to inform us about the underlying neuronal activity, but these methods are less well understood by cellular neuroscientists. In 2016, a Royal Society Theo Murphy Meeting brought scientists from the two communities together to discuss these issues. Here, we consolidate the main conclusions arising from that meeting. We discuss areas of consensus about what BOLD fMRI can tell us about underlying neuronal activity, and how advanced modelling techniques have improved our ability to use and interpret BOLD. We also highlight areas of controversy in understanding BOLD and suggest research directions required to resolve these issues. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574302

  6. Spatiotopic coding of BOLD signal in human visual cortex depends on spatial attention.

    Directory of Open Access Journals (Sweden)

    Sofia Crespi

    Full Text Available The neural substrate of the phenomenological experience of a stable visual world remains obscure. One possible mechanism would be to construct spatiotopic neural maps where the response is selective to the position of the stimulus in external space, rather than to retinal eccentricities, but evidence for these maps has been inconsistent. Here we show, with fMRI, that when human subjects perform concomitantly a demanding attentive task on stimuli displayed at the fovea, BOLD responses evoked by moving stimuli irrelevant to the task were mostly tuned in retinotopic coordinates. However, under more unconstrained conditions, where subjects could attend easily to the motion stimuli, BOLD responses were tuned not in retinal but in external coordinates (spatiotopic selectivity in many visual areas, including MT, MST, LO and V6, agreeing with our previous fMRI study. These results indicate that spatial attention may play an important role in mediating spatiotopic selectivity.

  7. Characteristics of fMRI BOLD signal and its neurophysiological mechanism

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiaohu; Wu Yigen; Guo Shengli

    2007-01-01

    The functional magnetic resonance imaging (fMRI) based on blood oxygen level dependent (BOLD) contrast has emerged as one of the most potent noninvasive tools for mapping brain function and has been widely used to explore physiological, pathological changes and mental activity in the brain. Exploring the nature and property of BOLD signal has recently attracted more attentions. Despite that great progress has been made in investigation of the characteristics and neurophysiological basis, the exact nature of BOLD signal remains unclear. In this paper we discuss the characteristics of BOLD signals, the nonlinear BOLD response to external stimuli and the relation between BOLD signals and neural electrophysiological recordings. Furthermore, we develop our new opinions regarding nonlinear BOLD response and make some perspectives on future study.

  8. To boldly gulp: standard metabolic rate and boldness have context-dependent influences on risk-taking to breathe air in a catfish.

    Science.gov (United States)

    McKenzie, David J; Belão, Thiago C; Killen, Shaun S; Rantin, F Tadeu

    2015-12-01

    The African sharptooth catfish Clarias gariepinus has bimodal respiration, it has a suprabranchial air-breathing organ alongside substantial gills. We used automated bimodal respirometry to reveal that undisturbed juvenile catfish (N=29) breathed air continuously in normoxia, with a marked diurnal cycle. Air breathing and routine metabolic rate (RMR) increased in darkness when, in the wild, this nocturnal predator forages. Aquatic hypoxia (20% air saturation) greatly increased overall reliance on air breathing. We investigated whether two measures of risk taking to breathe air, namely absolute rates of aerial O2 uptake (ṀO2,air) and the percentage of RMR obtained from air (%ṀO2,air), were influenced by individual standard metabolic rate (SMR) and boldness. In particular, whether any influence varied with resource availability (normoxia versus hypoxia) or relative fear of predation (day versus night). Individual SMR, derived from respirometry, had an overall positive influence on ṀO2,air across all contexts but a positive influence on %ṀO2,air only in hypoxia. Thus, a pervasive effect of SMR on air breathing became most acute in hypoxia, when individuals with higher O2 demand took proportionally more risks. Boldness was estimated as time required to resume air breathing after a fearful stimulus in daylight normoxia (Tres). Although Tres had no overall influence on ṀO2,air or %ṀO2,air, there was a negative relationship between Tres and %ṀO2,air in daylight, in normoxia and hypoxia. There were two Tres response groups, 'bold' phenotypes with Tres below 75 min (N=13) which, in daylight, breathed proportionally more air than 'shy' phenotypes with Tres above 115 min (N=16). Therefore, individual boldness influenced air breathing when fear of predation was high. Thus, individual energy demand and personality did not have parallel influences on the emergent tendency to take risks to obtain a resource; their influences varied in strength with context. © 2015

  9. Blood oxygen level-dependent (BOLD) MRI: A novel technique for the assessment of myocardial ischemia as identified by nuclear imaging SPECT.

    Science.gov (United States)

    Egred, M; Waiter, G D; Redpath, T W; Semple, S K I; Al-Mohammad, A; Walton, S

    2007-12-01

    The different levels of deoxyhemoglobin in the ischemic myocardium, induced by stressors such as dipyridamole, can be detected by blood oxygen level-dependent (BOLD) MRI and may be used to diagnose myocardial ischemia. The aim of this study was to assess the signal change in the myocardium on BOLD MRI as well as wall thickening between rest and dipyridamole stress images in ischemic and non-ischemic myocardium as identified on SPECT imaging. Twelve patients with stress-induced myocardial ischemia on SPECT underwent rest and dipyridamole stress MRI using a double breath-hold, T2()-weighted, ECG-gated sequence to produce BOLD contrast images as well as cine-MRI for wall thickening assessment in 10 of the 12 patients. Signal change on BOLD MRI and wall thickening were compared between rest and stress images in ischemic and non-ischemic myocardial segments as identified on SPECT. In each patient, two MRI slices containing 16 segments per slice were analysed. In total, there were 384 segments for BOLD analysis and 320 for wall thickening. For BOLD signal 137 segments correlated to segments with reversible ischemia on SPECT and 247 to normal segments, while for wall thickening 112 segments correlated to segments with reversible ischemia and 208 to normal segments. The average BOLD MRI signal intensity change was -13.8 (+/-16.3)% in the ischemic segments compared to -10.3 (+/-14.7)% in the non-ischemic segments (p=0.05). The average wall thickening was 6.4 (+/-3.4) mm in the ischemic segments compared to 8.7 (+/-3.8) mm in the non-ischemic segments (p<0.0001). Stress-induced ischemic myocardium has a different signal change and wall thickening than non-ischemic myocardium and may be differentiated on BOLD MRI. Larger studies are needed to define a threshold for detection and to determine the sensitivity and specificity of this technique.

  10. Developmental dissociation of visual dorsal stream parvo and magnocellular representations and the functional impact of negative retinotopic BOLD responses.

    Science.gov (United States)

    Duarte, Isabel Catarina; Cunha, Gil; Castelhano, João; Sales, Francisco; Reis, Aldina; Cunha, João Paulo Silva; Castelo-Branco, Miguel

    2013-10-01

    Localized neurodevelopmental defects provide an opportunity to study structure-function correlations in the human nervous system. This unique multimodal case report of epileptogenic dysplasia in the visual cortex allowed exploring visual function across distinct pathways in retinotopic regions and the dorsal stream, in relation to fMRI retinotopic mapping and spike triggered BOLD responses. Pre-surgical EEG/video monitoring, MRI/DTI, EEG/fMRI, PET and SPECT were performed to characterize structure/function correlations in this patient with a very early lesion onset. In addition, we included psychophysical methods (assessing parvo/konio and magnocellular pathways) and retinotopic mapping. We could identify dorsal stream impairment (with extended contrast sensitivity deficits within the input magno system contrasting with more confined parvocellular deficits) with disrupted active visual field input representations in regions neighboring the lesion. Simultaneous EEG/fMRI identified perilesional and retinotopic bilaterally symmetric BOLD deactivation triggered by interictal spikes, which matched the contralateral spread of magnocellular dysfunction revealed in the psychophysical tests. Topographic changes in retinotopic organization further suggested long term functional effects of abnormal electrical discharges during brain development. We conclude that fMRI based visual field cortical mapping shows evidence for retinotopic dissociation between magno and parvocellular function well beyond striate cortex, identifiable in high level dorsal visual representations around visual area V3A which is consistent with the effects of epileptic spike triggered negative BOLD.

  11. A hemodynamic model for layered BOLD signals

    NARCIS (Netherlands)

    Heinzle, J.; Koopmans, P.J.; Ouden, H.E.M. den; Raman, S.; Stephan, K.E.

    2016-01-01

    High-resolution blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) at the sub-millimeter scale has become feasible with recent advances in MR technology. In principle, this would enable the study of layered cortical circuits, one of the fundaments of cortical

  12. Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer's disease risk groups.

    Science.gov (United States)

    Fleisher, Adam S; Sherzai, Ayesha; Taylor, Curtis; Langbaum, Jessica B S; Chen, Kewei; Buxton, Richard B

    2009-10-01

    To assess the ability of resting-state functional magnetic resonance imaging to distinguish known risk factors for AD, we evaluated 17 cognitively normal individuals with a family history of AD and at least one copy of the apolipoprotein e4 allele compared to 12 individuals who were not carriers of the APOE4 gene and did not have a family history of AD. Blood oxygen level dependent fMRI was performed evaluating encoding-associated signal and resting-state default mode network signal differences between the two risk groups. Neurocognitive testing revealed that the high risk group performed worse on category fluency testing, but the groups were equivalent on all other cognitive measures. During encoding of novel face-name pairs, there were no regions of encoding-associated BOLD activations that were different in the high risk group. Encoding-associated deactivations were greater in magnitude in the low risk group in the medial and right lateral parietal cortex, similar to findings in AD studies. The resting-state DMN analysis demonstrated nine regions in the prefrontal, orbital frontal, temporal and parietal lobes that distinguished the two risk groups. Resting-state DMN analysis could distinguish risk groups with an effect size of 3.35, compared to an effect size of 1.39 using encoding-associated fMRI techniques. Imaging of the resting state avoids performance related variability seen in activation fMRI, is less complicated to acquire and standardize, does not require radio-isotopes, and may be more effective at identifying functional pathology associated with AD risk compared to non-resting fMRI techniques.

  13. Positive Allosteric Modulator of GABA Lowers BOLD Responses in the Cingulate Cortex.

    Directory of Open Access Journals (Sweden)

    Susanna A Walter

    Full Text Available Knowledge about the neural underpinnings of the negative blood oxygen level dependent (BOLD responses in functional magnetic resonance imaging (fMRI is still limited. We hypothesized that pharmacological GABAergic modulation attenuates BOLD responses, and that blood concentrations of a positive allosteric modulator of GABA correlate inversely with BOLD responses in the cingulate cortex. We investigated whether or not pure task-related negative BOLD responses were co-localized with pharmacologically modulated BOLD responses. Twenty healthy adults received either 5 mg diazepam or placebo in a double blind, randomized design. During fMRI the subjects performed a working memory task. Results showed that BOLD responses in the cingulate cortex were inversely correlated with diazepam blood concentrations; that is, the higher the blood diazepam concentration, the lower the BOLD response. This inverse correlation was most pronounced in the pregenual anterior cingulate cortex and the anterior mid-cingulate cortex. For subjects with diazepam plasma concentration > 0.1 mg/L we observed negative BOLD responses with respect to fixation baseline. There was minor overlap between cingulate regions with task-related negative BOLD responses and regions where the BOLD responses were inversely correlated with diazepam concentration. We interpret that the inverse correlation between the BOLD response and diazepam was caused by GABA-related neural inhibition. Thus, this study supports the hypothesis that GABA attenuates BOLD responses in fMRI. The minimal overlap between task-related negative BOLD responses and responses attenuated by diazepam suggests that these responses might be caused by different mechanisms.

  14. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation

    DEFF Research Database (Denmark)

    Kim, S.G.; Rostrup, Egill; Larsson, H.B.;

    1999-01-01

    The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging depends on at least partial uncoupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) changes. By measuring CBF and BOLD simultaneously, the relative change in CMRO2 can b...

  15. One pair of hands is not like another: caudate BOLD response in dogs depends on signal source and canine temperament

    Science.gov (United States)

    Cook, Peter F.; Spivak, Mark

    2014-01-01

    Having previously used functional MRI to map the response to a reward signal in the ventral caudate in awake unrestrained dogs, here we examined the importance of signal source to canine caudate activation. Hand signals representing either incipient reward or no reward were presented by a familiar human (each dog’s respective handler), an unfamiliar human, and via illustrated images of hands on a computer screen to 13 dogs undergoing voluntary fMRI. All dogs had received extensive training with the reward and no-reward signals from their handlers and with the computer images and had minimal exposure to the signals from strangers. All dogs showed differentially higher BOLD response in the ventral caudate to the reward versus no reward signals, and there was a robust effect at the group level. Further, differential response to the signal source had a highly significant interaction with a dog’s general aggressivity as measured by the C-BARQ canine personality assessment. Dogs with greater aggressivity showed a higher differential response to the reward signal versus no-reward signal presented by the unfamiliar human and computer, while dogs with lower aggressivity showed a higher differential response to the reward signal versus no-reward signal from their handler. This suggests that specific facets of canine temperament bear more strongly on the perceived reward value of relevant communication signals than does reinforcement history, as each of the dogs were reinforced similarly for each signal, regardless of the source (familiar human, unfamiliar human, or computer). A group-level psychophysiological interaction (PPI) connectivity analysis showed increased functional coupling between the caudate and a region of cortex associated with visual discrimination and learning on reward versus no-reward trials. Our findings emphasize the sensitivity of the domestic dog to human social interaction, and may have other implications and applications pertinent to the training

  16. One pair of hands is not like another: caudate BOLD response in dogs depends on signal source and canine temperament

    Directory of Open Access Journals (Sweden)

    Peter F. Cook

    2014-09-01

    Full Text Available Having previously used functional MRI to map the response to a reward signal in the ventral caudate in awake unrestrained dogs, here we examined the importance of signal source to canine caudate activation. Hand signals representing either incipient reward or no reward were presented by a familiar human (each dog’s respective handler, an unfamiliar human, and via illustrated images of hands on a computer screen to 13 dogs undergoing voluntary fMRI. All dogs had received extensive training with the reward and no-reward signals from their handlers and with the computer images and had minimal exposure to the signals from strangers. All dogs showed differentially higher BOLD response in the ventral caudate to the reward versus no reward signals, and there was a robust effect at the group level. Further, differential response to the signal source had a highly significant interaction with a dog’s general aggressivity as measured by the C-BARQ canine personality assessment. Dogs with greater aggressivity showed a higher differential response to the reward signal versus no-reward signal presented by the unfamiliar human and computer, while dogs with lower aggressivity showed a higher differential response to the reward signal versus no-reward signal from their handler. This suggests that specific facets of canine temperament bear more strongly on the perceived reward value of relevant communication signals than does reinforcement history, as each of the dogs were reinforced similarly for each signal, regardless of the source (familiar human, unfamiliar human, or computer. A group-level psychophysiological interaction (PPI connectivity analysis showed increased functional coupling between the caudate and a region of cortex associated with visual discrimination and learning on reward versus no-reward trials. Our findings emphasize the sensitivity of the domestic dog to human social interaction, and may have other implications and applications

  17. Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI.

    Science.gov (United States)

    Leontiev, Oleg; Buxton, Richard B

    2007-03-01

    The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation can be characterized by an empirical index, n, defined as the ratio between fractional CBF change and fractional CMRO(2) change. The combination of blood oxygenation level dependent (BOLD) imaging with CBF measurements from arterial spin labeling (ASL) provides a potentially powerful experimental approach for measuring n, but the reproducibility of the technique previously has not been assessed. In this study, inter-subject variance and intra-subject reproducibility of the method were determined. Block design %BOLD and %CBF responses to visual stimulation and mild hypercapnia (5% CO(2)) were measured, and these data were used to compute the BOLD scaling factor M, %CMRO(2) change with activation, and the coupling index n. Reproducibility was determined for three approaches to defining regions-of-interest (ROIs): 1) Visual area V1 determined from prior retinotopic maps, 2) BOLD-activated voxels from a separate functional localizer, and 3) CBF-activated voxels from a separate functional localizer. For estimates of %BOLD, %CMRO(2) and n, intra-subject reproducibility was found to be best for regions selected according to CBF activation. Among all fMRI measurements, estimates of n were the most robust and were substantially more stable within individual subjects (coefficient of variation, CV=7.4%) than across the subject pool (CV=36.9%). The stability of n across days, despite wider variability of CBF and CMRO(2) responses, suggests that the reproducibility of blood flow changes is limited by variation in the oxidative metabolic demand. We conclude that the calibrated BOLD approach provides a highly reproducible measurement of n that can serve as a useful quantitative probe of the coupling of blood flow and energy metabolism in the brain.

  18. Variability in blood oxygen level dependent (BOLD signal in patients with stroke-induced and primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    B. Bonakdarpour

    2015-01-01

    Full Text Available Although fMRI is increasingly used to assess language-related brain activation in patients with aphasia, few studies have examined the hemodynamic response function (HRF in perilesional, and contralesional areas of the brain. In addition, the relationship between HRF abnormalities and other variables such as lesion size and severity of aphasia has not been explored. The objective of this study was to investigate changes in HRF signal during language-related neural activation in patients with stroke-induced aphasia (SA. We also examined the status of the HRF in patients with aphasia due to nonvascular etiology, namely, primary progressive aphasia (PPA. Five right handed SA patients, three PPA patients, and five healthy individuals participated in the study. Structural damage was quantified with T1-weighted MR images. Functional MR imaging was performed with long trial event-related design and an overt naming task to measure BOLD signal time to peak (TTP and percent signal change (ΔS. In SA patients, the average HRF TTP was significantly delayed in the left hemisphere regions involved in naming compared to healthy participants and PPA patients. However, ΔS was not different in SA patients compared to the other two groups. Delay in HRF TTP in the left hemisphere naming network of SA patients was correlated with lesion size and showed a negative correlation with global language function. There were no significant differences in the HRF TTP and ΔS in the right hemisphere homologues of the naming network or in the left and the right occipital control regions across the three groups. In PPA patients, HRF had a normal pattern. Our results indicate that abnormal task-related HRF is primarily found in the left hemisphere language network of SA patients and raise the possibility that abnormal physiology superimposed on structural damage may contribute to the clinical deficit. Follow-up investigations in a larger sample of age-matched healthy individuals

  19. LDF (Lag Dependence Functions)

    DEFF Research Database (Denmark)

    2000-01-01

    LDF (Lag Dependence Functions) is an S-PLUS library for identification of non-linear dependencies in univariate time series. The methods can be considered generalizations of the tools applicable for linear time series.......LDF (Lag Dependence Functions) is an S-PLUS library for identification of non-linear dependencies in univariate time series. The methods can be considered generalizations of the tools applicable for linear time series....

  20. LDF (Lag Dependence Functions)

    DEFF Research Database (Denmark)

    2000-01-01

    LDF (Lag Dependence Functions) is an S-PLUS library for identification of non-linear dependencies in univariate time series. The methods can be considered generalizations of the tools applicable for linear time series.......LDF (Lag Dependence Functions) is an S-PLUS library for identification of non-linear dependencies in univariate time series. The methods can be considered generalizations of the tools applicable for linear time series....

  1. Single-trial EEG-informed fMRI reveals spatial dependency of BOLD signal on early and late IC-ERP amplitudes during face recognition.

    Science.gov (United States)

    Wirsich, Jonathan; Bénar, Christian; Ranjeva, Jean-Philippe; Descoins, Médéric; Soulier, Elisabeth; Le Troter, Arnaud; Confort-Gouny, Sylviane; Liégeois-Chauvel, Catherine; Guye, Maxime

    2014-10-15

    Simultaneous EEG-fMRI has opened up new avenues for improving the spatio-temporal resolution of functional brain studies. However, this method usually suffers from poor EEG quality, especially for evoked potentials (ERPs), due to specific artifacts. As such, the use of EEG-informed fMRI analysis in the context of cognitive studies has particularly focused on optimizing narrow ERP time windows of interest, which ignores the rich diverse temporal information of the EEG signal. Here, we propose to use simultaneous EEG-fMRI to investigate the neural cascade occurring during face recognition in 14 healthy volunteers by using the successive ERP peaks recorded during the cognitive part of this process. N170, N400 and P600 peaks, commonly associated with face recognition, were successfully and reproducibly identified for each trial and each subject by using a group independent component analysis (ICA). For the first time we use this group ICA to extract several independent components (IC) corresponding to the sequence of activation and used single-trial peaks as modulation parameters in a general linear model (GLM) of fMRI data. We obtained an occipital-temporal-frontal stream of BOLD signal modulation, in accordance with the three successive IC-ERPs providing an unprecedented spatio-temporal characterization of the whole cognitive process as defined by BOLD signal modulation. By using this approach, the pattern of EEG-informed BOLD modulation provided improved characterization of the network involved than the fMRI-only analysis or the source reconstruction of the three ERPs; the latter techniques showing only two regions in common localized in the occipital lobe.

  2. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI. Implications in presurgical brain mapping

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liya [Dept. of Radiology and Imaging Sciences, Emory Univ., School of Medicine, Atlanta (United States); Dept. of Radiology, Baoan Hospital, Shenzhen (China); Ali, Shazia; Fa, Tianning; Mao, Hui [Dept. of Radiology and Imaging Sciences, Emory Univ., School of Medicine, Atlanta (United States)], e-mail: hmao@emory.edu; Dandan, Chen [Dept. of Physics, Emory Univ., Atlanta, (United States); School of Radiation Medicine and Protection, Soochow Univ., Suzhou (China); Olson, Jeffrey [Dept. of Neurosurgery, Emory Univ., School of Medicine, Atlanta (United States)

    2012-09-15

    Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional

  3. Dynamic spatiotemporal variability of alpha-BOLD relationships during the resting-state and task-evoked responses.

    Science.gov (United States)

    Mayhew, S D; Bagshaw, A P

    2017-07-15

    Accurate characterization of the spatiotemporal relationship between two of the most prominent neuroimaging measures of neuronal activity, the 8-13Hz, occipito-parietal EEG alpha oscillation and the BOLD fMRI signal, must encompass the intrinsically dynamic nature of both alpha power and brain function. Here, during the eyes-open resting state, we use a 16s sliding-window analysis and demonstrate that the mean spatial network of dynamic alpha-BOLD correlations is highly comparable to the static network calculated over six minutes. However, alpha-BOLD correlations showed substantial spatiotemporal variability within-subjects and passed through many different configurations such that the static network was fully represented in only ~10% of 16s epochs, with visual and parietal regions (coherent on average) often opposingly correlated with each other or with alpha. We find that the common assumption of static-alpha BOLD correlations greatly oversimplifies temporal variation in brain network dynamics. Fluctuations in alpha-BOLD coupling significantly depended upon the instantaneous amplitude of alpha power, and primary and lateral visual areas were most strongly negatively correlated with alpha during different alpha power states, possibly suggesting the action of multiple alpha mechanisms. Dynamic alpha-BOLD correlations could not be explained by eye-blinks/movements, head motion or non-neuronal physiological variability. Individual's mean alpha power and frequency were found to contribute to between-subject variability in alpha-BOLD correlations. Additionally, application to a visual stimulation dataset showed that dynamic alpha-BOLD correlations provided functional information pertaining to the brain's response to stimulation by exhibiting spatiotemporal fluctuations related to variability in the trial-by-trial BOLD response magnitude. Significantly weaker visual alpha-BOLD correlations were found both preceding and following small amplitude BOLD response trials

  4. FMRI, antipsychotics and schizophrenia. Influence of different antipsychotics on BOLD-signal.

    Science.gov (United States)

    Röder, Christian H; Hoogendam, Janna Marie; van der Veen, Frederik M

    2010-01-01

    In the last decade, functional Magnetic Resonance Imaging (FMRI) has been increasingly used to investigate the neurobiology of schizophrenia. This technique relies on changes in the blood-oxygen-level-dependent (BOLD) - signal, which changes in response to neural activity. Many FMRI studies on schizophrenia have examined medicated patients, but little is known about the effects of antipsychotic medication on the BOLD-signal. In this review we investigated to what extent studies in patients with schizophrenia (SC), who were treated with different antipsychotics, could give insight in the effects of antipsychotics on the BOLD-signal. A PubMed search was performed using the search items "schizophrenia", "FMRI", "antipsychotics" and "schizophrenia", "BOLD", "antipsychotics". Only articles in which there were at least two groups of patients with different treatments or in which patients were scanned twice with different treatments were selected. 18 articles, published between 1999 and 2009, fulfilled these criteria. Paradigms and results of these studies were compared regarding differences induced by the administered antipsychotics. This analysis showed no general effect of antipsychotics on the BOLD-signal. However, there is some evidence that the extent of blockade of the dopamine (DA) D(2) receptor does influence the BOLD-signal. Higher affinity to the dopamine D2 receptor, as expressed by a higher/lower inhibition constant (Ki) seems to cause a decrease in BOLD-signal.

  5. Age-related differences in cerebral blood flow underlie the BOLD FMRI signal in childhood

    Directory of Open Access Journals (Sweden)

    Pamela eMoses

    2014-04-01

    Full Text Available Functional magnetic resonance imaging (FMRI has become a premiere technique for studying the development and neural mediation of a wide range of typical and atypical behaviors in children. While the mechanism of the blood oxygen level-dependent (BOLD FMRI signal has been a focus of investigation in the mature brain, it has been largely unexamined in the developing brain. One critical component of the BOLD signal that has been noted to change with age is cerebral blood flow (CBF. Reports of CBF in children based on clinical radioactive tracing methods have found elevated CBF in childhood relative to adulthood, which could affect the BOLD response. This study used noninvasive arterial spin labeling (ASL MRI to study resting state and activity-driven CBF in conjunction with the functional BOLD response in healthy children 8 and 12 years of age and in adults. Participants performed a finger tapping task to generate robust activation measured in the motor cortex. Quantification of resting state CBF demonstrated higher CBF in 8 year olds and in 12 year olds relative to adults. The absolute increase in CBF between baseline rest and peak response during the motor task was also higher in children compared to adults. In contrast, the relative increase of CBF above baseline, expressed as percent of CBF change, was comparable across groups. The percent of BOLD signal change was also stable across age groups. This set of findings suggest that along with elevated CBF in childhood, other component processes of the BOLD response are also in an elevated state such that together they yield a net BOLD effect that resembles adults. These findings are consistent with our previous examination hemodynamics in primary sensory cortex. Although the magnitude of the BOLD response appears consistent between childhood and adulthood, the underlying physiology and cerebrovascular dynamics that give rise to the BOLD effect differ between immature and mature brains neural

  6. Functional dissociation of transient and sustained fMRI BOLD components in human auditory cortex revealed with a streaming paradigm based on interaural time differences.

    Science.gov (United States)

    Schadwinkel, Stefan; Gutschalk, Alexander

    2010-12-01

    A number of physiological studies suggest that feature-selective adaptation is relevant to the pre-processing for auditory streaming, the perceptual separation of overlapping sound sources. Most of these studies are focused on spectral differences between streams, which are considered most important for streaming. However, spatial cues also support streaming, alone or in combination with spectral cues, but physiological studies of spatial cues for streaming remain scarce. Here, we investigate whether the tuning of selective adaptation for interaural time differences (ITD) coincides with the range where streaming perception is observed. FMRI activation that has been shown to adapt depending on the repetition rate was studied with a streaming paradigm where two tones were differently lateralized by ITD. Listeners were presented with five different ΔITD conditions (62.5, 125, 187.5, 343.75, or 687.5 μs) out of an active baseline with no ΔITD during fMRI. The results showed reduced adaptation for conditions with ΔITD ≥ 125 μs, reflected by enhanced sustained BOLD activity. The percentage of streaming perception for these stimuli increased from approximately 20% for ΔITD = 62.5 μs to > 60% for ΔITD = 125 μs. No further sustained BOLD enhancement was observed when the ΔITD was increased beyond ΔITD = 125 μs, whereas the streaming probability continued to increase up to 90% for ΔITD = 687.5 μs. Conversely, the transient BOLD response, at the transition from baseline to ΔITD blocks, increased most prominently as ΔITD was increased from 187.5 to 343.75 μs. These results demonstrate a clear dissociation of transient and sustained components of the BOLD activity in auditory cortex.

  7. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation

    DEFF Research Database (Denmark)

    Kim, S.G.; Rostrup, Egill; Larsson, H.B.

    1999-01-01

    be estimated during neural activity using a reference condition obtained with known CMRO2 change. In this work, nine subjects were studied at a magnetic field of 1.5 T; each subject underwent inhalation of a 5% carbon dioxide gas mixture as a reference and two visual stimulation studies. Relative CBF and BOLD......The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging depends on at least partial uncoupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) changes. By measuring CBF and BOLD simultaneously, the relative change in CMRO2 can...

  8. BOLD frequency power indexes working memory performance

    Directory of Open Access Journals (Sweden)

    Joshua Henk Balsters

    2013-05-01

    Full Text Available Electrophysiology studies routinely investigate the relationship between neural oscillations and task performance. However, the sluggish nature of the BOLD response means that few researchers have investigated the spectral properties of the BOLD signal in a similar manner. For the first time we have applied group ICA to fMRI data collected during a standard working memory task (delayed match-to-sample and using a multivariate analysis, we investigate the relationship between working memory performance (accuracy and reaction time and BOLD spectral power within functional networks. Our results indicate that BOLD spectral power within specific networks (visual, temporal-parietal, posterior default-mode network, salience network, basal ganglia correlated with task accuracy. Multivariate analyses show that the relationship between task accuracy and BOLD spectral power is stronger than the relationship between BOLD spectral power and other variables (age, gender, head movement, and neuropsychological measures. A traditional General Linear Model (GLM analysis found no significant group differences, or regions that covaried in signal intensity with task accuracy, suggesting that BOLD spectral power holds unique information that is lost in a standard GLM approach. We suggest that the combination of ICA and BOLD spectral power is a useful novel index of cognitive performance that may be more sensitive to brain-behaviour relationships than traditional approaches.

  9. Temporally shifted hemodynamic response model helps to extract acupuncture-induced functional magnetic resonance imaging blood oxygenation-level dependent activities

    Institute of Scientific and Technical Information of China (English)

    Tsung-Jung Ho; Jeng-Ren Duann; Chun-Ming Chen; Jeon-Hor Chen; Wu-Chung Shen; Tung-Wu Lu; Jan-Ray Liao; Zen-Pin Lin; Kuo-Ning Shaw; Jaung-Geng Lin

    2009-01-01

    Background The onsets of needling sensation introduced by acupuncture stimulus can vary widely from subject to subject.This should be explicitly accounted for by the model blood oxygenation-level dependent (BOLD) time course used in general linear model (GLM) analysis to obtain more consistent across-subject group results.However,in standard GLM analysis,the model BOLD time course obtained by convolving a canonical hemodynamic response function with an experimental paradigm time course is assumed identical across subjects.Although some added-on properties to the model BOLD time course,such as temporal and dispersion derivatives,may be used to account for different BOLD response onsets,they can only account for the BOLD onset deviations to the extent of less than one repetition time (TR).Methods In this study,we explicitly manipulated the onsets of model BOLD time course by shifting it with-2,-1,or 1 TR and used these temporally shifted BOLD model to analyze the functional magnetic resonance imaging (fMRI) data obtained from three acupuncture fMRI experiments with GLM analysis.One involved acupuncture stimulus on left ST42acupoint and the other two on left GB40 and left BL64 acupoints.Results The model BOLD time course with temporal shifts,in addition to temporal and dispersion derivatives,could result in better statistical power of the data analysis in terms of the average correlation coefficients between the used BOLD models and extracted BOLD responses from individual subject data and the T-values of the activation clusters in the grouped random effects.Conclusions The GLM analysis with ordinary BOLD model failed to catch the large variability of the onsets of the BOLD responses associated with the acupuncture needling sensation.Shifts in time with more than a TR on model BOLD time course might be required to better extract the acupuncture stimulus-induced BOLD activities from individual fMRI data.

  10. Dynamic and static contributions of the cerebrovasculature to the resting-state BOLD signal.

    Science.gov (United States)

    Tak, Sungho; Wang, Danny J J; Polimeni, Jonathan R; Yan, Lirong; Chen, J Jean

    2014-01-01

    Functional magnetic resonance imaging (fMRI) in the resting state, particularly fMRI based on the blood-oxygenation level-dependent (BOLD) signal, has been extensively used to measure functional connectivity in the brain. However, the mechanisms of vascular regulation that underlie the BOLD fluctuations during rest are still poorly understood. In this work, using dual-echo pseudo-continuous arterial spin labeling and MR angiography (MRA), we assess the spatio-temporal contribution of cerebral blood flow (CBF) to the resting-state BOLD signals and explore how the coupling of these signals is associated with regional vasculature. Using a general linear model analysis, we found that statistically significant coupling between resting-state BOLD and CBF fluctuations is highly variable across the brain, but the coupling is strongest within the major nodes of established resting-state networks, including the default-mode, visual, and task-positive networks. Moreover, by exploiting MRA-derived large vessel (macrovascular) volume fraction, we found that the degree of BOLD-CBF coupling significantly decreased as the ratio of large vessels to tissue volume increased. These findings suggest that the portion of resting-state BOLD fluctuations at the sites of medium-to-small vessels (more proximal to local neuronal activity) is more closely regulated by dynamic regulations in CBF, and that this CBF regulation decreases closer to large veins, which are more distal to neuronal activity.

  11. Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal.

    Science.gov (United States)

    Kiviniemi, Vesa J; Haanpää, Hannu; Kantola, Juha-Heikki; Jauhiainen, Jukka; Vainionpää, Vilho; Alahuhta, Seppo; Tervonen, Osmo

    2005-05-01

    The blood oxygen level-dependent (BOLD) magnetic resonance signal of functional brain cortices is dominated by very low frequency (VLF) fluctuations in anesthetized child patients. The temporal synchrony of the BOLD signal is also higher in anesthetized children compared with awake adults. The origin of the synchronous fluctuations can be related to maturation, pathological status or the anesthesia used in the imaging. Two of the three confounding variables (maturation and pathology) were controlled in this study. The effect of midazolam (4+/-0.8 mg) sedation on the BOLD signal was assessed in 12 healthy adults (aged 24+/-1.5 years) at 1.5 T. The VLF fluctuation power and temporal synchrony of the BOLD signal increased significantly after the sedation in the auditory and visual cortices. The fast Fourier transformation power spectral baseline fit parameters of the BOLD signal were also found to change significantly after sedation. It is concluded that the VLF fluctuation and temporal synchrony of the BOLD signal become increased after sedation in functional brain regions.

  12. Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors.

    Science.gov (United States)

    Sakatani, Kaoru; Murata, Yoshihiro; Fujiwara, Norio; Hoshino, Tatsuya; Nakamura, Shin; Kano, Tsuneo; Katayama, Yoichi

    2007-01-01

    Blood-oxygen-level-dependent contrast functional magnetic resonance imaging (BOLD-fMRI) has been used to perform functional imaging in brain disorders such as stroke and brain tumors. However, recent studies have revealed that BOLD-fMRI does not image activation areas correctly in such patients. To clarify the characteristics of the evoked cerebral blood oxygenation (CBO) changes occurring in stroke and brain tumors, we have been comparing near-infrared spectroscopy (NIRS) and BOLD-fMRI recording during functional brain activation in these patients. We review our recent studies and related functional imaging studies on the brain disorders. In the primary sensorimotor cortex (PSMC) on the nonlesion side, the motor task consistently caused a decrease of deoxyhemoglobin (deoxy-Hb) with increases of oxyhemoglobin (oxy-Hb) and total hemoglobin (t-Hb), which is consistent with the evoked CBO response observed in normal adults. BOLD-fMRI demonstrated robust activation areas on the nonlesion side. In stroke patients, severe cerebral ischemia (i.e., misery perfusion) caused an increase of deoxy-Hb during the task, associated with increases of oxy-Hb and t-Hb, in the PSMC on the lesion side. In addition, the activation volume of BOLD-fMRI was significantly reduced on the lesion side. The BOLD signal did not change in some areas of the PSMC on the lesion side, but it tended to decrease in other areas during the tasks. In brain tumors, BOLD-fMRI clearly demonstrated activation areas in the PSMC on the lesion side in patients who displayed a normal evoked CBO response. However, the activation volume on the lesion side was significantly reduced in patients who exhibited an increase of deoxy-Hb during the task. In both stroke and brain tumors, false-negative activations (i.e., marked reductions of activation volumes) in BOLD imaging were associated with increases of deoxy-Hb, which could cause a reduction in BOLD signal. BOLD-fMRI investigations of patients with brain disorders

  13. Blood oxygen-level dependent functional assessment of cerebrovascular reactivity: Feasibility for intraoperative 3 Tesla MRI.

    Science.gov (United States)

    Fierstra, Jorn; Burkhardt, Jan-Karl; van Niftrik, Christiaan Hendrik Bas; Piccirelli, Marco; Pangalu, Athina; Kocian, Roman; Neidert, Marian Christoph; Valavanis, Antonios; Regli, Luca; Bozinov, Oliver

    2017-02-01

    To assess the feasibility of functional blood oxygen-level dependent (BOLD) MRI to evaluate intraoperative cerebrovascular reactivity (CVR) at 3 Tesla field strength. Ten consecutive neurosurgical subjects scheduled for a clinical intraoperative MRI examination were enrolled in this study. In addition to the clinical protocol a BOLD sequence was implemented with three cycles of 44 s apnea to calculate CVR values on a voxel-by-voxel basis throughout the brain. The CVR range was then color-coded and superimposed on an anatomical volume to create high spatial resolution CVR maps. Ten subjects (mean age 34.8 ± 13.4; 2 females) uneventfully underwent the intraoperative BOLD protocol, with no complications occurring. Whole-brain CVR for all subjects was (mean ± SD) 0.69 ± 0.42, whereas CVR was markedly higher for tumor subjects as compared to vascular subjects, 0.81 ± 0.44 versus 0.33 ± 0.10, respectively. Furthermore, color-coded functional maps could be robustly interpreted for a whole-brain assessment of CVR. We demonstrate that intraoperative BOLD MRI is feasible in creating functional maps to assess cerebrovascular reactivity throughout the brain in subjects undergoing a neurosurgical procedure. Magn Reson Med 77:806-813, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Neural and vascular variability and the fMRI-BOLD response in normal aging.

    Science.gov (United States)

    Kannurpatti, Sridhar S; Motes, Michael A; Rypma, Bart; Biswal, Bharat B

    2010-05-01

    Neural, vascular and structural variables contributing to the blood oxygen level-dependent (BOLD) signal response variability were investigated in younger and older humans. Twelve younger healthy human subjects (six male and six female; mean age: 24 years; range: 19-27 years) and 12 older healthy subjects (five male and seven female; mean age: 58 years; range: 55-71 years) with no history of head trauma and neurological disease were scanned. Functional magnetic resonance imaging measurements using the BOLD contrast were made when participants performed a motor, cognitive or a breath hold (BH) task. Activation volume and the BOLD response amplitude were estimated for the younger and older at both group and subject levels. Mean activation volume was reduced by 45%, 40% and 38% in the elderly group during the motor, cognitive and BH tasks, respectively, compared to the younger. Reduction in activation volume was substantially higher compared to the reduction in the gray matter volume of 14% in the older compared to the younger. A significantly larger variability in the intersubject BOLD signal change occurred during the motor task, compared to the cognitive task. BH-induced BOLD signal change between subjects was significantly less-variable in the motor task-activated areas in the younger compared to older whereas such a difference between age groups was not observed during the cognitive task. Hemodynamic scaling using the BH signal substantially reduced the BOLD signal variability during the motor task compared to the cognitive task. The results indicate that the origin of the BOLD signal variability between subjects was predominantly vascular during the motor task while being principally a consequence of neural variability during the cognitive task. Thus, in addition to gray matter differences, the type of task performed can have different vascular variability weighting that can influence age-related differences in brain functional response.

  15. Fmri, antipsychotics and schizophrenia. influence of different antipsychotics on bold-signal

    NARCIS (Netherlands)

    C. Röder (Constantin); J.M. Hoogendam (Janna Marie); F.M. van der Veen (Frederik)

    2010-01-01

    textabstractIn the last decade, functional Magnetic Resonance Imaging (FMRI) has been increasingly used to investigate the neurobiology of schizophrenia. This technique relies on changes in the blood-oxygen-level-dependent (BOLD) -signal, which changes in response to neural activity. Many FMRI studi

  16. Bold Books for Teenagers

    Science.gov (United States)

    Gallo, Don

    2005-01-01

    "Bold Books for Teenagers" provides dynamic, informative viewpoints on important issues in publishing and teaching contemporary literature, especially literature for adolescents. Reviews of young adult literature also appear in this column. This article examines how English teachers can help students explore their interests without promoting any…

  17. Quantitative comparisons on hand motor functional areas determined by resting state and task BOLD fMRI and anatomical MRI for pre-surgical planning of patients with brain tumors.

    Science.gov (United States)

    Hou, Bob L; Bhatia, Sanjay; Carpenter, Jeffrey S

    2016-01-01

    For pre-surgical planning we present quantitative comparison of the location of the hand motor functional area determined by right hand finger tapping BOLD fMRI, resting state BOLD fMRI, and anatomically using high resolution T1 weighted images. Data were obtained on 10 healthy subjects and 25 patients with left sided brain tumors. Our results show that there are important differences in the locations (i.e., > 20 mm) of the determined hand motor voxels by these three MR imaging methods. This can have significant effect on the pre-surgical planning of these patients depending on the modality used. In 13 of the 25 cases (i.e., 52%) the distances between the task-determined and the rs-fMRI determined hand areas were more than 20 mm; in 13 of 25 cases (i.e., 52%) the distances between the task-determined and anatomically determined hand areas were > 20 mm; and in 16 of 25 cases (i.e., 64%) the distances between the rs-fMRI determined and anatomically determined hand areas were more than 20 mm. In just three cases, the distances determined by all three modalities were within 20 mm of each other. The differences in the location or fingerprint of the hand motor areas, as determined by these three MR methods result from the different underlying mechanisms of these three modalities and possibly the effects of tumors on these modalities.

  18. Quantitative comparisons on hand motor functional areas determined by resting state and task BOLD fMRI and anatomical MRI for pre-surgical planning of patients with brain tumors

    Directory of Open Access Journals (Sweden)

    Bob L. Hou

    2016-01-01

    Full Text Available For pre-surgical planning we present quantitative comparison of the location of the hand motor functional area determined by right hand finger tapping BOLD fMRI, resting state BOLD fMRI, and anatomically using high resolution T1 weighted images. Data were obtained on 10 healthy subjects and 25 patients with left sided brain tumors. Our results show that there are important differences in the locations (i.e., >20 mm of the determined hand motor voxels by these three MR imaging methods. This can have significant effect on the pre-surgical planning of these patients depending on the modality used. In 13 of the 25 cases (i.e., 52% the distances between the task-determined and the rs-fMRI determined hand areas were more than 20 mm; in 13 of 25 cases (i.e., 52% the distances between the task-determined and anatomically determined hand areas were >20 mm; and in 16 of 25 cases (i.e., 64% the distances between the rs-fMRI determined and anatomically determined hand areas were more than 20 mm. In just three cases, the distances determined by all three modalities were within 20 mm of each other. The differences in the location or fingerprint of the hand motor areas, as determined by these three MR methods result from the different underlying mechanisms of these three modalities and possibly the effects of tumors on these modalities.

  19. The Effect of Gray Matter ICA and Coefficient of Variation Mapping of BOLD Data on the Detection of Functional Connectivity Changes in Alzheimer's Disease and bvFTD.

    Science.gov (United States)

    Tuovinen, Timo; Rytty, Riikka; Moilanen, Virpi; Abou Elseoud, Ahmed; Veijola, Juha; Remes, Anne M; Kiviniemi, Vesa J

    2016-01-01

    Resting-state fMRI results in neurodegenerative diseases have been somewhat conflicting. This may be due to complex partial volume effects of CSF in BOLD signal in patients with brain atrophy. To encounter this problem, we used a coefficient of variation (CV) map to highlight artifacts in the data, followed by analysis of gray matter voxels in order to minimize brain volume effects between groups. The effects of these measures were compared to whole brain ICA dual regression results in Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). 23 AD patients, 21 bvFTD patients and 25 healthy controls were included. The quality of the data was controlled by CV mapping. For detecting functional connectivity (FC) differences whole brain ICA (wbICA) and also segmented gray matter ICA (gmICA) followed by dual regression were conducted, both of which were performed both before and after data quality control. Decreased FC was detected in posterior DMN in the AD group and in the Salience network in the bvFTD group after combining CV quality control with gmICA. Before CV quality control, the decreased connectivity finding was not detectable in gmICA in neither of the groups. Same finding recurred when exclusion was based on randomization. The subjects excluded due to artifacts noticed in the CV maps had significantly lower temporal signal-to-noise ratio than the included subjects. Data quality measure CV is an effective tool in detecting artifacts from resting state analysis. CV reflects temporal dispersion of the BOLD signal stability and may thus be most helpful for spatial ICA, which has a blind spot in spatially correlating widespread artifacts. CV mapping in conjunction with gmICA yields results suiting previous findings both in AD and bvFTD.

  20. Decreased BOLD responses in audiovisual processing

    NARCIS (Netherlands)

    Wiersinga-Post, Esther; Tomaskovic, Sonja; Slabu, Lavinia; Renken, Remco; de Smit, Femke; Duifhuis, Hendrikus

    2010-01-01

    Audiovisual processing was studied in a functional magnetic resonance imaging study using the McGurk effect. Perceptual responses and the brain activity patterns were measured as a function of audiovisual delay. In several cortical and subcortical brain areas, BOLD responses correlated negatively wi

  1. Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory.

    Science.gov (United States)

    Michels, Lars; Lüchinger, Rafael; Koenig, Thomas; Martin, Ernst; Brandeis, Daniel

    2012-01-01

    In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that

  2. Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory.

    Directory of Open Access Journals (Sweden)

    Lars Michels

    Full Text Available In humans, theta band (5-7 Hz power typically increases when performing cognitively demanding working memory (WM tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and

  3. Matched-filter acquisition for BOLD fMRI.

    Science.gov (United States)

    Kasper, Lars; Haeberlin, Maximilian; Dietrich, Benjamin E; Gross, Simon; Barmet, Christoph; Wilm, Bertram J; Vannesjo, S Johanna; Brunner, David O; Ruff, Christian C; Stephan, Klaas E; Pruessmann, Klaas P

    2014-10-15

    We introduce matched-filter fMRI, which improves BOLD (blood oxygen level dependent) sensitivity by variable-density image acquisition tailored to subsequent image smoothing. Image smoothing is an established post-processing technique used in the vast majority of fMRI studies. Here we show that the signal-to-noise ratio of the resulting smoothed data can be substantially increased by acquisition weighting with a weighting function that matches the k-space filter imposed by the smoothing operation. We derive the theoretical SNR advantage of this strategy and propose a practical implementation of 2D echo-planar acquisition matched to common Gaussian smoothing. To reliably perform the involved variable-speed trajectories, concurrent magnetic field monitoring with NMR probes is used. Using this technique, phantom and in vivo measurements confirm reliable SNR improvement in the order of 30% in a "resting-state" condition and prove robust in different regimes of physiological noise. Furthermore, a preliminary task-based visual fMRI experiment equally suggests a consistent BOLD sensitivity increase in terms of statistical sensitivity (average t-value increase of about 35%). In summary, our study suggests that matched-filter acquisition is an effective means of improving BOLD SNR in studies that rely on image smoothing at the post-processing level. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. BOLD delay times using group delay in sickle cell disease

    Science.gov (United States)

    Coloigner, Julie; Vu, Chau; Bush, Adam; Borzage, Matt; Rajagopalan, Vidya; Lepore, Natasha; Wood, John

    2016-03-01

    Sickle cell disease (SCD) is an inherited blood disorder that effects red blood cells, which can lead to vasoocclusion, ischemia and infarct. This disease often results in neurological damage and strokes, leading to morbidity and mortality. Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique for measuring and mapping the brain activity. Blood Oxygenation Level-Dependent (BOLD) signals contain also information about the neurovascular coupling, vascular reactivity, oxygenation and blood propagation. Temporal relationship between BOLD fluctuations in different parts of the brain provides also a mean to investigate the blood delay information. We used the induced desaturation as a label to profile transit times through different brain areas, reflecting oxygen utilization of tissue. In this study, we aimed to compare blood flow propagation delay times between these patients and healthy subjects in areas vascularized by anterior, middle and posterior cerebral arteries. In a group comparison analysis with control subjects, BOLD changes in these areas were found to be almost simultaneous and shorter in the SCD patients, because of their increased brain blood flow. Secondly, the analysis of a patient with a stenosis on the anterior cerebral artery indicated that signal of the area vascularized by this artery lagged the MCA signal. These findings suggest that sickle cell disease causes blood propagation modifications, and that these changes could be used as a biomarker of vascular damage.

  5. Luminance contrast of a visual stimulus modulates the BOLD response more than the cerebral blood flow response in the human brain.

    Science.gov (United States)

    Liang, Christine L; Ances, Beau M; Perthen, Joanna E; Moradi, Farshad; Liau, Joy; Buracas, Giedrius T; Hopkins, Susan R; Buxton, Richard B

    2013-01-01

    The blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI) depends on the evoked changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) in response to changes in neural activity. This response is strongly modulated by the CBF/CMRO(2) coupling relationship with activation, defined as n, the ratio of the fractional changes. The reliability of the BOLD signal as a quantitative reflection of underlying physiological changes depends on the stability of n in response to different stimuli. The effect of visual stimulus contrast on this coupling ratio was tested in 9 healthy human subjects, measuring CBF and BOLD responses to a flickering checkerboard at four visual contrast levels. The theory of the BOLD effect makes a robust prediction-independent of details of the model-that if the CBF/CMRO(2) coupling ratio n remains constant, then the response ratio between the lowest and highest contrast levels should be higher for the BOLD response than the CBF response because of the ceiling effect on the BOLD response. Instead, this response ratio was significantly lower for the BOLD response (BOLD response: 0.23 ± 0.13, mean ± SD; CBF response: 0.42 ± 0.18; p=0.0054). This data is consistent with a reduced dynamic range (strongest/weakest response ratio) of the CMRO(2) response (~1.7-fold) compared to that of the CBF response (~2.4-fold) as luminance contrast increases, corresponding to an increase of n from 1.7 at the lowest contrast level to 2.3 at the highest contrast level. The implication of these results for fMRI studies is that the magnitude of the BOLD response does not accurately reflect the magnitude of underlying physiological processes.

  6. Comparing the microvascular specificity of the 3 T and 7 T BOLD response using ICA and Susceptibility-Weighted Imaging

    Directory of Open Access Journals (Sweden)

    Alexander eGeissler

    2013-08-01

    Full Text Available In functional MRI it is desirable for the blood-oxygenation level dependent (BOLD signal to be localized to the tissue containing activated neurons rather than the veins draining that tissue. This study addresses the dependence of the specificity of the BOLD signal – the relative contribution of the BOLD signal arising from tissue compared to venous vessels – on magnetic field strength. To date, studies of specificity have been based on models or indirect measures of BOLD sensitivity such as signal to noise ratio and relaxation rates, and assessment has been made in isolated vein and tissue voxels. The consensus has been that ultra high field systems not only significantly increase BOLD sensitivity but also specificity, that is, there is a proportionately reduced signal contribution from draining veins. Specificity was not quantified in prior studies, however, due to the difficulty of establishing a reliable network of veins in the activated volume. In this study we use a map of venous vessel networks extracted from 7 T high resolution Susceptibility Weighted Images (SWI to quantify the relative contributions of micro- and macrovasculature to functional MRI (fMRI results obtained at 3 T and 7 T. High resolution measurements made here minimize the contribution of physiological noise and Independent Component Analysis (ICA is used to separate activation from technical, physiological and motion artifacts. ICA also avoids the possibility of timing-dependent bias from different micro- and macrovasculature responses. We find a significant increase in the number of activated voxels at 7 T in both the veins and the microvasculature – a BOLD sensitivity increase - with the increase in the microvasculature being higher. However, the small increase in sensitivity at 7 T was not significant. For the experimental conditions of this study, our findings do not support the hypothesis of an increased specificity of the BOLD response at ultra-high field.

  7. Determinations of renal cortical and medullary oxygenation using BOLD Magnetic Resonance Imaging and selective diuretics

    Science.gov (United States)

    Warner, Lizette; Glockner, James F.; Woollard, John; Textor, Stephen C.; Romero, Juan C.; Lerman, Lilach O.

    2010-01-01

    Objective This study was undertaken to test the hypothesis that blood O2 level dependent magnetic resonance imaging (BOLD MRI) can detect changes in cortical proximal tubule (PT) and medullary thick ascending limb of Henle (TAL) oxygenation consequent to successive administration of furosemide and acetazolamide (Az). Assessment of PT and TAL function could be useful to monitor renal disease states in vivo. Therefore, the adjunct use of diuretics that inhibit Na+ reabsorption selectively in PT and TAL, Az and furosemide, respectively, may help discern tubular function by using BOLD MRI to detect changes in tissue oxygenation. Material and Methods BOLD MRI signal R2* (inversely related to oxygenation) and tissue oxygenation with intrarenal O2 probes were measured in pigs that received either furosemide (0.5mg/kg) or Az (15mg/kg) alone, Az sequentially after furosemide (n=6 each, 15-minute intervals), or only saline vehicle (n=3). Results R2* decreased in the cortex of Az-treated and medulla of furosemide-treated kidneys, corresponding to an increase in their tissue O2 assessed with probes. However, BOLD MRI also showed decreased cortical R2* following furosemide that was additive to the Az-induced decrease. Az administration, both alone and after furosemide, also decreased renal blood flow (−26±3.5 and −29.2±3%, respectively, p<0.01). Conclusion These results suggest that an increase in medullary and cortical tissue O2 elicited by selective diuretics is detectable by BOLD MRI, but may be complicated by hemodynamic effects of the drugs. Therefore, the BOLD MRI signal may reflect functional changes additional to oxygenation, and needs to be interpreted cautiously. PMID:20856128

  8. Bold-Independent Computational Entropy Assesses Functional Donut-Like Structures in Brain fMRI Images

    Science.gov (United States)

    Peters, James F.; Ramanna, Sheela; Tozzi, Arturo; İnan, Ebubekir

    2017-01-01

    We introduce a novel method for the measurement of information level in fMRI (functional Magnetic Resonance Imaging) neural data sets, based on image subdivision in small polygons equipped with different entropic content. We show how this method, called maximal nucleus clustering (MNC), is a novel, fast and inexpensive image-analysis technique, independent from the standard blood-oxygen-level dependent signals. MNC facilitates the objective detection of hidden temporal patterns of entropy/information in zones of fMRI images generally not taken into account by the subjective standpoint of the observer. This approach befits the geometric character of fMRIs. The main purpose of this study is to provide a computable framework for fMRI that not only facilitates analyses, but also provides an easily decipherable visualization of structures. This framework commands attention because it is easily implemented using conventional software systems. In order to evaluate the potential applications of MNC, we looked for the presence of a fourth dimension's distinctive hallmarks in a temporal sequence of 2D images taken during spontaneous brain activity. Indeed, recent findings suggest that several brain activities, such as mind-wandering and memory retrieval, might take place in the functional space of a four dimensional hypersphere, which is a double donut-like structure undetectable in the usual three dimensions. We found that the Rényi entropy is higher in MNC areas than in the surrounding ones, and that these temporal patterns closely resemble the trajectories predicted by the possible presence of a hypersphere in the brain. PMID:28203153

  9. Bayesian model comparison in nonlinear BOLD fMRI hemodynamics

    DEFF Research Database (Denmark)

    Jacobsen, Danjal Jakup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    2008-01-01

    Nonlinear hemodynamic models express the BOLD (blood oxygenation level dependent) signal as a nonlinear, parametric functional of the temporal sequence of local neural activity. Several models have been proposed for both the neural activity and the hemodynamics. We compare two such combined models......: the original balloon model with a square-pulse neural model (Friston, Mechelli, Turner, & Price, 2000) and an extended balloon model with a more sophisticated neural model (Buxton, Uludag, Dubowitz, & Liu, 2004). We learn the parameters of both models using a Bayesian approach, where the distribution...

  10. Altered Auditory BOLD Response to Conspecific Birdsong in Zebra Finches with Stuttered Syllables

    OpenAIRE

    Voss, Henning U.; Delanthi Salgado-Commissariat; Helekar, Santosh A.

    2010-01-01

    How well a songbird learns a song appears to depend on the formation of a robust auditory template of its tutor's song. Using functional magnetic resonance neuroimaging we examine auditory responses in two groups of zebra finches that differ in the type of song they sing after being tutored by birds producing stuttering-like syllable repetitions in their songs. We find that birds that learn to produce the stuttered syntax show attenuated blood oxygenation level-dependent (BOLD) responses to t...

  11. 联合BOLD和DECS技术脑功能区定位辅助语言相关区脑肿瘤手术的应用%Functional brain mapping with BOLD and DECS in surgical treatment of brain tumors in language areas

    Institute of Scientific and Technical Information of China (English)

    马辉; 黄伟; 孙胜玉; 夏鹤春; 孙晓川

    2012-01-01

    目的 利用BOLD和DECS技术进行语言功能区定位,实现语言功能区保护下肿瘤的最大程度切除.方法 对15例语言相关功能区脑肿瘤患者,利用血氧依赖功能磁共振(BOLD-fMRI)技术和(或)术中唤醒麻醉下皮层直接电刺激(DECS)定位技术进行脑语言功能区定位;对所获定位资料进行个体化评估,术中辅助保护语言功能区,在神经导航指引下切除肿瘤.结果 15例患者成功获取了术前BOLD语言区图像,评估后其中6例患者实现了术前BOLD和术中DECS技术联合定位语言功能区.全组病例在保护语言区条件下病变全切除10例,次全切除3例,大部分切除2例.术后语言功能明显改善6例,无变化5例,短暂性感觉性失语2例,语言功能障碍明显加重2例.结论 术前BOLD-fMRI结合术中唤醒麻醉下皮层电刺激的方法可客观定位脑语言功能区,导航辅助保护语言功能区条件下切除肿瘤,在保护语言功能的同时最大化切除肿瘤组织,提高患者术后生活质量.%Objective To study the application of cortical mapping methods of blood oxygen level-dependent-magnetic resonance imaging ( BOLD-MRI) for preoperative localization of language areas and intrao-perative direct electrical cortical stimulation ( DECS) of language areas in awake anesthesia in assisting to remove brain tumors in language areas. Methods Cortical mapping data of language areas was collected from 15 patients with brain tumors in language areas by BOLD-MRI and/or intraoperative DECS in awake anesthesia, and the data combined with neuronavigation assisted-microscopy were applied for the removal of brain tumors in language areas. Results The images of language areas were successfully obtained from the 15 patients by preoperative BOLD-MRI, and after evaluation the language areas were localized by both preoperative BOLD and intraoperative DECS in 6 patients. There were total resection in 10 patients, subtotal resection in 3 patients and

  12. Preoperative 3T high field blood oxygen level dependent functional magnetic resonance imaging for glioma involving sensory cortical areas

    Institute of Scientific and Technical Information of China (English)

    LI Shao-wu; WANG Jiang-fei; JIANG Tao; LI Shou-wei; ZHANG Wen-bo; LI Zi-xiao; ZHANG Zhong; DAI Jian-ping; WANG Zhong-cheng

    2010-01-01

    Background Localization of sensory cortical areas during the operation is essential to preserve the sensory function.Intraoperative direct electrostimulation under awake anesthesia is the golden standard but time-consuming. We applied 3T high field blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to identify the relationship between glioma and cortical sensory areas preoperatively and to guide intraoperative direct electrostimulation for quick and precise localization.Methods Five glioma patients with sensory cortex involvement by or next to the lesion had preoperative BOLD fMRI to determine the spatial relationship of cortical sensory areas to the tumours. Bilateral hand opposite movement was performed by these patients for fMRI. Precentral and postcentral gyri were identified by electrical stimulation during the operation. Karnofsky Performance Status scores of the patients' pre- and postoperative and the role of BOLD fMRI were evaluated.Results The cortical sensory areas were all activated in five glioma patients involving postcentral gyrus areas by BOLDf MRI with bilateral hand opposite movement. The detected activation areas corresponded with the results from cortical electrical stimulation.Conclusions The relationship between cortical sensory areas and tumour can be accurately shown by BOLD fMRI before operation. And the information used to make the tumour resection could obtain good clinical results.

  13. Blood-Oxygenation-Level-Dependent-(BOLD- Based R2′ MRI Study in Monkey Model of Reversible Middle Cerebral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2011-01-01

    Full Text Available Objective. To investigate the value of BOLD-based reversible transverse relaxation rate (R2′ MRI in detecting ischemic penumbra (IP in a monkey model of reversible middle cerebral artery occlusion (MCAO and time evolution of relative R2′ (rR2′ in infarcted core, IP, and oligemia. Materials and Methods. 6 monkeys were used to make MCAO by the microcatheter method. MR scans were performed at 0 h (1 h after MCAO, 1 h, 3 h, 6 h, 12 h, 24 h, and 48 h after reperfusion. R2′ was calculated using quantitative T2 and T2∗ maps. Ischemic area was subdivided into infracted core, IP and oligemia. rR2′ was calculated respectively. Results. Reversible MCAO model for 4/6 monkeys was made successfully. rR2′ values were significantly different at each time point, being highest in oligemia followed by IP and infarcted core (<.05. With reperfusion time evolution, rR2′ in infarcted core showed a decreased trend: sharply decreased within 6 hours and maintained at 0 during 6–48 hours (<.05. rR2′ values in IP and oligemia showed similar increased trend: sharply increased within 6 hours, maintained a plateau during 6–24 hours, and slightly increased until 48 hours. Conclusion. BOLD-based R2′ MRI can be used to describe changes of cerebral oxygen extract in acute ischemic stroke, and it can provide additional information in detecting IP. The time evolution rR2′ in infarcted core, IP, and oligemia is in accordance with the underlying pathophysiology.

  14. A comparison of Gamma and Gaussian dynamic convolution models of the fMRI BOLD response.

    Science.gov (United States)

    Chen, Huafu; Yao, Dezhong; Liu, Zuxiang

    2005-01-01

    Blood oxygenation level-dependent (BOLD) contrast-based functional magnetic resonance imaging (fMRI) has been widely utilized to detect brain neural activities and great efforts are now stressed on the hemodynamic processes of different brain regions activated by a stimulus. The focus of this paper is the comparison of Gamma and Gaussian dynamic convolution models of the fMRI BOLD response. The convolutions are between the perfusion function of the neural response to a stimulus and a Gaussian or Gamma function. The parameters of the two models are estimated by a nonlinear least-squares optimal algorithm for the fMRI data of eight subjects collected in a visual stimulus experiment. The results show that the Gaussian model is better than the Gamma model in fitting the data. The model parameters are different in the left and right occipital regions, which indicate that the dynamic processes seem different in various cerebral functional regions.

  15. Subcortical BOLD responses during visual sexual stimulation vary as a function of implicit porn associations in women.

    Science.gov (United States)

    Borg, Charmaine; de Jong, Peter J; Georgiadis, Janniko R

    2014-02-01

    Lifetime experiences shape people's attitudes toward sexual stimuli. Visual sexual stimulation (VSS), for instance, may be perceived as pleasurable by some, but as disgusting or ambiguous by others. VSS depicting explicit penile-vaginal penetration (PEN) is relevant in this respect, because the act of penetration is a core sexual activity. In this study, 20 women without sexual complaints participated. We used functional magnetic resonance imaging and a single-target implicit association task to investigate how brain responses to PEN were modulated by the initial associations in memory (PEN-'hot' vs PEN-disgust) with such hardcore pornographic stimuli. Many brain areas responded to PEN in the same way they responded to disgust stimuli, and PEN-induced brain activity was prone to modulation by subjective disgust ratings toward PEN stimuli. The relative implicit PEN-disgust (relative to PEN-'hot') associations exclusively modulated PEN-induced brain responses: comparatively negative (PEN-disgust) implicit associations with pornography predicted the strongest PEN-related responses in the basal forebrain (including nucleus accumbens and bed nucleus of stria terminalis), midbrain and amygdala. Since these areas are often implicated in visual sexual processing, the present findings should be taken as a warning: apparently their involvement may also indicate a negative or ambivalent attitude toward sexual stimuli.

  16. Quantification of fMRI BOLD signal and volume applied to the somatosensory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Luedemann, L.; Wust, P. [Universitaetsklinikum Charite, CVK, Berlin (Germany). Klinik fuer Radiologie, Nuklearmedizin und Strahlenheilkunde; Foerschler, A.; Zimmer, C. [Universitaetsklinikum Leipzig (Germany). Abt. fuer Neuroradiologie

    2007-07-01

    Functional magnetic resonance imaging based on blood-oxygenation-level-dependent (BOLD) signal variations is clinically used to investigate the impact of neurological disorders on brain function. Such disorders effect not only the localization but also the amplitude and extent of the BOLD signal. Statistical methods are useful to localize the BOLD signal but fail to quantify functional activity because they rely on arbitrary thresholds. This article presents a method that uses a priori defined VOI (volume of interest) and independently quantifies the mean BOLD signal and extent of the activated volume. The technique is based on the separation of the VOI signal difference distribution into a noise and an activation contribution. The technique does not require any threshold and is nearly independent of the preselected VOI size. The technique was verified in a test group of 17 subjects performing bilateral finger tapping. The results were compared with those of conventional analysis based on statistical tools. A standard imaging technique using FID-EPI (free induction decay echo-planar imaging, TR = 4000 ms, TE = 66 ms, 60 images activation, 60 images rest) was employed. The activated volume, V, and signal difference, {delta}S, of the motor cortex were determined with an accuracy of {sigma}(V)=17.1% and {sigma}({delta}S)=3.6%, respectively. The activated volume of the left hemispheric motor area was significantly greater (P=0.025) then in the right hemispheric, V{sub L} = 7.35 {+-} 2.29 cm{sup 3} versus V{sub L} = 6.39 {+-} 2.34 cm{sup 3}. The result is consistent with the findings obtained by other techniques. On the other hand, the statistical methods did not yield any significant difference in activation between both hemispheres. The VOI-based method presented here is an additional tool to study the extent and amplitude of the BOLD signal. (orig.)

  17. Neurophysiological and BOLD signal uncoupling of giant somatosensory evoked potentials in progressive myoclonic epilepsy: a case-series study

    Science.gov (United States)

    Storti, Silvia F.; Del Felice, Alessandra; Canafoglia, Laura; Formaggio, Emanuela; Brigo, Francesco; Alessandrini, Franco; Bongiovanni, Luigi G.; Menegaz, Gloria; Manganotti, Paolo

    2017-01-01

    In progressive myoclonic epilepsy (PME), a rare epileptic syndrome caused by a variety of genetic disorders, the combination of peripheral stimulation and functional magnetic resonance imaging (fMRI) can shed light on the mechanisms underlying cortical dysfunction. The aim of the study is to investigate sensorimotor network modifications in PME by assessing the relationship between neurophysiological findings and blood oxygen level dependent (BOLD) activation. Somatosensory-evoked potential (SSEP) obtained briefly before fMRI and BOLD activation during median-nerve electrical stimulation were recorded in four subjects with typical PME phenotype and compared with normative data. Giant scalp SSEPs with enlarger N20-P25 complex compared to normal data (mean amplitude of 26.2 ± 8.2 μV after right stimulation and 27.9 ± 3.7 μV after left stimulation) were detected. Statistical group analysis showed a reduced BOLD activation in response to median nerve stimulation in PMEs compared to controls over the sensorimotor (SM) areas and an increased response over subcortical regions (p  2.3, corrected). PMEs show dissociation between neurophysiological and BOLD findings of SSEPs (giant SSEP with reduced BOLD activation over SM). A direct pathway connecting a highly restricted area of the somatosensory cortex with the thalamus can be hypothesized to support the higher excitability of these areas. PMID:28294187

  18. Searching for Conservation Laws in Brain Dynamics—BOLD Flux and Source Imaging

    Directory of Open Access Journals (Sweden)

    Henning U. Voss

    2014-07-01

    Full Text Available Blood-oxygen-level-dependent (BOLD imaging is the most important noninvasive tool to map human brain function. It relies on local blood-flow changes controlled by neurovascular coupling effects, usually in response to some cognitive or perceptual task. In this contribution we ask if the spatiotemporal dynamics of the BOLD signal can be modeled by a conservation law. In analogy to the description of physical laws, which often can be derived from some underlying conservation law, identification of conservation laws in the brain could lead to new models for the functional organization of the brain. Our model is independent of the nature of the conservation law, but we discuss possible hints and motivations for conservation laws. For example, globally limited blood supply and local competition between brain regions for blood might restrict the large scale BOLD signal in certain ways that could be observable. One proposed selective pressure for the evolution of such conservation laws is the closed volume of the skull limiting the expansion of brain tissue by increases in blood volume. These ideas are demonstrated on a mental motor imagery fMRI experiment, in which functional brain activation was mapped in a group of volunteers imagining themselves swimming. In order to search for local conservation laws during this complex cognitive process, we derived maps of quantities resulting from spatial interaction of the BOLD amplitudes. Specifically, we mapped fluxes and sources of the BOLD signal, terms that would appear in a description by a continuity equation. Whereas we cannot present final answers with the particular analysis of this particular experiment, some results seem to be non-trivial. For example, we found that during task the group BOLD flux covered more widespread regions than identified by conventional BOLD mapping and was always increasing during task. It is our hope that these results motivate more work towards the search for conservation

  19. Regional placental blood oxygen level dependent (BOLD) changes with gestational age in normally developing pregnancies using long duration R2* mapping in utero

    Science.gov (United States)

    Dighe, Manjiri; Kim, Yun Jung; Seshamani, Sharmishtaa; Blazejewska, Ania I.; Mckown, Susan; Caucutt, Jason; Gatenby, Christopher; Studholme, Colin

    2016-03-01

    The aim of this study was to examine the use of R2* mapping in maternal and fetal sub-regions of the placenta with the aim of providing a reference for blood oxygenation levels during normative development. There have been a number of MR relaxation studies of placental tissues in-utero, but none have reported R2* value changes with age, or examined differences in sub-regions of the placenta. Here specialized long-duration Multi-frame R2* imaging was used to create a stable estimate for R2* values in different placental regions in healthy pregnant volunteers not imaged for clinical reasons. 27 subjects were recruited and scanned up to 3 times during their pregnancy. A multi-slice dual echo EPI based BOLD acquisition was employed and repeated between 90 and 150 times over 3 to 5 minutes to provide a high accuracy estimate of the R2* signal level. Acquisitions were also repeated in 13 cases within a visit to evaluate reproducibility of the method in a given subject. Experimental results showed R2* measurements were highly repeatable within a visit with standard deviation of (0.76). Plots of all visits against gestational age indicated clear correlations showing decreases in R2* with age. This increase was consistent was also consistent over time in multiple visits of the same volunteer during their pregnancy. Maternal and fetal regional changes with gestational age followed the same trend with increase in R2* over the gestational age.

  20. Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: implications for BOLD-fMRI.

    Science.gov (United States)

    Ances, Beau M; Leontiev, Oleg; Perthen, Joanna E; Liang, Christine; Lansing, Amy E; Buxton, Richard B

    2008-02-15

    Functional magnetic resonance imaging (fMRI) based on blood oxygenation level dependent (BOLD) signal changes is a sensitive tool for mapping brain activation, but quantitative interpretation of the BOLD response is problematic. The BOLD response is primarily driven by cerebral blood flow (CBF) changes, but is moderated by M, a scaling parameter reflecting baseline deoxyhemoglobin, and n, the ratio of fractional changes in CBF to cerebral metabolic rate of oxygen consumption (CMRO(2)). We compared M and n between cortical (visual cortex, VC) and subcortical (lentiform nuclei, LN) regions using a quantitative approach based on calibrating the BOLD response with a hypercapnia experiment. Although M was similar in both regions (~5.8%), differences in n (2.21+/-0.03 in VC and 1.58+/-0.03 in LN; Cohen d=1.71) produced substantially weaker (~3.7x) subcortical than cortical BOLD responses relative to CMRO(2) changes. Because of this strong sensitivity to n, BOLD response amplitudes cannot be interpreted as a quantitative reflection of underlying metabolic changes, particularly when comparing cortical and subcortical regions.

  1. The Stability of the BOLD fMRI Response to Motor Tasks is altered in Patients with Chronic Ischemic Stroke

    Science.gov (United States)

    Mazzetto-Betti, Kelley C.; Leoni, Renata F.; Pontes-Neto, Octavio M.; Santos, Antonio C.; Leite, Joao P.; Silva, Afonso C.; de Araujo, Draulio B.

    2010-01-01

    Background and Purpose Functional Magnetic Resonance Imaging (fMRI) is a powerful tool to investigate recovery of brain function in stroke patients. An inherent assumption in fMRI data analysis is that the Blood Oxygenation Level Dependent (BOLD) signal is stable over the course of the exam. In this study, we evaluated the validity of such assumption in chronic stroke patients. Methods Fifteen patients performed a simple motor task with repeated epochs using the paretic and the unaffected hand in separate runs. The corresponding BOLD signal time courses were extracted from the primary (M1) and supplementary motor areas (SMA) of both hemispheres. Statistical maps were obtained by the conventional General Linear Model (GLM) and by a parametric-GLM (p-GLM). Results Stable BOLD amplitude was observed when the task was executed with the unaffected hand. Conversely, the BOLD signal amplitude in both M1 and SMA was progressively attenuated in every patient when the task was executed with the paretic hand. The conventional GLM analysis failed to detect brain activation during movement of the paretic hand. However, the proposed p-GLM corrected the misdetection problem and showed robust activation in both M1 and SMA. Conclusions The use of data analysis tools that are built upon the premise of a stable BOLD signal may lead to misdetection of functional regions and underestimation of brain activity in stroke patients. The present data urges the use of caution when relying upon the BOLD response as a marker of brain reorganization in stroke patients. PMID:20705926

  2. BOLD MRI of the human cervical spinal cord at 3 tesla.

    Science.gov (United States)

    Stroman, P W; Nance, P W; Ryner, L N

    1999-09-01

    The feasibility of functional MRI of the spinal cord was investigated by carrying out blood oxygen-level dependent (BOLD) imaging of the human cervical spinal cord at a field of 3 T. BOLD imaging of the cervical spinal cord showed an average intensity increase of 7.0% during repeated exercise with the dominant hand with a return to baseline during rest periods. The areas of activation were predominantly on the same side of the spinal cord as the hand performing the exercise, between the levels of the sixth cervical and first thoracic spinal cord segments. The direct correspondence between these areas and those involved with the transmission of motor impulses to the hand, and reception of sensory information from the hand, demonstrates that spinal functional magnetic resonance imaging is feasible. Magn Reson Med 42:571-576, 1999. Copyright 1999 Wiley-Liss, Inc.

  3. Quantitative comparison of functional contrast from BOLD-weighted spin-echo and gradient-echo echoplanar imaging at 1.5 Tesla and H2 15O PET in the whole brain.

    Science.gov (United States)

    Lowe, M J; Lurito, J T; Mathews, V P; Phillips, M D; Hutchins, G D

    2000-09-01

    Spin-echo and gradient-echo echoplanar functional magnetic resonance imaging (fMRI) studies at 1.5 Tesla (T) were used to obtain blood oxygenation level-dependent (BOLD) contrast images of the whole brain in seven strongly right-handed women during execution of a complex motor task. Five subjects underwent subsequent H215O positron emission tomography (PET) studies while performing the same task. Group-averaged results for changes in the MRI relaxation rates R2* and R2 at 1.5T in response to neuronal activation in nine cortical, subcortical, and cerebellar motor regions are reported. Results for each method are grouped according to tissue type-cerebral cortex (precentral gyrus and supplementary motor area), subcortical regions (thalamus and putamen), and cerebellar cortex (superior lobule). The observed changes in R2* from activation-induced oxygenation changes were more variable across brain regions with different tissue characteristics than observed changes in R2. The ratio of deltaR2* to deltaR2 was 3.3 +/- 0.9 for cerebral cortex and 2.0 +/- 0.6 for subcortical tissue. deltaR2*, deltaR2, and relative blood flow changes were deltaR2* = -0.201 +/- 0.040 (s-1), deltaR2 = -0.064 +/- 0.011 s(-1), and deltaf/f = 16.7 +/- 0.8% in the cerebral cortex; deltaR2* = -0.100 +/- 0.026 s(-1), deltaR2 = -0.049 +/- 0.009 s(-1), and deltaf/f = 9.4 +/- 0.7% in the subcortical regions; and deltaR2* = -0.215 +/- 0.093 s(-1), deltaR2 = -0.069 +/- 0.012 s(-1), and deltaf/f = 16.2 +/- 1.2% in the cerebellar cortex.

  4. The longitudinal changes of BOLD response and cerebral hemodynamics from acute to subacute stroke. A fMRI and TCD study

    Directory of Open Access Journals (Sweden)

    Hamzei Farsin

    2009-12-01

    Full Text Available Abstract Background By mapping the dynamics of brain reorganization, functional magnetic resonance imaging MRI (fMRI has allowed for significant progress in understanding cerebral plasticity phenomena after a stroke. However, cerebro-vascular diseases can affect blood oxygen level dependent (BOLD signal. Cerebral autoregulation is a primary function of cerebral hemodynamics, which allows to maintain a relatively constant blood flow despite changes in arterial blood pressure and perfusion pressure. Cerebral autoregulation is reported to become less effective in the early phases post-stroke. This study investigated whether any impairment of cerebral hemodynamics that occurs during the acute and the subacute phases of ischemic stroke is related to changes in BOLD response. We enrolled six aphasic patients affected by acute stroke. All patients underwent a Transcranial Doppler to assess cerebral autoregulation (Mx index and fMRI to evaluate the amplitude and the peak latency (time to peak-TTP of BOLD response in the acute (i.e., within four days of stroke occurrence and the subacute (i.e., between five and twelve days after stroke onset stroke phases. Results As patients advanced from the acute to subacute stroke phase, the affected hemisphere presented a BOLD TTP increase (p = 0.04 and a deterioration of cerebral autoregulation (Mx index increase, p = 0.046. A similar but not significant trend was observed also in the unaffected hemisphere. When the two hemispheres were grouped together, BOLD TTP delay was significantly related to worsening cerebral autoregulation (Mx index increase (Spearman's rho = 0.734; p = 0.01. Conclusions The hemodynamic response function subtending BOLD signal may present a delay in peak latency that arises as patients advance from the acute to the subacute stroke phase. This delay is related to the deterioration of cerebral hemodynamics. These findings suggest that remodeling the fMRI hemodynamic response function in the

  5. Efecto del tamaño kernel en el suavizado de señal BOLD en paradigmas funcionales (RMf (Effect of kernel size for BOLD signal smoothing in functional paradigms (fMRI

    Directory of Open Access Journals (Sweden)

    Laia Farràs-Permanyer

    2015-04-01

    Full Text Available Smoothing is a filtering technique that is essential for brain signal analysis and consists in calculating and comparing the average activation of a voxel to that of its neighbours. Several authors have proposed alternatives or modifications to this process; nonetheless, articles that compare the effect of different sizes of smoothing remain scarce. Thus, the aim of this study was to investigate the effect of applying different smoothing sizes and to highlight the importance of choosing the correct smoothing size. Five smoothing criteria were applied to brain images obtained during an easy motor task performed by five adult participants. Significant differences were found between different smoothing sizes, mainly between the non-smoothing application and the smallest smoothing size versus the two largest smoothing sizes. The signals from the most activated brain areas did not disappear with increased smoothing, whereas signals from less active or smaller areas disappeared. Despite the study sample size, the results suggest that smoothing is relevant in functional magnetic resonance image processing and that the optimum smoothing size is 2.5 and 3.

  6. Pharmacological modulation of the BOLD response: a study of acetazolamide and glyceryl trinitrate in humans

    DEFF Research Database (Denmark)

    Asghar, Mohammed Sohail; Hansen, Adam E; Pedersen, Simon;

    2011-01-01

    To examine the effect of acetazolamide, known to increase cerebral blood flow (CBF) and glyceryl trinitrate (GTN), known to increase cerebral blood volume (CBV) on the blood oxygenation level-dependent (BOLD) response in humans using 3 T magnetic resonance imaging (MRI), and to evaluate how pharm...... pharmacological agents may modulate cerebral hemodynamic and thereby possibly the BOLD signal....

  7. Spin dependent proton structure functions

    Energy Technology Data Exchange (ETDEWEB)

    de Florian, D.; Garcia Canal, C.A. [Laboratorio de Fisica Teorica, Departamento de Fisica, Universidad Nacional de La Plata C.C. 67-1900 La Plata (Argentina); Sassot, R. [Departamento de Fisica, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 1 1428 Bs.As. (Argentina)

    1996-02-01

    We address the issue of gluon contributions to the polarized deep inelastic asymmetries. Particularly, of their effects in the scale dependence induced by the usual leading order Altarelli-Parisi evolution equations and those arising from fixed order {alpha}{sub {ital s}} and {alpha}{sup 2}{sub {ital s}} evolution approximations. {copyright} {ital 1996 American Institute of Physics.}

  8. An Introduction to Normalization and Calibration Methods in Functional MRI

    Science.gov (United States)

    Liu, Thomas T.; Glover, Gary H.; Mueller, Bryon A.; Greve, Douglas N.; Brown, Gregory G.

    2013-01-01

    In functional magnetic resonance imaging (fMRI), the blood oxygenation level dependent (BOLD) signal is often interpreted as a measure of neural activity. However, because the BOLD signal reflects the complex interplay of neural, vascular, and metabolic processes, such an interpretation is not always valid. There is growing evidence that changes…

  9. Abnormal striatal BOLD responses to reward anticipation and reward delivery in ADHD.

    Science.gov (United States)

    Furukawa, Emi; Bado, Patricia; Tripp, Gail; Mattos, Paulo; Wickens, Jeff R; Bramati, Ivanei E; Alsop, Brent; Ferreira, Fernanda Meireles; Lima, Debora; Tovar-Moll, Fernanda; Sergeant, Joseph A; Moll, Jorge

    2014-01-01

    Altered reward processing has been proposed to contribute to the symptoms of attention deficit hyperactivity disorder (ADHD). The neurobiological mechanism underlying this alteration remains unclear. We hypothesize that the transfer of dopamine release from reward to reward-predicting cues, as normally observed in animal studies, may be deficient in ADHD. Functional magnetic resonance imaging (fMRI) was used to investigate striatal responses to reward-predicting cues and reward delivery in a classical conditioning paradigm. Data from 14 high-functioning and stimulant-naïve young adults with elevated lifetime symptoms of ADHD (8 males, 6 females) and 15 well-matched controls (8 males, 7 females) were included in the analyses. During reward anticipation, increased blood-oxygen-level-dependent (BOLD) responses in the right ventral and left dorsal striatum were observed in controls, but not in the ADHD group. The opposite pattern was observed in response to reward delivery; the ADHD group demonstrated significantly greater BOLD responses in the ventral striatum bilaterally and the left dorsal striatum relative to controls. In the ADHD group, the number of current hyperactivity/impulsivity symptoms was inversely related to ventral striatal responses during reward anticipation and positively associated with responses to reward. The BOLD response patterns observed in the striatum are consistent with impaired predictive dopamine signaling in ADHD, which may explain altered reward-contingent behaviors and symptoms of ADHD.

  10. Fuzzy Functional Dependencies and Bayesian Networks

    Institute of Scientific and Technical Information of China (English)

    LIU WeiYi(刘惟一); SONG Ning(宋宁)

    2003-01-01

    Bayesian networks have become a popular technique for representing and reasoning with probabilistic information. The fuzzy functional dependency is an important kind of data dependencies in relational databases with fuzzy values. The purpose of this paper is to set up a connection between these data dependencies and Bayesian networks. The connection is done through a set of methods that enable people to obtain the most information of independent conditions from fuzzy functional dependencies.

  11. Hartree potential dependent exchange functional

    CERN Document Server

    Constantin, L A; Della Sala, F

    2016-01-01

    We introduce a novel non-local ingredient for the construction of exchange density functionals: the reduced Hartree parameter, which is invariant under the uniform scaling of the density and represents the exact exchange enhancement factor for one- and two-electron systems. The reduced Hartree parameter is used together with the conventional meta-generalized gradient approximation (meta-GGA) semilocal ingredients (i.e. the electron density, its gradient and the kinetic energy density) to construct a new generation exchange functional, termed u-meta-GGA. This u-meta-GGA functional is exact for {the exchange of} any one- and two-electron systems, is size-consistent and non-empirical, satisfies the uniform density scaling relation, and recovers the modified gradient expansion derived from the semiclassical atom theory. For atoms, ions, jellium spheres, and molecules, it shows a good accuracy, being often better than meta-GGA exchange functionals. Our construction validates the use of the reduced Hartree ingredie...

  12. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences

    DEFF Research Database (Denmark)

    Cohen, Eric R.; Rostrup, Egill; Sidaros, Karam;

    2004-01-01

    The blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signal response to neural stimulation is influenced by many factors that are unrelated to the stimulus. These factors are physiological, such as the resting venous cerebral blood volume (CBV(v)) and vessel...... for global stimulation, subjects breathed a 5% CO(2) gas mixture. Under all conditions, voxels containing primarily large veins and those containing primarily active tissue (i.e., capillaries and small veins) showed distinguishable behavior after hypercapnic normalization. This allowed functional activity...

  13. Working memory in volunteers and schizophrenics using BOLD fMRI; Das Arbeitsgedaechtnis bei Gesunden und bei Schizophrenen: Untersuchungen mit BOLD-fMRT

    Energy Technology Data Exchange (ETDEWEB)

    Giesel, F.L. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie (Germany); Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie, Heidelberg (Germany); Hohmann, N. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie (Germany); Psychiatrische Universitaetsklinik Heidelberg, Sektion Gerontopsychiatrie (Germany); Seidl, U.; Kress, K.R.; Schoenknecht, P.; Schroeder, J. [Psychiatrische Universitaetsklinik Heidelberg, Sektion Gerontopsychiatrie (Germany); Kauczor, H.-U.; Essig, M. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie (Germany)

    2005-02-01

    Functional magnetic resonance imaging uses the blood oxygen level-dependent effect (BOLD MRI) for noninvasive display of cerebral correlatives of cognitive function. The importance for the understanding of physiological and pathological processes is demonstrated by investigations of working memory in schizophrenics and healthy controls. Working memory is involved in processing rather than storage of information and therefore is linked to complex processes such as learning and problem solving. In schizophrenic psychosis, these functions are clearly restricted. Training effects in the working memory task follow an inverse U-shape function, suggesting that cerebral activation reaches a peak before economics of the brain find a more efficient method and activation decreases. (orig.) [German] Die funktionelle Magnetresonanztomographie (fMRT) nutzt den ''blood oxygen level dependent effect'' (BOLD-Effekt) zur nichtinvasiven Darstellung zerebraler Korrelate kognitiver Funktionen. Die Bedeutung dieses Verfahrens fuer das Verstaendnis physiologischer und pathologischer Prozesse wird anhand von Untersuchungen zum Arbeitsgedaechtnis bei Schizophrenen und gesunden Kontrollpersonen verdeutlicht. Das Arbeitsgedaechtnis dient weniger der Speicherung, sondern vielmehr der Verarbeitung von Informationen und ist deshalb in komplexe Prozesse wie Lernen und Problemloesen eingebunden. Im Rahmen schizophrener Psychosen kommt es zu einer deutlichen Einschraenkung dieser Funktionen. Erwartungsgemaess zeigen sich unter Durchfuehrung eines Arbeitsgedaechtnisparadigmas Unterschiede in der zerebralen Aktivitaet, die jedoch bei den Erkrankten unter Therapie prinzipiell reversibel sind. Von Interesse sind auch Trainingseffekte bei Gesunden, wobei eine verminderte Aktivierung nach Training auf eine ''Oekonomisierung'' schliessen laesst. (orig.)

  14. A study on asymmetry of spatial visual field by analysis of the fMRI BOLD response.

    Science.gov (United States)

    Chen, Huafu; Yao, Dezhong; Liu, Zuxiang

    2004-01-01

    The asymmetry of the left-right and upper-lower visual field is analyzed in this paper by a model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. The model consists of the convolution between a Gaussian function and the perfusion function of neural response to stimulus. The model parameters are estimated by a nonlinear optimal algorithm, and te asymmetry of the left-right and upper-lower visual field is investigated by the differences of the model parameters. The results from eight subjects show that reaction time is significant shorter and the response is significant stronger when the lower field is stimulated than that when the upper field is stimulated. For the left and right fields, the response is different. These results provide the fMRI BOLD response evidence of the asymmetry of spatial visual fields.

  15. fMRI at High Spatial Resolution: Implications for BOLD-Models.

    Science.gov (United States)

    Goense, Jozien; Bohraus, Yvette; Logothetis, Nikos K

    2016-01-01

    As high-resolution functional magnetic resonance imaging (fMRI) and fMRI of cortical layers become more widely used, the question how well high-resolution fMRI signals reflect the underlying neural processing, and how to interpret laminar fMRI data becomes more and more relevant. High-resolution fMRI has shown laminar differences in cerebral blood flow (CBF), volume (CBV), and neurovascular coupling. Features and processes that were previously lumped into a single voxel become spatially distinct at high resolution. These features can be vascular compartments such as veins, arteries, and capillaries, or cortical layers and columns, which can have differences in metabolism. Mesoscopic models of the blood oxygenation level dependent (BOLD) response therefore need to be expanded, for instance, to incorporate laminar differences in the coupling between neural activity, metabolism and the hemodynamic response. Here we discuss biological and methodological factors that affect the modeling and interpretation of high-resolution fMRI data. We also illustrate with examples from neuropharmacology and the negative BOLD response how combining BOLD with CBF- and CBV-based fMRI methods can provide additional information about neurovascular coupling, and can aid modeling and interpretation of high-resolution fMRI.

  16. Investigation of the physiological basis of the BOLD effect

    CERN Document Server

    Pears, J A

    2001-01-01

    The work described in this thesis is that undertaken by the carried out in the Magnetic Resonance Centre, School of Physics and Astronomy at the University of Nottingham, between October 1997 and September 2001. This thesis describes work performed with the aim of yielding further understanding of the physiological basis behind the BOLD effect. Chapter 1 introduces techniques for monitoring brain function and describes the physiology behind the BOLD effect. Chapter 2 then describes NMR, imaging and the hardware used in the experiments performed in this thesis. A method of measuring cerebral blood volume changes during a visual activation paradigm with high temporal resolution is described in Chapter 3, and the timecourse compared to that of the BOLD response. The slow return to baseline of CBV is discussed. Chapter 4 shows a method of simultaneously measuring blood oxygenation measurements and blood volume changes. The results are shown to be in agreement with published data. The controversial phenomenon know...

  17. Distinct BOLD activation profiles following central and peripheral oxytocin administration in awake rats

    Directory of Open Access Journals (Sweden)

    Craig F Ferris

    2015-09-01

    Full Text Available A growing body of literature has suggested that intranasal oxytocin (OT or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood-brain-barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level dependent (BOLD signal intensity in response to peripheral OT injections (0.1, 0.5 or 2.5 mg/kg during functional magnetic resonance (fMRI in awake rats imaged at 7.0 tesla. These data were compared to OT (1ug/5 µl given directly to the brain via the lateral cerebroventricle. Using a 3D annotated MRI atlas of the rat brain segmented into 171 brain areas and computational analysis we reconstructed the distributed integrated neural circuits identified with BOLD fMRI following central and peripheral OT. Both routes of administration caused significant changes in BOLD signal within the first 10 min of administration. As expected, central OT activated a majority of brain areas known to express a high density of OT receptors e.g., lateral septum, subiculum, shell of the accumbens, bed nucleus of the stria terminalis. This profile of activation was not matched by peripheral OT. The change in BOLD signal to peripheral OT did not show any discernible dose-response. Interestingly, peripheral OT affected all subdivisions of the olfactory bulb, in addition to the cerebellum and several brainstem areas relevant to the autonomic nervous system, including the solitary tract nucleus. The results from this imaging study do not support a direct central action of peripheral OT on the brain. Instead, the patterns of brain activity suggest that peripheral OT may interact at the level of the olfactory bulb and through sensory afferents from the autonomic nervous system to influence brain activity.

  18. Functional and Dysfunctional rumination in alcohol dependence

    OpenAIRE

    Grynberg, Delphine; Briane, Yasmine; Timary, Philippe De; Maurage, Pierre; 16th International Society of Addiction Medicine Annual Meeting

    2014-01-01

    Previous findings have shown that rumination predicts alcohol abuse independently of depression. However, the literature does not inform about the relationships between alcohol dependence and functional and dysfunctional rumination. It has indeed been suggested that there exist a functional form of rumination(concrete thinking) and a dysfunctional form of rumination (abstract thinking). In this study, our aim is to evaluate if alcohol dependence is similarly associated with functional/constru...

  19. Relationship of the BOLD signal with VEP for ultrashort duration visual stimuli (0.1 to 5 ms) in humans.

    Science.gov (United States)

    Yeşilyurt, Bariş; Whittingstall, Kevin; Uğurbil, Kâmil; Logothetis, Nikos K; Uludağ, Kâmil

    2010-02-01

    There is currently a great interest to combine electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to study brain function. Earlier studies have shown different EEG components to correlate well with the fMRI signal arguing for a complex relationship between both measurements. In this study, using separate EEG and fMRI measurements, we show that (1) 0.1 ms visual stimulation evokes detectable hemodynamic and visual-evoked potential (VEP) responses, (2) the negative VEP deflection at approximately 80 ms (N2) co-varies with stimulus duration/intensity such as with blood oxygenation level-dependent (BOLD) response; the positive deflection at approximately 120 ms (P2) does not, and (3) although the N2 VEP-BOLD relationship is approximately linear, deviation is evident at the limit of zero N2 VEP. The latter finding argues that, although EEG and fMRI measurements can co-vary, they reflect partially independent processes in the brain tissue. Finally, it is shown that the stimulus-induced impulse response function (IRF) at 0.1 ms and the intrinsic IRF during rest have different temporal dynamics, possibly due to predominance of neuromodulation during rest as compared with neurotransmission during stimulation. These results extend earlier findings regarding VEP-BOLD coupling and highlight the component- and context-dependency of the relationship between evoked potentials and hemodynamic responses.

  20. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences

    DEFF Research Database (Denmark)

    Cohen, Eric R.; Rostrup, Egill; Sidaros, Karam

    2004-01-01

    size, as well as experimental, such as pulse sequence and static magnetic field strength (B(0)). Thus, it is difficult to compare task-induced fMRI signals across subjects, field strengths, and pulse sequences. This problem can be overcome by normalizing the neural activity-induced BOLD fMRI response...... by a global hypercapnia-induced BOLD signal. To demonstrate the effectiveness of the BOLD normalization approach, gradient-echo BOLD fMRI at 1.5, 4, and 7 T and spin-echo BOLD fMRI at 4 T were performed in human subjects. For neural stimulation, subjects performed sequential finger movements at 2 Hz, while...... for global stimulation, subjects breathed a 5% CO(2) gas mixture. Under all conditions, voxels containing primarily large veins and those containing primarily active tissue (i.e., capillaries and small veins) showed distinguishable behavior after hypercapnic normalization. This allowed functional activity...

  1. Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease

    Science.gov (United States)

    Price, J.L.; Yan, Z.; Morris, J.C.; Sheline, Y.I.

    2011-01-01

    Objective: Clinicopathologic phenotypes of dementia with Lewy bodies (DLB) and Alzheimer disease (AD) often overlap, making discrimination difficult. We performed resting state blood oxygen level–dependent (BOLD) functional connectivity MRI (fcMRI) to determine whether there were differences between AD and DLB. Methods: Participants (n = 88) enrolled in a longitudinal study of memory and aging underwent 3-T fcMRI. Clinical diagnoses of probable DLB (n = 15) were made according to published criteria. Cognitively normal control participants (n = 38) were selected for the absence of cerebral amyloid burden as imaged with Pittsburgh compound B (PiB). Probable AD cases (n = 35) met published criteria and had appreciable amyloid deposits with PiB imaging. Functional images were collected using a gradient spin-echo sequence sensitive to BOLD contrast (T2* weighting). Correlation maps selected a seed region in the combined bilateral precuneus. Results: Participants with DLB had a functional connectivity pattern for the precuneus seed region that was distinct from AD; both the DLB and AD groups had functional connectivity patterns that differed from the cognitively normal group. In the DLB group, we found increased connectivity between the precuneus and regions in the dorsal attention network and the putamen. In contrast, we found decreased connectivity between the precuneus and other task-negative default regions and visual cortices. There was also a reversal of connectivity in the right hippocampus. Conclusions: Changes in functional connectivity in DLB indicate patterns of activation that are distinct from those seen in AD and may improve discrimination of DLB from AD and cognitively normal individuals. Since patterns of connectivity differ between AD and DLB groups, measurements of BOLD functional connectivity can shed further light on neuroanatomic connections that distinguish DLB from AD. PMID:21525427

  2. Discovery of functional and approximate functional dependencies in relational databases

    Directory of Open Access Journals (Sweden)

    Ronald S. King

    2003-01-01

    Full Text Available This study develops the foundation for a simple, yet efficient method for uncovering functional and approximate functional dependencies in relational databases. The technique is based upon the mathematical theory of partitions defined over a relation's row identifiers. Using a levelwise algorithm the minimal non-trivial functional dependencies can be found using computations conducted on integers. Therefore, the required operations on partitions are both simple and fast. Additionally, the row identifiers provide the added advantage of nominally identifying the exceptions to approximate functional dependencies, which can be used effectively in practical data mining applications.

  3. Acute caffeine administration impact on working memory-related brain activation and functional connectivity in the elderly: a BOLD and perfusion MRI study.

    Science.gov (United States)

    Haller, S; Rodriguez, C; Moser, D; Toma, S; Hofmeister, J; Sinanaj, I; Van De Ville, D; Giannakopoulos, P; Lovblad, K-O

    2013-10-10

    In young individuals, caffeine-mediated blockade of adenosine receptors and vasoconstriction has direct repercussions on task-related activations, changes in functional connectivity, as well as global vascular effects. To date, no study has explored the effect of caffeine on brain activation patterns during highly demanding cognitive tasks in the elderly. This prospective, placebo-controlled crossover design comprises 24 healthy elderly individuals (mean age 68.8 ± 4.0 years, 17 females) performing a 2-back working memory (WM) task in functional magnetic resonance imaging (fMRI). Analyses include complimentary assessment of task-related activations (general linear model, GLM), functional connectivity (tensorial independent component analysis, TICA), and baseline perfusion (arterial spin labeling). Despite a reduction in whole-brain global perfusion (-22.7%), caffeine-enhanced task-related GLM activation in a local and distributed network is most pronounced in the bilateral striatum and to a lesser degree in the right middle and inferior frontal gyrus, bilateral insula, left superior and inferior parietal lobule as well as in the cerebellum bilaterally. TICA was significantly enhanced (+8.2%) in caffeine versus placebo in a distributed and task-relevant network including the pre-frontal cortex, the supplementary motor area, the ventral premotor cortex and the parietal cortex as well as the occipital cortex (visual stimuli) and basal ganglia. The inverse comparison of placebo versus caffeine had no significant difference. Activation strength of the task-relevant-network component correlated with response accuracy for caffeine yet not for placebo, indicating a selective cognitive effect of caffeine. The present findings suggest that acute caffeine intake enhances WM-related brain activation as well as functional connectivity of blood oxygen level-dependent fMRI in elderly individuals.

  4. Fourier modeling of the BOLD response to a breath-hold task: Optimization and reproducibility.

    Science.gov (United States)

    Pinto, Joana; Jorge, João; Sousa, Inês; Vilela, Pedro; Figueiredo, Patrícia

    2016-07-15

    Cerebrovascular reactivity (CVR) reflects the capacity of blood vessels to adjust their caliber in order to maintain a steady supply of brain perfusion, and it may provide a sensitive disease biomarker. Measurement of the blood oxygen level dependent (BOLD) response to a hypercapnia-inducing breath-hold (BH) task has been frequently used to map CVR noninvasively using functional magnetic resonance imaging (fMRI). However, the best modeling approach for the accurate quantification of CVR maps remains an open issue. Here, we compare and optimize Fourier models of the BOLD response to a BH task with a preparatory inspiration, and assess the test-retest reproducibility of the associated CVR measurements, in a group of 10 healthy volunteers studied over two fMRI sessions. Linear combinations of sine-cosine pairs at the BH task frequency and its successive harmonics were added sequentially in a nested models approach, and were compared in terms of the adjusted coefficient of determination and corresponding variance explained (VE) of the BOLD signal, as well as the number of voxels exhibiting significant BOLD responses, the estimated CVR values, and their test-retest reproducibility. The brain average VE increased significantly with the Fourier model order, up to the 3rd order. However, the number of responsive voxels increased significantly only up to the 2nd order, and started to decrease from the 3rd order onwards. Moreover, no significant relative underestimation of CVR values was observed beyond the 2nd order. Hence, the 2nd order model was concluded to be the optimal choice for the studied paradigm. This model also yielded the best test-retest reproducibility results, with intra-subject coefficients of variation of 12 and 16% and an intra-class correlation coefficient of 0.74. In conclusion, our results indicate that a Fourier series set consisting of a sine-cosine pair at the BH task frequency and its two harmonics is a suitable model for BOLD-fMRI CVR measurements

  5. "Extreme Bold" in the Faculty Ranks

    Science.gov (United States)

    Kuusisto, Stephen

    2013-01-01

    Boldness, defense, and the necessity of talking back remain as central to life with disability in one's time as in Francis Bacon's age. "Therefore all deformed persons are extreme bold," Bacon wrote, "first, as in their own defence, as being exposed to scorn, but in process of time, by a general habit." Perhaps no word carries…

  6. "Extreme Bold" in the Faculty Ranks

    Science.gov (United States)

    Kuusisto, Stephen

    2013-01-01

    Boldness, defense, and the necessity of talking back remain as central to life with disability in one's time as in Francis Bacon's age. "Therefore all deformed persons are extreme bold," Bacon wrote, "first, as in their own defence, as being exposed to scorn, but in process of time, by a general habit." Perhaps no word carries…

  7. Functional magnetic resonance imaging in chronic ischaemic stroke.

    Science.gov (United States)

    Lake, Evelyn M R; Bazzigaluppi, Paolo; Stefanovic, Bojana

    2016-10-05

    Ischaemic stroke is the leading cause of adult disability worldwide. Effective rehabilitation is hindered by uncertainty surrounding the underlying mechanisms that govern long-term ischaemic injury progression. Despite its potential as a sensitive non-invasive in vivo marker of brain function that may aid in the development of new treatments, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has found limited application in the clinical research on chronic stage stroke progression. Stroke affects each of the physiological parameters underlying the BOLD contrast, markedly complicating the interpretation of BOLD fMRI data. This review summarizes current progress on application of BOLD fMRI in the chronic stage of ischaemic injury progression and discusses means by which more information may be gained from such BOLD fMRI measurements. Concomitant measurements of vascular reactivity, neuronal activity and metabolism in preclinical models of stroke are reviewed along with illustrative examples of post-ischaemic evolution in neuronal, glial and vascular function. The realization of the BOLD fMRI potential to propel stroke research is predicated on the carefully designed preclinical research establishing an ischaemia-specific quantitative model of BOLD signal contrast to provide the framework for interpretation of fMRI findings in clinical populations.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  8. Neuronal activation induced BOLD and CBF responses upon acetazolamide administration in patients with steno-occlusive artery disease

    NARCIS (Netherlands)

    Siero, JCW; Hartkamp, NS; Donahue, Manus J.; Harteveld, Anita A.; Compter, A; Petersen, Esben T.; Hendrikse, J

    2015-01-01

    Blood-oxygenation-level-dependent (BOLD) MRI is widely used for inferring neuronal activation and is becoming increasingly popular for assessing cerebrovascular reactivity (CVR) when combined with a vasoactive stimulus. The BOLD signal contains changes in cerebral blood flow (CBF) and thus

  9. Infraslow LFP correlates to resting-state fMRI BOLD signals.

    Science.gov (United States)

    Pan, Wen-Ju; Thompson, Garth John; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella

    2013-07-01

    The slow fluctuations of the blood-oxygenation-level dependent (BOLD) signal in resting-state fMRI are widely utilized as a surrogate marker of ongoing neural activity. Spontaneous neural activity includes a broad range of frequencies, from infraslow (<0.5 Hz) fluctuations to fast action potentials. Recent studies have demonstrated a correlative relationship between the BOLD fluctuations and power modulations of the local field potential (LFP), particularly in the gamma band. However, the relationship between the BOLD signal and the infraslow components of the LFP, which are directly comparable in frequency to the BOLD fluctuations, has not been directly investigated. Here we report a first examination of the temporal relation between the resting-state BOLD signal and infraslow LFPs using simultaneous fMRI and full-band LFP recording in rat. The spontaneous BOLD signal at the recording sites exhibited significant localized correlation with the infraslow LFP signals as well as with the slow power modulations of higher-frequency LFPs (1-100 Hz) at a delay comparable to the hemodynamic response time under anesthesia. Infraslow electrical activity has been postulated to play a role in attentional processes, and the findings reported here suggest that infraslow LFP coordination may share a mechanism with the large-scale BOLD-based networks previously implicated in task performance, providing new insight into the mechanisms contributing to the resting state fMRI signal.

  10. A NO way to BOLD?

    DEFF Research Database (Denmark)

    Aamand, Rasmus; Dalsgaard, Thomas; Ho, Yi Ching Lynn

    2013-01-01

    . On this basis, we hypothesized that dietary nitrate (NO3-) could influence the brain's hemodynamic response to neuronal stimulation. In the present study, 20 healthy male participants were given either sodium nitrate (NaNO3) or sodium chloride (NaCl) (saline placebo) in a crossover study and were shown visual.......9±4%, respectively), and the variation across activated voxels of both measures decreased (12.3±4% and 15.3±7%, respectively). The baseline cerebral blood flow was not affected by nitrate. Our experiments demonstrate, for the first time, that dietary nitrate may modulate the local cerebral hemodynamic response...... to stimuli. A faster and smaller BOLD response, with less variation across local cortex, is consistent with an enhanced hemodynamic coupling during elevated nitrate intake. These findings suggest that dietary patterns, via the nitrate-nitrite-NO pathway, may be a potential way to affect key properties...

  11. Medial temporal lobe BOLD activity at rest predicts individual differences in memory ability in healthy young adults

    Science.gov (United States)

    Wig, Gagan S.; Grafton, Scott T.; Demos, Kathryn E.; Wolford, George L.; Petersen, Steven E.; Kelley, William M.

    2008-01-01

    Human beings differ in their ability to form and retrieve lasting long-term memories. To explore the source of these individual differences, we used functional magnetic resonance imaging to measure blood-oxygen-level-dependent (BOLD) activity in healthy young adults (n = 50) during periods of resting fixation that were interleaved with periods of simple cognitive tasks. We report that medial temporal lobe BOLD activity during periods of rest predicts individual differences in memory ability. Specifically, individuals who exhibited greater magnitudes of task-induced deactivations in medial temporal lobe BOLD signal (as compared to periods of rest) demonstrated superior memory during offline testing. This relationship was independent of differences in general cognitive function and persisted across different control tasks (i.e., number judgment versus checkerboard detection) and experimental designs (i.e., blocked versus event-related). These results offer a neurophysiological basis for the variability in mnemonic ability that is present amongst healthy young adults and may help to guide strategies aimed at early detection and intervention of neurological and mnemonic impairment. PMID:19001272

  12. A review of functional magnetic resonance imaging for Brainnetome

    Institute of Scientific and Technical Information of China (English)

    Ming Song; Tianzi Jiang

    2012-01-01

    The functional brain network using blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has revealed the potentials for probing brain architecture,as well as for identifying clinical biomarkers for brain diseases.In the general context of Brainnetome,this review focuses on the development of approaches for modeling and analyzing functional brain networks with BOLD fMRI.The prospects for these approaches are also discussed.

  13. Infraslow LFP correlates to resting-state fMRI BOLD signals

    OpenAIRE

    2013-01-01

    The slow fluctuations of the blood-oxygenation-level dependent (BOLD) signal in resting-state fMRI are widely utilized as a surrogate marker of ongoing neural activity. Spontaneous neural activity includes a broad range of frequencies, from infraslow (< 0.5 Hz) fluctuations to fast action potentials. Recent studies have demonstrated a correlative relationship between the BOLD fluctuations and power modulations of the local field potential (LFP), particularly in the gamma band. However, the re...

  14. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation

    DEFF Research Database (Denmark)

    Hougaard, Anders; Jensen, Bettina Hagström; Amin, Faisal Mohammad

    2015-01-01

    Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend...... on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (f......MRI) in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness...

  15. Analysis of Neural-BOLD Coupling through Four Models of the Neural Metabolic Demand

    Directory of Open Access Journals (Sweden)

    Christopher W Tyler

    2015-12-01

    Full Text Available The coupling of the neuronal energetics to the blood-oxygen-level-dependent (BOLD response is still incompletely understood. To address this issue, we compared the fits of four plausible models of neurometabolic coupling dynamics to available data for simultaneous recordings of the local field potential (LFP and the local BOLD response recorded from monkey primary visual cortex over a wide range of stimulus durations. The four models of the metabolic demand driving the BOLD response were: direct coupling with the overall LFP; rectified coupling to the LFP; coupling with a slow adaptive component of the implied neural population response; and coupling with the non-adaptive intracellular input signal defined by the stimulus time course. Taking all stimulus durations into account, the results imply that the BOLD response is most closely coupled with metabolic demand derived from the intracellular input waveform, without significant influence from the adaptive transients and nonlinearities exhibited by the LFP waveform.

  16. Amplitude of Sensorimotor Mu Rhythm Is Correlated with BOLD from Multiple Brain Regions: A Simultaneous EEG-fMRI Study

    Science.gov (United States)

    Yin, Siyang; Liu, Yuelu; Ding, Mingzhou

    2016-01-01

    The mu rhythm is a field oscillation in the ∼10Hz range over the sensorimotor cortex. For decades, the suppression of mu (event-related desynchronization) has been used to index movement planning, execution, and imagery. Recent work reports that non-motor processes, such as spatial attention and movement observation, also desynchronize mu, raising the possibility that the mu rhythm is associated with the activity of multiple brain regions and systems. In this study, we tested this hypothesis by recording simultaneous resting-state EEG-fMRI from healthy subjects. Independent component analysis (ICA) was applied to extract the mu components. The amplitude (power) fluctuations of mu were estimated as a time series using a moving-window approach, which, after convolving with a canonical hemodynamic response function (HRF), was correlated with blood-oxygen-level-dependent (BOLD) signals from the entire brain. Two main results were found. First, mu power was negatively correlated with BOLD from areas of the sensorimotor network, the attention control network, the putative mirror neuron system, and the network thought to support theory of mind. Second, mu power was positively correlated with BOLD from areas of the salience network, including anterior cingulate cortex and anterior insula. These results are consistent with the hypothesis that sensorimotor mu rhythm is associated with multiple brain regions and systems. They also suggest that caution should be exercised when attempting to interpret mu modulation in terms of a single brain network. PMID:27499736

  17. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI Investigation

    Science.gov (United States)

    Hames, Elizabeth’ C.; Murphy, Brandi; Rajmohan, Ravi; Anderson, Ronald C.; Baker, Mary; Zupancic, Stephen; O’Boyle, Michael; Richman, David

    2016-01-01

    Electroencephalography (EEG) and blood oxygen level dependent functional magnetic resonance imagining (BOLD fMRI) assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD) and 10 neurotypical (NT) controls between the ages of 20–28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block vs. the second presentation of a visual stimulus in an all visual block (AA2-VV2).We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs. PMID:27148020

  18. Visual cortex and auditory cortex activation in early binocularly blind macaques: A BOLD-fMRI study using auditory stimuli.

    Science.gov (United States)

    Wang, Rong; Wu, Lingjie; Tang, Zuohua; Sun, Xinghuai; Feng, Xiaoyuan; Tang, Weijun; Qian, Wen; Wang, Jie; Jin, Lixin; Zhong, Yufeng; Xiao, Zebin

    2017-04-15

    Cross-modal plasticity within the visual and auditory cortices of early binocularly blind macaques is not well studied. In this study, four healthy neonatal macaques were assigned to group A (control group) or group B (binocularly blind group). Sixteen months later, blood oxygenation level-dependent functional imaging (BOLD-fMRI) was conducted to examine the activation in the visual and auditory cortices of each macaque while being tested using pure tones as auditory stimuli. The changes in the BOLD response in the visual and auditory cortices of all macaques were compared with immunofluorescence staining findings. Compared with group A, greater BOLD activity was observed in the bilateral visual cortices of group B, and this effect was particularly obvious in the right visual cortex. In addition, more activated volumes were found in the bilateral auditory cortices of group B than of group A, especially in the right auditory cortex. These findings were consistent with the fact that there were more c-Fos-positive cells in the bilateral visual and auditory cortices of group B compared with group A (p visual cortices of binocularly blind macaques can be reorganized to process auditory stimuli after visual deprivation, and this effect is more obvious in the right than the left visual cortex. These results indicate the establishment of cross-modal plasticity within the visual and auditory cortices.

  19. Bold-functional MRI evaluation of the relationship between the level of amblyopia and the functional of the visual cortex in child ametropic amblyopia%屈光不正性弱视儿童皮层功能与弱视程度关系的功能磁共振研究

    Institute of Scientific and Technical Information of China (English)

    朱娟; 燕振国; 张文文

    2011-01-01

    Objective To assess the influence of ametropic amblyopia on different level of visual cortex and compare the features of the cortex activations before and after ametropia correction on ametropic amblyopias with blood oxygenation dependent level functional MRI techniques (bold-fMRI). Methods Functional evaluations were performed on a 1.5 Tesla MR Ⅰ device with the experimental group before and after ametropia correction on 18 ametropic amblyopes and 18 normal subjects in control group. The stimulating apparatus was self-made black and white rotary grating with the speed of 5 circles per minute, stationary grating is vertical. No other light or influence was allowed in the scanning room. The distance between the eyes and screen was 1.0 m FSE and EPI sequence were used for the anatomical and functional data acquisitions. All data were analyzed with the own software of the scanner. During data processing, motion correction and three-dimensional smooth were used in all data.the activation areas were measured in occipital lobe. The SPSS 16.0 software was used for statistic analysis. The cortical activations of amblyopic eyes and the normal eyes were compared. The difference of the cortical activations of amblyopic eyes before and after refractive correction was analyzed. Results It was found that the cortex was activated obviously in the calcarine cortex around occipital lobe stimulation of experimental group induced lower response in visual cortexin comparison with the control group stimulation. After refractive correction,stimulation of experimental group induced more response than before, but also lower than the control group. Additional response was found in the secondary visual cortex, the cuneus,the lingual gyrus. There is no linear correlation between the activated of visual cortex and the level of amblyopia Conclusions There are remarkable defects on diferent levels of visual codex in ametropic amblyopia.secondary visual cortex has more activated defects than

  20. Quantum theory with bold operator tensors.

    Science.gov (United States)

    Hardy, Lucien

    2015-08-06

    In this paper, we present a formulation of quantum theory in terms of bold operator tensors. A circuit is built up of operations where an operation corresponds to a use of an apparatus. We associate collections of operator tensors (which together comprise a bold operator) with these apparatus uses. We give rules for combining bold operator tensors such that, for a circuit, they give a probability distribution over the possible outcomes. If we impose certain physicality constraints on the bold operator tensors, then we get exactly the quantum formalism. We provide both symbolic and diagrammatic ways to represent these calculations. This approach is manifestly covariant in that it does not require us to foliate the circuit into time steps and then evolve a state. Thus, the approach forms a natural starting point for an operational approach to quantum field theory.

  1. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.

    Science.gov (United States)

    Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2017-03-11

    To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Brain Functional Connectivity in MS: An EEG-NIRS Study

    Science.gov (United States)

    2015-10-01

    oxygen- based ( near -infrared spectroscopy (NIRS), functional MRI (fMRI)) signals, and to use the results to help optimize BOLD fMRI analyses of brain...2. Keywords BOLD – blood oxygen level dependent EEG – electroencephalography NIRS – near -infrared spectroscopy fMRI – functional MRI MS...INTRODUCTION TO ELECTROENCEPHALOGRAPHY AND NEAR -INFRARED SPECTROSCOPY NEUROIMAGING MEASUREMENT AND ANALYSIS P.40LO GlACO~lETTT 1. COURSE O VERVIEW T he

  3. Hemodynamic modelling of BOLD fMRI - A machine learning approach

    DEFF Research Database (Denmark)

    Jacobsen, Danjal Jakup

    2007-01-01

    This Ph.D. thesis concerns the application of machine learning methods to hemodynamic models for BOLD fMRI data. Several such models have been proposed by different researchers, and they have in common a basis in physiological knowledge of the hemodynamic processes involved in the generation...... of the BOLD signal. The BOLD signal is modelled as a non-linear function of underlying, hidden (non-measurable) hemodynamic state variables. The focus of this thesis work has been to develop methods for learning the parameters of such models, both in their traditional formulation, and in a state space...... formulation. In the latter, noise enters at the level of the hidden states, as well as in the BOLD measurements themselves. A framework has been developed to allow approximate posterior distributions of model parameters to be learned from real fMRI data. This is accomplished with Markov chain Monte Carlo...

  4. Acetazolamide-augmented dynamic BOLD (aczBOLD imaging for assessing cerebrovascular reactivity in chronic steno-occlusive disease of the anterior circulation: An initial experience

    Directory of Open Access Journals (Sweden)

    Junjie Wu

    2017-01-01

    Full Text Available The purpose of this study was to measure cerebrovascular reactivity (CVR in chronic steno-occlusive disease using a novel approach that couples BOLD imaging with acetazolamide (ACZ vasoreactivity (aczBOLD, to evaluate dynamic effects of ACZ on BOLD and to establish the relationship between aczBOLD and dynamic susceptibility contrast (DSC perfusion MRI. Eighteen patients with unilateral chronic steno-occlusive disease of the anterior circulation underwent a 20-min aczBOLD imaging protocol, with ACZ infusion starting at 5 min of scan initiation. AczBOLD reactivity was calculated on a voxel-by-voxel basis to generate CVR maps for subsequent quantitative analyses. Reduced CVR was observed in the diseased vs. the normal hemisphere both by qualitative and quantitative assessment (gray matter (GM: 4.13% ± 1.16% vs. 4.90% ± 0.98%, P = 0.002; white matter (WM: 2.83% ± 1.23% vs. 3.50% ± 0.94%, P = 0.005. In all cases BOLD signal began increasing immediately following ACZ infusion, approaching a plateau at ~8.5 min after infusion, with the tissue volume of reduced augmentation increasing progressively with time, peaking at 2.60 min (time range above 95% of the maximum value: 0–4.43 min for the GM and 1.80 min (time range above 95% of the maximum value: 1.40–3.53 min for the WM. In the diseased hemisphere, aczBOLD CVR significantly correlated with baseline DSC time-to-maximum of the residue function (Tmax (P = 0.008 for the WM and normalized cerebral blood flow (P = 0.003 for the GM, and P = 0.001 for the WM. AczBOLD provides a novel, safe, easily implementable approach to CVR measurement in the routine clinical environments. Further studies can establish quantitative thresholds from aczBOLD towards identification of patients at heightened risk of recurrent ischemia and cognitive decline.

  5. BOLD response to direct thalamic stimulation reveals a functional connection between the medial thalamus and the anterior cingulate cortex in the rat.

    Science.gov (United States)

    Shyu, Bai-Chung; Lin, Chun-Yu; Sun, Jyh-Jang; Chen, Shin-Lang; Chang, Chen

    2004-07-01

    Recent functional neuroimaging studies in humans and rodents have shown that the anterior cingulate cortex (ACC) is activated by painful stimuli, and plays an important role in the affective aspect of pain sensation. The aim of the present study was to develop a suitable stimulation method for direct activation of the brain in fMRI studies and to investigate the functional connectivity in the thalamo-cingulate pathway. In the first part of the study, tungsten, stainless steel, or glass-coated carbon fiber microelectrodes were implanted in the left medial thalamus (MT) of anesthetized rats, and T2*-weighted gradient-echo (GE) images were obtained in the sagittal plane on a 4.7 T system (Biospec BMT 47/40). Only the images obtained with the carbon fiber electrode were acceptable without a reduction of the signal-to-noise ratio (SNR) and image distortion. In the second part of the study, a series of two-slice GE images were acquired during electrical stimulation of the MT with the use of a carbon fiber electrode. A cross-correlation analysis showed that the signal intensities of activated areas in the ipsilateral ACC were significantly increased by about 4.5% during MT stimulation. Functional activation, as assessed by the distribution of c-Fos immunoreactivity, showed strong c-Fos expression in neurons in the ipsilateral ACC. The present study shows that glass-coated carbon fiber electrodes are suitable for fMRI studies and can be used to investigate functional thalamocortical activation.

  6. Plasticity of boldness in rainbow trout, Oncorhynchus mykiss: do hunger and predation influence risk-taking behaviour?

    Science.gov (United States)

    Thomson, Jack S; Watts, Phillip C; Pottinger, Tom G; Sneddon, Lynne U

    2012-05-01

    Boldness, a measure of an individual's propensity for taking risks, is an important determinant of fitness but is not necessarily a fixed trait. Dependent upon an individual's state, and given certain contexts or challenges, individuals may be able to alter their inclination to be bold or shy in response. Furthermore, the degree to which individuals can modulate their behaviour has been linked with physiological responses to stress. Here we attempted to determine whether bold and shy rainbow trout, Oncorhynchus mykiss, can exhibit behavioural plasticity in response to changes in state (nutritional availability) and context (predation threat). Individual trout were initially assessed for boldness using a standard novel object paradigm; subsequently, each day for one week fish experienced either predictable, unpredictable, or no simulated predator threat in combination with a high (2% body weight) or low (0.15%) food ration, before being reassessed for boldness. Bold trout were generally more plastic, altering levels of neophobia and activity relevant to the challenge, whereas shy trout were more fixed and remained shy. Increased predation risk generally resulted in an increase in the expression of three candidate genes linked to boldness, appetite regulation and physiological stress responses - ependymin, corticotrophin releasing factor and GABA(A) - but did not produce a significant increase in plasma cortisol. The results suggest a divergence in the ability of bold and shy trout to alter their behavioural profiles in response to internal and exogenous factors, and have important implications for our understanding of the maintenance of different behavioural phenotypes in natural populations.

  7. Non-invasive multiparametric qBOLD approach for robust mapping of the oxygen extraction fraction

    Energy Technology Data Exchange (ETDEWEB)

    Domsch, Sebastian; Mie, Moritz B.; Schad, Lothar R. [Heidelberg Univ., Medical Faculty Mannheim (Germany). Computer Assisted Clinical Medicine; Wenz, Frederik [Heidelberg Univ., Medical Faculty Mannheim (Germany). Dept. of Radiation Oncology

    2014-10-01

    Introduction: The quantitative blood oxygenation level-dependent (qBOLD) method has not become clinically established yet because long acquisition times are necessary to achieve an acceptable certainty of the parameter estimates. In this work, a non-invasive multiparametric (nimp) qBOLD approach based on a simple analytical model is proposed to facilitate robust oxygen extraction fraction (OEF) mapping within clinically acceptable acquisition times by using separate measurements. Methods: The protocol consisted of a gradient-echo sampled spin-echo sequence (GESSE), a T{sub 2}-weighted Carr-Purcell-Meiboom-Gill (CPMG) sequence, and a T{sub 2}{sup *}-weighted multi-slice multi-echo gradient echo (MMGE) sequence. The GESSE acquisition time was less than 5 minutes and the extra measurement time for CPMG / MMGE was below 2 minutes each. The proposed nimp-qBOLD approach was validated in healthy subjects (N = 5) and one patient. Results: The proposed nimp-qBOLD approach facilitated more robust OEF mapping with significantly reduced inter- and intra-subject variability compared to the standard qBOLD method. Thereby, an average OEF in all subjects of 27 ± 2 % in white matter (WM) and 29 ± 2 % in gray matter (GM) using the nimp-qBOLD method was more stable compared to 41 ± 10 % (WM) and 46 ± 10 % (GM) with standard qBOLD. Moreover, the spatial variance in the image slice (i.e. standard deviation divided by mean) was on average reduced from 35 % to 25 %. In addition, the preliminary results of the patient are encouraging. Conclusion: The proposed nimp-qBOLD technique provides a promising tool for robust OEF mapping within clinically acceptable acquisition times and could therefore provide an important contribution for analyzing tumors or monitoring the success of radio and chemo therapies. (orig.)

  8. Sustained negative BOLD response in human fMRI finger tapping task.

    Directory of Open Access Journals (Sweden)

    Yadong Liu

    Full Text Available In this work, we investigated the sustained negative blood oxygen level-dependent (BOLD response (sNBR using functional magnetic resonance imaging during a finger tapping task. We observed that the sNBR for this task was more extensive than has previously been reported. The cortical regions involved in sNBR are divided into the following three groups: frontal, somatosensory and occipital. By investigating the spatial structure, area, amplitude, and dynamics of the sNBR in comparison with those of its positive BOLD response (PBR counterpart, we made the following observations. First, among the three groups, the somatosensory group contained the greatest number of activated voxels and the fewest deactivated voxels. In addition, the amplitude of the sNBR in this group was the smallest among the three groups. Second, the onset and peak time of the sNBR are both larger than those of the PBR, whereas the falling edge time of the sNBR is less than that of the PBR. Third, the long distance between most sNBR foci and their corresponding PBR foci makes it unlikely that they share the same blood supply artery. Fourth, the couplings between the sNBR and its PBR counterpart are distinct among different regions and thus should be investigated separately. These findings imply that the origin of most sNBR foci in the finger-tapping task is much more likely to be neuronal activity suppression rather than "blood steal."

  9. Frequency of Spontaneous BOLD Signal Differences between Moderate and Late Preterm Newborns and Term Newborns.

    Science.gov (United States)

    Wu, Xiushuang; Wei, Luqing; Wang, Nan; Hu, Zhangxue; Wang, Li; Ma, Juan; Feng, Shuai; Cai, Yue; Song, Xiaopeng; Shi, Yuan

    2016-10-01

    Little is known about the frequency features of spontaneous neural activity in the brains of moderate and late preterm (MLPT) newborns. We used resting-state functional magnetic resonance imaging (rs-fMRI) and the amplitude of low-frequency fluctuation (ALFF) method to investigate the frequency properties of spontaneous blood oxygen level-dependent (BOLD) signals in 26 MLPT and 35 term newborns. Two frequency bands, slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz), were analyzed. Our results showed widespread differences in ALFF between the two bands; differences occurred mainly in the primary sensory and motor cortices and to a lesser extent in association cortices and subcortical areas. Compared with term newborns, MLPT newborns showed significantly altered neural activity predominantly in the primary sensory and motor cortices and in the posterior cingulate gyrus/precuneus. In addition, a significant interaction between frequency bands and groups was observed in the primary somatosensory cortex. Intriguingly, these primary sensory and motor regions have been proven to be the major cortical hubs during the neonatal period. Our results revealed the frequency of spontaneous BOLD signal differences between MLPT and term newborns, which contribute to the understanding of regional development of spontaneous brain rhythms of MLPT newborns.

  10. Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network

    Directory of Open Access Journals (Sweden)

    Silvia Tommasin

    2017-07-01

    Full Text Available Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN, are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task.

  11. Mapping and correction of vascular hemodynamic latency in the BOLD signal.

    Science.gov (United States)

    Chang, Catie; Thomason, Moriah E; Glover, Gary H

    2008-10-15

    Correlation and causality metrics can be applied to blood-oxygen level-dependent (BOLD) signal time series in order to infer neural synchrony and directions of information flow from fMRI data. However, the BOLD signal reflects both the underlying neural activity and the vascular response, the latter of which is governed by local vasomotor physiology. The presence of potential vascular latency differences thus poses a confound in the detection of neural synchrony as well as inferences about the causality of neural processes. In the present study, we investigate the use of a breath holding (BH) task for characterizing and correcting for voxel-wise neurovascular latency differences across the whole brain. We demonstrate that BH yields reliable measurements of relative timing differences between voxels, and further show that a BH-derived latency correction can impact both functional connectivity maps of the resting-state default-mode network and activation maps of an event-related working memory (WM) task.

  12. The value of blood oxygenation level-dependent (BOLD MR imaging in differentiation of renal solid mass and grading of renal cell carcinoma (RCC: analysis based on the largest cross-sectional area versus the entire whole tumour.

    Directory of Open Access Journals (Sweden)

    Guang-Yu Wu

    Full Text Available To study the value of assessing renal masses using different methods in parameter approaches and to determine whether BOLD MRI is helpful in differentiating RCC from benign renal masses, differentiating clear-cell RCC from renal masses other than clear-cell RCC and determining the tumour grade.Ninety-five patients with 139 renal masses (93 malignant and 46 benign who underwent abdominal BOLD MRI were enrolled. R2* values were derived from the largest cross-section (R2*largest and from the whole tumour (R2*whole. Intra-observer and inter-observer agreements were analysed based on two measurements by the same observer and the first measurement from each observer, respectively, and these agreements are reported with intra-class correlation coefficients and 95% confidence intervals. The diagnostic value of the R2* value in the evaluation was assessed with receiver-operating characteristic analysis.The intra-observer agreement was very good for R2*largest and R2*whole (all > 0.8. The inter-observer agreement of R2*whole (0.75, 95% confidence interval: 0.69~0.79 was good and was significantly improved compared with the R2*largest (0.61, 95% confidence interval: 0.52~0.68, as there was no overlap in the 95% confidence interval of the intra-class correlation coefficients. The diagnostic value in differentiating renal cell carcinoma from benign lesions with R2*whole (AUC=0.79/0.78[observer1/observer2] and R2*largest (AUC=0.75[observer1] was good and significantly higher (p=0.01 for R2*largest[observer2] vs R2*whole[observer2], p 0.7 and were not significantly different (p=0.89/0.93 for R2*largest vs R2*whole[observer1/observer2], 0.96 for R2*whole[observer1] vs R2*largest[observer2] and 0.96 for R2*whole [observer2] vs R2*largest[observer1].BOLD MRI could provide a feasible parameter for differentiating renal cell carcinoma from benign renal masses and for predicting clear-cell renal cell carcinoma grading. Compared with the largest cross

  13. Latencies in BOLD response during visual attention processes.

    Science.gov (United States)

    Kellermann, Thilo; Reske, Martina; Jansen, Andreas; Satrapi, Peyman; Shah, N Jon; Schneider, Frank; Habel, Ute

    2011-04-22

    One well-investigated division of attentional processes focuses on alerting, orienting and executive control, which can be assessed applying the attentional network test (ANT). The goal of the present study was to add further knowledge about the temporal dynamics of relevant neural correlates. As a right hemispheric dominance for alerting and orienting has previously been reported for intrinsic but not for phasic alertness, we additionally addressed a potential impact of this lateralization of attention by employing a lateralized version of the ANT, capturing phasic alertness processes. Sixteen healthy subjects underwent event-related functional magnetic resonance imaging (fMRI) while performing the ANT. Analyses of BOLD magnitude replicated the engagement of a fronto-parietal network in the attentional subsystems. The amplitudes of the attentional contrasts interacted with visual field presentation in the sense that the thalamus revealed a greater involvement for spatially cued items presented in the left visual field. Comparisons of BOLD latencies in visual cortices, first, verified faster BOLD responses following contra-lateral stimulus presentation. Second and more importantly, we identified attention-modulated activation in secondary visual and anterior cingulate cortices. Results are discussed in terms of bottom-up and lateralization processes. Although intrinsic and phasic alertness are distinct cognitive processes, we propose that neural substrates of intrinsic alertness may be accessed by phasic alertness provided that the attention-dominant (i.e., the right) hemisphere is activated directly by a warning stimulus.

  14. Blood oxygenation-level dependent functional MRI in evaluating the selective activation of motor cortexes associated with recovery of motor function in hemiplegic patients with ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Yuechun Li; Xiaoyan Liu; Guorong Liu; Ying He; Baojun Wang; Furu Liang; Li Wang; Hui Zhang; Jingfen Zhang; Ruiming Li

    2006-01-01

    BACKGROUND: Previous studies about blood oxygenation-level dependent (BOLD) functional MRI (fMRI) have indicated that the poststroke recovery of motor function is accompanied by the selective activation of motor cor texes with high correlation.OBJECTIVE: To evaluate the short-term outcomes after rehabilitative interventions with BOLD fMRI in hemi plegic patients with acute stroke, and analyze the correlation of the excitement of brain function in the passive and active movements of the affected limb with the recovery of motor function. DESIGN : A case observation. SETTING: Department of Neurology, Baotou Central Hospital. PARTICIPANTS: Thirty hemiplegic inpatients with ischemic stroke were selected from the Department of Neurology, Baotou Central Hospital from January to December in 2005, including 16 males and 14 females, aging 44-71 years with an average age of (56±5) years, and the disease course ranged from 12 to 72 hours. Inclusive criteria: In accordance with the diagnostic standard of ischemic stroke revised by the Fourth National Academic Meeting for Cerebrovascular Disease; Confirmed by cranial CT or MRI. They were all informed agreed with the detected items.METHODS: ① The Bobath technique was adopted in the rehabilitative interventions of the 30 patients, 30 minutes for each time, twice a day for three weeks continuously. ② The hand motor recovery of the stroke patients was graded by the Brunnstrom,stages ( Ⅰ -Ⅵ), and be able to grasp various objects and extend for the whole range was taken as grade Ⅵ. ③ The patients were examined with fMRI BOLD before rehabilitation and 3 weeks after rehabilitation. All the patients were trained with finger movements, the distracting thoughts should be eliminated as much as possible especially during the movement phase, the patients should highly concentrate on the hand movements. The range for the finger movements should be as large as possible with moderate frequency. The hand movements should be 10 s with

  15. Resting-state BOLD oscillation frequency predicts vigilance task performance at both normal and high environmental temperatures.

    Science.gov (United States)

    Song, Xiaopeng; Qian, Shaowen; Liu, Kai; Zhou, Shuqin; Zhu, Huaiqiu; Zou, Qihong; Liu, Yijun; Sun, Gang; Gao, Jia-Hong

    2017-06-09

    Hyperthermia may impair vigilance functions and lead to slower reaction times (RTs) in the psychomotor vigilance task (PVT) and possibly disturbing cerebral hemodynamic rhythms. To test these hypotheses, we acquired the resting-state BOLD and cerebral blood flow (CBF) data, as well as PVTRTs from 15 participants in two simulated environmental thermal conditions (50 °C/25 °C). We adopted a data-driven method, frequency component analysis, to quantify the mean frequency of the BOLD series of each voxel. Across-subject correlation analysis was employed to detect the brain areas whose BOLD oscillation frequency was correlated with the RTs. Significant changes of BOLD frequency and CBF within these areas were compared between hyperthermia and normothermia conditions. Spatial correlations between BOLD frequency and CBF were calculated within different brain areas for each subject under both thermal conditions. Results showed that, under both thermal conditions, the RTs correlated with the BOLD frequency positively in the default mode network (DMN) and negatively in the sensorimotor network (SMN). The increase of BOLD frequency in the thalamus and ventral medial prefrontal cortex was correlated with the increase of RTs in hyperthermia compared with normothermia. Hyperthermia decreased BOLD frequency and CBF in the SMN, while it increased CBF in the thalamus and posterior cingulate. In both thermal conditions, the spatial distribution of CBF negatively correlated with the spatial distribution of BOLD oscillation frequency in most cortical areas, especially in cingulate cortices, precuneus, and primary visual cortex. These results suggest that hyperthermia might deteriorate task performance by interfering with the resting-state CBF, and with BOLD rhythms. The overlapping of the thermoregulatory and vigilance functions in the SMN and DMN might underlie the neural mechanisms of the cognitive-behavioral impairments induced by hyperthermia.

  16. Unbiased spin-dependent Parton Distribution Functions

    CERN Document Server

    Nocera, Emanuele Roberto

    2014-01-01

    We present the first unbiased determination of spin-dependent, or polarized, Parton Distribution Functions (PDFs) of the proton. A statistically sound representation of the corresponding uncertainties is achieved by means of the NNPDF methodology: this was formerly developed for unpolarized distributions and is now generalized to the polarized here for the first time. The features of the procedure, based on robust statistical tools (Monte Carlo sampling for error propagation, neural networks for PDF parametrization, genetic algorithm for their minimization, and possibly reweighting for including new data samples without refitting), are illustrated in detail. Different sets of polarized PDFs are obtained at next-to-leading order accuracy in perturbative quantum chromodynamics, based on both fixed-target inclusive deeply-inelastic scattering data and the most recent polarized collider data. A quantitative appraisal on the potential role of future measurements at an Electron-Ion Collider is also presented. We st...

  17. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention

    Directory of Open Access Journals (Sweden)

    Mara eKottlow

    2015-05-01

    Full Text Available Working memory (WM processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health.We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods.Four temporally coherent networks - the default mode network (DMN, the dorsal attention, the right and the left WM network - were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks’ pre-stimulus activation upon retention-related EEG activity in the theta, alpha and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing.We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be online synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals.

  18. Negative blood oxygen level dependent signals during speech comprehension.

    Science.gov (United States)

    Rodriguez Moreno, Diana; Schiff, Nicholas D; Hirsch, Joy

    2015-05-01

    Speech comprehension studies have generally focused on the isolation and function of regions with positive blood oxygen level dependent (BOLD) signals with respect to a resting baseline. Although regions with negative BOLD signals in comparison to a resting baseline have been reported in language-related tasks, their relationship to regions of positive signals is not fully appreciated. Based on the emerging notion that the negative signals may represent an active function in language tasks, the authors test the hypothesis that negative BOLD signals during receptive language are more associated with comprehension than content-free versions of the same stimuli. Regions associated with comprehension of speech were isolated by comparing responses to passive listening to natural speech to two incomprehensible versions of the same speech: one that was digitally time reversed and one that was muffled by removal of high frequencies. The signal polarity was determined by comparing the BOLD signal during each speech condition to the BOLD signal during a resting baseline. As expected, stimulation-induced positive signals relative to resting baseline were observed in the canonical language areas with varying signal amplitudes for each condition. Negative BOLD responses relative to resting baseline were observed primarily in frontoparietal regions and were specific to the natural speech condition. However, the BOLD signal remained indistinguishable from baseline for the unintelligible speech conditions. Variations in connectivity between brain regions with positive and negative signals were also specifically related to the comprehension of natural speech. These observations of anticorrelated signals related to speech comprehension are consistent with emerging models of cooperative roles represented by BOLD signals of opposite polarity.

  19. A predation cost to bold fish in the wild

    DEFF Research Database (Denmark)

    Hulthén, Kaj; Chapman, Ben; Nilsson, Anders P.

    2017-01-01

    in the animal kingdom. Theory predicts that individual behavioural types differ in a cost-benefit trade-off where bolder individuals benefit from greater access to resources while paying higher predation-risk costs. However, explicitly linking predation events to individual behaviour under natural conditions...... evidence of behavioural type-dependent predation vulnerability in the wild, i.e. that there is a predation cost to boldness, which is critical for our understanding of the evolution and maintenance of behavioural diversity in natural populations....

  20. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish

    Science.gov (United States)

    Pintor, L.M.; Sih, A.; Bauer, M.L.

    2008-01-01

    Aggressiveness, along with foraging voracity and boldness, are key behavioral mechanisms underlying the competitive displacement and invasion success of exotic species. However, do aggressiveness, voracity and boldness of the invader depend on the presence of an ecologically similar native competitor in the invaded community? We conducted four behavioral assays to compare aggression, foraging voracity, threat response and boldness to forage under predation risk of multiple populations of exotic signal crayfish Pacifastacus leniusculus across its native and invaded range with and without a native congener, the Shasta crayfish P. fortis. We predicted that signal crayfish from the invaded range and sympatric with a native congener (IRS) should be more aggressive to outcompete a close competitor than populations from the native range (NR) or invaded range and allopatric to a native congener (IRA). Furthermore, we predicted that IRS populations of signal crayfish should be more voracious, but less bold to forage under predation risk since native predators and prey likely possess appropriate behavioral responses to the invader. Contrary to our predictions, results indicated that IRA signal crayfish were more aggressive towards conspecifics and more voracious and active foragers, yet also bolder to forage under predation risk in comparison to NR and IRS populations, which did not differ in behavior. Higher aggression/voracity/ boldness was positively correlated with prey consumption rates, and hence potential impacts on prey. We suggest that the positive correlations between aggression/voracity/boldness are the result of an overall aggression syndrome. Results of stream surveys indicated that IRA streams have significantly lower prey biomass than in IRS streams, which may drive invading signal crayfish to be more aggressive/voracious/bold to acquire resources to establish a population. ?? 2008 The Authors.

  1. Engendering bold leadership against HIV/AIDS.

    Science.gov (United States)

    Pates, Michael

    2007-05-01

    The importance of leadership, especially human rights-driven leadership, in the fight against HIV/AIDS is widely recognized. However, argues Michael Pates in this commentary, the type of bold leadership required to really make a difference has been lacking. Pates calls for the development of an AIDS Leadership Initiative and describes how it might happen.

  2. Combination of blood oxygen level–dependent functional magnetic resonance imaging and visual evoked potential recordings for abnormal visual cortex in two types of amblyopia

    Science.gov (United States)

    Wang, Xinmei; Cui, Dongmei; Zheng, Ling; Yang, Xiao; Yang, Hui

    2012-01-01

    Purpose To elucidate the different neuromechanisms of subjects with strabismic and anisometropic amblyopia compared with normal vision subjects using blood oxygen level–dependent functional magnetic resonance imaging (BOLD-fMRI) and pattern-reversal visual evoked potential (PR-VEP). Methods Fifty-three subjects, age range seven to 12 years, diagnosed with strabismic amblyopia (17 cases), anisometropic amblyopia (20 cases), and normal vision (16 cases), were examined using the BOLD-fMRI and PR-VEP of UTAS-E3000 techniques. Cortical activation by binocular viewing of reversal checkerboard patterns was examined in terms of the calcarine region of interest (ROI)-based and spatial frequency–dependent analysis. The correlation of cortical activation in fMRI and the P100 amplitude in VEP were analyzed using the SPSS 12.0 software package. Results In the BOLD-fMRI procedure, reduced areas and decreased activation levels were found in Brodmann area (BA) 17 and other extrastriate areas in subjects with amblyopia compared with the normal vision group. In general, the reduced areas mainly resided in the striate visual cortex in subjects with anisometropic amblyopia. In subjects with strabismic amblyopia, a more significant cortical impairment was found in bilateral BA 18 and BA 19 than that in subjects with anisometropic amblyopia. The activation by high-spatial-frequency stimuli was reduced in bilateral BA 18 and 19 as well as BA 17 in subjects with anisometropic amblyopia, whereas the activation was mainly reduced in BA 18 and BA 19 in subjects with strabismic amblyopia. These findings were further confirmed by the ROI-based analysis of BA 17. During spatial frequency–dependent VEP detection, subjects with anisometropic amblyopia had reduced sensitivity for high spatial frequency compared to subjects with strabismic amblyopia. The cortical activation in fMRI with the calcarine ROI-based analysis of BA 17 was significantly correlated with the P100 amplitude in VEP

  3. Orientation, temperature, and frequency dependence of nonresonant microwave absorption in HTSC powders

    Energy Technology Data Exchange (ETDEWEB)

    Gould, A.; Huang, M.; Bhagat, S.M. (Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (USA) Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742-4111 (USA)); Tyagi, S. (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 11004 (USA))

    1991-04-15

    Hysteresis in the microwave-power absorption of HTSC powders was studied as a function of temperature ({ital T}), field-sweep amplitude ({ital H}{sub max}), and orientation between the dc field ({bold H}{sub dc}) and the wave vector of the microwaves ({bold k}). It was found that (i) the sizable low-temperature hysteresis effects occur only if {bold H}{sub dc}{parallel}{bold k}, (ii) the temperature and frequency dependence of the hysteresis is strongly affected by {ital H}{sub max}, (iii) the high- and low-temperature virgin curves are quite different, and (iv) the minimum of the absorption signal increases with {ital H}{sub max} and {ital T}. The low-temperature hysteresis loops were found to be similar to loops obtained from nonlinear equations describing cusp catastrophes.

  4. Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses.

    Directory of Open Access Journals (Sweden)

    Maxwell R Bennett

    Full Text Available Measurements of blood oxygenation level dependent (BOLD signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular connections.

  5. Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses.

    Science.gov (United States)

    Bennett, Maxwell R; Farnell, Les; Gibson, William G; Lagopoulos, Jim

    2015-01-01

    Measurements of blood oxygenation level dependent (BOLD) signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular) connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular) connections.

  6. BOLD and its connection to dopamine release in human striatum: a cross-cohort comparison

    Science.gov (United States)

    Lohrenz, Terry; Kishida, Kenneth T.

    2016-01-01

    Activity in midbrain dopamine neurons modulates the release of dopamine in terminal structures including the striatum, and controls reward-dependent valuation and choice. This fluctuating release of dopamine is thought to encode reward prediction error (RPE) signals and other value-related information crucial to decision-making, and such models have been used to track prediction error signals in the striatum as encoded by BOLD signals. However, until recently there have been no comparisons of BOLD responses and dopamine responses except for one clear correlation of these two signals in rodents. No such comparisons have been made in humans. Here, we report on the connection between the RPE-related BOLD signal recorded in one group of subjects carrying out an investment task, and the corresponding dopamine signal recorded directly using fast-scan cyclic voltammetry in a separate group of Parkinson's disease patients undergoing DBS surgery while performing the same task. The data display some correspondence between the signal types; however, there is not a one-to-one relationship. Further work is necessary to quantify the relationship between dopamine release, the BOLD signal and the computational models that have guided our understanding of both at the level of the striatum. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574306

  7. BOLD-based Techniques for Quantifying Brain Hemodynamic and Metabolic Properties – Theoretical Models and Experimental Approaches

    Science.gov (United States)

    Yablonskiy, Dmitriy A.; Sukstanskii, Alexander L.; He, Xiang

    2012-01-01

    Quantitative evaluation of brain hemodynamics and metabolism, particularly the relationship between brain function and oxygen utilization, is important for understanding normal human brain operation as well as pathophysiology of neurological disorders. It can also be of great importance for evaluation of hypoxia within tumors of the brain and other organs. A fundamental discovery by Ogawa and co-workers of the BOLD (Blood Oxygenation Level Dependent) contrast opened a possibility to use this effect to study brain hemodynamic and metabolic properties by means of MRI measurements. Such measurements require developing theoretical models connecting MRI signal to brain structure and functioning and designing experimental techniques allowing MR measurements of salient features of theoretical models. In our review we discuss several such theoretical models and experimental methods for quantification brain hemodynamic and metabolic properties. Our review aims mostly at methods for measuring oxygen extraction fraction, OEF, based on measuring blood oxygenation level. Combining measurement of OEF with measurement of CBF allows evaluation of oxygen consumption, CMRO2. We first consider in detail magnetic properties of blood – magnetic susceptibility, MR relaxation and theoretical models of intravascular contribution to MR signal under different experimental conditions. Then, we describe a “through-space” effect – the influence of inhomogeneous magnetic fields, created in the extravascular space by intravascular deoxygenated blood, on the MR signal formation. Further we describe several experimental techniques taking advantage of these theoretical models. Some of these techniques - MR susceptometry, and T2-based quantification of oxygen OEF – utilize intravascular MR signal. Another technique – qBOLD – evaluates OEF by making use of through-space effects. In this review we targeted both scientists just entering the MR field and more experienced MR researchers

  8. BOLD Magnetic Resonance Imaging identifies cortical hypoxia in severe renovascular disease”

    Science.gov (United States)

    Gloviczki, Monika L; Glockner, James F; Crane, John A; McKusick, Michael A; Misra, Sanjay; Grande, Joseph P; Lerman, Lilach O; Textor, Stephen C

    2014-01-01

    Atherosclerotic renal artery stenosis has a range of manifestations depending upon the severity of vascular occlusion. The aim of this study was to examine whether exceeding the limits of adaptation to reduced blood flow ultimately leads to tissue hypoxia as determined by blood oxygen level dependent (BOLD) MR imaging. We compared three groups of hypertensive patients (24 with essential hypertension [EH]), 13 with “moderate” (Doppler velocities 200-384 cm/sec) and 17 with “severe” atherosclerotic renal artery stenosis ([ARAS]; velocities above 384 cm/sec and loss of functional renal tissue). Cortical and medullary blood flows and volumes were determined by multi-detector CT. Post-stenotic kidney size and blood flow were reduced with ARAS, and tissue perfusion fell in the most severe lesions. Tissue deoxyhemoglobin, as reflected by R2* values, was higher in medulla as compared to cortex for all groups and did not differ between subjects with renal artery lesions and EH. By contrast, cortical R2* levels were elevated for severe ARAS (21.6 ±9.4 /sec) as compared with either EH (17.8±2.3 /sec, p<.01) or moderate ARAS (15.7± 2.1 /sec, p<.01). Changes in medullary R2* after furosemide administration tended to be blunted in severe ARAS as compared to unaffected (contralateral) kidneys. These results demonstrate that severe vascular occlusion overwhelms the capacity of the kidney to adapt to reduced blood flow, manifest as overt cortical hypoxia as measured by BOLD MRI. The level of cortical hypoxia is out of proportion to medulla and may provide a marker to identify irreversible parenchymal injury. PMID:22042812

  9. Pharmacological modulation of the BOLD response: a study of acetazolamide and glyceryl trinitrate in humans

    DEFF Research Database (Denmark)

    Asghar, Mohammed Sohail; Hansen, Adam E; Pedersen, Simon;

    2011-01-01

    To examine the effect of acetazolamide, known to increase cerebral blood flow (CBF) and glyceryl trinitrate (GTN), known to increase cerebral blood volume (CBV) on the blood oxygenation level-dependent (BOLD) response in humans using 3 T magnetic resonance imaging (MRI), and to evaluate how...

  10. Bounds on transverse momentum dependent distribution functions

    CERN Document Server

    Henneman, A A

    2001-01-01

    When more than one hadron takes part in a hard process, an extended set of quark distribution and fragmentation functions becomes relevant. In this talk, the derivation of Soffer-like bounds for these functions, in the case of a spin-1/2 target, is sketched and some of their aspects are discussed.

  11. Bounds on transverse momentum dependent distribution functions

    OpenAIRE

    Henneman, A.

    2000-01-01

    When more than one hadron takes part in a hard process, an extended set of quark distribution and fragmentation functions becomes relevant. In this talk, the derivation of Soffer-like bounds for these functions, in the case of a spin-1/2 target, is sketched and some of their aspects are discussed.

  12. Bounds on transverse momentum dependent distribution functions

    Science.gov (United States)

    Henneman, A.

    2001-01-01

    When more than one hadron takes part in a hard process, an extended set of quark distribution and fragmentation functions becomes relevant. In this talk, the derivation of Soffer-like bounds for these functions, in the case of a spin-1/2 target [1], is sketched and some of their aspects are discussed.

  13. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism:An EEG Power and BOLD fMRI Investigation

    Directory of Open Access Journals (Sweden)

    Elizabeth C Hames

    2016-04-01

    Full Text Available Electroencephalography (EEG and Blood Oxygen Level Dependent Functional Magnetic Resonance Imagining (BOLD fMRI assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD and 10 neurotypical (NT controls between the ages of 20-28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block versus the second presentation of a visual stimulus in an all visual block (AA2­VV2. We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs.

  14. Towards prognostic biomarkers from BOLD fluctuations to differentiate a first epileptic seizure from new-onset epilepsy.

    Science.gov (United States)

    Gupta, Lalit; Janssens, Rick; Vlooswijk, Mariëlle C G; Rouhl, Rob P W; de Louw, Anton; Aldenkamp, Albert P; Ulman, Shrutin; Besseling, René M H; Hofman, Paul A M; van Kranen-Mastenbroek, Vivianne H; Hilkman, Danny M; Jansen, Jacobus F A; Backes, Walter H

    2017-03-01

    The diagnosis of epilepsy cannot be reliably made prior to a patient's second seizure in most cases. Therefore, adequate diagnostic tools are needed to differentiate subjects with a first seizure from those with a seizure preceding the onset of epilepsy. The objective was to explore spontaneous blood oxygen level-dependent (BOLD) fluctuations in subjects with a first-ever seizure and patients with new-onset epilepsy (NOE), and to find characteristic biomarkers for seizure recurrence after the first seizure. We examined 17 first-seizure subjects, 19 patients with new-onset epilepsy (NOE), and 18 healthy controls. All subjects underwent clinical investigation and received electroencephalography and resting-state functional magnetic resonance imaging (MRI). The BOLD time series were analyzed in terms of regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFFs). We found significantly stronger amplitudes (higher fALFFs) in patients with NOE relative to first-seizure subjects and healthy controls. The frequency range of 73-198 mHz (slow-3 subband) appeared most useful for discriminating patients with NOE from first-seizure subjects. The ReHo measure did not show any significant differences. The fALFF appears to be a noninvasive measure that characterizes spontaneous BOLD fluctuations and shows stronger amplitudes in the slow-3 subband of patients with NOE relative first-seizure subjects and healthy controls. A larger study population with follow-up is required to determine whether fALFF holds promise as a potential biomarker for identifying subjects at increased risk to develop epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  15. BOLD-MRI of breast invasive ductal carcinoma: correlation of R2* value and the expression of HIF-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Min; Guo, Xiaojuan; Wang, Shuangkun [Capital Medical University, Department of Radiology, Beijing Chao Yang Hospital, Beijing (China); Jin, Mulan; Wang, Ying [Capital Medical University Beijing, Department of Pathology, Beijing Chaoyang Hospital, Beijing (China); Li, Jie; Liu, Jun [Capital Medical University Beijing, Department of Breast Surgery, Beijing Chaoyang Hospital, Beijing (China)

    2013-12-15

    To explore the reliability and feasibility of blood oxygenation level-dependent-based functional magnetic resonance imaging (BOLD-fMRI) to depict hypoxia in breast invasive ductal carcinoma. A total of 103 women with 104 invasive ductal carcinomas (IDCs) underwent breast BOLD-fMRI at 3.0 T. Histological specimens were analysed for tumour size, grade, axillary lymph nodes and expression of oestrogen receptors, progesterone receptors, human epidermal growth factor receptor 2, p53, Ki-67 and hypoxia inducible factor 1{alpha} (HIF-1{alpha}). The distribution and reliability of R2* were analysed. Correlations of the R2* value with the prognostic factors and HIF-1{alpha} were respectively analysed. The R2* map of IDC demonstrated a relatively heterogeneous signal. The mean R2* value was (53.4 {+-} 18.2) Hz. The Shapiro-Wilk test (W = 0.971, P = 0.020) suggested that the sample did not follow a normal distribution. The inter-rater and intrarater correlation coefficient was 0.967 and 0.959, respectively. The R2* values of IDCs were significantly lower in patients without axillary lymph nodes metastasis. The R2* value had a weak correlation with Ki67 expression (r = 0.208, P = 0.038). The mean R2* value correlated moderately with the level of HIF-1{alpha} (r = 0.516, P = 0.000). BOLD-fMRI is a simple and non-invasive technique that yields hypoxia information on breast invasive ductal carcinomas. (orig.)

  16. Distinction between Neural and Vascular BOLD Oscillations and Intertwined Heart Rate Oscillations at 0.1 Hz in the Resting State and during Movement

    Science.gov (United States)

    Pfurtscheller, Gert; Schwerdtfeger, Andreas; Brunner, Clemens; Aigner, Christoph; Fink, David; Brito, Joana; Carmo, Marciano P.; Andrade, Alexandre

    2017-01-01

    In the resting state, blood oxygen level-dependent (BOLD) oscillations with a frequency of about 0.1 Hz are conspicuous. Whether their origin is neural or vascular is not yet fully understood. Furthermore, it is not clear whether these BOLD oscillations interact with slow oscillations in heart rate (HR). To address these two questions, we estimated phase-locking (PL) values between precentral gyrus (PCG) and insula in 25 scanner-naïve individuals during rest and stimulus-paced finger movements in both hemispheres. PL was quantified in terms of time delay and duration in the frequency band 0.07 to 0.13 Hz. Results revealed both positive and negative time delays. Positive time delays characterize neural BOLD oscillations leading in the PCG, whereas negative time delays represent vascular BOLD oscillations leading in the insula. About 50% of the participants revealed positive time delays distinctive for neural BOLD oscillations, either with short or long unilateral or bilateral phase-locking episodes. An expected preponderance of neural BOLD oscillations was found in the left hemisphere during right-handed movement and unexpectedly in the right hemisphere during rest. Only neural BOLD oscillations were significantly associated with heart rate variability (HRV) in the 0.1-Hz range in the first resting state. It is well known that participating in magnetic resonance imaging (MRI) studies may be frightening and cause anxiety. In this respect it is important to note that the most significant hemispheric asymmetry (p<0.002) with a right-sided dominance of neural BOLD and a left-sided dominance of vascular BOLD oscillations was found in the first resting session in the scanner-naïve individuals. Whether the enhanced left-sided perfusion (dominance of vascular BOLD) or the right-sided dominance of neural BOLD is related to the increased level of anxiety, attention or stress needs further research. PMID:28052074

  17. Comparison of fMRI BOLD response patterns by electrical stimulation of the ventroposterior complex and medial thalamus of the rat.

    Directory of Open Access Journals (Sweden)

    Pai-Feng Yang

    Full Text Available The objective of this study was to compare the functional connectivity of the lateral and medial thalamocortical pain pathways by investigating the blood oxygen level-dependent (BOLD activation patterns in the forebrain elicited by direct electrical stimulation of the ventroposterior (VP and medial (MT thalamus. An MRI-compatible stimulation electrode was implanted in the VP or MT of α-chloralose-anesthetized rats. Electrical stimulation was applied to the VP or MT at various intensities (50 µA to 300 µA and frequencies (1 Hz to 12 Hz. BOLD responses were analyzed in the ipsilateral forelimb region of the primary somatosensory cortex (iS1FL after VP stimulation and in the ipsilateral cingulate cortex (iCC after MT stimulation. When stimulating the VP, the strongest activation occurred at 3 Hz. The stimulation intensity threshold was 50 µA and the response rapidly peaked at 100 µA. When stimulating the MT, The optimal frequency for stimulation was 9 Hz or 12 Hz, the stimulation intensity threshold was 100 µA and we observed a graded increase in the BOLD response following the application of higher intensity stimuli. We also evaluated c-Fos expression following the application of a 200-µA stimulus. Ventroposterior thalamic stimulation elicited c-Fos-positivity in few cells in the iS1FL and caudate putamen (iCPu. Medial thalamic stimulation, however, produced numerous c-Fos-positive cells in the iCC and iCPu. The differential BOLD responses and c-Fos expressions elicited by VP and MT stimulation indicate differences in stimulus-response properties of the medial and lateral thalamic pain pathways.

  18. Simultaneous Imaging of CBF Change and BOLD with Saturation-Recovery-T1 Method.

    Science.gov (United States)

    Wang, Xiao; Zhu, Xiao-Hong; Zhang, Yi; Chen, Wei

    2015-01-01

    A neuroimaging technique based on the saturation-recovery (SR)-T1 MRI method was applied for simultaneously imaging blood oxygenation level dependence (BOLD) contrast and cerebral blood flow change (ΔCBF), which is determined by CBF-sensitive T1 relaxation rate change (ΔR1CBF). This technique was validated by quantitatively examining the relationships among ΔR1CBF, ΔCBF, BOLD and relative CBF change (rCBF), which was simultaneously measured by laser Doppler flowmetry under global ischemia and hypercapnia conditions, respectively, in the rat brain. It was found that during ischemia, BOLD decreased 23.1±2.8% in the cortical area; ΔR1CBF decreased 0.020±0.004s-1 corresponding to a ΔCBF decrease of 1.07±0.24 ml/g/min and 89.5±1.8% CBF reduction (n=5), resulting in a baseline CBF value (=1.18 ml/g/min) consistent with the literature reports. The CBF change quantification based on temperature corrected ΔR1CBF had a better accuracy than apparent R1 change (ΔR1app); nevertheless, ΔR1app without temperature correction still provides a good approximation for quantifying CBF change since perfusion dominates the evolution of the longitudinal relaxation rate (R1app). In contrast to the excellent consistency between ΔCBF and rCBF measured during and after ischemia, the BOLD change during the post-ischemia period was temporally disassociated with ΔCBF, indicating distinct CBF and BOLD responses. Similar results were also observed for the hypercapnia study. The overall results demonstrate that the SR-T1 MRI method is effective for noninvasive and quantitative imaging of both ΔCBF and BOLD associated with physiological and/or pathological changes.

  19. Simultaneous Imaging of CBF Change and BOLD with Saturation-Recovery-T1 Method.

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    Full Text Available A neuroimaging technique based on the saturation-recovery (SR-T1 MRI method was applied for simultaneously imaging blood oxygenation level dependence (BOLD contrast and cerebral blood flow change (ΔCBF, which is determined by CBF-sensitive T1 relaxation rate change (ΔR1CBF. This technique was validated by quantitatively examining the relationships among ΔR1CBF, ΔCBF, BOLD and relative CBF change (rCBF, which was simultaneously measured by laser Doppler flowmetry under global ischemia and hypercapnia conditions, respectively, in the rat brain. It was found that during ischemia, BOLD decreased 23.1±2.8% in the cortical area; ΔR1CBF decreased 0.020±0.004s-1 corresponding to a ΔCBF decrease of 1.07±0.24 ml/g/min and 89.5±1.8% CBF reduction (n=5, resulting in a baseline CBF value (=1.18 ml/g/min consistent with the literature reports. The CBF change quantification based on temperature corrected ΔR1CBF had a better accuracy than apparent R1 change (ΔR1app; nevertheless, ΔR1app without temperature correction still provides a good approximation for quantifying CBF change since perfusion dominates the evolution of the longitudinal relaxation rate (R1app. In contrast to the excellent consistency between ΔCBF and rCBF measured during and after ischemia, the BOLD change during the post-ischemia period was temporally disassociated with ΔCBF, indicating distinct CBF and BOLD responses. Similar results were also observed for the hypercapnia study. The overall results demonstrate that the SR-T1 MRI method is effective for noninvasive and quantitative imaging of both ΔCBF and BOLD associated with physiological and/or pathological changes.

  20. Pupil diameter covaries with BOLD activity in human locus coeruleus.

    Science.gov (United States)

    Murphy, Peter R; O'Connell, Redmond G; O'Sullivan, Michael; Robertson, Ian H; Balsters, Joshua H

    2014-08-01

    The locus coeruleus-noradrenergic (LC-NA) neuromodulatory system has been implicated in a broad array of cognitive processes, yet scope for investigating this system's function in humans is currently limited by an absence of reliable non-invasive measures of LC activity. Although pupil diameter has been employed as a proxy measure of LC activity in numerous studies, empirical evidence for a relationship between the two is lacking. In the present study, we sought to rigorously probe the relationship between pupil diameter and BOLD activity localized to the human LC. Simultaneous pupillometry and fMRI revealed a relationship between continuous pupil diameter and BOLD activity in a dorsal pontine cluster overlapping with the LC, as localized via neuromelanin-sensitive structural imaging and an LC atlas. This relationship was present both at rest and during performance of a two-stimulus oddball task, with and without spatial smoothing of the fMRI data, and survived retrospective image correction for physiological noise. Furthermore, the spatial extent of this pupil/LC relationship guided a volume-of-interest analysis in which we provide the first demonstration in humans of a fundamental characteristic of animal LC activity: phasic modulation by oddball stimulus relevance. Taken together, these findings highlight the potential for utilizing pupil diameter to achieve a more comprehensive understanding of the role of the LC-NA system in human cognition.

  1. Functional Dependencies and Its Axiom System in XML

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiangguo; WANG Guoren; HOU Huan; DING Dabin

    2007-01-01

    According to the analysis of existing complicated functional dependencies constraint, we conclude the conditions of defining functional dependency in XML, and then we introduce the concept of the node value equality. Anew path language and a new definition of functional dependencies in XML (XFD) are proposed.XFD includes the relative XFD and the absolute XFD, in which absolute key and relative key are the particular cases. We focus on the logical implication and the closure problems, and propose a group of inference rules. Finally, some proofs of the correctness and completeness are given. XFD is powerful on expressing functional dependencies in XML causing data redundancy, and has a complete axiom system.

  2. Computing moment-to-moment BOLD activation for real-time neurofeedback.

    Science.gov (United States)

    Hinds, Oliver; Ghosh, Satrajit; Thompson, Todd W; Yoo, Julie J; Whitfield-Gabrieli, Susan; Triantafyllou, Christina; Gabrieli, John D E

    2011-01-01

    Estimating moment-to-moment changes in blood oxygenation level dependent (BOLD) activation levels from functional magnetic resonance imaging (fMRI) data has applications for learned regulation of regional activation, brain state monitoring, and brain-machine interfaces. In each of these contexts, accurate estimation of the BOLD signal in as little time as possible is desired. This is a challenging problem due to the low signal-to-noise ratio of fMRI data. Previous methods for real-time fMRI analysis have either sacrificed the ability to compute moment-to-moment activation changes by averaging several acquisitions into a single activation estimate or have sacrificed accuracy by failing to account for prominent sources of noise in the fMRI signal. Here we present a new method for computing the amount of activation present in a single fMRI acquisition that separates moment-to-moment changes in the fMRI signal intensity attributable to neural sources from those due to noise, resulting in a feedback signal more reflective of neural activation. This method computes an incremental general linear model fit to the fMRI time series, which is used to calculate the expected signal intensity at each new acquisition. The difference between the measured intensity and the expected intensity is scaled by the variance of the estimator in order to transform this residual difference into a statistic. Both synthetic and real data were used to validate this method and compare it to the only other published real-time fMRI method. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Age dependence of rat liver function measurements

    DEFF Research Database (Denmark)

    Fischer-Nielsen, A; Poulsen, H E; Hansen, B A

    1989-01-01

    Changes in the galactose elimination capacity, the capacity of urea-N synthesis and antipyrine clearance were studied in male Wistar rats at the age of 8, 20 and 44 weeks. Further, liver tissue concentrations of microsomal cytochrome P-450, microsomal protein and glutathione were measured. All...... liver function measurements increased from the age of 8 to 44 weeks when expressed in absolute values. In relation to body weight, these function measurements were unchanged or reduced from week 8 to week 20. At week 44, galactose elimination capacity and capacity of urea-N synthesis related to body...... weight were increased by 10% and 36%, respectively, and antipyrine plasma clearance was reduced to 50%. Liver tissue concentrations of microsomal cytochrome P-450 and microsomal protein increased with age when expressed in absolute values, but were unchanged per g liver, i.e., closely related to liver...

  4. Socially bold personality in the real communication and Internet communication: the analysis of representations of people of the different age

    Directory of Open Access Journals (Sweden)

    Pogodina A. V.

    2017-03-01

    Full Text Available The article is concerned with the results of the study, subject of which is the submis- sion of the respondents of the different age groups about the social and bold personality. Required property of the respondents was the presence in the Internet environment and participation in various social networks. They assessed social and bold personal- ity in such contexts of communication, as real communication and Internet communication. Analyses were undertaken to determine the structural and content features of emotional and semantic representations of the phenomenon of the social and bold personality, depending on the context of communication, but also the detection of age-sensitive representations of the young respondents (19—35 years, middle-aged respondents (36-55 years and older respondents (from 56 to 70 years. The concept of the “social and bold personality in real communion” is shown to have a high semantic relevance, strongly marked positive emotional coloration and a similar factor structure for respondents of all age groups. The concept of the “social and bold personality in online communication” with a high semantic significance in the perception of the young respondents moves into a zone of moderate and semantic importance in representations of the middle-aged and older respondents. In representations of the respondents of all age groups, the attractiveness of the "social and bold personality in Internet communication" is less than in comparison with the "social and bold personality in the real communication". The age-specific of the social representations about social and bold personality in the real and virtual communication has been analysed in detail.

  5. Temporal information entropy of the Blood-Oxygenation Level-Dependent signals increases in the activated human primary visual cortex

    Science.gov (United States)

    DiNuzzo, Mauro; Mascali, Daniele; Moraschi, Marta; Bussu, Giorgia; Maraviglia, Bruno; Mangia, Silvia; Giove, Federico

    2017-02-01

    Time-domain analysis of blood-oxygenation level-dependent (BOLD) signals allows the identification of clusters of voxels responding to photic stimulation in primary visual cortex (V1). However, the characterization of information encoding into temporal properties of the BOLD signals of an activated cluster is poorly investigated. Here, we used Shannon entropy to determine spatial and temporal information encoding in the BOLD signal within the most strongly activated area of the human visual cortex during a hemifield photic stimulation. We determined the distribution profile of BOLD signals during epochs at rest and under stimulation within small (19-121 voxels) clusters designed to include only voxels driven by the stimulus as highly and uniformly as possible. We found consistent and significant increases (2-4% on average) in temporal information entropy during activation in contralateral but not ipsilateral V1, which was mirrored by an expected loss of spatial information entropy. These opposite changes coexisted with increases in both spatial and temporal mutual information (i.e. dependence) in contralateral V1. Thus, we showed that the first cortical stage of visual processing is characterized by a specific spatiotemporal rearrangement of intracluster BOLD responses. Our results indicate that while in the space domain BOLD maps may be incapable of capturing the functional specialization of small neuronal populations due to relatively low spatial resolution, some information encoding may still be revealed in the temporal domain by an increase of temporal information entropy.

  6. Negative BOLD in default-mode structures measured with EEG-MREG is larger in temporal than extra-temporal epileptic spikes

    Directory of Open Access Journals (Sweden)

    Julia eJacobs

    2014-11-01

    Full Text Available AbstractIntroduction: EEG-fMRI detects BOLD changes associated with epileptic interictal discharges (IED and can identify epileptogenic networks in epilepsy patients. Besides positive BOLD changes, negative BOLD changes have sometimes been observed in the default-mode network, particularly using group analysis. A new fast fMRI sequence called MREG (Magnetic Resonance Encephalography shows increased sensitivity to detect IED-related BOLD changes compared to the conventional EPI sequence, including frequent occurrence of negative BOLD responses in the DMN. The present study quantifies the concordance between the DMN and negative BOLD related to IEDs of temporal and extra-temporal origin.Methods: Focal epilepsy patients underwent simultaneous EEG-MREG. Areas of overlap were calculated between DMN regions, defined as precuneus, posterior cingulate, bilateral inferior parietal and mesial prefrontal cortices according to a standardized atlas, and significant negative BOLD changes revealed by an event-related analysis based on the timings of IED seen on EEG. Correlation between IED number/lobe of origin and the overlap were calculated. Results: 15 patients were analyzed, some showing IED over more than one location resulting in 30 different IED types. The average overlap between negative BOLD and DMN was significantly larger in temporal (23.7 ± 19.6cm³ than extra-temporal IEDs (7.4 ± 5.1 cm³, p=0.008. There was no significant correlation between the number of IEDs and the overlap between DMN structures and negative BOLD areas.Discussion: MREG results in an increased sensitivity to detect negative BOLD responses related to focal IED in single patients, with responses often occurring in DMN regions. In patients with high overlap with the DMN, this suggests that epileptic IEDs may be associated with a brief decrease in attention and cognitive ability. Interestingly this observation was not dependent on the frequency of IED but more common in IED of

  7. Longitudial observation of dynamic changes in cortical function and white matter fibrous structure of patients with visual pathway lesions by blood oxygenation level dependent-functional magnetic resonance imaging combined with diffusion tensor imaging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Functional magnetic resonance imaging (fMRI) is initially used for visual cortex location.However, the application of fMRI in investigating the development of visual pathway lesions needs to be further observed.OBJECTIVE: This study is to longitudially observe the dynamic changes in cortical function and white matter fibrous structure of patients with visual pathway lesions by blood oxygenation level dependent-functional magnetic resonance imaging (BOLD-fMRI) combined with diffusion tensor imaging (DTI), and to analyze the characteristics of brain function and structural recombination at convalescent period of lesions.DESIGN: Randomized controlled observation.SETTING: Department of Radiology, the General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS: Eight patients with unilateral or bilateral visual disorder caused by visual pathway lesions,who admitted to Department of Radiology, the General Hospital of Nanjing Military Area Command of Chinese PLA from January to September 2006 were involved, and served as experimental subjects. The patients, 6 males and 2 females, were aged 16 - 67 years. They had visual disorder confirmed by clinical examination, i.e. visual pathway lesion, which was further diagnosed by MR or CT. Another 12 subjects generally matching to those patients of experimental group in gender, age and sight, who received health examination in synchronization were involved and served as controls. The subjects had no history of eye diseases. Their binocular visual acuity (or corrected visual acuity) was over 1.0. Both routine examination of ophthalmology and examination of fundus were normal. Informed consents of detected items were obtained from all the subjects.METHODS: Signa Excite HD 1.5T magnetic resonance imaging system with 16 passages (GE Company,USA) and coil with 8 passages were used; brain functional stimulus apparatus (SAV-8800. Meide Company) was used for showing experimental mission. At the early stage

  8. Progression to deep sleep is characterized by changes to BOLD dynamics in sensory cortices.

    Science.gov (United States)

    Davis, Ben; Tagliazucchi, Enzo; Jovicich, Jorge; Laufs, Helmut; Hasson, Uri

    2016-04-15

    Sleep has been shown to subtly disrupt the spatial organization of functional connectivity networks in the brain, but in a way that largely preserves the connectivity within sensory cortices. Here we evaluated the hypothesis that sleep does impact sensory cortices, but through alteration of activity dynamics. We therefore examined the impact of sleep on hemodynamics using a method for quantifying non-random, high frequency signatures of the blood-oxygen-level dependent (BOLD) signal (amplitude variance asymmetry; AVA). We found that sleep was associated with the elimination of these dynamics in a manner that is restricted to auditory, motor and visual cortices. This elimination was concurrent with increased variance of activity in these regions. Functional connectivity between regions showing AVA during wakefulness maintained a relatively consistent hierarchical structure during wakefulness and N1 and N2 sleep, despite a gradual reduction of connectivity strength as sleep progressed. Thus, sleep is related to elimination of high frequency non-random activity signatures in sensory cortices that are robust during wakefulness. The elimination of these AVA signatures conjointly with preservation of the structure of functional connectivity patterns may be linked to the need to suppress sensory inputs during sleep while still maintaining the capacity to react quickly to complex multimodal inputs.

  9. Research progress of BOLD-fMRI in minimal hepatic encephalopathy%轻微型肝性脑病BOLD-fMRI研究进展

    Institute of Scientific and Technical Information of China (English)

    周治明; 赵建农

    2013-01-01

    轻微型肝性脑病作为肝性脑病的早期阶段,临床症状不明显,表现缺乏特异性,目前诊断困难.近年来血氧水平依赖功能磁共振成像(BOLD-fMRI)新技术逐渐运用于肝性脑病的研究,通过探测不同状态下各脑功能区神经元的活动,不仅可以定位异常活动脑功能区,还可以发现脑功能区连接作用改变.尤其是BOLD-fMRI联合其他MR技术的应用,对于轻微型肝性脑病的病理基础和发病机制的研究,实现了从微观到宏观、从结构到功能的全面探讨,能对其早期诊断治疗提供更有价值的依据.%The minimal hepatic encephalopathy is the early stage of hepatic eneephalopathy.It has few apparent clinical symptoms and specific manifestations,and is difficult to diagnose.In the recent years,BOLD-fMRI has been used to study hepatic encephalopathy gradually.Through detection of the brain neuron activities in different states,it can not only locate the abnormal activity of brain functional areas,but also can find the changes of brain functional connectivity.BOLD-fMRI combining with other MR technologies can explore the pathology and pathogenesis of minimal hepatic encephalopathy from micro to macro and from structure to function.It is of great significance to diagnose and treat this disease.

  10. [Cerebral vasoreactivity and functional response in stroke: a study with functional MR].

    Science.gov (United States)

    Piñeiro, R; Matthews, P M

    Lacunar infarcts are usually associated with anatomical and possibly functional changes in the walls of small blood vessels (penetrating arteries). The functional effect varies and is accompanied by cerebral adaptive/reorganizational changes. BOLD contrast, originated in the microvasculature (especially with ultra high magnetic fields) depends, in the end, on haemodynamic changes and is useful for exploring patterns of cerebral activation using fMR. To compare the temporal behaviour of the BOLD signal and the distribution of activation between a group of patients with no functional sequelae following a stroke and a control group, by using fMR at 3T. The stroke group showed a smaller number of voxels activated, but this was not statistically significant. The patterns of activation, size of the sensor motor area (SM or ASM) and index of laterality were similar in both groups. In SM the BOLD response was 85% slower (pstroke group, which were insufficient to produce reorganizational/adaptive changes or by the great variety of responses. The temporal response of the BOLD response was different in the stroke group, probably as a result of the alteration in the haemodynamic response in relation to the underlying processes which damage the functional properties of the vascular wall. This difference in the BOLD response should be interpreted with caution, and borne in mind when interpreting activation in persons with vascular pathology. Further studies are necessary for better understanding of its significance.

  11. BALANCE FUNCTIONS : Multiplicity and transverse momentum dependence of the charge dependent correlations in ALICE

    NARCIS (Netherlands)

    Rodriguez Manso, A.

    2015-01-01

    The measurement of charge-dependent correlations between positively and negatively charged particles as a function of pseudorapidity and azimuthal angle, known as the \\emph{balance functions}, provide insight to the properties of matter created in high-energy collisions. The balance functions are ar

  12. CBF/CMRO2 coupling measured with calibrated BOLD fMRI: sources of bias.

    Science.gov (United States)

    Leontiev, Oleg; Dubowitz, David J; Buxton, Richard B

    2007-07-15

    The coupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during brain activation can be characterized by an empirical index n, the ratio of fractional CBF changes to fractional CMRO2 changes. Measurements of n have yielded varying results, and it is not known if the observed variability is due to measurement techniques or underlying physiology. The calibrated BOLD approach using hypercapnia offers a promising tool for assessing changes in CBF/CMRO2 coupling in health and disease, but potential systematic errors have not yet been characterized. The goal of this study was to experimentally evaluate the magnitude of bias in the estimate of n that arises from the way in which a region of interest (ROI) is chosen for averaging data and to relate this potential bias to a more general theoretical consideration of the sources of systematic errors in the calibrated BOLD experiment. Results were compared for different approaches for defining an ROI within the visual cortex based on: (1) retinotopically defined V1; (2) a functional CBF localizer; and (3) a functional BOLD localizer. Data in V1 yielded a significantly lower estimate of n (2.45) compared to either CBF (n=3.45) or BOLD (n=3.18) localizers. Different statistical thresholds produced biases in estimates of n with values ranging from 3.01 (low threshold) to 4.37 (high threshold). Possible sources of the observed biases are discussed. These results underscore the importance of a critical evaluation of the methodology, and the adoption of consistent standards for applying the calibrated BOLD approach to the evaluation of CBF/CMRO2 coupling.

  13. CBF/CMRO2 Coupling Measured with Calibrated-BOLD fMRI: Sources of Bias

    Science.gov (United States)

    Leontiev, Oleg; Dubowitz, David J.; Buxton, Richard B.

    2007-01-01

    The coupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during brain activation can be characterized by an empirical index n, the ratio of fractional CBF changes to fractional CMRO2 changes. Measurements of n have yielded varying results, and it is not known if the observed variability is due to measurement techniques or underlying physiology. The calibrated BOLD approach using hypercapnia offers a promising tool for assessing changes in CBF/CMRO2 coupling in health and disease, but potential systematic errors have not yet been characterized. The goal of this study was to experimentally evaluate the magnitude of bias in the estimate of n that arises from the way in which a region of interest (ROI) is chosen for averaging data, and to relate this potential bias to a more general theoretical consideration of the sources of systematic errors in the calibrated BOLD experiment. Results were compared for different approaches for defining an ROI within the visual cortex based on: 1) retinotopically-defined V1; 2) a functional CBF localizer; and 3) a functional BOLD localizer. Data in V1 yielded a significantly lower estimate of n (2.45) compared to either CBF (n = 3.45) or BOLD (n = 3.18) localizers. Different statistical thresholds produced biases in estimates of n with values ranging from 3.01 (low threshold) to 4.37 (high threshold). Possible sources of the observed biases are discussed. These results underscore the importance of a critical evaluation of the methodology, and the adoption of consistent standards for applying the calibrated BOLD approach to the evaluation of CBF/CMRO2 coupling. PMID:17524665

  14. Boldness predicts social status in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    S Josefin Dahlbom

    Full Text Available This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1 an unfamiliar barren environment with no shelter (open field, (2 the same environment when a roof was introduced as a shelter, and (3 when the roof was removed and an unfamiliar object (Lego® brick was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance.

  15. Boldness predicts social status in zebrafish (Danio rerio).

    Science.gov (United States)

    Dahlbom, S Josefin; Lagman, David; Lundstedt-Enkel, Katrin; Sundström, L Fredrik; Winberg, Svante

    2011-01-01

    This study explored if boldness could be used to predict social status. First, boldness was assessed by monitoring individual zebrafish behaviour in (1) an unfamiliar barren environment with no shelter (open field), (2) the same environment when a roof was introduced as a shelter, and (3) when the roof was removed and an unfamiliar object (Lego® brick) was introduced. Next, after a resting period of minimum one week, social status of the fish was determined in a dyadic contest and dominant/subordinate individuals were determined as the winner/loser of two consecutive contests. Multivariate data analyses showed that males were bolder than females and that the behaviours expressed by the fish during the boldness tests could be used to predict which fish would later become dominant and subordinate in the ensuing dyadic contest. We conclude that bold behaviour is positively correlated to dominance in zebrafish and that boldness is not solely a consequence of social dominance.

  16. Generalization of Dielectric-Dependent Hybrid Functionals to Finite Systems

    Science.gov (United States)

    Brawand, Nicholas P.; Vörös, Márton; Govoni, Marco; Galli, Giulia

    2016-10-01

    The accurate prediction of electronic and optical properties of molecules and solids is a persistent challenge for methods based on density functional theory. We propose a generalization of dielectric-dependent hybrid functionals to finite systems where the definition of the mixing fraction of exact and semilocal exchange is physically motivated, nonempirical, and system dependent. The proposed functional yields ionization potentials, and fundamental and optical gaps of many, diverse molecular systems in excellent agreement with experiments, including organic and inorganic molecules and semiconducting nanocrystals. We further demonstrate that this hybrid functional gives the correct alignment between energy levels of the exemplary TTF-TCNQ donor-acceptor system.

  17. Work function of elemental metals and its face dependence ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics. Journal Home ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Work function of elemental metals and its face dependence: Stabilized Jellium approach.

  18. State dependent matrices and balanced energy functions for nonlinear systems

    NARCIS (Netherlands)

    Scherpen, Jacquelien M.A.; Gray, W. Steven

    2000-01-01

    The nonlinear extension of the balancing procedure requires the case of state dependent quadratic forms for the energy functions, i.e., the nonlinear extensions of the linear Gramians are state dependent matrices. These extensions have some interesting ambiguities that do not occur in the linear cas

  19. Correlative BOLD MR imaging of stages of synovitis in a rabbit model of antigen-induced arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Doria, Andrea S. [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); University of Toronto, Department of Medical Imaging, Toronto (Canada); Crawley, Adrian [University of Toronto, Department of Medical Imaging, Toronto (Canada); Toronto Western Hospital, Department of Medical Imaging, Toronto (Canada); Gahunia, Harpal; Rayner, Tammy; Tassos, Vivian; Zhong, Anguo [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Moineddin, Rahim [Family and Community Medicine, Department of Public Health, Toronto (Canada); Pritzker, Kenneth; Mendes, Maria; Jong, Roland [Mount Sinai Hospital, Department of Pathology and Laboratory Medicine, Toronto (Canada); Salter, Robert B. [Hospital for Sick Children, Department of Orthopedic Surgery, Toronto (Canada)

    2012-01-15

    Because of the ability of blood-oxygen-level-dependent (BOLD) MRI to assess blood oxygenation changes within the microvasculature, this technique holds potential for evaluating early perisynovial changes in inflammatory arthritis. To evaluate the feasibility of BOLD MRI to detect interval perisynovial changes in knees of rabbits with inflammatory arthritis. Rabbit knees were injected with albumin (n=9) or saline (n=6) intra-articularly, or were not injected (control knees, n=9). Except for two rabbits (albumin-injected, n=2 knees; saline-injected, n=2 knees) that unexpectedly died on days 7 and 21 of the experiment, respectively, all other animals were scanned with BOLD MRI on days 0, 1, 7, 14, 21 and 28 after induction of arthritis. T2*-weighted gradient-echo MRI was performed during alternate 30 s of normoxia/hyperoxia. BOLD MRI measurements were compared with clinical, laboratory and histological markers. Percentage of activated voxels was significantly greater in albumin-injected knees than in contralateral saline-injected knees (P=0.04). For albumin-injected knees (P < 0.05) and among different categories of knees (P=0.009), the percentage of activated BOLD voxels varied over time. A quadratic curve for on-and-off BOLD difference was delineated for albumin- and saline-injected knees over time (albumin-injected, P=0.047; saline-injected, P=0.009). A trend toward a significant difference in synovial histological scores between albumin-injected and saline-injected knees was noted only for acute scores (P=0.07). As a proof of concept, BOLD MRI can depict perisynovial changes during progression of experimental arthritis. (orig.)

  20. Altered auditory BOLD response to conspecific birdsong in zebra finches with stuttered syllables.

    Directory of Open Access Journals (Sweden)

    Henning U Voss

    Full Text Available How well a songbird learns a song appears to depend on the formation of a robust auditory template of its tutor's song. Using functional magnetic resonance neuroimaging we examine auditory responses in two groups of zebra finches that differ in the type of song they sing after being tutored by birds producing stuttering-like syllable repetitions in their songs. We find that birds that learn to produce the stuttered syntax show attenuated blood oxygenation level-dependent (BOLD responses to tutor's song, and more pronounced responses to conspecific song primarily in the auditory area field L of the avian forebrain, when compared to birds that produce normal song. These findings are consistent with the presence of a sensory song template critical for song learning in auditory areas of the zebra finch forebrain. In addition, they suggest a relationship between an altered response related to familiarity and/or saliency of song stimuli and the production of variant songs with stuttered syllables.

  1. Micro- and macroturbulence predictions from CO5BOLD 3D stellar atmospheres

    CERN Document Server

    Steffen, M; Ludwig, H -G

    2013-01-01

    We present an overview of the current status of our efforts to derive the microturbulence and macroturbulence parameters (ximic and ximac) from the CIFIST grid of CO5BOLD 3D model atmospheres as a function of the basic stellar parameters Teff, log g, and [M/H]. The latest results for the Sun and Procyon show that the derived microturbulence parameter depends significantly on the numerical resolution of the underlying 3D simulation, confirming that `low-resolution' models tend to underestimate the true value of ximic. Extending the investigation to twelve further simulations with different Teff, log g, and [M/H], we obtain a first impression of the predicted trend of ximic over the Hertzsprung-Russell diagram: in agreement with empirical evidence, microturbulence increases towards higher effective temperature and lower gravity. The metallicity dependence of ximic must be interpreted with care, since it also reflects the deviation between the 1D and 3D photospheric temperature stratifications that increases sys...

  2. From networks of protein interactions to networks of functional dependencies

    Directory of Open Access Journals (Sweden)

    Luciani Davide

    2012-05-01

    Full Text Available Abstract Background As protein-protein interactions connect proteins that participate in either the same or different functions, networks of interacting and functionally annotated proteins can be converted into process graphs of inter-dependent function nodes (each node corresponding to interacting proteins with the same functional annotation. However, as proteins have multiple annotations, the process graph is non-redundant, if only proteins participating directly in a given function are included in the related function node. Results Reasoning that topological features (e.g., clusters of highly inter-connected proteins might help approaching structured and non-redundant understanding of molecular function, an algorithm was developed that prioritizes inclusion of proteins into the function nodes that best overlap protein clusters. Specifically, the algorithm identifies function nodes (and their mutual relations, based on the topological analysis of a protein interaction network, which can be related to various biological domains, such as cellular components (e.g., peroxisome and cellular bud or biological processes (e.g., cell budding of the model organism S. cerevisiae. Conclusions The method we have described allows converting a protein interaction network into a non-redundant process graph of inter-dependent function nodes. The examples we have described show that the resulting graph allows researchers to formulate testable hypotheses about dependencies among functions and the underlying mechanisms.

  3. Executive Functions in Tobacco Dependence: Importance of Inhibitory Capacities.

    Directory of Open Access Journals (Sweden)

    Valentin Flaudias

    Full Text Available Executive functions are linked to tobacco dependence and craving. In this cross-sectional study, we assessed the impact of three executive functions: updating, inhibition and shifting processes on tobacco craving and dependence.134 tobacco consumers were included in this study: 81 moderately (Fagerström score 7. Dependence was assessed with the Fagerström test and craving with the tobacco craving questionnaire (TCQ 12. We used the Stroop test and the Hayling test to measure inhibition, the Trail Making Test to measure shifting processes and the n-back test to measure updating processes. A multivariate logistic model was used to assess which variables explained best the level of nicotine dependence.Inhibition (p = 0.002 and updating (p = 0.014 processes, but not shifting processes, were associated with higher tobacco dependence. Inhibition capacity had a significant effect on the nicotine dependence level independently of age, education, time since last cigarette, intellectual quotient, craving, updating and shifting process.Nicotine dependence level seems better explained by inhibition capacities than by craving and updating effects. The capacity to inhibit our behaviours is a good predictor of the severity of tobacco dependence. Our results suggest a prefrontal cortex dysfunction affecting the inhibitory capacities of heavy tobacco dependent smokers. Further studies are needed to investigate the application of these findings in the treatment of tobacco dependence.

  4. Sensitive Dependence of Mental Function on Prefrontal Cortex

    OpenAIRE

    Alen J Salerian

    2015-01-01

    This study offers evidence to suggest that both normalcy and psychiatric illness are sensitively dependent upon prefrontal cortex function. In general, the emergence of psychiatric symptoms coincide with diminished influence of prefrontal cortex function. The mediating influence of prefrontal cortex may be independent of molecular and regional brain dysfunctions contributory to psychiatric illness.

  5. Increased BOLD signal in the fusiform gyrus during implicit emotion processing in anorexia nervosa.

    Science.gov (United States)

    Fonville, Leon; Giampietro, Vincent; Surguladze, Simon; Williams, Steven; Tchanturia, Kate

    2014-01-01

    The behavioural literature in anorexia nervosa (AN) has suggested impairments in psychosocial functioning and studies using facial expression processing tasks (FEPT) have reported poorer recognition and slower identification of emotions. Functional magnetic resonance imaging (fMRI) was used alongside a FEPT, depicting neutral, mildly happy and happy faces, to examine the neural correlates of implicit emotion processing in AN. Participants were instructed to specify the gender of the faces. Levels of depression, anxiety, obsessive-compulsive symptoms and eating disorder behaviour were obtained and principal component analysis (PCA) was performed to acquire uncorrelated variables. fMRI analysis revealed a greater blood-oxygenation level dependent (BOLD) response in AN in the right fusiform gyrus to all facial expressions. This response showed a linear increase with the happiness of the facial expression and was found to be stronger in those not taking medication. PCA analysis revealed a single component indicating a greater level of general clinical symptoms. Neuroimaging findings would suggest that alterations in implicit emotion processing in AN occur during early perceptual processing of social signals and illustrate greater engagement on the FEPT. The lack of separate components using PCA suggests that the questionnaires used might not be suited as predictive measures.

  6. Survivability Specification Framework for Dependability- Functionality Codesign of ERTS

    Institute of Scientific and Technical Information of China (English)

    JIN Yong-xian

    2005-01-01

    In order to maintain the dependability of system and meet the functional need of users desire, this paper introduces a survivability mechanism into embedded real-time system, and proposes a general comprehensive approach based on a rigorous definition of survivability. This approach permits a trade-off between the function and the cost of system development. It emphasizes the ultradependable implementation of crucial function without demanding that of entire system.

  7. Parametric dependence of ocean wave-radar modulation transfer functions

    Science.gov (United States)

    Plant, W. J.; Keller, W. C.; Cross, A.

    1983-01-01

    Microwave techniques at X and L band were used to determine the dependence of ocean-wave radar modulation transfer functions (MTFs) on various environmental and radar parameters during the Marine Remote Sensing experiment of 1979 (MARSEN 79). These MIF are presented, as are coherence functions between the AM and FM parts of the backscattered microwave signal. It is shown that they both depend on several of these parameters. Besides confirming many of the properties of transfer functions reported by previous authors, indications are found that MTFs decrease with increasing angle between wave propagation and antenna-look directions but are essentially independent of small changes in air-sea temperature difference. However, coherence functions are much smaller when the antennas are pointed perpendicular to long waves. It is found that X band transfer functions measured with horizontally polarized microwave radiation have larger magnitudes than those obtained by using vertical polarization.

  8. Energy Dependence of String Fragmentation Function and φ Meson Production

    Institute of Scientific and Technical Information of China (English)

    SA Ben-Hao; CAI Xu; Chinorat Kobdaj; WANG Zhong-Qi; YAN Yu-Peng; ZHOU Dai-Mei

    2004-01-01

    The φ meson productions in A u+A u and/or P b+Pb collisions at AGS, SPS, RHIC, and LHC energies have been studied systematically with a hadron and string cascade model LUCIAE.After considering the energy dependence of the model parameter α in string fragmentation function and adjusting it to the experimental data of charged multiplicity to a certain extent, the model predictions for φ meson yield, rapidity, and transverse mass distributions are compatible with the experimental data at AGS, SPS and RHIC energies. A calculation for Pb+Pb collisions at LHC energy is given as well. The obtained fractional variable in string fragmentation function shows a saturation in energy dependence. It is discussed that the saturation of fractional variable in string fragmentation function might be a qualitative representation of the energy dependence of nuclear transparency.

  9. Exact response functions within the time-dependent Gutzwiller approach

    Science.gov (United States)

    Bünemann, J.; Wasner, S.; Oelsen, E. v.; Seibold, G.

    2015-02-01

    We investigate the applicability of the two existing versions of a time-dependent Gutzwiller approach (TDGA) beyond the frequently used limit of infinite spatial dimensions. To this end, we study the two-particle response functions of a two-site Hubbard model where we can compare the exact results and those derived from the TDGA. It turns out that only the more recently introduced version of the TDGA can be combined with a diagrammatic approach which allows for the evaluation of Gutzwiller wave functions in finite dimensions. For this TDGA method, we derive the time-dependent Lagrangian for general single-band Hubbard models.

  10. The transverse momentum dependent distribution functions in the bag model

    Energy Technology Data Exchange (ETDEWEB)

    Avakian, Harut; Efremov, Anatoly; Schweitzer, Peter; Yuan, Feng

    2010-01-29

    Leading and subleading twist transverse momentum dependent parton distribution functions (TMDs) are studied in a quark model framework provided by the bag model. A complete set of relations among different TMDs is derived, and the question is discussed how model-(in)dependent such relations are. A connection of the pretzelosity distribution and quark orbital angular momentum is derived. Numerical results are presented, and applications for phenomenology discussed. In particular, it is shown that in the valence-x region the bag model supports a Gaussian Ansatz for the transverse momentum dependence of TMDs.

  11. Transverse momentum dependent distribution functions in the bag model

    Energy Technology Data Exchange (ETDEWEB)

    Avakian, Harut A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Efremov, A. V. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Schweitzer, P. [Univ. of Connecticut, Storrs, CT (United States); Yuan, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). RIKEN Research Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2010-04-01

    Leading and subleading twist transverse momentum dependent parton distribution functions (TMDs) are studied in a quark model framework provided by the bag model. A complete set of relations among different TMDs is derived, and the question is discussed how model-(in)dependent such relations are. A connection of the pretzelosity distribution and quark orbital angular momentum is derived. Numerical results are presented, and applications for phenomenology discussed. In particular, it is shown that in the valence-x region the bag model supports a Gaussian Ansatz for the transverse momentum dependence of TMDs.

  12. Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1.

    Science.gov (United States)

    Polimeni, Jonathan R; Fischl, Bruce; Greve, Douglas N; Wald, Lawrence L

    2010-10-01

    With sufficient image encoding, high-resolution fMRI studies are limited by the biological point-spread of the hemodynamic signal. The extent of this spread is determined by the local vascular distribution and by the spatial specificity of blood flow regulation, as well as by measurement parameters that (i) alter the relative sensitivity of the acquisition to activation-induced hemodynamic changes and (ii) determine the image contrast as a function of vessel size. In particular, large draining vessels on the cortical surface are a major contributor to both the BOLD signal change and to the spatial bias of the BOLD activation away from the site of neuronal activity. In this work, we introduce a laminar surface-based analysis method and study the relationship between spatial localization and activation strength as a function of laminar depth by acquiring 1mm isotropic, single-shot EPI at 7 T and sampling the BOLD signal exclusively from the superficial, middle, or deep cortical laminae. We show that highly-accelerated EPI can limit image distortions to the point where a boundary-based registration algorithm accurately aligns the EPI data to the surface reconstruction. The spatial spread of the BOLD response tangential to the cortical surface was analyzed as a function of cortical depth using our surface-based analysis. Although sampling near the pial surface provided the highest signal strength, it also introduced the most spatial error. Thus, avoiding surface laminae improved spatial localization by about 40% at a cost of 36% in z-statistic, implying that optimal spatial resolution in functional imaging of the cortex can be achieved using anatomically-informed spatial sampling to avoid large pial vessels.

  13. Identification of non-linear models of neural activity in bold fmri

    DEFF Research Database (Denmark)

    Jacobsen, Daniel Jakup; Madsen, Kristoffer Hougaard; Hansen, Lars Kai

    2006-01-01

    Non-linear hemodynamic models express the BOLD signal as a nonlinear, parametric functional of the temporal sequence of local neural activity. Several models have been proposed for this neural activity. We identify one such parametric model by estimating the distribution of its parameters. These ....... These distributions are themselves stochastic, therefore we estimate their variance by epoch based leave-one-out cross validation, using a Metropolis-Hastings algorithm for sampling of the posterior parameter distribution....

  14. [Susceptibility weighted magnetic resonance sequences "SWAN, SWI and VenoBOLD": technical aspects and clinical applications].

    Science.gov (United States)

    Hodel, J; Rodallec, M; Gerber, S; Blanc, R; Maraval, A; Caron, S; Tyvaert, L; Zuber, M; Zins, M

    2012-05-01

    Susceptibility-weighted MR sequences, T2 star weighted angiography (SWAN, General Electric), Susceptibility weighted imaging (SWI, Siemens) and venous blood oxygen level dependant (VenoBOLD, Philips) are 3D spoiled gradient-echo sequence that provide a high sensitivity for the detection of blood degradation products, calcifications, and iron deposits. For all these sequences, an appropriate echo time allows for the visualization of susceptibility differences between adjacent tissues. However, each of these sequences presents a specific technical background. The purpose of this review was to describe 1/the technical aspects of SWAN, VenoBOLD and SWI sequences, 2/the differences observed in term of contrast within the images, 3/the key imaging findings in neuroimaging using susceptibility-weighted MR sequences.

  15. Time-dependent density functional theory: Causality and other problems

    Energy Technology Data Exchange (ETDEWEB)

    Ruggenthaler, Michael; Bauer, Dieter [Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany)

    2007-07-01

    Time-dependent density functional theory (TDDFT) is a reformulation of the time dependent many-body problem in quantum mechanics which is capable of reducing the computational cost to calculate, e.g., strongly driven many-electron systems enormously. Recent developments were able to overcome fundamental problems associated with ionization processes. Still vital issues have to be clarified. Besides the construction of the underlying functionals we investigate the causality problem of TDDFT by general considerations and by studying a exactly solvable system of two correlated electrons in an intense laser-pulse. For the latter system, the two alternative approaches to the construction of the action functional or a constrained functional derivative by van Leeuwen and Gal, respectively, are explored.

  16. Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation.

    Science.gov (United States)

    Ances, Beau M; Liang, Christine L; Leontiev, Oleg; Perthen, Joanna E; Fleisher, Adam S; Lansing, Amy E; Buxton, Richard B

    2009-04-01

    Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO(2)) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO(2)) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO(2). For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 +/- 0.07%) compared to the younger group (0.95 +/- 0.14%), despite the finding that the fractional CBF and CMRO(2) changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 +/- 0.4%) than younger subjects (6.5 +/- 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 +/- 4.8 mL/100 mL/min) compared to younger (59.6 +/- 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post-stimulus undershoot with no significant difference in this magnitude. However, the post-undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone.

  17. Significance tests for functional data with complex dependence structure

    KAUST Repository

    Staicu, Ana-Maria

    2015-01-01

    We propose an L (2)-norm based global testing procedure for the null hypothesis that multiple group mean functions are equal, for functional data with complex dependence structure. Specifically, we consider the setting of functional data with a multilevel structure of the form groups-clusters or subjects-units, where the unit-level profiles are spatially correlated within the cluster, and the cluster-level data are independent. Orthogonal series expansions are used to approximate the group mean functions and the test statistic is estimated using the basis coefficients. The asymptotic null distribution of the test statistic is developed, under mild regularity conditions. To our knowledge this is the first work that studies hypothesis testing, when data have such complex multilevel functional and spatial structure. Two small-sample alternatives, including a novel block bootstrap for functional data, are proposed, and their performance is examined in simulation studies. The paper concludes with an illustration of a motivating experiment.

  18. Effective Maxwell Equations from Time-dependent Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    Weinan E; Jianfeng LU; Xu YANG

    2011-01-01

    The behavior of interacting electrons in a perfect crystal under macroscopic external electric and magnetic fields is studied. Effective Maxwell equations for the macroscopic electric and magnetic fields are derived starting from time-dependent density functional theory. Effective permittivity and permeability coefficients are obtained.

  19. Bias-corrected estimation of stable tail dependence function

    DEFF Research Database (Denmark)

    Beirlant, Jan; Escobar-Bach, Mikael; Goegebeur, Yuri

    2016-01-01

    We consider the estimation of the stable tail dependence function. We propose a bias-corrected estimator and we establish its asymptotic behaviour under suitable assumptions. The finite sample performance of the proposed estimator is evaluated by means of an extensive simulation study where...

  20. Bias-corrected estimation of stable tail dependence function

    DEFF Research Database (Denmark)

    Beirlant, Jan; Escobar-Bach, Mikael; Goegebeur, Yuri

    2016-01-01

    We consider the estimation of the stable tail dependence function. We propose a bias-corrected estimator and we establish its asymptotic behaviour under suitable assumptions. The finite sample performance of the proposed estimator is evaluated by means of an extensive simulation study where...

  1. Cocaine dependence and thalamic functional connectivity: a multivariate pattern analysis

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    2016-01-01

    Full Text Available Cocaine dependence is associated with deficits in cognitive control. Previous studies demonstrated that chronic cocaine use affects the activity and functional connectivity of the thalamus, a subcortical structure critical for cognitive functioning. However, the thalamus contains nuclei heterogeneous in functions, and it is not known how thalamic subregions contribute to cognitive dysfunctions in cocaine dependence. To address this issue, we used multivariate pattern analysis (MVPA to examine how functional connectivity of the thalamus distinguishes 100 cocaine-dependent participants (CD from 100 demographically matched healthy control individuals (HC. We characterized six task-related networks with independent component analysis of fMRI data of a stop signal task and employed MVPA to distinguish CD from HC on the basis of voxel-wise thalamic connectivity to the six independent components. In an unbiased model of distinct training and testing data, the analysis correctly classified 72% of subjects with leave-one-out cross-validation (p < 0.001, superior to comparison brain regions with similar voxel counts (p < 0.004, two-sample t test. Thalamic voxels that form the basis of classification aggregate in distinct subclusters, suggesting that connectivities of thalamic subnuclei distinguish CD from HC. Further, linear regressions provided suggestive evidence for a correlation of the thalamic connectivities with clinical variables and performance measures on the stop signal task. Together, these findings support thalamic circuit dysfunction in cognitive control as an important neural marker of cocaine dependence.

  2. Pay-as-you-go data integration using functional dependencies

    NARCIS (Netherlands)

    Ayat, N.; Afsarmanesh, H.; Akbarinia, R.; Valduriez, P.

    2012-01-01

    Setting up a full data integration system for many application contexts, e.g. web and scientific data management, requires significant human effort which prevents it from being really scalable. In this paper, we propose IFD (Integration based on Functional Dependencies), a pay-as-you-go data integra

  3. Multicomponent density-functional theory for time-dependent systems

    NARCIS (Netherlands)

    Butriy, O.; Ebadi, H.; de Boeij, P. L.; van Leeuwen, R.; Gross, E. K. U.

    2007-01-01

    We derive the basic formalism of density functional theory for time-dependent electron-nuclear systems. The basic variables of this theory are the electron density in body-fixed frame coordinates and the diagonal of the nuclear N-body density matrix. The body-fixed frame transformation is carried ou

  4. Linear-response thermal time-dependent density functional theory

    CERN Document Server

    Pribram-Jones, Aurora; Burke, Kieron

    2015-01-01

    The van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. This produces a natural method for generating new thermal exchange-correlation (XC) approximations.

  5. Perspective: Fundamental aspects of time-dependent density functional theory

    Science.gov (United States)

    Maitra, Neepa T.

    2016-06-01

    In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.

  6. Density-functional perturbation theory goes time-dependent

    OpenAIRE

    Gebauer, Ralph; Rocca, Dario; Baroni, Stefano

    2009-01-01

    The scope of time-dependent density-functional theory (TDDFT) is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most). In the static regime, density-functional perturbation theory (DFPT) allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix e...

  7. Identifying microproduction inaccuracies with Knudsen number depending correction functions

    Science.gov (United States)

    Groll, R.; Gomez, J.

    2016-11-01

    The pressure drop of a transonic Laval nozzle depends on the rarefaction of the gas flow. So relative deviations of the numerical data are a measure for describing the influence of the rarefaction of the gas flow. This deviation is predicted by using a second-order modeling approximation for the Knudsen number depending correction function in the slip-flow regime. The production accuracy is able to be read in these deviation functions because of a deviation from the analytical solutions of the slip-flow influence. With the usage of experimental data the correction function can be calibrated through elimination of the error resulting from the accuracy. The investigated case is a micronozzle flow with Knudsen numbers of slip-flow regime near the nozzle throat in vacuum environment. Compared gases are neon, argon, krypton and xenon.

  8. Functional-dependent and size-dependent uptake of nanoparticles in PC12

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, N; Matsui, Y; Nakayama, A; Yoneda, M [Department of Environment Engineering, Graduate School of Engineering, Kyoto University, 4 Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 6158540 (Japan); Tsuda, A, E-mail: sakai@risk.env.kyoto-u.ac.jp [Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115 (United States)

    2011-07-06

    It is suggested that the uptake of nanoparticles is changed by the particle size or the surface modification. In this study, we quantified the uptake of nanoparticles in PC12 cells exposed Quantum Dots with different surface modification or fluorescent polystyrene particles with different particle size. The PC12 cells were exposed three types of the Quantum Dots (carboxyl base-functionalized, amino base-functionalized or non-base-functionalized) or three types of the fluorescent particles (22 nm, 100 nm or 1000 nm) for 3 hours. The uptake of the nanoparticles was quantified with a spectrofluorophotometer. The carboxyl base-functionalized Quantum Dots were considerably taken up by the cells than the non-base-functionalized Quantum Dots. Conversely, the amino base-functionalized Quantum Dots were taken up by the cells less frequently than the non-base-functionalized Quantum Dots. The particle number of the 22 nm-nanoparticles taken up by the cells was about 53 times higher than the 100 nm-particles. However, the particle weight of the 100 nm-particles taken up by the cells was higher than that of the 22 nm-nanoparticles. The 1000 nm-particles were adhered to the cell membrane, but they were little taken up by the cells. We concluded that nanoparticles can be taken up nerve cells in functional-dependent and size-dependent manners.

  9. Exploration of a modified density dependence in the Skyrme functional

    CERN Document Server

    Erler, J; Reinhard, P -G

    2010-01-01

    A variant of the basic Skyrme-Hartree-Fock (SHF) functional is considered dealing with a new form of density dependence. It employs only integer powers and thus will allow a more sound basis for projection schemes (particle number, angular momentum). We optimize the new functional with exactly the same adjustment strategy as used in an earlier study with a standard Skyrme functional. This allows direct comparisons of the performance of the new functional relative to the standard one. We discuss various observables: bulk properties of finite nuclei, nuclear matter, giant resonances, super-heavy elements, and energy systematics. The new functional performs at least as well as the standard one, but offers a wider range of applicability (e.g. for projection) and more flexibility in the regime of high densities.

  10. Repetition suppression: a means to index neural representations using BOLD?

    Science.gov (United States)

    Behrens, Timothy E. J.

    2016-01-01

    Understanding how the human brain gives rise to complex cognitive processes remains one of the biggest challenges of contemporary neuroscience. While invasive recording in animal models can provide insight into neural processes that are conserved across species, our understanding of cognition more broadly relies upon investigation of the human brain itself. There is therefore an imperative to establish non-invasive tools that allow human brain activity to be measured at high spatial and temporal resolution. In recent years, various attempts have been made to refine the coarse signal available in functional magnetic resonance imaging (fMRI), providing a means to investigate neural activity at the meso-scale, i.e. at the level of neural populations. The most widely used techniques include repetition suppression and multivariate pattern analysis. Human neuroscience can now use these techniques to investigate how representations are encoded across neural populations and transformed by relevant computations. Here, we review the physiological basis, applications and limitations of fMRI repetition suppression with a brief comparison to multivariate techniques. By doing so, we show how fMRI repetition suppression holds promise as a tool to reveal complex neural mechanisms that underlie human cognitive function. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574308

  11. <bold>On The Spectrum: Autistics, Functioning, and Carebold>

    OpenAIRE

    Matthew J. Moore

    2014-01-01

    On the Spectrum explores the recent flourishing of autistic self-advocates as social actors, stakeholders, and co-creators of autism worlds. In the contentious and contradictory discourses surrounding autism, it considers ways that all participants - medical practitioners, researchers, educators, parents, and autistics - are interested actors. To understand how and why autism worlds both overlap and diverge, contemporary concerns are examined in terms of inherited legacies from earlier hist...

  12. Direction-dependent learning approach for radial basis function networks.

    Science.gov (United States)

    Singla, Puneet; Subbarao, Kamesh; Junkins, John L

    2007-01-01

    Direction-dependent scaling, shaping, and rotation of Gaussian basis functions are introduced for maximal trend sensing with minimal parameter representations for input output approximation. It is shown that shaping and rotation of the radial basis functions helps in reducing the total number of function units required to approximate any given input-output data, while improving accuracy. Several alternate formulations that enforce minimal parameterization of the most general radial basis functions are presented. A novel "directed graph" based algorithm is introduced to facilitate intelligent direction based learning and adaptation of the parameters appearing in the radial basis function network. Further, a parameter estimation algorithm is incorporated to establish starting estimates for the model parameters using multiple windows of the input-output data. The efficacy of direction-dependent shaping and rotation in function approximation is evaluated by modifying the minimal resource allocating network and considering different test examples. The examples are drawn from recent literature to benchmark the new algorithm versus existing methods.

  13. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation.

    Directory of Open Access Journals (Sweden)

    Anders Hougaard

    Full Text Available Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks.

  14. Fluoxetine exposure impacts boldness in female Siamese fighting fish, Betta splendens.

    Science.gov (United States)

    Dzieweczynski, Teresa L; Kane, Jessica L; Campbell, Brennah A; Lavin, Lindsey E

    2016-01-01

    The present study examined the effects of the selective serotonin reuptake inhibitor, fluoxetine, on the behavior of female Siamese fighting fish, Betta splendens, in three different boldness assays (Empty Tank, Novel Environment, Social Tendency). When females were unexposed to fluoxetine, boldness was consistent within a context and correlated across assays. Fluoxetine exposure affected behavior within and among individuals on multiple levels. Exposure reduced overall boldness levels, made females behave in a less consistent manner, and significantly reduced correlations over time and across contexts. Fluoxetine exerted its effects on female Betta splendens behavior in a dose-dependent fashion and these effects persisted even after females were housed in clean water. If fluoxetine exposure impacts behaviors such as exploration that are necessary to an individual’s success, this may yield evolutionary consequences. In conclusion, the results show that fluoxetine exposure alters behavior beyond the level of overall response and highlights the importance of studying the behavioral effects of inadvertent pharmaceutical exposure in multiple contexts and with different dosing regimes.

  15. Systematic protocol for assessment of the validity of BOLD MRI in a rabbit model of inflammatory arthritis at 1.5 tesla

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Michael W.; Nathanael, George; Kis, Antonella; Amirabadi, Afsaneh; Zhong, Anguo; Rayner, Tammy; Weiss, Ruth; Detzler, Garry; Gahunia, Harpal [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Jong, Roland [Mount Sinai Hospital, Department of Pathology and Laboratory Medicine, Toronto (Canada); Moineddin, Rahim [Family and Community Medicine, Department of Public Health, Toronto (Canada); Crawley, Adrian [University of Toronto, Department of Medical Imaging, Toronto (Canada); Toronto Western Hospital, Department of Medical Imaging, Toronto (Canada); Doria, Andrea S. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); University of Toronto, Department of Medical Imaging, Toronto (Canada)

    2014-05-15

    Blood-oxygen-level-dependent (BOLD) MRI has the potential to identify regions of early hypoxic and vascular joint changes in inflammatory arthritis. There is no standard protocol for analysis of BOLD MRI measurements in musculoskeletal disorders. To optimize the following BOLD MRI reading parameters: (1) statistical threshold values (low, r > 0.01 versus high, r > 0.2); (2) summary measures of BOLD contrast (percentage of activated voxels [PT%] versus percentage signal difference between on-and-off signal intensities [diff{sub o}n{sub o}ff]); and (3) direction of BOLD response (positive, negative and positive + negative). Using BOLD MRI protocols at 1.5 T, arthritic (n = 21) and contralateral (n = 21) knees of 21 juvenile rabbits were imaged at baseline and on days 1, 14 and 28 after a unilateral intra-articular injection of carrageenan. Nine non-injected rabbits served as external control knees (n = 18). By comparing arthritic to contralateral knees, receiver operating characteristic curves were used to determine diagnostic accuracy. Using diff{sub o}n{sub o}ff and positive + negative responses, a threshold of r > 0.01 was more accurate than r > 0.2 (P = 0.03 at day 28). Comparison of summary measures yielded no statistically significant difference (P > 0.05). Although positive + negative (AUC = 0.86 at day 28) and negative responses (AUC = 0.90 at day 28) for PT% were the most diagnostically accurate, positive + negative responses for diff{sub o}n{sub o}ff (AUC = 0.78 at day 28) also had acceptable accuracy. The most clinically relevant reading parameters included a lower threshold of r > 0.01 and a positive + negative BOLD response. We propose that diff{sub o}n{sub o}ff is a more clinically relevant summary measure of BOLD MRI, while PT% can be used as an ancillary measure. (orig.)

  16. Ghrelin modulates the fMRI BOLD response of homeostatic and hedonic brain centers regulating energy balance in the rat.

    Directory of Open Access Journals (Sweden)

    Miklós Sárvári

    Full Text Available The orexigenic gut-brain peptide, ghrelin and its G-protein coupled receptor, the growth hormone secretagogue receptor 1a (GHS-R1A are pivotal regulators of hypothalamic feeding centers and reward processing neuronal circuits of the brain. These systems operate in a cooperative manner and receive a wide array of neuronal hormone/transmitter messages and metabolic signals. Functional magnetic resonance imaging was employed in the current study to map BOLD responses to ghrelin in different brain regions with special reference on homeostatic and hedonic regulatory centers of energy balance. Experimental groups involved male, ovariectomized female and ovariectomized estradiol-replaced rats. Putative modulation of ghrelin signaling by endocannabinoids was also studied. Ghrelin-evoked effects were calculated as mean of the BOLD responses 30 minutes after administration. In the male rat, ghrelin evoked a slowly decreasing BOLD response in all studied regions of interest (ROI within the limbic system. This effect was antagonized by pretreatment with GHS-R1A antagonist JMV2959. The comparison of ghrelin effects in the presence or absence of JMV2959 in individual ROIs revealed significant changes in the prefrontal cortex, nucleus accumbens of the telencephalon, and also within hypothalamic centers like the lateral hypothalamus, ventromedial nucleus, paraventricular nucleus and suprachiasmatic nucleus. In the female rat, the ghrelin effects were almost identical to those observed in males. Ovariectomy and chronic estradiol replacement had no effect on the BOLD response. Inhibition of the endocannabinoid signaling by rimonabant significantly attenuated the response of the nucleus accumbens and septum. In summary, ghrelin can modulate hypothalamic and mesolimbic structures controlling energy balance in both sexes. The endocannabinoid signaling system contributes to the manifestation of ghrelin's BOLD effect in a region specific manner. In females, the

  17. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone

    Directory of Open Access Journals (Sweden)

    Kelsey Moore

    2016-11-01

    Full Text Available Blood oxygen level dependent (BOLD imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (µ opioid receptor knock-outs (MuKO in response to oxycodone (OXY. Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high µ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala and hypothalamus, and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex and prelimbic cortex. Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala and preoptic areas. This result indicates that most effects of OXY on positive BOLD are mediated by the µ opioid receptor (on-target effects. OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122 and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum, and in some case intensified (hippocampus. Negative BOLD analysis therefore shows activation and deactivation events in the absence of the µ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects. Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY

  18. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone

    Science.gov (United States)

    Moore, Kelsey; Madularu, Dan; Iriah, Sade; Yee, Jason R.; Kulkarni, Praveen; Darcq, Emmanuel; Kieffer, Brigitte L.; Ferris, Craig F.

    2016-01-01

    Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (μ) opioid receptor knock-outs (MuKO) in response to oxycodone (OXY). Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high μ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala, and hypothalamus), and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex, and prelimbic cortex). Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala, and preoptic areas). This result indicates that most effects of OXY on positive BOLD are mediated by the μ opioid receptor (on-target effects). OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122) and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum), and in some case intensified (hippocampus). Negative BOLD analysis therefore shows activation and deactivation events in the absence of the μ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects). Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY brain

  19. Plasticity varies with boldness in a weakly-electric fish.

    Science.gov (United States)

    Kareklas, Kyriacos; Arnott, Gareth; Elwood, Robert W; Holland, Richard A

    2016-01-01

    The expression of animal personality is indicated by patterns of consistency in individual behaviour. Often, the differences exhibited between individuals are consistent across situations. However, between some situations, this can be biased by variable levels of individual plasticity. The interaction between individual plasticity and animal personality can be illustrated by examining situation-sensitive personality traits such as boldness (i.e. risk-taking and exploration tendency). For the weakly electric fish Gnathonemus petersii, light condition is a major factor influencing behaviour. Adapted to navigate in low-light conditions, this species chooses to be more active in dark environments where risk from visual predators is lower. However, G. petersii also exhibit individual differences in their degree of behavioural change from light to dark. The present study, therefore, aims to examine if an increase of motivation to explore in the safety of the dark, not only affects mean levels of boldness, but also the variation between individuals, as a result of differences in individual plasticity. Boldness was consistent between a novel-object and a novel-environment situation in bright light. However, no consistency in boldness was noted between a bright (risky) and a dark (safe) novel environment. Furthermore, there was a negative association between boldness and the degree of change across novel environments, with shier individuals exhibiting greater behavioural plasticity. This study highlights that individual plasticity can vary with personality. In addition, the effect of light suggests that variation in boldness is situation specific. Finally, there appears to be a trade-off between personality and individual plasticity with shy but plastic individuals minimizing costs when perceiving risk and bold but stable individuals consistently maximizing rewards, which can be maladaptive.

  20. Comorbid functional shoulder pain and zolpidem dependence treated with pramipexole

    Directory of Open Access Journals (Sweden)

    Dhiraj Kandre

    2015-01-01

    Full Text Available Pramipexole is a dopamine agonist with higher affinity for D3 receptors. Treatment with pramipexole in clinical conditions such as restless legs syndrome, fibromyalgia, and parkinsonism has been found to significantly improve measures of pain and sleep along with the other symptoms. There is no research data available that explores the usefulness of pramipexole in somatoform/functional pain syndromes. We report a case of a 65-year-old male with bilateral functional shoulder pain associated with insomnia and zolpidem dependence effectively treated with pramipexole.

  1. Time-dependent density-functional theory concepts and applications

    CERN Document Server

    Ullrich, Carsten A

    2011-01-01

    Time-dependent density-functional theory (TDDFT) describes the quantum dynamics of interacting electronic many-body systems formally exactly and in a practical and efficient manner. TDDFT has become the leading method for calculating excitation energies and optical properties of large molecules, with accuracies that rival traditional wave-function based methods, but at a fraction of the computational cost.This book is the first graduate-level text on the concepts and applications of TDDFT, including many examples and exercises, and extensive coverage of the literature. The book begins with a s

  2. Time-dependent density functional theory for quantum transport.

    Science.gov (United States)

    Zheng, Xiao; Chen, GuanHua; Mo, Yan; Koo, SiuKong; Tian, Heng; Yam, ChiYung; Yan, YiJing

    2010-09-21

    Based on our earlier works [X. Zheng et al., Phys. Rev. B 75, 195127 (2007); J. S. Jin et al., J. Chem. Phys. 128, 234703 (2008)], we propose a rigorous and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages.

  3. Measuring spin-dependent structure functions at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A. [Universitaet Frankfurt (Germany)

    1994-04-01

    The author analyses whether CEBAF with a 10 GeV beam could contribute significantly to the understanding of spin-dependent deep-inelastic scattering as well as semi-inclusive reactions. The main advantage of CEBAF is the much better attainable statistics, its great disadvantage its comparably low energy, which limits the accessible x-range to about 0.15 to 0.7. Within these constraints CEBAF could provide (1) high precision data which would be very valuable to understand the Q{sup 2} dependence of the spin-dependent structure functions g{sub 1}(x) and G{sub 2}(x) and (2) the by far most precise determination of the third moments of g{sub 1}(x) and g{sub 2}(x) the latter of which the author argues to be related to a fundamental property of the nucleon.

  4. Time dependent density functional calculation of plasmon response in clusters

    Institute of Scientific and Technical Information of China (English)

    Wang Feng(王锋); Zhang Feng-Shou(张丰收); Eric Suraud

    2003-01-01

    We have introduced a theoretical scheme for the efficient description of the optical response of a cluster based on the time-dependent density functional theory. The practical implementation is done by means of the fully fledged timedependent local density approximation scheme, which is solved directly in the time domain without any linearization.As an example we consider the simple Na2 cluster and compute its surface plasmon photoabsorption cross section, which is in good agreement with the experiments.

  5. Precision measurement of the neutron spin dependent structure functions

    Energy Technology Data Exchange (ETDEWEB)

    Kolomensky, Y.G.

    1997-02-01

    In experiment E154 at the Stanford Linear Accelerator Center the spin dependent structure function g{sub 1}{sup n} (x, Q{sup 2}) of the neutron was measured by scattering longitudinally polarized 48.3 GeV electrons off a longitudinally polarized {sup 3}He target. The high beam energy allowed the author to extend the kinematic coverage compared to the previous SLAC experiments to 0.014 {le} x {le} 0.7 with an average Q{sup 2} of 5 GeV{sup 2}. The author reports the integral of the spin dependent structure function in the measured range to be {integral}{sub 0.014}{sup 0.7} dx g{sub 1}{sup n}(x, 5 GeV{sup 2}) = {minus}0.036 {+-} 0.004(stat.) {+-} 0.005(syst.). The author observes relatively large values of g{sub 1}{sup n} at low x that call into question the reliability of data extrapolation to x {r_arrow} 0. Such divergent behavior disagrees with predictions of the conventional Regge theory, but is qualitatively explained by perturbative QCD. The author performs a Next-to-Leading Order perturbative QCD analysis of the world data on the nucleon spin dependent structure functions g{sub 1}{sup p} and g{sub 1}{sup n} paying careful attention to the experimental and theoretical uncertainties. Using the parameterizations of the helicity-dependent parton distributions obtained in the analysis, the author evolves the data to Q{sup 2} = 5 GeV{sup 2}, determines the first moments of the polarized structure functions of the proton and neutron, and finds agreement with the Bjorken sum rule.

  6. A comparison of dependence function estimators in multivariate extremes

    KAUST Repository

    Vettori, Sabrina

    2017-05-11

    Various nonparametric and parametric estimators of extremal dependence have been proposed in the literature. Nonparametric methods commonly suffer from the curse of dimensionality and have been mostly implemented in extreme-value studies up to three dimensions, whereas parametric models can tackle higher-dimensional settings. In this paper, we assess, through a vast and systematic simulation study, the performance of classical and recently proposed estimators in multivariate settings. In particular, we first investigate the performance of nonparametric methods and then compare them with classical parametric approaches under symmetric and asymmetric dependence structures within the commonly used logistic family. We also explore two different ways to make nonparametric estimators satisfy the necessary dependence function shape constraints, finding a general improvement in estimator performance either (i) by substituting the estimator with its greatest convex minorant, developing a computational tool to implement this method for dimensions $$D\\\\ge 2$$D≥2 or (ii) by projecting the estimator onto a subspace of dependence functions satisfying such constraints and taking advantage of Bernstein–Bézier polynomials. Implementing the convex minorant method leads to better estimator performance as the dimensionality increases.

  7. Pitfalls in fractal time series analysis: fMRI BOLD as an exemplary case

    Directory of Open Access Journals (Sweden)

    Andras eEke

    2012-11-01

    Full Text Available This article will be positioned on our previous work demonstrating the importance of adhering to a carefully selected set of criteria when choosing the suitable method from those available ensuring its adequate performance when applied to real temporal signals, such as fMRI BOLD, to evaluate one important facet of their behavior, fractality.Earlier, we have reviewed on a range of monofractal tools and evaluated their performance. Given the advance in the fractal field, in this article we will discuss the most widely used implementations of multifractal analyses, too.Our recommended flowchart for the fractal characterization of spontaneous, low frequency fluctuations in fMRI BOLD will be used as the framework for this article to make certain that it will provide a hands-on experience for the reader in handling the perplexed issues of fractal analysis. The reason why this particular signal modality and its fractal analysis has been chosen was due to its high impact on today's neuroscience given it had powerfully emerged as a new way of interpreting the complex functioning of the brain (see intrinsic activity.The reader will first be presented with the basic concepts of mono and multifractal time series analyses, followed by some of the most relevant implementations, characterization by numerical approaches. The notion of the dichotomy of fractional Gaussian noise (fGn and fractional Brownian motion (fBm signal classes and their impact on fractal time series analyses will be thoroughly discussed as the central theme of our application strategy. Sources of pitfalls and way how to avoid them will be identified followed by a demonstration on fractal studies of fMRI BOLD taken from the literature and that of our own in an attempt to consolidate the best practice in fractal analysis of empirical fMRI-BOLD signals mapped throughout the brain as an exemplary case of potentially wide interest.

  8. Charge transfer in time-dependent density functional theory

    Science.gov (United States)

    Maitra, Neepa T.

    2017-10-01

    Charge transfer plays a crucial role in many processes of interest in physics, chemistry, and bio-chemistry. In many applications the size of the systems involved calls for time-dependent density functional theory (TDDFT) to be used in their computational modeling, due to its unprecedented balance between accuracy and efficiency. However, although exact in principle, in practise approximations must be made for the exchange-correlation functional in this theory, and the standard functional approximations perform poorly for excitations which have a long-range charge-transfer component. Intense progress has been made in developing more sophisticated functionals for this problem, which we review. We point out an essential difference between the properties of the exchange-correlation kernel needed for an accurate description of charge-transfer between open-shell fragments and between closed-shell fragments. We then turn to charge-transfer dynamics, which, in contrast to the excitation problem, is a highly non-equilibrium, non-perturbative, process involving a transfer of one full electron in space. This turns out to be a much more challenging problem for TDDFT functionals. We describe dynamical step and peak features in the exact functional evolving over time, that are missing in the functionals currently used. The latter underestimate the amount of charge transferred and manifest a spurious shift in the charge transfer resonance position. We discuss some explicit examples.

  9. Vascular Steal Explains Early Paradoxical Blood Oxygen Level-Dependent Cerebrovascular Response in Brain Regions with Delayed Arterial Transit Times

    Directory of Open Access Journals (Sweden)

    Julien Poublanc

    2013-04-01

    Full Text Available Introduction: Blood oxygen level-dependent (BOLD magnetic resonance imaging (MRI during manipulation of inhaled carbon dioxide (CO2 can be used to measure cerebrovascular reactivity (CVR and map regions of exhausted cerebrovascular reserve. These regions exhibit a reduced or negative BOLD response to inhaled CO2. In this study, we sought to clarify the mechanism behind the negative BOLD response by investigating its time delay (TD. Dynamic susceptibility contrast (DSC MRI with the injection of a contrast agent was used as the gold standard in order to provide measurement of the blood arrival time to which CVR TD could be compared. We hypothesize that if negative BOLD responses are the result of a steal phenomenon, they should be synchronized with positive BOLD responses from healthy brain tissue, even though the blood arrival time would be delayed. Methods: On a 3-tesla MRI system, BOLD CVR and DSC images were collected in a group of 19 patients with steno-occlusive cerebrovascular disease. For each patient, we generated a CVR magnitude map by regressing the BOLD signal with the end-tidal partial pressure of CO2 (PETCO2, and a CVR TD map by extracting the time of maximum cross-correlation between the BOLD signal and PETCO2. In addition, a blood arrival time map was generated by fitting the DSC signal with a gamma variate function. ROI masks corresponding to varying degrees of reactivity were constructed. Within these masks, the mean CVR magnitude, CVR TD and DSC blood arrival time were extracted and averaged over the 19 patients. CVR magnitude and CVR TD were then plotted against DSC blood arrival time. Results: The results show that CVR magnitude is highly correlated to DSC blood arrival time. As expected, the most compromised tissues with the longest blood arrival time have the lowest (most negative CVR magnitude. However, CVR TD shows a noncontinuous relationship with DSC blood arrival time. CVR TD is well correlated to DSC blood arrival time

  10. Sodium-dependent phosphate transporters in osteoclast differentiation and function.

    Directory of Open Access Journals (Sweden)

    Giuseppe Albano

    Full Text Available Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expression of sodium-dependent phosphate transport protein IIa (NaPi-IIa transcript and protein during osteoclast development, but no expression of the closely related NaPi-IIb and NaPi-IIc SLC34 family isoforms. In vitro studies employing NaPi-IIa-deficient osteoclast precursors and mature osteoclasts reveal that NaPi-IIa is dispensable for bone resorption and osteoclast differentiation. These results are supported by the analysis of structural bone parameters by high-resolution microcomputed tomography that yielded no differences between adult NaPi-IIa WT and KO mice. By contrast, both type III sodium-dependent phosphate transporters Pit-1 and Pit-2 were abundantly expressed throughout osteoclast differentiation, indicating that they are the relevant sodium-dependent phosphate transporters in osteoclasts and osteoclast precursors. We conclude that phosphate transporters of the SLC34 family have no role in osteoclast differentiation and function and propose that Pit-dependent phosphate transport could be pivotal for bone resorption and should be addressed in further studies.

  11. The Transverse Momentum Dependent Fragmentation Function at NNLO

    CERN Document Server

    Echevarria, Miguel G; Vladimirov, Alexey

    2016-01-01

    We calculate the unpolarized non-singlet transverse momentum dependent fragmentation function (TMDFF) at next-to-next-to-leading order (NNLO), evaluating separately TMD soft factor and TMD collinear correlator. For the first time the cancellation of spurious rapidity divergences in a properly defined individual TMD beyond the first non-trivial order is shown. This represents a strong check of the given TMD definition. We extract the matching coefficient necessary to perform the transverse momentum resummation at next-to-next-to-next-to-leading-logarithmic accuracy. The universal character of the soft function, which enters the definition of all (un)polarized TMD distribution/fragmentation functions, facilitates the future calculation of all the other TMDs and their coefficients at NNLO, pushing forward the accuracy of theoretical predictions for the current and next generation of high energy colliders.

  12. Evaluation of sexual functions in Turkish alcohol-dependent males.

    Science.gov (United States)

    Dişsiz, Melike; Oskay, Ümran Yeşiltepe

    2011-11-01

    It was reported that long-term and high amount of alcohol consumption cause sexual dysfunction in men. There is a lack of descriptive studies focusing on the sexual dysfunction of alcohol dependent men in Turkey. This study was conducted to evaluate sexual functions of alcohol dependent men. This descriptive study was performed at the Alcohol and Substance Research Treatment and Education Center (ASRTEC). The data was collected between 26 December 2007 and 26 December 2008. As research instruments, an interview form of 30 questions that questioned personal characteristics and was developed by researchers, and IIEF (International Index of Erectile Dysfunction) with 15 items that evaluated sexual dysfunction were used. Mean age of men was 41.22 ± 8.19; 36.5% of participants were graduated from primary school, and 57.5% were unemployed. Average daily alcohol consumption was 16.41 ± 4.90 standard alcohol. We found that 47% of alcohol-dependent men had their first sexual experience before they were 18 years old, 64.4% had multiple partners, 1.7% experienced a sexually transmitted disease, 7.7% had a chronic disease, and 18.3% had pain during intercourse. Mean total IIEF scores of alcohol-dependent men was 57 ± 9.23 (mean ED scores 23.41 ± 3.91). Therefore, 70.3% of participants had a mild (17-25), and 4.4% had a moderate (11-16) erectile dysfunction. With a multivariate analysis, predictors of erectile dysfunction in chronic alcohol dependent male were determined as age of subject, age of onset for alcohol, duration of alcoholism, and cigarette use. Chronic alcoholism affects sexual functions in men. Sexual dysfunction in alcohol addicted males is related with education level and unemployment and starting alcohol consumption at an early age and long-term cigarette smoking. © 2010 International Society for Sexual Medicine.

  13. The Universal Transverse Momentum Dependent Soft Function at NNLO

    CERN Document Server

    Echevarria, Miguel G; Vladimirov, Alexey

    2015-01-01

    All (un)polarized transverse momentum dependent functions (TMDs), both distribution and fragmentation functions, are defined with the same universal soft function, which cancels spurious rapidity divergences within an individual TMD and renders them well-defined hadronic quantities. Moreover, it is independent of the kinematics, whether it is Drell-Yan ($e^+e^-\\rightarrow 2$ hadrons) or deep inelastic scattering. In this paper we provide this soft function at next-to-next-to-leading order (NNLO), necessary for the calculation of all TMDs at the same order, and to perform the resummation of large logarithms at next-to-next-to-next-to-leading-logarithmic accuracy. From the results we obtain the $D$ function at NNLO, which governs the evolution of all TMDs. This work represents the first independent and direct calculation of this quantity. Given the all order relation through a Casimir scaling between the soft function relevant for gluon TMDs and the one for quark TMDs, we also obtain the first at NNLO. The used...

  14. Balance functions: Multiplicity and transverse momentum dependence of the charge dependent correlations in ALICE

    CERN Document Server

    AUTHOR|(CDS)2078856; Snellings, Raimond; Christakoglou, Panos

    The measurement of charge-dependent correlations between positively and negatively charged particles as a function of pseudorapidity and azimuthal angle, known as the balance functions, provide insight to the properties of matter created in high-energy collisions. The balance functions are argued to probe the creation time of the particles and are also sensitive to the collective motion of the system. In this thesis, I present the results of the measured balance functions in p--Pb collisions at √sNN = 5.02~TeV obtained with the ALICE detector at the LHC. The results are compared with balance functions measured in pp and Pb--Pb collisions at √s=7~TeV and √sNN = 2.76~TeV$, respectively. The width of the balance functions in both pseudorapidity and azimuthal angle for non-identified charged particles decreases with increasing multiplicity in all three systems, for particles with low transverse momentum value pT < 2~GeV/c. For higher values of transverse momentum the balance functions become narrower and...

  15. The Functions of RNA-Dependent RNA Polymerases in Arabidopsis

    Science.gov (United States)

    Willmann, Matthew R.; Endres, Matthew W.; Cook, Rebecca T.; Gregory, Brian D.

    2011-01-01

    One recently identified mechanism that regulates mRNA abundance is RNA silencing, and pioneering work in Arabidopsis thaliana and other genetic model organisms helped define this process. RNA silencing pathways are triggered by either self-complementary fold-back structures or the production of double-stranded RNA (dsRNA) that gives rise to small RNAs (smRNAs) known as microRNAs (miRNAs) or small-interfering RNAs (siRNAs). These smRNAs direct sequence-specific regulation of various gene transcripts, repetitive sequences, viruses, and mobile elements via RNA cleavage, translational inhibition, or transcriptional silencing through DNA methylation and heterochromatin formation. Early genetic screens in Arabidopsis were instrumental in uncovering numerous proteins required for these important regulatory pathways. Among the factors identified by these studies were RNA-dependent RNA polymerases (RDRs), which are proteins that synthesize siRNA-producing dsRNA molecules using a single-stranded RNA (ssRNA) molecule as a template. Recently, a growing body of evidence has implicated RDR-dependent RNA silencing in many different aspects of plant biology ranging from reproductive development to pathogen resistance. Here, we focus on the specific functions of the six Arabidopsis RDRs in RNA silencing, their ssRNA substrates and resulting RDR-dependent smRNAs, and the numerous biological functions of these proteins in plant development and stress responses. PMID:22303271

  16. Time-dependent density-functional theory for extended systems

    Energy Technology Data Exchange (ETDEWEB)

    Botti, Silvana [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown); Schindlmayr, Arno [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown); Del Sole, Rodolfo [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown); Reining, Lucia [European Theoretical Spectroscopy Facility (ETSF) (Country Unknown)

    2007-03-15

    For the calculation of neutral excitations, time-dependent density functional theory (TDDFT) is an exact reformulation of the many-body time-dependent Schroedinger equation, based on knowledge of the density instead of the many-body wavefunction. The density can be determined in an efficient scheme by solving one-particle non-interacting Schroedinger equations-the Kohn-Sham equations. The complication of the problem is hidden in the-unknown-time-dependent exchange and correlation potential that appears in the Kohn-Sham equations and for which it is essential to find good approximations. Many approximations have been suggested and tested for finite systems, where even the very simple adiabatic local-density approximation (ALDA) has often proved to be successful. In the case of solids, ALDA fails to reproduce optical absorption spectra, which are instead well described by solving the Bethe-Salpeter equation of many-body perturbation theory (MBPT). On the other hand, ALDA can lead to excellent results for loss functions (at vanishing and finite momentum transfer). In view of this and thanks to recent successful developments of improved linear-response kernels derived from MBPT, TDDFT is today considered a promising alternative to MBPT for the calculation of electronic spectra, even for solids. After reviewing the fundamentals of TDDFT within linear response, we discuss different approaches and a variety of applications to extended systems.

  17. Improved protein structure selection using decoy-dependent discriminatory functions

    Directory of Open Access Journals (Sweden)

    Levitt Michael

    2004-06-01

    Full Text Available Abstract Background A key component in protein structure prediction is a scoring or discriminatory function that can distinguish near-native conformations from misfolded ones. Various types of scoring functions have been developed to accomplish this goal, but their performance is not adequate to solve the structure selection problem. In addition, there is poor correlation between the scores and the accuracy of the generated conformations. Results We present a simple and nonparametric formula to estimate the accuracy of predicted conformations (or decoys. This scoring function, called the density score function, evaluates decoy conformations by performing an all-against-all Cα RMSD (Root Mean Square Deviation calculation in a given decoy set. We tested the density score function on 83 decoy sets grouped by their generation methods (4state_reduced, fisa, fisa_casp3, lmds, lattice_ssfit, semfold and Rosetta. The density scores have correlations as high as 0.9 with the Cα RMSDs of the decoy conformations, measured relative to the experimental conformation for each decoy. We previously developed a residue-specific all-atom probability discriminatory function (RAPDF, which compiles statistics from a database of experimentally determined conformations, to aid in structure selection. Here, we present a decoy-dependent discriminatory function called self-RAPDF, where we compiled the atom-atom contact probabilities from all the conformations in a decoy set instead of using an ensemble of native conformations, with a weighting scheme based on the density scores. The self-RAPDF has a higher correlation with Cα RMSD than RAPDF for 76/83 decoy sets, and selects better near-native conformations for 62/83 decoy sets. Self-RAPDF may be useful not only for selecting near-native conformations from decoy sets, but also for fold simulations and protein structure refinement. Conclusions Both the density score and the self-RAPDF functions are decoy-dependent

  18. Early diagnosis of cerebral involvement in Sturge-Weber syndrome using high-resolution BOLD MR venography

    Energy Technology Data Exchange (ETDEWEB)

    Mentzel, Hans-J.; Fitzek, Clemens; Reichenbach, Juergen R.; Kaiser, Werner A. [Friedrich-Schiller-University Jena, Institute of Diagnostic and Interventional Radiology, Department of Pediatric Radiology, Jena (Germany); Dieckmann, Andrea; Brandl, Ulrich [Friedrich-Schiller-University Jena, Department of Neuropediatrics, Jena (Germany)

    2005-01-01

    Sturge-Weber syndrome (SWS) is a congenital disorder characterized by a vascular birthmark and neurological abnormalities. Typical imaging findings using MRI or CT are superficial cerebral calcification, atrophy and leptomeningeal enhancement. We present a neonate diagnosed with SWS because of a port-wine stain. In the absence of neurological symptoms the first MRI was performed when he was 4 months old, and follow-up MRI studies were performed after his first seizure at the age of 12 months. MRI was performed using standard sequences before and after administration of IV gadolinium. A high-resolution T2*-weighted, rf-spoiled 3D gradient-echo sequence with first-order flow compensation in all three directions was used for additional venographic imaging [blood-oxygen-level-dependent (BOLD) venography]. The initial conventional MRI sequences did not demonstrate any abnormality, but BOLD venography identified leptomeningeal internal veins. Follow-up MRI after the first onset of seizures demonstrated strong leptomeningeal enhancement, while BOLD venography revealed pathological medullary and subependymal veins as well as deep venous structures. At this time there were the first signs of atrophy and CT showed marginal calcifications. This report demonstrates that high-resolution BOLD MR venography allows early diagnosis of venous anomalies in SWS, making early therapeutic intervention possible. (orig.)

  19. Free flexural vibration of functionally graded size-dependent nanoplates

    CERN Document Server

    Natarajan, S; Thangavel, M

    2012-01-01

    In this paper, the linear free flexural vibration behaviour of functionally graded (FG) size-dependent nanoplates are investigated using the finite element method. The field variables are approximated by non-uniform rational B-splines. The size-dependent FG nanoplate is investigated by using Eringen's differential form of nonlocal elasticity theory. The material properties are assumed to vary only in the thickness direction and the effective properties for FG nanoplate are computed using Mori-Tanaka homogenization scheme. The accuracy of the present formulation is tested considering the problems for which solutions are available. A detailed numerical study is carried out to examine the effect of material gradient index, the characteristic internal length, the plate thickness, the plate aspect ratio and the boundary conditions on the global response of FG nanoplate.

  20. Nucleon effective mass and the A dependence of structure functions

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Canal, C.A.; Santangelo, E.M.; Vucetich, H.

    1984-10-08

    The nucleon effective mass was successfully used, as the only free parameter, to adjust the ratio R(A) of structure functions measured in a nucleus of mass number A and in the deuteron, for each A value in the SLAC set of experimental data. The resulting A dependence of the effective mass, being linear in A/sup -1/3/, is consistent with the behavior expected from nuclear structure considerations. The extrapolated value of the effective mass for nuclear matter agrees with previous estimations.

  1. Time-dependent density-functional description of nuclear dynamics

    CERN Document Server

    Nakatsukasa, Takashi; Matsuo, Masayuki; Yabana, Kazuhiro

    2016-01-01

    We present the basic concepts and recent developments in the time-dependent density functional theory (TDDFT) for describing nuclear dynamics at low energy. The symmetry breaking is inherent in nuclear energy density functionals (EDFs), which provides a practical description of important correlations at the ground state. Properties of elementary modes of excitation are strongly influenced by the symmetry breaking and can be studied with TDDFT. In particular, a number of recent developments in the linear response calculation have demonstrated their usefulness in description of collective modes of excitation in nuclei. Unrestricted real-time calculations have also become available in recent years, with new developments for quantitative description of nuclear collision phenomena. There are, however, limitations in the real-time approach; for instance, it cannot describe the many-body quantum tunneling. Thus, we treat the quantum fluctuations associated with slow collective motions assuming that time evolution of...

  2. Studies of Spuriously Time-dependent Resonances in Time-dependent Density Functional Theory

    CERN Document Server

    Luo, Kai; Maitra, Neepa T

    2016-01-01

    Adiabatic approximations in time-dependent density functional theory (TDDFT) will in general yield unphysical time-dependent shifts in the resonance positions of a system driven far from its ground-state. This spurious time-dependence is rationalized in [J. I. Fuks, K. Luo, E. D. Sandoval and N. T. Maitra, Phys. Rev. Lett. {\\bf 114}, 183002 (2015)] in terms of the violation of an exact condition by the non-equilibrium exchange-correlation kernel of TDDFT. Here we give details on the derivation and discuss reformulations of the exact condition that apply in special cases. In its most general form, the condition states that when a system is left in an arbitrary state, in the absence of time-dependent external fields nor ionic motion, the TDDFT resonance position for a given transition is independent of the state. Special cases include the invariance of TDDFT resonances computed with respect to any reference interacting stationary state of a fixed potential, and with respect to any choice of appropriate stationa...

  3. Hippocampal-dependent learning requires a functional circadian system.

    Science.gov (United States)

    Ruby, Norman F; Hwang, Calvin E; Wessells, Colin; Fernandez, Fabian; Zhang, Pei; Sapolsky, Robert; Heller, H Craig

    2008-10-01

    Decades of studies have shown that eliminating circadian rhythms of mammals does not compromise their health or longevity in the laboratory in any obvious way. These observations have raised questions about the functional significance of the mammalian circadian system, but have been difficult to address for lack of an appropriate animal model. Surgical ablation of the suprachiasmatic nucleus (SCN) and clock gene knockouts eliminate rhythms, but also damage adjacent brain regions or cause developmental effects that may impair cognitive or other physiological functions. We developed a method that avoids these problems and eliminates rhythms by noninvasive means in Siberian hamsters (Phodopus sungorus). The present study evaluated cognitive function in arrhythmic animals by using a hippocampal-dependent learning task. Control hamsters exhibited normal circadian modulation of performance in a delayed novel-object recognition task. By contrast, arrhythmic animals could not discriminate a novel object from a familiar one only 20 or 60 min after training. Memory performance was not related to prior sleep history as sleep manipulations had no effect on performance. The GABA antagonist pentylenetetrazol restored learning without restoring circadian rhythms. We conclude that the circadian system is involved in memory function in a manner that is independent of sleep. Circadian influence on learning may be exerted via cyclic GABA output from the SCN to target sites involved in learning. Arrhythmic hamsters may have failed to perform this task because of chronic inhibitory signaling from the SCN that interfered with the plastic mechanisms that encode learning in the hippocampus.

  4. Implementation Strategies for Orbital-dependent Density Functionals

    Science.gov (United States)

    Bento, Marsal E.; Vieira, Daniel

    2016-12-01

    The development of density functional theory (DFT) has been focused primarily on two main pillars: (1) the pursuit of more accurate exchange-correlation (XC) density functionals; (2) the feasibility of computational implementation when dealing with many-body systems. In this context, this work is aimed on using one-dimensional quantum systems as theoretical laboratories to investigate the implementation of orbital functionals (OFs) of density. By definition, OFs are those which depend only implicitly on the density, via an explicit formulation in terms of Kohn-Sham orbitals. Typical examples are the XC functionals arising from the Perdew-Zunger self-interaction correction (PZSIC). Formally, via Kohn-Sham equations, the implementation of OFs must be performed by means of the optimized effective potential method (OEP), which is known by requiring an excessive computational effort even when dealing with few electrons systems. Here, we proceed a systematical investigation aiming to simplify or avoid the OEP procedure, taking as reference the implementation of the PZSIC correction applied to one-dimensional Hubbard chains.

  5. Density-functional perturbation theory goes time-dependent

    Directory of Open Access Journals (Sweden)

    Gebauer, Ralph

    2008-05-01

    Full Text Available The scope of time-dependent density-functional theory (TDDFT is limited to the lowest portion of the spectrum of rather small systems (a few tens of atoms at most. In the static regime, density-functional perturbation theory (DFPT allows one to calculate response functions of systems as large as currently dealt with in ground-state simulations. In this paper we present an effective way of combining DFPT with TDDFT. The dynamical polarizability is first expressed as an off-diagonal matrix element of the resolvent of the Kohn-Sham Liouvillian super-operator. A DFPT representation of response functions allows one to avoid the calculation of unoccupied Kohn-Sham orbitals. The resolvent of the Liouvillian is finally conveniently evaluated using a newly developed non-symmetric Lanczos technique, which allows for the calculation of the entire spectrum with a single Lanczos recursion chain. Each step of the chain essentially requires twice as many operations as a single step of the iterative diagonalization of the unperturbed Kohn-Sham Hamiltonian or, for that matter, as a single time step of a Car-Parrinello molecular dynamics run. The method will be illustrated with a few case molecular applications.

  6. Implementation Strategies for Orbital-dependent Density Functionals

    Science.gov (United States)

    Bento, Marsal E.; Vieira, Daniel

    2016-10-01

    The development of density functional theory (DFT) has been focused primarily on two main pillars: (1) the pursuit of more accurate exchange-correlation (XC) density functionals; (2) the feasibility of computational implementation when dealing with many-body systems. In this context, this work is aimed on using one-dimensional quantum systems as theoretical laboratories to investigate the implementation of orbital functionals (OFs) of density. By definition, OFs are those which depend only implicitly on the density, via an explicit formulation in terms of Kohn-Sham orbitals. Typical examples are the XC functionals arising from the Perdew-Zunger self-interaction correction (PZSIC). Formally, via Kohn-Sham equations, the implementation of OFs must be performed by means of the optimized effective potential method (OEP), which is known by requiring an excessive computational effort even when dealing with few electrons systems. Here, we proceed a systematical investigation aiming to simplify or avoid the OEP procedure, taking as reference the implementation of the PZSIC correction applied to one-dimensional Hubbard chains.

  7. Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging.

    Science.gov (United States)

    Stippich, Christoph; Ochmann, Henrik; Sartor, Klaus

    2002-10-04

    The human primary sensorimotor cortex was investigated for somatotopic organization during motor imagery (IM) which was compared to motor execution (EM). Block designed BOLD (blood oxygen level dependent)-functional magnetic resonance imaging at 1.5 Tesla was applied in 14 right handed volunteers during imagined and executed tongue, finger and toe movements. BOLD-clusters were assessed for anatomically correct sensorimotor localization. Euklidian coordinates, relative signal change and correlation to the applied reference function were determined. Statistical means were calculated. IM recruited somatotopically organized primary sensorimotor representations of the precentral gyrus that reflected the homunculus and overlapped in part with EM representations. Mean BOLD-signals ranged from 1.93 to 3.18% for EM, and from 0.73 to 1.47% for IM. The results support the hypothesis that the primary sensorimotor cortex is active during IM and that IM and EM share common functional circuits.

  8. Physiologic characterization of inflammatory arthritis in a rabbit model with BOLD and DCE MRI at 1.5 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Nasui, Otilia C.; Chan, Michael W.; Nathanael, George; Rayner, Tammy; Weiss, Ruth; Detzler, Garry; Zhong, Anguo [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); Crawley, Adrian [University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Toronto Western Hospital, Department of Medical Imaging, Toronto, ON (Canada); Miller, Elka [Children' s Hospital of Eastern Ontario (CHEO), Department of Diagnostic Imaging, Ottawa, ON (Canada); Belik, Jaques [The Hospital for Sick Children, Department of Neonatology, Toronto, ON (Canada); Cheng, Hai-Ling; Kassner, Andrea; Doria, Andrea S. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Moineddin, Rahim [Department of Public Health, Family and Community Medicine, Toronto, ON (Canada); Jong, Roland; Rogers, Marianne [Mount Sinai Hospital, Department of Pathology, Toronto, ON (Canada)

    2014-11-15

    Our aim was to test the feasibility of blood oxygen level dependent magnetic resonance imaging (BOLD MRI) and dynamic contrast-enhanced (DCE) MRI to monitor periarticular hypoxic/inflammatory changes over time in a juvenile rabbit model of arthritis. We examined arthritic and contralateral nonarthritic knees of 21 juvenile rabbits at baseline and days 1,14, and 28 after induction of arthritis by unilateral intra-articular injection of carrageenin with BOLD and DCE MRI at 1.5 Tesla (T). Nine noninjected rabbits served as controls. Associations between BOLD and DCE-MRI and corresponding intra-articular oxygen pressure (PO{sub 2}) and blood flow [blood perfusion units (BPU)] (polarographic probes, reference standards) or clinical-histological data were measured by correlation coefficients. Percentage BOLD MRI change obtained in contralateral knees correlated moderately with BPU on day 0 (r = -0.51, p = 0.02) and excellently on day 28 (r = -0.84, p = 0.03). A moderate correlation was observed between peak enhancement DCE MRI (day 1) and BPU measurements in arthritic knees (r = 0.49, p = 0.04). In acute arthritis, BOLD and DCE MRI highly correlated (r = 0.89, p = 0.04; r = 1.0, p < 0.0001) with histological scores in arthritic knees. The proposed techniques are feasible to perform at 1.5 T, and they hold potential as surrogate measures to monitor hypoxic and inflammatory changes over time in arthritis at higher-strength MRI fields. (orig.)

  9. Effects of percutaneous transluminal angioplasty on muscle BOLD-MRI in patients with peripheral arterial occlusive disease: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Huegli, Rolf W. [University Hospital Basel, Department of Radiology, Division of Interventional Radiology, Basel (Switzerland)]|[Kantonsspital Bruderholz, Department of Radiology, Bruderholz (Switzerland); Schulte, Anja-Carina [University of Basel, Biocenter, Basel (Switzerland); Aschwanden, Markus; Thalhammer, Christoph [University Hospital Basel, Department of Angiology, Basel (Switzerland); Kos, Sebastian; Jacob, Augustinus L.; Bilecen, Deniz [University Hospital Basel, Department of Radiology, Division of Interventional Radiology, Basel (Switzerland)

    2009-02-15

    The purpose was to evaluate the effect of percutaneous transluminal angioplasty (PTA) of the superficial femoral artery (SFA) on the blood oxygenation level-dependent (BOLD) signal change in the calf musculature of patients with intermittent claudication. Ten patients (mean age, 63.4 {+-} 11.6 years) with symptomatic peripheral arterial occlusive disease (PAOD) caused by SFA stenoses were investigated before and after PTA. Patients underwent BOLD-MRI 1 day before and 6 weeks after PTA. A T2*-weighted single-shot multi-echo echo-planar MR-imaging technique was applied. The BOLD measurements were acquired at mid-calf level during reactive hyperaemia at 1.5 T. This transient hyperperfusion of the muscle tissue was provoked by suprasystolic cuff compression. Key parameters describing the BOLD signal curve included maximum T2*(T2*{sub max}), time-to-peak to reach T2*{sub max} (TTP) and T2* end value (EV) after 600 s of hyperemia. Paired t-tests were applied for statistic comparison. Between baseline and post-PTA, T2*{sub max} increased from 11.1{+-}3.6% to 12.3{+-}3.8% (p=0.51), TTP decreased from 48.5{+-}20.8 s to 35.3{+-}11.6 s (p=0.11) and EV decreased from 6.1{+-}6.4% to 5.0{+-}4.2% (p=0.69). In conclusion, BOLD-MRI reveals changes of the key parameters T2*{sub max}, TTP, and EV after successful PTA of the calf muscles during reactive hyperaemia. (orig.)

  10. BOLD temporal dynamics of rat superior colliculus and lateral geniculate nucleus following short duration visual stimulation.

    Directory of Open Access Journals (Sweden)

    Condon Lau

    Full Text Available BACKGROUND: The superior colliculus (SC and lateral geniculate nucleus (LGN are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD fMRI to measure the SC and LGN's response temporal dynamics following short duration (1 s visual stimulation. METHODOLOGY/PRINCIPAL FINDINGS: Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION, a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK 0.2±0.2 s before the LGN signal (p<0.05. The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05. These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC. CONCLUSIONS/SIGNIFICANCE: The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are

  11. The Boldest New Idea? An End to Bold Ideas

    Science.gov (United States)

    Rothstein, Richard

    2011-01-01

    The past two decades have proven that bold, single-factor reform ideas have little power to change the face of education. Pundits and policymakers would have schools and school systems make grand changes to accommodate the reform idea du jour--and then profess the incompetence of schools and teachers when those changes prove less than effective.…

  12. Boldness by habituation and social interactions : a model

    NARCIS (Netherlands)

    Oosten, Johanneke E.; Magnhagen, Carin; Hemelrijk, Charlotte K.

    Most studies of animal personality attribute personality to genetic traits. But a recent study by Magnhagen and Staffan (Behav Ecol Sociobiol 57:295-303, 2005) on young perch in small groups showed that boldness, a central personality trait, is also shaped by social interactions and by previous

  13. Relativistic Spin-Isospin Dependent Response Function of Nucleus

    Institute of Scientific and Technical Information of China (English)

    LIU Liang-Gang; CHEN Wei; AI Bao-Quan; ZHENG Xiao-Ping; Masahiro Nakano

    2000-01-01

    A full relativistic formalism is employed to derive the relativistic particle-hole and delta-hole excitation polariza tion insertion of pion propagator in nuclear matter. The spin-isospin-dependent response function of nucleus at high energy-momentum transfer is calculated with the nuclear matter approximation. The short range correlation effect, two-nucleon absorption and nucleus form factor effects are included in the calculation. The position and width of the resonance peak of the spin-isospin mode are reproduced and found to be coincident with experiment data. The position of the peak and its width is sensitive to Landau-Migdal parameter g' which is about 0.6.

  14. Transverse momentum-dependent parton distribution functions in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Michael G. [New Mexico State University; Musch, Bernhard U. [Tech. University Munich; Haegler, Philipp G. [Tech. University Munich; Negele, John W. [MIT; Schaefer, Andreas [Regensburg

    2013-08-01

    A fundamental structural property of the nucleon is the distribution of quark momenta, both parallel as well as perpendicular to its propagation. Experimentally, this information is accessible via selected processes such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process (DY), which can be parametrized in terms of transversemomentum-dependent parton distributions (TMDs). On the other hand, these distribution functions can be extracted from nucleon matrix elements of a certain class of bilocal quark operators in which the quarks are connected by a staple-shaped Wilson line serving to incorporate initial state (DY) or final state (SIDIS) interactions. A scheme for evaluating such matrix elements within lattice QCD is developed. This requires casting the calculation in a particular Lorentz frame, which is facilitated by a parametrization of the matrix elements in terms of invariant amplitudes. Exploratory results are presented for the time-reversal odd Sivers and Boer-Mulders transverse momentum shifts.

  15. TonB-dependent transporters: regulation, structure, and function.

    Science.gov (United States)

    Noinaj, Nicholas; Guillier, Maude; Barnard, Travis J; Buchanan, Susan K

    2010-01-01

    TonB-dependent transporters (TBDTs) are bacterial outer membrane proteins that bind and transport ferric chelates, called siderophores, as well as vitamin B(12), nickel complexes, and carbohydrates. The transport process requires energy in the form of proton motive force and a complex of three inner membrane proteins, TonB-ExbB-ExbD, to transduce this energy to the outer membrane. The siderophore substrates range in complexity from simple small molecules such as citrate to large proteins such as serum transferrin and hemoglobin. Because iron uptake is vital for almost all bacteria, expression of TBDTs is regulated in a number of ways that include metal-dependent regulators, σ/anti-σ factor systems, small RNAs, and even a riboswitch. In recent years, many new structures of TBDTs have been solved in various states, resulting in a more complete understanding of siderophore selectivity and binding, signal transduction across the outer membrane, and interaction with the TonB-ExbB-ExbD complex. However, the transport mechanism is still unclear. In this review, we summarize recent progress in understanding regulation, structure, and function in TBDTs and questions remaining to be answered.

  16. Ubiquitination-dependent mechanisms regulate synaptic growth and function.

    Science.gov (United States)

    DiAntonio, A; Haghighi, A P; Portman, S L; Lee, J D; Amaranto, A M; Goodman, C S

    2001-07-26

    The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination.

  17. A simple solution for model comparison in bold imaging: the special case of reward prediction error and reward outcomes.

    Science.gov (United States)

    Erdeniz, Burak; Rohe, Tim; Done, John; Seidler, Rachael D

    2013-01-01

    Conventional neuroimaging techniques provide information about condition-related changes of the BOLD (blood-oxygen-level dependent) signal, indicating only where and when the underlying cognitive processes occur. Recently, with the help of a new approach called "model-based" functional neuroimaging (fMRI), researchers are able to visualize changes in the internal variables of a time varying learning process, such as the reward prediction error or the predicted reward value of a conditional stimulus. However, despite being extremely beneficial to the imaging community in understanding the neural correlates of decision variables, a model-based approach to brain imaging data is also methodologically challenging due to the multicollinearity problem in statistical analysis. There are multiple sources of multicollinearity in functional neuroimaging including investigations of closely related variables and/or experimental designs that do not account for this. The source of multicollinearity discussed in this paper occurs due to correlation between different subjective variables that are calculated very close in time. Here, we review methodological approaches to analyzing such data by discussing the special case of separating the reward prediction error signal from reward outcomes.

  18. Stochastic Time-Dependent Current-Density Functional Theory

    Science.gov (United States)

    D'Agosta, Roberto

    2008-03-01

    Static and dynamical density functional methods have been applied with a certain degree of success to a variety of closed quantum mechanical systems, i.e., systems that can be described via a Hamiltonian dynamics. However, the relevance of open quantum systems - those coupled to external environments, e.g., baths or reservoirs - cannot be overestimated. To investigate open quantum systems with DFT methods we have introduced a new theory, we have named Stochastic Time-Dependent Current Density Functional theory (S-TDCDFT) [1]: starting from a suitable description of the system dynamics via a stochastic Schrödinger equation [2], we have proven that given an initial quantum state and the coupling between the system and the environment, there is a one-to-one correspondence between the ensemble-averaged current density and the external vector potential applied to the system.In this talk, I will introduce the stochastic formalism needed for the description of open quantum systems, discuss in details the theorem of Stochastic TD-CDFT, and provide few examples of its applicability like the dissipative dynamics of excited systems, quantum-measurement theory and other applications relevant to charge and energy transport in nanoscale systems.[1] M. Di Ventra and R. D'Agosta, Physical Review Letters 98, 226403 (2007)[2] N.G. van Kampen, Stochastic processes in Physics and Chemistry, (North Holland, 2001), 2nd ed.

  19. Sex Dependence of Cognitive Functions in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Aleksandra Suwalska

    2014-01-01

    Full Text Available The objective of the present study was to assess the performance of lithium treated euthymic bipolar patients in tests measuring spatial working memory (SWM, planning, and verbal fluency and to delineate the influence of gender on cognitive functioning. Fifty-nine euthymic bipolar patients, treated with lithium carbonate for at least 5 yr, were studied. Patients and controls underwent a neuropsychological assessment. Bipolar patients had significantly worse results than the healthy controls in the spatial memory and planning as well as verbal fluency tests. We detected a gender-related imbalance in the SWM results. Deficits in SWM were observed in male-only comparisons but not in female-only comparisons. The SWM scores were significantly poorer in male patients than in male controls. In female-only comparisons, female patients did not have significantly poorer SWM results in any category than their controls. Bipolar women scored worse in some other tests. The present study points to the different patterns of neuropsychological disturbances in female and male patients and suggests that sex-dependent differences should be taken into account in order to tailor the therapeutic intervention aimed at the improvement of cognitive functions.

  20. 共济失调患者手运动时脑激活区域的定量分析%Quantitative analysis of the hand motor cortex in ataxia patients using blood oxygen level dependent functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    元小冬; 王小洁; 王德; 赵丽君; 王守红

    2010-01-01

    Objective To study the characteristics of the hand motor cortex in ataxia patients during active and passive finger-to-thumb opposition movements using bold oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI). Methods Ten right-handed healthy volunteers and 16 ataxia patients with motor cortex lesions were selected, and whole-brain BOLD-fMRI examinations were made while the subjects were performing the active and passive movements. Activated volume and intensity were recorded from the corresponding motor cortex and analyzed quantitatively. Meanwhile, the patients' coordination was evaluated using the international cooperative ataxia rating scale (ICARS). Results During passive movement of the ataxia patient's affected hands, the ipsilateral supplementary motor area (SMA) activated volume was larger than that during normal ipsilateral hand movement, and the activation intensity was also higher than that in the healthy controls. The ipsilateral cerebellum activated volume and intensity were significantly lower than those in the control group, and the frequency of appearance of the cerebellum was also less. The patients' activated volume and intensity in the ipsilateral cerebellum showed no correlation with ICARS scores. Conclusions When the ataxia patients' affected side cerebellum was dysfunctional, the ipsilateral SMA could compensate for the weak cerebellum function. The ICARS does not reflect cerebellum function.%目的 利用血氧水平依赖性功能性磁共振成像(BOLD-fMRI)技术,探讨共济失调患者在主动与被动复杂对指运动模式下关键脑功能区激活体积和强度的变化.方法 选取共济失调患者16例作为病例组,另选10名健康志愿者作为正常组.入选者均进行主动与被动复杂对指运动,在这两种运动模式下进行BOLD-fMRl检查,记录相应脑运动功能区的激活体积和强度并进行定量分析.采用共济失调量表(ICARS)对共济失调患者的

  1. Functional assessment of ubiquitin-depended processes under microgravity conditions

    Science.gov (United States)

    Zhabereva, Anastasia; Shenkman, Boris S.; Gainullin, Murat; Gurev, Eugeny; Kondratieva, Ekaterina; Kopylov, Arthur

    , were separated by SDS-PAGE and subjected for mass spectrometry-based analysis.With the described workflow, we identified more than 200 proteins including of 26S proteasome subunits, members of SUMO (Small Ubiquitin-like Modifier) family and ubiquitylated substrates. On the whole, our results provide an unbiased view of ubiquitylation state under microgravity conditions and thereby demonstrate the utility of proposed combination of analytical methods for functional assessment of ubiquitin-depended processes. Acknowledgment - We thank teams of Institute of Biomedical Problems of Russian Academy of Sciences and TsSKB “Progress” Samara for organization and preparation for spaceflight. This work is partially supported by the Russian Foundation for Basic Research (grant12-04-01836).

  2. Dictionary-Driven Ischemia Detection From Cardiac Phase-Resolved Myocardial BOLD MRI at Rest.

    Science.gov (United States)

    Bevilacqua, Marco; Dharmakumar, Rohan; Tsaftaris, Sotirios A

    2016-01-01

    Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP-BOLD) MRI provides a unique opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) method which relies on the inherent spatio-temporal correlation between oxygenation and wall motion to formalize a joint learning and detection problem based on dictionary decomposition. Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns dictionaries to represent only normal observations (corresponding to myocardial territories remote to ischemia). Anomaly detection is based on a modified version of One-class Support Vector Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP-BOLD data set from a canine experimental model emulating acute coronary syndromes. Comparing early ischemic territories identified with UID against infarct territories (after several hours of ischemia), we find that IE, as measured by UID, is highly correlated (Pearson's r=0.84) with respect to infarct size. When advances in automated registration and segmentation of CP-BOLD images and full coverage 3D acquisitions become available, we hope that this method can enable pixel-level assessment of ischemia with this truly non-invasive imaging technique.

  3. How pain empathy depends on ingroup/outgroup decisions: A functional magnet resonance imaging study.

    Science.gov (United States)

    Ruckmann, Judith; Bodden, Maren; Jansen, Andreas; Kircher, Tilo; Dodel, Richard; Rief, Winfried

    2015-10-30

    Showing empathy is crucial for social functioning and empathy is related to group membership. The aim of the current study was to investigate the influence of experimentally generated groups on empathy for pain in a functional magnetic resonance imaging (fMRI) paradigm. Thirty healthy participants underwent a minimal group paradigm to create two groups. While BOLD contrast was measured using fMRI, subjects were instructed to empathize with ingroup and outgroup members, who were depicted in a picture paradigm of painful and neutral situations. Behavioral measure of state empathy was measured using a visual analog scale. Furthermore, self-reported trait empathy measures were obtained. Repeated-measures ANOVAs were conducted for fMRI and behavioral data. In addition to a main effect of pain in pain-related areas, a main effect of group in areas belonging to the visual cortex was found. Although there was no ingroup bias for empathy ratings, subjects showed altered neural activation in regions of the right fusiform gyrus, the cerebellum, the hippocampal and amygdala region during the pain×group interaction. Activation in the preceding structures, revealed by the interaction of pain by group, suggests that activation in the pallidum might reflect specific empathy for pain-related regulation processes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Decay of autoionizing states in time-dependent density functional and reduced density matrix functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.

  5. Sex differences in a shoaling-boldness behavioral syndrome, but no link with aggression.

    Science.gov (United States)

    Way, Gregory P; Kiesel, Alexis L; Ruhl, Nathan; Snekser, Jennifer L; McRobert, Scott P

    2015-04-01

    A behavioral syndrome is observed in a population when specific behaviors overlap at the individual level in different contexts. Here, we explore boldness and aggression personality spectra, the repeatability of shoaling, and possible associated correlations between the behaviors in a population of lab-reared zebrafish (Danio rerio). Our findings describe a sex-specific boldness-shoaling behavioral syndrome, as a link between boldness and shoaling behaviors is detected. The results indicate that bold males are likely to have a stronger shoaling propensity than shy males for unfamiliar conspecifics. Conversely, bold females are more likely to shoal than shy females, but only when presented with heterospecific individuals. Additionally, aggression does not correlate with boldness or shoaling propensity for either sex. A positive relationship between boldness and shoaling that differs by sex is contrary to most of the present literature, but could help to explain population dynamics and may also have evolutionary implications.

  6. Study protocol: The back pain outcomes using longitudinal data (BOLD registry

    Directory of Open Access Journals (Sweden)

    Jarvik Jeffrey G

    2012-05-01

    Full Text Available Abstract Background Back pain is one of the most important causes of functional limitation, disability, and utilization of health care resources for adults of all ages, but especially among older adults. Despite the high prevalence of back pain in this population, important questions remain unanswered regarding the comparative effectiveness of commonly used diagnostic tests and treatments in the elderly. The overall goal of the Back pain Outcomes using Longitudinal Data (BOLD project is to establish a rich, sustainable registry to describe the natural history and evaluate prospectively the effectiveness, safety, and cost-effectiveness of interventions for patients 65 and older with back pain. Methods/design BOLD is enrolling 5,000 patients ≥ 65 years old who present to a primary care physician with a new episode of back pain. We are recruiting study participants from three integrated health systems (Kaiser-Permanente Northern California, Henry Ford Health System in Detroit and Harvard Vanguard Medical Associates/ Harvard Pilgrim Health Care in Boston. Registry patients complete validated, standardized measures of pain, back pain-related disability, and health-related quality of life at enrollment and 3, 6 and 12 months later. We also have available for analysis the clinical and administrative data in the participating health systems’ electronic medical records. Using registry data, we will conduct an observational cohort study of early imaging compared to no early imaging among patients with new episodes of back pain. The aims are to: 1 identify predictors of early imaging and; 2 compare pain, functional outcomes, diagnostic testing and treatment utilization of patients who receive early imaging versus patients who do not receive early imaging. In terms of predictors, we will examine patient factors as well as physician factors. Discussion By establishing the BOLD registry, we are creating a resource that contains patient

  7. Identifying the perfusion deficit in acute stroke with resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Lv, Yating; Margulies, Daniel S; Cameron Craddock, R; Long, Xiangyu; Winter, Benjamin; Gierhake, Daniel; Endres, Matthias; Villringer, Kersten; Fiebach, Jochen; Villringer, Arno

    2013-01-01

    Temporal delay in blood oxygenation level-dependent (BOLD) signals may be sensitive to perfusion deficits in acute stroke. Resting-state functional magnetic resonance imaging (rsfMRI) was added to a standard stroke MRI protocol. We calculated the time delay between the BOLD signal at each voxel and the whole-brain signal using time-lagged correlation and compared the results to mean transit time derived using bolus tracking. In all 11 patients, areas exhibiting significant delay in BOLD signal corresponded to areas of hypoperfusion identified by contrast-based perfusion MRI. Time delay analysis of rsfMRI provides information comparable to that of conventional perfusion MRI without the need for contrast agents. Copyright © 2012 American Neurological Association.

  8. Functional Characterization of Pseudomonas Contact Dependent Growth Inhibition (CDI) Systems.

    Science.gov (United States)

    Mercy, Chryslène; Ize, Bérengère; Salcedo, Suzana P; de Bentzmann, Sophie; Bigot, Sarah

    2016-01-01

    Contact-dependent inhibition (CDI) toxins, delivered into the cytoplasm of target bacterial cells, confer to host strain a significant competitive advantage. Upon cell contact, the toxic C-terminal region of surface-exposed CdiA protein (CdiA-CT) inhibits the growth of CDI- bacteria. CDI+ cells express a specific immunity protein, CdiI, which protects from autoinhibition by blocking the activity of cognate CdiA-CT. CdiA-CT are separated from the rest of the protein by conserved peptide motifs falling into two distinct classes, the "E. coli"- and "Burkholderia-type". CDI systems have been described in numerous species except in Pseudomonadaceae. In this study, we identified functional toxin/immunity genes linked to CDI systems in the Pseudomonas genus, which extend beyond the conventional CDI classes by the variability of the peptide motif that delimits the polymorphic CdiA-CT domain. Using P. aeruginosa PAO1 as a model, we identified the translational repressor RsmA as a negative regulator of CDI systems. Our data further suggest that under conditions of expression, P. aeruginosa CDI systems are implicated in adhesion and biofilm formation and provide an advantage in competition assays. All together our data imply that CDI systems could play an important role in niche adaptation of Pseudomonadaceae.

  9. Size Bounds for Conjunctive Queries with General Functional Dependencies

    CERN Document Server

    Valiant, Gregory

    2009-01-01

    This paper resolves the main open question left by Gottlob, Lee, and Valiant (PODS 2009)[GLV09], establishing tight worst-case bounds for the size of the result Q(D) of a conjunctive query Q to a database D given an arbitrary set of functional dependencies. We show that the lower bound presented in [GLV09] in which the variables of the query are "colored" so as to yield a coloring number C(Q) for each query Q is, in fact, also an upper bound. To show this, we formalize the original intuition that each color used represents some possible entropy of that variable, and express the maximum possible size increase as a linear program that seeks to maximize how much more entropy is in the result of the query than the input. Although this linear program has exponentially many variables, we also show that we can decide in polynomial time whether the result can be any larger than the input database.

  10. Functional Fixedness in Creative Thinking Tasks Depends on Stimulus Modality.

    Science.gov (United States)

    Chrysikou, Evangelia G; Motyka, Katharine; Nigro, Cristina; Yang, Song-I; Thompson-Schill, Sharon L

    2016-11-01

    Pictorial examples during creative thinking tasks can lead participants to fixate on these examples and reproduce their elements even when yielding suboptimal creative products. Semantic memory research may illuminate the cognitive processes underlying this effect. Here, we examined whether pictures and words differentially influence access to semantic knowledge for object concepts depending on whether the task is close- or open-ended. Participants viewed either names or pictures of everyday objects, or a combination of the two, and generated common, secondary, or ad hoc uses for them. Stimulus modality effects were assessed quantitatively through reaction times and qualitatively through a novel coding system, which classifies creative output on a continuum from top-down-driven to bottom-up-driven responses. Both analyses revealed differences across tasks. Importantly, for ad hoc uses, participants exposed to pictures generated more top-down-driven responses than those exposed to object names. These findings have implications for accounts of functional fixedness in creative thinking, as well as theories of semantic memory for object concepts.

  11. Simple preconditioning for time-dependent density functional perturbation theory

    Science.gov (United States)

    Lehtovaara, Lauri; Marques, Miguel A. L.

    2011-07-01

    By far, the most common use of time-dependent density functional theory is in the linear-reponse regime, where it provides information about electronic excitations. Ideally, the linear-response equations should be solved by a method that avoids the use of the unoccupied Kohn-Sham states — such as the Sternheimer method — as this reduces the complexity and increases the precision of the calculation. However, the Sternheimer equation becomes ill-conditioned near and indefinite above the first resonant frequency, seriously hindering the use of efficient iterative solution methods. To overcome this serious limitation, and to improve the general convergence properties of the iterative techniques, we propose a simple preconditioning strategy. In our method, the Sternheimer equation is solved directly as a linear equation using an iterative Krylov subspace method, i.e., no self-consistent cycle is required. Furthermore, the preconditioner uses the information of just a few unoccupied states and requires simple and minimal modifications to existing implementations. In this way, convergence can be reached faster and in a considerably wider frequency range than the traditional approach.

  12. Quantum Drude friction for time-dependent density functional theory

    Science.gov (United States)

    Neuhauser, Daniel; Lopata, Kenneth

    2008-10-01

    way to very simple finite grid description of scattering and multistage conductance using time-dependent density functional theory away from the linear regime, just as absorbing potentials and self-energies are useful for noninteracting systems and leads.

  13. Implications of cortical balanced excitation and inhibition, functional heterogeneity, and sparseness of neuronal activity in fMRI

    Science.gov (United States)

    Xu, Jiansong

    2015-01-01

    Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies often report inconsistent findings, probably due to brain properties such as balanced excitation and inhibition and functional heterogeneity. These properties indicate that different neurons in the same voxels may show variable activities including concurrent activation and deactivation, that the relationships between BOLD signal and neural activity (i.e., neurovascular coupling) are complex, and that increased BOLD signal may reflect reduced deactivation, increased activation, or both. The traditional general-linear-model-based-analysis (GLM-BA) is a univariate approach, cannot separate different components of BOLD signal mixtures from the same voxels, and may contribute to inconsistent findings of fMRI. Spatial independent component analysis (sICA) is a multivariate approach, can separate the BOLD signal mixture from each voxel into different source signals and measure each separately, and thus may reconcile previous conflicting findings generated by GLM-BA. We propose that methods capable of separating mixed signals such as sICA should be regularly used for more accurately and completely extracting information embedded in fMRI datasets. PMID:26341939

  14. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  15. A BOLD signature of eyeblinks in the visual cortex.

    Science.gov (United States)

    Hupé, Jean-Michel; Bordier, Cécile; Dojat, Michel

    2012-05-15

    We are usually unaware of the brief but large illumination changes caused by blinks, presumably because of blink suppression mechanisms. In fMRI however, increase of the BOLD signal was reported in the visual cortex, e.g. during blocks of voluntary blinks (Bristow, Frith and Rees, 2005) or after spontaneous blinks recorded during the prolonged fixation of a static stimulus (Tse, Baumgartner and Greenlee, 2010). We tested whether such activation, possibly related to illumination changes, was also present during standard fMRI retinotopic and visual experiments and was large enough to contaminate the BOLD signal we are interested in. We monitored in a 3T scanner the eyeblinks of 14 subjects who observed three different types of visual stimuli, including periodic rotating wedges and contracting/expanding rings, event-related Mondrians and graphemes, while fixating. We performed event-related analyses on the set of detected spontaneous blinks. We observed large and widespread BOLD responses related to blinks in the visual cortex of every subject and whatever the visual stimulus. The magnitude of the modulation was comparable to visual stimulation. However, blink-related activations lay mostly in the anterior parts of retinotopic visual areas, coding the periphery of the visual field well beyond the extent of our stimuli. Blinks therefore represent an important source of BOLD variations in the visual cortex and a troublesome source of noise since any correlation, even weak, between the distribution of blinks and a tested protocol could trigger artifactual activities. However, the typical signature of blinks along the anterior calcarine and the parieto-occipital sulcus allows identifying, even in the absence of eyetracking, fMRI protocols possibly contaminated by a heterogeneous distribution of blinks.

  16. Christine Bold, ed. US Popular Print Culture: 1860-1920.

    OpenAIRE

    Feleki, Despoina

    2015-01-01

    US Popular Print Culture 1860-1920 is the sixth volume in The Oxford History of Popular Print Culture series. Edited by Christine Bold, it records as well as critically and historically assesses the most important aspects of popular print culture, spanning from Antebellum America until World War I. This great publishing endeavor follows an encyclopedic approach, without proposing one encompassing cultural theory on which to ground all these essays about the popular. It accepts that “popular c...

  17. Nonlinear Bayesian Estimation of BOLD Signal under Non-Gaussian Noise

    Directory of Open Access Journals (Sweden)

    Ali Fahim Khan

    2015-01-01

    Full Text Available Modeling the blood oxygenation level dependent (BOLD signal has been a subject of study for over a decade in the neuroimaging community. Inspired from fluid dynamics, the hemodynamic model provides a plausible yet convincing interpretation of the BOLD signal by amalgamating effects of dynamic physiological changes in blood oxygenation, cerebral blood flow and volume. The nonautonomous, nonlinear set of differential equations of the hemodynamic model constitutes the process model while the weighted nonlinear sum of the physiological variables forms the measurement model. Plagued by various noise sources, the time series fMRI measurement data is mostly assumed to be affected by additive Gaussian noise. Though more feasible, the assumption may cause the designed filter to perform poorly if made to work under non-Gaussian environment. In this paper, we present a data assimilation scheme that assumes additive non-Gaussian noise, namely, the e-mixture noise, affecting the measurements. The proposed filter MAGSF and the celebrated EKF are put to test by performing joint optimal Bayesian filtering to estimate both the states and parameters governing the hemodynamic model under non-Gaussian environment. Analyses using both the synthetic and real data reveal superior performance of the MAGSF as compared to EKF.

  18. A two-stage cascade model of BOLD responses in human visual cortex.

    Directory of Open Access Journals (Sweden)

    Kendrick N Kay

    Full Text Available Visual neuroscientists have discovered fundamental properties of neural representation through careful analysis of responses to controlled stimuli. Typically, different properties are studied and modeled separately. To integrate our knowledge, it is necessary to build general models that begin with an input image and predict responses to a wide range of stimuli. In this study, we develop a model that accepts an arbitrary band-pass grayscale image as input and predicts blood oxygenation level dependent (BOLD responses in early visual cortex as output. The model has a cascade architecture, consisting of two stages of linear and nonlinear operations. The first stage involves well-established computations-local oriented filters and divisive normalization-whereas the second stage involves novel computations-compressive spatial summation (a form of normalization and a variance-like nonlinearity that generates selectivity for second-order contrast. The parameters of the model, which are estimated from BOLD data, vary systematically across visual field maps: compared to primary visual cortex, extrastriate maps generally have larger receptive field size, stronger levels of normalization, and increased selectivity for second-order contrast. Our results provide insight into how stimuli are encoded and transformed in successive stages of visual processing.

  19. Relativistic Adiabatic Time-Dependent Density Functional Theory Using Hybrid Functionals and Noncollinear Spin Magnetization

    DEFF Research Database (Denmark)

    Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond

    2009-01-01

    We report an implementation of adiabatic time-dependent density functional theory based on the 4-component relativistic Dirac-Coulomb Hamiltonian and a closed-shell reference. The implementation includes noncollinear spin magnetization and full derivatives of functionals, including hybrid...... and time reversal symmetry on trial vectors to obtain even better reductions in terms of memory and run time, and without invoking approximations. Further reductions are obtained by exploiting point group symmetries for D2h and subgroups in a symmetry scheme where symmetry reductions translate...... into reduction of algebra from quaternion to complex or real. For hybrid GGAs with noncollinear spin magnetization we derive a new computationally advantageous equation for the full second variational derivatives of such exchange-correlation functionals. We apply our implementation to calculations on the ns2...

  20. Quality assurance in functional MRI

    DEFF Research Database (Denmark)

    Liu, Thomas T; Glover, Gary H; Mueller, Bryon A

    2015-01-01

    Over the past 20 years, functional magnetic resonance imaging (fMRI) has ben- efited greatly from improvements in MRI hardware and software. At the same time, fMRI researchers have pushed the technical limits of MRI systems and greatly in- fluenced the development of state-of-the-art systems....... Minimizing image noise and maximizing system stability is critical in fMRI because the blood oxygenation level- dependent (BOLD) signal changes that are used for most fMRI studies represent only a small fraction of the total MR signal. In addition, multiple imaging volumes must be acquired over time to track...... cognitive processes. As a result, MRI scanners must have excellent time-series stability to accurately measure BOLD signal changes over the course of a long time series (typically on the order of 10 min per scan). fMRI studies are particularly demanding on the scanner hardware because they utilize fast...

  1. Microenvironment Dependent Photobiomodulation on Function-Specific Signal Transduction Pathways

    Directory of Open Access Journals (Sweden)

    Timon Cheng-Yi Liu

    2014-01-01

    Full Text Available Cellular photobiomodulation on a cellular function has been shown to be homeostatic. Its function-specific pathway mechanism would be further discussed in this paper. The signal transduction pathways maintaining a normal function in its function-specific homeostasis (FSH, resisting the activation of many other irrelative signal transduction pathways, are so sparse that it can be supposed that there may be normal function-specific signal transduction pathways (NSPs. A low level laser irradiation or monochromatic light may promote the activation of partially activated NSP and/or its redundant NSP so that it may induce the second-order phase transition of a function from its dysfunctional one far from its FSH to its normal one in a function-specific microenvironment and may also induce the first-order functional phase transition of the normal function from low level to high level.

  2. State-dependent Jastrow correlation functions for $^{4}He$ nuclei

    CERN Document Server

    Guardiola, R

    1998-01-01

    We calculate the ground-state energy for the nucleus 4He with V4 nucleon interactions, making use of a Jastrow description of the corresponding wavefunction with state-dependent correlation factors. The effect related to the state dependence of the correlation is quite important, lowering the upper bound for the ground-state energy by some 2 MeV.

  3. Increased BOLD variability in the parietal cortex and enhanced parieto-occipital connectivity during tactile perception in congenitally blind individuals.

    Science.gov (United States)

    Leo, Andrea; Bernardi, Giulio; Handjaras, Giacomo; Bonino, Daniela; Ricciardi, Emiliano; Pietrini, Pietro

    2012-01-01

    Previous studies in early blind individuals posited a possible role of parieto-occipital connections in conveying nonvisual information to the visual occipital cortex. As a consequence of blindness, parietal areas would thus become able to integrate a greater amount of multimodal information than in sighted individuals. To verify this hypothesis, we compared fMRI-measured BOLD signal temporal variability, an index of efficiency in functional information integration, in congenitally blind and sighted individuals during tactile spatial discrimination and motion perception tasks. In both tasks, the BOLD variability analysis revealed many cortical regions with a significantly greater variability in the blind as compared to sighted individuals, with an overlapping cluster located in the left inferior parietal/anterior intraparietal cortex. A functional connectivity analysis using this region as seed showed stronger correlations in both tasks with occipital areas in the blind as compared to sighted individuals. As BOLD variability reflects neural integration and processing efficiency, these cross-modal plastic changes in the parietal cortex, even if described in a limited sample, reinforce the hypothesis that this region may play an important role in processing nonvisual information in blind subjects and act as a hub in the cortico-cortical pathway from somatosensory cortex to the reorganized occipital areas.

  4. Increased BOLD Variability in the Parietal Cortex and Enhanced Parieto-Occipital Connectivity during Tactile Perception in Congenitally Blind Individuals

    Directory of Open Access Journals (Sweden)

    Andrea Leo

    2012-01-01

    Full Text Available Previous studies in early blind individuals posited a possible role of parieto-occipital connections in conveying nonvisual information to the visual occipital cortex. As a consequence of blindness, parietal areas would thus become able to integrate a greater amount of multimodal information than in sighted individuals. To verify this hypothesis, we compared fMRI-measured BOLD signal temporal variability, an index of efficiency in functional information integration, in congenitally blind and sighted individuals during tactile spatial discrimination and motion perception tasks. In both tasks, the BOLD variability analysis revealed many cortical regions with a significantly greater variability in the blind as compared to sighted individuals, with an overlapping cluster located in the left inferior parietal/anterior intraparietal cortex. A functional connectivity analysis using this region as seed showed stronger correlations in both tasks with occipital areas in the blind as compared to sighted individuals. As BOLD variability reflects neural integration and processing efficiency, these cross-modal plastic changes in the parietal cortex, even if described in a limited sample, reinforce the hypothesis that this region may play an important role in processing nonvisual information in blind subjects and act as a hub in the cortico-cortical pathway from somatosensory cortex to the reorganized occipital areas.

  5. Real-time automated spectral assessment of the BOLD response for neurofeedback at 3 and 7T.

    Science.gov (United States)

    Koush, Yury; Elliott, Mark A; Scharnowski, Frank; Mathiak, Klaus

    2013-09-15

    Echo-planar imaging is the dominant functional MRI data acquisition scheme for evaluating the BOLD signal. To date, it remains the only approach providing neurofeedback from spatially localized brain activity. Real-time functional single-voxel proton spectroscopy (fSVPS) may be an alternative for spatially specific BOLD neurofeedback at 7T because it allows for a precise estimation of the local T2* signal, EPI-specific artifacts may be avoided, and the signal contrast may increase. In order to explore and optimize this alternative neurofeedback approach, we tested fully automated real-time fSVPS spectral estimation procedures to approximate T2* BOLD signal changes from the unsuppressed water peak, i.e. lorentzian non-linear complex spectral fit (LNLCSF) in frequency and frequency-time domain. The proposed approaches do not require additional spectroscopic localizers in contrast to conventional T2* approximation based on linear regression of the free induction decay (FID). For methods comparison, we evaluated quality measures for signals from the motor and the visual cortex as well as a real-time feedback condition at high (3T) and at ultra-high (7T) magnetic field strengths. Using these methods, we achieved reliable and fast water peak spectral parameter estimations. At 7T, we observed an absolute increase of spectra line narrowing due to the BOLD effect, but quality measures did not improve due to artifactual line broadening. Overall, the automated fSVPS approach can be used to assess dynamic spectral changes in real-time, and to provide localized T2* neurofeedback at 3 and 7T.

  6. Evolution of transverse momentum dependent distribution and fragmentation functions

    CERN Document Server

    Henneman, A A; Mulders, P J; Boer, Daniel

    2002-01-01

    We use Lorentz invariance and the QCD equations of motion to study the evolution of functions that appear at leading order in a 1/Q expansion in azimuthal asymmetries. This includes the evolution equation of the Collins fragmentation function. The moments of these functions are matrix elements of known twist two and twist three operators. We present the evolution in the large N_c limit, restricting to non-singlet for the chiral-even functions.

  7. Evolution of transverse momentum dependent distribution and fragmentation functions

    Energy Technology Data Exchange (ETDEWEB)

    Henneman, A.A. E-mail: alex@nat.vu.nl; Boer, Danieel; Mulders, P.J

    2002-01-07

    We use Lorentz invariance and the QCD equations of motion to study the evolution of functions that appear at leading order in a 1/Q expansion in azimuthal asymmetries. This includes the evolution equation of the Collins fragmentation function. The moments of these functions are matrix elements of known twist two and twist three operators. We present the evolution in the large N{sub c} limit, restricting to non-singlet for the chiral-even functions.

  8. Evolution of transverse momentum dependent distribution and fragmentation functions

    Science.gov (United States)

    Henneman, A. A.; Boer, Daniël; Mulders, P. J.

    2002-01-01

    We use Lorentz invariance and the QCD equations of motion to study the evolution of functions that appear at leading order in a 1/ Q expansion in azimuthal asymmetries. This includes the evolution equation of the Collins fragmentation function. The moments of these functions are matrix elements of known twist two and twist three operators. We present the evolution in the large Nc limit, restricting to non-singlet for the chiral-even functions.

  9. MEG and fMRI fusion for nonlinear estimation of neural and BOLD signal changes

    Directory of Open Access Journals (Sweden)

    Sergey M Plis

    2010-11-01

    Full Text Available The combined analysis of MEG/EEG and functional MRI measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the BOLD response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater SNR, that confirms the expectation arising from the nature of the experiment. The highly nonlinear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources.

  10. Evolution of transverse momentum dependent distribution and fragmentation functions

    NARCIS (Netherlands)

    Henneman, AA; Boer, D; Mulders, PJ

    2002-01-01

    We use Lorentz invariance and the QCD equations of motion to study the evolution of functions that appear at leading order in a I / Q expansion in azimuthal asymmetries. This includes the evolution equation of the Collins fragmentation function. The moments of these functions are matrix elements of

  11. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.

    Science.gov (United States)

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task.

  12. Indication of BOLD-specific venous flow-volume changes from precisely controlled hyperoxic vs. hypercapnic calibration.

    Science.gov (United States)

    Mark, Clarisse I; Pike, G Bruce

    2012-04-01

    Deriving cerebral metabolic rate of oxygen consumption (CMRO(2)) from blood oxygenation level-dependent (BOLD) signals involves a flow-volume parameter (α), reflecting total cerebral blood volume changes, and a calibration constant (M). Traditionally, the former is assumed a fixed value and the latter is measured under alterations in fixed inspired fractional concentrations of carbon dioxide. We recently reported on reductions in M-variability via precise control of end-tidal pressures of both hypercapnic (HC) and hyperoxic (HO) gases. In light of these findings, our aim was to apply the improved calibration alternatives to neuronal activation, making use of their distinct vasoactive natures to evaluate the α-value. Nine healthy volunteers were imaged at 3 T while simultaneously measuring BOLD and arterial spin-labeling signals during controlled, graded, HC, and HO, followed by visual (VC) and sensorimotor cortices (SMC) activation. On the basis of low M- and CMRO(2)-variability, the comparison of these calibration alternatives accurately highlighted a reduced venous flow-volume relationship (α=0.16±0.02, with α(VC)=0.12±0.04, and α(SMC)=0.20±0.02), as appropriate for BOLD modeling.

  13. Exact conditions on the temperature dependence of density functionals

    CERN Document Server

    Burke, Kieron; Grabowski, Paul E; Pribram-Jones, Aurora

    2015-01-01

    Universal exact conditions guided the construction of most ground-state density functional approximations in use today. We derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.

  14. Exact conditions on the temperature dependence of density functionals

    Science.gov (United States)

    Burke, K.; Smith, J. C.; Grabowski, P. E.; Pribram-Jones, A.

    2016-05-01

    Universal exact conditions guided the construction of most ground-state density functional approximations in use today. We derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.

  15. Photoreactivity of the occipital cortex measured by functional magnetic resonance imaging-blood oxygenation level dependent in migraine patients and healthy volunteers: pathophysiological implications.

    Science.gov (United States)

    Martín, Helena; Sánchez del Río, Margarita; de Silanes, Carlos López; Álvarez-Linera, Juan; Hernández, Juan Antonio; Pareja, Juan A

    2011-01-01

    The brain of migraineurs is hyperexcitable, particularly the occipital cortex, which is probably hypersensitive to light. Photophobia or hypersensitivity to light may be accounted for by an increased excitability of trigeminal, the visual pathways, and the occipital cortex. To study light sensitivity and photophobia by assessing the response to light stimuli with functional magnetic resonance imaging-blood oxygenation level dependent (fMRI-BOLD) of the occipital cortex in migraineurs and in controls. Also, to try to decipher the contribution of the occipital cortex to photophobia and whether the cortical reactivity of migraineurs may be part of a constitutional (defensive) mechanism or represents an acquired (sensitization) phenomenon. Nineteen patients with migraine (7 with aura and 12 without aura) and 19 controls were studied with fMRI-BOLD during 4 increasing light intensities. Eight axial image sections of 0.5 cm that covered the occipital cortex were acquired for each intensity. We measured the extension and the intensity of activation for every light stimuli. Photophobia was estimated according to a 0 to 3 semiquantitative scale of light discomfort. Migraineurs had a significantly higher number of fMRI-activated voxels at low (320.4 for migraineurs [SD = 253.9] and 164.3 for controls [SD = 102.7], P = .027) and medium-low luminance levels (501.2 for migraineurs [SD = 279.5] and 331.1 for controls [SD = 194.3], P = .034) but not at medium-high (579.5 for migraineurs [SD = 201.4] and 510.2 for controls [SD = 239.5], P = .410) and high light stimuli (496.2 for migraineurs [SD = 216.2] and 394.7 for controls [SD = 240], P = .210). No differences were found with respect to the voxel activation intensity (amplitude of the BOLD wave) between migraineurs and controls (8.98 [SD = 2.58] vs 7.99 [SD = 2.57], P = .25; 10.82 [SD = 3.27] vs 9.81 [SD = 3.19], P = .31; 11.90 [SD = 3.18] vs 11.06 [SD = 2.56], P = .62; 11.45 [SD = 2.65] vs 10.25 [SD = 2.22], P = .16). Light

  16. Approaches to brain stress testing: BOLD magnetic resonance imaging with computer-controlled delivery of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    W Alan C Mutch

    Full Text Available BACKGROUND: An impaired vascular response in the brain regionally may indicate reduced vascular reserve and vulnerability to ischemic injury. Changing the carbon dioxide (CO(2 tension in arterial blood is commonly used as a cerebral vasoactive stimulus to assess the cerebral vascular response, changing cerebral blood flow (CBF by up to 5-11 percent/mmHg in normal adults. Here we describe two approaches to generating the CO(2 challenge using a computer-controlled gas blender to administer: i a square wave change in CO(2 and, ii a ramp stimulus, consisting of a continuously graded change in CO(2 over a range. Responses were assessed regionally by blood oxygen level dependent (BOLD magnetic resonance imaging (MRI. METHODOLOGY/PRINCIPAL FINDINGS: We studied 8 patients with known cerebrovascular disease (carotid stenosis or occlusion and 2 healthy subjects. The square wave stimulus was used to study the dynamics of the vascular response, while the ramp stimulus assessed the steady-state response to CO(2. Cerebrovascular reactivity (CVR maps were registered by color coding and overlaid on the anatomical scans generated with 3 Tesla MRI to assess the corresponding BOLD signal change/mmHg change in CO(2, voxel-by-voxel. Using a fractal temporal approach, detrended fluctuation analysis (DFA maps of the processed raw BOLD signal per voxel over the same CO(2 range were generated. Regions of BOLD signal decrease with increased CO(2 (coded blue were seen in all of these high-risk patients, indicating regions of impaired CVR. All patients also demonstrated regions of altered signal structure on DFA maps (Hurst exponents less than 0.5; coded blue indicative of anti-persistent noise. While 'blue' CVR maps remained essentially stable over the time of analysis, 'blue' DFA maps improved. CONCLUSIONS/SIGNIFICANCE: This combined dual stimulus and dual analysis approach may be complementary in identifying vulnerable brain regions and thus constitute a regional as

  17. The effect of renal denervation on kidney oxygenation as determined by BOLD MRI in patients with hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Vink, E.E.; Boer, A.; Blankestijn, P.J. [University Medical Center Utrecht, Department of Nephrology, P.O. Box 85500, GA, Utrecht (Netherlands); Verloop, W.L.; Voskuil, M. [University Medical Center Utrecht, Department of Cardiology, Utrecht (Netherlands); Spiering, W.; Leiner, T. [University Medical Center Utrecht, Department of Vascular Medicine, Utrecht (Netherlands); Vonken, E.; Hoogduin, J.M. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Bots, M.L. [University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands)

    2015-07-15

    Renal denervation (RDN) is a promising therapy for resistant hypertension. RDN is assumed to decrease sympathetic activity. Consequently, RDN can potentially increase renal oxygenation. Blood oxygen level-dependent MRI (BOLD-MRI) provides a non-invasive tool to determine renal oxygenation in humans. The aim of the current study was to investigate the effect of RDN on renal oxygenation as determined by BOLD-MRI. Patients with resistant hypertension or the inability to follow a stable drug regimen due to unacceptable side effects were included. BOLD-MRI was performed before and 12 months after RDN. Twenty-seven patients were imaged on 3 T and 19 on 1.5 T clinical MRI systems. Fifty-four patients were included, 46 patients (23 men, mean age 57 years) completed the study. Mean 24-h BP changed from 163(±20)/98(±14) mmHg to 154(±22)/92(±13) mmHg (p = 0.001 and p < 0.001). eGFR did not change after RDN [77(±18) vs. 79(±20) mL/min/1.73 m{sup 2}; p = 0.13]. RDN did not affect renal oxygenation [1.5 T: cortical R2*: 12.5(±0.9) vs. 12.5(±0.9), p = 0.94; medullary R2*: 19.6(±1.7) vs. 19.3(1.4), p = 0.40; 3 T: cortical R2*: 18.1(±0.8) vs. 17.8(±1.2), p = 0.47; medullary R2*: 27.4(±1.9) vs. 26.7(±1.8), p = 0.19]. The current study shows that RDN does not lead to changes in renal oxygenation 1 year after RDN as determined by BOLD-MRI. (orig.)

  18. The BOLD cerebrovascular reactivity response to progressive hypercapnia in young and elderly

    DEFF Research Database (Denmark)

    Bhogal, Alex A.; De Vis, Jill B.; Siero, Jeroen C.W.

    2016-01-01

    to broaden our interpretation of the BOLD-CVR response. Significant age-related differences were observed. Grey matter CVR at 7 mm Hg above resting PetCO2 was lower amongst elderly (0.19 ± 0.06%ΔBOLD/mm Hg) as compared to young subjects (0.26 ± 0.07%ΔBOLD/mm Hg). White matter CVR at 7 mm Hg above baseline...... PetCO2 showed no significant difference between young (0.04 ± 0.02%ΔBOLD/mm Hg) and elderly subjects (0.05 ± 0.03%ΔBOLD/mm Hg). We saw no significant differences in the BOLD signal response to progressive hypercapnia between male and female subjects in either grey or white matter. The observed...

  19. Existence of time-dependent density-functional theory for open electronic systems: time-dependent holographic electron density theorem.

    Science.gov (United States)

    Zheng, Xiao; Yam, ChiYung; Wang, Fan; Chen, GuanHua

    2011-08-28

    We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the foundation of time-dependent density-functional theory (TDDFT) for open electronic systems. For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence between the electron density inside any finite subsystem and the time-dependent external potential. As a result, any electronic property of an open system in principle can be determined uniquely by the electron density function inside the open region. Implications of the TD-HEDT on the practicality of TDDFT are also discussed.

  20. Transverse momentum dependence in gluon distribution and fragmentation functions

    CERN Document Server

    Mulders, P J

    2001-01-01

    We investigate the twist two gluon distribution functions for spin 1/2 hadrons, emphasizing intrinsic transverse momentum of the gluons. These functions are relevant in leading order in the inverse hard scale in scattering processes such as inclusive leptoproduction or Drell-Yan scattering, or more general in hard processes in which at least two hadrons are involved. They show up in azimuthal asymmetries. For future estimates of such observables, we discuss specific bounds on these functions.

  1. Emergence of ratio-dependent and predator-dependent functional responses for pollination mutualism and seed parasitism

    Science.gov (United States)

    DeAngelis, Donald L.; Holland, J. Nathaniel

    2006-01-01

    Prey (N) dependence [g(N)], predator (P) dependence [g(P) or g(N,P)], and ratio dependence [f(P/N)] are often seen as contrasting forms of the predator's functional response describing predator consumption rates on prey resources in predator–prey and parasitoid–host interactions. Analogously, prey-, predator-, and ratio-dependent functional responses are apparently alternative functional responses for other types of consumer–resource interactions. These include, for example, the fraction of flowers pollinated or seeds parasitized in pollination (pre-dispersal) seed-parasitism mutualisms, such as those between fig wasps and fig trees or yucca moths and yucca plants. Here we examine the appropriate functional responses for how the fraction of flowers pollinated and seeds parasitized vary with the density of pollinators (predator dependence) or the ratio of pollinator and flower densities (ratio dependence). We show that both types of functional responses can emerge from minor, but biologically important variations on a single model. An individual-based model was first used to describe plant–pollinator interactions. Conditional upon on whether the number of flowers visited by the pollinator was limited by factors other than search time (e.g., by the number of eggs it had to lay, if it was also a seed parasite), and on whether the pollinator could directly find flowers on a plant, or had to search, the simulation results lead to either a predator-dependent or a ratio-dependent functional response. An analytic model was then used to show mathematically how these two cases can arise.

  2. Density-dependent prophylaxis and condition-dependent immune function in Lepidopteran larvae: a multivariate approach

    OpenAIRE

    Cotter, Sheena; Hails, R. S.; Cory, J S; Wilson, K.

    2004-01-01

    1. The risk of parasitism and infectious disease is expected to increase with population density as a consequence of positive density-dependent transmission rates. Therefore, species that encounter large fluctuations in population density are predicted to exhibit plasticity in their immune system, such that investment in costly immune defences is adjusted to match the probability of exposure to parasites and pathogens (i.e. density-dependent prophylaxis).

  3. Functional proteomics on zinc-dependent metalloproteinases using inhibitor probes

    NARCIS (Netherlands)

    Klein, Theo; Geurink, Paul P.; Overkleeft, Hermen S.; Kauffman, Henk K.; Bischoff, Rainer

    2009-01-01

    Metzincins ore a family of zinc(II)-dependent metolloproteinases with well known members such as the matrix metalloproteinases (MMPs) and A disintegrin and metalloproteinases (ADAMs). Metzincins are largely responsible for the modulation and regulation of the extracellular matrix by proteolytic degr

  4. Functional proteomics on zinc-dependent metalloproteinases using inhibitor probes

    NARCIS (Netherlands)

    Klein, Theo; Geurink, Paul P.; Overkleeft, Hermen S.; Kauffman, Henk K.; Bischoff, Rainer

    Metzincins ore a family of zinc(II)-dependent metolloproteinases with well known members such as the matrix metalloproteinases (MMPs) and A disintegrin and metalloproteinases (ADAMs). Metzincins are largely responsible for the modulation and regulation of the extracellular matrix by proteolytic

  5. OXPHOS-Dependent Cells Identify Environmental Disruptors of Mitochondrial Function

    Science.gov (United States)

    Mitochondrial dysfunction is associated with numerous chronic diseases including metabolic syndrome. Environmental chemicals can impair mitochondrial function through numerous mechanisms such as membrane disruption, complex inhibition and electron transport chain uncoupling. Curr...

  6. Advances in the hydrodynamics solver of CO5BOLD

    Science.gov (United States)

    Freytag, Bernd

    Many features of the Roe solver used in the hydrodynamics module of CO5BOLD have recently been added or overhauled, including the reconstruction methods (by adding the new second-order ``Frankenstein's method''), the treatment of transversal velocities, energy-flux averaging and entropy-wave treatment at small Mach numbers, the CTU scheme to combine the one-dimensional fluxes, and additional safety measures. All this results in a significantly better behavior at low Mach number flows, and an improved stability at larger Mach numbers requiring less (or no) additional tensor viscosity, which then leads to a noticeable increase in effective resolution.

  7. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    Science.gov (United States)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  8. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    Science.gov (United States)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  9. Classical Solutions of Path-Dependent PDEs and Functional Forward-Backward Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Shaolin Ji

    2013-01-01

    Full Text Available In this paper we study the relationship between functional forward-backward stochastic systems and path-dependent PDEs. In the framework of functional Itô calculus, we introduce a path-dependent PDE and prove that its solution is uniquely determined by a functional forward-backward stochastic system.

  10. BOLD fMRI of C-Fiber Mediated Nociceptive Processing in Mouse Brain in Response to Thermal Stimulation of the Forepaws.

    Directory of Open Access Journals (Sweden)

    Simone C Bosshard

    Full Text Available Functional magnetic resonance imaging (fMRI in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers.

  11. BOLD fMRI of C-Fiber Mediated Nociceptive Processing in Mouse Brain in Response to Thermal Stimulation of the Forepaws.

    Science.gov (United States)

    Bosshard, Simone C; Stuker, Florian; von Deuster, Constantin; Schroeter, Aileen; Rudin, Markus

    2015-01-01

    Functional magnetic resonance imaging (fMRI) in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers.

  12. BOLD fMRI of C-Fiber Mediated Nociceptive Processing in Mouse Brain in Response to Thermal Stimulation of the Forepaws

    Science.gov (United States)

    Bosshard, Simone C.; Stuker, Florian; von Deuster, Constantin; Schroeter, Aileen; Rudin, Markus

    2015-01-01

    Functional magnetic resonance imaging (fMRI) in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers. PMID:25950440

  13. Calcium-dependent mitochondrial function and dysfunction in neurons.

    Science.gov (United States)

    Pivovarova, Natalia B; Andrews, S Brian

    2010-09-01

    Calcium is an extraordinarily versatile signaling ion, encoding cellular responses to a wide variety of external stimuli. In neurons, mitochondria can accumulate enormous amounts of calcium, with the consequence that mitochondrial calcium uptake, sequestration and release play pivotal roles in orchestrating calcium-dependent responses as diverse as gene transcription and cell death. In this review, we consider the basic chemistry of calcium as a 'sticky' cation, which leads to extremely high bound/free ratios, and discuss areas of current interest or controversy. Topics addressed include methodologies for measuring local intracellular calcium, mitochondrial calcium buffering and loading capacity, mitochondrially directed spatial calcium gradients, and the role of calcium overload-dependent mitochondrial dysfunction in glutamate-evoked excitotoxic injury and neurodegeneration. Finally, we consider the relationship between delayed calcium de-regulation, the mitochondrial permeability transition and the generation of reactive oxygen species, and propose a unified view of the 'source specificity' and 'calcium overload' models of N-methyl-d-aspartate (NMDA) receptor-dependent excitotoxicity. Non-NMDA receptor mechanisms of excitotoxicity are discussed briefly. Journal compilation © 2010 FEBS. No claim to original US government works.

  14. Functionally diverse biotin-dependent enzymes with oxaloacetate decarboxylase activity.

    Science.gov (United States)

    Lietzan, Adam D; St Maurice, Martin

    2014-02-15

    Biotin-dependent enzymes catalyze carboxylation, decarboxylation and transcarboxylation reactions that participate in the primary metabolism of a wide range of organisms. In all cases, the overall reaction proceeds via two half reactions that take place in physically distinct active sites. In the first half-reaction, a carboxyl group is transferred to the 1-N' of a covalently tethered biotin cofactor. The tethered carboxybiotin intermediate subsequently translocates to a second active site where the carboxyl group is either transferred to an acceptor substrate or, in some bacteria and archaea, is decarboxylated to biotin and CO2 in order to power the export of sodium ions from the cytoplasm. A homologous carboxyltransferase domain is found in three enzymes that catalyze diverse overall reactions: carbon fixation by pyruvate carboxylase, decarboxylation and sodium transport by the biotin-dependent oxaloacetate decarboxylase complex, and transcarboxylation by transcarboxylase from Propionibacterium shermanii. Over the past several years, structural data have emerged which have greatly advanced the mechanistic description of these enzymes. This review assembles a uniform description of the carboxyltransferase domain structure and catalytic mechanism from recent studies of pyruvate carboxylase, oxaloacetate decarboxylase and transcarboxylase, three enzymes that utilize an analogous carboxyltransferase domain to catalyze the biotin-dependent decarboxylation of oxaloacetate.

  15. The functional central limit theorem for strong near-epoch dependent random variables

    Institute of Scientific and Technical Information of China (English)

    QIU Jin; LIN Zhengyan

    2004-01-01

    The functional central limit theorem for strong near-epoch dependent sequences of random variables is proved.The conditions given improve on previous results in the literature concerning dependence and heterogeneity.

  16. A-dependence of weak nuclear structure functions

    Energy Technology Data Exchange (ETDEWEB)

    Haider, H.; Athar, M. Sajjad [Department of Physics, Aligarh Muslim University, Aligarh-202 002 (India); Simo, I. Ruiz [Dipartimento di Fisica, Universitá degli studi di Trento Via Sommarive 14, Povo (Trento) I-38123 (Italy)

    2015-05-15

    Effect of nuclear medium on the weak structure functions F{sub 2}{sup A}(x, Q{sup 2}) and F{sub 3}{sup A}(x, Q{sup 2}) have been studied using charged current (anti)neutrino deep inelastic scattering on various nuclear targets. Relativistic nuclear spectral function which incorporate Fermi motion, binding and nucleon correlations are used for the calculations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. Using these structure functions, F{sub i}{sup A}/F{sub i}{sup proton} and F{sub i}{sup A}/F{sub i}{sup deuteron}(i=2,3, A={sup 12}C, {sup 16}O, CH and H{sub 2}O) are obtained.

  17. The Morphological Type Dependence of K-band Luminosity Functions

    CERN Document Server

    Devereux, Nick; Willner, S P; Ashby, M L N; Willmer, C N A

    2009-01-01

    Differential 2.2um (K-band) luminosity functions are presented for a complete sample of 1570 nearby Vgsr < 3000 km/s, where Vgsr is the velocity measured with respect to the Galactic standard of rest), bright (K < 10 mag), galaxies segregated by visible morphology. The K-band luminosity function for late-type spirals follows a power law that rises towards low luminosities whereas the K-band luminosity functions for ellipticals, lenticulars and bulge-dominated spirals are peaked with a fall off at both high and low luminosities. However, each morphological type (E, S0, S0/a-Sab, Sb-Sbc, Sc-Scd) contributes approximately equally to the overall K-band luminosity density in the local universe, and by inference, the stellar mass density as well.

  18. Fungal NRPS-dependent siderophores: From function to prediction

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Knudsen, Michael; Hansen, Frederik Teilfeldt

    2014-01-01

    discuss the function of siderophores in relation to fungal iron uptake mechanisms and their importance for coexistence with host organisms. The chemical nature of the major groups of siderophores and their regulation is described along with the function and architecture of the large multi-domain enzymes...... responsible for siderophore synthesis, namely the non-ribosomal peptide synthetases (NRPSs). Finally, we present the most recent advances in our understanding of the structural biology of fungal NRPSs and discuss opportunities for the development of a fungal NRPS prediction server...

  19. Fungal NRPS-dependent siderophores: From function to prediction

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Knudsen, Michael; Hansen, Frederik Teilfeldt

    2014-01-01

    discuss the function of siderophores in relation to fungal iron uptake mechanisms and their importance for coexistence with host organisms. The chemical nature of the major groups of siderophores and their regulation is described along with the function and architecture of the large multi-domain enzymes...... responsible for siderophore synthesis, namely the non-ribosomal peptide synthetases (NRPSs). Finally, we present the most recent advances in our understanding of the structural biology of fungal NRPSs and discuss opportunities for the development of a fungal NRPS prediction server...

  20. Problem Decomposition Method to Compute an Optimal Cover for a Set of Functional Dependencies

    Directory of Open Access Journals (Sweden)

    Vitalie COTELEA

    2011-12-01

    Full Text Available The paper proposes a problem decomposition method for building optimal cover for a set of functional dependencies to decrease the solving time. At the beginning, the paper includes an overview of the covers of functional dependencies. There are considered definitions and properties of non redundant covers for sets of functional dependencies, reduced and canonical covers as well as equivalence classes of functional dependencies, minimum and optimal covers. Then, a theoretical tool for inference of functional dependencies is proposed, which possesses the uniqueness property. And finally, the set of attributes of the relational schema is divided into equivalence classes of attributes that will serve as the basis for building optimal cover for a set of functional dependencies.

  1. Bounds on Transverse Momentum Dependent Distribution and Fragmentation Functions

    Science.gov (United States)

    Bacchetta, A.; Boglione, M.; Henneman, A.; Mulders, P. J.

    2000-07-01

    We give bounds on the distribution and fragmentation functions that appear at leading order in deep inelastic one-particle inclusive leptoproduction or in Drell-Yan processes. These bounds simply follow from positivity of the defining matrix elements and are an important guidance in estimating the magnitude of the azimuthal and spin asymmetries in these processes.

  2. Bounds on transverse momentum dependent distribution and fragmentation functions

    CERN Document Server

    Bacchetta, A; Henneman, A A; Mulders, P J

    2000-01-01

    We give bounds on the distribution and fragmentation functions that appear at leading order in deep inelastic 1-particle inclusive leptoproduction or in Drell-Yan processes. These bounds simply follow from positivity of the defining matrix elements and are an important guidance in estimating the magnitude of the azimuthal and spin asymmetries in these processes.

  3. Lipid dependence of ABC transporter localization and function

    NARCIS (Netherlands)

    Klappe, Karin; Hummel, Ina; Hoekstra, Dick; Kok, Jan Willem

    2009-01-01

    Lipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. ATP-binding cassette (ABC) transporters have also been localized in these membrane domains. In this review the evidence for this specific localization will be evaluated and dis

  4. Lipid dependence of ABC transporter localization and function

    NARCIS (Netherlands)

    Klappe, Karin; Hummel, Ina; Hoekstra, Dick; Kok, Jan Willem

    2009-01-01

    Lipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. ATP-binding cassette (ABC) transporters have also been localized in these membrane domains. In this review the evidence for this specific localization will be evaluated and dis

  5. Lipid dependence of ABC transporter localization and function

    NARCIS (Netherlands)

    Klappe, Karin; Hummel, Ina; Hoekstra, Dick; Kok, Jan Willem

    2009-01-01

    Lipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. ATP-binding cassette (ABC) transporters have also been localized in these membrane domains. In this review the evidence for this specific localization will be evaluated and

  6. Density-dependence of functional spiking networks in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Michael I [Los Alamos National Laboratory; Gintautuas, Vadas [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Bettencourt, Luis M A [Los Alamos National Laboratory; Bennett, Ryan [UNIV OF NORTH TEXAS; Santa Maria, Cara L [UNIV OF NORTH TEXAS

    2008-01-01

    During development, the mammalian brain differentiates into specialized regions with unique functional abilities. While many factors contribute to this functional specialization, we explore the effect neuronal density can have on neuronal interactions. Two types of networks, dense (50,000 neurons and glia support cells) and sparse (12,000 neurons and glia support cells), are studied. A competitive first response model is applied to construct activation graphs that represent pairwise neuronal interactions. By observing the evolution of these graphs during development in vitro we observe that dense networks form activation connections earlier than sparse networks, and that link-!llltropy analysis of the resulting dense activation graphs reveals that balanced directional connections dominate. Information theoretic measures reveal in addition that early functional information interactions (of order 3) are synergetic in both dense and sparse networks. However, during development in vitro, such interactions become redundant in dense, but not sparse networks. Large values of activation graph link-entropy correlate strongly with redundant ensembles observed in the dense networks. Results demonstrate differences between dense and sparse networks in terms of informational groups, pairwise relationships, and activation graphs. These differences suggest that variations in cell density may result in different functional specialization of nervous system tissue also in vivo.

  7. Skeletal muscle microvascular function in girls with Turner syndrome

    OpenAIRE

    West, Sarah L.; Clodagh S. O'Gorman; Alyaa H. Elzibak; Jessica Caterini; Noseworthy, Michael D; Tammy Rayner; Jill Hamilton; Wells, Greg D.

    2014-01-01

    Background: Exercise intolerance is prevalent in individuals with Turner Syndrome (TS). We recently demonstrated that girls with TS have normal aerobic but altered skeletal muscle anaerobic metabolism compared to healthy controls (HC). The purpose of this study was to compare peripheral skeletal muscle microvascular function in girls with TS to HC after exercise. We hypothesized that girls with TS would have similar muscle blood-oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) s...

  8. Renormalization Scheme Dependence and the Renormalization Group Beta Function

    OpenAIRE

    Chishtie, F. A.; McKeon, D. G. C.

    2016-01-01

    The renormalization that relates a coupling "a" associated with a distinct renormalization group beta function in a given theory is considered. Dimensional regularization and mass independent renormalization schemes are used in this discussion. It is shown how the renormalization $a^*=a+x_2a^2$ is related to a change in the mass scale $\\mu$ that is induced by renormalization. It is argued that the infrared fixed point is to be a determined in a renormalization scheme in which the series expan...

  9. Size dependence of complex refractive index function of growing nanoparticles

    Science.gov (United States)

    Eremin, A.; Gurentsov, E.; Popova, E.; Priemchenko, K.

    2011-08-01

    The evidence of the change of the complex refractive index function E( m) of carbon and iron nanoparticles as a function of their size was found from two-color time-resolved laser-induced incandescence (TiRe-LII) measurements. Growing carbon particles were observed from acetylene pyrolysis behind a shock wave and iron particles were synthesized by pulse Kr-F excimer laser photo-dissociation of Fe(CO)5. The magnitudes of refractive index function were found through the fitting of two independently measured values of particle heat up temperature, determined by two-color pyrometry and from the known energy of the laser pulse and the E( m) variation. Small carbon particles of about 1-14 nm in diameter had a low value of E( m)˜0.05-0.07, which tends to increase up to a value of 0.2-0.25 during particle growth up to 20 nm. Similar behavior for iron particles resulted in E( m) rise from ˜0.1 for particles 1-3 nm in diameter up to ˜0.2 for particles >12 nm in diameter.

  10. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans.

    Science.gov (United States)

    Purnell, J Q; Klopfenstein, B A; Stevens, A A; Havel, P J; Adams, S H; Dunn, T N; Krisky, C; Rooney, W D

    2011-03-01

    In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during glucose ingestion or infusion have demonstrated suppression of hypothalamic signalling, but no studies have compared the effects of glucose and fructose. We therefore sought to determine if the brain response differed to glucose vs. fructose in humans independently of the ingestive process. Nine healthy, normal weight subjects underwent blood oxygenation level dependent (BOLD) fMRI measurements during either intravenous (IV) glucose (0.3 mg/kg), fructose (0.3 mg/kg) or saline, administered over 2 min in a randomized, double-blind, crossover study. Blood was sampled every 5 min during a baseline period and following infusion for 60 min in total for glucose, fructose, lactate and insulin levels. No significant brain BOLD signal changes were detected in response to IV saline. BOLD signal in the cortical control areas increased during glucose infusion (p = 0.002), corresponding with increased plasma glucose and insulin levels. In contrast, BOLD signal decreased in the cortical control areas during fructose infusion (p = 0.006), corresponding with increases of plasma fructose and lactate. Neither glucose nor fructose infusions significantly altered BOLD signal in the hypothalamus. In normal weight humans, cortical responses as assessed by BOLD fMRI to infused glucose are opposite to those of fructose. Differential brain responses to these sugars and their metabolites may provide insight into the neurologic basis for dysregulation of food intake during high dietary fructose intake. © 2011 Blackwell Publishing Ltd.

  11. Functional neuroanatomy in depressed patients with sexual dysfunction: blood oxygenation level dependent functional MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jong Chul [Chonnam National Univ. Hospital, Kwangju (Korea, Republic of)

    2004-06-15

    To demonstrate the functional neuroanatomy associated with sexual arousal visually evoked in depressed males who have underlying sexual dysfunction using Blood Oxygenation Level Dependent-based fMRI. Ten healthy volunteers (age range 21-55: mean 32.5 years), and 10 depressed subjects (age range 23-51: mean 34.4 years, mean Beck Depression Inventory score of 39.6 {+-} 5.9, mean Hamilton Rating Scale Depression (HAMD)-17 score of 33.5 {+-} 6.0) with sexual arousal dysfunction viewed erotic and neutral video films during functional magnetic resonance imaging (fMRI) with 1.5 T MR scanner (GE Signa Horizon). The fMRI data were obtained from 7 oblique planes using gradient-echo EPI (flip angle/TR/TE=90 .deg. /6000 ms/50 ms). The visual stimulation paradigm began with 60 sec of black screen, 150 sec of neutral stimulation with a documentary video film, 30 sec of black screen, 150 sec of sexual stimulation with an erotic video film followed by 30 sec of black screen. The brain activation maps and their quantification were analyzed by SPM99 program. There was a significant difference of brain activation between two groups during visual sexual stimulation. In depressed subjects, the level of activation during the visually evoked sexual arousal was significantly less than that of healthy volunteers, especially in the cerebrocortical areas of the hypothalamus, thalamus, caudate nucleus, and inferior and superior temporal gyri. On the other hand, the cerebral activation patterns during the neutral condition in both groups showed no significant differences ({rho} < 0.01). This study is the first demonstration of the functional neuroanatomy of the brain associated with sexual dysfunction in depressed patients using fMRI. In order to validate our physiological neuroscience results, further studies that would include patients with other disorders and sexual dysfunction, and depressed patients without sexual dysfunction and their treatment response are needed.

  12. Prefrontal response and frontostriatal functional connectivity to monetary reward in abstinent alcohol-dependent young adults

    National Research Council Canada - National Science Library

    Forbes, Erika E; Rodriguez, Eric E; Musselman, Samuel; Narendran, Rajesh

    2014-01-01

    ... function that are central to addiction. In addition, few studies have examined function in these regions during young adulthood, when exposure is less chronic than in typical samples of alcohol-dependent adults...

  13. Electromagnetism and multiple-valued loop-dependent wave functionals

    CERN Document Server

    Leal, Lorenzo

    2009-01-01

    We quantize the Maxwell theory in the presence of a electric charge in a "dual" Loop Representation, i.e. a geometric representation of magnetic Faraday's lines. It is found that the theory can be seen as a theory without sources, except by the fact that the wave functional becomes multivalued. This can be seen as the dual counterpart of what occurs in Maxwell theory with a magnetic pole, when it is quantized in the ordinary Loop Representation. The multivaluedness can be seen as a result of the multiply-connectedness of the configuration space of the quantum theory.

  14. Placental oxygen transport estimated by the hyperoxic placental BOLD MRI response

    DEFF Research Database (Denmark)

    Sørensen, Anne Nødgaard; Sinding, Marianne; Peters, David A;

    2015-01-01

    cases of severe early onset FGR, placental BOLD MRI was performed in a 1.5 Tesla MRI system (TR:8000 msec, TE:50 msec, Flip angle:90). Placental histological examination was performed in the FGR cases. In normal pregnancies, the average hyperoxic placental BOLD response was 12.6 ± 5.4% (mean ± SD...

  15. Dynamical properties of BOLD activity from the ventral posteromedial cortex associated with meditation and attentional skills.

    Science.gov (United States)

    Pagnoni, Giuseppe

    2012-04-11

    Neuroimaging data suggest a link between the spontaneous production of thoughts during wakeful rest and slow fluctuations of activity in the default mode network (DMN), a set of brain regions with high basal metabolism and a major neural hub in the ventral posteromedial cortex (vPMC). Meta-awareness and regulation of mind-wandering are core cognitive components of most contemplative practices and to study their impact on DMN activity, we collected functional MRI (fMRI) data from a cohort of experienced Zen meditators and meditation-naive controls engaging in a basic attention-to-breathing protocol. We observed a significant group difference in the skewness of the fMRI BOLD signal from the vPMC, suggesting that the relative incidence of states of elevated vPMC activity was lower in meditators; furthermore, the same parameter was significantly correlated with performance on a rapid visual information processing (RVIP) test for sustained attention conducted outside the scanner. Finally, a functional connectivity analysis with the vPMC seed revealed a significant association of RVIP performance with the degree of temporal correlation between vPMC and the right temporoparietal junction (TPJ), a region strongly implicated in stimulus-triggered reorienting of attention. Together, these findings suggest that the vPMC BOLD signal skewness and the temporal relationship of vPMC and TPJ activities reflect the dynamic tension between mind-wandering, meta-awareness, and directed attention, and may represent a useful endophenotype for studying individual differences in attentional abilities and the impairment of the latter in specific clinical conditions.

  16. Intracellular mediators of JAM-A-dependent epithelial barrier function.

    Science.gov (United States)

    Monteiro, Ana C; Parkos, Charles A

    2012-06-01

    Junctional adhesion molecule-A (JAM-A) is a critical signaling component of the apical junctional complex, a structure composed of several transmembrane and scaffold molecules that controls the passage of nutrients and solutes across epithelial surfaces. Observations from JAM-A-deficient epithelial cells and JAM-A knockout animals indicate that JAM-A is an important regulator of epithelial paracellular permeability; however, the mechanism(s) linking JAM-A to barrier function are not understood. This review highlights recent findings relevant to JAM-A-mediated regulation of epithelial permeability, focusing on the role of upstream and downstream signaling candidates. We draw on what is known about proteins reported to associate with JAM-A in other pathways and on known modulators of barrier function to propose candidate effectors that may mediate JAM-A regulation of epithelial paracellular permeability. Further investigation of pathways highlighted in this review may provide ideas for novel therapeutics that target debilitating conditions associated with barrier dysfunction, such as inflammatory bowel disease.

  17. A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series

    Directory of Open Access Journals (Sweden)

    Charmaine eDemanuele

    2015-10-01

    Full Text Available Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from fMRI blood oxygenation level dependent (BOLD time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC, but not in the primary visual cortex (V1. Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in multivariate patterns of voxel

  18. Socio-demographic factors related to functional limitations and care dependency among older Egyptians

    NARCIS (Netherlands)

    Boggatz, Thomas; Farid, Tamer; Mohammedin, Ahmed; Dijkstra, Ate; Lohrmann, Christa; Dassen, Theo

    P>Title. Socio-demographic factors related to functional limitations and care dependency among older Egyptians. Aim. This paper is a report of a study determining the relationship of socio-demographic factors to functional limitations and care dependency among older care recipients and non-care

  19. Fast Algorithms of Mining Probability Functional Dependency Rules in Relational Database

    Institute of Scientific and Technical Information of China (English)

    TAO Xiaopeng; ZHOU Aoying; HU Yunfa

    2000-01-01

    This paper defines a new kind of rule, probability functional dependency rule. The functional dependency degree can be depicted by this kind of rule. Five algorithms, from the simple to the complex, are presented to mine this kind of rule in different condition. The related theorems are proved to ensure the high efficiency and the correctness of the above algorithms.

  20. Effects of alcohol intake on brain structure and function in non-alcohol-dependent drinkers

    NARCIS (Netherlands)

    Bruin, Eveline Astrid de

    2005-01-01

    About 85% of the adult population in the Netherlands regularly drinks alcohol. Chronic excessive alcohol intake in alcohol-dependent individuals is known to have damaging effects on brain structure and function. Relatives of alcohol-dependent individuals display differences in brain function that ar

  1. Socio-demographic factors related to functional limitations and care dependency among older Egyptians

    NARCIS (Netherlands)

    Boggatz, Thomas; Farid, Tamer; Mohammedin, Ahmed; Dijkstra, Ate; Lohrmann, Christa; Dassen, Theo

    2010-01-01

    P>Title. Socio-demographic factors related to functional limitations and care dependency among older Egyptians. Aim. This paper is a report of a study determining the relationship of socio-demographic factors to functional limitations and care dependency among older care recipients and non-care reci

  2. Effects of alcohol intake on brain structure and function in non-alcohol-dependent drinkers

    NARCIS (Netherlands)

    Bruin, Eveline Astrid de

    2005-01-01

    About 85% of the adult population in the Netherlands regularly drinks alcohol. Chronic excessive alcohol intake in alcohol-dependent individuals is known to have damaging effects on brain structure and function. Relatives of alcohol-dependent individuals display differences in brain function that

  3. Resting-state functional magnetic resonance imaging in hepatic encephalopathy: current status and perspectives.

    Science.gov (United States)

    Zhang, Long Jiang; Wu, Shengyong; Ren, Jiaqian; Lu, Guang Ming

    2014-09-01

    Hepatic encephalopathy (HE) is a neuropsychiatric syndrome which develops in patients with severe liver diseases and/or portal-systemic shunting. Minimal HE, the earliest manifestation of HE, has drawn increasing attention in the last decade. Minimal HE is associated with a series of brain functional changes, such as attention, working memory, and so on. Blood oxygen level dependent (BOLD) functional MRI (fMRI), especially resting-state fMRI has been used to explore the brain functional changes of HE, yielding important insights for understanding pathophysiological mechanisms and functional reorganization of HE. This paper briefly reviews the principles of BOLD fMRI, potential applications of resting-state fMRI with advanced post-processing algorithms such as regional homogeneity, amplitude of low frequency fluctuation, functional connectivity and future research perspective in this field.

  4. Validity of the “Fall Back” Test for Boldness

    Directory of Open Access Journals (Sweden)

    Saša Veličković

    2016-04-01

    Full Text Available Synonyms for the word boldness include courage, fearlessness, heroism and bravery. The best examples of courage in sport are athletes who, despite difficult situations, conditions and strong competition, perform very risky elements, break records, etc. The “Fall back” measurement instrument has been used in the selection process for artistic gymnastics. Bearing in mind that this test requires a drop back down an inclined plane, it requires a degree of courage in the realization of this motor task. The aim of this research is to determine the validity of the “fall back” test and to answer the question: Is the “Fall back” test actually a measure of courage among beginners in the sport? In this study, the research sample consisted of 16 boys and 33 girls, third graders from the Jovan Cvijic elementary school in Kostolac, aged nine years (+/- 6 months. The sample of variables represented the results written using two measurement instruments: 1. Psychological survey -test of boldness and courage–PSBC (a test modeled after the–Erikson`s theory of Psyhosocial Development test–About.com Psyhology; 2. Situational motor measuring instrument–Fall back–MFIB. The resulting measurements were analyzed by the appropriate statistical methods, which are congruent with the set objective and task ofthe study. The validity of the “Fall back” situational-motor test is determined by calculating the coefficient of correlation (r between said composite test and a psychological test of courage. The very high coefficients of correlation that resulted in all three cases (total sample r = .846, sample of boys r = .873, a sample of girls r = .845 indicate a high validity level for the test, “Fall back”, that is, the subject of measurement in the test, largely corresponds with the subject of measurement in the PSBC psychological test. The height of the correlation coefficient also justifies the use of the “Fall back” test as a composite test

  5. Orbital-Dependent-Functionals within Density Functional Theory: Methodology and Applications

    Science.gov (United States)

    Makmal, Adi

    I have designed and implemented a new numerical scheme for solving Kohn-Sham (KS) equations for diatomic systems, together with a full solution of the OEP equation. The equations are solved on a real-space prolate spheroidal coordinate grid, such that all the system's electrons are taken into account. The OEP equation is solved via the S-iteration scheme. This newly developed software package is called DARSEC (DiAtomic Real-Space Electronic structure Calculations). It involves no approximation except for the one inherent in the XC functional. Thus it is especially suitable for examining new functionals of any kind, and ODFs in particular. It is also an ideal tool for assessing the validity of commonly used approximations, for the same reasons. One case for which this uniqueness of DARSEC was exploited in this thesis is the examination of the validity of the pseudopotential approximation for KS gaps that are calculated with EXX OEP (xOEP). Before this study, use of the pseudopotential approximation in such calculations was called into question. I have shown that KS gaps obtained with pseudopotentials that have been constructed in a manner consistent with the exact-exchange functional agree with the all-electron results (i.e. without the pseudopotential approximation), for the cases studied. This confirmed the reliability of the pseudopotential approximation for ODFs such as EXX. Explicit density-dependent XC functionals traditionally fail to obtain atomization-energy as well as charge-dissociation curves that are, at least qualitatively, correct for diatomic systems. On the other hand, Hartree-Fock (HF) theory encounters no such problem. Hence, an additional goal of this research was to study the performances of the EXX functional (being the DFT counterpart of HF) in describing binding energies and charge dissociations for stretched diatomic molecules. Moreover, I wanted to investigate the special features of the resulting single and local EXX KS potential, as

  6. Interneuronal systems of the cervical spinal cord assessed with BOLD imaging at 1.5 T

    Energy Technology Data Exchange (ETDEWEB)

    Stracke, C.P.; Schoth, F.; Moeller-Hartmann, W.; Krings, T. [University Hospital of the University of Technology, Departments of Neuroradiology and Diagnostic Radiology, Aachen (Germany); Pettersson, L.G. [University of Goeteborg, Department of Physiology, Goeteborg (Sweden)

    2005-02-01

    The purpose of this study was to investigate if functional activity with spinal cord somatosensory stimulation can be visualized using BOLD fMRI. We investigated nine healthy volunteers using a somatosensory stimulus generator. The stimuli were applied in three different runs at the first, third, and fifth finger tip of the right hand, respectively, corresponding to dermatomes c6, c7, and c8. The stimuli gave an increase of BOLD signal (activation) in three different locations of the spinal cord and brain stem. First, activations could be seen in the spinal segment corresponding to the stimulated dermatome in seven out of nine volunteers for c6 stimulation, two out of eight for c7, and three out of eight for c8. These activations were located close to the posterior margin of the spinal cord, presumably reflecting synaptic transmission to dorsal horn interneurons. Second, activation in the medulla oblongata was evident in four subjects, most likely corresponding to the location of the nucleus cuneatus. The third location of activation, which was the strongest and most reliable observed was inside the spinal cord in the c3 and c4 segments. Activation at these spinal levels was almost invariably observed independently of the dermatome stimulated (9/9 for c6, 8/8 for c7, and 7/8 for c8 stimulation). These activations may pertain to an interneuronal system at this spinal level. The results are discussed in relation to neurophysiological studies on cervical spinal interneuronal pathways in animals and humans. (orig.)

  7. Dopaminergic drug effects during reversal learning depend on anatomical connections between the orbitofrontal cortex and the amygdala.

    Directory of Open Access Journals (Sweden)

    Marieke E. van der Schaaf

    2013-08-01

    Full Text Available Dopamine in the striatum is known to be important for reversal learning. However, the striatum does not act in isolation and reversal learning is also well accepted to depend on the orbitofrontal cortex (OFC and the amygdala. Here we assessed whether dopaminergic drug effects on human striatal BOLD signalling during reversal learning is associated with anatomical connectivity in an orbitofrontal-limbic-striatal network, as measured with diffusion tensor imaging. By using a fibre-based approach, we demonstrate that dopaminergic drug effects on striatal BOLD signal varied as a function of fractional anisotropy (FA in a pathway connecting the OFC with the amygdala. Moreover, our experimental design allowed us to establish that these white-matter dependent drug effects were mediated via D2 receptors. Thus, white matter dependent effects of the D2 receptor agonist bromocriptine on striatal BOLD signal were abolished by co-administration with the D2 receptor antagonist sulpiride. These data provide fundamental insight into the mechanism of action of dopaminergic drug effects during reversal learning. In addition, they may have important clinical implications by suggesting that white matter integrity can help predict dopaminergic drug effects on brain function, ultimately contributing to individual tailoring of dopaminergic drug treatment strategies in psychiatry.

  8. On asymptotically optimal wavelet estimation of trend functions under long-range dependence

    CERN Document Server

    Beran, Jan; 10.3150/10-BEJ332

    2012-01-01

    We consider data-adaptive wavelet estimation of a trend function in a time series model with strongly dependent Gaussian residuals. Asymptotic expressions for the optimal mean integrated squared error and corresponding optimal smoothing and resolution parameters are derived. Due to adaptation to the properties of the underlying trend function, the approach shows very good performance for smooth trend functions while remaining competitive with minimax wavelet estimation for functions with discontinuities. Simulations illustrate the asymptotic results and finite-sample behavior.

  9. Association between insulin and executive functioning in alcohol dependence: a pilot study.

    Science.gov (United States)

    Han, Changwoo; Bae, Hwallip; Won, Sung-Doo; Lim, Jaeyoung; Kim, Dai-Jin

    2015-01-01

    Alcohol dependence is a disorder ascribable to multiple factors and leads to cognitive impairment. Given that insulin dysregulation can cause cognitive impairment, patients with alcohol dependence are likely to develop insulin dysregulation such as that in diabetes. The purposes of this study are to identify an association between cognitive functioning and insulin and to investigate insulin as the biomarker of cognitive functioning in alcohol-dependent patients. Serum insulin levels were measured and cognitive functions were assessed in 45 patients with chronic alcoholism. The Korean version of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD-K), a battery of cognitive function tests, was used to assess cognitive functioning. Serum insulin levels were not significantly correlated with most CERAD-K scores, but there was a significant negative correlation with scores on the Trail Making Test B, which is designed to measure executive functioning. Lower serum insulin levels were associated with slower executive functioning responses on the Trail Making Test B, suggesting that executive functioning may be in proportion to serum insulin levels. Thus, in patients with alcohol dependence, insulin level is associated with cognitive functioning. In addition, the present findings suggest that insulin level is a potential biomarker for determining cognitive functioning.

  10. N-methyl-D-aspartate receptor encephalitis mediates loss of intrinsic activity measured by functional MRI.

    Science.gov (United States)

    Brier, Matthew R; Day, Gregory S; Snyder, Abraham Z; Tanenbaum, Aaron B; Ances, Beau M

    2016-06-01

    Spontaneous brain activity is required for the development and maintenance of normal brain function. Many disease processes disrupt the organization of intrinsic brain activity, but few pervasively reduce the amplitude of resting state blood oxygen level dependent (BOLD) fMRI fluctuations. We report the case of a female with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, longitudinally studied during the course of her illness to determine the contribution of NMDAR signaling to spontaneous brain activity. Resting state BOLD fMRI was measured at the height of her illness and 18 weeks following discharge from hospital. Conventional resting state networks were defined using established methods. Correlation and covariance matrices were calculated by extracting the BOLD time series from regions of interest and calculating either the correlation or covariance quantity. The intrinsic activity was compared between visits, and to expected activity from 45 similarly aged healthy individuals. Near the height of the illness, the patient exhibited profound loss of consciousness, high-amplitude slowing of the electroencephalogram, and a severe reduction in the amplitude of spontaneous BOLD fMRI fluctuations. The patient's neurological status and measures of intrinsic activity improved following treatment. We conclude that NMDAR-mediated signaling plays a critical role in the mechanisms that give rise to organized spontaneous brain activity. Loss of intrinsic activity is associated with profound disruptions of consciousness and cognition.

  11. Temperature-dependent structural and functional features of a hyperthermostable enzyme using elastic neutron scattering

    NARCIS (Netherlands)

    Koutsopoulos, S; van der Oost, J; Norde, W

    2005-01-01

    The dynamic behavior of an endoglucanase from the hyperthermophilic microorganism Pyrococcus furiosus was investigated using elastic neutron scattering. The temperature dependence of the atomic motions was correlated with conformational. and functional characteristics of the enzyme. The onset of

  12. Temperature-dependent structural and functional features of a hyperthermostable enzyme using elastic neutron scattering

    NARCIS (Netherlands)

    Koutsopoulos, S.; Oost, van der J.; Norde, W.

    2005-01-01

    The dynamic behavior of an endoglucanase from the hyperthermophilic microorganism Pyrococcus furiosus was investigated using elastic neutron scattering. The temperature dependence of the atomic motions was correlated with conformational and functional characteristics of the enzyme. The onset of

  13. The Determining Method about the Conflict between the Null Constraints and the Set of Functional Dependencies

    Institute of Scientific and Technical Information of China (English)

    刘惟一

    1989-01-01

    In this paper the conflict between the null constraints and the set of functional dependencies is defined.Some rules for determining the conflicts and a method for processing the conflicts are obtained.

  14. Back pain in seniors: the Back pain Outcomes using Longitudinal Data (BOLD) cohort baseline data

    Science.gov (United States)

    2014-01-01

    Background Back pain represents a substantial burden globally, ranking first in a recent assessment among causes of years lived with disability. Though back pain is widely studied among working age adults, there are gaps with respect to basic descriptive epidemiology among seniors, especially in the United States. Our goal was to describe how pain, function and health-related quality of life vary by demographic and geographic factors among seniors presenting to primary care providers with new episodes of care for back pain. Methods We examined baseline data from the Back pain Outcomes using Longitudinal Data (BOLD) registry, the largest inception cohort to date of seniors presenting to a primary care provider for back pain. The sample included 5,239 patients ≥ 65 years old with a new primary care visit for back pain at three integrated health systems (Northern California Kaiser-Permanente, Henry Ford Health System [Detroit], and Harvard Vanguard Medical Associates [Boston]). We examined differences in patient characteristics across healthcare sites and associations of patient sociodemographic and clinical characteristics with baseline patient-reported measures of pain, function, and health-related quality of life. Results Patients differed across sites in demographic and other characteristics. The Detroit site had more African-American patients (50%) compared with the other sites (7-8%). The Boston site had more college graduates (68%) compared with Detroit (20%). Female sex, lower educational status, African-American race, and older age were associated with worse functional disability as measured by the Roland-Morris Disability Questionnaire. Except for age, these factors were also associated with worse pain. Conclusions Baseline pain and functional impairment varied substantially with a number of factors in the BOLD cohort. Healthcare site was an important factor. After controlling for healthcare site, lower education, female sex, African-American race

  15. Phase-Space Explorations in Time-Dependent Density Functional Theory

    OpenAIRE

    Rajam, Arun K.; Hessler, Paul; Gaun, Christian; Maitra, Neepa T.

    2009-01-01

    We discuss two problems which are particularly challenging for approximations in time-dependent density functional theory (TDDFT) to capture: momentum-distributions in ionization processes, and memory-dependence in real-time dynamics. We propose an extension of TDDFT to phase-space densities, discuss some formal aspects of such a "phase-space density functional theory" and explain why it could ameliorate the problems in both cases. For each problem, a two-electron model system is exactly nume...

  16. Time-dependent density functional theory for strong-field ionization by circularly polarized pulses

    Science.gov (United States)

    Chirilă, Ciprian C.; Lein, Manfred

    2017-03-01

    By applying time-dependent density functional theory to a two-dimensional multielectron atom subject to strong circularly polarized light pulses, we confirm that the ionization of p orbitals with defined angular momentum depends on the sense of rotation of the applied field. A simple ad-hoc modification of the adiabatic local-density exchange-correlation functional is proposed to remedy its unphysical behavior under orbital depletion.

  17. Spinless relativistic particle in energy-dependent potential and normalization of the wave function

    Science.gov (United States)

    Benchikha, Amar; Chetouani, Lyazid

    2014-06-01

    The problem of normalization related to a Klein-Gordon particle subjected to vector plus scalar energy-dependent potentials is clarified in the context of the path integral approach. In addition the correction relating to the normalizing constant of wave functions is exactly determined. As examples, the energy dependent linear and Coulomb potentials are considered. The wave functions obtained via spectral decomposition, were found exactly normalized.

  18. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility.

    NARCIS (Netherlands)

    Pandithage, R.; Lilischkis, R.; Harting, K.; Wolf, A.; Jedamzik, B.; Luscher-Firzlaff, J.; Vervoorts, J.; Lasonder, E.; Kremmer, E.; Knoll, B.; Luscher, B.

    2008-01-01

    Cyclin-dependent kinases (Cdks) fulfill key functions in many cellular processes, including cell cycle progression and cytoskeletal dynamics. A limited number of Cdk substrates have been identified with few demonstrated to be regulated by Cdk-dependent phosphorylation. We identify on protein express

  19. Origin of the Q^2-dependence of the DIS structure functions

    CERN Document Server

    Ermolaev, B I; Troyan, S I

    2012-01-01

    We consider in detail the Q^2 -dependence of the DIS structure functions, with Q being the virtual photon momentum. Quite often this dependence is claimed to be originated by the Q^2-dependence of the QCD coupling. This leads to the small-x asymptotics of the structure functions with Q^2 -dependent intercepts. We demonstrate that the DGLAP parametrization alpha_s = alpha_s (Q^2) is an approximation valid in the region of large x (where 2pq can be approximated by Q^2) only, providing the factorization scale is also large. Outside this region, the DGLAP parametrization fails, so alpha_s should be replaced by an effective coupling which is independent of Q^2 at small x. As a consequence, intercepts of the structure functions are independent of Q^2. Nevertheless, the small-x asymptotics of the structure functions explicitly depend on Q^2, even when the coupling does not depend on it. We also consider the structure functions at small Q^2 and give a comment on power-Q^2 corrections to the structure functions at lar...

  20. Correlation between MEG and BOLD fMRI signals induced by visual flicker stimuli

    Institute of Scientific and Technical Information of China (English)

    Chu Renxin; Holroyd Tom; Duyn Jeff

    2007-01-01

    The goal of this work was to investigate how the MEG signal amplitude correlates with that of BOLD fMRI.To investigate the correlation between fMRI and macroscopic electrical activity, BOLD fMRI and MEG was performed on the same subjects (n =5). A visual flicker stimulus of varying temporal frequency was used to elicit neural responses in early visual areas. A strong similarity was observed in frequency tuning curves between both modalities.Although, averaged over subjects, the BOLD tuning curve was somewhat broader than MEG, both BOLD and MEG had maxima at a flicker frequency of 10 Hz. Also, we measured the first and second harmonic components as the stimuli frequency by MEG. In the low stimuli frequency (less than 6 Hz), the second harmonic has comparable amplitude with the first harmonic, which implies that neural frequency response is nonlinear and has more nonlinear components in low frequency than in high frequency.

  1. Interactions between aggression, boldness and shoaling within a brood of convict cichlids (Amatitlania nigrofasciatus).

    Science.gov (United States)

    Moss, Sarah; Tittaferrante, Stephanie; Way, Gregory P; Fuller, Ashlei; Sullivan, Nicole; Ruhl, Nathan; McRobert, Scott P

    2015-12-01

    A behavioral syndrome is considered present when individuals consistently express correlated behaviors across two or more axes of behavior. These axes of behavior are shy-bold, exploration-avoidance, activity, aggression, and sociability. In this study we examined aggression, boldness and sociability (shoaling) within a juvenile convict cichlid brood (Amatitlania nigrofasciatus). Because young convict cichlids are social, we used methodologies commonly used by ethologists studying social fishes. We did not detect an aggression-boldness behavioral syndrome, but we did find that the aggression, boldness, and possibly the exploration behavioral axes play significant roles in shaping the observed variation in individual convict cichlid behavior. While juvenile convict cichlids did express a shoaling preference, this social preference was likely convoluted by aggressive interactions, despite the small size and young age of the fish. There is a need for the development of behavioral assays that allow for more reliable measurement of behavioral axes in juvenile neo-tropical cichlids.

  2. Another kind of 'BOLD Response': answering multiple-choice questions via online decoded single-trial brain signals.

    Science.gov (United States)

    Sorger, Bettina; Dahmen, Brigitte; Reithler, Joel; Gosseries, Olivia; Maudoux, Audrey; Laureys, Steven; Goebel, Rainer

    2009-01-01

    The term 'locked-in'syndrome (LIS) describes a medical condition in which persons concerned are severely paralyzed and at the same time fully conscious and awake. The resulting anarthria makes it impossible for these patients to naturally communicate, which results in diagnostic as well as serious practical and ethical problems. Therefore, developing alternative, muscle-independent communication means is of prime importance. Such communication means can be realized via brain-computer interfaces (BCIs) circumventing the muscular system by using brain signals associated with preserved cognitive, sensory, and emotional brain functions. Primarily, BCIs based on electrophysiological measures have been developed and applied with remarkable success. Recently, also blood flow-based neuroimaging methods, such as functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS), have been explored in this context. After reviewing recent literature on the development of especially hemodynamically based BCIs, we introduce a highly reliable and easy-to-apply communication procedure that enables untrained participants to motor-independently and relatively effortlessly answer multiple-choice questions based on intentionally generated single-trial fMRI signals that can be decoded online. Our technique takes advantage of the participants' capability to voluntarily influence certain spatio-temporal aspects of the blood oxygenation level-dependent (BOLD) signal: source location (by using different mental tasks), signal onset and offset. We show that healthy participants are capable of hemodynamically encoding at least four distinct information units on a single-trial level without extensive pretraining and with little effort. Moreover, real-time data analysis based on simple multi-filter correlations allows for automated answer decoding with a high accuracy (94.9%) demonstrating the robustness of the presented method. Following our 'proof of concept', the

  3. Association between insulin and executive functioning in alcohol dependence: a pilot study

    Directory of Open Access Journals (Sweden)

    Han C

    2015-11-01

    Full Text Available Changwoo Han,1 Hwallip Bae,2 Sung-Doo Won,3 Jaeyoung Lim,3 Dai-Jin Kim41Department of Psychiatry, Ansan Hospital, College of Medicine, Korea University, Ansan, 2Department of Psychiatry, Myongji Hospital, College of Medicine, Seonam University, Goyang, 3Department of Clinical Psychology, Keyo Hospital, Keyo Medical Foundation, Uiwang, 4Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Republic of KoreaAbstract: Alcohol dependence is a disorder ascribable to multiple factors and leads to cognitive impairment. Given that insulin dysregulation can cause cognitive impairment, patients with alcohol dependence are likely to develop insulin dysregulation such as that in diabetes. The purposes of this study are to identify an association between cognitive functioning and insulin and to investigate insulin as the biomarker of cognitive functioning in alcohol-dependent patients. Serum insulin levels were measured and cognitive functions were assessed in 45 patients with chronic alcoholism. The Korean version of the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD-K, a battery of cognitive function tests, was used to assess cognitive functioning. Serum insulin levels were not significantly correlated with most CERAD-K scores, but there was a significant negative correlation with scores on the Trail Making Test B, which is designed to measure executive functioning. Lower serum insulin levels were associated with slower executive functioning responses on the Trail Making Test B, suggesting that executive functioning may be in proportion to serum insulin levels. Thus, in patients with alcohol dependence, insulin level is associated with cognitive functioning. In addition, the present findings suggest that insulin level is a potential biomarker for determining cognitive functioning.Keywords: insulin, alcohol dependence, executive function, trail making test

  4. What Is the de-qi-Related Pattern of BOLD Responses? A Review of Acupuncture Studies in fMRI

    Directory of Open Access Journals (Sweden)

    Jinbo Sun

    2013-01-01

    Full Text Available de-qi, comprising mostly subjective sensations during acupuncture, is traditionally considered as a very important component for the possible therapeutic effects of acupuncture. However, the neural correlates of de-qi are still unclear. In this paper, we reviewed previous fMRI studies from the viewpoint of the neural responses of de-qi. We searched on Pubmed and identified 111 papers. Fourteen studies distinguishing de-qi and sharp pain and eight studies with the mixed sensations were included in further discussions. We found that the blood oxygenation level-dependent (BOLD responses associated with de-qi were activation dominated, mainly around cortical areas relevant to the processing of somatosensory or pain signals. More intense and extensive activations were shown for the mixed sensations. Specific activations of sharp pain were also shown. Similar BOLD response patterns between de-qi evoked by acupuncture stimulation and de-qi-like sensations evoked by deep pain stimulation were shown. We reckon that a standardized method of qualification and quantification of de-qi, deeper understanding of grouping strategy of de-qi and sharp pain, and making deep pain stimulation as a control, as well as a series of improvements in the statistical method, are crucial factors for revealing the neural correlates of de-qi and neural mechanisms of acupuncture.

  5. Oxygen Level and LFP in Task-Positive and Task-Negative Areas: Bridging BOLD fMRI and Electrophysiology.

    Science.gov (United States)

    Bentley, William J; Li, Jingfeng M; Snyder, Abraham Z; Raichle, Marcus E; Snyder, Lawrence H

    2016-01-01

    The human default mode network (DMN) shows decreased blood oxygen level dependent (BOLD) signals in response to a wide range of attention-demanding tasks. Our understanding of the specifics regarding the neural activity underlying these "task-negative" BOLD responses remains incomplete. We paired oxygen polarography, an electrode-based oxygen measurement technique, with standard electrophysiological recording to assess the relationship of oxygen and neural activity in task-negative posterior cingulate cortex (PCC), a hub of the DMN, and visually responsive task-positive area V3 in the awake macaque. In response to engaging visual stimulation, oxygen, LFP power, and multi-unit activity in PCC showed transient activation followed by sustained suppression. In V3, oxygen, LFP power, and multi-unit activity showed an initial phasic response to the stimulus followed by sustained activation. Oxygen responses were correlated with LFP power in both areas, although the apparent hemodynamic coupling between oxygen level and electrophysiology differed across areas. Our results suggest that oxygen responses reflect changes in LFP power and multi-unit activity and that either the coupling of neural activity to blood flow and metabolism differs between PCC and V3 or computing a linear transformation from a single LFP band to oxygen level does not capture the true physiological process.

  6. The importance of species identity and interactions for multifunctionality depends on how ecosystem functions are valued.

    Science.gov (United States)

    Slade, Eleanor M; Kirwan, Laura; Bell, Thomas; Philipson, Christopher D; Lewis, Owen T; Roslin, Tomas

    2017-10-01

    overall multifunctionality depended on the weight given to individual functions. Optimal multifunctionality was context-dependent, and sensitive to the valuation of services. This combination of methodological approaches allowed us to resolve the interactions and indirect effects among species that drive ecosystem functioning, revealing how multiple aspects of biodiversity can simultaneously drive ecosystem functioning. Our results highlight the importance of a multifunctionality perspective for a complete assessment of species' functional contributions. © 2017 by the Ecological Society of America.

  7. Time-dependent current-density-functional theory for the metallic response of solids

    NARCIS (Netherlands)

    Romaniello, P; de Boeij, PL

    2005-01-01

    We extend the formulation of time-dependent current-density-functional theory for the linear response properties of dielectric and semi-metallic solids [Kootstra , J. Chem. Phys. 112, 6517 (2000)] to treat metals as well. To achieve this, the Kohn-Sham response functions have to include both interba

  8. Time-dependent current-density-functional theory for the metallic response of solids

    NARCIS (Netherlands)

    Romaniello, P; de Boeij, PL

    We extend the formulation of time-dependent current-density-functional theory for the linear response properties of dielectric and semi-metallic solids [Kootstra , J. Chem. Phys. 112, 6517 (2000)] to treat metals as well. To achieve this, the Kohn-Sham response functions have to include both

  9. The Keldysh formalism applied to time-dependent current-density-functional theory

    NARCIS (Netherlands)

    Gidopoulos, NI; Wilson, S

    2003-01-01

    In this work we demonstrate how to derive the Kohn-Sham equations of time-dependent current-density functional theory from a generating action functional defined on a Keldysh time contour. These Kohn-Sham equations contain an exchange-correlation contribution to the vector potential. For this

  10. Transverse-momentum-dependent parton distribution/fragmentation functions at an electron-ion collider

    NARCIS (Netherlands)

    Anselmino, M.; Avakian, H.; Boer, Daniël; Bradamante, F.; Burkardt, M.; Chen, J.P.; Cisbani, E.; Contalbrigo, M.; Crabb, D.; Dutta, D.; Gamberg, L.; Gao, H.; Hasch, D.; Huang, J.; Huang, M.; Kang, Z.; Keppel, C.; Laskaris, G.; Liang, Z.-T.; Liu, M.X.; Makins, N.; McKeown, R.D.; Metz, A.; Meziani, Z.-E.; Musch, B.; Peng, J.-C.; Prokudin, A.; Qian, X.; Qiang, Y.; Qiu, J.W.; Rossi, P.; SCHWEITZER, C.; Soffer, J.; Sulkosky, V.; Wang, Ying; Xiao, B.; Ye, Q.; Ye, Q.-J.; Yuan, F.; Zhan, X.; Zhang, Y.; Zheng, W.; Zhou, J.

    2011-01-01

    We present a summary of a recent workshop held at Duke University on Partonic Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon Interactions. The transverse-momentum-dependent parton distribution functions (TMDs), parton-to-hadron fragmentation functions, and multi-parton

  11. Interpersonal Attraction and Dependence as a Function of Self-Esteem.

    Science.gov (United States)

    Fortin, Joseph A.; Sesi, Maher S.

    This experiment tested the hypotheses that interpersonal dependence would be an inverse function of the individual's chronic and situational levels of self-esteem, and that interpersonal attraction would be an inverse function of the individual's induced/situational level of self-esteem, but would be unaffected by her chronic level. Subjects were…

  12. Simulations of stellar convection with CO5BOLD

    CERN Document Server

    Freytag, Bernd; Ludwig, Hans-Günter; Wedemeyer-Böhm, Sven; Schaffenberger, Werner; Steiner, Oskar

    2011-01-01

    High-resolution images of the solar surface show a granulation pattern of hot rising and cooler downward-sinking material -- the top of the deep-reaching solar convection zone. Convection plays a role for the thermal structure of the solar interior and the dynamo acting there, for the stratification of the photosphere, where most of the visible light is emitted, as well as for the energy budget of the spectacular processes in the chromosphere and corona. Convective stellar atmospheres can be modeled by numerically solving the coupled equations of (magneto)hydrodynamics and non-local radiation transport in the presence of a gravity field. The CO5BOLD code described in this article is designed for so-called "realistic" simulations that take into account the detailed microphysics under the conditions in solar or stellar surface layers (equation-of-state and optical properties of the matter). These simulations indeed deserve the label "realistic" because they reproduce the various observables very well -- with on...

  13. Gauge-fixing parameter dependence of two-point gauge variant correlation functions

    CERN Document Server

    Zhai, C

    1996-01-01

    The gauge-fixing parameter \\xi dependence of two-point gauge variant correlation functions is studied for QED and QCD. We show that, in three Euclidean dimensions, or for four-dimensional thermal gauge theories, the usual procedure of getting a general covariant gauge-fixing term by averaging over a class of covariant gauge-fixing conditions leads to a nontrivial gauge-fixing parameter dependence in gauge variant two-point correlation functions (e.g. fermion propagators). This nontrivial gauge-fixing parameter dependence modifies the large distance behavior of the two-point correlation functions by introducing additional exponentially decaying factors. These factors are the origin of the gauge dependence encountered in some perturbative evaluations of the damping rates and the static chromoelectric screening length in a general covariant gauge. To avoid this modification of the long distance behavior introduced by performing the average over a class of covariant gauge-fixing conditions, one can either choose ...

  14. Parameter-dependent Lyapunov functional for systems with multiple time delays

    Institute of Scientific and Technical Information of China (English)

    Min WU; Yong HE

    2004-01-01

    The separation of the Lyapunov matrices and system matrices plays an important role when one uses parameter-dependent Lyapunov functional handling systems with polytopic type uncertainties.The delay-dependent robust stability problem for systems with polytopic type uncertainties is discussed by using parameter-dependent Lyapunov functional.The derivative term in the derivative of Lyapunov functional is reserved and the free weighting matrices are employed to express the relationship between the terms in the system equation such that the Lyapunov matrices are not involved in any product terms with the system matrices.In addition,the relationships between the terms in the Leibniz Newton formula are also described by some free weighting matrices and some delay-dependent stability conditions are derived.Numerical examples demonstrate that the proposed criteria are more effective than the previous results.

  15. Γ-CONVERGENCE OF INTEGRAL FUNCTIONALS DEPENDING ON VECTOR-VALUED FUNCTIONS OVER PARABOLIC DOMAINS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper studies Γ-convergence for a sequence of parabolic functionals, Fε(u) =∫TO∫Ωf(x/ε, t,Δu)dxdt as ε→ 0, where the integrand f is nonconvex, and periodic on the first variable. The author obtains the representation formula of the Γ-limit. The results in this paper support a conclusion which relates Γ-convergence of parabolic functionals to the associated gradient flows and confirms one of De Giorgi's conjectures partially.

  16. The quantitative genetic architecture of the bold-shy continuum in zebrafish, Danio rerio.

    Directory of Open Access Journals (Sweden)

    Mary E Oswald

    Full Text Available In studies of consistent individual differences (personality along the bold-shy continuum, a pattern of behavioral correlations frequently emerges: individuals towards the bold end of the continuum are more likely to utilize risky habitat, approach potential predators, and feed under risky conditions. Here, we address the hypothesis that observed phenotypic correlations among component behaviors of the bold-shy continuum are a result of underlying genetic correlations (quantitative genetic architecture. We used a replicated three-generation pedigree of zebrafish (Danio rerio to study three putative components of the bold-shy continuum: horizontal position, swim level, and feeding latency. We detected significant narrow-sense heritabilities as well as significant genetic and phenotypic correlations among all three behaviors, such that fish selected for swimming at the front of the tank swam closer to the observer, swam higher in the water column, and fed more quickly than fish selected for swimming at the back of the tank. Further, the lines varied in their initial open field behavior (swim level and activity level. The quantitative genetic architecture of the bold-shy continuum indicates that the multivariate behavioral phenotype characteristic of a "bold" personality type may be a result of correlated evolution via underlying genetic correlations.

  17. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    CERN Document Server

    Rüger, Robert; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the harmonic approximation. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, excellent agreement with TD-DFT calculations using local functionals was achieved.

  18. Modeling on the size dependent properties of InP quantum dots: a hybrid functional study

    Science.gov (United States)

    Cho, Eunseog; Jang, Hyosook; Lee, Junho; Jang, Eunjoo

    2013-05-01

    Theoretical calculations based on density functional theory were performed to provide better understanding of the size dependent electronic properties of InP quantum dots (QDs). Using a hybrid functional approach, we suggest a reliable analytical equation to describe the change of energy band gap as a function of size. Synthesizing colloidal InP QDs with 2-4 nm diameter and measuring their optical properties was also carried out. It was found that the theoretical band gaps showed a linear dependence on the inverse size of QDs and gave energy band gaps almost identical to the experimental values.

  19. Integrative Functional Genomics of Hepatitis C Virus Infection Identifies Host Dependencies in Complete Viral Replication Cycle

    OpenAIRE

    Qisheng Li; Yong-Yuan Zhang; Stephan Chiu; Zongyi Hu; Keng-Hsin Lan; Helen Cha; Catherine Sodroski; Fang Zhang; Ching-Sheng Hsu; Emmanuel Thomas; T Jake Liang

    2014-01-01

    Recent functional genomics studies including genome-wide small interfering RNA (siRNA) screens demonstrated that hepatitis C virus (HCV) exploits an extensive network of host factors for productive infection and propagation. How these co-opted host functions interact with various steps of HCV replication cycle and exert pro- or antiviral effects on HCV infection remains largely undefined. Here we present an unbiased and systematic strategy to functionally interrogate HCV host dependencies unc...

  20. Changes in bird functional diversity across multiple land uses: interpretations of functional redundancy depend on functional group identity.

    Science.gov (United States)

    Luck, Gary W; Carter, Andrew; Smallbone, Lisa

    2013-01-01

    Examinations of the impact of land-use change on functional diversity link changes in ecological community structure driven by land modification with the consequences for ecosystem function. Yet, most studies have been small-scale, experimental analyses and primarily focussed on plants. There is a lack of research on fauna communities and at large-scales across multiple land uses. We assessed changes in the functional diversity of bird communities across 24 land uses aligned along an intensification gradient. We tested the hypothesis that functional diversity is higher in less intensively used landscapes, documented changes in diversity using four diversity metrics, and examined how functional diversity varied with species richness to identify levels of functional redundancy. Functional diversity, measured using a dendogram-based metric, increased from high to low intensity land uses, but observed values did not differ significantly from randomly-generated expected values. Values for functional evenness and functional divergence did not vary consistently with land-use intensification, although higher than expected values were mostly recorded in high intensity land uses. A total of 16 land uses had lower than expected values for functional dispersion and these were mostly low intensity native vegetation sites. Relations between functional diversity and bird species richness yielded strikingly different patterns for the entire bird community vs. particular functional groups. For all birds and insectivores, functional evenness, divergence and dispersion showed a linear decline with increasing species richness suggesting substantial functional redundancy across communities. However, for nectarivores, frugivores and carnivores, there was a significant hump-shaped or non-significant positive linear relationship between these functional measures and species richness indicating less redundancy. Hump-shaped relationships signify that the most functionally diverse

  1. SU-E-J-223: A BOLD Contrast Imaging Sequence to Evaluate Oxygenation Changes Due to Breath Holding for Breast Radiotherapy: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, J; Chang, Z; Cai, J; Palta, M; Horton, J; Yin, F; Blitzblau, R [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized prone on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique.

  2. Mapping the functional network of medial prefrontal cortex by combining optogenetics and fMRI in awake rats.

    Science.gov (United States)

    Liang, Zhifeng; Watson, Glenn D R; Alloway, Kevin D; Lee, Gangchea; Neuberger, Thomas; Zhang, Nanyin

    2015-08-15

    The medial prefrontal cortex (mPFC) plays a critical role in multiple cognitive and limbic functions. Given its vital importance, investigating the function of individual mPFC circuits in animal models has provided critical insight into the neural basis underlying different behaviors and psychiatric conditions. However, our knowledge regarding the mPFC whole-brain network stays largely at the anatomical level, while the functional network of mPFC, which can be dynamic in different conditions or following manipulations, remains elusive especially in awake rodents. Here we combined optogenetic stimulation and functional magnetic resonance imaging (opto-fMRI) to reveal the network of brain regions functionally activated by mPFC outputs in awake rodents. Our data showed significant increases in blood-oxygenation-level dependent (BOLD) signals in prefrontal, striatal and limbic regions when mPFC was optically stimulated. This activation pattern was robust, reproducible, and did not depend on the stimulation period in awake rats. BOLD signals, however, were substantially reduced when animals were anesthetized. In addition, regional brain activation showing increased BOLD signals during mPFC stimulation was corroborated by electrophysiological recordings. These results expand the applicability of the opto-fMRI approach from sensorimotor processing to cognition-related networks in awake rodents. Importantly, it may help elucidate the circuit mechanisms underlying numerous mPFC-related functions and behaviors that need to be assessed in the awake state.

  3. Skeletal muscle microvascular function in girls with Turner syndrome

    Science.gov (United States)

    West, Sarah L.; O'Gorman, Clodagh S.; Elzibak, Alyaa H.; Caterini, Jessica; Noseworthy, Michael D.; Rayner, Tammy; Hamilton, Jill; Wells, Greg D.

    2014-01-01

    Background Exercise intolerance is prevalent in individuals with Turner Syndrome (TS). We recently demonstrated that girls with TS have normal aerobic but altered skeletal muscle anaerobic metabolism compared to healthy controls (HC). The purpose of this study was to compare peripheral skeletal muscle microvascular function in girls with TS to HC after exercise. We hypothesized that girls with TS would have similar muscle blood-oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) signal responses during recovery from exercise compared to HC. Methods Thirteen TS participants and 8 HC completed testing. BOLD MRI was used to measure skeletal muscle microvascular response during 60 second recovery, following 60 s of exercise at 65% of maximal workload. Exercise and recovery were repeated four times, and the BOLD signal time course was fit to a four-parameter sigmoid function. Results Participants were 13.7 ± 3.1 years old and weighed 47.9 ± 14.6 kg. The mean change in BOLD signal intensity following exercise at the end of recovery, the mean response time of the function/the washout of deoxyhemoglobin, and the mean half-time of recovery were similar between the TS and HC groups. Conclusions Our results demonstrate that compared to HC, peripheral skeletal muscle microvascular function following exercise in girls with TS is not impaired. General significance This study supports the idea that the aerobic energy pathway is not impaired in children with TS in response to submaximal exercise. Other mechanisms are likely responsible for exercise intolerance in TS; this needs to be further investigated. PMID:26676172

  4. A dependent stress-strength interference model based on mixed copula function

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jian Xiong; An, Zong Wen; Liu, Bo [School of Mechatronics Engineering, Lanzhou University of Technology, Lanzhou (China)

    2016-10-15

    In the traditional Stress-strength interference (SSI) model, stress and strength must satisfy the basic assumption of mutual independence. However, a complex dependence between stress and strength exists in practical engineering. To evaluate structural reliability under the case that stress and strength are dependent, a mixed copula function is introduced to a new dependent SSI model. This model can fully characterize the dependence between stress and strength. The residual square sum method and genetic algorithm are also used to estimate the unknown parameters of the model. Finally, the validity of the proposed model is demonstrated via a practical case. Results show that traditional SSI model ignoring the dependence between stress and strength more easily overestimates product reliability than the new dependent SSI model.

  5. Communication: Exciton analysis in time-dependent density functional theory: How functionals shape excited-state characters.

    Science.gov (United States)

    Mewes, Stefanie A; Plasser, Felix; Dreuw, Andreas

    2015-11-01

    Excited-state descriptors based on the one-particle transition density matrix referring to the exciton picture have been implemented for time-dependent density functional theory. State characters such as local, extended ππ(∗), Rydberg, or charge transfer can be intuitively classified by simple comparison of these descriptors. Strong effects of the choice of the exchange-correlation kernel on the physical nature of excited states can be found and decomposed in detail leading to a new perspective on functional performance and the design of new functionals.

  6. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    Science.gov (United States)

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    -forming activity of osteoclast-like cells cultured on dentin slices. These results suggest that arctigenin induces a dominant negative species of NFATc1, which inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

  7. Arctigenin Inhibits Osteoclast Differentiation and Function by Suppressing Both Calcineurin-Dependent and Osteoblastic Cell-Dependent NFATc1 Pathways

    Science.gov (United States)

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    -forming activity of osteoclast-like cells cultured on dentin slices. These results suggest that arctigenin induces a dominant negative species of NFATc1, which inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways. PMID:24465763

  8. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    Directory of Open Access Journals (Sweden)

    Teruhito Yamashita

    pit-forming activity of osteoclast-like cells cultured on dentin slices. These results suggest that arctigenin induces a dominant negative species of NFATc1, which inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

  9. BOLD fMRI in Infants under Sedation: Comparing the Impact of Pentobarbital and Propofol on Auditory and Language Activation

    Science.gov (United States)

    DiFrancesco, Mark W.; Robertson, Sara A.; Karunanayaka, Prasanna; Holland, Scott K.

    2013-01-01

    Purpose To elucidate differences in the disruption of language network function, as measured by BOLD fMRI, attributable to two common sedative agents administered to infants under clinical imaging protocols. Materials and Methods The sedatives pentobarbital (Nembutal) and Propofol, administered clinically to infants at one year of age, were compared with respect to BOLD activation profiles in response to passive story-listening stimulation. An intermittent event-related imaging protocol was utilized with which the temporal evolution of language processing resulting from this stimulation was explored. Results Propofol and Nembutal were found to have distinct and complementary responses to story-listening. Propofol exhibited more activation in higher processing networks with increasing response toward the end of narrative stimulus. Nembutal, in contrast, had much more robust activation of primary and secondary sensory cortices but a decreasing response over time in fronto-parietal default-mode regions. This may suggest a breakdown of top-down feedback for Propofol vs. the lack of bottom-up feed-forward processing for Nembutal. Conclusion Two popular sedative agents for use in children for clinical fMRI were found to induce distinct alteration of activation patterns from a language stimulus. This has ramifications for clinical fMRI of sedated infants and encourages further study to build a framework for more confident interpretation. PMID:23526799

  10. Frequency-dependent dielectric function of semiconductors with application to physisorption

    Science.gov (United States)

    Zheng, Fan; Tao, Jianmin; Rappe, Andrew M.

    2017-01-01

    The dielectric function is one of the most important quantities that describes the electrical and optical properties of solids. Accurate modeling of the frequency-dependent dielectric function has great significance in the study of the long-range van der Waals (vdW) interaction for solids and adsorption. In this work we calculate the frequency-dependent dielectric functions of semiconductors and insulators using the G W method with and without exciton effects, as well as efficient semilocal density functional theory (DFT), and compare these calculations with a model frequency-dependent dielectric function. We find that for semiconductors with moderate band gaps, the model dielectric functions, G W values, and DFT calculations all agree well with each other. However, for insulators with strong exciton effects, the model dielectric functions have a better agreement with accurate G W values than the DFT calculations, particularly in high-frequency region. To understand this, we repeat the DFT calculations with scissors correction, by shifting the DFT Kohn-Sham energy levels to match the experimental band gap. We find that scissors correction only moderately improves the DFT dielectric function in the low-frequency region. Based on the dielectric functions calculated with different methods, we make a comparative study by applying these dielectric functions to calculate the vdW coefficients (C3 and C5) for adsorption of rare-gas atoms on a variety of surfaces. We find that the vdW coefficients obtained with the nearly free electron gas-based model dielectric function agree quite well with those obtained from the G W dielectric function, in particular for adsorption on semiconductors, leading to an overall error of less than 7% for C3 and 5% for C5. This demonstrates the reliability of the model dielectric function for the study of physisorption.

  11. Away from generalized gradient approximation: orbital-dependent exchange-correlation functionals.

    Science.gov (United States)

    Baerends, E J; Gritsenko, O V

    2005-08-08

    The local-density approximation of density functional theory (DFT) is remarkably accurate, for instance, for geometries and frequencies, and the generalized gradient approximations have also made bond energies quite reliable. Sometimes, however, one meets with failure in individual cases. One of the possible routes towards better functionals would be the incorporation of orbital dependence (which is an implicit density dependency) in the functionals. We discuss this approach both for energies and for response properties. One possibility is the use of the Hartree-Fock-type exchange energy expression as orbital-dependent functional. We will argue that in spite of the increasing popularity of this approach, it does not offer any advantage over Hartree-Fock for energies. We will advocate not to apply the separation of exchange and correlation, which is so ingrained in quantum chemistry, but to model both simultaneously. For response properties the energies and shapes of the virtual orbitals are crucial. We will discuss the benefits that Kohn-Sham potentials can offer which are derived from either an orbital-dependent energy functional, including the exact-exchange functional, or which can be obtained directly as orbital-dependent functional. We highlight the similarity of the Hartree-Fock and Kohn-Sham occupied orbitals and orbital energies, and the essentially different meanings the virtual orbitals and orbital energies have in these two models. We will show that these differences are beneficial for DFT in the case of localized excitations (in a small molecule or in a fragment), but are detrimental for charge-transfer excitations. Again, orbital dependency, in this case in the exchange-correlation kernel, offers a solution.

  12. Dielectric-dependent Density Functionals for Accurate Electronic Structure Calculations of Molecules and Solids

    Science.gov (United States)

    Skone, Jonathan; Govoni, Marco; Galli, Giulia

    Dielectric-dependent hybrid [DDH] functionals have recently been shown to yield highly accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than standard GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. In the present talk we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using material dependent, non-empirical parameters. Comparing with state of the art GW calculations and experiment, we show that such RS hybrids yield accurate electronic properties of both molecules and solids, including energy gaps, photoelectron spectra and absolute ionization potentials. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and DOE-BES.

  13. Transverse Momentum Dependent Parton Distribution Functions through SIDIS and Drell-Yan at COMPASS

    CERN Document Server

    AUTHOR|(CDS)2079419; Ramos, Sérgio; Quintans, Catarina

    The spin structure of the nucleon has been studied at the COMPASS experiment at CERN. The Semi-Inclusive Deep Inelastic Scattering (SIDIS) measurements are a powerful tool to access the Parton Distribution Functions (PDFs) and the Transverse Momentum Dependent Parton Distribution Functions (TMD PDFs). The COMPASS polarised target gives the opportunity to measure the azimuthal modulations depending on the spin orientation and the extraction of the transverse spin asymmetries, which are convolutions of TMD PDFs of the nucleon and Fragmentation Functions (FF). The analysis of these data is done in several kinematic bins, which provides a vast input for the theoreticians to extract the TMDs and the FFs and their kinematic dependence. The TMD PDFs are also accessible through the measurement of the Drell-Yan process, in this case the transverse spin asymmetries are convolutions of two TMD PDFs, one corresponding to the annihilating quark from the beam hadron and the other to the annihilating quark from the target h...

  14. Abnormal intrinsic functional hubs in alcohol dependence: evidence from a voxelwise degree centrality analysis.

    Science.gov (United States)

    Luo, Xiaoping; Guo, Linghong; Dai, Xi-Jian; Wang, Qinglai; Zhu, Wenzhong; Miao, Xinjun; Gong, Honghan

    2017-01-01

    To explore the abnormal intrinsic functional hubs in alcohol dependence using voxelwise degree centrality analysis approach, and their relationships with clinical features. Twenty-four male alcohol dependence subjects free of medicine (mean age, 50.21±9.62 years) and 24 age- and education-matched male healthy controls (mean age, 50.29±8.92 years) were recruited. The alcohol use disorders identification test and the severity of alcohol dependence questionnaire (SADQ) were administered to assess the severity of alcohol craving. Voxelwise degree centrality approach was used to assess the abnormal intrinsic functional hubs features in alcohol dependence. Simple linear regression analysis was performed to investigate the relationships between the clinical features and abnormal intrinsic functional hubs. Compared with healthy controls, alcohol dependence subjects exhibited significantly different degree centrality values in widespread left lateralization brain areas, including higher degree centrality values in the left precentral gyrus (BA 6), right hippocampus (BA 35, 36), and left orbitofrontal cortex (BA 11) and lower degree centrality values in the left cerebellum posterior lobe, bilateral secondary visual network (BA 18), and left precuneus (BA 7, 19). SADQ revealed a negative linear correlation with the degree centrality value in the left precentral gyrus (R(2)=0.296, P=0.006). The specific abnormal intrinsic functional hubs appear to be disrupted by alcohol intoxication, which implicates at least three principal neural systems: including cerebellar, executive control, and visual cortex, which may further affect the normal motor behavior such as an explicit type of impaired driving behavior. These findings expand our understanding of the functional characteristics of alcohol dependence and may provide a new insight into the understanding of the dysfunction and pathophysiology of alcohol dependence.

  15. Towards efficient orbital-dependent density functionals for weak and strong correlation

    CERN Document Server

    Zhang, Igor Ying; Perdew, John P; Scheffler, Matthias

    2016-01-01

    We present a new paradigm for the design of exchange-correlation functionals in density-functional theory. Electron pairs are correlated explicitly by means of the recently developed second order Bethe-Goldstone equation (BGE2) approach. Here we propose a screened BGE2 (sBGE2) variant that efficiently regulates the coupling of a given electron pair. sBGE2 correctly dissociates H$_2$ and H$_2^+$, a problem that has been regarded as a great challenge in density-functional theory for a long time. The sBGE2 functional is then taken as a building block for an orbital-dependent functional, termed ZRPS, which is a natural extension of the PBE0 hybrid functional. While worsening the good performance of sBGE2 in H$_2$ and H$_2^{+}$, ZRPS yields a remarkable and consistent improvement over other density functionals across various chemical environments from weak to strong correlation.

  16. Executive functions and risky decision-making in patients with opiate dependence.

    Science.gov (United States)

    Brand, Matthias; Roth-Bauer, Martina; Driessen, Martin; Markowitsch, Hans J

    2008-09-01

    Recent evidence suggests that individuals with opiate dependence may have cognitive dysfunctions particularly within the spectrum of executive functioning and emotional processing. Such dysfunctions can also compromise daily decisions associated with risk-taking behaviors. However, it remains unclear whether patients addicted to opiates show impaired decision-making on gambling tasks that specify explicit rules for rewards and punishments and provide information about probabilities associated with different long-term outcomes. In this study, we examined 18 individuals with opiate dependence and 18 healthy comparison subjects, matched for age, gender, and education with the Game of Dice Task (GDT). The GDT is a gambling task with explicit rules for gains and losses and fix winning probabilities. In addition, all subjects completed a neuropsychological test battery that primarily focused on executive functions and a personality questionnaire. On the GDT, patients chose the risky alternatives more frequently than the control group. Patients' GDT performance was related to executive functioning but not to other neuropsychological constructs, personality or dependence specific variables with one exception that is the number of days of abstinence. Thus, patients with opiate dependence demonstrate abnormalities in decision-making that might be neuropsychologically associated with dysfunctional behavior in patients' daily lives. Decision-making and other neuropsychological functioning should be considered in the treatment of opiate dependence.

  17. Reduced Density Matrix Functional Theory (RDMFT) and Linear Response Time-Dependent RDMFT (TD-RDMFT).

    Science.gov (United States)

    Pernal, Katarzyna; Giesbertz, Klaas J H

    2016-01-01

    Recent advances in reduced density matrix functional theory (RDMFT) and linear response time-dependent reduced density matrix functional theory (TD-RDMFT) are reviewed. In particular, we present various approaches to develop approximate density matrix functionals which have been employed in RDMFT. We discuss the properties and performance of most available density matrix functionals. Progress in the development of functionals has been paralleled by formulation of novel RDMFT-based methods for predicting properties of molecular systems and solids. We give an overview of these methods. The time-dependent extension, TD-RDMFT, is a relatively new theory still awaiting practical and generally useful functionals which would work within the adiabatic approximation. In this chapter we concentrate on the formulation of TD-RDMFT response equations and various adiabatic approximations. None of the adiabatic approximations is fully satisfactory, so we also discuss a phase-dependent extension to TD-RDMFT employing the concept of phase-including-natural-spinorbitals (PINOs). We focus on applications of the linear response formulations to two-electron systems, for which the (almost) exact functional is known.

  18. Use of functioning-disability and dependency for case-mix and subtyping of schizophrenia

    Directory of Open Access Journals (Sweden)

    Susana Ochoa

    2012-03-01

    Full Text Available Background and Objectives: To evaluate the utility of the constructs functioning and disability (F & D and dependency for case-mix and subtyping of patients with schizophrenia by psychosocial, clinical, use of services and attention received from informal carers. Methods: A randomly selected total of 205 people with schizophrenia, and their careers were evaluated through PANSS, DAS-sv, Objective and Subjective Burden Scale (ECFOS-II and use of services. Results: Two groups and Four profiles were identified according to levels of Dependency: The non-dependent group was made of two profiles: independent (I, and persons with disability in the community (DiC. The dependent group included persons with dependency in the community (DeC and persons with dependency in hospital care (DeH. There are clinical and psychosocial differences between these profiles being the dependent the most severe. Regarding use of services, DeC use the most resources, with the exception DeH (more hospitalization resources. The DeC profile generate greater family burden in the following areas; taking medication, being accompanied to appointments, and management than the DiC, despite both groups showing a high need for support. Conclusions: Dependency is a relevant construct for case-mix and subtyping in schizophrenia, and it is related to severity both at the social and clinical level. DeC generate more family burden than the other profiles, followed by DiC (patients with schizophrenia with disability but non-dependent.

  19. Time-dependent density functional theory study on direction-dependent electron and hole transfer processes in molecular systems.

    Science.gov (United States)

    Partovi-Azar, Pouya; Kaghazchi, Payam

    2017-04-15

    We report on real-time time-dependent density functional theory calculations on direction-dependent electron and hole transfer processes in molecular systems. As a model system, we focus on α-sulfur. It is shown that time scale of the electron transfer process from a negatively charged S8 molecule to a neighboring neutral monomer is comparable to that of a strong infrared-active molecular vibrations of the dimer with one negatively charged monomer. This results in a strong coupling between the electrons and the nuclei motion which eventually leads to S8 ring opening before the electron transfer process is completed. The open-ring structure is found to be stable. The similar infrared-active peak in the case of hole transfer, however, is shown to be very weak and hence no significant scattering by the nuclei is possible. The presented approach to study the charge transfer processes in sulfur has direct applications in the increasingly growing research field of charge transport in molecular systems. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    OpenAIRE

    Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon (AH|FC) method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) ...

  1. Decreased serum level of NGF in alcohol-dependent patients with declined executive function

    Directory of Open Access Journals (Sweden)

    Bae H

    2014-11-01

    Full Text Available Hwallip Bae,1 Youngsun Ra,1 Changwoo Han,2 Dai-Jin Kim3 1Department of Psychiatry, Myongji Hospital, Goyang, 2Department of Psychiatry, Keyo Hospital, Uiwang, 3Department of Psychiatry, Seoul St Mary’s Hospital, College of Medicine, Catholic University of Korea, Seoul, South Korea Abstract: The role of neurotrophic factors has been highlighted as a cause of decline in the cognitive function of alcohol-dependent patients. It is known that nerve-growth factor (NGF, one of the neurotrophins, is related to the growth and differentiation of nerve cells, as well as to a decline in cognitive function. The purpose of this study was to investigate the relationship between decreased NGF levels and cognitive decline in alcohol-dependent patients. The serum concentration of NGF was measured in 38 patients with chronic alcohol dependence, and several neuropsychological tests were also performed for cognitive function assessment. The results indicated a significant correlation between serum NGF level and the trail-making test part B, which evaluates executive function, but did not show a significant correlation with other cognitive function tests. An increased serum level of NGF was associated with a decreased completion time in the trail-making test B, and this finding indicates that a high serum level of NGF is related to greater executive function. This finding may imply a protective role of NGF in preventing neuron damage among patients with alcohol dependence. Larger controlled studies will be necessary in the future to investigate this issue further. Keywords: nerve-growth factor, alcohol dependence, executive function, trail-making test

  2. Linear-response time-dependent density-functional theory with pairing fields.

    Science.gov (United States)

    Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.

  3. The mediating effect of psychological distress on functional dependence in stroke patients.

    Science.gov (United States)

    Huang, Hui-Chuan; Huang, Li-Kai; Hu, Chaur-Jong; Chang, Chien-Hung; Lee, Hsin-Chien; Chi, Nai-Fang; Shyu, Meei-Ling; Chang, Hsiu-Ju

    2014-12-01

    To explore varied forms of psychological distress and to determine the mediating influence of psychological distress on functional outcomes in stroke patients. Previous studies attest to the influence of depression on poststroke functional recovery. While there is evidence for neuropathological deficits that occur after stroke to be associated with psychological distress, few studies have explored the effect of various types of psychological distress on functional recovery. A cross-sectional study was used. Data were collected from 178 first-time stroke patients. Study variables included demographic and disease characteristics (stroke location and stroke syndrome classification), psychological distress (the Chinese language version of the Emotional and Social Dysfunction Questionnaire) and functional outcome (Barthel index). Regression and mediation models were used to evaluate the effect of psychological distress on functional outcome. Results revealed that stroke patients experience various forms of mild psychological distress, including anger, helplessness, emotional dyscontrol, indifference, inertia and euphoria, after stroke. Regression and mediation analyses further confirmed that various forms of psychological distress significantly mediated the effect of severe stroke syndromes on functional dependence. The various forms of psychological distress after stroke might play a mediating role in functional recovery and explain how stroke severity affects functional dependence. By understanding the nature of various forms of psychological distress, healthcare professionals should adopt appropriate assessment instruments and design effective interventions to help improve mental and physical function of stroke patients. © 2014 John Wiley & Sons Ltd.

  4. Time-dependent density functional theory for many-electron systems interacting with cavity photons.

    Science.gov (United States)

    Tokatly, I V

    2013-06-07

    Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.

  5. Effect of CGRP and sumatriptan on the BOLD response in visual cortex

    DEFF Research Database (Denmark)

    Asghar, Mohammed Sohail; Hansen, Adam E; Larsson, Henrik B W

    2012-01-01

    sumatriptan. Eighteen healthy volunteers were randomly allocated to receive CGRP infusion (1.5 µg/min for 20 min) or placebo. In vivo activity in the visual cortex was recorded before, during and after infusion and after 6 mg subcutaneous sumatriptan by functional magnetic resonance imaging (3 T). 77......To test the hypothesis that calcitonin gene-related peptide (CGRP) modulates brain activity, we investigated the effect of intravenous CGRP on brain activity in response to a visual stimulus. In addition, we examined if possible alteration in brain activity was reversed by the anti-migraine drug......% of the participants reported headache after CGRP. We found no changes in brain activity after CGRP (P = 0.12) or after placebo (P = 0.41). Sumatriptan did not affect brain activity after CGRP (P = 0.71) or after placebo (P = 0.98). Systemic CGRP or sumatriptan has no direct effects on the BOLD activity in visual...

  6. Barcroft's bold assertion: All dwellers at high altitudes are persons of impaired physical and mental powers.

    Science.gov (United States)

    West, John B

    2016-03-01

    Barcroft's bold assertion that everyone at high altitude has physical and mental impairment compared with sea level was very provocative. It was a result of the expedition that he led to Cerro de Pasco in Peru, altitude 4300 m. Although it is clear that newcomers to high altitude have reduced physical powers, some people believe that this does not apply to permanent residents who have been at high altitude for generations. The best evidence supports Barcroft's contention, although permanent residents often perform better than acclimatized lowlanders. Turning to neuropsychological function, newcomers to high altitude certainly have some impairment, and there is evidence that the same applies to highlanders. However the notion that permanent residents are impaired is anathema to many people. For example the eminent Peruvian physician Carlos Monge took great exception to Barcroft's remark and even attributed it to the fact that Barcroft was suffering from acute mountain sickness when he made it! Monge referred to 'climatic aggression', by which he meant the negative consequences of the inevitable hypoxia of high altitude. Recent technological advances such as oxygen enrichment of room air can overcome this 'aggression'. This might be useful in some settings at high altitude such as a nursery where newborn babies are cared for, and possibly operating rooms where the surgeon's dexterity may be enhanced. Other situations might be dormitories, conference rooms, and perhaps some school rooms. These constitute possible ways by which the effects of Barcroft's assertion might be countered.

  7. Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres

    CERN Document Server

    Prakapavicius, D; Kucinskas, A; Ludwig, H -G; Freytag, B; Caffau, E; Cayrel, R

    2013-01-01

    In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor 3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps ...

  8. The possible role of CO2 in producing a post-stimulus CBF and BOLD undershoot

    Directory of Open Access Journals (Sweden)

    Meryem A Yucel

    2009-11-01

    Full Text Available Comprehending the underlying mechanisms of neurovascular coupling is important for understanding the pathogenesis of neurodegenerative diseases related to uncoupling. Moreover, it elucidates the casual relation between the neural signaling and the hemodynamic responses measured with various imaging modalities such as functional magnetic resonance imaging (fMRI. There are mainly two hypotheses concerning this mechanism: a metabolic hypothesis and a neurogenic hypothesis. We have modified recent models of neurovascular coupling adding the effects of both NO (nitric oxide kinetics, which is a well-known neurogenic vasodilator, and CO2 kinetics as a metabolic vasodilator. We have also added the Hodgkin-Huxley equations relating the membrane potentials to sodium influx through the membrane. Our results show that the dominant factor in the hemodynamic response is NO, however CO2 is important in producing a brief post-stimulus undershoot in the blood flow response that in turn modifies the fMRI BOLD post-stimulus undershoot. Our results suggest that increased cerebral blood flow during stimulation causes CO2 washout which then results in a post-stimulus hypocapnia induced vasoconstrictive effect.

  9. Functional magnetic resonance imaging at 0.2 Tesla.

    Science.gov (United States)

    Stroman, P W; Malisza, K L; Onu, M

    2003-10-01

    Functional magnetic resonance imaging of healthy human volunteers was carried out at 0.2 T, using proton-density weighted (TE = 24 ms) spin-echo imaging, in order to eliminate any contribution from the blood oxygenation-level dependent (BOLD) effect. The purpose of the study was to verify the existence of a proton-density change contribution to spin-echo functional magnetic resonance imaging (fMRI) data. Results demonstrated signal intensity changes in motor and sensory areas of the brain during performance of a motor task and cold sensory stimulation of the hand, with signal changes ranging from 1.7 to 2.3%. These values are consistent with 1.9% signal changes observed previously under similar conditions at 3 T. These findings confirm the proton-density change contribution to spin-echo fMRI data and support the theory of signal enhancement by extravascular water protons (SEEP) as a non-BOLD fMRI contrast mechanism. This study also demonstrates that fMRI based on the SEEP contrast mechanism can be carried out at low fields where the BOLD effect is expected to be negligible.

  10. Efficient temperature-dependent Green's function methods for realistic systems: using cubic spline interpolation to approximate Matsubara Green's functions

    CERN Document Server

    Kananenka, Alexei A; Lan, Tran Nguyen; Gull, Emanuel; Zgid, Dominika

    2016-01-01

    The popular, stable, robust and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green's function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Green's function grid size can be reduced by about two orders of magnitude by replacing the standard Matsubara frequency grid with a sparser grid and a set of interpolation coefficients. We benchmarked the accuracy of our algorithm as a function of a single parameter sensitive to the shape of the Green's function. Through numerous examples, we confirmed that our algorithm can be utilized in a systematically improvable, controlled, and black-box manner and highly accurate one- and two-body energies and one-particle density matrices can be obtained using only around 5% of the original grid points. Additionally, we established that to improve accuracy by an order of magnitude, the number of grid points needs to be double...

  11. Isolating human brain functional connectivity associated with a specific cognitive process

    Science.gov (United States)

    Silver, Michael A.; Landau, Ayelet N.; Lauritzen, Thomas Z.; Prinzmetal, William; Robertson, Lynn C.

    2010-02-01

    The use of functional magnetic resonance imaging (fMRI) to measure functional connectivity among brain areas has the potential to identify neural networks associated with particular cognitive processes. However, fMRI signals are not a direct measure of neural activity but rather represent blood oxygenation level-dependent (BOLD) signals. Correlated BOLD signals between two brain regions are therefore a combination of neural, neurovascular, and vascular coupling. Here, we describe a procedure for isolating brain functional connectivity associated with a specific cognitive process. Coherency magnitude (measuring the strength of coupling between two time series) and phase (measuring the temporal latency differences between two time series) are computed during performance of a particular cognitive task and also for a control condition. Subtraction of the coherency magnitude and phase differences for the two conditions removes sources of correlated BOLD signals that do not modulate as a function of cognitive task, resulting in a more direct measure of functional connectivity associated with changes in neuronal activity. We present two applications of this task subtraction procedure, one to measure changes in strength of coupling associated with sustained visual spatial attention, and one to measure changes in temporal latencies between brain areas associated with voluntary visual spatial attention.

  12. Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design

    Directory of Open Access Journals (Sweden)

    Bordner Andrew J

    2010-04-01

    Full Text Available Abstract Background Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance. Results Residue pair scoring functions for fixed backbone protein design were derived using only backbone geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture Models were used to fit the full 3D (position only and 6D (position and orientation distributions of residue pairs. The performance of the 1D (residue separation only, 3D, and 6D scoring functions were compared by their ability to identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by applying Belief Propagation

  13. Analysis of Time-Dependent Density Functional Theory of Transition Wavelengths of Thioaldehydes and Thioketones

    Institute of Scientific and Technical Information of China (English)

    HE Xiang; WANG Fan

    2006-01-01

    @@ Thioaldehydes and thioketones are candidates of new photoluminescence materials. The time-dependent density functional theory is applied to calculate the absorption and emission wavelengths of ten thiocarbonyl compounds using both B3LYP and PBE0 functionals. The theoretical results are in agreement with the measurable ones.Furthermore, it is found that the maximum absorption and emission wavelengths are linearly correlated to the C-S bond lengths.

  14. Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory

    Science.gov (United States)

    2017-04-23

    quantitatively and non-empirically within the framework of time-dependent density functional theory (TDDFT), using the recently-developed optimally-tuned...showing that fundamental gaps and optical spectra of molecular solids can be predicted quantitatively and non-empirically within the framework of...II. THEORETICAL AND COMPUTATIONAL APPROACH A. Optimally-tuned range-separated hybrid functionals In the range-separated hybrid (RSH) method, the

  15. Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder.

    Science.gov (United States)

    Meunier, David; Ersche, Karen D; Craig, Kevin J; Fornito, Alex; Merlo-Pich, Emilio; Fineberg, Naomi A; Shabbir, Shaila S; Robbins, Trevor W; Bullmore, Edward T

    2012-01-16

    There are reasons for thinking that obsessive-compulsive disorder (OCD) and drug dependence, although conventionally distinct diagnostic categories, might share important cognitive and neurobiological substrates. We tested this hypothesis directly by comparing brain functional connectivity measures between patients with OCD, stimulant dependent individuals (SDIs; many of whom were non-dependent users of other recreational drugs) and healthy volunteers. We measured functional connectivity between each possible pair of 506 brain regional functional MRI time series representing low frequency (0.03-0.06 Hz) spontaneous brain hemodynamics in healthy volunteers (N=18), patients with OCD (N=18) and SDIs (N=18). We used permutation tests to identify i) brain regions where strength of connectivity was significantly different in both patient groups compared to healthy volunteers; and ii) brain regions and connections which had significantly different functional connectivity between patient groups. We found that functional connectivity of right inferior and superior orbitofrontal cortex (OFC) was abnormally reduced in both disorders. Whether diagnosed as OCD or SDI, patients with higher scores on measures of compulsive symptom severity showed greater reductions of right orbitofrontal connectivity. Functional connections specifically between OFC and dorsal medial pre-motor and cingulate cortex were attenuated in both patient groups. However, patients with OCD demonstrated more severe and extensive reductions of functional connectivity compared to SDIs. OCD and stimulant dependence are not identical at the level of brain functional systems but they have some important abnormalities in common compared with healthy volunteers. Orbitofrontal connectivity may serve as a human brain systems biomarker for compulsivity across diagnostic categories.

  16. Treadmill Exercise Improves Memory Function Depending on Circadian Rhythm Changes in Mice

    OpenAIRE

    Hwang, Dong Sup; Kwak, Hyo Bum; Ko, Il Gyu; Kim, Sung Eun; Jin, Jun Jang; Ji, Eun Sang; Choi, Hyun Hee; Kwon, Oh Young

    2016-01-01

    Purpose Exercise enhances memory function by increasing neurogenesis in the hippocampus, and circadian rhythms modulate synaptic plasticity in the hippocampus. The circadian rhythm-dependent effects of treadmill exercise on memory function in relation with neurogenesis were investigated using mice. Methods The step-down avoidance test was used to evaluate short-term memory, the 8-arm maze test was used to test spatial learning ability, and 5-bromo-2’-deoxyuridine immunofluorescence was used t...

  17. Abnormal intrinsic functional hubs in alcohol dependence: evidence from a voxelwise degree centrality analysis

    Directory of Open Access Journals (Sweden)

    Luo X

    2017-07-01

    Full Text Available Xiaoping Luo,1,2 Linghong Guo,1 Xi-Jian Dai,3 Qinglai Wang,2 Wenzhong Zhu,2 Xinjun Miao,2 Honghan Gong1 1Department of Radiology, The First Affiliated Hospital of Nanchang University, Nangchang, Jiangxi, People’s Republic of China; 2Department of Radiology, Wenzhou Chinese Medicine Hospital, Wenzhou, Zhejiang, People’s Republic of China; 3Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China Objective: To explore the abnormal intrinsic functional hubs in alcohol dependence using voxelwise degree centrality analysis approach, and their relationships with clinical features.Materials and methods: Twenty-four male alcohol dependence subjects free of medicine (mean age, 50.21±9.62 years and 24 age- and education-matched male healthy controls (mean age, 50.29±8.92 years were recruited. The alcohol use disorders identification test and the severity of alcohol dependence questionnaire (SADQ were administered to assess the severity of alcohol craving. Voxelwise degree centrality approach was used to assess the abnormal intrinsic functional hubs features in alcohol dependence. Simple linear regression analysis was performed to investigate the relationships between the clinical features and abnormal intrinsic functional hubs.Results: Compared with healthy controls, alcohol dependence subjects exhibited significantly different degree centrality values in widespread left lateralization brain areas, including higher degree centrality values in the left precentral gyrus (BA 6, right hippocampus (BA 35, 36, and left orbitofrontal cortex (BA 11 and lower degree centrality values in the left cerebellum posterior lobe, bilateral secondary visual network (BA 18, and left precuneus (BA 7, 19. SADQ revealed a negative linear correlation with the degree centrality value in the left precentral gyrus (R2=0.296, P=0.006.Conclusion: The specific abnormal intrinsic functional hubs appear

  18. turboTDDFT 2.0 - Hybrid functionals and new algorithms within time-dependent density-functional perturbation theory

    CERN Document Server

    Ge, Xiaochuan; Rocca, Dario; Gebauer, Ralph; Baroni, Stefano

    2014-01-01

    We present a new release of the turboTDDFT code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the Liouville-Lanczos approach to time-dependent density-functional perturbation theory, and a newly developed Davidson-like algorithm to compute selected interior eigenvalues/vectors of the Liouvillian super-operator. Our implementation is thoroughly validated against benchmark calculations performed on the cyanin (C$_{21}$O$_{11}$H$_{21}$) molecule using the Gaussian09 and turboTDDFT 1.0 codes.

  19. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.;

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...... moments are computed using the same geometries (MP2/6-31G*) and basis set (TZVP) as in our previous ab initio benchmark study on electronically excited states. The results from TD-DFT (with the functionals BP86, B3LYP, and BHLYP) and from DFT/MRCI are compared against the previous high-level ab initio...

  20. Hemodynamics, functional state of endothelium and renal function, platelets depending on the body mass index in patients with chronic heart failure and preserved systolic function

    Directory of Open Access Journals (Sweden)

    Kushnir Yu.

    2014-03-01

    Full Text Available The aim of the study was to evaluate hemodynamics, endothelium function of kidneys and platelets depending on the body mass index (BMI in patients with chronic heart failure (CHF and preserved systolic function. 42 patients (mean age - 76,690,83 years with CHF II-III FC NYHA with preserved systolic function (LVEF>45% were enrolled. Echocardiography was performed, endothelial function, serum creatinine levels and microalbuminuria were determined in patients. BMI and glomerulation filtration rate were calculated by formulas. The morphological and functional status of platelets was estimated by electronic microscopy. It was defined that increased BMI in patients with CHF and preserved systolic function determines the structural and functional changes of the myocardium and leads to the endothelial and renal functional changes. An increased risk of thrombogenesis was established in patients with overweight and obesity.

  1. Improving the precision of fMRI BOLD signal deconvolution with implications for connectivity analysis.

    Science.gov (United States)

    Bush, Keith; Cisler, Josh; Bian, Jiang; Hazaroglu, Gokce; Hazaroglu, Onder; Kilts, Clint

    2015-12-01

    An important, open problem in neuroimaging analyses is developing analytical methods that ensure precise inferences about neural activity underlying fMRI BOLD signal despite the known presence of confounds. Here, we develop and test a new meta-algorithm for conducting semi-blind (i.e., no knowledge of stimulus timings) deconvolution of the BOLD signal that estimates, via bootstrapping, both the underlying neural events driving BOLD as well as the confidence of these estimates. Our approach includes two improvements over the current best performing deconvolution approach; 1) we optimize the parametric form of the deconvolution feature space; and, 2) we pre-classify neural event estimates into two subgroups, either known or unknown, based on the confidence of the estimates prior to conducting neural event classification. This knows-what-it-knows approach significantly improves neural event classification over the current best performing algorithm, as tested in a detailed computer simulation of highly-confounded fMRI BOLD signal. We then implemented a massively parallelized version of the bootstrapping-based deconvolution algorithm and executed it on a high-performance computer to conduct large scale (i.e., voxelwise) estimation of the neural events for a group of 17 human subjects. We show that by restricting the computation of inter-regional correlation to include only those neural events estimated with high-confidence the method appeared to have higher sensitivity for identifying the default mode network compared to a standard BOLD signal correlation analysis when compared across subjects.

  2. Functional traits shape size-dependent growth and mortality rates of dry forest tree species

    NARCIS (Netherlands)

    Prado-Junior, Jamir A.; Schiavini, Ivan; Vale, Vagner S.; Raymundo, Diego; Lopes, Sergio F.; Poorter, Lourens

    2016-01-01

    Aims

    Functional traits have emerged as an important tool to evaluate plant performance. However, the environmental conditions and ecological pressures that plants face change with their size, and the relationship between traits and plant performance should therefore be size-dependent, which

  3. Cognitive Functioning and Academic Achievement in Children with Insulin-Dependent Diabetes Mellitus (IDDM).

    Science.gov (United States)

    Holmes, Clarissa S.; And Others

    1995-01-01

    Consistent evidence relates insulin dependent diabetes mellitus (IDDM) to lower intellectual functioning in children, although performance is still in the average range. Children with IDDM have received specialized classroom assistance at school. Boys with diabetes appear at greater risk for learning problems than girls. Evidence suggests both…

  4. Time-dependent density-functional theory in the projector augmented-wave method

    DEFF Research Database (Denmark)

    Walter, Michael; Häkkinen, Hannu; Lehtovaara, Lauri

    2008-01-01

    We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we...

  5. Multidrug Resistance-Related Protein 1 (MRP1) Function and Localization Depend on Cortical Actin

    NARCIS (Netherlands)

    Hummel, Ina; Klappe, Karin; Ercan, Cigdem; Kok, Jan Willem

    2011-01-01

    MRP1 (ABCC1) is known to be localized in lipid rafts. Here we show in two different cell lines that localization of Mrp1/MRP1 (Abcc1/ABCC1) in lipid rafts and its function as an efflux pump are dependent on cortical actin. Latrunculin B disrupts both cortical actin and actin stress fibers. This resu

  6. The dependence of polymer conductivity on the work function of metallic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dunaevskii, M.S. [A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation); Nikolaeva, M.N. [Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi Pr. 31, 199004 St. Petersburg (Russian Federation); Rentzsch, R. [Institut fuer Experimentalphysik, Freie Universitaet Berlin, 14195 Berlin (Germany); Ionov, A.N.

    2009-12-15

    It is shown that the occurrence of metallic conductivity in polymers is due to their electrification. In particular, the current density depends on the electron work function of metallic electrodes which are in contact with the polymer. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. The Correlation Function of Multiple Dependent Poisson Processes Generated by the Alternating Renewal Process Method

    CERN Document Server

    Johnson, Don H

    2008-01-01

    We derive conditions under which alternating renewal processes can be used to construct correlated Poisson processes. The pairwise correlation function is also derived, showing that the resulting correlations can be negative. The technique and the analysis can be extended to the generation of two or more dependent renewal processes.

  8. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility

    KAUST Repository

    Korobeinikov, Andrei

    2013-01-01

    We consider global asymptotic properties for the SIR and SEIR age structured models for infectious diseases where the susceptibility depends on the age. Using the direct Lyapunov method with Volterra type Lyapunov functions, we establish conditions for the global stability of a unique endemic steady state and the infection-free steady state.

  9. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids

    NARCIS (Netherlands)

    Corpeleijn, Eva; Hessvik, Nina P.; Bakke, Siril S.; Levin, Klaus; Blaak, Ellen E.; Thoresen, G. Hege; Gaster, Michael; Rustan, Arild C.

    2010-01-01

    Corpeleijn E, Hessvik NP, Bakke SS, Levin K, Blaak EE, Thoresen GH, Gaster M, Rustan AC. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids. Am J Physiol Endocrinol Metab 299: E14-E22, 2010. First published May 4, 2010; doi:1

  10. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility.

    Science.gov (United States)

    Melnik, Andrey V; Korobeinikov, Andrei

    2013-04-01

    We consider global asymptotic properties for the SIR and SEIR age structured models for infectious diseases where the susceptibility depends on the age. Using the direct Lyapunov method with Volterra type Lyapunov functions, we establish conditions for the global stability of a unique endemic steady state and the infection-free steady state.

  11. Doping dependence of the spectral function in the t-J model

    NARCIS (Netherlands)

    Eder, R; Ohta, Y.

    1996-01-01

    We study the doping dependence of the electronic spectral function in small clusters of the t-J model. We find rigid-band behaviour near the chemical potential and weight transfer from deep below E(F) to above the chemical potential; the latter originates from strong dressing of hobs by spin fluctua

  12. Unpolarised Transverse Momentum Dependent Distribution and Fragmentation Functions from SIDIS Multiplicities

    CERN Document Server

    Anselmino, M; H., J O Gonzalez; Melis, S; Prokudin, A

    2013-01-01

    The unpolarised transverse momentum dependent distribution and fragmentation functions are extracted from HERMES and COMPASS experimental measurements of SIDIS multiplicities for charged hadron production. The data are grouped into independent bins of the kinematical variables, in which the TMD factorisation is expected to hold. A simple factorised functional form of the TMDs is adopted, with a Gaussian dependence on the intrinsic transverse momentum, which turns out to be quite adequate in shape. HERMES data do not need any normalisation correction, while fits of the COMPASS data much improve with a $y$-dependent overall normalisation factor. A comparison of the extracted TMDs with previous EMC and JLab data confirms the adequacy of the simple Gaussian distributions. The possible role of the TMD evolution is briefly considered.

  13. Testing the process dependence of the Sivers function via hadron distributions inside a jet

    Energy Technology Data Exchange (ETDEWEB)

    D' Alesio, Umberto [Dipartimento di Fisica, Universita di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (Italy); Gamberg, Leonard, E-mail: lpg10@psu.edu [Division of Science, Penn State Berks, Reading, PA 19610 (United States); Kang Zhongbo [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Murgia, Francesco [Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (Italy); Pisano, Cristian [Dipartimento di Fisica, Universita di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (Italy)

    2011-10-25

    We study the process dependence of the Sivers function by considering the impact of color-gauge invariant initial and final state interactions on transverse spin asymmetries in proton-proton scattering reactions within the framework of the transverse momentum dependent (TMD), generalized parton model. To this aim, we consider the azimuthal distribution of leading pions inside a fragmenting jet as well as single inclusive jet asymmetry in polarized proton-proton collisions. In contrast to single inclusive pion production, in both cases we can isolate the Sivers contribution and thereby study its process dependence. The predictions for the Sivers asymmetry obtained with and without inclusion of color gauge factors are comparable in size but with opposite signs. We conclude that both processes represent unique opportunities to discriminate among the two approaches and test the universality properties of the Sivers function in hadronic scattering reactions.

  14. Time-dependent density functional theory for open quantum systems with unitary propagation.

    Science.gov (United States)

    Yuen-Zhou, Joel; Tempel, David G; Rodríguez-Rosario, César A; Aspuru-Guzik, Alán

    2010-01-29

    We extend the Runge-Gross theorem for a very general class of open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) time-dependent density functional theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential. A Markovian bath functional inspired by the theory of nonlinear Schrödinger equations is suggested, which can be readily implemented in currently existing real-time codes. Finally, calculations on a helium model system are presented.

  15. [Severity of alcohol dependence and social functioning of male patients with alcoholism. I. Functioning in the sharing of marital roles].

    Science.gov (United States)

    Dabkowski, M; Rogiewicz, M; Ziółkowski, M; Rybakowski, J

    1989-01-01

    The relations between social functioning and severity of alcohol dependence of 40 male patients from Dependence Treatment Ward in Bydgoszcz were studied. Using the MAST, CAGE, and self clinical scale the cohort was divided into two groups: less and more severe dependent probands. The demographic and social data of patients from both groups did not differ significantly. Social functiong was evaluated by use the Scale of Social Roles taking into consideration the set of marital roles (with basic roles of sexual partner, friend, guardian, and family support). The disposition to perform the role, privileges, fulfilling the duties, activity, and harmonization of the role were estimated in each of the role mentioned above and in every patient. It was shown that subjects more dependent on alcohol are significantly less active in the role of sexual partner and in support of family, as well as are less effective in performing such roles and are more egoistic in the role of sexual partner than men less dependent on alcohol. No differences were found in other roles among studied groups. The revealed differences were discussed in the aspect of psychologica and interactive hanges in marital couple.

  16. Orbital-dependent exchange-correlation functionals in density-functional theory realized by the FLAPW method

    Energy Technology Data Exchange (ETDEWEB)

    Betzinger, Markus

    2011-12-14

    In this thesis, we extended the applicability of the full-potential linearized augmented-plane-wave (FLAPW) method, one of the most precise, versatile and generally applicable electronic structure methods for solids working within the framework of density-functional theory (DFT), to orbital-dependent functionals for the exchange-correlation (xc) energy. Two different schemes that deal with orbital-dependent functionals, the Kohn-Sham (KS) and the generalized Kohn-Sham (gKS) formalism, have been realized. Hybrid functionals, combining some amount of the orbital-dependent exact exchange energy with local or semi-local functionals of the density, are implemented within the gKS scheme. We work in particular with the PBE0 hybrid of Perdew, Burke, and Ernzerhof. Our implementation relies on a representation of the non-local exact exchange potential - its calculation constitutes the most time consuming step in a practical calculation - by an auxiliary mixed product basis (MPB). In this way, the matrix elements of the Hamiltonian corresponding to the non-local potential become a Brillouin-zone (BZ) sum over vector-matrix-vector products. Several techniques are developed and explored to further accelerate our numerical scheme. We show PBE0 results for a variety of semiconductors and insulators. In comparison with experiment, the PBE0 functional leads to improved band gaps and an improved description of localized states. Even for the ferromagnetic semiconductor EuO with localized 4f electrons, the electronic and magnetic properties are correctly described by the PBE0 functional. Subsequently, we discuss the construction of the local, multiplicative exact exchange (EXX) potential from the non-local, orbital-dependent exact exchange energy. For this purpose we employ the optimized effective potential (OEP) method. Central ingredients of the OEP equation are the KS wave-function response and the single-particle density response function. We show that a balance between the LAPW

  17. The Environmental Dependence of the Galaxy Stellar Mass Function in the ECO Survey

    Science.gov (United States)

    Richstein, Hannah; Berlind, Andreas A.; Calderon, Victor; Eckert, Kathleen D.; Kannappan, Sheila; Moffett, Amanda J.; Stark, David

    2017-01-01

    We study the environmental dependence of the galaxy stellar mass function in the ECO survey and compare it with models that associate galaxies with dark matter halos. Specifically, we quantify the environment of each galaxy in the ECO survey using an Nth nearest neighbor distance metric, and we measure how the galaxy stellar mass distribution varies from low density to high density environments. As expected, we find that massive galaxies preferentially populate high density regions, while low mass galaxies preferentially populate lower density environments. We investigate whether this trend can be explained simply by the stellar-to-halo mass relation combined with the environmental dependence of the halo mass function. In other words, we test the hypothesis that the stellar mass of a galaxy depends solely on the mass of its dark matter halo and does not exhibit a residual dependence on the halo’s larger environment. To test this hypothesis, we first construct mock ECO catalogs by populating dark matter halos in an N-body simulation with galaxies using a model that preserves the overall clustering strength of the galaxy population. We then assign stellar masses to the mock galaxies using physically motivated models that connect stellar mass to halo mass and are constrained to match the global ECO stellar mass function. Finally, we impose the radial and angular selection functions of the ECO survey and repeat our environmental analysis on the mock catalogs. We find that the environmental dependence of stellar mass in the mock catalogs is in agreement with that observed in the ECO survey. Our results are thus consistent with the simple hypothesis that galaxy stellar mass only depends on halo mass. The RESOLVE/ECO surveys were supported by NSF award AST-0955368.

  18. Statistical Portfolio Estimation under the Utility Function Depending on Exogenous Variables

    Directory of Open Access Journals (Sweden)

    Kenta Hamada

    2012-01-01

    Full Text Available In the estimation of portfolios, it is natural to assume that the utility function depends on exogenous variable. From this point of view, in this paper, we develop the estimation under the utility function depending on exogenous variable. To estimate the optimal portfolio, we introduce a function of moments of the return process and cumulant between the return processes and exogenous variable, where the function means a generalized version of portfolio weight function. First, assuming that exogenous variable is a random process, we derive the asymptotic distribution of the sample version of portfolio weight function. Then, an influence of exogenous variable on the return process is illuminated when exogenous variable has a shot noise in the frequency domain. Second, assuming that exogenous variable is nonstochastic, we derive the asymptotic distribution of the sample version of portfolio weight function. Then, an influence of exogenous variable on the return process is illuminated when exogenous variable has a harmonic trend. We also evaluate the influence of exogenous variable on the return process numerically.

  19. Velocity and Mass Functions of Galactic Halos Evolution and Environmental Dependence

    CERN Document Server

    Sigad, Y; Bullock, J S; Kravtsov, A V; Klypin, A A; Primack, Joel R; Dekel, A; Sigad, Yair; Kolatt, Tsafrir S.; Bullock, James S.; Kravtsov, Andrey V.; Klypin, Anatoly A.; Primack, Joel R.; Dekel, Avishai

    2000-01-01

    We study the distribution functions of mass and circular velocity for dark matter halos in N-body simulations of the $\\Lambda$CDM cosmology, addressing redshift and environmental dependence. The dynamical range enables us to resolve subhalos and distinguish them from "distinct" halos. The mass function is compared to analytic models, and is used to derive the more observationally relevant circular velocity function. The distribution functions in the velocity range 100--500 km/s are well fit by a power-law with two parameters, slope and amplitude. We present the parameter dependence on redshift and provide useful fitting formulae. The amplitudes of the mass functions decrease with z, but, contrary to naive expectation, the comoving density of halos of a fixed velocity ~200 km/s actually increases out to z=5. This is because high-z halos are denser, so a fixed velocity corresponds to a smaller mass. The slope of the velocity function at z=0 is as steep as ~ -4, and the mass and velocity functions of distinct ha...

  20. Voltage dependence of rate functions for Na+ channel inactivation within a membrane

    CERN Document Server

    Vaccaro, Samuel R

    2015-01-01

    The inactivation of a Na+ channel occurs when the activation of the charged S4 segment of domain IV, with rate functions $\\alpha_{i}$ and $\\beta_{i}$, is followed by the binding of an intracellular hydrophobic motif which blocks conduction through the ion pore, with rate functions $\\gamma_{i}$ and $\\delta_{i}$. During a voltage clamp of the Na+ channel, the solution of the master equation for inactivation reduces to the relaxation of a rate equation when the binding of the inactivation motif is rate limiting ($\\alpha_{i} \\gg \\gamma_{i}$ and $\\beta_{i} \\gg \\delta_{i}$). The voltage dependence of the derived forward rate function for Na+ channel inactivation has an exponential dependence on the membrane potential for small depolarizations and approaches a constant value for larger depolarizations, whereas the voltage dependence of the backward rate function is exponential, and each rate has a similar form to the Hodgkin-Huxley empirical rate functions for Na+ channel inactivation in the squid axon.

  1. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    Science.gov (United States)

    Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-11-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, very good agreement with TD-DFT calculations using local functionals was achieved.

  2. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding.

    Science.gov (United States)

    Rüger, Robert; Niehaus, Thomas; van Lenthe, Erik; Heine, Thomas; Visscher, Lucas

    2016-11-14

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nuclear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aromatic and polar molecules. Using the recent 3ob:freq parameter set of Elstner's group, very good agreement with TD-DFT calculations using local functionals was achieved.

  3. Time-dependent density functional theory quantum transport simulation in non-orthogonal basis.

    Science.gov (United States)

    Kwok, Yan Ho; Xie, Hang; Yam, Chi Yung; Zheng, Xiao; Chen, Guan Hua

    2013-12-14

    Basing on the earlier works on the hierarchical equations of motion for quantum transport, we present in this paper a first principles scheme for time-dependent quantum transport by combining time-dependent density functional theory (TDDFT) and Keldysh's non-equilibrium Green's function formalism. This scheme is beyond the wide band limit approximation and is directly applicable to the case of non-orthogonal basis without the need of basis transformation. The overlap between the basis in the lead and the device region is treated properly by including it in the self-energy and it can be shown that this approach is equivalent to a lead-device orthogonalization. This scheme has been implemented at both TDDFT and density functional tight-binding level. Simulation results are presented to demonstrate our method and comparison with wide band limit approximation is made. Finally, the sparsity of the matrices and computational complexity of this method are analyzed.

  4. Magnetic circular dichroism in real-time time-dependent density functional theory

    CERN Document Server

    Lee, K -M; Bertsch, G F

    2010-01-01

    We apply the adiabatic time-dependent density functional theory to magnetic ci the real-space, real-time computational method. The standard formulas for the MCD response and its A and B terms are derived from the observables in the time-dependent wave function. We find the real time method is well suited for calculating the overall spectrum, particularly at higher excitation energies where individual excited states are numerous and overlapping. The MCD sum rules are derived and interpreted in the real-time formalism; we find that they are very useful for normalization purposes and assessing the accuracy of the theory. The method is applied to MCD spectrum of C-60 using the adiabatic energy functional from the local density approximation. The theory correctly predicts the signs of the A and B terms for the lowest allowed excitations. However, the magnitudes of the terms only show qualitative agreement with experiment.

  5. Graph network analysis of immediate motor-learning induced changes in resting state BOLD

    Directory of Open Access Journals (Sweden)

    Saber eSami

    2013-05-01

    Full Text Available Recent studies have demonstrated that following learning tasks, changes in the resting state activity of the brain shape regional connections in functionally specific circuits. Here we expand on these findings by comparing changes induced in the resting state immediately following four motor tasks. Two groups of participants performed a visuo-motor joystick task with one group adapting to a transformed relationship between joystick and cursor. Two other groups were trained in either explicit or implicit procedural sequence learning. Resting state BOLD data were collected immediately before and after the tasks. We then used graph theory-based approaches that include statistical measures of functional integration and segregation to characterise changes in biologically plausible brain connectivity networks within each group. Our results demonstrate that motor learning reorganizes resting brain networks with an increase in local information transfer, as indicated by local efficiency measures that affect the brain's small world network architecture. This was particularly apparent when comparing two distinct forms of explicit motor learning: procedural learning and the joystick learning task. Both groups showed notable increases in local efficiency. However changes in local efficiency in the inferior frontal and cerebellar regions also distinguishes between the two learning tasks. Additional graph analytic measures on the "non-learning" visuo-motor performance task revealed reversed topological patterns in comparison with the three learning tasks. These findings underscore the utility of graph-based network analysis as a novel means to compare both regional and global changes in functional brain connectivity in the resting state following motor learning tasks.

  6. Temperature and directional dependences of the infrared dielectric function of free standing silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Kazan, M.; Bruyant, A.; Sedaghat, Z.; Arnaud, L.; Blaize, S.; Royer, P. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, Universite de Technologie de Troyes, CNRS FRE 2848, 12 Rue Marie Curie, 10010 Troyes, Cedex (France)

    2011-03-15

    An approach to calculate the infrared dielectric function of semiconductor nanostructures is presented and applied to silicon (Si) nanowires (NW's). The phonon modes symmetries and frequencies are calculated by means of the elastic continuum medium theory. The modes strengths and damping are calculated from a model for lattice dynamics and perturbation theory. The data are used in anisotropic Lorentz oscillator model to generate the temperature and directional dependences of the infrared dielectric function of free standing Si NW's. Our results showed that in the direction perpendicular to the NW axis, the complex dielectric function is identical to that of bulk Si. However, along the NW axis, the infrared dielectric function is a strong function of the wavelength. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Predicting invasive species impacts: a community module functional response approach reveals context dependencies.

    Science.gov (United States)

    Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M

    2015-03-01

    Predatory functional responses play integral roles in predator-prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator-prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  8. Cortex-based inter-subject analysis of iEEG and fMRI data sets: application to sustained task-related BOLD and gamma responses.

    Science.gov (United States)

    Esposito, Fabrizio; Singer, Neomi; Podlipsky, Ilana; Fried, Itzhak; Hendler, Talma; Goebel, Rainer

    2013-02-01

    Linking regional metabolic changes with fluctuations in the local electromagnetic fields directly on the surface of the human cerebral cortex is of tremendous importance for a better understanding of detailed brain processes. Functional magnetic resonance imaging (fMRI) and intra-cranial electro-encephalography (iEEG) measure two technically unrelated but spatially and temporally complementary sets of functional descriptions of human brain activity. In order to allow fine-grained spatio-temporal human brain mapping at the population-level, an effective comparative framework for the cortex-based inter-subject analysis of iEEG and fMRI data sets is needed. We combined fMRI and iEEG recordings of the same patients with epilepsy during alternated intervals of passive movie viewing and music listening to explore the degree of local spatial correspondence and temporal coupling between blood oxygen level dependent (BOLD) fMRI changes and iEEG spectral power modulations across the cortical surface after cortex-based inter-subject alignment. To this purpose, we applied a simple model of the iEEG activity spread around each electrode location and the cortex-based inter-subject alignment procedure to transform discrete iEEG measurements into cortically distributed group patterns by establishing a fine anatomic correspondence of many iEEG cortical sites across multiple subjects. Our results demonstrate the feasibility of a multi-modal inter-subject cortex-based distributed analysis for combining iEEG and fMRI data sets acquired from multiple subjects with the same experimental paradigm but with different iEEG electrode coverage. The proposed iEEG-fMRI framework allows for improved group statistics in a common anatomical space and preserves the dynamic link between the temporal features of the two modalities. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Phospho-dependent functional modulation of GABA(B) receptors by the metabolic sensor AMP-dependent protein kinase.

    Science.gov (United States)

    Kuramoto, Nobuyuki; Wilkins, Megan E; Fairfax, Benjamin P; Revilla-Sanchez, Raquel; Terunuma, Miho; Tamaki, Keisuke; Iemata, Mika; Warren, Noel; Couve, Andrés; Calver, Andrew; Horvath, Zsolt; Freeman, Katie; Carling, David; Huang, Lan; Gonzales, Cathleen; Cooper, Edward; Smart, Trevor G; Pangalos, Menelas N; Moss, Stephen J

    2007-01-18

    GABA(B) receptors are heterodimeric G protein-coupled receptors composed of R1 and R2 subunits that mediate slow synaptic inhibition in the brain by activating inwardly rectifying K(+) channels (GIRKs) and inhibiting Ca(2+) channels. We demonstrate here that GABA(B) receptors are intimately associated with 5'AMP-dependent protein kinase (AMPK). AMPK acts as a metabolic sensor that is potently activated by increases in 5'AMP concentration that are caused by enhanced metabolic activity, anoxia, or ischemia. AMPK binds the R1 subunit and directly phosphorylates S783 in the R2 subunit to enhance GABA(B) receptor activation of GIRKs. Phosphorylation of S783 is evident in many brain regions, and is increased dramatically after ischemic injury. Finally, we also reveal that S783 plays a critical role in enhancing neuronal survival after ischemia. Together our results provide evidence of a neuroprotective mechanism, which, under conditions of metabolic stress or after ischemia, increases GABA(B) receptor function to reduce excitotoxicity and thereby promotes neuronal survival.

  10. Phospho-dependent functional modulation of GABAB receptors by the metabolic sensor AMP-dependent protein kinase

    Science.gov (United States)

    Kuramoto, Nobuyuki; Wilkins, Megan E; Fairfax, Benjamin P; Revilla-Sanchez, Raquel; Terunuma, Miho; Warren, Noel; Tamaki, Keisuke; Iemata, Mika; Couve, Andrés; Calver, Andrew; Horvath, Zsolt; Freeman, Katie; Carling, David; Huang, Lan; Gonzales, Cathleen; Cooper, Edward; Smart, Trevor G.; Pangalos, Menelas N.; Moss., Stephen J.

    2007-01-01

    GABAB receptors are heterodimeric G-protein coupled receptors composed of R1 and R2 subunits that mediate slow synaptic inhibition in the brain by activating inwardly-rectifying K+ channels (GIRKs) and inhibiting Ca2+ channels. We demonstrate here that GABAB receptors are intimately associated with 5’AMP-dependent protein kinase (AMPK). AMPK acts as a metabolic sensor that is potently activated by increases in 5’AMP concentration caused by enhanced metabolic activity, anoxia or ischemia. AMPK binds the R1 subunit and directly phosphorylates S783 in the R2 subunit to enhance GABAB receptor activation of GIRKs. Phosphorylation of S783 is evident in many brain regions, and is increased dramatically after ischemic injury. Finally we also reveal that S783 plays a critical role in enhancing neuronal survival after ischemia. Together our results provide evidence of a novel neuroprotective mechanism, which under conditions of metabolic stress or after ischemia increases GABAB receptor function to reduce excitotoxicity and thereby promoting neuronal survival. PMID:17224405

  11. Severity of nicotine dependence modulates cue-induced brain activity in regions involved in motor preparation and imagery.

    Science.gov (United States)

    Smolka, Michael N; Bühler, Mira; Klein, Sabine; Zimmermann, Ulrich; Mann, Karl; Heinz, Andreas; Braus, Dieter F

    2006-03-01

    In nicotine-dependent subjects, cues related to smoking elicit activity in brain regions linked to attention, memory, emotion and motivation. Cue-induced brain activation is associated with self-reported craving but further correlates are widely unknown. This study was conducted to investigate whether brain activity elicited by smoking cues increases with severity of nicotine dependence and intensity of cue-elicited craving. Ten healthy male smokers whose degree of nicotine dependence ranged from absent to severe were investigated. Visual smoking cues and neutral stimuli were presented in a block design during functional magnetic resonance imaging (fMRI). Using multiple linear regression analysis, the blood oxygen level dependent (BOLD) response to smoking cues was correlated with severity of nicotine dependence assessed with the Fagerström Test of Nicotine Dependence (FTND) and with cue-induced craving. Significant positive correlations between the BOLD activity and FTND scores were found in brain areas related to visuospatial attention (anterior cingulate cortex, parietal cortex, parahippocampal gyrus and cuneus) and in regions involved in motor preparation and imagery (primary and premotor cortex, supplementary motor area). Intensity of cue-induced craving was significantly associated with greater BOLD activation in mesocorticolimbic areas engaged in incentive motivation and in brain regions related to episodic memory. Our study suggests that severity of nicotine dependence and intensity of craving are independently associated with cue-induced brain activation in separate neuronal networks. The observed association between severity of dependence and brain activity in regions involved in allocation of attention, motor preparation and imagery might reflect preparation of automated drug taking behavior thereby facilitating cue-induced relapse.

  12. Nuclear uncertainties in the spin-dependent structure functions for direct dark matter detection

    CERN Document Server

    Cerdeno, David G; Huh, Ji-Haeng; Peiro, Miguel

    2012-01-01

    We study the effect that uncertainties in the nuclear spin-dependent structure functions have in the determination of the dark matter (DM) parameters in a direct detection experiment. We show that different nuclear models that describe the spin-dependent structure function of specific target nuclei can lead to variations in the reconstructed values of the DM mass and scattering cross-section. We propose a parametrization of the spin structure functions that allows us to treat these uncertainties as variations of three parameters, with a central value and deviation that depend on the specific nucleus. The method is illustrated for germanium and xenon detectors with an exposure of 300 kg yr, assuming a hypothetical detection of DM and studying a series of benchmark points for the DM properties. We find that the effect of these uncertainties can be similar in amplitude to that of astrophysical uncertainties, especially in those cases where the spin-dependent contribution to the elastic scattering cross-section i...

  13. Modelling the statistical dependence of rainfall event variables by a trivariate copula function

    Directory of Open Access Journals (Sweden)

    M. Balistrocchi

    2011-01-01

    Full Text Available In many hydrological models, such as those derived by analytical probabilistic methods, the precipitation stochastic process is represented by means of individual storm random variables which are supposed to be independent of each other. However, several proposals were advanced to develop joint probability distributions able to account for the observed statistical dependence. The traditional technique of the multivariate statistics is nevertheless affected by several drawbacks, whose most evident issue is the unavoidable subordination of the dependence structure assessment to the marginal distribution fitting. Conversely, the copula approach can overcome this limitation, by splitting the problem in two distinct items. Furthermore, goodness-of-fit tests were recently made available and a significant improvement in the function selection reliability has been achieved. Herein a trivariate probability distribution of the rainfall event volume, the wet weather duration and the interevent time is proposed and verified by test statistics with regard to three long time series recorded in different Italian climates. The function was developed by applying a mixing technique to bivariate copulas, which were formerly obtained by analyzing the random variables in pairs. A unique probabilistic model seems to be suitable for representing the dependence structure, despite the sensitivity shown by the dependence parameters towards the threshold utilized in the procedure for extracting the independent events. The joint probability function was finally developed by adopting a Weibull model for the marginal distributions.

  14. Dependability of the Exemplary Technical System for Assumed Functions of Defect Density

    Directory of Open Access Journals (Sweden)

    Stępień Sławomir

    2016-12-01

    Full Text Available The analysis of structural dependability of technical system, especially determining the change in dependability over time, requires knowledge on density function or the understanding of cumulative distribution function of components belonging to the structure. Based on previously registered data concerning component defect, it is relatively easy to establish the average uptime of component as well as the standard deviation for this time. However, defining distribution shape gives rise to some difficulties. Usually, we do not have the sufficient number of data at our disposal to verify the hypothesis regarding the distribution shape. Due to this fact, it is a common practice, depending on the case under consideration, to apply the function of defect density. However, the question arises: Does the incorrect determination of types of distributions of components leads to the big error of estimation results of dependability and system durability? This article will not respond to this question in whole, but one will conduct a comparison of calculation results for a few cases. The calculations were conducted for the exemplary technical system.

  15. Time courses of MRI BOLD signals in prolonged visual stimulation. Comparison between colors and orders

    Energy Technology Data Exchange (ETDEWEB)

    Kashikura, Kenichi; Fujita, Hideaki; Kershaw, J.B.; Matsuura, Tetsuya; Seki, Chie [Akita Laboratory, Japan Science and Technology Corp. (Japan); Kashikura, Akemi; Ardekani, B.A.; Kanno, Iwao

    1998-06-01

    We investigated: the BOLD signal response during 270 second photic stimulation using an EPI pulse sequence; the BOLD signal response for two different color checkerboards; and the BOLD signal response during six consecutive stimulation series. Ten healthy human subjects (age 25{+-}5.5 years) were studied with a 1.5 T MRI system (Siemens Vision, Erlangen, Germany). Black and white (BW) and red and white (RW) checkerboards alternating at 8 Hz were applied in turns for a total series of six. Stimulation timing was: 30 sec. off, 15 sec. on, 15 sec. off, 270 sec. on, 15 sec. off, 15 sec. on, 15 sec. off. Acquired data were analyzed according to color and/or order: color (without considering the order); color and order (1st BW vs. 1st RW, 2nd BW vs. 2nd RW, 3rd BW vs. 3rd RW); and order (without considering the color). A t-test (p<0.001) was used for obtaining the activated areas, and simple regression and two-way repeated-measures ANOVA were used for testing the statistical significance of the BOLD response. Results were: the BOLD signal responses during sustained photic stimulation maintained a constant level for the full duration and all series, suggesting stable levels of oxygen extraction and metabolism during cortical activation; the BOLD signal responses in two colors showed no significant difference in time response, suggesting that the neuronal populations perceiving black and red give a similar time response; and the effect of habituation or fatigue as observed by a signal decrease was not obtained, although the S.D. for each subject greatly increased with time and might be an indicator for evaluation fatigue or attention. (author)

  16. Families with children who are technology dependent: normalization and family functioning.

    Science.gov (United States)

    Toly, Valerie Boebel; Musil, Carol M; Carl, John C

    2012-02-01

    This cross-sectional study examined family functioning and normalization in 103 mothers of children ≤16 years of age dependent on medical technology (mechanical ventilation, intravenous nutrition/medication, respiratory/nutritional support) following initiation of home care. Differences in outcomes (mother's depressive symptoms, normalization, family functioning), based on the type of technology used, were also examined. Participants were interviewed face-to-face using the Demographic Characteristics Questionnaire, the Functional Status II-Revised Scale, the Center for Epidemiological Studies-Depression Scale, a Normalization Scale subscale, and the Feetham Family Functioning Survey. Thirty-five percent of the variance in family functioning was explained primarily by the mothers' level of depressive symptoms. Several variables were significant predictors of normalization. Analysis of variance revealed no significant difference in outcomes based on the type of technology used. Mothers of technology-dependent children are at high risk for clinical depression that may affect family functioning. This article concludes with clinical practice and policy implications.

  17. The effects of patient function and dependence on costs of care in Alzheimer's disease.

    Science.gov (United States)

    Zhu, Carolyn W; Leibman, Christopher; McLaughlin, Trent; Scarmeas, Nikolaos; Albert, Marilyn; Brandt, Jason; Blacker, Deborah; Sano, Mary; Stern, Yaakov

    2008-08-01

    To estimate incremental effects of patients' dependence and function on costs of care during the early stages of Alzheimer's disease (AD) and to compare strengths of their relationships with different cost components. Multicenter, cross-sectional, observational study. Three university hospitals in the United States. One hundred seventy-nine community-living patients with probable AD, with modified Mini-Mental State Examination scores of 30 or higher. Patients' dependence was measured using the Dependence Scale (DS). Functional capacity was measured using the Blessed Dementia Rating Scale (BDRS). Total cost was measured by summing direct medical costs and informal costs. Direct medical costs included costs of hospitalization, outpatient treatment and procedures, assistive devices, and medications. Informal costs were estimated from time spent helping with basic and instrumental activities of daily living for up to three caregivers per patient using national average hourly earnings as wage rate. DS and BDRS were associated with higher total cost; a 1-point increase in DS was associated with a $1,832 increase in total cost, and a 1-point increase in BDRS was associated with a $3,333 increase. Examining component costs separately identified potential differences between DS and BDRS. A 1-point increase in BDRS was associated with a $1,406 increase in direct medical cost. A 1-point increase in DS was associated with a $1,690 increase in informal cost. Patients' dependence and function related differently to direct medical and informal cost, suggesting that measures of function and dependence provided unique information for explaining variations in cost of care for patients with AD, highlighting the value in measuring both constructs.

  18. Relativistic time-dependent density functional calculations for the excited states of the cadmium dimer

    Energy Technology Data Exchange (ETDEWEB)

    Kullie, Ossama, E-mail: kullie@uni-kassel.de [Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070 Strasbourg (France); Theoretical Physics, Institute for Physics, Department of Mathematics and Natural Science, University of Kassel (Germany)

    2013-03-29

    Highlights: ► The achievement of CAMB3LYP functional for excited states in framework of TD-DFT. ► Relativistic 4-components calculations for the excited states of the Cd{sub 2} dimer. ► Relativistic Spin-Free calculations for the excited states of Cd{sub 2} dimer. ► A comparison of the achievements of different types of DFT approximations upon Cd{sub 2}. - Abstract: In this paper we present a time-dependent density functional study for the ground-state as well the 20-lowest laying excited states of the cadmium dimer Cd{sub 2}, we analyze its spectrum obtained from all electrons calculations performed with time-depended density functional for the relativistic Dirac-Coulomb- and relativistic spin-free-Hamiltonian as implemented in DIRAC-PACKAGE. The calculations were obtained with different density functional approximations, and a comparison with the literature is given as far as available. Our result is very encouraging, especially for the lowest excited states of this dimer, and is expected to be enlightened for similar systems. The result shows that only long-range corrected functionals such as CAMB3LYP, gives the correct asymptotic behavior for the higher states. A comparable but less satisfactory results were obtained with B3LYP and PBE0 functionals. Spin-free-Hamiltonian is shown to be very efficient for systems containing heavy elements such as Cd{sub 2} in frameworks of (time-dependent) density functional without introducing large errors.

  19. Excitation energies with time-dependent density matrix functional theory: Singlet two-electron systems.

    Science.gov (United States)

    Giesbertz, K J H; Pernal, K; Gritsenko, O V; Baerends, E J

    2009-03-21

    Time-dependent density functional theory in its current adiabatic implementations exhibits three striking failures: (a) Totally wrong behavior of the excited state surface along a bond-breaking coordinate, (b) lack of doubly excited configurations, affecting again excited state surfaces, and (c) much too low charge transfer excitation energies. We address these problems with time-dependent density matrix functional theory (TDDMFT). For two-electron systems the exact exchange-correlation functional is known in DMFT, hence exact response equations can be formulated. This affords a study of the performance of TDDMFT in the TDDFT failure cases mentioned (which are all strikingly exhibited by prototype two-electron systems such as dissociating H(2) and HeH(+)). At the same time, adiabatic approximations, which will eventually be necessary, can be tested without being obscured by approximations in the functional. We find the following: (a) In the fully nonadiabatic (omega-dependent, exact) formulation of linear response TDDMFT, it can be shown that linear response (LR)-TDDMFT is able to provide exact excitation energies, in particular, the first order (linear response) formulation does not prohibit the correct representation of doubly excited states; (b) within previously formulated simple adiabatic approximations the bonding-to-antibonding excited state surface as well as charge transfer excitations are described without problems, but not the double excitations; (c) an adiabatic approximation is formulated in which also the double excitations are fully accounted for.

  20. FAK dimerization controls its kinase-dependent functions at focal adhesions

    KAUST Repository

    Brami-Cherrier, Karen

    2014-01-30

    Focal adhesion kinase (FAK) controls adhesion-dependent cell motility, survival, and proliferation. FAK has kinase-dependent and kinase-independent functions, both of which play major roles in embryogenesis and tumor invasiveness. The precise mechanisms of FAK activation are not known. Using x-ray crystallography, small angle x-ray scattering, and biochemical and functional analyses, we show that the key step for activation of FAK\\'s kinase-dependent functions-autophosphorylation of tyrosine-397-requires site-specific dimerization of FAK. The dimers form via the association of the N-terminal FERM domain of FAK and are stabilized by an interaction between FERM and the C-terminal FAT domain. FAT binds to a basic motif on FERM that regulates co-activation and nuclear localization. FAK dimerization requires local enrichment, which occurs specifically at focal adhesions. Paxillin plays a dual role, by recruiting FAK to focal adhesions and by reinforcing the FAT:FERM interaction. Our results provide a structural and mechanistic framework to explain how FAK combines multiple stimuli into a site-specific function. The dimer interfaces we describe are promising targets for blocking FAK activation. © 2014 The Authors.

  1. Time-dependence of the holographic spectral function: Diverse routes to thermalisation

    CERN Document Server

    Banerjee, Souvik; Joshi, Lata Kh; Mukhopadhyay, Ayan; Ramadevi, P

    2016-01-01

    We develop a new method for computing the holographic retarded propagator in generic (non-)equilibrium states using the state/geometry map. We check that our method reproduces the thermal spectral function given by the Son-Starinets prescription. The time-dependence of the spectral function of a relevant scalar operator is studied in a class of non-equilibrium states. The latter are represented by AdS-Vaidya geometries with an arbitrary parameter characterising the timescale for the dual state to transit from an initial thermal equilibrium to another due to a homogeneous quench. For long quench duration, the spectral function indeed follows the thermal form at the instantaneous effective temperature adiabatically, although with a slight initial time delay and a bit premature thermalisation. At shorter quench durations, several new non-adiabatic features appear: (i) time-dependence of the spectral function is seen much before than that in the effective temperature (advanced time-dependence), (ii) a big transfe...

  2. Time-dependence of the holographic spectral function: diverse routes to thermalisation

    Science.gov (United States)

    Banerjee, Souvik; Ishii, Takaaki; Joshi, Lata Kh; Mukhopadhyay, Ayan; Ramadevi, P.

    2016-08-01

    We develop a new method for computing the holographic retarded propagator in generic (non-)equilibrium states using the state/geometry map. We check that our method reproduces the thermal spectral function given by the Son-Starinets prescription. The time-dependence of the spectral function of a relevant scalar operator is studied in a class of non-equilibrium states. The latter are represented by AdS-Vaidya geometries with an arbitrary parameter characterising the timescale for the dual state to transit from an initial thermal equilibrium to another due to a homogeneous quench. For long quench duration, the spectral function indeed follows the thermal form at the instantaneous effective temperature adiabatically, although with a slight initial time delay and a bit premature thermalisation. At shorter quench durations, several new non-adiabatic features appear: (i) time-dependence of the spectral function is seen much before than that in the effective temperature (advanced time-dependence), (ii) a big transfer of spectral weight to frequencies greater than the initial temperature occurs at an intermediate time (kink formation) and (iii) new peaks with decreasing amplitudes but in greater numbers appear even after the effective temperature has stabilised (persistent oscillations). We find four broad routes to thermalisation for lower values of spatial momenta. At higher values of spatial momenta, kink formations and persistent oscillations are suppressed, and thermalisation time decreases. The general thermalisation pattern is globally top-down, but a closer look reveals complexities.

  3. Signals for transversity and transverse-momentum-dependent quark distribution functions studied at the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Diefenthaler, Markus

    2010-08-15

    Intention of the present thesis was the study of transverse-momentum dependent quark distribution functions. In the focus stood the Fourier analysis of azimutal single-spin asymmetries of pions and charged kaons performed within the HERMES experiment. These asymmetries were reconstructed from deep-inelastic scattering events on a transversely polarized proton target and decomposed in Fourier components. In the framework of quantum chromodynamics such components can be interpreted as folding of quark distribution and fragmentation functions. By the analysis of the transverse-momentum dependent quark distribution functions the study of spin-orbit correlations in the internal of the nucleon was made possible. By this conclusions on the orbital angular momentum of the quarks can be drawn. The extracted Fourier components extend the hitherto available informations on the transverse-momentum dependent quark distribution functions remarkably. The presented Fourier analysis made not only a detection of the Collins and Sivers effects possible, but beyond the extraction of the signals of the pretzelosity and worm-gear distributions. The so obtained results will conclusively contribute to the understanding of future measurements in this field and furthermore make possible a test of fundamental predictions of quantum chromodynamics.

  4. Predator-dependent functional response in wolves: from food limitation to surplus killing.

    Science.gov (United States)

    Zimmermann, Barbara; Sand, Håkan; Wabakken, Petter; Liberg, Olof; Andreassen, Harry Peter

    2015-01-01

    The functional response of a predator describes the change in per capita kill rate to changes in prey density. This response can be influenced by predator densities, giving a predator-dependent functional response. In social carnivores which defend a territory, kill rates also depend on the individual energetic requirements of group members and their contribution to the kill rate. This study aims to provide empirical data for the functional response of wolves Canis lupus to the highly managed moose Alces alces population in Scandinavia. We explored prey and predator dependence, and how the functional response relates to the energetic requirements of wolf packs. Winter kill rates of GPS-collared wolves and densities of cervids were estimated for a total of 22 study periods in 15 wolf territories. The adult wolves were identified as the individuals responsible for providing kills to the wolf pack, while pups could be described as inept hunters. The predator-dependent, asymptotic functional response models (i.e. Hassell-Varley type II and Crowley-Martin) performed best among a set of 23 competing linear, asymptotic and sigmoid models. Small wolf packs acquired >3 times as much moose biomass as required to sustain their field metabolic rate (FMR), even at relatively low moose abundances. Large packs (6-9 wolves) acquired less biomass than required in territories with low moose abundance. We suggest the surplus killing by small packs is a result of an optimal foraging strategy to consume only the most nutritious parts of easy accessible prey while avoiding the risk of being detected by humans. Food limitation may have a stabilizing effect on pack size in wolves, as supported by the observed negative relationship between body weight of pups and pack size. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  5. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, RuLin [Beijing Computational Science Research Center, No. 3 He-Qing Road, Beijing 100084 (China); Zheng, Xiao, E-mail: xz58@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Kwok, YanHo; Xie, Hang; Chen, GuanHua [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yam, ChiYung, E-mail: yamcy@csrc.ac.cn [Beijing Computational Science Research Center, No. 3 He-Qing Road, Beijing 100084 (China); Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2015-04-14

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  6. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    Science.gov (United States)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-01

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  7. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions.

    Science.gov (United States)

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-14

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  8. A (time-dependent) density functional theory study of the optoelectronic properties of bis-triisopropylsilylethynyl-functionalized acenes

    Energy Technology Data Exchange (ETDEWEB)

    Malloci, G., E-mail: giuliano.malloci@dsf.unica.it [Istituto Officina dei Materiali (CNR-IOM), Unità di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Cappellini, G. [Istituto Officina dei Materiali (CNR-IOM), Unità di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Mulas, G. [INAF-Osservatorio Astronomico di Cagliari, Strada 54, Località Poggio dei Pini, I-09012 Capoterra (Italy); Mattoni, A. [Istituto Officina dei Materiali (CNR-IOM), Unità di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy)

    2013-09-30

    We report a comparative study of the optoelectronic properties of small acenes (benzene, anthracene, and pentacene) and their bis-triisopropylsilylethynyl (TIPS) functionalized counterparts. We computed the fundamental gap using density functional theory (DFT) in the framework of the ΔSCF scheme, and the optical absorption spectra by means of time-dependent DFT. Upon TIPS functionalization we observed a lowering of the ionization energy and a rise of the electron affinity; we consequently predict a systematic reduction of the fundamental electronic gap which decreases from ∼ 40% for benzene to ∼ 16% for pentacene. This trend is reflected in the computed optical absorption spectra: for all TIPS-molecules the onset of absorption is red-shifted as compared to their plain precursors. In the case of TIPS-pentacene, in particular, the computed spectrum agrees with the available experimental data. - Highlights: • We evaluate the effect of triisopropylsilylethynyl (TIPS)-substitution on acenes. • We compared the fundamental gap and the optical absorption as a function of size. • We found a general gap reduction following TIPS functionalization. • The gap reduction decreases at increasing size, from 40% for n = 1 to 16% for n = 5. • The onset of absorption is red-shifted as compared to TIPS precursors.

  9. Perfusion information extracted from resting state functional magnetic resonance imaging.

    Science.gov (United States)

    Tong, Yunjie; Lindsey, Kimberly P; Hocke, Lia M; Vitaliano, Gordana; Mintzopoulos, Dionyssios; Frederick, Blaise deB

    2017-02-01

    It is widely known that blood oxygenation level dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) is an indirect measure for neuronal activations through neurovascular coupling. The BOLD signal is also influenced by many non-neuronal physiological fluctuations. In previous resting state (RS) fMRI studies, we have identified a moving systemic low frequency oscillation (sLFO) in BOLD signal and were able to track its passage through the brain. We hypothesized that this seemingly intrinsic signal moves with the blood, and therefore, its dynamic patterns represent cerebral blood flow. In this study, we tested this hypothesis by performing Dynamic Susceptibility Contrast (DSC) MRI scans (i.e. bolus tracking) following the RS scans on eight healthy subjects. The dynamic patterns of sLFO derived from RS data were compared with the bolus flow visually and quantitatively. We found that the flow of sLFO derived from RS fMRI does to a large extent represent the blood flow measured with DSC. The small differences, we hypothesize, are largely due to the difference between the methods in their sensitivity to different vessel types. We conclude that the flow of sLFO in RS visualized by our time delay method represents the blood flow in the capillaries and veins in the brain.

  10. Functional MRI of the visual cortex and visual testing in patients with previous optic neuritis

    DEFF Research Database (Denmark)

    Langkilde, Annika Reynberg; Frederiksen, J.L.; Rostrup, Egill

    2002-01-01

    The volume of cortical activation as detected by functional magnetic resonance imaging (fMRI) in the visual cortex has previously been shown to be reduced following optic neuritis (ON). In order to understand the cause of this change, we studied the cortical activation, both the size...... a reduced blood oxygenation level dependent (BOLD) signal increase and a greater asymmetry in the visual cortex, compared with controls. The volume of visual cortical activation was significantly correlated to the result of the contrast sensitivity test. The BOLD signal increase correlated significantly...... of the activated area and the signal change following ON, and compared the results with results of neuroophthalmological testing. We studied nine patients with previous acute ON and 10 healthy persons served as controls using fMRI with visual stimulation. In addition to a reduced activated volume, patients showed...

  11. CO2BOLD assessment of moyamoya syndrome: Validation with single photon emission computed tomography and positron emission tomography imaging

    Science.gov (United States)

    Pellaton, Alain; Bijlenga, Philippe; Bouchez, Laurie; Cuvinciuc, Victor; Barnaure, Isabelle; Garibotto, Valentina; Lövblad, Karl-Olof; Haller, Sven

    2016-01-01

    AIM To compare the assessment of cerebrovascular reserve (CVR) using CO2BOLD magnetic resonance imaging (MRI) vs positron emission tomography (PET) and single photon emission computed tomography (SPECT) as reference standard. METHODS Ten consecutive patients (8 women, mean age of 41 ± 26 years) with moyamoya syndrome underwent 14 pre-surgical evaluations for external-internal carotid artery bypass surgery. CVR was assessed using CO2BOLD and PET (4)/SPECT (11) with a maximum interval of 36 d, and evaluated by two experienced neuroradiologists. RESULTS The inter-rater agreement was 0.81 for SPECT (excellent), 0.43 for PET (fair) and 0.7 for CO2BOLD (good). In 9/14 cases, there was a correspondence between CO2BOLD and PET/SPECT. In 4/14 cases, CVR was over-estimated in CO2BOLD, while in 1/14 case, CVR was underestimated in CO2BOLD. The sensitivity of CO2BOLD was 86% and a specificity of 43%. CONCLUSION CO2BOLD can be used for pre-surgical assessment of CVR in patients with moyamoya syndrome and combines the advantages of absent irradiation, high availability of MRI and assessment of brain parenchyma, cerebral vessels and surrogate CVR in one stop. PMID:27928470

  12. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation

    Energy Technology Data Exchange (ETDEWEB)

    Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)

    2015-01-21

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its “spin-forbidden” triplet-singlet transition.

  13. Towards time-dependent current-density-functional theory in the non-linear regime.

    Science.gov (United States)

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  14. Evaluation of exchange-correlation functionals for time-dependent density functional theory calculations on metal complexes.

    Science.gov (United States)

    Holland, Jason P; Green, Jennifer C

    2010-04-15

    The electronic absorption spectra of a range of copper and zinc complexes have been simulated by using time-dependent density functional theory (TD-DFT) calculations implemented in Gaussian03. In total, 41 exchange-correlation (XC) functionals including first-, second-, and third-generation (meta-generalized gradient approximation) DFT methods were compared in their ability to predict the experimental electronic absorption spectra. Both pure and hybrid DFT methods were tested and differences between restricted and unrestricted calculations were also investigated by comparison of analogous neutral zinc(II) and copper(II) complexes. TD-DFT calculated spectra were optimized with respect to the experimental electronic absorption spectra by use of a Matlab script. Direct comparison of the performance of each XC functional was achieved both qualitatively and quantitatively by comparison of optimized half-band widths, root-mean-squared errors (RMSE), energy scaling factors (epsilon(SF)), and overall quality-of-fit (Q(F)) parameters. Hybrid DFT methods were found to outperform all pure DFT functionals with B1LYP, B97-2, B97-1, X3LYP, and B98 functionals providing the highest quantitative and qualitative accuracy in both restricted and unrestricted systems. Of the functionals tested, B1LYP gave the most accurate results with both average RMSE and overall Q(F) unity (>0.990) for the copper complexes. The XC functional performance in spin-restricted TD-DFT calculations on the zinc complexes was found to be slightly worse. PBE1PBE, mPW1PW91 and B1LYP gave the most accurate results with typical RMSE and Q(F) values between 5.3 and 7.3%, and epsilon(SF) around 0.930. These studies illustrate the power of modern TD-DFT calculations for exploring excited state transitions of metal complexes.

  15. State-dependent modulation of functional connectivity in early blind individuals.

    Science.gov (United States)

    Pelland, Maxime; Orban, Pierre; Dansereau, Christian; Lepore, Franco; Bellec, Pierre; Collignon, Olivier

    2017-02-15

    Resting-state functional connectivity (RSFC) studies have provided strong evidences that visual deprivation influences the brain's functional architecture. In particular, reduced RSFC coupling between occipital (visual) and temporal (auditory) regions has been reliably observed in early blind individuals (EB) at rest. In contrast, task-dependent activation studies have repeatedly demonstrated enhanced co-activation and connectivity of occipital and temporal regions during auditory processing in EB. To investigate this apparent discrepancy, the functional coupling between temporal and occipital networks at rest was directly compared to that of an auditory task in both EB and sighted controls (SC). Functional brain clusters shared across groups and cognitive states (rest and auditory task) were defined. In EBs, we observed higher occipito-temporal correlations in activity during the task than at rest. The reverse pattern was observed in SC. We also observed higher temporal variability of occipito-temporal RSFC in EB suggesting that occipital regions in this population may play the role of a multiple demand system. Our study reveals how the connectivity profile of sighted and early blind people is differentially influenced by their cognitive state, bridging the gap between previous task-dependent and RSFC studies. Our results also highlight how inferring group-differences in functional brain architecture solely based on resting-state acquisition has to be considered with caution.

  16. Excitons in solids with non-empirical hybrid time-dependent density-functional theory

    Science.gov (United States)

    Ullrich, Carsten; Yang, Zeng-Hui; Sottile, Francesco

    2015-03-01

    The Bethe-Salpeter equation (BSE) accurately describes the optical properties of solids, but is computationally expensive. Time-dependent density-functional theory (TDDFT) is more efficient, but standard functionals do not produce excitons in extended systems. We present a new, non-empirical hybrid TDDFT approach whose computational cost is much less than BSE, while the accuracy for both bound excitons and the continuum spectra is comparable to that of the BSE. Good performance is observed for both small-gap semiconductors and large-gap insulators. Work supported by NSF Grant DMR-1408904.

  17. Stopping of deuterium in warm dense deuterium from Ehrenfest time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Magyar, R.J.; Shulenburger, L.; Baczewski, A.D. [Sandia National Laboratories - Multi-scale Physics 1444 MS 1322, Albuquerque, NM (United States)

    2016-06-15

    In these proceedings, we show that time-dependent density functional theory is capable of stopping calculations at the extreme conditions of temperature and pressure seen in warm dense matter. The accuracy of the stopping curves tends to be up to about 20% lower than empirical models that are in use. However, TDDFT calculations are free from fitting parameters and assumptions about the model form of the dielectric function. This work allows the simulation of ion stopping in many materials that are difficult to study experimentally. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Qualitative analysis on a diffusive prey-predator model with ratio-dependent functional response

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we investigate a prey-predator model with diffusion and ratio-dependent functional response subject to the homogeneous Neumann boundary condition. Our main focuses are on the global behavior of the reaction-diffusion system and its corresponding steady-state problem. We first apply various Lyapunov functions to discuss the global stability of the unique positive constant steady-state. Then, for the steady-state system, we establish some a priori upper and lower estimates for positive steady-states, and derive several results for non-existence of positive non-constant steady-states if the diffusion rates are large or small.

  19. Structure dependence of photochromism and thermochromism of azobenzene-functionalized polythiophenes

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available Two novel azobenzene-functionalized polythiophenes, poly[4-((4-(phenylazophenoxybutyl-3-thienylacetate] (P4 and the copolymer of 3-hexylthiophene and 4-((4-(phenylazophenoxybutyl-3-thienylacetate (COP64 have been synthesized. The structure dependence of photoluminescence features and thermochromic behaviors of both azobenzene-functionalized polymers was investigated. The results show that polymer structure has a strong influence on the conformation and optical properties of the resulting polythiophene derivatives. The photochemical control of photoluminescence property was achieved with homopolymer P4 using photoactive azobenzene side chains.

  20. Reciprocity between Moduli and Phases in Time-Dependent Wave-Functions

    CERN Document Server

    Englman, R; Bär, M

    1999-01-01

    For time (t) dependent wave functions we derive rigorous conjugate relations between analytic decompositions (in the complex t-plane) of the phases and of the log moduli. We then show that reciprocity, taking the form of Kramers-Kronig integral relations (but in the time domain), holds between observable phases and moduli in several physically important instances. These include the nearly adiabatic (slowly varying) case, a class of cyclic wave-functions, wave packets and non-cyclic states in an "expanding potential". The results exhibit the interdependence of geometric-phases and related decay probabilities. Several known quantum mechanical theories possess the reciprocity property obtained in the paper.

  1. Functional dependency between the logistics security system and the MySAP ERP in metallurgy

    Directory of Open Access Journals (Sweden)

    P. Ranitović

    2013-10-01

    Full Text Available MySAP ERP - Enterprise Resource Planning (system - solution which provides a whole set of functions for the business analytics, finance, human resources management, logistics and corporate services has developed from SAP R/3. It is one of the main products of the SAP AG German multinational company and as such, it is a very important element of the international industrial and technological security system. By defining the functional dependency between the security systems (logistics security systems and the IT (My SAP ERP systems in metallurgy, a concept for designing MY SAP ERP system in metallurgic industry is defined, based on the security aspects.

  2. Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness

    Science.gov (United States)

    Awrejcewicz, J.; Krysko, A. V.; Pavlov, S. P.; Zhigalov, M. V.; Krysko, V. A.

    2017-09-01

    Chaotic dynamics of microbeams made of functionally graded materials (FGMs) is investigated in this paper based on the modified couple stress theory and von Kármán geometric nonlinearity. We assume that the beam properties are graded along the thickness direction. The influence of size-dependent and functionally graded coefficients on the vibration characteristics, scenarios of transition from regular to chaotic vibrations as well as a series of static problems with an emphasis put on the load-deflection behavior are studied. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations supplemented by Fourier and wavelet spectra, phase portraits, and Lyapunov exponents spectra estimated by different algorithms, including Wolf's, Rosenstein's, Kantz's, and neural networks. We have also detected and numerically validated a general scenario governing transition into chaotic vibrations, which follows the classical Ruelle-Takens-Newhouse scenario for the considered values of the size-dependent and grading parameters.

  3. An estimator of the survival function based on the semi-Markov model under dependent censorship.

    Science.gov (United States)

    Lee, Seung-Yeoun; Tsai, Wei-Yann

    2005-06-01

    Lee and Wolfe (Biometrics vol. 54 pp. 1176-1178, 1998) proposed the two-stage sampling design for testing the assumption of independent censoring, which involves further follow-up of a subset of lost-to-follow-up censored subjects. They also proposed an adjusted estimator for the survivor function for a proportional hazards model under the dependent censoring model. In this paper, a new estimator for the survivor function is proposed for the semi-Markov model under the dependent censorship on the basis of the two-stage sampling data. The consistency and the asymptotic distribution of the proposed estimator are derived. The estimation procedure is illustrated with an example of lung cancer clinical trial and simulation results are reported of the mean squared errors of estimators under a proportional hazards and two different nonproportional hazards models.

  4. ORPHA, ORPHIC FUNCTIONS, AND THE ORPHIC ANALYST: WINNICOTT'S "REGRESSION TO DEPENDENCE" IN THE LANGUAGE OF FERENCZI().

    Science.gov (United States)

    Gurevich, Hayuta

    2016-12-01

    Early developmental trauma is imprinted in the psyche by survival fragmentation and dissociation. Traumatized patients need the analyst to be actively involved and allow for regression to dependence in order to strengthen, create and construct their psychic functioning and structure so that environmental failures will be contained and not rupture continuity of being. I suggest that Ferenczi's and Winnicott's ideas about regression to dependence in analysis are fundamental contributions to these quests, and that Ferenczi set the foundation, which Winnicott further explored and developed. I would like to focus on their clinical theory of treating early developmental trauma of the psyche, describing it in the less known language of Ferenczi, reviving his concept of Orpha and its functions. The complementarities of the two approaches can enrich and broaden our understanding of the clinical complications that arise in the analysis of such states.

  5. Testing the Environmental Dependence of the Stellar Initial Mass Function - the Case of L1641

    Science.gov (United States)

    Hsu, Wen-hsin; Hartmann, L.; Allen, L.; Hernandez, J.; Megeath, T.

    2012-01-01

    To test the proposition that the stellar initial mass function (IMF) depends on the environmental density, we conducted an optical spectroscopic and photometric survey of the young stellar population in L1641, a low-density, star-forming region of the Orion A cloud south of the dense Orion Nebula Cluster (ONC). We used low-resolution optical spectra and optical photometry, as well as the Spitzer IRAC photometry (Megeath et al. 2011) to identify members and obtain spectral types. As of now, we have confirmed and spectral-typed 648 members and project a total number of 780 members with moderate extinction. Our study suggests a comparison between L1641 and the ONC can yield a statistically-significant test of the dependence of the upper mass portion of the stellar initial mass function upon environment. Our preliminary results indicate that L1641 may well be deficient in O and early B stars.

  6. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...... simulations of a binary Lennard-Jones mixture approaching the mode coupling temperature from above. We find that the correlations between particles measured by g4(r,t) and S4(q,t) become increasingly pronounced on cooling. The corresponding dynamical correlation length xi4(t) extracted from the small......-q behavior of S4(q,t) provides an estimate of the range of correlated particle motion. We find that xi4(t) has a maximum as a function of time t, and that the value of the maximum of xi4(t) increases steadily from less than one particle diameter to a value exceeding nine particle diameters in the temperature...

  7. First-Principles Momentum-Dependent Local Ansatz Wavefunction and Momentum Distribution Function Bands of Iron

    Science.gov (United States)

    Kakehashi, Yoshiro; Chandra, Sumal

    2016-04-01

    We have developed a first-principles local ansatz wavefunction approach with momentum-dependent variational parameters on the basis of the tight-binding LDA+U Hamiltonian. The theory goes beyond the first-principles Gutzwiller approach and quantitatively describes correlated electron systems. Using the theory, we find that the momentum distribution function (MDF) bands of paramagnetic bcc Fe along high-symmetry lines show a large deviation from the Fermi-Dirac function for the d electrons with eg symmetry and yield the momentum-dependent mass enhancement factors. The calculated average mass enhancement m*/m = 1.65 is consistent with low-temperature specific heat data as well as recent angle-resolved photoemission spectroscopy (ARPES) data.

  8. [Functional dependency and falls in elderly living in poverty in Mexico].

    Science.gov (United States)

    Manrique-Espinoza, Betty; Salinas-Rodríguez, Aarón; Moreno-Tamayo, Karla; Téllez-Rojo, Martha M

    2011-01-01

    To determine the prevalence of functional dependency (FD) on Mexican elderly living in extreme poverty conditions and to estimate the association between falls and FD. A survey was conducted with three stages for selection, stratified by type of locality (rural or urban) and nationally representative of the 2006 Oportunidades Program. The target population was composed of individuals 70 years of age and older who were beneficiaries of the Oportunidades Program. A total of 30.9% of the elderly presented FD. The gender stratified logistic regression model resulted in an odds ratio (OR) for women of 1.25 (I.C:1.13-1.39) for the association between the increase in the number of falls and FD and OR=1.12 (I.C:0.97-1.29) for men. Given the vulnerable conditions in which these older adults live, specific interventions need to be implemented to prevent falls in order to reduce the risk of functional dependency.

  9. Field dependence-independence (FDI) cognitive style: an analysis of attentional functioning.

    Science.gov (United States)

    Guisande, M Adelina; Páramo, M Fernanda; Tinajero, Carolina; Almeida, Leandro S

    2007-11-01

    Previous research has indicated that field-dependent children display poorer performance than field-independent children in almost all academic subjects and cognitive tasks. However, the processes underlying this poorer performance remain unclear. The present study aimed to assess whether children with different FDI cognitive styles show differences in performance of tasks measuring aspects of attentional functioning. Specifically, 149 children aged 8 - 11 years were classified according to FDI cognitive style (field-dependent, intermediate, or field-independent), and to storage capacity (Digits Forward Test), verbal working memory (Digits Backward Test), capacity to focus, shift, and maintain attention (Digit Symbol Test), and capacity for sustained attention (Visual Search and Attention Test). Field-independent children displayed better performance than intermediate and field-dependent children on all tests except the Digits Forward Test. Theoretical and practical implications of these results are discussed.

  10. BOLD Consistently Matches Electrophysiology in Human Sensorimotor Cortex at Increasing Movement Rates: A Combined 7T fMRI and ECoG Study on Neurovascular Coupling

    National Research Council Canada - National Science Library

    Siero, Jeroen CW; Hermes, Dora; Hoogduin, Hans; Luijten, Peter R; Petridou, Natalia; Ramsey, Nick F

    2013-01-01

    .... We combined BOLD fMRI at 7T and intracranial electrocorticography (ECoG) to assess the relationship between BOLD and neuronal population activity in human sensorimotor cortex using a motor task with increasing movement rates...

  11. Social network types and functional dependency in older adults in Mexico

    Directory of Open Access Journals (Sweden)

    Espinosa-Alarcón Patricia

    2010-02-01

    Full Text Available Abstract Background Social networks play a key role in caring for older adults. A better understanding of the characteristics of different social networks types (TSNs in a given community provides useful information for designing policies to care for this age group. Therefore this study has three objectives: 1 To derive the TSNs among older adults affiliated with the Mexican Institute of Social Security; 2 To describe the main characteristics of the older adults in each TSN, including the instrumental and economic support they receive and their satisfaction with the network; 3 To determine the association between functional dependency and the type of social network. Methods Secondary data analysis of the 2006 Survey of Autonomy and Dependency (N = 3,348. The TSNs were identified using the structural approach and cluster analysis. The association between functional dependency and the TSNs was evaluated with Poisson regression with robust variance analysis in which socio-demographic characteristics, lifestyle and medical history covariates were included. Results We identified five TSNs: diverse with community participation (12.1%, diverse without community participation (44.3%; widowed (32.0%; nonfriends-restricted (7.6%; nonfamily-restricted (4.0%. Older adults belonging to widowed and restricted networks showed a higher proportion of dependency, negative self-rated health and depression. Older adults with functional dependency more likely belonged to a widowed network (adjusted prevalence ratio 1.5; 95%CI: 1.1-2.1. Conclusion The derived TSNs were similar to those described in developed countries. However, we identified the existence of a diverse network without community participation and a widowed network that have not been previously described. These TSNs and restricted networks represent a potential unmet need of social security affiliates.

  12. A NEW METHOD FOR EXTRACTING SPIN-DEPENDENT NEUTRON STRUCTURE FUNCTIONS FROM NUCLEAR DATA

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Y.F.; Melnitchouk, W.

    2009-01-01

    High-energy electrons are currently the best probes of the internal structure of nucleons (protons and neutrons). By collecting data on electrons scattering off light nuclei, such as deuterium and helium, one can extract structure functions (SFs), which encode information about the quarks that make up the nucleon. Spin-dependent SFs, which depend on the relative polarization of the electron beam and the target nucleus, encode quark spins. Proton SFs can be measured directly from electron-proton scattering, but those of the neutron must be extracted from proton data and deuterium or helium-3 data because free neutron targets do not exist. At present, there is no reliable method for accurately determining spin-dependent neutron SFs in the low-momentum-transfer regime, where nucleon resonances are prominent and the functions are not smooth. The focus of this study was to develop a new method for extracting spin-dependent neutron SFs from nuclear data. An approximate convolution formula for nuclear SFs reduces the problem to an integral equation, for which a recursive solution method was designed. The method was then applied to recent data from proton and deuterium scattering experiments to perform a preliminary extraction of spin-dependent neutron SFs in the resonance region. The extraction method was found to reliably converge for arbitrary test functions, and the validity of the extraction from data was verifi ed using a Bjorken integral, which relates integrals of SFs to a known quantity. This new information on neutron structure could be used to assess quark-hadron duality for the neutron, which requires detailed knowledge of SFs in all kinematic regimes.

  13. Folic acid supplementation improves microvascular function in older adults through nitric oxide-dependent mechanisms.

    Science.gov (United States)

    Stanhewicz, Anna E; Alexander, Lacy M; Kenney, W Larry

    2015-07-01

    Older adults have reduced vascular endothelial function, evidenced by attenuated nitric oxide (NO)-dependent cutaneous vasodilatation. Folic acid and its metabolite, 5-methyltetrahydrofolate (5-MTHF), are reported to improve vessel function. We hypothesized that (i) local 5-MTHF administration and (ii) chronic folic acid supplementation would improve cutaneous microvascular function in ageing through NO-dependent mechanisms. There were two separate studies in which there were 11 young (Y: 22 ± 1 years) and 11 older (O: 71 ± 3 years) participants. In both studies, two intradermal microdialysis fibres were placed in the forearm skin for local delivery of lactated Ringer's solution with or without 5 mM 5-MTHF. Red cell flux was measured by laser-Doppler flowmetry. Cutaneous vascular conductance [CVC=red cell flux/mean arterial pressure] was normalized as percentage maximum CVC (%CVCmax) (28 mM sodium nitroprusside, local temperature 43°C). In study 1 after CVC plateaued during local heating, 20 mM NG-nitro-L-arginine methyl ester (L-NAME) was perfused at each site to quantify NO-dependent vasodilatation. The local heating plateau (%CVCmax: O = 82 ± 3 vs Y = 96 ± 1, P = 0.002) and NO-dependent vasodilatation (%CVCmax: O = 26 ± 6% vs Y = 49 ± 5, P = 0.03) were attenuated in older participants. 5-MTHF augmented the overall (%CVCmax = 91 ± 2, P = 0.03) and NO-dependent (%CVCmax = 43 ± 9%, P = 0.04) vasodilatation in older but not young participants. In study 2 the participants ingested folic acid (5 mg/day) or placebo for 6 weeks in a randomized, double-blind, crossover design. A rise in oral temperature of 1°C was induced using a water-perfused suit, body temperature was held and 20 mM L-NAME was perfused at each site. Older participants had attenuated reflex (%CVCmax: O = 31 ± 8 vs Y = 44 ± 5, P = 0.001) and NO-dependent (%CVCmax: O = 9 ± 2 vs Y = 21 ± 2, P = 0.003) vasodilatation. Folic acid increased CVC (%CVCmax = 47 ± 5%, P = 0.001) and NO-dependent