WorldWideScience

Sample records for dependent bold fmri

  1. fMRI BOLD response to the eyes task in offspring from multiplex alcohol dependence families.

    Science.gov (United States)

    Hill, Shirley Y; Kostelnik, Bryan; Holmes, Brian; Goradia, Dhruman; McDermott, Michael; Diwadkar, Vaibhav; Keshavan, Matcheri

    2007-12-01

    Increased susceptibility for developing alcohol dependence (AD) may be related to structural and functional differences in brain circuits that influence social cognition and more specifically, theory of mind (ToM). Alcohol dependent individuals have a greater likelihood of having deficits in social skills and greater social alienation. These characteristics may be related to inherited differences in the neuroanatomical network that comprises the social brain. Adolescent/young adult participants from multiplex AD families and controls (n = 16) were matched for gender, age, IQ, education, and handedness and administered the Eyes Task of Baron-Cohen during functional magnetic resonance imaging (fMRI). High-risk (HR) subjects showed significantly diminished blood oxygen level dependent (BOLD) response in comparison with low-risk control young adults in the right middle temporal gyrus (RMTG) and the left inferior frontal gyrus (LIFG), areas that have previously been implicated in ToM tasks. Offspring from multiplex families for AD may manifest one aspect of their genetic susceptibility by having a diminished BOLD response in brain regions associated with performance of ToM tasks. These results suggest that those at risk for developing AD may have reduced ability to empathize with others' state of mind, possibly resulting in diminished social skill.

  2. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI.

    Science.gov (United States)

    Kundu, Prantik; Inati, Souheil J; Evans, Jennifer W; Luh, Wen-Ming; Bandettini, Peter A

    2012-04-15

    A central challenge in the fMRI based study of functional connectivity is distinguishing neuronally related signal fluctuations from the effects of motion, physiology, and other nuisance sources. Conventional techniques for removing nuisance effects include modeling of noise time courses based on external measurements followed by temporal filtering. These techniques have limited effectiveness. Previous studies have shown using multi-echo fMRI that neuronally related fluctuations are Blood Oxygen Level Dependent (BOLD) signals that can be characterized in terms of changes in R(2)* and initial signal intensity (S(0)) based on the analysis of echo-time (TE) dependence. We hypothesized that if TE-dependence could be used to differentiate BOLD and non-BOLD signals, non-BOLD signal could be removed to denoise data without conventional noise modeling. To test this hypothesis, whole brain multi-echo data were acquired at 3 TEs and decomposed with Independent Components Analysis (ICA) after spatially concatenating data across space and TE. Components were analyzed for the degree to which their signal changes fit models for R(2)* and S(0) change, and summary scores were developed to characterize each component as BOLD-like or not BOLD-like. These scores clearly differentiated BOLD-like "functional network" components from non BOLD-like components related to motion, pulsatility, and other nuisance effects. Using non BOLD-like component time courses as noise regressors dramatically improved seed-based correlation mapping by reducing the effects of high and low frequency non-BOLD fluctuations. A comparison with seed-based correlation mapping using conventional noise regressors demonstrated the superiority of the proposed technique for both individual and group level seed-based connectivity analysis, especially in mapping subcortical-cortical connectivity. The differentiation of BOLD and non-BOLD components based on TE-dependence was highly robust, which allowed for the

  3. Single-trial EEG-informed fMRI reveals spatial dependency of BOLD signal on early and late IC-ERP amplitudes during face recognition.

    Science.gov (United States)

    Wirsich, Jonathan; Bénar, Christian; Ranjeva, Jean-Philippe; Descoins, Médéric; Soulier, Elisabeth; Le Troter, Arnaud; Confort-Gouny, Sylviane; Liégeois-Chauvel, Catherine; Guye, Maxime

    2014-10-15

    Simultaneous EEG-fMRI has opened up new avenues for improving the spatio-temporal resolution of functional brain studies. However, this method usually suffers from poor EEG quality, especially for evoked potentials (ERPs), due to specific artifacts. As such, the use of EEG-informed fMRI analysis in the context of cognitive studies has particularly focused on optimizing narrow ERP time windows of interest, which ignores the rich diverse temporal information of the EEG signal. Here, we propose to use simultaneous EEG-fMRI to investigate the neural cascade occurring during face recognition in 14 healthy volunteers by using the successive ERP peaks recorded during the cognitive part of this process. N170, N400 and P600 peaks, commonly associated with face recognition, were successfully and reproducibly identified for each trial and each subject by using a group independent component analysis (ICA). For the first time we use this group ICA to extract several independent components (IC) corresponding to the sequence of activation and used single-trial peaks as modulation parameters in a general linear model (GLM) of fMRI data. We obtained an occipital-temporal-frontal stream of BOLD signal modulation, in accordance with the three successive IC-ERPs providing an unprecedented spatio-temporal characterization of the whole cognitive process as defined by BOLD signal modulation. By using this approach, the pattern of EEG-informed BOLD modulation provided improved characterization of the network involved than the fMRI-only analysis or the source reconstruction of the three ERPs; the latter techniques showing only two regions in common localized in the occipital lobe. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Volumetric BOLD fMRI simulation: from neurovascular coupling to multivoxel imaging

    International Nuclear Information System (INIS)

    Chen, Zikuan; Calhoun, Vince

    2012-01-01

    The blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) modality has been numerically simulated by calculating single voxel signals. However, the observation on single voxel signals cannot provide information regarding the spatial distribution of the signals. Specifically, a single BOLD voxel signal simulation cannot answer the fundamental question: is the magnetic resonance (MR) image a replica of its underling magnetic susceptibility source? In this paper, we address this problem by proposing a multivoxel volumetric BOLD fMRI simulation model and a susceptibility expression formula for linear neurovascular coupling process, that allow us to examine the BOLD fMRI procedure from neurovascular coupling to MR image formation. Since MRI technology only senses the magnetism property, we represent a linear neurovascular-coupled BOLD state by a magnetic susceptibility expression formula, which accounts for the parameters of cortical vasculature, intravascular blood oxygenation level, and local neuroactivity. Upon the susceptibility expression of a BOLD state, we carry out volumetric BOLD fMRI simulation by calculating the fieldmap (established by susceptibility magnetization) and the complex multivoxel MR image (by intravoxel dephasing). Given the predefined susceptibility source and the calculated complex MR image, we compare the MR magnitude (phase, respectively) image with the predefined susceptibility source (the calculated fieldmap) by spatial correlation. The spatial correlation between the MR magnitude image and the magnetic susceptibility source is about 0.90 for the settings of T E = 30 ms, B 0 = 3 T, voxel size = 100 micron, vessel radius = 3 micron, and blood volume fraction = 2%. Using these parameters value, the spatial correlation between the MR phase image and the susceptibility-induced fieldmap is close to 1.00. Our simulation results show that the MR magnitude image is not an exact replica of the magnetic susceptibility

  5. PARTICLE FILTERING WITH SEQUENTIAL PARAMETER LEARNING FOR NONLINEAR BOLD fMRI SIGNALS.

    Science.gov (United States)

    Xia, Jing; Wang, Michelle Yongmei

    Analyzing the blood oxygenation level dependent (BOLD) effect in the functional magnetic resonance imaging (fMRI) is typically based on recent ground-breaking time series analysis techniques. This work represents a significant improvement over existing approaches to system identification using nonlinear hemodynamic models. It is important for three reasons. First, instead of using linearized approximations of the dynamics, we present a nonlinear filtering based on the sequential Monte Carlo method to capture the inherent nonlinearities in the physiological system. Second, we simultaneously estimate the hidden physiological states and the system parameters through particle filtering with sequential parameter learning to fully take advantage of the dynamic information of the BOLD signals. Third, during the unknown static parameter learning, we employ the low-dimensional sufficient statistics for efficiency and avoiding potential degeneration of the parameters. The performance of the proposed method is validated using both the simulated data and real BOLD fMRI data.

  6. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI

    Science.gov (United States)

    Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis

    2015-01-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370

  7. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI. Implications in presurgical brain mapping

    International Nuclear Information System (INIS)

    Wang, Liya; Ali, Shazia; Fa, Tianning; Mao, Hui; Dandan, Chen; Olson, Jeffrey

    2012-01-01

    Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional

  8. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping

    Science.gov (United States)

    Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339

  9. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping.

    Science.gov (United States)

    Chen, Zikuan; Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization.

  10. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging

    Directory of Open Access Journals (Sweden)

    Boujraf Said

    2009-01-01

    Full Text Available The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE have been used to shorten readout trains in single-shot (SS echo planar imaging (EPI. This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.

  11. Somatosensory BOLD fMRI reveals close link between salient blood pressure changes and the murine neuromatrix.

    Science.gov (United States)

    Reimann, Henning Matthias; Todiras, Mihail; Hodge, Russ; Huelnhagen, Till; Millward, Jason Michael; Turner, Robert; Seeliger, Erdmann; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2018-05-15

    The neuromatrix, or "pain matrix", is a network of cortical brain areas which is activated by noxious as well as salient somatosensory stimulation. This has been studied in mice and humans using blood oxygenation level-dependent (BOLD) fMRI. Here we demonstrate that BOLD effects observed in the murine neuromatrix in response to salient somatosensory stimuli are prone to reflect mean arterial blood pressure (MABP) changes, rather than neural activity. We show that a standard electrostimulus typically used in murine somatosensory fMRI can induce substantial elevations in MABP. Equivalent drug-induced MABP changes - without somatosensory stimulation - evoked BOLD patterns in the neuromatrix strikingly similar to those evoked by electrostimulation. This constitutes a serious caveat for murine fMRI. The regional specificity of these BOLD patterns can be attributed to the co-localization of the neuromatrix with large draining veins. Based on these findings we propose a cardiovascular support mechanism whereby abrupt elevations in MABP provide additional energy supply to the neuromatrix and other essential brain areas in fight-or-flight situations. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI Investigation

    Science.gov (United States)

    Hames, Elizabeth’ C.; Murphy, Brandi; Rajmohan, Ravi; Anderson, Ronald C.; Baker, Mary; Zupancic, Stephen; O’Boyle, Michael; Richman, David

    2016-01-01

    Electroencephalography (EEG) and blood oxygen level dependent functional magnetic resonance imagining (BOLD fMRI) assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD) and 10 neurotypical (NT) controls between the ages of 20–28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block vs. the second presentation of a visual stimulus in an all visual block (AA2-VV2).We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs. PMID:27148020

  13. Hemodynamic modelling of BOLD fMRI - A machine learning approach

    DEFF Research Database (Denmark)

    Jacobsen, Danjal Jakup

    2007-01-01

    This Ph.D. thesis concerns the application of machine learning methods to hemodynamic models for BOLD fMRI data. Several such models have been proposed by different researchers, and they have in common a basis in physiological knowledge of the hemodynamic processes involved in the generation...... of the BOLD signal. The BOLD signal is modelled as a non-linear function of underlying, hidden (non-measurable) hemodynamic state variables. The focus of this thesis work has been to develop methods for learning the parameters of such models, both in their traditional formulation, and in a state space...... formulation. In the latter, noise enters at the level of the hidden states, as well as in the BOLD measurements themselves. A framework has been developed to allow approximate posterior distributions of model parameters to be learned from real fMRI data. This is accomplished with Markov chain Monte Carlo...

  14. Correlation between MEG and BOLD fMRI signals induced by visual flicker stimuli

    Institute of Scientific and Technical Information of China (English)

    Chu Renxin; Holroyd Tom; Duyn Jeff

    2007-01-01

    The goal of this work was to investigate how the MEG signal amplitude correlates with that of BOLD fMRI.To investigate the correlation between fMRI and macroscopic electrical activity, BOLD fMRI and MEG was performed on the same subjects (n =5). A visual flicker stimulus of varying temporal frequency was used to elicit neural responses in early visual areas. A strong similarity was observed in frequency tuning curves between both modalities.Although, averaged over subjects, the BOLD tuning curve was somewhat broader than MEG, both BOLD and MEG had maxima at a flicker frequency of 10 Hz. Also, we measured the first and second harmonic components as the stimuli frequency by MEG. In the low stimuli frequency (less than 6 Hz), the second harmonic has comparable amplitude with the first harmonic, which implies that neural frequency response is nonlinear and has more nonlinear components in low frequency than in high frequency.

  15. Effect of hypoxia on BOLD fMRI response and total cerebral blood flow in migraine with aura patients

    DEFF Research Database (Denmark)

    Arngrim, Nanna; Hougaard, Anders; Schytz, Henrik W

    2018-01-01

    was measured in the visual cortex ROIs V1-V5. Total cerebral blood flow (CBF) was calculated by measuring the blood velocity in the internal carotid arteries and the basilar artery using phase-contrast mapping (PCM) MRI. Hypoxia induced a greater decrease in BOLD response to visual stimulation in V1-V4 in MA......Experimentally induced hypoxia triggers migraine and aura attacks in patients suffering from migraine with aura (MA). We investigated the blood oxygenation level-dependent (BOLD) signal response to visual stimulation during hypoxia in MA patients and healthy volunteers. In a randomized double......-blind crossover study design, 15 MA patients were allocated to 180 min of normobaric poikilocapnic hypoxia (capillary oxygen saturation 70-75%) or sham (normoxia) on two separate days and 14 healthy volunteers were exposed to hypoxia. The BOLD functional MRI (fMRI) signal response to visual stimulation...

  16. Blood Flow and Brain Function: Investigations of neurovascular coupling using BOLD fMRI at 7 tesla

    NARCIS (Netherlands)

    Siero, J.C.W.

    2013-01-01

    The advent of ultra high field (7 tesla) MRI systems has opened the possibility to probe biological processes of the human body in great detail. Especially for studying brain function using BOLD fMRI there is a large benefit from the increased magnetic field strength. BOLD fMRI is the working horse

  17. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences

    DEFF Research Database (Denmark)

    Cohen, Eric R.; Rostrup, Egill; Sidaros, Karam

    2004-01-01

    to be more accurately localized and quantified based on changes in venous blood oxygenation alone. The normalized BOLD signal induced by the motor task was consistent across different magnetic fields and pulse sequences, and corresponded well with cerebral blood flow measurements. Our data suggest...... size, as well as experimental, such as pulse sequence and static magnetic field strength (B(0)). Thus, it is difficult to compare task-induced fMRI signals across subjects, field strengths, and pulse sequences. This problem can be overcome by normalizing the neural activity-induced BOLD fMRI response...... for global stimulation, subjects breathed a 5% CO(2) gas mixture. Under all conditions, voxels containing primarily large veins and those containing primarily active tissue (i.e., capillaries and small veins) showed distinguishable behavior after hypercapnic normalization. This allowed functional activity...

  18. Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32-channel head array coil at 1.5 Tesla.

    Science.gov (United States)

    Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J

    2009-01-01

    Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy.

  19. A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series

    Directory of Open Access Journals (Sweden)

    Charmaine eDemanuele

    2015-10-01

    Full Text Available Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from fMRI blood oxygenation level dependent (BOLD time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC, but not in the primary visual cortex (V1. Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in multivariate patterns of voxel

  20. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study.

    Directory of Open Access Journals (Sweden)

    Salem Boussida

    Full Text Available Blood Oxygenation Level Dependent functional MRI (BOLD fMRI during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may

  1. Development of visual cortical function in infant macaques: A BOLD fMRI study.

    Directory of Open Access Journals (Sweden)

    Tom J Van Grootel

    Full Text Available Functional brain development is not well understood. In the visual system, neurophysiological studies in nonhuman primates show quite mature neuronal properties near birth although visual function is itself quite immature and continues to develop over many months or years after birth. Our goal was to assess the relative development of two main visual processing streams, dorsal and ventral, using BOLD fMRI in an attempt to understand the global mechanisms that support the maturation of visual behavior. Seven infant macaque monkeys (Macaca mulatta were repeatedly scanned, while anesthetized, over an age range of 102 to 1431 days. Large rotating checkerboard stimuli induced BOLD activation in visual cortices at early ages. Additionally we used static and dynamic Glass pattern stimuli to probe BOLD responses in primary visual cortex and two extrastriate areas: V4 and MT-V5. The resulting activations were analyzed with standard GLM and multivoxel pattern analysis (MVPA approaches. We analyzed three contrasts: Glass pattern present/absent, static/dynamic Glass pattern presentation, and structured/random Glass pattern form. For both GLM and MVPA approaches, robust coherent BOLD activation appeared relatively late in comparison to the maturation of known neuronal properties and the development of behavioral sensitivity to Glass patterns. Robust differential activity to Glass pattern present/absent and dynamic/static stimulus presentation appeared first in V1, followed by V4 and MT-V5 at older ages; there was no reliable distinction between the two extrastriate areas. A similar pattern of results was obtained with the two analysis methods, although MVPA analysis showed reliable differential responses emerging at later ages than GLM. Although BOLD responses to large visual stimuli are detectable, our results with more refined stimuli indicate that global BOLD activity changes as behavioral performance matures. This reflects an hierarchical development of

  2. MEG and fMRI fusion for nonlinear estimation of neural and BOLD signal changes

    Directory of Open Access Journals (Sweden)

    Sergey M Plis

    2010-11-01

    Full Text Available The combined analysis of MEG/EEG and functional MRI measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the BOLD response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater SNR, that confirms the expectation arising from the nature of the experiment. The highly nonlinear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources.

  3. BOLD repetition decreases in object-responsive ventral visual areas depend on spatial attention.

    Science.gov (United States)

    Eger, E; Henson, R N A; Driver, J; Dolan, R J

    2004-08-01

    Functional imaging studies of priming-related repetition phenomena have become widely used to study neural object representation. Although blood oxygenation level-dependent (BOLD) repetition decreases can sometimes be observed without awareness of repetition, any role for spatial attention in BOLD repetition effects remains largely unknown. We used fMRI in 13 healthy subjects to test whether BOLD repetition decreases for repeated objects in ventral visual cortices depend on allocation of spatial attention to the prime. Subjects performed a size-judgment task on a probe object that had been attended or ignored in a preceding prime display of 2 lateralized objects. Reaction times showed faster responses when the probe was the same object as the attended prime, independent of the view tested (identical vs. mirror image). No behavioral effect was evident from unattended primes. BOLD repetition decreases for attended primes were found in lateral occipital and fusiform regions bilaterally, which generalized across identical and mirror-image repeats. No repetition decreases were observed for ignored primes. Our results suggest a critical role for attention in achieving visual representations of objects that lead to both BOLD signal decreases and behavioral priming on repeated presentation.

  4. Blood oxygenation level dependent (BOLD). Renal imaging. Concepts and applications

    International Nuclear Information System (INIS)

    Nissen, Johanna C.; Haneder, Stefan; Schoenberg, Stefan O.; Michaely, Henrik J.

    2010-01-01

    Many renal diseases as well as several pharmacons cause a change in renal blood flow and/or renal oxygenation. The blood oxygenation level dependent (BOLD) imaging takes advantage of local field inhomogeneities and is based on a T2 * -weighted sequence. BOLD is a non-invasive method allowing an estimation of the renal, particularly the medullary oxygenation, and an indirect measurement of blood flow without administration of contrast agents. Thus, effects of different drugs on the kidney and various renal diseases can be controlled and observed. This work will provide an overview of the studies carried out so far and identify ways how BOLD can be used in clinical studies. (orig.)

  5. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism:An EEG Power and BOLD fMRI Investigation

    Directory of Open Access Journals (Sweden)

    Elizabeth C Hames

    2016-04-01

    Full Text Available Electroencephalography (EEG and Blood Oxygen Level Dependent Functional Magnetic Resonance Imagining (BOLD fMRI assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD and 10 neurotypical (NT controls between the ages of 20-28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block versus the second presentation of a visual stimulus in an all visual block (AA2­VV2. We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs.

  6. Correlation of BOLD Signal with Linear and Nonlinear Patterns of EEG in Resting State EEG-Informed fMRI

    Directory of Open Access Journals (Sweden)

    Galina V. Portnova

    2018-01-01

    Full Text Available Concurrent EEG and fMRI acquisitions in resting state showed a correlation between EEG power in various bands and spontaneous BOLD fluctuations. However, there is a lack of data on how changes in the complexity of brain dynamics derived from EEG reflect variations in the BOLD signal. The purpose of our study was to correlate both spectral patterns, as linear features of EEG rhythms, and nonlinear EEG dynamic complexity with neuronal activity obtained by fMRI. We examined the relationships between EEG patterns and brain activation obtained by simultaneous EEG-fMRI during the resting state condition in 25 healthy right-handed adult volunteers. Using EEG-derived regressors, we demonstrated a substantial correlation of BOLD signal changes with linear and nonlinear features of EEG. We found the most significant positive correlation of fMRI signal with delta spectral power. Beta and alpha spectral features had no reliable effect on BOLD fluctuation. However, dynamic changes of alpha peak frequency exhibited a significant association with BOLD signal increase in right-hemisphere areas. Additionally, EEG dynamic complexity as measured by the HFD of the 2–20 Hz EEG frequency range significantly correlated with the activation of cortical and subcortical limbic system areas. Our results indicate that both spectral features of EEG frequency bands and nonlinear dynamic properties of spontaneous EEG are strongly associated with fluctuations of the BOLD signal during the resting state condition.

  7. Detecting Activation in fMRI Data: An Approach Based on Sparse Representation of BOLD Signal

    Directory of Open Access Journals (Sweden)

    Blanca Guillen

    2018-01-01

    Full Text Available This paper proposes a simple yet effective approach for detecting activated voxels in fMRI data by exploiting the inherent sparsity property of the BOLD signal in temporal and spatial domains. In the time domain, the approach combines the General Linear Model (GLM with a Least Absolute Deviation (LAD based regression method regularized by the pseudonorm l0 to promote sparsity in the parameter vector of the model. In the spatial domain, detection of activated regions is based on thresholding the spatial map of estimated parameters associated with a particular stimulus. The threshold is calculated by exploiting the sparseness of the BOLD signal in the spatial domain assuming a Laplacian distribution model. The proposed approach is validated using synthetic and real fMRI data. For synthetic data, results show that the proposed approach is able to detect most activated voxels without any false activation. For real data, the method is evaluated through comparison with the SPM software. Results indicate that this approach can effectively find activated regions that are similar to those found by SPM, but using a much simpler approach. This study may lead to the development of robust spatial approaches to further simplifying the complexity of classical schemes.

  8. In contrast to BOLD: signal enhancement by extravascular water protons as an alternative mechanism of endogenous fMRI signal change.

    Science.gov (United States)

    Figley, Chase R; Leitch, Jordan K; Stroman, Patrick W

    2010-10-01

    Despite the popularity and widespread application of functional magnetic resonance imaging (fMRI) in recent years, the physiological bases of signal change are not yet fully understood. Blood oxygen level-dependant (BOLD) contrast - attributed to local changes in blood flow and oxygenation, and therefore magnetic susceptibility - has become the most prevalent means of functional neuroimaging. However, at short echo times, spin-echo sequences show considerable deviations from the BOLD model, implying a second, non-BOLD component of signal change. This has been dubbed "signal enhancement by extravascular water protons" (SEEP) and is proposed to result from proton-density changes associated with cellular swelling. Given that such changes are independent of magnetic susceptibility, SEEP may offer new and improved opportunities for carrying out fMRI in regions with close proximity to air-tissue and/or bone-tissue interfaces (e.g., the prefrontal cortex and spinal cord), as well as regions close to large blood vessels, which may not be ideally suited for BOLD imaging. However, because of the interdisciplinary nature of the literature, there has yet to be a thorough synthesis, tying together the various and sometimes disparate aspects of SEEP theory. As such, we aim to provide a concise yet comprehensive overview of SEEP, including recent and compelling evidence for its validity, its current applications and its future relevance to the rapidly expanding field of functional neuroimaging. Before presenting the evidence for a non-BOLD component of endogenous functional contrast, and to enable a more critical review for the nonexpert reader, we begin by reviewing the fundamental principles underlying BOLD theory. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. The impact of susceptibility gradients on cartesian and spiral EPI for BOLD fMRI

    DEFF Research Database (Denmark)

    Sangill, Ryan; Wallentin, Mikkel; Østergaard, Leif

    2006-01-01

    , with special emphasis on spiral EPI (spiral) and cartesian EPI (EPI) and their performance under influence of induced field gradients (SFGs) and stochastic noise. A numerical method for calculating synthetic MR images is developed and used to simulate BOLD fMRI experiments using EPI and spirals. The data...... is then examined for activation using a pixel-wise t test. Nine subjects are scanned with both techniques while performing a motor task. SPM99 is used for analysing the experimental data. The simulated spirals provide generally higher t scores at low SFGs but lose more strength than EPI at higher SFGs, where EPI...... activation is offset from the true position. In the primary motor area spirals provide significantly higher t scores (P SFG areas spirals provide stronger activation than...

  10. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.

    Science.gov (United States)

    Chai, Yuhui; Sheng, Jingwei; Bandettini, Peter A; Gao, Jia-Hong

    2018-05-01

    Transcranial alternating current stimulation (tACS) has emerged as a promising tool for modulating cortical oscillations. In previous electroencephalogram (EEG) studies, tACS has been found to modulate brain oscillatory activity in a frequency-specific manner. However, the spatial distribution and hemodynamic response for this modulation remains poorly understood. Functional magnetic resonance imaging (fMRI) has the advantage of measuring neuronal activity in regions not only below the tACS electrodes but also across the whole brain with high spatial resolution. Here, we measured fMRI signal while applying tACS to modulate rhythmic visual activity. During fMRI acquisition, tACS at different frequencies (4, 8, 16, and 32 Hz) was applied along with visual flicker stimulation at 8 and 16 Hz. We analyzed the blood-oxygen-level-dependent (BOLD) signal difference between tACS-ON vs tACS-OFF, and different frequency combinations (e.g., 4 Hz tACS, 8 Hz flicker vs 8 Hz tACS, 8 Hz flicker). We observed significant tACS modulation effects on BOLD responses when the tACS frequency matched the visual flicker frequency or the second harmonic frequency. The main effects were predominantly seen in regions that were activated by the visual task and targeted by the tACS current distribution. These findings bridge different scientific domains of tACS research and demonstrate that fMRI could localize the tACS effect on stimulus-induced brain rhythms, which could lead to a new approach for understanding the high-level cognitive process shaped by the ongoing oscillatory signal. © 2018 Wiley Periodicals, Inc.

  11. Functional dissociation of transient and sustained fMRI BOLD components in human auditory cortex revealed with a streaming paradigm based on interaural time differences.

    Science.gov (United States)

    Schadwinkel, Stefan; Gutschalk, Alexander

    2010-12-01

    A number of physiological studies suggest that feature-selective adaptation is relevant to the pre-processing for auditory streaming, the perceptual separation of overlapping sound sources. Most of these studies are focused on spectral differences between streams, which are considered most important for streaming. However, spatial cues also support streaming, alone or in combination with spectral cues, but physiological studies of spatial cues for streaming remain scarce. Here, we investigate whether the tuning of selective adaptation for interaural time differences (ITD) coincides with the range where streaming perception is observed. FMRI activation that has been shown to adapt depending on the repetition rate was studied with a streaming paradigm where two tones were differently lateralized by ITD. Listeners were presented with five different ΔITD conditions (62.5, 125, 187.5, 343.75, or 687.5 μs) out of an active baseline with no ΔITD during fMRI. The results showed reduced adaptation for conditions with ΔITD ≥ 125 μs, reflected by enhanced sustained BOLD activity. The percentage of streaming perception for these stimuli increased from approximately 20% for ΔITD = 62.5 μs to > 60% for ΔITD = 125 μs. No further sustained BOLD enhancement was observed when the ΔITD was increased beyond ΔITD = 125 μs, whereas the streaming probability continued to increase up to 90% for ΔITD = 687.5 μs. Conversely, the transient BOLD response, at the transition from baseline to ΔITD blocks, increased most prominently as ΔITD was increased from 187.5 to 343.75 μs. These results demonstrate a clear dissociation of transient and sustained components of the BOLD activity in auditory cortex. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  12. Working memory in volunteers and schizophrenics using BOLD fMRI

    International Nuclear Information System (INIS)

    Giesel, F.L.; Hohmann, N.; Seidl, U.; Kress, K.R.; Schoenknecht, P.; Schroeder, J.; Kauczor, H.-U.; Essig, M.

    2005-01-01

    Functional magnetic resonance imaging uses the blood oxygen level-dependent effect (BOLD MRI) for noninvasive display of cerebral correlatives of cognitive function. The importance for the understanding of physiological and pathological processes is demonstrated by investigations of working memory in schizophrenics and healthy controls. Working memory is involved in processing rather than storage of information and therefore is linked to complex processes such as learning and problem solving. In schizophrenic psychosis, these functions are clearly restricted. Training effects in the working memory task follow an inverse U-shape function, suggesting that cerebral activation reaches a peak before economics of the brain find a more efficient method and activation decreases. (orig.) [de

  13. Study of asymmetry in motor areas related to handedness using the fMRI BOLD response Gaussian convolution model

    International Nuclear Information System (INIS)

    Gao Qing; Chen Huafu; Gong Qiyong

    2009-01-01

    Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.

  14. Study of asymmetry in motor areas related to handedness using the fMRI BOLD response Gaussian convolution model

    Energy Technology Data Exchange (ETDEWEB)

    Gao Qing [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chen Huafu [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: Chenhf@uestc.edu.cn; Gong Qiyong [Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041 (China)

    2009-10-30

    Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.

  15. Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease

    Science.gov (United States)

    Price, J.L.; Yan, Z.; Morris, J.C.; Sheline, Y.I.

    2011-01-01

    Objective: Clinicopathologic phenotypes of dementia with Lewy bodies (DLB) and Alzheimer disease (AD) often overlap, making discrimination difficult. We performed resting state blood oxygen level–dependent (BOLD) functional connectivity MRI (fcMRI) to determine whether there were differences between AD and DLB. Methods: Participants (n = 88) enrolled in a longitudinal study of memory and aging underwent 3-T fcMRI. Clinical diagnoses of probable DLB (n = 15) were made according to published criteria. Cognitively normal control participants (n = 38) were selected for the absence of cerebral amyloid burden as imaged with Pittsburgh compound B (PiB). Probable AD cases (n = 35) met published criteria and had appreciable amyloid deposits with PiB imaging. Functional images were collected using a gradient spin-echo sequence sensitive to BOLD contrast (T2* weighting). Correlation maps selected a seed region in the combined bilateral precuneus. Results: Participants with DLB had a functional connectivity pattern for the precuneus seed region that was distinct from AD; both the DLB and AD groups had functional connectivity patterns that differed from the cognitively normal group. In the DLB group, we found increased connectivity between the precuneus and regions in the dorsal attention network and the putamen. In contrast, we found decreased connectivity between the precuneus and other task-negative default regions and visual cortices. There was also a reversal of connectivity in the right hippocampus. Conclusions: Changes in functional connectivity in DLB indicate patterns of activation that are distinct from those seen in AD and may improve discrimination of DLB from AD and cognitively normal individuals. Since patterns of connectivity differ between AD and DLB groups, measurements of BOLD functional connectivity can shed further light on neuroanatomic connections that distinguish DLB from AD. PMID:21525427

  16. Olfactory responses to natal stream water in sockeye salmon by BOLD fMRI.

    Directory of Open Access Journals (Sweden)

    Hiroshi Bandoh

    Full Text Available Many studies have shown that juvenile salmon imprint olfactory memory of natal stream odors during downstream migration, and adults recall this stream-specific odor information to discriminate their natal stream during upstream migration for spawning. The odor information processing of the natal stream in the salmon brain, however, has not been clarified. We applied blood oxygenation level-dependent (BOLD functional magnetic resonance imaging to investigate the odor information processing of the natal stream in the olfactory bulb and telencephalon of lacustrine sockeye salmon (Oncorhynchus nerka. The strong responses to the natal stream water were mainly observed in the lateral area of dorsal telencephalon (Dl, which are homologous to the medial pallium (hippocampus in terrestrial vertebrates. Although the concentration of L-serine (1 mM in the control water was 20,000-times higher than that of total amino acid in the natal stream water (47.5 nM, the BOLD signals resulting from the natal stream water were stronger than those by L-serine in the Dl. We concluded that sockeye salmon could process the odor information of the natal stream by integrating information in the Dl area of the telencephalon.

  17. Sustained negative BOLD response in human fMRI finger tapping task.

    Directory of Open Access Journals (Sweden)

    Yadong Liu

    Full Text Available In this work, we investigated the sustained negative blood oxygen level-dependent (BOLD response (sNBR using functional magnetic resonance imaging during a finger tapping task. We observed that the sNBR for this task was more extensive than has previously been reported. The cortical regions involved in sNBR are divided into the following three groups: frontal, somatosensory and occipital. By investigating the spatial structure, area, amplitude, and dynamics of the sNBR in comparison with those of its positive BOLD response (PBR counterpart, we made the following observations. First, among the three groups, the somatosensory group contained the greatest number of activated voxels and the fewest deactivated voxels. In addition, the amplitude of the sNBR in this group was the smallest among the three groups. Second, the onset and peak time of the sNBR are both larger than those of the PBR, whereas the falling edge time of the sNBR is less than that of the PBR. Third, the long distance between most sNBR foci and their corresponding PBR foci makes it unlikely that they share the same blood supply artery. Fourth, the couplings between the sNBR and its PBR counterpart are distinct among different regions and thus should be investigated separately. These findings imply that the origin of most sNBR foci in the finger-tapping task is much more likely to be neuronal activity suppression rather than "blood steal."

  18. Sustained negative BOLD response in human fMRI finger tapping task.

    Science.gov (United States)

    Liu, Yadong; Shen, Hui; Zhou, Zongtan; Hu, Dewen

    2011-01-01

    In this work, we investigated the sustained negative blood oxygen level-dependent (BOLD) response (sNBR) using functional magnetic resonance imaging during a finger tapping task. We observed that the sNBR for this task was more extensive than has previously been reported. The cortical regions involved in sNBR are divided into the following three groups: frontal, somatosensory and occipital. By investigating the spatial structure, area, amplitude, and dynamics of the sNBR in comparison with those of its positive BOLD response (PBR) counterpart, we made the following observations. First, among the three groups, the somatosensory group contained the greatest number of activated voxels and the fewest deactivated voxels. In addition, the amplitude of the sNBR in this group was the smallest among the three groups. Second, the onset and peak time of the sNBR are both larger than those of the PBR, whereas the falling edge time of the sNBR is less than that of the PBR. Third, the long distance between most sNBR foci and their corresponding PBR foci makes it unlikely that they share the same blood supply artery. Fourth, the couplings between the sNBR and its PBR counterpart are distinct among different regions and thus should be investigated separately. These findings imply that the origin of most sNBR foci in the finger-tapping task is much more likely to be neuronal activity suppression rather than "blood steal."

  19. Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance.

    Science.gov (United States)

    Bright, Molly G; Murphy, Kevin

    2013-12-01

    Cerebrovascular reactivity (CVR) can be mapped using BOLD fMRI to provide a clinical insight into vascular health that can be used to diagnose cerebrovascular disease. Breath-holds are a readily accessible method for producing the required arterial CO2 increases but their implementation into clinical studies is limited by concerns that patients will demonstrate highly variable performance of breath-hold challenges. This study assesses the repeatability of CVR measurements despite poor task performance, to determine if and how robust results could be achieved with breath-holds in patients. Twelve healthy volunteers were scanned at 3 T. Six functional scans were acquired, each consisting of 6 breath-hold challenges (10, 15, or 20 s duration) interleaved with periods of paced breathing. These scans simulated the varying breath-hold consistency and ability levels that may occur in patient data. Uniform ramps, time-scaled ramps, and end-tidal CO2 data were used as regressors in a general linear model in order to measure CVR at the grey matter, regional, and voxelwise level. The intraclass correlation coefficient (ICC) quantified the repeatability of the CVR measurement for each breath-hold regressor type and scale of interest across the variable task performances. The ramp regressors did not fully account for variability in breath-hold performance and did not achieve acceptable repeatability (ICC0.4). Further analysis of intra-subject CVR variability across the brain (ICCspatial and voxelwise correlation) supported the use of end-tidal CO2 data to extract robust whole-brain CVR maps, despite variability in breath-hold performance. We conclude that the incorporation of end-tidal CO2 monitoring into scanning enables robust, repeatable measurement of CVR that makes breath-hold challenges suitable for routine clinical practice. © 2013.

  20. When the Brain Takes 'BOLD' Steps: Real-Time fMRI Neurofeedback Can Further Enhance the Ability to Gradually Self-regulate Regional Brain Activation.

    Science.gov (United States)

    Sorger, Bettina; Kamp, Tabea; Weiskopf, Nikolaus; Peters, Judith Caroline; Goebel, Rainer

    2018-05-15

    Brain-computer interfaces (BCIs) based on real-time functional magnetic resonance imaging (rtfMRI) are currently explored in the context of developing alternative (motor-independent) communication and control means for the severely disabled. In such BCI systems, the user encodes a particular intention (e.g., an answer to a question or an intended action) by evoking specific mental activity resulting in a distinct brain state that can be decoded from fMRI activation. One goal in this context is to increase the degrees of freedom in encoding different intentions, i.e., to allow the BCI user to choose from as many options as possible. Recently, the ability to voluntarily modulate spatial and/or temporal blood oxygenation level-dependent (BOLD)-signal features has been explored implementing different mental tasks and/or different encoding time intervals, respectively. Our two-session fMRI feasibility study systematically investigated for the first time the possibility of using magnitudinal BOLD-signal features for intention encoding. Particularly, in our novel paradigm, participants (n=10) were asked to alternately self-regulate their regional brain-activation level to 30%, 60% or 90% of their maximal capacity by applying a selected activation strategy (i.e., performing a mental task, e.g., inner speech) and modulation strategies (e.g., using different speech rates) suggested by the experimenters. In a second step, we tested the hypothesis that the additional availability of feedback information on the current BOLD-signal level within a region of interest improves the gradual-self regulation performance. Therefore, participants were provided with neurofeedback in one of the two fMRI sessions. Our results show that the majority of the participants were able to gradually self-regulate regional brain activation to at least two different target levels even in the absence of neurofeedback. When provided with continuous feedback on their current BOLD-signal level, most

  1. Comparison of diffusion-weighted fMRI and BOLD fMRI responses in a verbal working memory task

    International Nuclear Information System (INIS)

    Aso, Toshihiko; Urayama, Shin-ichi; Fukuyama, Hidenao; Le Bihan, Denis

    2013-01-01

    Diffusion-weighted functional MRI (DfMRI) has been reported to have a different response pattern in the visual cortex than that of BOLD-fMRI. Especially, the DfMRI signal shows a constantly faster response at both onset and offset of the stimulus, suggesting that the DfMRI signal might be more directly linked to neuronal events than the hemodynamic response. However, because the DfMRI response also contains a residual sensitivity to BOLD this hypothesis has been challenged. Using a verbal working memory task we show that the DfMRI time-course features are preserved outside visual cortices, but also less liable to between-subject/between-regional variation than the BOLD response. The overall findings not only support the feasibility of DfMRI as an approach for functional brain imaging, but also strengthen the uniqueness of the DfMRI signal origin. (authors)

  2. P300 amplitude variation is related to ventral striatum BOLD response during gain and loss anticipation: an EEG and fMRI experiment.

    Science.gov (United States)

    Pfabigan, Daniela M; Seidel, Eva-Maria; Sladky, Ronald; Hahn, Andreas; Paul, Katharina; Grahl, Arvina; Küblböck, Martin; Kraus, Christoph; Hummer, Allan; Kranz, Georg S; Windischberger, Christian; Lanzenberger, Rupert; Lamm, Claus

    2014-08-01

    The anticipation of favourable or unfavourable events is a key component in our daily life. However, the temporal dynamics of anticipation processes in relation to brain activation are still not fully understood. A modified version of the monetary incentive delay task was administered during separate functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) sessions in the same 25 participants to assess anticipatory processes with a multi-modal neuroimaging set-up. During fMRI, gain and loss anticipation were both associated with heightened activation in ventral striatum and reward-related areas. EEG revealed most pronounced P300 amplitudes for gain anticipation, whereas CNV amplitudes distinguished neutral from gain and loss anticipation. Importantly, P300, but not CNV amplitudes, were correlated to neural activation in the ventral striatum for both gain and loss anticipation. Larger P300 amplitudes indicated higher ventral striatum blood oxygen level dependent (BOLD) response. Early stimulus evaluation processes indexed by EEG seem to be positively related to higher activation levels in the ventral striatum, indexed by fMRI, which are usually associated with reward processing. The current results, however, point towards a more general motivational mechanism processing salient stimuli during anticipation. Copyright © 2014. Published by Elsevier Inc.

  3. Linear Discriminant Analysis achieves high classification accuracy for the BOLD fMRI response to naturalistic movie stimuli.

    Directory of Open Access Journals (Sweden)

    Hendrik eMandelkow

    2016-03-01

    Full Text Available Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI. However, conventional fMRI analysis based on statistical parametric mapping (SPM and the general linear model (GLM is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA, have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbour (NN, Gaussian Naïve Bayes (GNB, and (regularised Linear Discriminant Analysis (LDA in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie.Results show that LDA regularised by principal component analysis (PCA achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2s apart during a 300s movie (chance level 0.7% = 2s/300s. The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  4. The Relationship Between Dopamine Neurotransmitter Dynamics and the Blood-Oxygen-Level-Dependent (BOLD Signal: A Review of Pharmacological Functional Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Tyler J. Bruinsma

    2018-04-01

    Full Text Available Functional magnetic resonance imaging (fMRI is widely used in investigations of normal cognition and brain disease and in various clinical applications. Pharmacological fMRI (pharma-fMRI is a relatively new application, which is being used to elucidate the effects and mechanisms of pharmacological modulation of brain activity. Characterizing the effects of neuropharmacological agents on regional brain activity using fMRI is challenging because drugs modulate neuronal function in a wide variety of ways, including through receptor agonist, antagonist, and neurotransmitter reuptake blocker events. Here we review current knowledge on neurotransmitter-mediated blood-oxygen-level dependent (BOLD fMRI mechanisms as well as recently updated methodologies aimed at more fully describing the effects of neuropharmacologic agents on the BOLD signal. We limit our discussion to dopaminergic signaling as a useful lens through which to analyze and interpret neurochemical-mediated changes in the hemodynamic BOLD response. We also discuss the need for future studies that use multi-modal approaches to expand the understanding and application of pharma-fMRI.

  5. EEG-informed fMRI analysis during a hand grip task: estimating the relationship between EEG rhythms and the BOLD signal

    Directory of Open Access Journals (Sweden)

    Roberta eSclocco

    2014-04-01

    Full Text Available In the last decade, an increasing interest has arisen in investigating the relationship between the electrophysiological and hemodynamic measurements of brain activity, such as EEG and (BOLD fMRI. In particular, changes in BOLD have been shown to be associated with changes in the spectral profile of neural activity, rather than with absolute power. Concurrently, recent findings showed that different EEG rhythms are independently related to changes in the BOLD signal: therefore, it would be important to distinguish between the contributions of the different EEG rhythms to BOLD fluctuations when modeling the relationship between the two signals. Here we propose a method to perform EEG-informed fMRI analysis, in which the EEG regressors take into account both the changes in the spectral profile and the rhythms distinction. We applied it to EEG-fMRI data during a hand grip task in healthy subjects, and compared the results with those obtained by two existing models found in literature. Our results showed that the proposed method better captures the correlations between BOLD signal and EEG rhythms modulations, identifying task-related, well localized activated volumes. Furthermore, we showed that including among the regressors also EEG rhythms not primarily involved in the task enhances the performance of the analysis, even when only correlations with BOLD signal and specific EEG rhythms are explored.

  6. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  7. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    International Nuclear Information System (INIS)

    Suarez, S.V.; Changeux, J.P.; Granon, S.; Amadon, A.; Giacomini, E.; Le Bihan, D.; Wiklund, A.

    2009-01-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity β2-containing nicotinic receptors (β2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the β2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and β2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, β2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via α7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on β2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  8. Spatiotopic coding of BOLD signal in human visual cortex depends on spatial attention.

    Directory of Open Access Journals (Sweden)

    Sofia Crespi

    Full Text Available The neural substrate of the phenomenological experience of a stable visual world remains obscure. One possible mechanism would be to construct spatiotopic neural maps where the response is selective to the position of the stimulus in external space, rather than to retinal eccentricities, but evidence for these maps has been inconsistent. Here we show, with fMRI, that when human subjects perform concomitantly a demanding attentive task on stimuli displayed at the fovea, BOLD responses evoked by moving stimuli irrelevant to the task were mostly tuned in retinotopic coordinates. However, under more unconstrained conditions, where subjects could attend easily to the motion stimuli, BOLD responses were tuned not in retinal but in external coordinates (spatiotopic selectivity in many visual areas, including MT, MST, LO and V6, agreeing with our previous fMRI study. These results indicate that spatial attention may play an important role in mediating spatiotopic selectivity.

  9. Working memory in volunteers and schizophrenics using BOLD fMRI; Das Arbeitsgedaechtnis bei Gesunden und bei Schizophrenen: Untersuchungen mit BOLD-fMRT

    Energy Technology Data Exchange (ETDEWEB)

    Giesel, F.L. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie (Germany); Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie, Heidelberg (Germany); Hohmann, N. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie (Germany); Psychiatrische Universitaetsklinik Heidelberg, Sektion Gerontopsychiatrie (Germany); Seidl, U.; Kress, K.R.; Schoenknecht, P.; Schroeder, J. [Psychiatrische Universitaetsklinik Heidelberg, Sektion Gerontopsychiatrie (Germany); Kauczor, H.-U.; Essig, M. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie (Germany)

    2005-02-01

    Functional magnetic resonance imaging uses the blood oxygen level-dependent effect (BOLD MRI) for noninvasive display of cerebral correlatives of cognitive function. The importance for the understanding of physiological and pathological processes is demonstrated by investigations of working memory in schizophrenics and healthy controls. Working memory is involved in processing rather than storage of information and therefore is linked to complex processes such as learning and problem solving. In schizophrenic psychosis, these functions are clearly restricted. Training effects in the working memory task follow an inverse U-shape function, suggesting that cerebral activation reaches a peak before economics of the brain find a more efficient method and activation decreases. (orig.) [German] Die funktionelle Magnetresonanztomographie (fMRT) nutzt den ''blood oxygen level dependent effect'' (BOLD-Effekt) zur nichtinvasiven Darstellung zerebraler Korrelate kognitiver Funktionen. Die Bedeutung dieses Verfahrens fuer das Verstaendnis physiologischer und pathologischer Prozesse wird anhand von Untersuchungen zum Arbeitsgedaechtnis bei Schizophrenen und gesunden Kontrollpersonen verdeutlicht. Das Arbeitsgedaechtnis dient weniger der Speicherung, sondern vielmehr der Verarbeitung von Informationen und ist deshalb in komplexe Prozesse wie Lernen und Problemloesen eingebunden. Im Rahmen schizophrener Psychosen kommt es zu einer deutlichen Einschraenkung dieser Funktionen. Erwartungsgemaess zeigen sich unter Durchfuehrung eines Arbeitsgedaechtnisparadigmas Unterschiede in der zerebralen Aktivitaet, die jedoch bei den Erkrankten unter Therapie prinzipiell reversibel sind. Von Interesse sind auch Trainingseffekte bei Gesunden, wobei eine verminderte Aktivierung nach Training auf eine ''Oekonomisierung'' schliessen laesst. (orig.)

  10. Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature.

    Science.gov (United States)

    Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean

    2015-04-01

    There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.

  11. Origins of intersubject variability of blood oxygenation level dependent and arterial spin labeling fMRI: implications for quantification of brain activity.

    Science.gov (United States)

    Gaxiola-Valdez, Ismael; Goodyear, Bradley G

    2012-12-01

    Accurate localization of brain activity using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been challenged because of the large BOLD signal within distal veins. Arterial spin labeling (ASL) techniques offer greater sensitivity to the microvasculature but possess low temporal resolution and limited brain coverage. In this study, we show that the physiological origins of BOLD and ASL depend on whether percent change or statistical significance is being considered. For BOLD and ASL fMRI data collected during a simple unilateral hand movement task, we found that in the area of the contralateral motor cortex the centre of gravity (CoG) of the intersubject coefficient of variation (CV) of BOLD fMRI was near the brain surface for percent change in signal, whereas the CoG of the intersubject CV for Z-score was in close proximity of sites of brain activity for both BOLD and ASL. These findings suggest that intersubject variability of BOLD percent change is vascular in origin, whereas the origin of inter-subject variability of Z-score is neuronal for both BOLD and ASL. For longer duration tasks (12 s or greater), however, there was a significant correlation between BOLD and ASL percent change, which was not evident for short duration tasks (6 s). These findings suggest that analyses directly comparing percent change in BOLD signal between pre-defined regions of interest using short duration stimuli, as for example in event-related designs, may be heavily weighted by large-vessel responses rather than neuronal responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Blood oxygenation level dependent (BOLD). Renal imaging. Concepts and applications; Blood Oxygenation Level Dependent (BOLD). Bildgebung der Nieren. Konzepte und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Johanna C.; Haneder, Stefan; Schoenberg, Stefan O.; Michaely, Henrik J. [Heidelberg Univ. Medizinische Fakultaet Mannheim (Germany). Inst. fuer Klinische Radiologie und Nuklearmedizin; Mie, Moritz B.; Zoellner, Frank G. [Heidelberg Univ. Medizinische Fakultaet Mannheim (DE). Inst. fuer Computerunterstuetzte Klinische Medizin (CKM)

    2010-07-01

    Many renal diseases as well as several pharmacons cause a change in renal blood flow and/or renal oxygenation. The blood oxygenation level dependent (BOLD) imaging takes advantage of local field inhomogeneities and is based on a T2{sup *}-weighted sequence. BOLD is a non-invasive method allowing an estimation of the renal, particularly the medullary oxygenation, and an indirect measurement of blood flow without administration of contrast agents. Thus, effects of different drugs on the kidney and various renal diseases can be controlled and observed. This work will provide an overview of the studies carried out so far and identify ways how BOLD can be used in clinical studies. (orig.)

  13. Effects of glyceryl trinitrate and calcitonin-gene-related peptide on BOLD signal and arterial diameter –methodological studies by fMRI and MRA

    DEFF Research Database (Denmark)

    Asghar, Mohammed Sohail; Ashina, Messoud

    2013-01-01

    Over the last decades MRI has proved to be very useful in the field of drug development and discovery. Pharmacological MRI (phMRI) explores the interaction between brain physiology, neuronal activity and drugs[1]. The BOLD-signal is an indirect method to investigate brain activity by way...... of measuring task-related hemodynamic changes. Pharmacological substances that induce hemodynamic changes can therefore potentially alter the BOLD-signal that in turn falsely can be interpreted as changes in neuronal activity. It is therefore important to characterize possible effects of a pharmacological...... substance on the BOLD-response per see before that substance can be used in an fMRI experiment. Furthermore MR-angiography is useful in determining the vascular site-of-action of vasoactive substances....

  14. BOLD contrast fMRI of whole rodent tumour during air or carbogen breathing using echo-planar imaging at 1.5 T

    International Nuclear Information System (INIS)

    Landuyt, W.; Bogaert, W. van den; Lambin, P.; Hermans, R.; Bosmans, H.; Sunaert, S.; Beatse, E.; Farina, D.; Meijerink, M.; Zhang, H.; Marchal, G.

    2001-01-01

    The aim of this study was to evaluate the feasibility of functional MR imaging (fMRI) at 1.5 T, exploiting blood oxygenation level-dependent (BOLD) contrast, for detecting changes in whole-tumour oxygenation induced by carbogen (5% CO 2 +95% O 2 ) inhalation of the host. Adult WAG/Rij rats with rhabdomyosarcomas growing subcutaneously in the lower flank were imaged when tumours reached sizes between 1 and 11 cm 3 (n=12). Air and carbogen were alternatively supplied at 2 l/min using a snout mask. Imaging was done on a 1.5-T MR scanner using a T2*-weighted gradient-echo, echo-planar imaging (GE-EPI) sequence. Analysis of the whole-tumour EPI images was based on statistical parametric maps. Voxels with and without signal intensity changes (SIC) were recorded. Significance thresholds were set at p<0.05, corrected for multiple comparisons. In continuous air breathing condition, 3 of 12 tumours showed significant negative SIC and 1 tumour had a clear-cut positive SIC. The remaining tumours showed very little or no change. When switching to carbogen breathing, the SIC were significantly positive in 10 of 12 tumours. Negative SIC were present in 4 tumours, of which three were simultaneously characterised by positive SIC. The overall analysis indicated that 6 of the 12 tumours could be considered as strong positive responders to carbogen. Our research demonstrates the applicability of fMRI GE-EPI at 1.5 T to study whole-tumour oxygenation non-invasively. The observed negative SIC during air condition may reflect the presence of transient hypoxia during these measurements. Selection of tumours on the basis of their individual response to carbogen is possible, indicating a role of such non-invasive measurements for using tailor-made treatments. (orig.)

  15. Real-time fMRI neurofeedback of the mediodorsal and anterior thalamus enhances correlation between thalamic BOLD activity and alpha EEG rhythm.

    Science.gov (United States)

    Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Wong, Chung Ki; Bodurka, Jerzy

    2018-02-01

    Real-time fMRI neurofeedback (rtfMRI-nf) with simultaneous EEG allows volitional modulation of BOLD activity of target brain regions and investigation of related electrophysiological activity. We applied this approach to study correlations between thalamic BOLD activity and alpha EEG rhythm. Healthy volunteers in the experimental group (EG, n = 15) learned to upregulate BOLD activity of the target region consisting of the mediodorsal (MD) and anterior (AN) thalamic nuclei using rtfMRI-nf during retrieval of happy autobiographical memories. Healthy subjects in the control group (CG, n = 14) were provided with a sham feedback. The EG participants were able to significantly increase BOLD activities of the MD and AN. Functional connectivity between the MD and the inferior precuneus was significantly enhanced during the rtfMRI-nf task. Average individual changes in the occipital alpha EEG power significantly correlated with the average MD BOLD activity levels for the EG. Temporal correlations between the occipital alpha EEG power and BOLD activities of the MD and AN were significantly enhanced, during the rtfMRI-nf task, for the EG compared to the CG. Temporal correlations with the alpha power were also significantly enhanced for the posterior nodes of the default mode network, including the precuneus/posterior cingulate, and for the dorsal striatum. Our findings suggest that the temporal correlation between the MD BOLD activity and posterior alpha EEG power is modulated by the interaction between the MD and the inferior precuneus, reflected in their functional connectivity. Our results demonstrate the potential of the rtfMRI-nf with simultaneous EEG for noninvasive neuromodulation studies of human brain function. © 2017 Wiley Periodicals, Inc.

  16. Comparison of methods for detecting nondeterministic BOLD fluctuation in fMRI.

    Science.gov (United States)

    Kiviniemi, Vesa; Kantola, Juha-Heikki; Jauhiainen, Jukka; Tervonen, Osmo

    2004-02-01

    Functional MR imaging (fMRI) has been used in detecting neuronal activation and intrinsic blood flow fluctuations in the brain cortex. This article is aimed for comparing the methods for analyzing the nondeterministic flow fluctuations. Fast Fourier Transformation (FFT), cross correlation (CC), spatial principal component analysis (sPCA), and independent component analysis (sICA) were compared. 15 subjects were imaged at 1.5 T. Three quantitative measures were compared: (1) The number of subjects with identifiable fluctuation, (2) the volume, and (3) mean correlation coefficient (MCC) of the detected voxels. The focusing on cortical structures and the overall usability were qualitatively assessed. sICA was spatially most accurate but time consuming, robust, and detected voxels with high temporal synchrony. The CC and FFT were fast suiting primary screening. The CC detected highest temporal synchrony but the subjective detection for reference vector produced excess variance of the detected volumes. The FFT and sPCA were not spatially accurate and did not detect adequate temporal synchrony of the voxels.

  17. Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery.

    Science.gov (United States)

    Plichta, Michael M; Schwarz, Adam J; Grimm, Oliver; Morgen, Katrin; Mier, Daniela; Haddad, Leila; Gerdes, Antje B M; Sauer, Carina; Tost, Heike; Esslinger, Christine; Colman, Peter; Wilson, Frederick; Kirsch, Peter; Meyer-Lindenberg, Andreas

    2012-04-15

    Even more than in cognitive research applications, moving fMRI to the clinic and the drug development process requires the generation of stable and reliable signal changes. The performance characteristics of the fMRI paradigm constrain experimental power and may require different study designs (e.g., crossover vs. parallel groups), yet fMRI reliability characteristics can be strongly dependent on the nature of the fMRI task. The present study investigated both within-subject and group-level reliability of a combined three-task fMRI battery targeting three systems of wide applicability in clinical and cognitive neuroscience: an emotional (face matching), a motivational (monetary reward anticipation) and a cognitive (n-back working memory) task. A group of 25 young, healthy volunteers were scanned twice on a 3T MRI scanner with a mean test-retest interval of 14.6 days. FMRI reliability was quantified using the intraclass correlation coefficient (ICC) applied at three different levels ranging from a global to a localized and fine spatial scale: (1) reliability of group-level activation maps over the whole brain and within targeted regions of interest (ROIs); (2) within-subject reliability of ROI-mean amplitudes and (3) within-subject reliability of individual voxels in the target ROIs. Results showed robust evoked activation of all three tasks in their respective target regions (emotional task=amygdala; motivational task=ventral striatum; cognitive task=right dorsolateral prefrontal cortex and parietal cortices) with high effect sizes (ES) of ROI-mean summary values (ES=1.11-1.44 for the faces task, 0.96-1.43 for the reward task, 0.83-2.58 for the n-back task). Reliability of group level activation was excellent for all three tasks with ICCs of 0.89-0.98 at the whole brain level and 0.66-0.97 within target ROIs. Within-subject reliability of ROI-mean amplitudes across sessions was fair to good for the reward task (ICCs=0.56-0.62) and, dependent on the particular ROI

  18. BOLD fMRI of C-Fiber Mediated Nociceptive Processing in Mouse Brain in Response to Thermal Stimulation of the Forepaws.

    Directory of Open Access Journals (Sweden)

    Simone C Bosshard

    Full Text Available Functional magnetic resonance imaging (fMRI in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers.

  19. Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients

    DEFF Research Database (Denmark)

    Garza-Villarreal, Eduardo A; Jiang, Zhiguo; Vuust, Peter

    2015-01-01

    , correlated to the analgesia reports. The post-hoc seed-based functional connectivity analysis of the lAnG showed found higher connectivity after listening to music with right dorsolateral prefrontal cortex (rdlPFC), the left caudate (lCau), and decreased connectivity with right anterior cingulate cortex (r......Music reduces pain in fibromyalgia (FM), a chronic pain disease, but the functional neural correlates of music-induced analgesia (MIA) are still largely unknown. We recruited FM patients (n = 22) who listened to their preferred relaxing music and an auditory control (pink noise) for 5 min without...... external noise from fMRI image acquisition. Resting state fMRI was then acquired before and after the music and control conditions. A significant increase in the amplitude of low frequency fluctuations of the BOLD signal was evident in the left angular gyrus (lAnG) after listening to music, which in turn...

  20. Bold-Independent Computational Entropy Assesses Functional Donut-Like Structures in Brain fMRI Images.

    Science.gov (United States)

    Peters, James F; Ramanna, Sheela; Tozzi, Arturo; İnan, Ebubekir

    2017-01-01

    We introduce a novel method for the measurement of information level in fMRI (functional Magnetic Resonance Imaging) neural data sets, based on image subdivision in small polygons equipped with different entropic content. We show how this method, called maximal nucleus clustering (MNC), is a novel, fast and inexpensive image-analysis technique, independent from the standard blood-oxygen-level dependent signals. MNC facilitates the objective detection of hidden temporal patterns of entropy/information in zones of fMRI images generally not taken into account by the subjective standpoint of the observer. This approach befits the geometric character of fMRIs. The main purpose of this study is to provide a computable framework for fMRI that not only facilitates analyses, but also provides an easily decipherable visualization of structures. This framework commands attention because it is easily implemented using conventional software systems. In order to evaluate the potential applications of MNC, we looked for the presence of a fourth dimension's distinctive hallmarks in a temporal sequence of 2D images taken during spontaneous brain activity. Indeed, recent findings suggest that several brain activities, such as mind-wandering and memory retrieval, might take place in the functional space of a four dimensional hypersphere, which is a double donut-like structure undetectable in the usual three dimensions. We found that the Rényi entropy is higher in MNC areas than in the surrounding ones, and that these temporal patterns closely resemble the trajectories predicted by the possible presence of a hypersphere in the brain.

  1. Orientation-specific contextual modulation of the fMRI BOLD response to luminance and chromatic gratings in human visual cortex.

    Science.gov (United States)

    McDonald, J Scott; Seymour, Kiley J; Schira, Mark M; Spehar, Branka; Clifford, Colin W G

    2009-05-01

    The responses of orientation-selective neurons in primate visual cortex can be profoundly affected by the presence and orientation of stimuli falling outside the classical receptive field. Our perception of the orientation of a line or grating also depends upon the context in which it is presented. For example, the perceived orientation of a grating embedded in a surround tends to be repelled from the predominant orientation of the surround. Here, we used fMRI to investigate the basis of orientation-specific surround effects in five functionally-defined regions of visual cortex: V1, V2, V3, V3A/LO1 and hV4. Test stimuli were luminance-modulated and isoluminant gratings that produced responses similar in magnitude. Less BOLD activation was evident in response to gratings with parallel versus orthogonal surrounds across all the regions of visual cortex investigated. When an isoluminant test grating was surrounded by a luminance-modulated inducer, the degree of orientation-specific contextual modulation was no larger for extrastriate areas than for V1, suggesting that the observed effects might originate entirely in V1. However, more orientation-specific modulation was evident in extrastriate cortex when both test and inducer were luminance-modulated gratings than when the test was isoluminant; this difference was significant in area V3. We suggest that the pattern of results in extrastriate cortex may reflect a refinement of the orientation-selectivity of surround suppression specific to the colour of the surround or, alternatively, processes underlying the segmentation of test and inducer by spatial phase or orientation when no colour cue is available.

  2. Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS).

    Science.gov (United States)

    Frederick, Blaise deB; Nickerson, Lisa D; Tong, Yunjie

    2012-04-15

    Confounding noise in BOLD fMRI data arises primarily from fluctuations in blood flow and oxygenation due to cardiac and respiratory effects, spontaneous low frequency oscillations (LFO) in arterial pressure, and non-task related neural activity. Cardiac noise is particularly problematic, as the low sampling frequency of BOLD fMRI ensures that these effects are aliased in recorded data. Various methods have been proposed to estimate the noise signal through measurement and transformation of the cardiac and respiratory waveforms (e.g. RETROICOR and respiration volume per time (RVT)) and model-free estimation of noise variance through examination of spatial and temporal patterns. We have previously demonstrated that by applying a voxel-specific time delay to concurrently acquired near infrared spectroscopy (NIRS) data, we can generate regressors that reflect systemic blood flow and oxygenation fluctuations effects. Here, we apply this method to the task of removing physiological noise from BOLD data. We compare the efficacy of noise removal using various sets of noise regressors generated from NIRS data, and also compare the noise removal to RETROICOR+RVT. We compare the results of resting state analyses using the original and noise filtered data, and we evaluate the bias for the different noise filtration methods by computing null distributions from the resting data and comparing them with the expected theoretical distributions. Using the best set of processing choices, six NIRS-generated regressors with voxel-specific time delays explain a median of 10.5% of the variance throughout the brain, with the highest reductions being seen in gray matter. By comparison, the nine RETROICOR+RVT regressors together explain a median of 6.8% of the variance in the BOLD data. Detection of resting state networks was enhanced with NIRS denoising, and there were no appreciable differences in the bias of the different techniques. Physiological noise regressors generated using

  3. Ghrelin modulates the fMRI BOLD response of homeostatic and hedonic brain centers regulating energy balance in the rat.

    Directory of Open Access Journals (Sweden)

    Miklós Sárvári

    Full Text Available The orexigenic gut-brain peptide, ghrelin and its G-protein coupled receptor, the growth hormone secretagogue receptor 1a (GHS-R1A are pivotal regulators of hypothalamic feeding centers and reward processing neuronal circuits of the brain. These systems operate in a cooperative manner and receive a wide array of neuronal hormone/transmitter messages and metabolic signals. Functional magnetic resonance imaging was employed in the current study to map BOLD responses to ghrelin in different brain regions with special reference on homeostatic and hedonic regulatory centers of energy balance. Experimental groups involved male, ovariectomized female and ovariectomized estradiol-replaced rats. Putative modulation of ghrelin signaling by endocannabinoids was also studied. Ghrelin-evoked effects were calculated as mean of the BOLD responses 30 minutes after administration. In the male rat, ghrelin evoked a slowly decreasing BOLD response in all studied regions of interest (ROI within the limbic system. This effect was antagonized by pretreatment with GHS-R1A antagonist JMV2959. The comparison of ghrelin effects in the presence or absence of JMV2959 in individual ROIs revealed significant changes in the prefrontal cortex, nucleus accumbens of the telencephalon, and also within hypothalamic centers like the lateral hypothalamus, ventromedial nucleus, paraventricular nucleus and suprachiasmatic nucleus. In the female rat, the ghrelin effects were almost identical to those observed in males. Ovariectomy and chronic estradiol replacement had no effect on the BOLD response. Inhibition of the endocannabinoid signaling by rimonabant significantly attenuated the response of the nucleus accumbens and septum. In summary, ghrelin can modulate hypothalamic and mesolimbic structures controlling energy balance in both sexes. The endocannabinoid signaling system contributes to the manifestation of ghrelin's BOLD effect in a region specific manner. In females, the

  4. Quantitative comparisons on hand motor functional areas determined by resting state and task BOLD fMRI and anatomical MRI for pre-surgical planning of patients with brain tumors

    Directory of Open Access Journals (Sweden)

    Bob L. Hou

    2016-01-01

    Full Text Available For pre-surgical planning we present quantitative comparison of the location of the hand motor functional area determined by right hand finger tapping BOLD fMRI, resting state BOLD fMRI, and anatomically using high resolution T1 weighted images. Data were obtained on 10 healthy subjects and 25 patients with left sided brain tumors. Our results show that there are important differences in the locations (i.e., >20 mm of the determined hand motor voxels by these three MR imaging methods. This can have significant effect on the pre-surgical planning of these patients depending on the modality used. In 13 of the 25 cases (i.e., 52% the distances between the task-determined and the rs-fMRI determined hand areas were more than 20 mm; in 13 of 25 cases (i.e., 52% the distances between the task-determined and anatomically determined hand areas were >20 mm; and in 16 of 25 cases (i.e., 64% the distances between the rs-fMRI determined and anatomically determined hand areas were more than 20 mm. In just three cases, the distances determined by all three modalities were within 20 mm of each other. The differences in the location or fingerprint of the hand motor areas, as determined by these three MR methods result from the different underlying mechanisms of these three modalities and possibly the effects of tumors on these modalities.

  5. Detection of Acute Tubular Necrosis Using Blood Oxygenation Level-Dependent (BOLD MRI

    Directory of Open Access Journals (Sweden)

    Frederic Bauer

    2017-12-01

    Full Text Available Background/Aims: To date, there is no imaging technique to assess tubular function in vivo. Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI measures tissue oxygenation based on the transverse relaxation rate (R2*. The present study investigates whether BOLD MRI can assess tubular function using a tubule-specific pharmacological maneuver. Methods: Cross sectional study with 28 participants including 9 subjects with ATN-induced acute kidney injury (AKI, 9 healthy controls, and 10 subjects with nephron sparing tumor resection (NSS with clamping of the renal artery serving as a model of ischemia/reperfusion (I/R-induced subclinical ATN (median clamping time 15 min, no significant decrease of eGFR, p=0.14. BOLD MRI was performed before and 5, 7, and 10 min after intravenous administration of 40 mg furosemide. Results: Urinary neutrophil gelatinase-associated lipocalin was significantly higher in ATN-induced AKI and NSS subjects than in healthy controls (p=0.03 and p=0.01, respectively. Before administration of furosemide, absolute medullary R2*, cortical R2*, and medullary/cortical R2* ratio did not significantly differ between ATN-induced AKI vs. healthy controls and between NSS-I/R vs. contralateral healthy kidneys (p>0.05 each. Furosemide led to a significant decrease in the medullary and cortical R2* of healthy subjects and NSS contralateral kidneys (p<0.05 each, whereas there was no significant change of R2* in ATN-induced AKI and the NSS-I/R kidneys (p>0.05 each. Conclusion: BOLD-MRI is able to detect even mild tubular injury but necessitates a tubule-specific pharmacological maneuver, e.g. blocking the Na+-K+-2Cl- transporter by furosemide.

  6. Comparison of semantic and episodic memory BOLD fMRI activation in predicting cognitive decline in older adults.

    Science.gov (United States)

    Hantke, Nathan; Nielson, Kristy A; Woodard, John L; Breting, Leslie M Guidotti; Butts, Alissa; Seidenberg, Michael; Carson Smith, J; Durgerian, Sally; Lancaster, Melissa; Matthews, Monica; Sugarman, Michael A; Rao, Stephen M

    2013-01-01

    Previous studies suggest that task-activated functional magnetic resonance imaging (fMRI) can predict future cognitive decline among healthy older adults. The present fMRI study examined the relative sensitivity of semantic memory (SM) versus episodic memory (EM) activation tasks for predicting cognitive decline. Seventy-eight cognitively intact elders underwent neuropsychological testing at entry and after an 18-month interval, with participants classified as cognitively "Stable" or "Declining" based on ≥ 1.0 SD decline in performance. Baseline fMRI scanning involved SM (famous name discrimination) and EM (name recognition) tasks. SM and EM fMRI activation, along with Apolipoprotein E (APOE) ε4 status, served as predictors of cognitive outcome using a logistic regression analysis. Twenty-seven (34.6%) participants were classified as Declining and 51 (65.4%) as Stable. APOE ε4 status alone significantly predicted cognitive decline (R(2) = .106; C index = .642). Addition of SM activation significantly improved prediction accuracy (R(2) = .285; C index = .787), whereas the addition of EM did not (R(2) = .212; C index = .711). In combination with APOE status, SM task activation predicts future cognitive decline better than EM activation. These results have implications for use of fMRI in prevention clinical trials involving the identification of persons at-risk for age-associated memory loss and Alzheimer's disease.

  7. Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Eduardo A. Garza-Villarreal

    2015-07-01

    Full Text Available Music reduces pain in fibromyalgia (FM, a chronic pain disease, but the functional neural correlates of music-induced analgesia are still largely unknown. We recruited FM patients (n = 22 who listened to their preferred relaxing music and an auditory control (pink noise for 5 minutes without external noise from fMRI image acquisition. Resting state fMRI was then acquired before and after the music and control conditions. A significant increase in the amplitude of low frequency fluctuations of the BOLD signal was evident in the left angular gyrus after listening to music, which in turn, correlated to the analgesia reports. The post-hoc seed-based functional connectivity analysis of the left angular gyrus showed found higher connectivity after listening to music with right dorsolateral prefrontal cortex, the left caudate, and decreased connectivity with right anterior cingulate cortex, right supplementary motor area, precuneus and right precentral gyrus. Pain intensity analgesia was correlated (r = .61 to the connectivity of the left angular gyrus with the right precentral gyrus. Our results show that music-induced analgesia in FM is related to top-down regulation of the pain modulatory network by the default-mode network.

  8. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates.

    Directory of Open Access Journals (Sweden)

    Abu Bakar Ali Asad

    Full Text Available Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored.Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8. BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail.Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the 'pain matrix', including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8, while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures.These findings provide insights into the specific brain regions involved with aversive, 'pain-like', responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate

  9. Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study

    DEFF Research Database (Denmark)

    Rostrup, Egill; Law, I; Blinkenberg, M

    2000-01-01

    Previous fMRI studies of the cerebrovascular response to hypercapnia have shown signal change in cerebral gray matter, but not in white matter. Therefore, the objective of the present study was to compare (15)O PET and T *(2)-weighted MRI during a hypercapnic challenge. The measurements were perf...

  10. Estimation of the neuronal activation using fMRI data: An observer-based approach

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Arabi, Hossein; Tadjine, Mohamed; Zayane, Chadia

    2013-01-01

    This paper deals with the estimation of the neuronal activation and some unmeasured physiological information using the Blood Oxygenation Level Dependent (BOLD) signal measured using functional Magnetic Resonance Imaging (fMRI). We propose to use

  11. The quest for EEG power band correlation with ICA derived fMRI resting state networks

    NARCIS (Netherlands)

    Meyer, M.C.; Janssen, R.J.; van Oort, E.S.B.; Beckmann, Christian; Barth, M.

    2013-01-01

    The neuronal underpinnings of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) resting state networks (RSNs) are still unclear. To investigate the underlying mechanisms, specifically the relation to the electrophysiological signal, we used simultaneous recordings of

  12. Comparison of fMRI BOLD response patterns by electrical stimulation of the ventroposterior complex and medial thalamus of the rat.

    Directory of Open Access Journals (Sweden)

    Pai-Feng Yang

    Full Text Available The objective of this study was to compare the functional connectivity of the lateral and medial thalamocortical pain pathways by investigating the blood oxygen level-dependent (BOLD activation patterns in the forebrain elicited by direct electrical stimulation of the ventroposterior (VP and medial (MT thalamus. An MRI-compatible stimulation electrode was implanted in the VP or MT of α-chloralose-anesthetized rats. Electrical stimulation was applied to the VP or MT at various intensities (50 µA to 300 µA and frequencies (1 Hz to 12 Hz. BOLD responses were analyzed in the ipsilateral forelimb region of the primary somatosensory cortex (iS1FL after VP stimulation and in the ipsilateral cingulate cortex (iCC after MT stimulation. When stimulating the VP, the strongest activation occurred at 3 Hz. The stimulation intensity threshold was 50 µA and the response rapidly peaked at 100 µA. When stimulating the MT, The optimal frequency for stimulation was 9 Hz or 12 Hz, the stimulation intensity threshold was 100 µA and we observed a graded increase in the BOLD response following the application of higher intensity stimuli. We also evaluated c-Fos expression following the application of a 200-µA stimulus. Ventroposterior thalamic stimulation elicited c-Fos-positivity in few cells in the iS1FL and caudate putamen (iCPu. Medial thalamic stimulation, however, produced numerous c-Fos-positive cells in the iCC and iCPu. The differential BOLD responses and c-Fos expressions elicited by VP and MT stimulation indicate differences in stimulus-response properties of the medial and lateral thalamic pain pathways.

  13. Tactile and non-tactile sensory paradigms for fMRI and neurophysiologic studies in rodents

    OpenAIRE

    Sanganahalli, Basavaraju G.; Bailey, Christopher J.; Herman, Peter; Hyder, Fahmeed

    2009-01-01

    Functional magnetic resonance imaging (fMRI) has become a popular functional imaging tool for human studies. Future diagnostic use of fMRI depends, however, on a suitable neurophysiologic interpretation of the blood oxygenation level dependent (BOLD) signal change. This particular goal is best achieved in animal models primarily due to the invasive nature of other methods used and/or pharmacological agents applied to probe different nuances of neuronal (and glial) activity coupled to the BOLD...

  14. Differential Localization of Pain-Related and Pain-Unrelated Neural Responses for Acupuncture at BL60 Using BOLD fMRI

    Directory of Open Access Journals (Sweden)

    Na-Hee Kim

    2013-01-01

    Full Text Available The objective of this study was to differentiate between pain-related and pain-unrelated neural responses of acupuncture at BL60 to investigate the specific effects of acupuncture. A total of 19 healthy volunteers were evaluated. fMRI was performed with sham or verum acupuncture stimulation at the left BL60 before and after local anesthesia. To investigate the relative BOLD signal effect for each session, a one-sample t-test was performed for individual contrast maps, and a paired t-test to investigate the differences between the pre- and post-anesthetic signal effects. Regarding verum acupuncture, areas that were more activated before local anesthesia included the superior, middle, and medial frontal gyri, inferior parietal lobule, superior temporal gyrus, thalamus, middle temporal gyrus, cingulate gyrus, culmen, and cerebellar tonsil. The postcentral gyrus was more deactivated before local anesthesia. After local anesthesia, the middle occipital gyrus, inferior temporal gyrus, postcentral gyrus, precuneus, superior parietal lobule, and declive were deactivated. Pre-anesthetic verum acupuncture at BL60 activated areas of vision and pain transmission. Post-anesthetic verum acupuncture deactivated brain areas of visual function, which is considered to be a pain-unrelated acupuncture response. It indicates that specific effects of acupoint BL60 are to control vision sense as used in the clinical setting.

  15. Application of fMRI to obesity research: differences in reward pathway activation measured with fMRI BOLD during visual presentation of high and low calorie foods

    Science.gov (United States)

    Tsao, Sinchai; Adam, Tanja C.; Goran, Michael I.; Singh, Manbir

    2012-03-01

    The factors behind the neural mechanisms that motivate food choice and obesity are not well known. Furthermore, it is not known when these neural mechanisms develop and how they are influenced by both genetic and environmental factors. This study uses fMRI together with clinical data to shed light on the aforementioned questions by investigating how appetite-related activation in the brain changes with low versus high caloric foods in pre-pubescent girls. Previous studies have shown that obese adults have less striatal D2 receptors and thus reduced Dopamine (DA) signaling leading to the reward-deficit theory of obesity. However, overeating in itself reduces D2 receptor density, D2 sensitivity and thus reward sensitivity. The results of this study will show how early these neural mechanisms develop and what effect the drastic endocrinological changes during puberty has on these mechanisms. Our preliminary results showed increased activations in the Putamen, Insula, Thalamus and Hippocampus when looking at activations where High Calorie > Low Calorie. When comparing High Calorie > Control and Low Calorie > Control, the High > Control test showed increased significant activation in the frontal lobe. The Low > Control also yielded significant activation in the Left and Right Fusiform Gyrus, which did not appear in the High > Control test. These results indicate that the reward pathway activations previously shown in post-puberty and adults are present in pre-pubescent teens. These results may suggest that some of the preferential neural mechanisms of reward are already present pre-puberty.

  16. Comparing consistency of R2* and T2*-weighted BOLD analysis of resting state fetal fMRI

    Science.gov (United States)

    Seshamani, Sharmishtaa; Blazejewska, Anna I.; Gatenby, Christopher; Mckown, Susan; Caucutt, Jason; Dighe, Manjiri; Studholme, Colin

    2015-03-01

    Understanding when and how resting state brain functional activity begins in the human brain is an increasing area of interest in both basic neuroscience and in the clinical evaluation of the brain during pregnancy and after premature birth. Although fMRI studies have been carried out on pregnant women since the 1990's, reliable mapping of brain function in utero is an extremely challenging problem due to the unconstrained fetal head motion. Recent studies have employed scrubbing to exclude parts of the time series and whole subjects from studies in order to control the confounds of motion. Fundamentally, even after correction of the location of signals due to motion, signal intensity variations are a fundamental limitation, due to coil sensitivity and spin history effects. An alternative technique is to use a more parametric MRI signal derived from multiple echoes that provides a level of independence from basic MRI signal variation. Here we examine the use of R2* mapping combined with slice based multi echo geometric distortion correction for in-utero studies. The challenges for R2* mapping arise from the relatively low signal strength of in-utero data. In this paper we focus on comparing activation detection in-utero using T2W and R2* approaches. We make use a subset of studies with relatively limited motion to compare the activation patterns without the additional confound of significant motion. Results at different gestational ages indicate comparable agreement in many activation patterns when limited motion is present, and the detection of some additional networks in the R2* data, not seen in the T2W results.

  17. Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

    Directory of Open Access Journals (Sweden)

    Golestan karami

    2013-03-01

    Full Text Available Introduction Echo-planar imaging (EPI is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that causes more geometric distortion in phase encoding direction. This inhomogeneity is induced mainly by the magnetic susceptibility differences between various structures within the object placed inside the scanner, often at air-tissue or bone-tissue interfaces. Methods of reducing EPI distortion are mainly based on decreasing steps of the phase encoding. Reducing steps of phase encoding can be applied by reducing field of view, slice thickness, and/or the use of parallel acquisition technique. Materials and Methods We obtained three data acquisitions with different FOVs including: conventional low resolution, conventional high resolution, and zoomed high resolution EPIs. Moreover we used SENSE technique for phase encoding reduction. All experiments were carried out on three Tesla scanners (Siemens, TIM, and Germany equipped with 12 channel head coil. Ten subjects participated in the experiments. Results The data were processed by FSL software and were evaluated by ANOVA. Distortion was assessed by obtaining low displacement voxels map, and calculated from a field map image. Conclusion We showed that image distortion can be reduced by decreasing slice thickness and phase encoding steps. Distortion reduction in zoomed technique resulted the lowest level, but at the cost of signal-to-noise loss. Moreover, the SENSE technique was shown to decrease the amount of image distortion, efficiently.

  18. Multi-regional investigation of the relationship between functional MRI blood oxygenation level dependent (BOLD activation and GABA concentration.

    Directory of Open Access Journals (Sweden)

    Ashley D Harris

    Full Text Available Several recent studies have reported an inter-individual correlation between regional GABA concentration, as measured by MRS, and the amplitude of the functional blood oxygenation level dependent (BOLD response in the same region. In this study, we set out to investigate whether this coupling generalizes across cortex. In 18 healthy participants, we performed edited MRS measurements of GABA and BOLD-fMRI experiments using regionally related activation paradigms. Regions and tasks were the: occipital cortex with a visual grating stimulus; auditory cortex with a white noise stimulus; sensorimotor cortex with a finger-tapping task; frontal eye field with a saccade task; and dorsolateral prefrontal cortex with a working memory task. In contrast to the prior literature, no correlation between GABA concentration and BOLD activation was detected in any region. The origin of this discrepancy is not clear. Subtle differences in study design or insufficient power may cause differing results; these and other potential reasons for the discrepant results are discussed. This negative result, although it should be interpreted with caution, has a larger sample size than prior positive results, and suggests that the relationship between GABA and the BOLD response may be more complex than previously thought.

  19. Analysis of Time and Space Invariance of BOLD Responses in the Rat Visual System

    DEFF Research Database (Denmark)

    Bailey, Christopher; Sanganahalli, Basavaraju G; Herman, Peter

    2012-01-01

    Neuroimaging studies of functional magnetic resonance imaging (fMRI) and electrophysiology provide the linkage between neural activity and the blood oxygenation level-dependent (BOLD) response. Here, BOLD responses to light flashes were imaged at 11.7T and compared with neural recordings from...... for general linear modeling (GLM) of BOLD responses. Light flashes induced high magnitude neural/BOLD responses reproducibly from both regions. However, neural/BOLD responses from SC and V1 were markedly different. SC signals followed the boxcar shape of the stimulation paradigm at all flash rates, whereas V1...... signals were characterized by onset/offset transients that exhibited different flash rate dependencies. We find that IRF(SC) is generally time-invariant across wider flash rate range compared with IRF(V1), whereas IRF(SC) and IRF(V1) are both space invariant. These results illustrate the importance...

  20. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.

    Science.gov (United States)

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task. Copyright © 2016 the American Physiological Society.

  1. Generate the scale-free brain music from BOLD signals.

    Science.gov (United States)

    Lu, Jing; Guo, Sijia; Chen, Mingming; Wang, Weixia; Yang, Hua; Guo, Daqing; Yao, Dezhong

    2018-01-01

    Many methods have been developed to translate a human electroencephalogram (EEG) into music. In addition to EEG, functional magnetic resonance imaging (fMRI) is another method used to study the brain and can reflect physiological processes. In 2012, we established a method to use simultaneously recorded fMRI and EEG signals to produce EEG-fMRI music, which represents a step toward scale-free brain music. In this study, we used a neural mass model, the Jansen-Rit model, to simulate activity in several cortical brain regions. The interactions between different brain regions were represented by the average normalized diffusion tensor imaging (DTI) structural connectivity with a coupling coefficient that modulated the coupling strength. Seventy-eight brain regions were adopted from the Automated Anatomical Labeling (AAL) template. Furthermore, we used the Balloon-Windkessel hemodynamic model to transform neural activity into a blood-oxygen-level dependent (BOLD) signal. Because the fMRI BOLD signal changes slowly, we used a sampling rate of 250 Hz to produce the temporal series for music generation. Then, the BOLD music was generated for each region using these simulated BOLD signals. Because the BOLD signal is scale free, these music pieces were also scale free, which is similar to classic music. Here, to simulate the case of an epileptic patient, we changed the parameter that determined the amplitude of the excitatory postsynaptic potential (EPSP) in the neural mass model. Finally, we obtained BOLD music for healthy and epileptic patients. The differences in levels of arousal between the 2 pieces of music may provide a potential tool for discriminating the different populations if the differences can be confirmed by more real data. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  2. fMRI correlates of object-based attentional facilitation versus suppression of irrelevant stimuli, dependent on global grouping and endogenous cueing.

    Directory of Open Access Journals (Sweden)

    Elliot D Freeman

    2014-02-01

    Full Text Available Theories of object-based attention often make two assumptions: that attentional resources are facilitatory, and that they spread automatically within grouped objects. Consistent with this, ignored visual stimuli can be easier to process, or more distracting, when perceptually grouped with an attended target stimulus. But in past studies, the ignored stimuli often shared potentially relevant features or locations with the target. In this fMRI study, we measured the effects of attention and grouping on Blood Oxygenation Level Dependent (BOLD responses in the human brain to entirely task-irrelevant events.Two checkerboards were displayed each in opposite hemifields, while participants responded to check-size changes in one pre-cued hemifield, which varied between blocks. Grouping (or segmentation between hemifields was manipulated between blocks, using common (versus distinct motion cues. Task-irrelevant transient events were introduced by randomly changing the colour of either checkerboard, attended or ignored, at unpredictable intervals. The above assumptions predict heightened BOLD signals for irrelevant events in attended versus ignored hemifields for ungrouped contexts, but less such attentional modulation under grouping, due to automatic spreading of facilitation across hemifields. We found the opposite pattern, in primary visual cortex. For ungrouped stimuli, BOLD signals associated with task-irrelevant changes were lower, not higher, in the attended versus ignored hemifield; furthermore, attentional modulation was not reduced but actually inverted under grouping, with higher signals for events in the attended versus ignored hemifield.

  3. Area-specific information processing in prefrontal cortex during a probabilistic inference task: a multivariate fMRI BOLD time series analysis.

    Directory of Open Access Journals (Sweden)

    Charmaine Demanuele

    Full Text Available Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC, anterior cingulate (ACC and orbitofrontal (OFC cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a "Jumping to Conclusions" probabilistic reasoning task.We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages.Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information, while for prefrontal areas a wider multivariate pattern of activity was maximally informative.We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns measured by fMRI. This method can be a valuable

  4. Resting-state FMRI confounds and cleanup

    Science.gov (United States)

    Murphy, Kevin; Birn, Rasmus M.; Bandettini, Peter A.

    2013-01-01

    The goal of resting-state functional magnetic resonance imaging (FMRI) is to investigate the brain’s functional connections by using the temporal similarity between blood oxygenation level dependent (BOLD) signals in different regions of the brain “at rest” as an indicator of synchronous neural activity. Since this measure relies on the temporal correlation of FMRI signal changes between different parts of the brain, any non-neural activity-related process that affects the signals will influence the measure of functional connectivity, yielding spurious results. To understand the sources of these resting-state FMRI confounds, this article describes the origins of the BOLD signal in terms of MR physics and cerebral physiology. Potential confounds arising from motion, cardiac and respiratory cycles, arterial CO2 concentration, blood pressure/cerebral autoregulation, and vasomotion are discussed. Two classes of techniques to remove confounds from resting-state BOLD time series are reviewed: 1) those utilising external recordings of physiology and 2) data-based cleanup methods that only use the resting-state FMRI data itself. Further methods that remove noise from functional connectivity measures at a group level are also discussed. For successful interpretation of resting-state FMRI comparisons and results, noise cleanup is an often over-looked but essential step in the analysis pipeline. PMID:23571418

  5. Caffeine reduces resting-state BOLD functional connectivity in the motor cortex.

    Science.gov (United States)

    Rack-Gomer, Anna Leigh; Liau, Joy; Liu, Thomas T

    2009-05-15

    In resting-state functional magnetic resonance imaging (fMRI), correlations between spontaneous low-frequency fluctuations in the blood oxygenation level dependent (BOLD) signal are used to assess functional connectivity between different brain regions. Changes in resting-state BOLD connectivity measures are typically interpreted as changes in coherent neural activity across spatially distinct brain regions. However, this interpretation can be complicated by the complex dependence of the BOLD signal on both neural and vascular factors. For example, prior studies have shown that vasoactive agents that alter baseline cerebral blood flow, such as caffeine and carbon dioxide, can significantly alter the amplitude and dynamics of the task-related BOLD response. In this study, we examined the effect of caffeine (200 mg dose) on resting-state BOLD connectivity in the motor cortex across a sample of healthy young subjects (N=9). We found that caffeine significantly (pcaffeine. These results suggest that caffeine usage should be carefully considered in the design and interpretation of resting-state BOLD fMRI studies.

  6. Age-Dependent Mesial Temporal Lobe Lateralization in Language FMRI

    Science.gov (United States)

    Sepeta, Leigh N.; Berl, Madison M.; Wilke, Marko; You, Xiaozhen; Mehta, Meera; Xu, Benjamin; Inati, Sara; Dustin, Irene; Khan, Omar; Austermuehle, Alison; Theodore, William H.; Gaillard, William D.

    2015-01-01

    Objective FMRI activation of the mesial temporal lobe (MTL) may be important for epilepsy surgical planning. We examined MTL activation and lateralization during language fMRI in children and adults with focal epilepsy. Methods 142 controls and patients with left hemisphere focal epilepsy (Pediatric: epilepsy, n = 17, mean age = 9.9 ± 2.0; controls, n = 48; mean age = 9.1 ± 2.6; Adult: epilepsy, n = 20, mean age = 26.7 ± 5.8; controls, n = 57, mean age = 26.2 ± 7.5) underwent 3T fMRI using a language task (auditory description decision task). Image processing and analyses were conducted in SPM8; ROIs included MTL, Broca’s area, and Wernicke’s area. We assessed group and individual MTL activation, and examined degree of lateralization. Results Patients and controls (pediatric and adult) demonstrated group and individual MTL activation during language fMRI. MTL activation was left lateralized for adults but less so in children (p’s < 0.005). Patients did not differ from controls in either age group. Stronger left-lateralized MTL activation was related to older age (p = 0.02). Language lateralization (Broca’s and Wernicke’s) predicted 19% of the variance in MTL lateralization for adults (p = 0.001), but not children. Significance Language fMRI may be used to elicit group and individual MTL activation. The developmental difference in MTL lateralization and its association with language lateralization suggests a developmental shift in lateralization of MTL function, with increased left lateralization across the age span. This shift may help explain why children have better memory outcomes following resection compared to adults. PMID:26696589

  7. Patterns of cortical oscillations organize neural activity into whole-brain functional networks evident in the fMRI BOLD signal

    Directory of Open Access Journals (Sweden)

    Jennifer C Whitman

    2013-03-01

    Full Text Available Recent findings from electrophysiology and multimodal neuroimaging have elucidated the relationship between patterns of cortical oscillations evident in EEG / MEG and the functional brain networks evident in the BOLD signal. Much of the existing literature emphasized how high-frequency cortical oscillations are thought to coordinate neural activity locally, while low-frequency oscillations play a role in coordinating activity between more distant brain regions. However, the assignment of different frequencies to different spatial scales is an oversimplification. A more informative approach is to explore the arrangements by which these low- and high-frequency oscillations work in concert, coordinating neural activity into whole-brain functional networks. When relating such networks to the BOLD signal, we must consider how the patterns of cortical oscillations change at the same speed as cognitive states, which often last less than a second. Consequently, the slower BOLD signal may often reflect the summed neural activity of several transient network configurations. This temporal mismatch can be circumvented if we use spatial maps to assess correspondence between oscillatory networks and BOLD networks.

  8. Time-dependent correlation of cerebral blood flow with oxygen metabolism in activated human visual cortex as measured by fMRI.

    Science.gov (United States)

    Lin, Ai-Ling; Fox, Peter T; Yang, Yihong; Lu, Hanzhang; Tan, Li-Hai; Gao, Jia-Hong

    2009-01-01

    The aim of this study was to investigate the relationship between relative cerebral blood flow (delta CBF) and relative cerebral metabolic rate of oxygen (delta CMRO(2)) during continuous visual stimulation (21 min at 8 Hz) with fMRI biophysical models by simultaneously measuring of BOLD, CBF and CBV fMRI signals. The delta CMRO(2) was determined by both a newly calibrated single-compartment model (SCM) and a multi-compartment model (MCM) and was in agreement between these two models (P>0.5). The duration-varying delta CBF and delta CMRO(2) showed a negative correlation with time (r=-0.97, PSCM, an incorrect and even an opposite appearance of the flow-metabolism relationship during prolonged visual stimulation (positively linear coupling) can result. The time-dependent negative correlation between flow and metabolism demonstrated in this fMRI study is consistent with a previous PET observation and further supports the view that the increase in CBF is driven by factors other than oxygen demand and the energy demands will eventually require increased aerobic metabolism as stimulation continues.

  9. One pair of hands is not like another: caudate BOLD response in dogs depends on signal source and canine temperament

    Directory of Open Access Journals (Sweden)

    Peter F. Cook

    2014-09-01

    Full Text Available Having previously used functional MRI to map the response to a reward signal in the ventral caudate in awake unrestrained dogs, here we examined the importance of signal source to canine caudate activation. Hand signals representing either incipient reward or no reward were presented by a familiar human (each dog’s respective handler, an unfamiliar human, and via illustrated images of hands on a computer screen to 13 dogs undergoing voluntary fMRI. All dogs had received extensive training with the reward and no-reward signals from their handlers and with the computer images and had minimal exposure to the signals from strangers. All dogs showed differentially higher BOLD response in the ventral caudate to the reward versus no reward signals, and there was a robust effect at the group level. Further, differential response to the signal source had a highly significant interaction with a dog’s general aggressivity as measured by the C-BARQ canine personality assessment. Dogs with greater aggressivity showed a higher differential response to the reward signal versus no-reward signal presented by the unfamiliar human and computer, while dogs with lower aggressivity showed a higher differential response to the reward signal versus no-reward signal from their handler. This suggests that specific facets of canine temperament bear more strongly on the perceived reward value of relevant communication signals than does reinforcement history, as each of the dogs were reinforced similarly for each signal, regardless of the source (familiar human, unfamiliar human, or computer. A group-level psychophysiological interaction (PPI connectivity analysis showed increased functional coupling between the caudate and a region of cortex associated with visual discrimination and learning on reward versus no-reward trials. Our findings emphasize the sensitivity of the domestic dog to human social interaction, and may have other implications and applications

  10. Cerebral Metabolic Rate of Oxygen (CMRO2 ) Mapping by Combining Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygenation Level-Dependent Imaging (qBOLD).

    Science.gov (United States)

    Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi

    2018-03-07

    To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.

  11. The dependencies of fronto-parietal BOLD responses evoked by covert visual search suggest eye-centred coding.

    Science.gov (United States)

    Atabaki, A; Dicke, P W; Karnath, H-O; Thier, P

    2013-04-01

    Visual scenes explored covertly are initially represented in a retinal frame of reference (FOR). On the other hand, 'later' stages of the cortical network allocating spatial attention most probably use non-retinal or non-eye-centred representations as they may ease the integration of different sensory modalities for the formation of supramodal representations of space. We tested if the cortical areas involved in shifting covert attention are based on eye-centred or non-eye-centred coding by using functional magnetic resonance imaging. Subjects were scanned while detecting a target item (a regularly oriented 'L') amidst a set of distractors (rotated 'L's). The array was centred either 5° right or left of the fixation point, independent of eye-gaze orientation, the latter varied in three steps: straight relative to the head, 10° left or 10° right. A quantitative comparison of the blood-oxygen-level-dependent (BOLD) responses for the three eye-gaze orientations revealed stronger BOLD responses in the right intraparietal sulcus (IPS) and the right frontal eye field (FEF) for search in the contralateral (i.e. left) eye-centred space, independent of whether the array was located in the right or left head-centred hemispace. The left IPS showed the reverse pattern, i.e. an activation by search in the right eye-centred hemispace. In other words, the IPS and the right FEF, members of the cortical network underlying covert search, operate in an eye-centred FOR. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  12. Assessment of abstract reasoning abilities in alcohol-dependent subjects: an fMRI study

    International Nuclear Information System (INIS)

    Bagga, Deepika; Singh, Namita; Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Bhattacharya, D.; Garg, Mohan L.; Khushu, Subash

    2014-01-01

    Chronic alcohol abuse has been traditionally associated with impaired cognitive abilities. The deficits are most evident in higher order cognitive functions, such as abstract reasoning, problem solving and visuospatial processing. The present study sought to increase current understanding of the neuropsychological basis of poor abstract reasoning abilities in alcohol-dependent subjects using functional magnetic resonance imaging (fMRI). An abstract reasoning task-based fMRI study was carried out on alcohol-dependent subjects (n = 18) and healthy controls (n = 18) to examine neural activation pattern. The study was carried out using a 3-T whole-body magnetic resonance scanner. Preprocessing and post processing was performed using SPM 8 software. Behavioral data indicated that alcohol-dependent subjects took more time than controls for performing the task but there was no significant difference in their response accuracy. Analysis of the fMRI data indicated that for solving abstract reasoning-based problems, alcohol-dependent subjects showed enhanced right frontoparietal neural activation involving inferior frontal gyrus, post central gyrus, superior parietal lobule, and occipito-temporal gyrus. The extensive activation observed in alcohol dependents as compared to controls suggests that alcohol dependents recruit additional brain areas to meet the behavioral demands for equivalent task performance. The results are consistent with previous fMRI studies suggesting decreased neural efficiency of relevant brain networks or compensatory mechanisms for the execution of task for showing an equivalent performance. (orig.)

  13. Assessment of abstract reasoning abilities in alcohol-dependent subjects: an fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Bagga, Deepika; Singh, Namita; Singh, Sadhana; Modi, Shilpi; Kumar, Pawan [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Centre, Delhi (India); Bhattacharya, D. [Base Hospital, Department of Psychiatry, Delhi Cantt (India); Garg, Mohan L. [Panjab University, Department of Biophysics, Chandigarh (India); Khushu, Subash [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Centre, Delhi (India); INMAS, DRDO, NMR Research Centre, Delhi (India)

    2014-01-15

    Chronic alcohol abuse has been traditionally associated with impaired cognitive abilities. The deficits are most evident in higher order cognitive functions, such as abstract reasoning, problem solving and visuospatial processing. The present study sought to increase current understanding of the neuropsychological basis of poor abstract reasoning abilities in alcohol-dependent subjects using functional magnetic resonance imaging (fMRI). An abstract reasoning task-based fMRI study was carried out on alcohol-dependent subjects (n = 18) and healthy controls (n = 18) to examine neural activation pattern. The study was carried out using a 3-T whole-body magnetic resonance scanner. Preprocessing and post processing was performed using SPM 8 software. Behavioral data indicated that alcohol-dependent subjects took more time than controls for performing the task but there was no significant difference in their response accuracy. Analysis of the fMRI data indicated that for solving abstract reasoning-based problems, alcohol-dependent subjects showed enhanced right frontoparietal neural activation involving inferior frontal gyrus, post central gyrus, superior parietal lobule, and occipito-temporal gyrus. The extensive activation observed in alcohol dependents as compared to controls suggests that alcohol dependents recruit additional brain areas to meet the behavioral demands for equivalent task performance. The results are consistent with previous fMRI studies suggesting decreased neural efficiency of relevant brain networks or compensatory mechanisms for the execution of task for showing an equivalent performance. (orig.)

  14. Effects of hypoglycemia on human brain activation measured with fMRI.

    Science.gov (United States)

    Anderson, Adam W; Heptulla, Rubina A; Driesen, Naomi; Flanagan, Daniel; Goldberg, Philip A; Jones, Timothy W; Rife, Fran; Sarofin, Hedy; Tamborlane, William; Sherwin, Robert; Gore, John C

    2006-07-01

    Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P variations in blood glucose levels may modulate BOLD signals in the healthy brain.

  15. Identifying and characterizing systematic temporally-lagged BOLD artifacts.

    Science.gov (United States)

    Byrge, Lisa; Kennedy, Daniel P

    2018-05-01

    Residual noise in the BOLD signal remains problematic for fMRI - particularly for techniques such as functional connectivity, where findings can be spuriously influenced by noise sources that can covary with individual differences. Many such potential noise sources - for instance, motion and respiration - can have a temporally lagged effect on the BOLD signal. Thus, here we present a tool for assessing residual lagged structure in the BOLD signal that is associated with nuisance signals, using a construction similar to a peri-event time histogram. Using this method, we find that framewise displacements - both large and very small - were followed by structured, prolonged, and global changes in the BOLD signal that depend on the magnitude of the preceding displacement and extend for tens of seconds. This residual lagged BOLD structure was consistent across datasets, and independently predicted considerable variance in the global cortical signal (as much as 30-40% in some subjects). Mean functional connectivity estimates varied similarly as a function of displacements occurring many seconds in the past, even after strict censoring. Similar patterns of residual lagged BOLD structure were apparent following respiratory fluctuations (which covaried with framewise displacements), implicating respiration as one likely mechanism underlying the displacement-linked structure observed. Global signal regression largely attenuates this artifactual structure. These findings suggest the need for caution in interpreting results of individual difference studies where noise sources might covary with the individual differences of interest, and highlight the need for further development of preprocessing techniques for mitigating such structure in a more nuanced and targeted manner. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. BMI not WHR modulates BOLD fMRI responses in a sub-cortical reward network when participants judge the attractiveness of human female bodies.

    Directory of Open Access Journals (Sweden)

    Ian E Holliday

    Full Text Available In perceptual terms, the human body is a complex 3d shape which has to be interpreted by the observer to judge its attractiveness. Both body mass and shape have been suggested as strong predictors of female attractiveness. Normally body mass and shape co-vary, and it is difficult to differentiate their separate effects. A recent study suggested that altering body mass does not modulate activity in the reward mechanisms of the brain, but shape does. However, using computer generated female body-shaped greyscale images, based on a Principal Component Analysis of female bodies, we were able to construct images which covary with real female body mass (indexed with BMI and not with body shape (indexed with WHR, and vice versa. Twelve observers (6 male and 6 female rated these images for attractiveness during an fMRI study. The attractiveness ratings were correlated with changes in BMI and not WHR. Our primary fMRI results demonstrated that in addition to activation in higher visual areas (such as the extrastriate body area, changing BMI also modulated activity in the caudate nucleus, and other parts of the brain reward system. This shows that BMI, not WHR, modulates reward mechanisms in the brain and we infer that this may have important implications for judgements of ideal body size in eating disordered individuals.

  17. Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe.

    Science.gov (United States)

    Gagnon, Louis; Sakadžić, Sava; Lesage, Frédéric; Musacchia, Joseph J; Lefebvre, Joël; Fang, Qianqian; Yücel, Meryem A; Evans, Karleyton C; Mandeville, Emiri T; Cohen-Adad, Jülien; Polimeni, Jonathan R; Yaseen, Mohammad A; Lo, Eng H; Greve, Douglas N; Buxton, Richard B; Dale, Anders M; Devor, Anna; Boas, David A

    2015-02-25

    The blood oxygenation level-dependent (BOLD) contrast is widely used in functional magnetic resonance imaging (fMRI) studies aimed at investigating neuronal activity. However, the BOLD signal reflects changes in blood volume and oxygenation rather than neuronal activity per se. Therefore, understanding the transformation of microscopic vascular behavior into macroscopic BOLD signals is at the foundation of physiologically informed noninvasive neuroimaging. Here, we use oxygen-sensitive two-photon microscopy to measure the BOLD-relevant microvascular physiology occurring within a typical rodent fMRI voxel and predict the BOLD signal from first principles using those measurements. The predictive power of the approach is illustrated by quantifying variations in the BOLD signal induced by the morphological folding of the human cortex. This framework is then used to quantify the contribution of individual vascular compartments and other factors to the BOLD signal for different magnet strengths and pulse sequences. Copyright © 2015 the authors 0270-6474/15/353663-13$15.00/0.

  18. Computing moment to moment BOLD activation for real-time neurofeedback

    Science.gov (United States)

    Hinds, Oliver; Ghosh, Satrajit; Thompson, Todd W.; Yoo, Julie J.; Whitfield-Gabrieli, Susan; Triantafyllou, Christina; Gabrieli, John D.E.

    2013-01-01

    Estimating moment to moment changes in blood oxygenation level dependent (BOLD) activation levels from functional magnetic resonance imaging (fMRI) data has applications for learned regulation of regional activation, brain state monitoring, and brain-machine interfaces. In each of these contexts, accurate estimation of the BOLD signal in as little time as possible is desired. This is a challenging problem due to the low signal-to-noise ratio of fMRI data. Previous methods for real-time fMRI analysis have either sacrificed the ability to compute moment to moment activation changes by averaging several acquisitions into a single activation estimate or have sacrificed accuracy by failing to account for prominent sources of noise in the fMRI signal. Here we present a new method for computing the amount of activation present in a single fMRI acquisition that separates moment to moment changes in the fMRI signal intensity attributable to neural sources from those due to noise, resulting in a feedback signal more reflective of neural activation. This method computes an incremental general linear model fit to the fMRI timeseries, which is used to calculate the expected signal intensity at each new acquisition. The difference between the measured intensity and the expected intensity is scaled by the variance of the estimator in order to transform this residual difference into a statistic. Both synthetic and real data were used to validate this method and compare it to the only other published real-time fMRI method. PMID:20682350

  19. The power of using functional fMRI on small rodents to study brain pharmacology and disease

    OpenAIRE

    Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie

    2015-01-01

    Abstract: Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sen...

  20. Effect of fMRI acoustic noise on non-auditory working memory task: comparison between continuous and pulsed sound emitting EPI.

    Science.gov (United States)

    Haller, Sven; Bartsch, Andreas J; Radue, Ernst W; Klarhöfer, Markus; Seifritz, Erich; Scheffler, Klaus

    2005-11-01

    Conventional blood oxygenation level-dependent (BOLD) based functional magnetic resonance imaging (fMRI) is accompanied by substantial acoustic gradient noise. This noise can influence the performance as well as neuronal activations. Conventional fMRI typically has a pulsed noise component, which is a particularly efficient auditory stimulus. We investigated whether the elimination of this pulsed noise component in a recent modification of continuous-sound fMRI modifies neuronal activations in a cognitively demanding non-auditory working memory task. Sixteen normal subjects performed a letter variant n-back task. Brain activity and psychomotor performance was examined during fMRI with continuous-sound fMRI and conventional fMRI. We found greater BOLD responses in bilateral medial frontal gyrus, left middle frontal gyrus, left middle temporal gyrus, left hippocampus, right superior frontal gyrus, right precuneus and right cingulate gyrus with continuous-sound compared to conventional fMRI. Conversely, BOLD responses were greater in bilateral cingulate gyrus, left middle and superior frontal gyrus and right lingual gyrus with conventional compared to continuous-sound fMRI. There were no differences in psychomotor performance between both scanning protocols. Although behavioral performance was not affected, acoustic gradient noise interferes with neuronal activations in non-auditory cognitive tasks and represents a putative systematic confound.

  1. Assessment of lexical semantic judgment abilities in alcohol-dependent subjects: an fMRI study.

    Science.gov (United States)

    Bagga, D; Singh, N; Modi, S; Kumar, P; Bhattacharya, D; Garg, M L; Khushu, S

    2013-12-01

    Neuropsychological studies have shown that alcohol dependence is associated with neurocognitive deficits in tasks requiring memory, perceptual motor skills, abstraction and problem solving, whereas language skills are relatively spared in alcoholics despite structural abnormalities in the language-related brain regions. To investigate the preserved mechanisms of language processing in alcohol-dependents, functional brain imaging was undertaken in healthy controls (n=18) and alcohol-dependents (n=16) while completing a lexical semantic judgment task in a 3 T MR scanner. Behavioural data indicated that alcohol-dependents took more time than controls for performing the task but there was no significant difference in their response accuracy. fMRI data analysis revealed that while performing the task, the alcoholics showed enhanced activations in left supramarginal gyrus, precuneus bilaterally, left angular gyrus, and left middle temporal gyrus as compared to control subjects. The extensive activations observed in alcoholics as compared to controls suggest that alcoholics recruit additional brain areas to meet the behavioural demands for equivalent task performance. The results are consistent with previous fMRI studies suggesting compensatory mechanisms for the execution of task for showing an equivalent performance or decreased neural efficiency of relevant brain networks. However, on direct comparison of the two groups, the results did not survive correction for multiple comparisons; therefore, the present findings need further exploration.

  2. Dorsal root ganglion stimulation attenuates the BOLD signal response to noxious sensory input in specific brain regions: Insights into a possible mechanism for analgesia.

    Science.gov (United States)

    Pawela, Christopher P; Kramer, Jeffery M; Hogan, Quinn H

    2017-02-15

    Targeted dorsal root ganglion (DRG) electrical stimulation (i.e. ganglionic field stimulation - GFS) is an emerging therapeutic approach to alleviate chronic pain. Here we describe blood oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to noxious hind-limb stimulation in a rat model that replicates clinical GFS using an electrode implanted adjacent to the DRG. Acute noxious sensory stimulation in the absence of GFS caused robust BOLD fMRI response in brain regions previously associated with sensory and pain-related response, such as primary/secondary somatosensory cortex, retrosplenial granular cortex, thalamus, caudate putamen, nucleus accumbens, globus pallidus, and amygdala. These regions differentially demonstrated either positive or negative correlation to the acute noxious stimulation paradigm, in agreement with previous rat fMRI studies. Therapeutic-level GFS significantly attenuated the global BOLD response to noxious stimulation in these regions. This BOLD signal attenuation persisted for 20minutes after the GFS was discontinued. Control experiments in sham-operated animals showed that the attenuation was not due to the effect of repetitive noxious stimulation. Additional control experiments also revealed minimal BOLD fMRI response to GFS at therapeutic intensity when presented in a standard block-design paradigm. High intensity GFS produced a BOLD signal map similar to acute noxious stimulation when presented in a block-design. These findings are the first to identify the specific brain region responses to neuromodulation at the DRG level and suggest possible mechanisms for GFS-induced treatment of chronic pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Functional connectivity analysis of the brain network using resting-state fMRI

    International Nuclear Information System (INIS)

    Hayashi, Toshihiro

    2011-01-01

    Spatial patterns of spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals reflect the underlying neural architecture. The study of the brain network based on these self-organized patterns is termed resting-state functional MRI (fMRI). This review article aims at briefly reviewing a basic concept of this technology and discussing its implications for neuropsychological studies. First, the technical aspects of resting-state fMRI, including signal sources, physiological artifacts, image acquisition, and analytical methods such as seed-based correlation analysis and independent component analysis, are explained, followed by a discussion on the major resting-state networks, including the default mode network. In addition, the structure-function correlation studied using diffuse tensor imaging and resting-state fMRI is briefly discussed. Second, I have discussed the reservations and potential pitfalls of 2 major imaging methods: voxel-based lesion-symptom mapping and task fMRI. Problems encountered with voxel-based lesion-symptom mapping can be overcome by using resting-state fMRI and evaluating undamaged brain networks in patients. Regarding task fMRI in patients, I have also emphasized the importance of evaluating the baseline brain activity because the amplitude of activation in BOLD fMRI is hard to interpret as the same baseline cannot be assumed for both patient and normal groups. (author)

  4. Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory.

    Directory of Open Access Journals (Sweden)

    Lars Michels

    Full Text Available In humans, theta band (5-7 Hz power typically increases when performing cognitively demanding working memory (WM tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and

  5. Early anti-correlated BOLD signal changes of physiologic origin.

    Science.gov (United States)

    Bright, Molly G; Bianciardi, Marta; de Zwart, Jacco A; Murphy, Kevin; Duyn, Jeff H

    2014-02-15

    Negative BOLD signals that are synchronous with resting state fluctuations have been observed in large vessels in the cortical sulci and surrounding the ventricles. In this study, we investigated the origin of these negative BOLD signals by applying a Cued Deep Breathing (CDB) task to create transient hypocapnia and a resultant global fMRI signal decrease. We hypothesized that a global stimulus would amplify the effect in large vessels and that using a global negative (vasoconstrictive) stimulus would test whether these voxels exhibit either inherently negative or simply anti-correlated BOLD responses. Significantly anti-correlated, but positive, BOLD signal changes during respiratory challenges were identified in voxels primarily located near edges of brain spaces containing CSF. These positive BOLD responses occurred earlier than the negative CDB response across most of gray matter voxels. These findings confirm earlier suggestions that in some brain regions, local, fractional changes in CSF volume may overwhelm BOLD-related signal changes, leading to signal anti-correlation. We show that regions with CDB anti-correlated signals coincide with most, but not all, of the regions with negative BOLD signal changes observed during a visual and motor stimulus task. Thus, the addition of a physiological challenge to fMRI experiments can help identify which negative BOLD signals are passive physiological anti-correlations and which may have a putative neuronal origin. Published by Elsevier Inc.

  6. Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations.

    Directory of Open Access Journals (Sweden)

    Gaelle Bettus

    Full Text Available In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD signal derived from resting state functional magnetic resonance imaging (fMRI reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG and resting-state functional MRI (fMRI in 5 patients suffering from intractable temporal lobe epilepsy (TLE. Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal. This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional

  7. High spatial correspondence at a columnar level between activation and resting state fMRI signals and local field potentials.

    Science.gov (United States)

    Shi, Zhaoyue; Wu, Ruiqi; Yang, Pai-Feng; Wang, Feng; Wu, Tung-Lin; Mishra, Arabinda; Chen, Li Min; Gore, John C

    2017-05-16

    Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology.

  8. Differential parietal and temporal contributions to music perception in improvising and score-dependent musicians, an fMRI study

    NARCIS (Netherlands)

    Robert Harris; Bauke M. de Jong

    2015-01-01

    Using fMRI, cerebral activations were studied in 24 classically-trained keyboard performers and 12 musically unskilled control subjects. Two groups of musicians were recruited: improvising (n=12) and score-dependent (non-improvising) musicians (n=12). While listening to both familiar and unfamiliar

  9. Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data.

    Science.gov (United States)

    Power, Jonathan D; Plitt, Mark; Gotts, Stephen J; Kundu, Prantik; Voon, Valerie; Bandettini, Peter A; Martin, Alex

    2018-02-27

    "Functional connectivity" techniques are commonplace tools for studying brain organization. A critical element of these analyses is to distinguish variance due to neurobiological signals from variance due to nonneurobiological signals. Multiecho fMRI techniques are a promising means for making such distinctions based on signal decay properties. Here, we report that multiecho fMRI techniques enable excellent removal of certain kinds of artifactual variance, namely, spatially focal artifacts due to motion. By removing these artifacts, multiecho techniques reveal frequent, large-amplitude blood oxygen level-dependent (BOLD) signal changes present across all gray matter that are also linked to motion. These whole-brain BOLD signals could reflect widespread neural processes or other processes, such as alterations in blood partial pressure of carbon dioxide (pCO 2 ) due to ventilation changes. By acquiring multiecho data while monitoring breathing, we demonstrate that whole-brain BOLD signals in the resting state are often caused by changes in breathing that co-occur with head motion. These widespread respiratory fMRI signals cannot be isolated from neurobiological signals by multiecho techniques because they occur via the same BOLD mechanism. Respiratory signals must therefore be removed by some other technique to isolate neurobiological covariance in fMRI time series. Several methods for removing global artifacts are demonstrated and compared, and were found to yield fMRI time series essentially free of motion-related influences. These results identify two kinds of motion-associated fMRI variance, with different physical mechanisms and spatial profiles, each of which strongly and differentially influences functional connectivity patterns. Distance-dependent patterns in covariance are nearly entirely attributable to non-BOLD artifacts.

  10. Increase or Decrease of fMRI Activity in Adult Attention Deficit/ Hyperactivity Disorder: Does It Depend on Task Difficulty?

    Science.gov (United States)

    Biehl, Stefanie C; Merz, Christian J; Dresler, Thomas; Heupel, Julia; Reichert, Susanne; Jacob, Christian P; Deckert, Jürgen; Herrmann, Martin J

    2016-05-27

    Attention deficit/hyperactivity disorder has been shown to affect working memory, and fMRI studies in children and adolescents with attention deficit/hyperactivity disorder report hypoactivation in task-related attentional networks. However, studies with adult attention deficit/hyperactivity disorder patients addressing this issue as well as the effects of clinically valid methylphenidate treatment are scarce. This study contributes to closing this gap. Thirty-five adult patients were randomized to 6 weeks of double-blind placebo or methylphenidate treatment. Patients completed an fMRI n-back working memory task both before and after the assigned treatment, and matched healthy controls were tested and compared to the untreated patients. There were no whole-brain differences between any of the groups. However, when specified regions of interest were investigated, the patient group showed enhanced BOLD responses in dorsal and ventral areas before treatment. This increase was correlated with performance across all participants and with attention deficit/hyperactivity disorder symptoms in the patient group. Furthermore, we found an effect of treatment in the right superior frontal gyrus, with methylphenidate-treated patients exhibiting increased activation, which was absent in the placebo-treated patients. Our results indicate distinct activation differences between untreated adult attention deficit/hyperactivity disorder patients and matched healthy controls during a working memory task. These differences might reflect compensatory efforts by the patients, who are performing at the same level as the healthy controls. We furthermore found a positive effect of methylphenidate on the activation of a frontal region of interest. These observations contribute to a more thorough understanding of adult attention deficit/hyperactivity disorder and provide impulses for the evaluation of therapy-related changes. © The Author 2016. Published by Oxford University Press on behalf

  11. Corticostriatal and Dopaminergic Response to Beer Flavor with Both fMRI and [(11) C]raclopride Positron Emission Tomography.

    Science.gov (United States)

    Oberlin, Brandon G; Dzemidzic, Mario; Harezlak, Jaroslaw; Kudela, Maria A; Tran, Stella M; Soeurt, Christina M; Yoder, Karmen K; Kareken, David A

    2016-09-01

    Cue-evoked drug-seeking behavior likely depends on interactions between frontal activity and ventral striatal (VST) dopamine (DA) transmission. Using [(11) C]raclopride (RAC) positron emission tomography (PET), we previously demonstrated that beer flavor (absent intoxication) elicited VST DA release in beer drinkers, inferred by RAC displacement. Here, a subset of subjects from this previous RAC-PET study underwent a similar paradigm during functional magnetic resonance imaging (fMRI) to test how orbitofrontal cortex (OFC) and VST blood oxygenation level-dependent (BOLD) responses to beer flavor are related to VST DA release and motivation to drink. Male beer drinkers (n = 28, age = 24 ± 2, drinks/wk = 16 ± 10) from our previous PET study participated in a similar fMRI paradigm wherein subjects tasted their most frequently consumed brand of beer and Gatorade(®) (appetitive control). We tested for correlations between BOLD activation in fMRI and VST DA responses in PET, and drinking-related variables. Compared to Gatorade, beer flavor increased wanting and desire to drink, and induced BOLD responses in bilateral OFC and right VST. Wanting and desire to drink correlated with both right VST and medial OFC BOLD activation to beer flavor. Like the BOLD findings, beer flavor (relative to Gatorade) again induced right VST DA release in this fMRI subject subset, but there was no correlation between DA release and the magnitude of BOLD responses in frontal regions of interest. Both imaging modalities showed a right-lateralized VST response (BOLD and DA release) to a drug-paired conditioned stimulus, whereas fMRI BOLD responses in the VST and medial OFC also reflected wanting and desire to drink. The data suggest the possibility that responses to drug-paired cues may be rightward biased in the VST (at least in right-handed males) and that VST and OFC responses in this gustatory paradigm reflect stimulus wanting. Copyright © 2016 by the Research Society on

  12. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.

    Science.gov (United States)

    Yuan, Han; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy

    2012-05-01

    Neuroimaging research suggests that the resting cerebral physiology is characterized by complex patterns of neuronal activity in widely distributed functional networks. As studied using functional magnetic resonance imaging (fMRI) of the blood-oxygenation-level dependent (BOLD) signal, the resting brain activity is associated with slowly fluctuating hemodynamic signals (~10s). More recently, multimodal functional imaging studies involving simultaneous acquisition of BOLD-fMRI and electroencephalography (EEG) data have suggested that the relatively slow hemodynamic fluctuations of some resting state networks (RSNs) evinced in the BOLD data are related to much faster (~100 ms) transient brain states reflected in EEG signals, that are referred to as "microstates". To further elucidate the relationship between microstates and RSNs, we developed a fully data-driven approach that combines information from simultaneously recorded, high-density EEG and BOLD-fMRI data. Using independent component analysis (ICA) of the combined EEG and fMRI data, we identified thirteen microstates and ten RSNs that are organized independently in their temporal and spatial characteristics, respectively. We hypothesized that the intrinsic brain networks that are active at rest would be reflected in both the EEG data and the fMRI data. To test this hypothesis, the rapid fluctuations associated with each microstate were correlated with the BOLD-fMRI signal associated with each RSN. We found that each RSN was characterized further by a specific electrophysiological signature involving from one to a combination of several microstates. Moreover, by comparing the time course of EEG microstates to that of the whole-brain BOLD signal, on a multi-subject group level, we unraveled for the first time a set of microstate-associated networks that correspond to a range of previously described RSNs, including visual, sensorimotor, auditory, attention, frontal, visceromotor and default mode networks. These

  13. Non-white noise in fMRI: Does modelling have an impact?

    DEFF Research Database (Denmark)

    Lund, Torben Ellegaard; Madsen, Kristoffer Hougaard; Sidaros, Karam

    2006-01-01

    are typically modelled as an autoregressive (AR) process. In this paper, we propose an alternative approach: Nuisance Variable Regression (NVR). By inclusion of confounding effects in a general linear model (GLM), we first confirm that the spatial distribution of the various fMRI noise sources is similar......The sources of non-white noise in Blood Oxygenation Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) are many. Familiar sources include low-frequency drift due to hardware imperfections, oscillatory noise due to respiration and cardiac pulsation and residual movement artefacts...

  14. Distinct BOLD activation profiles following central and peripheral oxytocin administration in awake rats

    Directory of Open Access Journals (Sweden)

    Craig F Ferris

    2015-09-01

    Full Text Available A growing body of literature has suggested that intranasal oxytocin (OT or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood-brain-barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level dependent (BOLD signal intensity in response to peripheral OT injections (0.1, 0.5 or 2.5 mg/kg during functional magnetic resonance (fMRI in awake rats imaged at 7.0 tesla. These data were compared to OT (1ug/5 µl given directly to the brain via the lateral cerebroventricle. Using a 3D annotated MRI atlas of the rat brain segmented into 171 brain areas and computational analysis we reconstructed the distributed integrated neural circuits identified with BOLD fMRI following central and peripheral OT. Both routes of administration caused significant changes in BOLD signal within the first 10 min of administration. As expected, central OT activated a majority of brain areas known to express a high density of OT receptors e.g., lateral septum, subiculum, shell of the accumbens, bed nucleus of the stria terminalis. This profile of activation was not matched by peripheral OT. The change in BOLD signal to peripheral OT did not show any discernible dose-response. Interestingly, peripheral OT affected all subdivisions of the olfactory bulb, in addition to the cerebellum and several brainstem areas relevant to the autonomic nervous system, including the solitary tract nucleus. The results from this imaging study do not support a direct central action of peripheral OT on the brain. Instead, the patterns of brain activity suggest that peripheral OT may interact at the level of the olfactory bulb and through sensory afferents from the autonomic nervous system to influence brain activity.

  15. Resting State BOLD Variability in Alzheimer’s Disease: A Marker of Cognitive Decline or Cerebrovascular Status?

    Directory of Open Access Journals (Sweden)

    Vanessa Scarapicchia

    2018-02-01

    Full Text Available Background: Alzheimer’s disease (AD is a neurodegenerative disorder that may benefit from early diagnosis and intervention. Therefore, there is a need to identify early biomarkers of AD using non-invasive techniques such as functional magnetic resonance imaging (fMRI. Recently, novel approaches to the analysis of resting-state fMRI data have been developed that focus on the moment-to-moment variability in the blood oxygen level dependent (BOLD signal. The objective of the current study was to investigate BOLD variability as a novel early biomarker of AD and its associated psychophysiological correlates.Method: Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI 2 database from 19 participants with AD and 19 similarly aged controls. For each participant, a map of BOLD signal variability (SDBOLD was computed as the standard deviation of the BOLD timeseries at each voxel. Group comparisons were performed to examine global differences in resting state SDBOLD in AD versus healthy controls. Correlations were then examined between participant SDBOLD maps and (1 ADNI-derived composite scores of memory and executive function and (2 neuroimaging markers of cerebrovascular status.Results: Between-group comparisons revealed significant (p < 0.05 increases in SDBOLD in patients with AD relative to healthy controls in right-lateralized frontal regions. Lower memory scores and higher WMH burden were associated with greater SDBOLD in the healthy control group (p < 0.1, but not individuals with AD.Conclusion: The current study provides proof of concept of a novel resting state fMRI analysis technique that is non-invasive, easily accessible, and clinically compatible. To further explore the potential of SDBOLD as a biomarker of AD, additional studies in larger, longitudinal samples are needed to better understand the changes in SDBOLD that characterize earlier stages of disease progression and their underlying psychophysiological

  16. Mapping transient hyperventilation induced alterations with estimates of the multi-scale dynamics of BOLD signal.

    Directory of Open Access Journals (Sweden)

    Vesa J Kiviniemi

    2009-07-01

    Full Text Available Temporal blood oxygen level dependent (BOLD contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD trends of the form 1/f α. Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant α, fractal dimension Df, and, Hurst exponent H characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. Df was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  17. Mapping Transient Hyperventilation Induced Alterations with Estimates of the Multi-Scale Dynamics of BOLD Signal.

    Science.gov (United States)

    Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo

    2009-01-01

    Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/f(alpha). Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant alpha, fractal dimension D(f), and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The alpha was able to differentiate also blood vessels from grey matter changes. D(f) was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  18. Beware of Boldness

    National Research Council Canada - National Science Library

    Crane, Conrad C

    2006-01-01

    ... to be?"1 Army Field Manual 7.0, Training the Force, states that the goals of operational deployments and major training opportunities are to enhance unit readiness and "produce bold, innovative leaders...

  19. Spatial attention related SEP amplitude modulations covary with BOLD signal in S1--a simultaneous EEG--fMRI study.

    Science.gov (United States)

    Schubert, Ruth; Ritter, Petra; Wüstenberg, Torsten; Preuschhof, Claudia; Curio, Gabriel; Sommer, Werner; Villringer, Arno

    2008-11-01

    Recent studies investigating the influence of spatial-selective attention on primary somatosensory processing have produced inconsistent results. The aim of this study was to explore the influence of tactile spatial-selective attention on spatiotemporal aspects of evoked neuronal activity in the primary somatosensory cortex (S1). We employed simultaneous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) in 14 right-handed subjects during bilateral index finger Braille stimulation to investigate the relationship between attentional effects on somatosensory evoked potential (SEP) components and the blood oxygenation level-dependent (BOLD) signal. The 1st reliable EEG response following left tactile stimulation (P50) was significantly enhanced by spatial-selective attention, which has not been reported before. FMRI analysis revealed increased activity in contralateral S1. Remarkably, the effect of attention on the P50 component as well as long-latency SEP components starting at 190 ms for left stimuli correlated with attentional effects on the BOLD signal in contralateral S1. The implications are 2-fold: First, the correlation between early and long-latency SEP components and the BOLD effect suggest that spatial-selective attention enhances processing in S1 at 2 time points: During an early passage of the signal and during a later passage, probably via re-entrant feedback from higher cortical areas. Second, attentional modulations of the fast electrophysiological signals and the slow hemodynamic response are linearly related in S1.

  20. Sex-dependent dissociation between emotional appraisal and memory: a large-scale behavioral and fMRI study.

    Science.gov (United States)

    Spalek, Klara; Fastenrath, Matthias; Ackermann, Sandra; Auschra, Bianca; Coynel, David; Frey, Julia; Gschwind, Leo; Hartmann, Francina; van der Maarel, Nadine; Papassotiropoulos, Andreas; de Quervain, Dominique; Milnik, Annette

    2015-01-21

    Extensive evidence indicates that women outperform men in episodic memory tasks. Furthermore, women are known to evaluate emotional stimuli as more arousing than men. Because emotional arousal typically increases episodic memory formation, the females' memory advantage might be more pronounced for emotionally arousing information than for neutral information. Here, we report behavioral data from 3398 subjects, who performed picture rating and memory tasks, and corresponding fMRI data from up to 696 subjects. We were interested in the interaction between sex and valence category on emotional appraisal, memory performances, and fMRI activity. The behavioral results showed that females evaluate in particular negative (p pictures, as emotionally more arousing (pinteraction recall females outperformed males not only in positive (p picture recall (p pictures (pinteraction memory advantage during free recall was absent in a recognition setting. We identified activation differences in fMRI, which corresponded to the females' stronger appraisal of especially negative pictures, but no activation differences that reflected the interaction effect in the free recall memory task. In conclusion, females' valence-category-specific memory advantage is only observed in a free recall, but not a recognition setting and does not depend on females' higher emotional appraisal. Copyright © 2015 the authors 0270-6474/15/350920-16$15.00/0.

  1. Implications of oxidative stress in the brain plasticity originated by fasting: a BOLD-fMRI study.

    Science.gov (United States)

    Belaïch, Rachida; Boujraf, Saïd; Benzagmout, Mohammed; Magoul, Rabia; Maaroufi, Mustapha; Tizniti, Siham

    2017-11-01

    The goal of this study was assessing the intermittent fasting effect on brain plasticity and oxidative stress (OS) using blood-oxygenation-level dependent (BOLD)-functional magnetic resonance image (fMRI) approach. Evidences of physiological and molecular phenomena involved in this process are discussed and compared to reported literature. Six fully healthy male non-smokers volunteered in this study. All volunteers were right handed, and have an equilibrated, consistent and healthy daily nutritional habit, and a healthy lifestyle. Participants were allowed consuming food during evening and night time while fasting with self-prohibiting food and liquids during 14 hours/day from sunrise to sunset. All participants underwent identical brain BOLD-fMRI protocol. The images were acquired in the Department of Radiology and Clinical Imaging of the University Hospital of Fez, Fez, Morocco. The anatomical brain and BOLD-fMRIs were acquired using a 1.5-Tesla scanner (Signa, General Electric, Milwaukee, United States). BOLD-fMRI image acquisition was done using single-shot gradient echo echo-planer imaging sequence. BOLD-fMRI paradigm consisted of the motor task where volunteers were asked to perform finger taping of the right hand. Two BOLD-fMRI scan sessions were performed, the first one between the 5th and 10th days preceding the start of fasting and the second between days 25th and 28th of the fasting month. All sessions were performed between 3:30 PM and 5:30 PM. Although individual maps were originated from different individual participants, they cover the same anatomic area in each case. Image processing and statistical analysis were conducted with Statistical Parameter Mapping version 8 (2008, Welcome Department of Cognitive Neurology, London UK). The maximal BOLD signal changes were calculated for each subject in the motor area M1; Activation maps were calculated and overlaid on the anatomical images. Group analysis of the data was performed, and the average volume

  2. Mapping of cognitive functions in chronic intractable epilepsy: Role of fMRI

    International Nuclear Information System (INIS)

    Chaudhary, Kapil; Kumaran, S Senthil; Chandra, Sarat P; Wadhawan, Ashima Nehra; Tripathi, Manjari

    2014-01-01

    Functional magnetic resonance imaging (fMRI), a non-invasive technique with high spatial resolution and blood oxygen level dependent (BOLD) contrast, has been applied to localize and map cognitive functions in the clinical condition of chronic intractable epilepsy. fMRI was used to map the language and memory network in patients of chronic intractable epilepsy pre- and post-surgery. After obtaining approval from the institutional ethics committee, six patients with intractable epilepsy with an equal number of age-matched controls were recruited in the study. A 1.5 T MR scanner with 12-channel head coil, integrated with audio-visual fMRI accessories was used. Echo planar imaging sequence was used for BOLD studies. There were two sessions in TLE (pre- and post-surgery). In TLE patients, BOLD activation increased post-surgery in comparison of pre-surgery in inferior frontal gyrus (IFG), middle frontal gyrus (MFG), and superior temporal gyrus (STG), during semantic lexical, judgment, comprehension, and semantic memory tasks. Functional MRI is useful to study the basic concepts related to language and memory lateralization in TLE and guide surgeons for preservation of important brain areas during ATLR. This will help in understanding future directions for the diagnosis and treatment of such disease

  3. Mapping of cognitive functions in chronic intractable epilepsy: Role of fMRI

    Directory of Open Access Journals (Sweden)

    Kapil Chaudhary

    2014-01-01

    Full Text Available Background: Functional magnetic resonance imaging (fMRI, a non-invasive technique with high spatial resolution and blood oxygen level dependent (BOLD contrast, has been applied to localize and map cognitive functions in the clinical condition of chronic intractable epilepsy. Purpose: fMRI was used to map the language and memory network in patients of chronic intractable epilepsy pre- and post-surgery. Materials and Methods: After obtaining approval from the institutional ethics committee, six patients with intractable epilepsy with an equal number of age-matched controls were recruited in the study. A 1.5 T MR scanner with 12-channel head coil, integrated with audio-visual fMRI accessories was used. Echo planar imaging sequence was used for BOLD studies. There were two sessions in TLE (pre- and post-surgery. Results: In TLE patients, BOLD activation increased post-surgery in comparison of pre-surgery in inferior frontal gyrus (IFG, middle frontal gyrus (MFG, and superior temporal gyrus (STG, during semantic lexical, judgment, comprehension, and semantic memory tasks. Conclusion: Functional MRI is useful to study the basic concepts related to language and memory lateralization in TLE and guide surgeons for preservation of important brain areas during ATLR. This will help in understanding future directions for the diagnosis and treatment of such disease.

  4. Searching for Conservation Laws in Brain Dynamics—BOLD Flux and Source Imaging

    Directory of Open Access Journals (Sweden)

    Henning U. Voss

    2014-07-01

    Full Text Available Blood-oxygen-level-dependent (BOLD imaging is the most important noninvasive tool to map human brain function. It relies on local blood-flow changes controlled by neurovascular coupling effects, usually in response to some cognitive or perceptual task. In this contribution we ask if the spatiotemporal dynamics of the BOLD signal can be modeled by a conservation law. In analogy to the description of physical laws, which often can be derived from some underlying conservation law, identification of conservation laws in the brain could lead to new models for the functional organization of the brain. Our model is independent of the nature of the conservation law, but we discuss possible hints and motivations for conservation laws. For example, globally limited blood supply and local competition between brain regions for blood might restrict the large scale BOLD signal in certain ways that could be observable. One proposed selective pressure for the evolution of such conservation laws is the closed volume of the skull limiting the expansion of brain tissue by increases in blood volume. These ideas are demonstrated on a mental motor imagery fMRI experiment, in which functional brain activation was mapped in a group of volunteers imagining themselves swimming. In order to search for local conservation laws during this complex cognitive process, we derived maps of quantities resulting from spatial interaction of the BOLD amplitudes. Specifically, we mapped fluxes and sources of the BOLD signal, terms that would appear in a description by a continuity equation. Whereas we cannot present final answers with the particular analysis of this particular experiment, some results seem to be non-trivial. For example, we found that during task the group BOLD flux covered more widespread regions than identified by conventional BOLD mapping and was always increasing during task. It is our hope that these results motivate more work towards the search for conservation

  5. EEG-Informed fMRI: A Review of Data Analysis Methods

    Science.gov (United States)

    Abreu, Rodolfo; Leal, Alberto; Figueiredo, Patrícia

    2018-01-01

    The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest. PMID:29467634

  6. EEG-Informed fMRI: A Review of Data Analysis Methods

    Directory of Open Access Journals (Sweden)

    Rodolfo Abreu

    2018-02-01

    Full Text Available The simultaneous acquisition of electroencephalography (EEG with functional magnetic resonance imaging (fMRI is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest.

  7. Abnormal Striatal BOLD Responses to Reward Anticipation and Reward Delivery in ADHD

    Science.gov (United States)

    Furukawa, Emi; Bado, Patricia; Tripp, Gail; Mattos, Paulo; Wickens, Jeff R.; Bramati, Ivanei E.; Alsop, Brent; Ferreira, Fernanda Meireles; Lima, Debora; Tovar-Moll, Fernanda; Sergeant, Joseph A.; Moll, Jorge

    2014-01-01

    Altered reward processing has been proposed to contribute to the symptoms of attention deficit hyperactivity disorder (ADHD). The neurobiological mechanism underlying this alteration remains unclear. We hypothesize that the transfer of dopamine release from reward to reward-predicting cues, as normally observed in animal studies, may be deficient in ADHD. Functional magnetic resonance imaging (fMRI) was used to investigate striatal responses to reward-predicting cues and reward delivery in a classical conditioning paradigm. Data from 14 high-functioning and stimulant-naïve young adults with elevated lifetime symptoms of ADHD (8 males, 6 females) and 15 well-matched controls (8 males, 7 females) were included in the analyses. During reward anticipation, increased blood-oxygen-level-dependent (BOLD) responses in the right ventral and left dorsal striatum were observed in controls, but not in the ADHD group. The opposite pattern was observed in response to reward delivery; the ADHD group demonstrated significantly greater BOLD responses in the ventral striatum bilaterally and the left dorsal striatum relative to controls. In the ADHD group, the number of current hyperactivity/impulsivity symptoms was inversely related to ventral striatal responses during reward anticipation and positively associated with responses to reward. The BOLD response patterns observed in the striatum are consistent with impaired predictive dopamine signaling in ADHD, which may explain altered reward-contingent behaviors and symptoms of ADHD. PMID:24586543

  8. Novel fMRI working memory paradigm accurately detects cognitive impairment in Multiple Sclerosis

    Science.gov (United States)

    Nelson, Flavia; Akhtar, Mohammad A.; Zúñiga, Edward; Perez, Carlos A.; Hasan, Khader M.; Wilken, Jeffrey; Wolinsky, Jerry S.; Narayana, Ponnada A.; Steinberg, Joel L.

    2016-01-01

    Background Cognitive impairment (CI) cannot be diagnosed by MRI. Functional MRI (fMRI) paradigms such as the immediate/delayed memory task (I/DMT), detect varying degrees of working memory. Preliminary findings using I/DMT, showed differences in Blood Oxygenation Level Dependent (BOLD) activation between impaired (MSCI, n=12) and non-impaired (MSNI, n=9) MS patients. Objectives To confirm CI detection based on I/DMT’ BOLD activation in a larger cohort of MS patients. The role of T2 lesion volume (LV) and EDSS in magnitude of BOLD signal were also sought. Methods Fifty patients [EDSS mean (m) = 3.2, DD m =12 yr., age m =40yr.] underwent the Minimal Assessment of Cognitive Function in MS (MACFIMS) and the I/DMT. Working-memory activation (WMa) represents BOLD signal during DMT minus signal during IMT. CI was based on MACFIMS. Results 10 MSNI, 30 MSCI and 4 borderline patients were included in analyses. ANOVA showed MSNI had significantly greater WMa than MSCI, in the left (L) prefrontal cortex and L supplementary motor area (p = 0.032). Regression analysis showed significant inverse correlations between WMa and T2 LV/EDSS in similar areas (p = 0.005, 0.004 respectively). Conclusion I/DMT-based BOLD activation detects CI in MS, larger studies are needed to confirm these findings. PMID:27613119

  9. fMRI. Basics and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, Stephan; Jansen, Olav (eds.) [University Hospital of Schleswig-Holstein, Kiel (Germany). Inst. of Neuroradiology, Neurocenter

    2010-07-01

    Functional MRI (fMRI) and the basic method of BOLD imaging were introduced in 1993 by Seiji Ogawa. From very basic experiments, fMRI has evolved into a clinical application for daily routine brain imaging. There have been various improvements in both the imaging technique as such as well as in the statistical analysis. In this volume, experts in the field share their knowledge and point out possible technical barriers and problems explaining how to solve them. Starting from the very basics on the origin of the BOLD signal, the book covers technical issues, anatomical landmarks, presurgical applications, and special issues in various clinical fields. Other modalities for brain mapping such as PET, TMS, and MEG are also compared with fMRI. This book is intended to give a state-of-the-art overview and to serve as a reference and guide for clinical applications of fMRI. (orig.)

  10. Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex

    Science.gov (United States)

    Tong, Frank; Harrison, Stephenie A.; Dewey, John A.; Kamitani, Yukiyasu

    2012-01-01

    Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989

  11. BOLD Granger causality reflects vascular anatomy.

    Directory of Open Access Journals (Sweden)

    J Taylor Webb

    Full Text Available A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal in another region. More recently, such lag-based measures have been applied to investigate directed functional connectivity, although this application has been controversial. We attempted to use large publicly available datasets (FCON 1000, ADHD 200, Human Connectome Project to determine whether consistent spatial patterns of Granger Causality are observed in typical fMRI data. For BOLD datasets from 1,240 typically developing subjects ages 7-40, we measured Granger causality between time series for every pair of 7,266 spherical ROIs covering the gray matter and 264 seed ROIs at hubs of the brain's functional network architecture. Granger causality estimates were strongly reproducible for connections in a test and replication sample (n=620 subjects for each group, as well as in data from a single subject scanned repeatedly, both during resting and passive video viewing. The same effect was even stronger in high temporal resolution fMRI data from the Human Connectome Project, and was observed independently in data collected during performance of 7 task paradigms. The spatial distribution of Granger causality reflected vascular anatomy with a progression from Granger causality sources, in Circle of Willis arterial inflow distributions, to sinks, near large venous vascular structures such as dural venous sinuses and at the periphery of the brain. Attempts to resolve BOLD phase differences with Granger causality should consider the possibility of reproducible vascular confounds, a problem that is independent of the known regional variability of the hemodynamic response.

  12. Conflict anticipation in alcohol dependence - A model-based fMRI study of stop signal task.

    Science.gov (United States)

    Hu, Sien; Ide, Jaime S; Zhang, Sheng; Sinha, Rajita; Li, Chiang-Shan R

    2015-01-01

    Our previous work characterized altered cerebral activations during cognitive control in individuals with alcohol dependence (AD). A hallmark of cognitive control is the ability to anticipate changes and adjust behavior accordingly. Here, we employed a Bayesian model to describe trial-by-trial anticipation of the stop signal and modeled fMRI signals of conflict anticipation in a stop signal task. Our goal is to characterize the neural correlates of conflict anticipation and its relationship to response inhibition and alcohol consumption in AD. Twenty-four AD and 70 age and gender matched healthy control individuals (HC) participated in the study. fMRI data were pre-processed and modeled with SPM8. We modeled fMRI signals at trial onset with individual events parametrically modulated by estimated probability of the stop signal, p(Stop), and compared regional responses to conflict anticipation between AD and HC. To address the link to response inhibition, we regressed whole-brain responses to conflict anticipation against the stop signal reaction time (SSRT). Compared to HC (54/70), fewer AD (11/24) showed a significant sequential effect - a correlation between p(Stop) and RT during go trials - and the magnitude of sequential effect is diminished, suggesting a deficit in proactive control. Parametric analyses showed decreased learning rate and over-estimated prior mean of the stop signal in AD. In fMRI, both HC and AD responded to p(Stop) in bilateral inferior parietal cortex and anterior pre-supplementary motor area, although the magnitude of response increased in AD. In contrast, HC but not AD showed deactivation of the perigenual anterior cingulate cortex (pgACC). Furthermore, deactivation of the pgACC to increasing p(Stop) is positively correlated with the SSRT in HC but not AD. Recent alcohol consumption is correlated with increased activation of the thalamus and cerebellum in AD during conflict anticipation. The current results highlight altered proactive

  13. Mechanistic Mathematical Modeling Tests Hypotheses of the Neurovascular Coupling in fMRI.

    Directory of Open Access Journals (Sweden)

    Karin Lundengård

    2016-06-01

    Full Text Available Functional magnetic resonance imaging (fMRI measures brain activity by detecting the blood-oxygen-level dependent (BOLD response to neural activity. The BOLD response depends on the neurovascular coupling, which connects cerebral blood flow, cerebral blood volume, and deoxyhemoglobin level to neuronal activity. The exact mechanisms behind this neurovascular coupling are not yet fully investigated. There are at least three different ways in which these mechanisms are being discussed. Firstly, mathematical models involving the so-called Balloon model describes the relation between oxygen metabolism, cerebral blood volume, and cerebral blood flow. However, the Balloon model does not describe cellular and biochemical mechanisms. Secondly, the metabolic feedback hypothesis, which is based on experimental findings on metabolism associated with brain activation, and thirdly, the neurotransmitter feed-forward hypothesis which describes intracellular pathways leading to vasoactive substance release. Both the metabolic feedback and the neurotransmitter feed-forward hypotheses have been extensively studied, but only experimentally. These two hypotheses have never been implemented as mathematical models. Here we investigate these two hypotheses by mechanistic mathematical modeling using a systems biology approach; these methods have been used in biological research for many years but never been applied to the BOLD response in fMRI. In the current work, model structures describing the metabolic feedback and the neurotransmitter feed-forward hypotheses were applied to measured BOLD responses in the visual cortex of 12 healthy volunteers. Evaluating each hypothesis separately shows that neither hypothesis alone can describe the data in a biologically plausible way. However, by adding metabolism to the neurotransmitter feed-forward model structure, we obtained a new model structure which is able to fit the estimation data and successfully predict new

  14. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks.

    Science.gov (United States)

    Hautzel, Hubertus; Mottaghy, Felix M; Specht, Karsten; Müller, Hans-Wilhelm; Krause, Bernd J

    2009-10-01

    In working memory (WM), functional imaging studies demonstrate cerebellar involvement indicating a cognitive role of the cerebellum. These cognitive contributions were predominantly interpreted as part of the phonological loop within the Baddeley model of WM. However, those underlying investigations were performed in the context of visual verbal WM which could pose a bias when interpreting the results. The aim of this fMRI study was to address the question of whether the cerebellum supports additional aspects of WM in the context of higher cognitive functions. Furthermore, laterality effects were investigated to further disentangle the cerebellar role in the context of the phonological loop and the visuospatial sketchpad. A direct comparison of verbal and abstract visual WM was performed in 17 young volunteers by applying a 2-back paradigm and extracting the % change in BOLD signal from the fMRI data. To minimize potential verbal strategies, Attneave and Arnoult shapes of non-nameable objects were chosen for the abstract condition. The analyses revealed no significant differences in verbal vs. abstract WM. Moreover, no laterality effects were demonstrated in both verbal and abstract WM. These results provide further evidence of a broader cognitive involvement of the cerebellum in WM that is not only confined to the phonological loop but also supports central executive subfunctions. The fact that no lateralization effects are found might be attributed to the characteristics of the n-back paradigm which emphasizes central executive subfunctions over the subsidiary slave systems.

  15. Cortical layers, rhythms and BOLD signals.

    Science.gov (United States)

    Scheeringa, René; Fries, Pascal

    2017-11-03

    This review investigates how laminar fMRI can complement insights into brain function derived from the study of rhythmic neuronal synchronization. Neuronal synchronization in various frequency bands plays an important role in neuronal communication between brain areas, and it does so on the backbone of layer-specific interareal anatomical projections. Feedforward projections originate predominantly in supragranular cortical layers and terminate in layer 4, and this pattern is reflected in inter-laminar and interareal directed gamma-band influences. Thus, gamma-band synchronization likely subserves feedforward signaling. By contrast, anatomical feedback projections originate predominantly in infragranular layers and terminate outside layer 4, and this pattern is reflected in inter-laminar and interareal directed alpha- and/or beta-band influences. Thus, alpha-beta band synchronization likely subserves feedback signaling. Furthermore, these rhythms explain part of the BOLD signal, with independent contributions of alpha-beta and gamma. These findings suggest that laminar fMRI can provide us with a potentially useful method to test some of the predictions derived from the study of neuronal synchronization. We review central findings regarding the role of layer-specific neuronal synchronization for brain function, and regarding the link between neuronal synchronization and the BOLD signal. We discuss the role that laminar fMRI could play by comparing it to invasive and non-invasive electrophysiological recordings. Compared to direct electrophysiological recordings, this method provides a metric of neuronal activity that is slow and indirect, but that is uniquely non-invasive and layer-specific with potentially whole brain coverage. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Application of calibrated fMRI in Alzheimer's disease.

    Science.gov (United States)

    Lajoie, Isabelle; Nugent, Scott; Debacker, Clément; Dyson, Kenneth; Tancredi, Felipe B; Badhwar, AmanPreet; Belleville, Sylvie; Deschaintre, Yan; Bellec, Pierre; Doyon, Julien; Bocti, Christian; Gauthier, Serge; Arnold, Douglas; Kergoat, Marie-Jeanne; Chertkow, Howard; Monchi, Oury; Hoge, Richard D

    2017-01-01

    Calibrated fMRI based on arterial spin-labeling (ASL) and blood oxygen-dependent contrast (BOLD), combined with periods of hypercapnia and hyperoxia, can provide information on cerebrovascular reactivity (CVR), resting blood flow (CBF), oxygen extraction fraction (OEF), and resting oxidative metabolism (CMRO 2 ). Vascular and metabolic integrity are believed to be affected in Alzheimer's disease (AD), thus, the use of calibrated fMRI in AD may help understand the disease and monitor therapeutic responses in future clinical trials. In the present work, we applied a calibrated fMRI approach referred to as Quantitative O2 (QUO2) in a cohort of probable AD dementia and age-matched control participants. The resulting CBF, OEF and CMRO 2 values fell within the range from previous studies using positron emission tomography (PET) with 15 O labeling. Moreover, the typical parietotemporal pattern of hypoperfusion and hypometabolism in AD was observed, especially in the precuneus, a particularly vulnerable region. We detected no deficit in frontal CBF, nor in whole grey matter CVR, which supports the hypothesis that the effects observed were associated specifically with AD rather than generalized vascular disease. Some key pitfalls affecting both ASL and BOLD methods were encountered, such as prolonged arterial transit times (particularly in the occipital lobe), the presence of susceptibility artifacts obscuring medial temporal regions, and the challenges associated with the hypercapnic manipulation in AD patients and elderly participants. The present results are encouraging and demonstrate the promise of calibrated fMRI measurements as potential biomarkers in AD. Although CMRO 2 can be imaged with 15 O PET, the QUO2 method uses more widely available imaging infrastructure, avoids exposure to ionizing radiation, and integrates with other MRI-based measures of brain structure and function.

  17. Application of calibrated fMRI in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Isabelle Lajoie

    2017-01-01

    Full Text Available Calibrated fMRI based on arterial spin-labeling (ASL and blood oxygen-dependent contrast (BOLD, combined with periods of hypercapnia and hyperoxia, can provide information on cerebrovascular reactivity (CVR, resting blood flow (CBF, oxygen extraction fraction (OEF, and resting oxidative metabolism (CMRO2. Vascular and metabolic integrity are believed to be affected in Alzheimer's disease (AD, thus, the use of calibrated fMRI in AD may help understand the disease and monitor therapeutic responses in future clinical trials. In the present work, we applied a calibrated fMRI approach referred to as Quantitative O2 (QUO2 in a cohort of probable AD dementia and age-matched control participants. The resulting CBF, OEF and CMRO2 values fell within the range from previous studies using positron emission tomography (PET with 15O labeling. Moreover, the typical parietotemporal pattern of hypoperfusion and hypometabolism in AD was observed, especially in the precuneus, a particularly vulnerable region. We detected no deficit in frontal CBF, nor in whole grey matter CVR, which supports the hypothesis that the effects observed were associated specifically with AD rather than generalized vascular disease. Some key pitfalls affecting both ASL and BOLD methods were encountered, such as prolonged arterial transit times (particularly in the occipital lobe, the presence of susceptibility artifacts obscuring medial temporal regions, and the challenges associated with the hypercapnic manipulation in AD patients and elderly participants. The present results are encouraging and demonstrate the promise of calibrated fMRI measurements as potential biomarkers in AD. Although CMRO2 can be imaged with 15O PET, the QUO2 method uses more widely available imaging infrastructure, avoids exposure to ionizing radiation, and integrates with other MRI-based measures of brain structure and function.

  18. Multivoxel Pattern Analysis for fMRI Data: A Review

    Directory of Open Access Journals (Sweden)

    Abdelhak Mahmoudi

    2012-01-01

    Full Text Available Functional magnetic resonance imaging (fMRI exploits blood-oxygen-level-dependent (BOLD contrasts to map neural activity associated with a variety of brain functions including sensory processing, motor control, and cognitive and emotional functions. The general linear model (GLM approach is used to reveal task-related brain areas by searching for linear correlations between the fMRI time course and a reference model. One of the limitations of the GLM approach is the assumption that the covariance across neighbouring voxels is not informative about the cognitive function under examination. Multivoxel pattern analysis (MVPA represents a promising technique that is currently exploited to investigate the information contained in distributed patterns of neural activity to infer the functional role of brain areas and networks. MVPA is considered as a supervised classification problem where a classifier attempts to capture the relationships between spatial pattern of fMRI activity and experimental conditions. In this paper , we review MVPA and describe the mathematical basis of the classification algorithms used for decoding fMRI signals, such as support vector machines (SVMs. In addition, we describe the workflow of processing steps required for MVPA such as feature selection, dimensionality reduction, cross-validation, and classifier performance estimation based on receiver operating characteristic (ROC curves.

  19. Multivoxel Pattern Analysis for fMRI Data: A Review

    Science.gov (United States)

    Takerkart, Sylvain; Regragui, Fakhita; Boussaoud, Driss; Brovelli, Andrea

    2012-01-01

    Functional magnetic resonance imaging (fMRI) exploits blood-oxygen-level-dependent (BOLD) contrasts to map neural activity associated with a variety of brain functions including sensory processing, motor control, and cognitive and emotional functions. The general linear model (GLM) approach is used to reveal task-related brain areas by searching for linear correlations between the fMRI time course and a reference model. One of the limitations of the GLM approach is the assumption that the covariance across neighbouring voxels is not informative about the cognitive function under examination. Multivoxel pattern analysis (MVPA) represents a promising technique that is currently exploited to investigate the information contained in distributed patterns of neural activity to infer the functional role of brain areas and networks. MVPA is considered as a supervised classification problem where a classifier attempts to capture the relationships between spatial pattern of fMRI activity and experimental conditions. In this paper , we review MVPA and describe the mathematical basis of the classification algorithms used for decoding fMRI signals, such as support vector machines (SVMs). In addition, we describe the workflow of processing steps required for MVPA such as feature selection, dimensionality reduction, cross-validation, and classifier performance estimation based on receiver operating characteristic (ROC) curves. PMID:23401720

  20. Increasing fMRI sampling rate improves Granger causality estimates.

    Directory of Open Access Journals (Sweden)

    Fa-Hsuan Lin

    Full Text Available Estimation of causal interactions between brain areas is necessary for elucidating large-scale functional brain networks underlying behavior and cognition. Granger causality analysis of time series data can quantitatively estimate directional information flow between brain regions. Here, we show that such estimates are significantly improved when the temporal sampling rate of functional magnetic resonance imaging (fMRI is increased 20-fold. Specifically, healthy volunteers performed a simple visuomotor task during blood oxygenation level dependent (BOLD contrast based whole-head inverse imaging (InI. Granger causality analysis based on raw InI BOLD data sampled at 100-ms resolution detected the expected causal relations, whereas when the data were downsampled to the temporal resolution of 2 s typically used in echo-planar fMRI, the causality could not be detected. An additional control analysis, in which we SINC interpolated additional data points to the downsampled time series at 0.1-s intervals, confirmed that the improvements achieved with the real InI data were not explainable by the increased time-series length alone. We therefore conclude that the high-temporal resolution of InI improves the Granger causality connectivity analysis of the human brain.

  1. Activation of dorsolateral prefrontal cortex in a dual neuropsychological screening test: An fMRI approach

    Directory of Open Access Journals (Sweden)

    Tachibana Atsumichi

    2012-05-01

    Full Text Available Abstract Background The Kana Pick-out Test (KPT, which uses Kana or Japanese symbols that represent syllables, requires parallel processing of discrete (pick-out and continuous (reading dual tasks. As a dual task, the KPT is thought to test working memory and executive function, particularly in the prefrontal cortex (PFC, and is widely used in Japan as a clinical screen for dementia. Nevertheless, there has been little neurological investigation into PFC activity during this test. Methods We used functional magnetic resonance imaging (fMRI to evaluate changes in the blood oxygenation level-dependent (BOLD signal in young healthy adults during performance of a computerized KPT dual task (comprised of reading comprehension and picking out vowels and compared it to its single task components (reading or vowel pick-out alone. Results Behavioral performance of the KPT degraded compared to its single task components. Performance of the KPT markedly increased BOLD signal intensity in the PFC, and also activated sensorimotor, parietal association, and visual cortex areas. In conjunction analyses, bilateral BOLD signal in the dorsolateral PFC (Brodmann's areas 45, 46 was present only in the KPT. Conclusions Our results support the central bottleneck theory and suggest that the dorsolateral PFC is an important mediator of neural activity for both short-term storage and executive processes. Quantitative evaluation of the KPT with fMRI in healthy adults is the first step towards understanding the effects of aging or cognitive impairment on KPT performance.

  2. Activation of dorsolateral prefrontal cortex in a dual neuropsychological screening test: an fMRI approach.

    Science.gov (United States)

    Tachibana, Atsumichi; Noah, J Adam; Bronner, Shaw; Ono, Yumie; Hirano, Yoshiyuki; Niwa, Masami; Watanabe, Kazuko; Onozuka, Minoru

    2012-05-28

    The Kana Pick-out Test (KPT), which uses Kana or Japanese symbols that represent syllables, requires parallel processing of discrete (pick-out) and continuous (reading) dual tasks. As a dual task, the KPT is thought to test working memory and executive function, particularly in the prefrontal cortex (PFC), and is widely used in Japan as a clinical screen for dementia. Nevertheless, there has been little neurological investigation into PFC activity during this test. We used functional magnetic resonance imaging (fMRI) to evaluate changes in the blood oxygenation level-dependent (BOLD) signal in young healthy adults during performance of a computerized KPT dual task (comprised of reading comprehension and picking out vowels) and compared it to its single task components (reading or vowel pick-out alone). Behavioral performance of the KPT degraded compared to its single task components. Performance of the KPT markedly increased BOLD signal intensity in the PFC, and also activated sensorimotor, parietal association, and visual cortex areas. In conjunction analyses, bilateral BOLD signal in the dorsolateral PFC (Brodmann's areas 45, 46) was present only in the KPT. Our results support the central bottleneck theory and suggest that the dorsolateral PFC is an important mediator of neural activity for both short-term storage and executive processes. Quantitative evaluation of the KPT with fMRI in healthy adults is the first step towards understanding the effects of aging or cognitive impairment on KPT performance.

  3. Distinct BOLD Activation Profiles Following Central and Peripheral Oxytocin Administration in Awake Rats.

    Science.gov (United States)

    Ferris, Craig F; Yee, Jason R; Kenkel, William M; Dumais, Kelly Marie; Moore, Kelsey; Veenema, Alexa H; Kulkarni, Praveen; Perkybile, Allison M; Carter, C Sue

    2015-01-01

    A growing body of literature has suggested that intranasal oxytocin (OT) or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood-brain barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level-dependent (BOLD) signal intensity in response to peripheral OT injections (0.1, 0.5, or 2.5 mg/kg) during functional magnetic resonance imaging (fMRI) in awake rats imaged at 7.0 T. These data were compared to OT (1 μg/5 μl) given directly to the brain via the lateral cerebroventricle. Using a 3D annotated MRI atlas of the rat brain segmented into 171 brain areas and computational analysis, we reconstructed the distributed integrated neural circuits identified with BOLD fMRI following central and peripheral OT. Both routes of administration caused significant changes in BOLD signal within the first 10 min of administration. As expected, central OT activated a majority of brain areas known to express a high density of OT receptors, e.g., lateral septum, subiculum, shell of the accumbens, bed nucleus of the stria terminalis. This profile of activation was not matched by peripheral OT. The change in BOLD signal to peripheral OT did not show any discernible dose-response. Interestingly, peripheral OT affected all subdivisions of the olfactory bulb, in addition to the cerebellum and several brainstem areas relevant to the autonomic nervous system, including the solitary tract nucleus. The results from this imaging study do not support a direct central action of peripheral OT on the brain. Instead, the patterns of brain activity suggest that peripheral OT may interact at the level of the olfactory bulb and through sensory afferents from the autonomic nervous system to influence brain activity.

  4. Cue reactivity is associated with duration and severity of alcohol dependence: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Zsuzsika Sjoerds

    Full Text Available INTRODUCTION: With the progression of substance dependence, drug cue-related brain activation is thought to shift from motivational towards habit pathways. However, a direct association between cue-induced brain activation and dependence duration has not yet been shown. We therefore examined the relationship between alcohol cue-reactivity in the brain, cue-induced subjective craving and alcohol dependence duration and severity. Since alcohol dependence is highly comorbid with depression/anxiety, which may modulate brain responses to alcohol cues, we also examined the relation between comorbid depression/anxiety and cue-reactivity. METHODS: We compared 30 alcohol dependent patients with 15 healthy controls and 15 depression/anxiety patients during a visual alcohol cue-reactivity task using functional magnetic resonance imaging blood oxygenated level-dependent responses and subjective craving as outcomes. Within the alcohol dependent group we correlated cue-reactivity with alcohol dependence severity and duration, with cue-induced craving and with depression/anxiety levels. RESULTS: Alcohol dependent patients showed greater cue-reactivity in motivational brain pathways and stronger subjective craving than depression/anxiety patients and healthy controls. Depression/anxiety was not associated with cue-reactivity, but depression severity in alcohol dependent patients was positively associated with craving. Within alcohol dependence, longer duration of alcohol dependence was associated with stronger cue-related activation of the posterior putamen, a structure involved in habits, whereas higher alcohol dependence severity was associated with lower cue-reactivity in the anterior putamen, an area implicated in goal-directed behavior preceding habit formation. CONCLUSION: Cue-reactivity in alcohol dependence is not modulated by comorbid depression or anxiety. More importantly, the current data confirm the hypothesis of a ventral to dorsal striatal shift

  5. Estimation of the neuronal activation using fMRI data: An observer-based approach

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2013-06-01

    This paper deals with the estimation of the neuronal activation and some unmeasured physiological information using the Blood Oxygenation Level Dependent (BOLD) signal measured using functional Magnetic Resonance Imaging (fMRI). We propose to use an observer-based approach applied to the balloon hemodynamic model. The latter describes the relation between the neural activity and the BOLD signal. The balloon model can be expressed in a nonlinear state-space representation where the states, the parameters and the input (neuronal activation), are unknown. This study focuses only on the estimation of the hidden states and the neuronal activation. The model is first linearized around the equilibrium and an observer is applied to this linearized version. Numerical results performed on synthetic data are presented.

  6. Anatomical and functional assemblies of brain BOLD oscillations

    Science.gov (United States)

    Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania

    2011-01-01

    Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505

  7. Cue Reactivity Is Associated with Duration and Severity of Alcohol Dependence: An fMRI Study

    NARCIS (Netherlands)

    Sjoerds, Z.; van den Brink, W.; Beekman, A.T.F.; Penninx, B.W.J.H.; Veltman, D.J.

    2014-01-01

    Introduction: With the progression of substance dependence, drug cue-related brain activation is thought to shift from motivational towards habit pathways. However, a direct association between cue-induced brain activation and dependence duration has not yet been shown. We therefore examined the

  8. Cue Reactivity Is Associated with Duration and Severity of Alcohol Dependence : An fMRI Study

    NARCIS (Netherlands)

    Sjoerds, Zsuzsika; van den Brink, Wim; Beekman, Aartjan T. F.; Penninx, Brenda W. J. H.; Veltman, Dick J.

    2014-01-01

    Introduction: With the progression of substance dependence, drug cue-related brain activation is thought to shift from motivational towards habit pathways. However, a direct association between cue-induced brain activation and dependence duration has not yet been shown. We therefore examined the

  9. Cue reactivity is associated with duration and severity of alcohol dependence: an FMRI study

    NARCIS (Netherlands)

    Sjoerds, Zsuzsika; van den Brink, Wim; Beekman, Aartjan T. F.; Penninx, Brenda W. J. H.; Veltman, Dick J.

    2014-01-01

    With the progression of substance dependence, drug cue-related brain activation is thought to shift from motivational towards habit pathways. However, a direct association between cue-induced brain activation and dependence duration has not yet been shown. We therefore examined the relationship

  10. The effect of ageing on fMRI: Correction for the confounding effects of vascular reactivity evaluated by joint fMRI and MEG in 335 adults

    Science.gov (United States)

    Henson, Richard N. A.; Tyler, Lorraine K.; Davis, Simon W.; Shafto, Meredith A.; Taylor, Jason R.; Williams, Nitin; Cam‐CAN; Rowe, James B.

    2015-01-01

    Abstract In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood‐oxygenation level‐dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting‐state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath‐hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age‐related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population‐based Cambridge Centre for Ageing and Neuroscience cohort (Cam‐CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task‐based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects

  11. Mapping and characterization of positive and negative BOLD responses to visual stimulation in multiple brain regions at 7T.

    Science.gov (United States)

    Jorge, João; Figueiredo, Patrícia; Gruetter, Rolf; van der Zwaag, Wietske

    2018-02-20

    External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and negative BOLD responses (NBRs) to visual checkerboard stimulation, occurring in various brain regions within and beyond the visual cortex. Recently-proposed accelerated fMRI techniques were employed for data acquisition, and procedures for exclusion of large draining vein contributions, together with ICA-assisted denoising, were included in the analysis to improve response estimation. Besides the visual cortex, significant PBRs were found in the lateral geniculate nucleus and superior colliculus, as well as the pre-central sulcus; in these regions, response durations increased monotonically with stimulus duration, in tight covariation with the visual PBR duration. Significant NBRs were found in the visual cortex, auditory cortex, default-mode network (DMN) and superior parietal lobule; NBR durations also tended to increase with stimulus duration, but were significantly less sustained than the visual PBR, especially for the DMN and superior parietal lobule. Responses in visual and auditory cortex were further studied for checkerboard contrast dependence, and their amplitudes were found to increase monotonically with contrast, linearly correlated with the visual PBR amplitude. Overall, these findings suggest the presence of dynamic neuronal interactions across multiple brain regions, sensitive to stimulus intensity and duration, and demonstrate the richness of information obtainable when jointly mapping positive and negative BOLD responses at a whole-brain scale, with ultra-high field fMRI. © 2018 Wiley Periodicals, Inc.

  12. Tactile and non-tactile sensory paradigms for fMRI and neurophysiologic studies in rodents.

    Science.gov (United States)

    Sanganahalli, Basavaraju G; Bailey, Christopher J; Herman, Peter; Hyder, Fahmeed

    2009-01-01

    Functional magnetic resonance imaging (fMRI) has become a popular functional imaging tool for human studies. Future diagnostic use of fMRI depends, however, on a suitable neurophysiologic interpretation of the blood oxygenation level dependent (BOLD) signal change. This particular goal is best achieved in animal models primarily due to the invasive nature of other methods used and/or pharmacological agents applied to probe different nuances of neuronal (and glial) activity coupled to the BOLD signal change. In the last decade, we have directed our efforts towards the development of stimulation protocols for a variety of modalities in rodents with fMRI. Cortical perception of the natural world relies on the formation of multi-dimensional representation of stimuli impinging on the different sensory systems, leading to the hypothesis that a sensory stimulus may have very different neurophysiologic outcome(s) when paired with a near simultaneous event in another modality. Before approaching this level of complexity, reliable measures must be obtained of the relatively small changes in the BOLD signal and other neurophysiologic markers (electrical activity, blood flow) induced by different peripheral stimuli. Here we describe different tactile (i.e., forepaw, whisker) and non-tactile (i.e., olfactory, visual) sensory paradigms applied to the anesthetized rat. The main focus is on development and validation of methods for reproducible stimulation of each sensory modality applied independently or in conjunction with one another, both inside and outside the magnet. We discuss similarities and/or differences across the sensory systems as well as advantages they may have for studying essential neuroscientific questions. We envisage that the different sensory paradigms described here may be applied directly to studies of multi-sensory interactions in anesthetized rats, en route to a rudimentary understanding of the awake functioning brain where various sensory cues presumably

  13. Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis.

    Directory of Open Access Journals (Sweden)

    E Castaldi

    2016-10-01

    Full Text Available Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI. After surgery, six out of seven retinitis pigmentosa (RP blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD activity in V1 and the lateral geniculate nucleus (LGN was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation.

  14. Nonlinear Bayesian Estimation of BOLD Signal under Non-Gaussian Noise

    Directory of Open Access Journals (Sweden)

    Ali Fahim Khan

    2015-01-01

    Full Text Available Modeling the blood oxygenation level dependent (BOLD signal has been a subject of study for over a decade in the neuroimaging community. Inspired from fluid dynamics, the hemodynamic model provides a plausible yet convincing interpretation of the BOLD signal by amalgamating effects of dynamic physiological changes in blood oxygenation, cerebral blood flow and volume. The nonautonomous, nonlinear set of differential equations of the hemodynamic model constitutes the process model while the weighted nonlinear sum of the physiological variables forms the measurement model. Plagued by various noise sources, the time series fMRI measurement data is mostly assumed to be affected by additive Gaussian noise. Though more feasible, the assumption may cause the designed filter to perform poorly if made to work under non-Gaussian environment. In this paper, we present a data assimilation scheme that assumes additive non-Gaussian noise, namely, the e-mixture noise, affecting the measurements. The proposed filter MAGSF and the celebrated EKF are put to test by performing joint optimal Bayesian filtering to estimate both the states and parameters governing the hemodynamic model under non-Gaussian environment. Analyses using both the synthetic and real data reveal superior performance of the MAGSF as compared to EKF.

  15. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.

    Science.gov (United States)

    Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2017-12-01

    To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic

  16. Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations

    Directory of Open Access Journals (Sweden)

    Adam Kettinger

    2016-12-01

    Full Text Available Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate how these advance echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1 simple arithmetic averaging, (2 BOLD sensitivity weighting, (3 temporal-signal-to-noise ratio weighting and (4 temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e. group-level t-values compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned.

  17. Assessment of language lateralization with functional magnetic resonance imaging (fMRI)

    International Nuclear Information System (INIS)

    Salagierska-Barwinska, A.; Goraj, B.

    2004-01-01

    fMRI offers powerful methods to delineate which brain regions are engaged in language processing in the intact brain. Until now hemisphere dominance for language has been usually assessed by means of the intraoperative methods: the Wada test or electrocortical stimulation mapping. Recently functional MRI becomes the valuable method in determining hemisphere dominance for language. fMRI study was proved to be concordant with invasive measures. fMRI was carried out in 30 healthy selected participants (15 females: 10 strongly right-handed and 5 strongly left-handed; 15 males: 10 strongly right-handed and 5 strongly left-handed). The subject's handedness was assessed by standardized psychological tests inter alia the 'lateralization inventory'. Two different language tasks were used: a verb generation task and a phonological task. Subjects were scanned,while performing experimental block. The block contained alternately 8 active (language task) and 8 control conditions. Statistical analysis of evoked blood oxygenation level-dependent BOLD) responses, measured with echo planar imagining (1.5 T) were used. During a verb generation task in strongly right or left handed subjects the inferior frontal region was activated on the side opposite to the subject's handedness determined by the psychological test. Our fMRI studies demonstrated no gender effects on brain during these language tasks. Our study suggests that fMRI is a good device for the study of the language organization. The advantage of fMRI is its capacity for exact localization of activated areas. fMRI together with adequate neurolinguistic test could be promising routine preoperative tool in identification hemisphere dominance for language. These results encourage to further investigation for evaluating correlation in patients with brain injuries. (author)

  18. Gender effects in alcohol dependence: an fMRI pilot study examining affective processing.

    Science.gov (United States)

    Padula, Claudia B; Anthenelli, Robert M; Eliassen, James C; Nelson, Erik; Lisdahl, Krista M

    2015-02-01

    Alcohol dependence (AD) has global effects on brain structure and function, including frontolimbic regions regulating affective processing. Preliminary evidence suggests alcohol blunts limbic response to negative affective stimuli and increases activation to positive affective stimuli. Subtle gender differences are also evident during affective processing. Fourteen abstinent AD individuals (8 F, 6 M) and 14 healthy controls (9 F, 5 M), ages 23 to 60, were included in this facial affective processing functional magnetic resonance imaging pilot study. Whole-brain linear regression analyses were performed, and follow-up analyses examined whether AD status significantly predicted depressive symptoms and/or coping. Fearful Condition-The AD group demonstrated reduced activation in the right medial frontal gyrus, compared with controls. Gender moderated the effects of AD in bilateral inferior frontal gyri. Happy Condition-AD individuals had increased activation in the right thalamus. Gender moderated the effects of AD in the left caudate, right middle frontal gyrus, left paracentral lobule, and right lingual gyrus. Interactive AD and gender effects for fearful and happy faces were such that AD men activated more than control men, but AD women activated less than control women. Enhanced coping was associated with greater activation in right medial frontal gyrus during fearful condition in AD individuals. Abnormal affective processing in AD may be a marker of alcoholism risk or a consequence of chronic alcoholism. Subtle gender differences were observed, and gender moderated the effects of AD on neural substrates of affective processing. AD individuals with enhanced coping had brain activation patterns more similar to controls. Results help elucidate the effects of alcohol, gender, and their interaction on affective processing. Copyright © 2015 by the Research Society on Alcoholism.

  19. BOLD responses in somatosensory cortices better reflect heat sensation than pain.

    Science.gov (United States)

    Moulton, Eric A; Pendse, Gautam; Becerra, Lino R; Borsook, David

    2012-04-25

    The discovery of cortical networks that participate in pain processing has led to the common generalization that blood oxygen level-dependent (BOLD) responses in these areas indicate the processing of pain. Physical stimuli have fundamental properties that elicit sensations distinguishable from pain, such as heat. We hypothesized that pain intensity coding may reflect the intensity coding of heat sensation during the presentation of thermal stimuli during fMRI. Six 3T fMRI heat scans were collected for 16 healthy subjects, corresponding to perceptual levels of "low innocuous heat," "moderate innocuous heat," "high innocuous heat," "low painful heat," "moderate painful heat," and "high painful heat" delivered by a contact thermode to the face. Subjects rated pain and heat intensity separately after each scan. A general linear model analysis detected different patterns of brain activation for the different phases of the biphasic response to heat. During high painful heat, the early phase was associated with significant anterior insula and anterior cingulate cortex activation. Persistent responses were detected in the right dorsolateral prefrontal cortex and inferior parietal lobule. Only the late phase showed significant correlations with perceptual ratings. Significant heat intensity correlated activation was identified in contralateral primary and secondary somatosensory cortices, motor cortex, and superior temporal lobe. These areas were significantly more related to heat ratings than pain. These results indicate that heat intensity is encoded by the somatosensory cortices, and that pain evaluation may either arise from multimodal evaluative processes, or is a distributed process.

  20. Novel fMRI working memory paradigm accurately detects cognitive impairment in multiple sclerosis.

    Science.gov (United States)

    Nelson, Flavia; Akhtar, Mohammad A; Zúñiga, Edward; Perez, Carlos A; Hasan, Khader M; Wilken, Jeffrey; Wolinsky, Jerry S; Narayana, Ponnada A; Steinberg, Joel L

    2017-05-01

    Cognitive impairment (CI) cannot be diagnosed by magnetic resonance imaging (MRI). Functional magnetic resonance imaging (fMRI) paradigms, such as the immediate/delayed memory task (I/DMT), detect varying degrees of working memory (WM). Preliminary findings using I/DMT showed differences in blood oxygenation level dependent (BOLD) activation between impaired (MSCI, n = 12) and non-impaired (MSNI, n = 9) multiple sclerosis (MS) patients. The aim of the study was to confirm CI detection based on I/DMT BOLD activation in a larger cohort of MS patients. The role of T2 lesion volume (LV) and Expanded Disability Status Scale (EDSS) in magnitude of BOLD signal was also sought. A total of 50 patients (EDSS mean ( m) = 3.2, disease duration (DD) m = 12 years, and age m = 40 years) underwent the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) and I/DMT. Working memory activation (WMa) represents BOLD signal during DMT minus signal during IMT. CI was based on MACFIMS. A total of 10 MSNI, 30 MSCI, and 4 borderline patients were included in the analyses. Analysis of variance (ANOVA) showed MSNI had significantly greater WMa than MSCI, in the left prefrontal cortex and left supplementary motor area ( p = 0.032). Regression analysis showed significant inverse correlations between WMa and T2 LV/EDSS in similar areas ( p = 0.005, 0.004, respectively). I/DMT-based BOLD activation detects CI in MS. Larger studies are needed to confirm these findings.

  1. Interhemispheric differences of fMRI responses to visual stimuli in patients with side-fixed migraine aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal Mohammad; Hoffmann, Michael B

    2014-01-01

    hemifield. We recruited 20 patients with frequent side-fixed visual aura attacks (≥90% of auras occurring in the same visual hemifield) and 20 age and sex matched healthy controls and compared the fMRI blood oxygenation level dependent (BOLD) responses to visual stimulation between symptomatic...... and asymptomatic hemispheres during the interictal phase and between migraine patients and controls. BOLD responses were selectively increased in the symptomatic hemispheres. This was found in the inferior parietal lobule (P = 0.002), the inferior frontal gyrus (P = 0.003), and the superior parietal lobule (P = 0.......017). The affected cortical areas comprise a visually driven functional network involved in oculomotor control, guidance of movement, motion perception, visual attention, and visual spatial memory. The patients also had significantly increased response in the same cortical areas when compared to controls (P

  2. BOLD magnetic resonance imaging in nephrology

    Science.gov (United States)

    Hall, Michael E; Jordan, Jennifer H; Juncos, Luis A; Hundley, W Gregory; Hall, John E

    2018-01-01

    Magnetic resonance (MR) imaging, a non-invasive modality that provides anatomic and physiologic information, is increasingly used for diagnosis of pathophysiologic conditions and for understanding renal physiology in humans. Although functional MR imaging methods were pioneered to investigate the brain, they also offer powerful techniques for investigation of other organ systems such as the kidneys. However, imaging the kidneys provides unique challenges due to potential complications from contrast agents. Therefore, development of non-contrast techniques to study kidney anatomy and physiology is important. Blood oxygen level-dependent (BOLD) MR is a non-contrast imaging technique that provides functional information related to renal tissue oxygenation in various pathophysiologic conditions. Here we discuss technical considerations, clinical uses and future directions for use of BOLD MR as well as complementary MR techniques to better understand renal pathophysiology. Our intent is to summarize kidney BOLD MR applications for the clinician rather than focusing on the complex physical challenges that functional MR imaging encompasses; however, we briefly discuss some of those issues. PMID:29559807

  3. BOLD magnetic resonance imaging in nephrology

    Directory of Open Access Journals (Sweden)

    Hall ME

    2018-03-01

    Full Text Available Michael E Hall,1,2 Jennifer H Jordan,3 Luis A Juncos,1,2 W Gregory Hundley,3 John E Hall2 1Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA; 2Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; 3Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA Abstract: Magnetic resonance (MR imaging, a non-invasive modality that provides anatomic and physiologic information, is increasingly used for diagnosis of pathophysiologic conditions and for understanding renal physiology in humans. Although functional MR imaging methods were pioneered to investigate the brain, they also offer powerful techniques for investigation of other organ systems such as the kidneys. However, imaging the kidneys provides unique challenges due to potential complications from contrast agents. Therefore, development of non-contrast techniques to study kidney anatomy and physiology is important. Blood oxygen level-dependent (BOLD MR is a non-contrast imaging technique that provides functional information related to renal tissue oxygenation in various pathophysiologic conditions. Here we discuss technical considerations, clinical uses and future directions for use of BOLD MR as well as complementary MR techniques to better understand renal pathophysiology. Our intent is to summarize kidney BOLD MR applications for the clinician rather than focusing on the complex physical challenges that functional MR imaging encompasses; however, we briefly discuss some of those issues. Keywords: functional MRI, kidney, oxygenation, chronic kidney disease 

  4. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention

    Directory of Open Access Journals (Sweden)

    Mara eKottlow

    2015-05-01

    Full Text Available Working memory (WM processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health.We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods.Four temporally coherent networks - the default mode network (DMN, the dorsal attention, the right and the left WM network - were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks’ pre-stimulus activation upon retention-related EEG activity in the theta, alpha and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing.We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be online synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals.

  5. Space-dependent effects of motion on the standard deviation of fMRI signals : a simulation study.

    NARCIS (Netherlands)

    Renken, R; Muresan, L; Duifhuis, H; Roerdink, JBTM; Yaffe, MK; Antonuk, LE

    2003-01-01

    In fMRI, any fluctuation of signal intensity, not recognized as a result of a specific task, is treated as noise. One source for "noise" is subject motion. Normally, motion effects are reduced by applying realignment. We investigate how apt a realignment procedure is in removing motion-related

  6. Research progress of BOLD-fMRI in minimal hepatic encephalopathy

    International Nuclear Information System (INIS)

    Zhou Zhiming; Zhao Jiannong

    2013-01-01

    The minimal hepatic encephalopathy is the early stage of hepatic encephalopathy. It has few apparent clinical symptoms and specific manifestations, and is difficult to diagnose. In the recent years, BOLD-fMRI has been used to study hepatic encephalopathy gradually. Through detection of the brain neuron activities in different states, it can not only locate the abnormal activity of brain functional areas, but also can find the changes of brain functional connectivity. BOLD- fMRI combining with other MR technologies can explore the pathology and pathogenesis of minimal hepatic encephalopathy from micro to macro and from structure to function. (authors)

  7. A Sensitivity Analysis of fMRI Balloon Model

    KAUST Repository

    Zayane, Chadia

    2015-04-22

    Functional magnetic resonance imaging (fMRI) allows the mapping of the brain activation through measurements of the Blood Oxygenation Level Dependent (BOLD) contrast. The characterization of the pathway from the input stimulus to the output BOLD signal requires the selection of an adequate hemodynamic model and the satisfaction of some specific conditions while conducting the experiment and calibrating the model. This paper, focuses on the identifiability of the Balloon hemodynamic model. By identifiability, we mean the ability to estimate accurately the model parameters given the input and the output measurement. Previous studies of the Balloon model have somehow added knowledge either by choosing prior distributions for the parameters, freezing some of them, or looking for the solution as a projection on a natural basis of some vector space. In these studies, the identification was generally assessed using event-related paradigms. This paper justifies the reasons behind the need of adding knowledge, choosing certain paradigms, and completing the few existing identifiability studies through a global sensitivity analysis of the Balloon model in the case of blocked design experiment.

  8. A Sensitivity Analysis of fMRI Balloon Model

    KAUST Repository

    Zayane, Chadia; Laleg-Kirati, Taous-Meriem

    2015-01-01

    Functional magnetic resonance imaging (fMRI) allows the mapping of the brain activation through measurements of the Blood Oxygenation Level Dependent (BOLD) contrast. The characterization of the pathway from the input stimulus to the output BOLD signal requires the selection of an adequate hemodynamic model and the satisfaction of some specific conditions while conducting the experiment and calibrating the model. This paper, focuses on the identifiability of the Balloon hemodynamic model. By identifiability, we mean the ability to estimate accurately the model parameters given the input and the output measurement. Previous studies of the Balloon model have somehow added knowledge either by choosing prior distributions for the parameters, freezing some of them, or looking for the solution as a projection on a natural basis of some vector space. In these studies, the identification was generally assessed using event-related paradigms. This paper justifies the reasons behind the need of adding knowledge, choosing certain paradigms, and completing the few existing identifiability studies through a global sensitivity analysis of the Balloon model in the case of blocked design experiment.

  9. Zolpidem reduces the blood oxygen level-dependent signal during visual system stimulation

    OpenAIRE

    Licata, Stephanie C.; Lowen, Steven B.; Trksak, George H.; MacLean, Robert R.; Lukas, Scott E.

    2011-01-01

    Zolpidem is a short-acting imidazopyridine hypnotic that binds at the benzodiazepine binding site on specific GABAA receptors to enhance fast inhibitory neurotransmission. The behavioral and receptor pharmacology of zolpidem has been studied extensively, but little is known about its neuronal substrates in vivo. In the present within-subject, double-blind, and placebo-controlled study, blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) at 3 Tesla was used to assess...

  10. Neural correlates of working memory in first episode and recurrent depression: An fMRI study.

    Science.gov (United States)

    Yüksel, Dilara; Dietsche, Bruno; Konrad, Carsten; Dannlowski, Udo; Kircher, Tilo; Krug, Axel

    2018-06-08

    Patients suffering from major depressive disorder (MDD) show deficits in working memory (WM) performance accompanied by bilateral fronto-parietal BOLD signal changes. It is unclear whether patients with a first depressive episode (FDE) exhibit the same signal changes as patients with recurrent depressive episodes (RDE). We investigated seventy-four MDD inpatients (48 RDE, 26 FDE) and 74 healthy control (HC) subjects performing an n-back WM task (0-back, 2-back, 3-back condition) in a 3T-fMRI. FMRI analyses revealed deviating BOLD signal in MDD in the thalamus (0-back vs. 2-back), the angular gyrus (0-back vs. 3-back), and the superior frontal gyrus (2-back vs. 3-back). Further effects were observed between RDE vs. FDE. Thus, RDE displayed differing neural activation in the middle frontal gyrus (2-back vs. 3-back), the inferior frontal gyrus, and the precentral gyrus (0-back vs. 2-back). In addition, both HC and FDE indicated a linear activation trend depending on task complexity. Although we failed to find behavioral differences between the groups, results suggest differing BOLD signal in fronto-parietal brain regions in MDD vs. HC, and in RDE vs. FDE. Moreover, both HC and FDE show similar trends in activation shapes. This indicates a link between levels of complexity-dependent activation in fronto-parietal brain regions and the stage of MDD. We therefore assume that load-dependent BOLD signal during WM is impaired in MDD, and that it is particularly affected in RDE. We also suspect neurobiological compensatory mechanisms of the reported brain regions in (working) memory functioning. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Sex-dependent dissociation between emotional appraisal and memory: a large-scale behavioral and fMRI study

    OpenAIRE

    Spalek, Klara; Fastenrath, Matthias; Ackermann, Sandra; Auschra, Bianca; Coynel, David; Frey, Julia; Gschwind, Leo; Hartmann, Francina; van der Maarel, Nadine; Papassotiropoulos, Andreas; de Quervain, Dominique; Milnik, Annette

    2015-01-01

    Extensive evidence indicates that women outperform men in episodic memory tasks. Furthermore, women are known to evaluate emotional stimuli as more arousing than men. Because emotional arousal typically increases episodic memory formation, the females' memory advantage might be more pronounced for emotionally arousing information than for neutral information. Here, we report behavioral data from 3398 subjects, who performed picture rating and memory tasks, and corresponding fMRI data from up ...

  12. Calibrated fMRI for mapping absolute CMRO2: Practicalities and prospects.

    Science.gov (United States)

    Germuska, M; Wise, R G

    2018-03-29

    Functional magnetic resonance imaging (fMRI) is an essential workhorse of modern neuroscience, providing valuable insight into the functional organisation of the brain. The physiological mechanisms underlying the blood oxygenation level dependent (BOLD) effect are complex and preclude a straightforward interpretation of the signal. However, by employing appropriate calibration of the BOLD signal, quantitative measurements can be made of important physiological parameters including the absolute rate of cerebral metabolic oxygen consumption or oxygen metabolism (CMRO 2 ) and oxygen extraction (OEF). The ability to map such fundamental parameters has the potential to greatly expand the utility of fMRI and to broaden its scope of application in clinical research and clinical practice. In this review article we discuss some of the practical issues related to the calibrated-fMRI approach to the measurement of CMRO 2 . We give an overview of the necessary precautions to ensure high quality data acquisition, and explore some of the pitfalls and challenges that must be considered as it is applied and interpreted in a widening array of diseases and research questions. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner

    Science.gov (United States)

    Bressler, David W.; Fortenbaugh, Francesca C.; Robertson, Lynn C.; Silver, Michael A.

    2013-01-01

    Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. PMID:23562388

  14. Transfer function between EEG and BOLD signals of epileptic activity

    Directory of Open Access Journals (Sweden)

    Marco eLeite

    2013-01-01

    Full Text Available Simultaneous EEG-fMRI recordings have seen growing application in the evaluation of epilepsy, namely in the characterization of brain networks related to epileptic activity. In EEG-correlated fMRI studies, epileptic events are usually described as boxcar signals based on the timing information retrieved from the EEG, and subsequently convolved with a heamodynamic response function to model the associated BOLD changes. Although more flexible approaches may allow a higher degree of complexity for the haemodynamics, the issue of how to model these dynamics based on the EEG remains an open question. In this work, a new methodology for the integration of simultaneous EEG-fMRI data in epilepsy is proposed, which incorporates a transfer function from the EEG to the BOLD signal. Independent component analysis (ICA of the EEG is performed, and a number of metrics expressing different models of the EEG-BOLD transfer function are extracted from the resulting time courses. These metrics are then used to predict the fMRI data and to identify brain areas associated with the EEG epileptic activity. The methodology was tested on both ictal and interictal EEG-fMRI recordings from one patient with a hypothalamic hamartoma. When compared to the conventional analysis approach, plausible, consistent and more significant activations were obtained. Importantly, frequency-weighted EEG metrics yielded superior results than those weighted solely on the EEG power, which comes in agreement with previous literature. Reproducibility, specificity and sensitivity should be addressed in an extended group of patients in order to further validate the proposed methodology and generalize the presented proof of concept.

  15. Pharmacological modulation of the BOLD response: a study of acetazolamide and glyceryl trinitrate in humans

    DEFF Research Database (Denmark)

    Asghar, Mohammed Sohail; Hansen, Adam E; Pedersen, Simon

    2011-01-01

    To examine the effect of acetazolamide, known to increase cerebral blood flow (CBF) and glyceryl trinitrate (GTN), known to increase cerebral blood volume (CBV) on the blood oxygenation level-dependent (BOLD) response in humans using 3 T magnetic resonance imaging (MRI), and to evaluate how...... pharmacological agents may modulate cerebral hemodynamic and thereby possibly the BOLD signal....

  16. An fMRI study

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 38; Issue 5 ... Alcoholism; brain; fMRI; language processing; lexical; semantic judgment ... alcohol dependence is associated with neurocognitive deficits in tasks requiring memory, perceptual ...

  17. Monkey cortex through fMRI glasses.

    Science.gov (United States)

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin.

    Science.gov (United States)

    Carhart-Harris, Robin L; Erritzoe, David; Williams, Tim; Stone, James M; Reed, Laurence J; Colasanti, Alessandro; Tyacke, Robin J; Leech, Robert; Malizia, Andrea L; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G; Nutt, David J

    2012-02-07

    Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition.

  19. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin

    Science.gov (United States)

    Carhart-Harris, Robin L.; Erritzoe, David; Williams, Tim; Stone, James M.; Reed, Laurence J.; Colasanti, Alessandro; Tyacke, Robin J.; Leech, Robert; Malizia, Andrea L.; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G.; Nutt, David J.

    2012-01-01

    Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition. PMID:22308440

  20. Measuring vascular reactivity with resting-state blood oxygenation level-dependent (BOLD) signal fluctuations: A potential alternative to the breath-holding challenge?

    Science.gov (United States)

    Jahanian, Hesamoddin; Christen, Thomas; Moseley, Michael E; Pajewski, Nicholas M; Wright, Clinton B; Tamura, Manjula K; Zaharchuk, Greg

    2017-07-01

    Measurement of the ability of blood vessels to dilate and constrict, known as vascular reactivity, is often performed with breath-holding tasks that transiently raise arterial blood carbon dioxide (P a CO 2 ) levels. However, following the proper commands for a breath-holding experiment may be difficult or impossible for many patients. In this study, we evaluated two approaches for obtaining vascular reactivity information using blood oxygenation level-dependent signal fluctuations obtained from resting-state functional magnetic resonance imaging data: physiological fluctuation regression and coefficient of variation of the resting-state functional magnetic resonance imaging signal. We studied a cohort of 28 older adults (69 ± 7 years) and found that six of them (21%) could not perform the breath-holding protocol, based on an objective comparison with an idealized respiratory waveform. In the subjects that could comply, we found a strong linear correlation between data extracted from spontaneous resting-state functional magnetic resonance imaging signal fluctuations and the blood oxygenation level-dependent percentage signal change during breath-holding challenge ( R 2  = 0.57 and 0.61 for resting-state physiological fluctuation regression and resting-state coefficient of variation methods, respectively). This technique may eliminate the need for subject cooperation, thus allowing the evaluation of vascular reactivity in a wider range of clinical and research conditions in which it may otherwise be impractical.

  1. Blood oxygenation level dependent signal and neuronal adaptation to optogenetic and sensory stimulation in somatosensory cortex in awake animals.

    Science.gov (United States)

    Aksenov, Daniil P; Li, Limin; Miller, Michael J; Wyrwicz, Alice M

    2016-11-01

    The adaptation of neuronal responses to stimulation, in which a peak transient response is followed by a sustained plateau, has been well-studied. The blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal has also been shown to exhibit adaptation on a longer time scale. However, some regions such as the visual and auditory cortices exhibit significant BOLD adaptation, whereas other such as the whisker barrel cortex may not adapt. In the sensory cortex a combination of thalamic inputs and intracortical activity drives hemodynamic changes, although the relative contributions of these components are not entirely understood. The aim of this study is to assess the role of thalamic inputs vs. intracortical processing in shaping BOLD adaptation during stimulation in the somatosensory cortex. Using simultaneous fMRI and electrophysiology in awake rabbits, we measured BOLD, local field potentials (LFPs), single- and multi-unit activity in the cortex during whisker and optogenetic stimulation. This design allowed us to compare BOLD and haemodynamic responses during activation of the normal thalamocortical sensory pathway (i.e., both inputs and intracortical activity) vs. the direct optical activation of intracortical circuitry alone. Our findings show that whereas LFP and multi-unit (MUA) responses adapted, neither optogenetic nor sensory stimulation produced significant BOLD adaptation. We observed for both paradigms a variety of excitatory and inhibitory single unit responses. We conclude that sensory feed-forward thalamic inputs are not primarily responsible for shaping BOLD adaptation to stimuli; but the single-unit results point to a role in this behaviour for specific excitatory and inhibitory neuronal sub-populations, which may not correlate with aggregate neuronal activity. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Frequency-dependent changes in amplitude of low-frequency oscillations in depression: A resting-state fMRI study.

    Science.gov (United States)

    Wang, Li; Kong, Qingmei; Li, Ke; Su, Yunai; Zeng, Yawei; Zhang, Qinge; Dai, Wenji; Xia, Mingrui; Wang, Gang; Jin, Zhen; Yu, Xin; Si, Tianmei

    2016-02-12

    We conducted this fMRI study to examine whether the alterations in amplitudes of low-frequency oscillation (LFO) of major depressive disorder (MDD) patients were frequency dependent. The LFO amplitudes (as indexed by amplitude of low-frequency fluctuation [ALFF] and fractional ALFF [fALFF]) within 4 narrowly-defined frequency bands (slow-5: 0.01-0.027Hz, slow-4: 0.027-0.073Hz, slow-3: 0.073-0.198Hz, and slow-2: 0.198-0.25Hz) were computed using resting-state fMRI data of 35 MDD patients and 32 healthy subjects. Repeated-measures analysis of variance (ANOVA) was performed on ALFF and fALFF both within the low frequency bands of slow-4 and slow-5 and within all of the four bands. We observed significant main effects of group and frequency on ALFF and fALFF in widely distributed brain regions. Importantly, significant group and frequency interaction effects were observed in the ventromedial prefrontal cortex, inferior frontal gyrus, precentral gyrus, in a left-sided fashion, the bilateral posterior cingulate and precuneus, during ANOVA both within slow-4 and slow-5 bands and within all the frequency bands. The results suggest that the alterations of LFO amplitudes in specific brain regions in MDD patients could be more sensitively detected in the slow-5 rather than the slow-4 bands. The findings may provide guidance for the frequency choice of future resting-state fMRI studies of MDD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Spatial–temporal signature of resting-state BOLD signals in classic trigeminal neuralgia

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-12-01

    correlated with pain duration in the patients. This result supports our hypothesis that trigeminal pain has a characteristic spatiotemporal distribution of low-frequency BOLD signals. These findings might contribute to a better understanding of the impact of CTN on the brain’s intrinsic architecture. Future studies should take the frequencies into account when measuring brain resting BOLD signals of patients with CTN. Keywords: frequency dependent, resting fMRI, slow-4, slow-5

  4. A task-related and resting state realistic fMRI simulator for fMRI data validation

    Science.gov (United States)

    Hill, Jason E.; Liu, Xiangyu; Nutter, Brian; Mitra, Sunanda

    2017-02-01

    After more than 25 years of published functional magnetic resonance imaging (fMRI) studies, careful scrutiny reveals that most of the reported results lack fully decisive validation. The complex nature of fMRI data generation and acquisition results in unavoidable uncertainties in the true estimation and interpretation of both task-related activation maps and resting state functional connectivity networks, despite the use of various statistical data analysis methodologies. The goal of developing the proposed STANCE (Spontaneous and Task-related Activation of Neuronally Correlated Events) simulator is to generate realistic task-related and/or resting-state 4D blood oxygenation level dependent (BOLD) signals, given the experimental paradigm and scan protocol, by using digital phantoms of twenty normal brains available from BrainWeb (http://brainweb.bic.mni.mcgill.ca/brainweb/). The proposed simulator will include estimated system and modelled physiological noise as well as motion to serve as a reference to measured brain activities. In its current form, STANCE is a MATLAB toolbox with command line functions serving as an open-source add-on to SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The STANCE simulator has been designed in a modular framework so that the hemodynamic response (HR) and various noise models can be iteratively improved to include evolving knowledge about such models.

  5. Application of language blood oxygenation level dependent functional MRI in the navigating operation of neurosurgery

    International Nuclear Information System (INIS)

    Liu Shuyong; Li Min; Yao Chengjun; Geng Daoying

    2011-01-01

    Objective: To verify the accuracy of blood oxygenation level dependent (BOLD)-based activation using electrocortical stimulation mapping (ESM) and explore the value of language fMRI in the navigating operation of neurosurgery. Methods: In 8 cases with brain tumors, BOLD-fMRI examinations were done before the operations. Under the state of awake anesthesia,the patients were aroused and ESM was conducted. Point-to-point comparison between the BOLD signal activations and the ESM was carried out under the surveillance of the neuro-navigation technology. In order to observe the sensibility and specificity of BOLD activations, the location of BOLD activations and the point of ESM was compared to calculate the stimulating positive points inside the regions of BOLD signals (real positive), outside BOLD regions (pseudo- negative), the stimulating negative points inside the regions of BOLD signals (pseudo-positive), and outside BOLD region (real negative). Two kinds of criteria for assessment were used. One was that the positive stimulating points were located in BOLD regions, and the other was that the positive stimulating points were located within 1 cm around the range of BOLD regions. Removal of the lesions were conducted with the tissue 1 cm around the language region preserved, and the cortex inside 0.5-1.0 cm distance from the positive points were retained. Results: Of the 8 cases, only 6 finished the tasks. Among them, 3 cases were with astrocytoma of grade 2, 2 were with astrocytoma of grade 3, and one with glioblastoma. The total number of stimulating points was 48, among which the positive points were 11. When the first criteria was applied, the sensitivity was 72.7% (8/11), and the specificity was 81.8% (30/37). When the second criteria was applied, the sensitivity was 82.0% (9/11), and the specificity was 75.6% (28/37). Follow-up after operation showed no aphasia occurred. Conclusions: BOLD-fMRI had a high sensitivity and specificity in displaying the language

  6. Improving temporal resolution in fMRI using a 3D spiral acquisition and low rank plus sparse (L+S) reconstruction.

    Science.gov (United States)

    Petrov, Andrii Y; Herbst, Michael; Andrew Stenger, V

    2017-08-15

    Rapid whole-brain dynamic Magnetic Resonance Imaging (MRI) is of particular interest in Blood Oxygen Level Dependent (BOLD) functional MRI (fMRI). Faster acquisitions with higher temporal sampling of the BOLD time-course provide several advantages including increased sensitivity in detecting functional activation, the possibility of filtering out physiological noise for improving temporal SNR, and freezing out head motion. Generally, faster acquisitions require undersampling of the data which results in aliasing artifacts in the object domain. A recently developed low-rank (L) plus sparse (S) matrix decomposition model (L+S) is one of the methods that has been introduced to reconstruct images from undersampled dynamic MRI data. The L+S approach assumes that the dynamic MRI data, represented as a space-time matrix M, is a linear superposition of L and S components, where L represents highly spatially and temporally correlated elements, such as the image background, while S captures dynamic information that is sparse in an appropriate transform domain. This suggests that L+S might be suited for undersampled task or slow event-related fMRI acquisitions because the periodic nature of the BOLD signal is sparse in the temporal Fourier transform domain and slowly varying low-rank brain background signals, such as physiological noise and drift, will be predominantly low-rank. In this work, as a proof of concept, we exploit the L+S method for accelerating block-design fMRI using a 3D stack of spirals (SoS) acquisition where undersampling is performed in the k z -t domain. We examined the feasibility of the L+S method to accurately separate temporally correlated brain background information in the L component while capturing periodic BOLD signals in the S component. We present results acquired in control human volunteers at 3T for both retrospective and prospectively acquired fMRI data for a visual activation block-design task. We show that a SoS fMRI acquisition with an

  7. Assessment of Cortical Visual Impairment in Infants with Periventricular Leukomalacia: a Pilot Event-Related fMRI Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bing; Guo, Qiyong [Shengjing Hospital of China Medical University, Shenyang (China); Fan, Guoguang [The First Hospital of China Medical University, Shenyang (China); Liu, Na [Greater China Region of Philips, Shanghai (China)

    2011-08-15

    We wanted to investigate the usefulness of event-related (ER) functional MRI (fMRI) for the assessment of cortical visual impairment in infants with periventricular leukomalacia (PVL). FMRI data were collected from 24 infants who suffered from PVL and from 12 age-matched normal controls. Slow ER fMRI was performed using a 3.0T MR scanner while visual stimuli were being presented. Data analysis was performed using Statistical Parametric Mapping software (SPM2), the SPM toolbox MarsBar was used to analyze the region of interest data, and the time to peak (TTP) of hemodynamic response functions (HRFs) was estimated for the surviving voxels. The number of activated voxels and the TTP values of HRFs were compared. Pearson correlation analysis was performed to compare visual impairment evaluated by using Teller Acuity Cards (TAC) with the number of activated voxels in the occipital lobes in all patients. In all 12 control infants, the blood oxygenation level-dependent (BOLD) signal was negative and the maximum response was located in the anterior and superior part of the calcarine fissure, and this might correspond to the anterior region of the primary visual cortex (PVC). In contrast, for the 24 cases of PVL, there were no activated pixels in the PVC in four subjects, small and weak activations in six subjects, deviated activations in seven subjects and both small and deviated activations in three subjects. The number of active voxels in the occipital lobe was significantly correlated with the TAC-evaluated visual impairment (p < 0.001). The mean TTP of the HRFs was significantly delayed in the cases of PVL as compared with that of the normal controls. Determining the characteristics of both the BOLD response and the ER fMRI activation may play an important role in the cortical visual assessment of infants with PVL.

  8. Time course based artifact identification for independent components of resting state fMRI

    Directory of Open Access Journals (Sweden)

    Christian eRummel

    2013-05-01

    Full Text Available In functional magnetic resonance imaging (fMRI coherent oscillations of the blood oxygen level dependent (BOLD signal can be detected. These arise when brain regions respond to external stimuli or are activated by tasks. The same networks have been characterized during wakeful rest when functional connectivity of the human brain is organized in generic resting state networks (RSN. Alterations of RSN emerge as neurobiological markers of pathological conditions such as altered mental state. In single-subject fMRI data the coherent components can be identified by blind source separation of the pre-processed BOLD data using spatial independent component analysis (ICA and related approaches. The resulting maps may represent physiological RSNs or may be due to various artifacts. In this methodological study, we propose a conceptually simple and fully automatic time course based filtering procedure to detect obvious artifacts in the ICA output for resting state fMRI. The filter is trained on six and tested on 29 healthy subjects, yielding mean filter accuracy, sensitivity and specificity of 0.80, 0.82 and 0.75 in out-of-sample tests. To estimate the impact of clearly artifactual single-subject components on group resting state studies we analyze unfiltered and filtered output with a second level ICA procedure. Although the automated filter does not reach performance values of visual analysis by human raters, we propose that resting state compatible analysis of ICA time courses could be very useful to complement the existing map or task/event oriented artifact classification algorithms.

  9. Placental baseline conditions modulate the hyperoxic BOLD-MRI response.

    Science.gov (United States)

    Sinding, Marianne; Peters, David A; Poulsen, Sofie S; Frøkjær, Jens B; Christiansen, Ole B; Petersen, Astrid; Uldbjerg, Niels; Sørensen, Anne

    2018-01-01

    Human pregnancies complicated by placental dysfunction may be characterized by a high hyperoxic Blood oxygen level-dependent (BOLD) MRI response. The pathophysiology behind this phenomenon remains to be established. The aim of this study was to evaluate whether it is associated with altered placental baseline conditions, including a lower oxygenation and altered tissue morphology, as estimated by the placental transverse relaxation time (T2*). We included 49 normal pregnancies (controls) and 13 pregnancies complicated by placental dysfunction (cases), defined by a birth weight baseline BOLD)/baseline BOLD) from a dynamic single-echo gradient-recalled echo (GRE) MRI sequence and the absolute ΔT2* (hyperoxic T2*- baseline T2*) from breath-hold multi-echo GRE sequences. In the control group, the relative ΔBOLD response increased during gestation from 5% in gestational week 20 to 20% in week 40. In the case group, the relative ΔBOLD response was significantly higher (mean Z-score 4.94; 95% CI 2.41, 7.47). The absolute ΔT2*, however, did not differ between controls and cases (p = 0.37), whereas the baseline T2* was lower among cases (mean Z-score -3.13; 95% CI -3.94, -2.32). Furthermore, we demonstrated a strong negative linear correlation between the Log 10 ΔBOLD response and the baseline T2* (r = -0.88, p baseline conditions, as the absolute increase in placental oxygenation (ΔT2*) does not differ between groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Zolpidem reduces the blood oxygen level-dependent signal during visual system stimulation.

    Science.gov (United States)

    Licata, Stephanie C; Lowen, Steven B; Trksak, George H; Maclean, Robert R; Lukas, Scott E

    2011-08-15

    Zolpidem is a short-acting imidazopyridine hypnotic that binds at the benzodiazepine binding site on specific GABA(A) receptors to enhance fast inhibitory neurotransmission. The behavioral and receptor pharmacology of zolpidem has been studied extensively, but little is known about its neuronal substrates in vivo. In the present within-subject, double-blind, and placebo-controlled study, blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) at 3 Tesla was used to assess the effects of zolpidem within the brain. Healthy participants (n=12) were scanned 60 min after acute oral administration of zolpidem (0, 5, 10, or 20mg), and changes in BOLD signal were measured in the visual cortex during presentation of a flashing checkerboard. Heart rate and oxygen saturation were monitored continuously throughout the session. Zolpidem (10 and 20mg) reduced the robust visual system activation produced by presentation of this stimulus, but had no effects on physiological activity during the fMRI scan. Zolpidem's modulation of the BOLD signal within the visual cortex is consistent with the abundant distribution of GABA(A) receptors localized in this region, as well as previous studies showing a relationship between increased GABA-mediated neuronal inhibition and a reduction in BOLD activation. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Zolpidem reduces the blood oxygen level-dependent signal during visual system stimulation

    Science.gov (United States)

    Licata, Stephanie C.; Lowen, Steven B.; Trksak, George H.; MacLean, Robert R.; Lukas, Scott E.

    2011-01-01

    Zolpidem is a short-acting imidazopyridine hypnotic that binds at the benzodiazepine binding site on specific GABAA receptors to enhance fast inhibitory neurotransmission. The behavioral and receptor pharmacology of zolpidem has been studied extensively, but little is known about its neuronal substrates in vivo. In the present within-subject, double-blind, and placebo-controlled study, blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) at 3 Tesla was used to assess the effects of zolpidem within the brain. Healthy participants (n=12) were scanned 60 minutes after acute oral administration of zolpidem (0, 5, 10, or 20 mg), and changes in BOLD signal were measured in the visual cortex during presentation of a flashing checkerboard. Heart rate and oxygen saturation were monitored continuously throughout the session. Zolpidem (10 and 20 mg) reduced the robust visual system activation produced by presentation of this stimulus, but had no effects on physiological activity during the fMRI scan. Zolpidem’s modulation of the BOLD signal within the visual cortex is consistent with the abundant distribution of GABAA receptors localized in this region, as well as previous studies showing a relationship between increased GABA-mediated neuronal inhibition and a reduction in BOLD activation. PMID:21640782

  12. Neurophysiological effects of modafinil on cue-exposure in cocaine dependence: a randomized placebo-controlled cross-over study using pharmacological fMRI.

    Science.gov (United States)

    Goudriaan, Anna E; Veltman, Dick J; van den Brink, Wim; Dom, Geert; Schmaal, Lianne

    2013-02-01

    Enhanced reactivity to substance related cues is a central characteristic of addiction and has been associated with increased activity in motivation, attention, and memory related brain circuits and with a higher probability of relapse. Modafinil was promising in the first clinical trials in cocaine dependence, and was able to reduce craving in addictive disorders. However, its mechanism of action remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study therefore, cue reactivity in cocaine dependent patients was compared to cue reactivity in healthy controls (HCs) under modafinil and placebo conditions. An fMRI cue reactivity study, with a double-blind, placebo-controlled cross-over challenge with a single dose of modafinil (200mg) was employed in 13 treatment seeking cocaine dependent patients and 16 HCs. In the placebo condition, watching cocaine-related pictures (versus neutral pictures) resulted in higher brain activation in the medial frontal cortex, anterior cingulate cortex, angular gyrus, left orbitofrontal cortex, and ventral tegmental area (VTA) in the cocaine dependent group compared to HCs. However, in the modafinil condition, no differences in brain activation patterns were found between cocaine dependent patients and HCs. Group interactions revealed decreased activity in the VTA and increased activity in the right ACC and putamen in the modafinil condition relative to the placebo condition in cocaine dependent patients, whereas such changes were not present in healthy controls. Decreases in self-reported craving when watching cocaine-related cues after modafinil administration compared to the placebo condition were associated with modafinil-induced increases in ACC and putamen activation. Enhanced cue reactivity in the cocaine dependent group compared to healthy controls was found in brain circuitries related to reward, motivation, and autobiographical memory processes. In cocaine dependent patients, these enhanced brain

  13. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    Science.gov (United States)

    Luijten, Maartje; Machielsen, Marise W.J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H.A.

    2014-01-01

    Background Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined evaluation of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) findings in the present review offers unique information on neural deficits in addicted individuals. Methods We selected 19 ERP and 22 fMRI studies using stop-signal, go/no-go or Flanker paradigms based on a search of PubMed and Embase. Results The most consistent findings in addicted individuals relative to healthy controls were lower N2, error-related negativity and error positivity amplitudes as well as hypoactivation in the anterior cingulate cortex (ACC), inferior frontal gyrus and dorsolateral prefrontal cortex. These neural deficits, however, were not always associated with impaired task performance. With regard to behavioural addictions, some evidence has been found for similar neural deficits; however, studies are scarce and results are not yet conclusive. Differences among the major classes of substances of abuse were identified and involve stronger neural responses to errors in individuals with alcohol dependence versus weaker neural responses to errors in other substance-dependent populations. Limitations Task design and analysis techniques vary across studies, thereby reducing comparability among studies and the potential of clinical use of these measures. Conclusion Current addiction theories were supported by identifying consistent abnormalities in prefrontal brain function in individuals with addiction. An integrative model is proposed, suggesting that neural deficits in the dorsal ACC may constitute a hallmark neurocognitive deficit underlying addictive behaviours, such as loss of control. PMID:24359877

  14. Real time fMRI: a tool for the routine presurgical localisation of the motor cortex

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, M.; Freund, M.; Schwindt, W.; Gaus, C.; Heindel, W. [University of Muenster, Department of Clinical Radiology, Munster (Germany); Greiner, C. [University of Muenster, Department of Neurosurgery, Munster (Germany)

    2005-02-01

    In patients with brain lesions adjacent to the central area, exact preoperative knowledge of the spatial relation of the tumour to the motor cortex is of major importance. Many studies have shown that functional magnetic resonance imaging (fMRI) is a reliable tool to identify the motor cortex. However, fMRI data acquisition and data processing are time-consuming procedures, and this prevents general routine clinical application. We report a new application of real time fMRI that allows immediate access to fMRI results by automatic on-line data processing. Prior to surgery we examined ten patients with a brain tumour adjacent to the central area. Three measurements were performed at a 1.5-T Magnetom Vision Scanner (Siemens, Forchheim, Germany) on seven patients and at a 1.5-T Intera Scanner (Philips, Best, The Netherlands) on three patients using a sequential finger-tapping paradigm for motor cortex activation versus at rest condition. Blood oxygen level-dependant (BOLD) images were acquired using a multislice EPI sequence (16 slices, TE 60, TR 6000, FOV 210 x 210, matrix 64 x 64). The central sulcus of the left hemisphere could be clearly identified by a maximum of cortical activity after finger tapping of the right hand in all investigated patients. In eight of ten patients the right central sulcus was localised by a signal maximum, whereas in two patients the central sulcus could not be identified due to a hemiparesis in one and strong motion artefacts in the second patient. Finger tapping with one side versus rest condition seems to result in more motion artefacts, while finger tapping of the right versus the left hand yielded the strongest signal in the central area. Real time fMRI is a quick and reliable method to identify the central sulcus and has the potential to become a clinical tool to assess patients non-invasively before neurosurgical treatment. (orig.)

  15. Graph Theoretical Analysis of BOLD Functional Connectivity during Human Sleep without EEG Monitoring.

    Directory of Open Access Journals (Sweden)

    Jun Lv

    Full Text Available Functional brain networks of human have been revealed to have small-world properties by both analyzing electroencephalogram (EEG and functional magnetic resonance imaging (fMRI time series.In our study, by using graph theoretical analysis, we attempted to investigate the changes of paralimbic-limbic cortex between wake and sleep states. Ten healthy young people were recruited to our experiment. Data from 2 subjects were excluded for the reason that they had not fallen asleep during the experiment. For each subject, blood oxygen level dependency (BOLD images were acquired to analyze brain network, and peripheral pulse signals were obtained continuously to identify if the subject was in sleep periods. Results of fMRI showed that brain networks exhibited stronger small-world characteristics during sleep state as compared to wake state, which was in consistent with previous studies using EEG synchronization. Moreover, we observed that compared with wake state, paralimbic-limbic cortex had less connectivity with neocortical system and centrencephalic structure in sleep.In conclusion, this is the first study, to our knowledge, has observed that small-world properties of brain functional networks altered when human sleeps without EEG synchronization. Moreover, we speculate that paralimbic-limbic cortex organization owns an efficient defense mechanism responsible for suppressing the external environment interference when humans sleep, which is consistent with the hypothesis that the paralimbic-limbic cortex may be functionally disconnected from brain regions which directly mediate their interactions with the external environment. Our findings also provide a reasonable explanation why stable sleep exhibits homeostasis which is far less susceptible to outside world.

  16. Convergence of EEG and fMRI measures of reward anticipation.

    Science.gov (United States)

    Gorka, Stephanie M; Phan, K Luan; Shankman, Stewart A

    2015-12-01

    Deficits in reward anticipation are putative mechanisms for multiple psychopathologies. Research indicates that these deficits are characterized by reduced left (relative to right) frontal electroencephalogram (EEG) activity and blood oxygenation level-dependent (BOLD) signal abnormalities in mesolimbic and prefrontal neural regions during reward anticipation. Although it is often assumed that these two measures capture similar mechanisms, no study to our knowledge has directly examined the convergence between frontal EEG alpha asymmetry and functional magnetic resonance imaging (fMRI) during reward anticipation in the same sample. Therefore, the aim of the current study was to investigate if and where in the brain frontal EEG alpha asymmetry and fMRI measures were correlated in a sample of 40 adults. All participants completed two analogous reward anticipation tasks--once during EEG data collection and the other during fMRI data collection. Results indicated that the two measures do converge and that during reward anticipation, increased relative left frontal activity is associated with increased left anterior cingulate cortex (ACC)/medial prefrontal cortex (mPFC) and left orbitofrontal cortex (OFC) activation. This suggests that the two measures may similarly capture PFC functioning, which is noteworthy given the role of these regions in reward processing and the pathophysiology of disorders such as depression and schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data.

    Science.gov (United States)

    Hanke, Michael; Halchenko, Yaroslav O; Sederberg, Per B; Hanson, Stephen José; Haxby, James V; Pollmann, Stefan

    2009-01-01

    Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability.

  18. Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study.

    Science.gov (United States)

    Duarte, João V; Pereira, João M S; Quendera, Bruno; Raimundo, Miguel; Moreno, Carolina; Gomes, Leonor; Carrilho, Francisco; Castelo-Branco, Miguel

    2015-10-01

    Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.

  19. Optogenetic activation of CA1 pyramidal neurons at the dorsal and ventral hippocampus evokes distinct brain-wide responses revealed by mouse fMRI.

    Directory of Open Access Journals (Sweden)

    Norio Takata

    Full Text Available The dorsal and ventral hippocampal regions (dHP and vHP are proposed to have distinct functions. Electrophysiological studies have revealed intra-hippocampal variances along the dorsoventral axis. Nevertheless, the extra-hippocampal influences of dHP and vHP activities remain unclear. In this study, we compared the spatial distribution of brain-wide responses upon dHP or vHP activation and further estimate connection strengths between the dHP and the vHP with corresponding extra-hippocampal areas. To achieve this, we first investigated responses of local field potential (LFP and multi unit activities (MUA upon light stimulation in the hippocampus of an anesthetized transgenic mouse, whose CA1 pyramidal neurons expressed a step-function opsin variant of channelrhodopsin-2 (ChR2. Optogenetic stimulation increased hippocampal LFP power at theta, gamma, and ultra-fast frequency bands, and augmented MUA, indicating light-induced activation of CA1 pyramidal neurons. Brain-wide responses examined using fMRI revealed that optogenetic activation at the dHP or vHP caused blood oxygenation level-dependent (BOLD fMRI signals in situ. Although activation at the dHP induced BOLD responses at the vHP, the opposite was not observed. Outside the hippocampal formation, activation at the dHP, but not the vHP, evoked BOLD responses at the retrosplenial cortex (RSP, which is in line with anatomical evidence. In contrast, BOLD responses at the lateral septum (LS were induced only upon vHP activation, even though both dHP and vHP send axonal fibers to the LS. Our findings suggest that the primary targets of dHP and vHP activation are distinct, which concurs with attributed functions of the dHP and RSP in spatial memory, as well as of the vHP and LS in emotional responses.

  20. Greater BOLD variability in older compared with younger adults during audiovisual speech perception.

    Directory of Open Access Journals (Sweden)

    Sarah H Baum

    Full Text Available Older adults exhibit decreased performance and increased trial-to-trial variability on a range of cognitive tasks, including speech perception. We used blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI to search for neural correlates of these behavioral phenomena. We compared brain responses to simple speech stimuli (audiovisual syllables in 24 healthy older adults (53 to 70 years old and 14 younger adults (23 to 39 years old using two independent analysis strategies: region-of-interest (ROI and voxel-wise whole-brain analysis. While mean response amplitudes were moderately greater in younger adults, older adults had much greater within-subject variability. The greatly increased variability in older adults was observed for both individual voxels in the whole-brain analysis and for ROIs in the left superior temporal sulcus, the left auditory cortex, and the left visual cortex. Increased variability in older adults could not be attributed to differences in head movements between the groups. Increased neural variability may be related to the performance declines and increased behavioral variability that occur with aging.

  1. Exploring differences in speech processing among elderly hearing-impaired listeners with or without hearing aid experience: Eye-tracking and fMRI measurements

    DEFF Research Database (Denmark)

    Habicht, Julia; Behler, Oliver; Kollmeier, Birger

    2018-01-01

    on the cognitive processes underlying speech comprehension. Eye-tracking and functional magnetic resonance imaging (fMRI) measurements were carried out with acoustic sentence-in-noise (SIN) stimuli complemented by pairs of pictures that either correctly (target) or incorrectly (competitor) depicted the sentence...... meanings. For the eye-tracking measurements, the time taken by the participants to start fixating the target picture (the ‘processing time’) was measured. For the fMRI measurements, brain activation inferred from blood oxygenation level dependent (BOLD) responses following sentence comprehension...... frontal areas for SIN relative to noise-only stimuli in the eHA group compared to the iHA group. Together, these results imply that HA experience leads to faster speech-in-noise processing, possibly related to less recruitment of brain regions outside the core sentence-comprehension network. Follow...

  2. Motor and non-motor circuitry activation induced by subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson’s disease patients: Intraoperative fMRI for DBS

    Science.gov (United States)

    Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.

    2015-01-01

    Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412

  3. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.

    Science.gov (United States)

    Kannurpatti, Sridhar S; Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed

    2015-11-01

    Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Test-retest reliability of an fMRI paradigm for studies of cardiovascular reactivity.

    Science.gov (United States)

    Sheu, Lei K; Jennings, J Richard; Gianaros, Peter J

    2012-07-01

    We examined the reliability of measures of fMRI, subjective, and cardiovascular reactions to standardized versions of a Stroop color-word task and a multisource interference task. A sample of 14 men and 12 women (30-49 years old) completed the tasks on two occasions, separated by a median of 88 days. The reliability of fMRI BOLD signal changes in brain areas engaged by the tasks was moderate, and aggregating fMRI BOLD signal changes across the tasks improved test-retest reliability metrics. These metrics included voxel-wise intraclass correlation coefficients (ICCs) and overlap ratio statistics. Task-aggregated ratings of subjective arousal, valence, and control, as well as cardiovascular reactions evoked by the tasks showed ICCs of 0.57 to 0.87 (ps reliability. These findings support using these tasks as a battery for fMRI studies of cardiovascular reactivity. Copyright © 2012 Society for Psychophysiological Research.

  5. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field.

    Science.gov (United States)

    Moerel, Michelle; De Martino, Federico; Kemper, Valentin G; Schmitter, Sebastian; Vu, An T; Uğurbil, Kâmil; Formisano, Elia; Yacoub, Essa

    2018-01-01

    Following rapid technological advances, ultra-high field functional MRI (fMRI) enables exploring correlates of neuronal population activity at an increasing spatial resolution. However, as the fMRI blood-oxygenation-level-dependent (BOLD) contrast is a vascular signal, the spatial specificity of fMRI data is ultimately determined by the characteristics of the underlying vasculature. At 7T, fMRI measurement parameters determine the relative contribution of the macro- and microvasculature to the acquired signal. Here we investigate how these parameters affect relevant high-end fMRI analyses such as encoding, decoding, and submillimeter mapping of voxel preferences in the human auditory cortex. Specifically, we compare a T 2 * weighted fMRI dataset, obtained with 2D gradient echo (GE) EPI, to a predominantly T 2 weighted dataset obtained with 3D GRASE. We first investigated the decoding accuracy based on two encoding models that represented different hypotheses about auditory cortical processing. This encoding/decoding analysis profited from the large spatial coverage and sensitivity of the T 2 * weighted acquisitions, as evidenced by a significantly higher prediction accuracy in the GE-EPI dataset compared to the 3D GRASE dataset for both encoding models. The main disadvantage of the T 2 * weighted GE-EPI dataset for encoding/decoding analyses was that the prediction accuracy exhibited cortical depth dependent vascular biases. However, we propose that the comparison of prediction accuracy across the different encoding models may be used as a post processing technique to salvage the spatial interpretability of the GE-EPI cortical depth-dependent prediction accuracy. Second, we explored the mapping of voxel preferences. Large-scale maps of frequency preference (i.e., tonotopy) were similar across datasets, yet the GE-EPI dataset was preferable due to its larger spatial coverage and sensitivity. However, submillimeter tonotopy maps revealed biases in assigned frequency

  6. "Extreme Bold" in the Faculty Ranks

    Science.gov (United States)

    Kuusisto, Stephen

    2013-01-01

    Boldness, defense, and the necessity of talking back remain as central to life with disability in one's time as in Francis Bacon's age. "Therefore all deformed persons are extreme bold," Bacon wrote, "first, as in their own defence, as being exposed to scorn, but in process of time, by a general habit." Perhaps no word carries…

  7. Comparison of fMRI and PEPSI during language processing in children.

    Science.gov (United States)

    Serafini, S; Steury, K; Richards, T; Corina, D; Abbott, R; Dager, S R; Berninger, V

    2001-02-01

    The present study explored the correlation between lactate as detected by MR spectroscopy (MRS) and blood oxygenation level dependent (BOLD) responses in male children during auditory-based language tasks. All subjects (N = 8) participated in one proton echo planar spectroscopic imaging (PEPSI) and one functional magnetic resonance imaging (fMRI) session that required phonological and lexical judgments to aurally presented stimuli. Valid PEPSI data was limited in the frontal areas of the brain due to the magnetic susceptibility of the eye orbits and frontal sinuses. Findings from the remainder of the brain indicate that subjects show a significant consistency across imaging techniques in the left temporal area during the lexical task, but not in any other measurable area or during the phonological task. Magn Reson Med 45:217-225, 2001. Copyright 2001 Wiley-Liss, Inc.

  8. Separating neural and vascular effects of caffeine using simultaneous EEG–FMRI: Differential effects of caffeine on cognitive and sensorimotor brain responses

    Science.gov (United States)

    Diukova, Ana; Ware, Jennifer; Smith, Jessica E.; Evans, C. John; Murphy, Kevin; Rogers, Peter J.; Wise, Richard G.

    2012-01-01

    The effects of caffeine are mediated through its non-selective antagonistic effects on adenosine A1 and A2A adenosine receptors resulting in increased neuronal activity but also vasoconstriction in the brain. Caffeine, therefore, can modify BOLD FMRI signal responses through both its neural and its vascular effects depending on receptor distributions in different brain regions. In this study we aim to distinguish neural and vascular influences of a single dose of caffeine in measurements of task-related brain activity using simultaneous EEG–FMRI. We chose to compare low-level visual and motor (paced finger tapping) tasks with a cognitive (auditory oddball) task, with the expectation that caffeine would differentially affect brain responses in relation to these tasks. To avoid the influence of chronic caffeine intake, we examined the effect of 250 mg of oral caffeine on 14 non and infrequent caffeine consumers in a double-blind placebo-controlled cross-over study. Our results show that the task-related BOLD signal change in visual and primary motor cortex was significantly reduced by caffeine, while the amplitude and latency of visual evoked potentials over occipital cortex remained unaltered. However, during the auditory oddball task (target versus non-target stimuli) caffeine significantly increased the BOLD signal in frontal cortex. Correspondingly, there was also a significant effect of caffeine in reducing the target evoked response potential (P300) latency in the oddball task and this was associated with a positive potential over frontal cortex. Behavioural data showed that caffeine also improved performance in the oddball task with a significantly reduced number of missed responses. Our results are consistent with earlier studies demonstrating altered flow-metabolism coupling after caffeine administration in the context of our observation of a generalised caffeine-induced reduction in cerebral blood flow demonstrated by arterial spin labelling (19

  9. fMRI. Basics and clinical applications. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, Stephan [Medizinisch Radiologisces Institut (MRI), Zuerich (Switzerland); Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Inst. fuer Neuroradiologie; Jansen, Olav (eds.) [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Inst. fuer Neuroradiologie

    2013-11-01

    State of the art overview of fMRI. Covers technical issues, methods of statistical analysis, and the full range of clinical applications. Revised and expanded edition including discussion of novel aspects of analysis and further important applications. Includes comparisons with other brain mapping techniques and discussion of potential combined uses. Since functional MRI (fMRI) and the basic method of BOLD imaging were introduced in 1993 by Seiji Ogawa, fMRI has evolved into an invaluable clinical tool for routine brain imaging, and there have been substantial improvements in both the imaging technique itself and the associated statistical analysis. This book provides a state of the art overview of fMRI and its use in clinical practice. Experts in the field share their knowledge and explain how to overcome diverse potential technical barriers and problems. Starting from the very basics on the origin of the BOLD signal, the book covers technical issues, anatomical landmarks, the full range of clinical applications, methods of statistical analysis, and special issues in various clinical fields. Comparisons are made with other brain mapping techniques, such as DTI, PET, TMS, EEG, and MEG, and their combined use with fMRI is also discussed. Since the first edition, original chapters have been updated and new chapters added, covering both novel aspects of analysis and further important clinical applications.

  10. Intersession reliability of fMRI activation for heat pain and motor tasks.

    Science.gov (United States)

    Quiton, Raimi L; Keaser, Michael L; Zhuo, Jiachen; Gullapalli, Rao P; Greenspan, Joel D

    2014-01-01

    As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test-retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this

  11. Prospective MR image alignment between breath-holds: Application to renal BOLD MRI.

    Science.gov (United States)

    Kalis, Inge M; Pilutti, David; Krafft, Axel J; Hennig, Jürgen; Bock, Michael

    2017-04-01

    To present an image registration method for renal blood oxygen level-dependent (BOLD) measurements that enables semiautomatic assessment of parenchymal and medullary R2* changes under a functional challenge. In a series of breath-hold acquisitions, three-dimensional data were acquired initially for prospective image registration of subsequent BOLD measurements. An algorithm for kidney alignment for BOLD renal imaging (KALIBRI) was implemented to detect the positions of the left and right kidney so that the kidneys were acquired in the subsequent BOLD measurement at consistent anatomical locations. Residual in-plane distortions were corrected retrospectively so that semiautomatic dynamic R2* measurements of the renal cortex and medulla become feasible. KALIBRI was tested in six healthy volunteers during a series of BOLD experiments, which included a 600- to 1000-mL water challenge. Prospective image registration and BOLD imaging of each kidney was achieved within a total measurement time of about 17 s, enabling its execution within a single breath-hold. KALIBRI improved the registration by up to 35% as found with mutual information measures. In four volunteers, a medullary R2* decrease of up to 40% was observed after water ingestion. KALIBRI improves the quality of two-dimensional time-resolved renal BOLD MRI by aligning local renal anatomy, which allows for consistent R2* measurements over many breath-holds. Magn Reson Med 77:1573-1582, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. The effect of sleep deprivation on BOLD activity elicited by a divided attention task.

    Science.gov (United States)

    Jackson, Melinda L; Hughes, Matthew E; Croft, Rodney J; Howard, Mark E; Crewther, David; Kennedy, Gerard A; Owens, Katherine; Pierce, Rob J; O'Donoghue, Fergal J; Johnston, Patrick

    2011-06-01

    Sleep loss, widespread in today's society and associated with a number of clinical conditions, has a detrimental effect on a variety of cognitive domains including attention. This study examined the sequelae of sleep deprivation upon BOLD fMRI activation during divided attention. Twelve healthy males completed two randomized sessions; one after 27 h of sleep deprivation and one after a normal night of sleep. During each session, BOLD fMRI was measured while subjects completed a cross-modal divided attention task (visual and auditory). After normal sleep, increased BOLD activation was observed bilaterally in the superior frontal gyrus and the inferior parietal lobe during divided attention performance. Subjects reported feeling significantly more sleepy in the sleep deprivation session, and there was a trend towards poorer divided attention task performance. Sleep deprivation led to a down regulation of activation in the left superior frontal gyrus, possibly reflecting an attenuation of top-down control mechanisms on the attentional system. These findings have implications for understanding the neural correlates of divided attention and the neurofunctional changes that occur in individuals who are sleep deprived.

  13. Noninvasive fMRI investigation of interaural level difference processing in the rat auditory subcortex.

    Directory of Open Access Journals (Sweden)

    Condon Lau

    Full Text Available OBJECTIVE: Interaural level difference (ILD is the difference in sound pressure level (SPL between the two ears and is one of the key physical cues used by the auditory system in sound localization. Our current understanding of ILD encoding has come primarily from invasive studies of individual structures, which have implicated subcortical structures such as the cochlear nucleus (CN, superior olivary complex (SOC, lateral lemniscus (LL, and inferior colliculus (IC. Noninvasive brain imaging enables studying ILD processing in multiple structures simultaneously. METHODS: In this study, blood oxygenation level-dependent (BOLD functional magnetic resonance imaging (fMRI is used for the first time to measure changes in the hemodynamic responses in the adult Sprague-Dawley rat subcortex during binaural stimulation with different ILDs. RESULTS AND SIGNIFICANCE: Consistent responses are observed in the CN, SOC, LL, and IC in both hemispheres. Voxel-by-voxel analysis of the change of the response amplitude with ILD indicates statistically significant ILD dependence in dorsal LL, IC, and a region containing parts of the SOC and LL. For all three regions, the larger amplitude response is located in the hemisphere contralateral from the higher SPL stimulus. These findings are supported by region of interest analysis. fMRI shows that ILD dependence occurs in both hemispheres and multiple subcortical levels of the auditory system. This study is the first step towards future studies examining subcortical binaural processing and sound localization in animal models of hearing.

  14. Unsupervised segmentation of task activated regions in fmRI

    DEFF Research Database (Denmark)

    Røge, Rasmus; Madsen, Kristoffer Hougaard; Schmidt, Mikkel Nørgaard

    2015-01-01

    Functional Magnetic Resonance Imaging has become a central measuring modality to quantify functional activiation of the brain in both task and rest. Most analysis used to quantify functional activation requires supervised approaches as employed in statistical parametric mapping (SPM) to extract...... framework for the analysis of task fMRI and resting-state data in general where strong knowledge of how the task induces a BOLD response is missing....

  15. BOLD cardiovascular magnetic resonance at 3.0 tesla in myocardial ischemia.

    OpenAIRE

    Manka, R; Paetsch, I; Schnackenburg, B; Gebker, R; Fleck, E; Jahnke, C

    2010-01-01

    Abstract Background The purpose of this study was to determine the ability of Blood Oxygen Level Dependent (BOLD) cardiovascular magnetic resonance (CMR) to detect stress-inducible myocardial ischemic reactions in the presence of angiographically significant coronary artery disease (CAD). Methods Forty-six patients (34 men; age 65 ± 9 years,) with suspected or known coronary artery disease underwent CMR at 3Tesla prior to clinically indicated invasive coronary angiography. BOLD CMR was perfor...

  16. Assessing cue-induced brain response as a function of abstinence duration in heroin-dependent individuals: an event-related fMRI study.

    Directory of Open Access Journals (Sweden)

    Qiang Li

    Full Text Available The brain activity induced by heroin-related cues may play a role in the maintenance of heroin dependence. Whether the reinforcement or processing biases construct an everlasting feature of heroin addiction remains to be resolved. We used an event-related fMRI paradigm to measure brain activation in response to heroin cue-related pictures versus neutral pictures as the control condition in heroin-dependent patients undergoing short-term and long-term abstinence. The self-reported craving scores were significantly increased after cue exposure in the short-term abstinent patients (t = 3.000, P = 0.008, but no increase was found in the long-term abstinent patients (t = 1.510, P = 0.149. However, no significant differences in cue-induced craving changes were found between the two groups (t = 1.193, P = 0.850. Comparing between the long-term abstinence and short-term abstinence groups, significant decreases in brain activation were detected in the bilateral anterior cingulated cortex, left medial prefrontal cortex, caudate, middle occipital gyrus, inferior parietal lobule and right precuneus. Among all of the heroin dependent patients, the abstinence duration was negatively correlated with brain activation in the left medial prefrontal cortex and left inferior parietal lobule. These findings suggest that long-term abstinence may be useful for heroin-dependent patients to diminish their saliency value of heroin-related cues and possibly lower the relapse vulnerability to some extent.

  17. Effects of haloperidol and aripiprazole on the human mesolimbic motivational system: A pharmacological fMRI study.

    Science.gov (United States)

    Bolstad, Ingeborg; Andreassen, Ole A; Groote, Inge; Server, Andres; Sjaastad, Ivar; Kapur, Shitij; Jensen, Jimmy

    2015-12-01

    The atypical antipsychotic drug aripiprazole is a partial dopamine (DA) D2 receptor agonist, which differentiates it from most other antipsychotics. This study compares the brain activation characteristic produced by aripiprazole with that of haloperidol, a typical D2 receptor antagonist. Healthy participants received an acute oral dose of haloperidol, aripiprazole or placebo, and then performed an active aversive conditioning task with aversive and neutral events presented as sounds, while blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was carried out. The fMRI task, targeting the mesolimbic motivational system that is thought to be disturbed in psychosis, was based on the conditioned avoidance response (CAR) animal model - a widely used test of therapeutic potential of antipsychotic drugs. In line with the CAR animal model, the present results show that subjects given haloperidol were not able to avoid more aversive than neutral task trials, even though the response times were shorter during aversive events. In the aripiprazole and placebo groups more aversive than neutral events were avoided. Accordingly, the task-related BOLD-fMRI response in the mesolimbic motivational system was diminished in the haloperidol group compared to the placebo group, particularly in the ventral striatum, whereas the aripiprazole group showed task-related activations intermediate of the placebo and haloperidol groups. The current results show differential effects on brain function by aripiprazole and haloperidol, probably related to altered DA transmission. This supports the use of pharmacological fMRI to study antipsychotic properties in humans. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  18. Analysis of Neural-BOLD Coupling through Four Models of the Neural Metabolic Demand

    Directory of Open Access Journals (Sweden)

    Christopher W Tyler

    2015-12-01

    Full Text Available The coupling of the neuronal energetics to the blood-oxygen-level-dependent (BOLD response is still incompletely understood. To address this issue, we compared the fits of four plausible models of neurometabolic coupling dynamics to available data for simultaneous recordings of the local field potential (LFP and the local BOLD response recorded from monkey primary visual cortex over a wide range of stimulus durations. The four models of the metabolic demand driving the BOLD response were: direct coupling with the overall LFP; rectified coupling to the LFP; coupling with a slow adaptive component of the implied neural population response; and coupling with the non-adaptive intracellular input signal defined by the stimulus time course. Taking all stimulus durations into account, the results imply that the BOLD response is most closely coupled with metabolic demand derived from the intracellular input waveform, without significant influence from the adaptive transients and nonlinearities exhibited by the LFP waveform.

  19. Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study

    Directory of Open Access Journals (Sweden)

    Zhang Jiaxing

    2011-09-01

    Full Text Available Abstract Background The impact of long term residence on high altitude (HA on human brain has raised concern among researchers in recent years. This study investigated the cerebrovascular reactivity among native-born high altitude (HA residents as compared to native sea level (SL residents. The two groups were matched on the ancestral line, ages, gender ratios, and education levels. A visual cue guided maximum inspiration task with brief breath holding was performed by all the subjects while Blood-Oxygenation-Level-Dependent (BOLD functional Magnetic Resonance Imaging (fMRI data were acquired from them. Results Compared to SL controls, the HA group showed generally decreased cerebrovascular reactivity and longer delay in hemodynamic response. Clusters showing significant differences in the former aspect were located at the bilateral primary motor cortex, the right somatosensory association cortex, the right thalamus and the right caudate, the bilateral precuneus, the right cingulate gyrus and the right posterior cingulate cortex, as well as the left fusiform gyrus and the right lingual cortex; clusters showing significant differences in the latter aspect were located at the precuneus, the insula, the superior frontal and temporal gyrus, the somatosensory cortex (the postcentral gyrus and the cerebellar tonsil. Inspiratory reserve volume (IRV, which is an important aspect of pulmonary function, demonstrated significant correlation with the amount of BOLD signal change in multiple brain regions, particularly at the bilateral insula among the HA group. Conclusions Native-born HA residents generally showed reduced cerebrovascular reactivity as demonstrated in the hemodynamic response during a visual cue guided maximum inspiration task conducted with BOLD-fMRI. This effect was particularly manifested among brain regions that are typically involved in cerebral modulation of respiration.

  20. Development of the complex general linear model in the Fourier domain: application to fMRI multiple input-output evoked responses for single subjects.

    Science.gov (United States)

    Rio, Daniel E; Rawlings, Robert R; Woltz, Lawrence A; Gilman, Jodi; Hommer, Daniel W

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function.

  1. Linear increases in BOLD response associated with increasing proportion of incongruent trials across time in a colour Stroop task.

    Science.gov (United States)

    Mitchell, Rachel L C

    2010-05-01

    Selective attention is popularly assessed with colour Stroop tasks in which participants name the ink colour of colour words, whilst resisting interference from the natural tendency to read the words. Prior studies hinted that the key brain regions (dorsolateral prefrontal (dlPFC) and anterior cingulate cortex (ACC)) may vary their degree of involvement, dependent on attentional demand. This study aimed to determine whether a parametrically varied increase in attentional demand resulted in linearly increased activity in these regions, and/or whether additional regions would be recruited during high attentional demand. Twenty-eight healthy young adults underwent fMRI whilst naming the font colour of colour words. Linear increases in BOLD response were assessed with increasing percentage incongruent trials per block (0, 20, 40, 60, 80, and 100%). Whilst ACC activation increased linearly according to incongruity level, dlPFC activity appeared constant. Together with behavioural evidence of reduced Stroop interference, these data support a load-dependent conflict-related response in ACC, but not dlPFC.

  2. A NO way to BOLD?

    DEFF Research Database (Denmark)

    Aamand, Rasmus; Dalsgaard, Thomas; Ho, Yi Ching Lynn

    2013-01-01

    Neurovascular coupling links neuronal activity to vasodilation. Nitric oxide (NO) is a potent vasodilator, and in neurovascular coupling NO production from NO synthases plays an important role. However, another pathway for NO production also exists, namely the nitrate-nitrite-NO pathway. On this ......Neurovascular coupling links neuronal activity to vasodilation. Nitric oxide (NO) is a potent vasodilator, and in neurovascular coupling NO production from NO synthases plays an important role. However, another pathway for NO production also exists, namely the nitrate-nitrite-NO pathway...... to stimuli. A faster and smaller BOLD response, with less variation across local cortex, is consistent with an enhanced hemodynamic coupling during elevated nitrate intake. These findings suggest that dietary patterns, via the nitrate-nitrite-NO pathway, may be a potential way to affect key properties....... On this basis, we hypothesized that dietary nitrate (NO3-) could influence the brain's hemodynamic response to neuronal stimulation. In the present study, 20 healthy male participants were given either sodium nitrate (NaNO3) or sodium chloride (NaCl) (saline placebo) in a crossover study and were shown visual...

  3. Moment-to-Moment BOLD Signal Variability Reflects Regional Changes in Neural Flexibility across the Lifespan.

    Science.gov (United States)

    Nomi, Jason S; Bolt, Taylor S; Ezie, C E Chiemeka; Uddin, Lucina Q; Heller, Aaron S

    2017-05-31

    Variability of neuronal responses is thought to underlie flexible and optimal brain function. Because previous work investigating BOLD signal variability has been conducted within task-based fMRI contexts on adults and older individuals, very little is currently known regarding regional changes in spontaneous BOLD signal variability in the human brain across the lifespan. The current study used resting-state fMRI data from a large sample of male and female human participants covering a wide age range (6-85 years) across two different fMRI acquisition parameters (TR = 0.645 and 1.4 s). Variability in brain regions including a key node of the salience network (anterior insula) increased linearly across the lifespan across datasets. In contrast, variability in most other large-scale networks decreased linearly over the lifespan. These results demonstrate unique lifespan trajectories of BOLD variability related to specific regions of the brain and add to a growing literature demonstrating the importance of identifying normative trajectories of functional brain maturation. SIGNIFICANCE STATEMENT Although brain signal variability has traditionally been considered a source of unwanted noise, recent work demonstrates that variability in brain signals during task performance is related to brain maturation in old age as well as individual differences in behavioral performance. The current results demonstrate that intrinsic fluctuations in resting-state variability exhibit unique maturation trajectories in specific brain regions and systems, particularly those supporting salience detection. These results have implications for investigations of brain development and aging, as well as interpretations of brain function underlying behavioral changes across the lifespan. Copyright © 2017 the authors 0270-6474/17/375539-10$15.00/0.

  4. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation.

    Directory of Open Access Journals (Sweden)

    Anders Hougaard

    Full Text Available Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks.

  5. The value of blood oxygenation level-dependent (BOLD MR imaging in differentiation of renal solid mass and grading of renal cell carcinoma (RCC: analysis based on the largest cross-sectional area versus the entire whole tumour.

    Directory of Open Access Journals (Sweden)

    Guang-Yu Wu

    Full Text Available To study the value of assessing renal masses using different methods in parameter approaches and to determine whether BOLD MRI is helpful in differentiating RCC from benign renal masses, differentiating clear-cell RCC from renal masses other than clear-cell RCC and determining the tumour grade.Ninety-five patients with 139 renal masses (93 malignant and 46 benign who underwent abdominal BOLD MRI were enrolled. R2* values were derived from the largest cross-section (R2*largest and from the whole tumour (R2*whole. Intra-observer and inter-observer agreements were analysed based on two measurements by the same observer and the first measurement from each observer, respectively, and these agreements are reported with intra-class correlation coefficients and 95% confidence intervals. The diagnostic value of the R2* value in the evaluation was assessed with receiver-operating characteristic analysis.The intra-observer agreement was very good for R2*largest and R2*whole (all > 0.8. The inter-observer agreement of R2*whole (0.75, 95% confidence interval: 0.69~0.79 was good and was significantly improved compared with the R2*largest (0.61, 95% confidence interval: 0.52~0.68, as there was no overlap in the 95% confidence interval of the intra-class correlation coefficients. The diagnostic value in differentiating renal cell carcinoma from benign lesions with R2*whole (AUC=0.79/0.78[observer1/observer2] and R2*largest (AUC=0.75[observer1] was good and significantly higher (p=0.01 for R2*largest[observer2] vs R2*whole[observer2], p 0.7 and were not significantly different (p=0.89/0.93 for R2*largest vs R2*whole[observer1/observer2], 0.96 for R2*whole[observer1] vs R2*largest[observer2] and 0.96 for R2*whole [observer2] vs R2*largest[observer1].BOLD MRI could provide a feasible parameter for differentiating renal cell carcinoma from benign renal masses and for predicting clear-cell renal cell carcinoma grading. Compared with the largest cross

  6. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Guihua Jiang

    Full Text Available Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs and 15 age-, gender-matched normal controls (NCs were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  7. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Science.gov (United States)

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  8. Dissociative part-dependent resting-state activity in dissociative identity disorder: a controlled FMRI perfusion study.

    Science.gov (United States)

    Schlumpf, Yolanda R; Reinders, Antje A T S; Nijenhuis, Ellert R S; Luechinger, Roger; van Osch, Matthias J P; Jäncke, Lutz

    2014-01-01

    In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP) and the "Apparently Normal Part" (ANP), have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors. Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls. Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events. DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent with the idea

  9. Dissociative part-dependent resting-state activity in dissociative identity disorder: a controlled FMRI perfusion study.

    Directory of Open Access Journals (Sweden)

    Yolanda R Schlumpf

    Full Text Available In accordance with the Theory of Structural Dissociation of the Personality (TSDP, studies of dissociative identity disorder (DID have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP and the "Apparently Normal Part" (ANP, have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors.Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls.Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events.DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent

  10. Non-invasive multiparametric qBOLD approach for robust mapping of the oxygen extraction fraction.

    Science.gov (United States)

    Domsch, Sebastian; Mie, Moritz B; Wenz, Frederik; Schad, Lothar R

    2014-09-01

    The quantitative blood oxygenation level-dependent (qBOLD) method has not become clinically established yet because long acquisition times are necessary to achieve an acceptable certainty of the parameter estimates. In this work, a non-invasive multiparametric (nimp) qBOLD approach based on a simple analytical model is proposed to facilitate robust oxygen extraction fraction (OEF) mapping within clinically acceptable acquisition times by using separate measurements. The protocol consisted of a gradient-echo sampled spin-echo sequence (GESSE), a T2-weighted Carr-Purcell-Meiboom-Gill (CPMG) sequence, and a T2(*)-weighted multi-slice multi-echo gradient echo (MMGE) sequence. The GESSE acquisition time was less than 5 minutes and the extra measurement time for CPMG/MMGE was below 2 minutes each. The proposed nimp-qBOLD approach was validated in healthy subjects (N = 5) and one patient. The proposed nimp-qBOLD approach facilitated more robust OEF mapping with significantly reduced inter- and intra-subject variability compared to the standard qBOLD method. Thereby, an average OEF in all subjects of 27±2% in white matter (WM) and 29±2% in gray matter (GM) using the nimp-qBOLD method was more stable compared to 41±10% (WM) and 46±10% (GM) with standard qBOLD. Moreover, the spatial variance in the image slice (i.e. standard deviation divided by mean) was on average reduced from 35% to 25%. In addition, the preliminary results of the patient are encouraging. The proposed nimp-qBOLD technique provides a promising tool for robust OEF mapping within clinically acceptable acquisition times and could therefore provide an important contribution for analyzing tumors or monitoring the success of radio and chemo therapies. Copyright © 2014. Published by Elsevier GmbH.

  11. Non-invasive multiparametric qBOLD approach for robust mapping of the oxygen extraction fraction

    Energy Technology Data Exchange (ETDEWEB)

    Domsch, Sebastian; Mie, Moritz B.; Schad, Lothar R. [Heidelberg Univ., Medical Faculty Mannheim (Germany). Computer Assisted Clinical Medicine; Wenz, Frederik [Heidelberg Univ., Medical Faculty Mannheim (Germany). Dept. of Radiation Oncology

    2014-10-01

    Introduction: The quantitative blood oxygenation level-dependent (qBOLD) method has not become clinically established yet because long acquisition times are necessary to achieve an acceptable certainty of the parameter estimates. In this work, a non-invasive multiparametric (nimp) qBOLD approach based on a simple analytical model is proposed to facilitate robust oxygen extraction fraction (OEF) mapping within clinically acceptable acquisition times by using separate measurements. Methods: The protocol consisted of a gradient-echo sampled spin-echo sequence (GESSE), a T{sub 2}-weighted Carr-Purcell-Meiboom-Gill (CPMG) sequence, and a T{sub 2}{sup *}-weighted multi-slice multi-echo gradient echo (MMGE) sequence. The GESSE acquisition time was less than 5 minutes and the extra measurement time for CPMG / MMGE was below 2 minutes each. The proposed nimp-qBOLD approach was validated in healthy subjects (N = 5) and one patient. Results: The proposed nimp-qBOLD approach facilitated more robust OEF mapping with significantly reduced inter- and intra-subject variability compared to the standard qBOLD method. Thereby, an average OEF in all subjects of 27 ± 2 % in white matter (WM) and 29 ± 2 % in gray matter (GM) using the nimp-qBOLD method was more stable compared to 41 ± 10 % (WM) and 46 ± 10 % (GM) with standard qBOLD. Moreover, the spatial variance in the image slice (i.e. standard deviation divided by mean) was on average reduced from 35 % to 25 %. In addition, the preliminary results of the patient are encouraging. Conclusion: The proposed nimp-qBOLD technique provides a promising tool for robust OEF mapping within clinically acceptable acquisition times and could therefore provide an important contribution for analyzing tumors or monitoring the success of radio and chemo therapies. (orig.)

  12. Effect of luminance contrast on BOLD-fMRI response in deaf and normal occipital visual cortex

    International Nuclear Information System (INIS)

    Xue Yanping; Zhai Renyou; Jiang Tao; Cui Yong; Zhou Tiangang; Rao Hengyi; Zhuo Yan

    2002-01-01

    Objective: To examine the effect of luminance contrast stimulus by using blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI) within deaf occipital visual cortex, and to compare the distribution, extent, and intensity of activated areas between deaf subjects and normal hearing subjects. Methods: Twelve deaf subjects (average age 16.5) and 15 normal hearing subjects (average age 23.7) were stimulated by 4 kinds of luminance contrast (0.7, 2.2, 50.0, 180.0 lm). The fMRI data were collected on GE 1.5 T Signa Horizon LX MRI system and analyzed by AFNI to generate the activation map. Results: Responding to all 4 kinds of stimulus luminance contrast, all deaf and normal subjects showed significant activations in occipital visual cortex. For both deaf and normal subjects, the number of activated pixels increased significantly with increasing luminance contrast (F normal = 4.27, P deaf = 6.41, P 0.05). The local mean activation level for all activated pixels remained constant with increasing luminance contrast. However, there was an increase in the mean activation level for those activated pixels common to all trials as the stimulus luminance contrast was increased, but no significant difference was found within them (F normal = 0.79, P > 0.05; F deaf = 1.6, P > 0.05). Conclusion: The effect of luminance contrast on occipital visual cortex of deaf is similar to but somewhat higher than that of normal hearing subjects. In addition, it also proved that fMRI is a feasible method in the study of the deaf visual cortex

  13. Functional BOLD MRI: comparison of different field strengths in a motor task

    International Nuclear Information System (INIS)

    Meindl, T.; Born, C.; Britsch, S.; Reiser, M.; Schoenberg, S.

    2008-01-01

    The purpose was to evaluate the benefit of an increased field strength for functional magnetic resonance imaging in a motor task. Six right-handed volunteers were scanned at 1.5 T and 3.0 T using a motor task. Each experiment consisted of two runs with four activation blocks, each with right- and left-hand tapping. Analysis was done using BrainVoyagerQX registered . Differences between both field strengths concerning signal to noise (SNR), blood oxygen level-dependent (BOLD) signal change, functional sensitivity and BOLD contrast to noise (CNR) were tested using a paired t test. Delineation of activations and artifacts were graded by two independent readers. Results were further validated by means of a phantom study. The sensorimotor and premotor cortex, the supplementary motor area, subcortical and cerebellar structures were activated at each field strength. Additional activations of the right premotor cortex and right superior temporal gyrus were found at 3.0 T. Signal-to-noise, percentage of BOLD signal change, BOLD CNR and functional sensitivity improved at 3.0 T by a factor of up to 2.4. Functional imaging at 3.0 T results in detection of additional activated areas, increased SNR, BOLD signal change, functional sensitivity and BOLD CNR. (orig.)

  14. Regional homogeneity of fMRI time series in autism spectrum disorders.

    Science.gov (United States)

    Shukla, Dinesh K; Keehn, Brandon; Müller, Ralph Axel

    2010-05-26

    Functional magnetic resonance imaging (fMRI) and functional connectivity MRI (fcMRI) studies of autism spectrum disorders (ASD) have suggested atypical patterns of activation and long-distance connectivity for diverse tasks and networks in ASD. We explored the regional homogeneity (ReHo) approach in ASD, which is analogous to conventional fcMRI, but focuses on local connectivity. FMRI data of 26 children with ASD and 29 typically developing (TD) children were acquired during continuous task performance (visual search). Effects of motion and task were removed and Kendall's coefficient of concordance (KCC) was computed, based on the correlation of the blood oxygen level dependent (BOLD) time series for each voxel and its six nearest neighbors. ReHo was lower in the ASD than the TD group in superior parietal and anterior prefrontal regions. Inverse effects of greater ReHo in the ASD group were detected in lateral and medial temporal regions, predominantly in the right hemisphere. Our findings suggest that ReHo is a sensitive measure for detecting cortical abnormalities in autism. However, impact of methodological factors (such as spatial resolution) on ReHo require further investigation. Published by Elsevier Ireland Ltd.

  15. Calibrating the BOLD signal during a motor task using an extended fusion model incorporating DOT, BOLD and ASL data

    Science.gov (United States)

    Yücel, Meryem A.; Huppert, Theodore J.; Boas, David A.; Gagnon, Louis

    2012-01-01

    Multimodal imaging improves the accuracy of the localization and the quantification of brain activation when measuring different manifestations of the hemodynamic response associated with cerebral activity. In this study, we incorporated cerebral blood flow (CBF) changes measured with arterial spin labeling (ASL), Diffuse Optical Tomography (DOT) and blood oxygen level-dependent (BOLD) recordings to reconstruct changes in oxy- (ΔHbO2) and deoxyhemoglobin (ΔHbR). Using the Grubb relation between relative changes in CBF and cerebral blood volume (CBV), we incorporated the ASL measurement as a prior to the total hemoglobin concentration change (ΔHbT). We applied this ASL fusion model to both synthetic data and experimental multimodal recordings during a 2-sec finger-tapping task. Our results show that the new approach is very powerful in estimating ΔHbO2 and ΔHbR with high spatial and quantitative accuracy. Moreover, our approach allows the computation of baseline total hemoglobin concentration (HbT0) as well as of the BOLD calibration factor M on a single subject basis. We obtained an average HbT0 of 71 μM, an average M value of 0.18 and an average increase of 13 % in cerebral metabolic rate of oxygen (CMRO2), all of which are in agreement with values previously reported in the literature. Our method yields an independent measurement of M, which provides an alternative measurement to validate the hypercapnic calibration of the BOLD signal. PMID:22546318

  16. Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses.

    Science.gov (United States)

    Xu, Feng; Li, Wenbo; Liu, Peiying; Hua, Jun; Strouse, John J; Pekar, James J; Lu, Hanzhang; van Zijl, Peter C M; Qin, Qin

    2018-01-01

    Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T 1 values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO 2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO 2 to maintain constant CMRO 2 . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. A simple solution for model comparison in bold imaging: the special case of reward prediction error and reward outcomes.

    Science.gov (United States)

    Erdeniz, Burak; Rohe, Tim; Done, John; Seidler, Rachael D

    2013-01-01

    Conventional neuroimaging techniques provide information about condition-related changes of the BOLD (blood-oxygen-level dependent) signal, indicating only where and when the underlying cognitive processes occur. Recently, with the help of a new approach called "model-based" functional neuroimaging (fMRI), researchers are able to visualize changes in the internal variables of a time varying learning process, such as the reward prediction error or the predicted reward value of a conditional stimulus. However, despite being extremely beneficial to the imaging community in understanding the neural correlates of decision variables, a model-based approach to brain imaging data is also methodologically challenging due to the multicollinearity problem in statistical analysis. There are multiple sources of multicollinearity in functional neuroimaging including investigations of closely related variables and/or experimental designs that do not account for this. The source of multicollinearity discussed in this paper occurs due to correlation between different subjective variables that are calculated very close in time. Here, we review methodological approaches to analyzing such data by discussing the special case of separating the reward prediction error signal from reward outcomes.

  18. Using fMRI to Detect Activation of the Cortical and Subcortical Auditory Centers: Development of a Standard Protocol for a Conventional 1.5-T MRI Scanner

    International Nuclear Information System (INIS)

    Tae, Woo Suk; Kim, Sam Soo; Lee, Kang Uk; Lee, Seung Hwan; Nam, Eui Cheol; Choi, Hyun Kyung

    2009-01-01

    We wanted to develop a standard protocol for auditory functional magnetic resonance imaging (fMRI) for detecting blood oxygenation level-dependent (BOLD) responses at the cortical and subcortical auditory centers with using a 1.5-T MRI scanner. Fourteen normal volunteers were enrolled in the study. The subjects were stimulated by four repetitions of 32 sec each with broadband white noise and silent period blocks as a run (34 echo planar images [EPIs]). Multiple regression analysis for the individual analysis and one-sample t-tests for the group analysis were applied (FDR, p <0.05). The auditory cortex was activated in most of the volunteers (left 100% and right 92.9% at an uncorrected p value <0.05, and left 92.9% and right 92.9% at an uncorreced p value <0.01). The cochlear nuclei (100%, 85.7%), inferior colliculi (71.4%, 64.3%), medial geniculate bodies (64.3%, 35.7%) and superior olivary complexes (35.7%, 35.7%) showed significant BOLD responses at uncorrected p values of <0.05 and p <0.01, respectively. On the group analysis, the cortical and subcortical auditory centers showed significant BOLD responses (FDR, p <0.05), except for the superior olivary complex. The signal intensity time courses of the auditory centers showed biphasic wave forms. We successfully visualized BOLD responses at the cortical and subcortical auditory centers using appropriate sound stimuli and an image acquisition method with a 1.5-T MRI scanner

  19. Investigating Inhibitory Control in Children with Epilepsy: An fMRI Study

    Science.gov (United States)

    Triplett, Regina L.; Velanova, Katerina; Luna, Beatriz; Padmanabhan, Aarthi; Gaillard, William D.; Asato, Miya R.

    2014-01-01

    SUMMARY Objective Deficits in executive function are increasingly noted in children with epilepsy and have been associated with poor academic and psychosocial outcomes. Impaired inhibitory control contributes to executive dysfunction in children with epilepsy; however, its neuroanatomic basis has not yet been investigated. We used functional Magnetic Resonance Imaging (fMRI) to probe the integrity of activation in brain regions underlying inhibitory control in children with epilepsy. Methods This cross-sectional study consisted of 34 children aged 8 to 17 years: 17 with well-controlled epilepsy and 17 age-and sex-matched controls. Participants performed the antisaccade (AS) task, representative of inhibitory control, during fMRI scanning. We compared AS performance during neutral and reward task conditions and evaluated task-related blood-oxygen level dependent (BOLD) activation. Results Children with epilepsy demonstrated impaired AS performance compared to controls during both neutral (non-reward) and reward trials, but exhibited significant task improvement during reward trials. Post-hoc analysis revealed that younger patients made more errors than older patients and all controls. fMRI results showed preserved activation in task-relevant regions in patients and controls, with the exception of increased activation in the left posterior cingulate gyrus in patients specifically with generalized epilepsy across neutral and reward trials. Significance Despite impaired inhibitory control, children with epilepsy accessed typical neural pathways as did their peers without epilepsy. Children with epilepsy showed improved behavioral performance in response to the reward condition, suggesting potential benefits of the use of incentives in cognitive remediation. PMID:25223606

  20. fMRI and brain activation after sport concussion: a tale of two cases

    Directory of Open Access Journals (Sweden)

    Michael G Hutchison

    2014-04-01

    Full Text Available Sport-related concussions are now recognized as a major public health concern: The number of participants in sport and recreation is growing, possibly playing their games faster, and there is heightened public awareness of injuries to some high-profile athletes. However, many clinicians still rely on subjective symptom reports for the clinical determination of recovery. Relying on subjective symptom reports can be dangerous, as it has been shown that some concussed athletes may downplay their symptoms. The use of neuropsychological (NP testing tools has enabled clinicians to measure the effects and extent of impairment following concussion more precisely, providing more objective metrics for determining recovery after concussion. Nevertheless, there is a remaining concern that brain abnormalities may exist beyond the point at which individuals achieve recovery in self-reported symptoms and cognition measured by NP testing. Our understanding of brain recovery after concussion is important not only from a neuroscience perspective, but also from the perspective of clinical decision making for safe return-to-play (RTP. A number of advanced neuroimaging tools, including blood oxygen level dependent (BOLD functional magnetic resonance imaging (fMRI, have independently yielded early information on these abnormal brain functions. In the two cases presented in this article, we report contrasting brain activation patterns and recovery profiles using fMRI. Importantly, fMRI was conducted using adapted versions of the most sensitive computerized NP tests administered in current clinical practice to determine impairments and recovery after sport-related concussion. One of the cases is consistent with the concept of lagging brain recovery.

  1. Bi-Directional Tuning of Amygdala Sensitivity in Combat Veterans Investigated with fMRI

    Science.gov (United States)

    Brashers-Krug, Tom; Jorge, Ricardo

    2015-01-01

    Objectives Combat stress can be followed by persistent emotional consequences. It is thought that these emotional consequences are caused in part by increased amygdala reactivity. It is also thought that amygdala hyper-reactivity results from decreased inhibition from portions of the anterior cingulate cortex (ACC) in which activity is negatively correlated with activity in the amygdala. However, experimental support for these proposals has been inconsistent. Methods We showed movies of combat and civilian scenes during a functional magnetic resonance imaging (fMRI) session to 50 veterans of recent combat. We collected skin conductance responses (SCRs) as measures of emotional arousal. We examined the relation of blood oxygenation-level dependent (BOLD) signal in the amygdala and ACC to symptom measures and to SCRs. Results Emotional arousal, as measured with SCR, was greater during the combat movie than during the civilian movie and did not depend on symptom severity. As expected, amygdala signal during the less-arousing movie increased with increasing symptom severity. Surprisingly, during the more-arousing movie amygdala signal decreased with increasing symptom severity. These differences led to the unexpected result that amygdala signal in highly symptomatic subjects was lower during the more-arousing movie than during the less-arousing movie. Also unexpectedly, we found no significant inverse correlation between any portions of the amygdala and ACC. Rather, signal throughout more than 80% of the ACC showed a strong positive correlation with signal throughout more than 90% of the amygdala. Conclusions Amygdala reactivity can be tuned bi-directionally, either up or down, in the same person depending on the stimulus and the degree of post-traumatic symptoms. The exclusively positive correlations in BOLD activity between the amygdala and ACC contrast with findings that have been cited as evidence for inhibitory control of the amygdala by the ACC. The

  2. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish

    Science.gov (United States)

    Pintor, L.M.; Sih, A.; Bauer, M.L.

    2008-01-01

    Aggressiveness, along with foraging voracity and boldness, are key behavioral mechanisms underlying the competitive displacement and invasion success of exotic species. However, do aggressiveness, voracity and boldness of the invader depend on the presence of an ecologically similar native competitor in the invaded community? We conducted four behavioral assays to compare aggression, foraging voracity, threat response and boldness to forage under predation risk of multiple populations of exotic signal crayfish Pacifastacus leniusculus across its native and invaded range with and without a native congener, the Shasta crayfish P. fortis. We predicted that signal crayfish from the invaded range and sympatric with a native congener (IRS) should be more aggressive to outcompete a close competitor than populations from the native range (NR) or invaded range and allopatric to a native congener (IRA). Furthermore, we predicted that IRS populations of signal crayfish should be more voracious, but less bold to forage under predation risk since native predators and prey likely possess appropriate behavioral responses to the invader. Contrary to our predictions, results indicated that IRA signal crayfish were more aggressive towards conspecifics and more voracious and active foragers, yet also bolder to forage under predation risk in comparison to NR and IRS populations, which did not differ in behavior. Higher aggression/voracity/ boldness was positively correlated with prey consumption rates, and hence potential impacts on prey. We suggest that the positive correlations between aggression/voracity/boldness are the result of an overall aggression syndrome. Results of stream surveys indicated that IRA streams have significantly lower prey biomass than in IRS streams, which may drive invading signal crayfish to be more aggressive/voracious/bold to acquire resources to establish a population. ?? 2008 The Authors.

  3. A novel approach to calibrate the Hemodynamic Model using functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh; Zayane, Chadia; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem

    2016-01-01

    We have designed an iterative numerical technique, called the TNM-CKF algorithm, for calibrating the mathematical model that describes the single-event related brain response when fMRI measurements are given. The method appears to be highly accurate and effective in reconstructing the BOLD signal even when the measurements are tainted with high noise level (as high as 30%).

  4. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    Science.gov (United States)

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a

  5. Functional brain activation differences in stuttering identified with a rapid fMRI sequence

    Science.gov (United States)

    Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech motor and auditory brain activity in children who stutter closer to the age at which recovery from stuttering is documented. Rapid sequences may be preferred for individuals or populations who do not tolerate long scanning sessions. In this report, we document the application of a picture naming and phoneme monitoring task in three minute fMRI sequences with adults who stutter (AWS). If relevant brain differences are found in AWS with these approaches that conform to previous reports, then these approaches can be extended to younger populations. Pairwise contrasts of brain BOLD activity between AWS and normally fluent adults indicated the AWS showed higher BOLD activity in the right inferior frontal gyrus (IFG), right temporal lobe and sensorimotor cortices during picture naming and and higher activity in the right IFG during phoneme monitoring. The right lateralized pattern of BOLD activity together with higher activity in sensorimotor cortices is consistent with previous reports, which indicates rapid fMRI sequences can be considered for investigating stuttering in younger participants. PMID:22133409

  6. Functional brain imaging in irritable bowel syndrome with rectal balloon-distention by using fMRI.

    Science.gov (United States)

    Yuan, Yao-Zong; Tao, Ran-Jun; Xu, Bin; Sun, Jing; Chen, Ke-Min; Miao, Fei; Zhang, Zhong-Wei; Xu, Jia-Yu

    2003-06-01

    Irritable bowel syndrome (IBS) is characterized by abdominal pain and changes in stool habits. Visceral hypersensitivity is a key factor in the pathophysiology of IBS. The aim of this study was to examine the effect of rectal balloon-distention stimulus by blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) in visceral pain center and to compare the distribution, extent, and intensity of activated areas between IBS patients and normal controls. Twenty-six patients with IBS and eleven normal controls were tested for rectal sensation, and the subjective pain intensity at 90 ml and 120 ml rectal balloon-distention was reported by using Visual Analogue Scale. Then, BOLD-fMRI was performed at 30 ml, 60 ml, 90 ml, and 120 ml rectal balloon-distention in all subjects. Rectal distention stimulation increased the activity of anterior cingulate cortex (35/37), insular cortex (37/37), prefrontal cortex (37/37), and thalamus (35/37) in most cases. At 120 ml of rectal balloon-distention, the activation area and percentage change in MR signal intensity of the regions of interest (ROI) at IC, PFC, and THAL were significantly greater in patients with IBS than that in controls. Score of pain sensation at 90 ml and 120 ml rectal balloon-distention was significantly higher in patients with IBS than that in controls. Using fMRI, some patients with IBS can be detected having visceral hypersensitivity in response to painful rectal balloon-distention. fMRI is an objective brain imaging technique to measure the change in regional cerebral activation more precisely. In this study, IC and PFC of the IBS patients were the major loci of the CNS processing of visceral perception.

  7. Decreased BOLD responses in audiovisual processing

    NARCIS (Netherlands)

    Wiersinga-Post, Esther; Tomaskovic, Sonja; Slabu, Lavinia; Renken, Remco; de Smit, Femke; Duifhuis, Hendrikus

    2010-01-01

    Audiovisual processing was studied in a functional magnetic resonance imaging study using the McGurk effect. Perceptual responses and the brain activity patterns were measured as a function of audiovisual delay. In several cortical and subcortical brain areas, BOLD responses correlated negatively

  8. Functional magnetic resonance imaging (fMRI of attention processes in presumed obligate carriers of schizophrenia: preliminary findings

    Directory of Open Access Journals (Sweden)

    Morris Robin G

    2008-10-01

    Full Text Available Abstract Background Presumed obligate carriers (POCs are the first-degree relatives of people with schizophrenia who, although do not exhibit the disorder, are in direct lineage of it. Thus, this subpopulation of first-degree relatives could provide very important information with regard to the investigation of endophenotypes for schizophrenia that could clarify the often contradictory findings in schizophrenia high-risk populations. To date, despite the extant literature on schizophrenia endophenotypes, we are only aware of one other study that examined the neural mechanisms that underlie cognitive abnormalities in this group. The aim of this study was to investigate whether a more homogeneous group of relatives, such as POCs, have neural abnormalities that may be related to schizophrenia. Methods We used functional magnetic resonance imaging (fMRI to collect blood oxygenated level dependent (BOLD response data in six POCs and eight unrelated healthy controls while performing under conditions of sustained, selective and divided attention. Results The POCs indicated alterations in a widely distributed network of regions involved in attention processes, such as the prefrontal and temporal (including the parahippocampal gyrus cortices, in addition to the anterior cingulate gyrus. More specifically, a general reduction in BOLD response was found in these areas compared to the healthy participants during attention processes. Conclusion These preliminary findings of decreased activity in POCs indicate that this more homogeneous population of unaffected relatives share similar neural abnormalities with people with schizophrenia, suggesting that reduced BOLD activity in the attention network may be an intermediate marker for schizophrenia.

  9. An fMRI study on cortical responses during active self-touch and passive touch from others

    Directory of Open Access Journals (Sweden)

    Rochelle eAckerley

    2012-08-01

    Full Text Available Active, self-touch and the passive touch from an external source engage comparable afferent mechanoreceptors on the touched skin site. However, touch directed to glabrous skin compared to hairy skin will activate different types of afferent mechanoreceptors. Despite perceptual similarities between touch to different body sites, it is likely that the touch information is processed differently. In the present study, we used functional magnetic resonance imaging (fMRI to elucidate the cortical differences in the neural signal of touch representations during active, self-touch and passive touch from another, to both glabrous (palm and hairy (arm skin, where a soft brush was used as the stimulus. There were two active touch conditions, where the participant used the brush in their right hand to stroke either their left palm or arm. There were two similar passive, touch conditions where the experimenter used an identical brush to stroke the same palm and arm areas on the participant. Touch on the left palm elicited a large, significant, positive blood-oxygenation level dependence (BOLD signal in right sensorimotor areas. Less extensive activity was found for touch to the arm. Separate somatotopical palm and arm representations were found in Brodmann area 3 of the right primary somatosensory cortex (SI and in both these areas, active stroking gave significantly higher signals than passive stroking. Active, self-touch elicited a positive BOLD signal in a network of sensorimotor cortical areas in the left hemisphere, compared to the resting baseline. In contrast, during passive touch, a significant negative BOLD signal was found in the left SI. Thus, each of the four conditions had a unique cortical signature despite similarities in afferent signalling or evoked perception. It is hypothesized that attentional mechanisms play a role in the modulation of the touch signal in the right SI, accounting for the differences found between active and passive touch.

  10. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.

    Science.gov (United States)

    Scheef, Lukas; Nordmeyer-Massner, Jurek A; Smith-Collins, Adam Pr; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H; Pruessmann, Klaas P; Heep, Axel; Boecker, Henning

    2017-01-01

    Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p lateralization of SMC activation, as found in children and adults, is already present in the newborn period.

  11. Task performance changes the amplitude and timing of the BOLD signal

    Directory of Open Access Journals (Sweden)

    Akhrif Atae

    2017-12-01

    Full Text Available Translational studies comparing imaging data of animals and humans have gained increasing scientific interests. With this upcoming translational approach, however, identifying harmonized statistical analysis as well as shared data acquisition protocols and/or combined statistical approaches is necessary. Following this idea, we applied Bayesian Adaptive Regression Splines (BARS, which have until now mainly been used to model neural responses of electrophysiological recordings from rodent data, on human hemodynamic responses as measured via fMRI. Forty-seven healthy subjects were investigated while performing the Attention Network Task in the MRI scanner. Fluctuations in the amplitude and timing of the BOLD response were determined and validated externally with brain activation using GLM and also ecologically with the influence of task performance (i.e. good vs. bad performers. In terms of brain activation, bad performers presented reduced activation bilaterally in the parietal lobules, right prefrontal cortex (PFC and striatum. This was accompanied by an enhanced left PFC recruitment. With regard to the amplitude of the BOLD-signal, bad performers showed enhanced values in the left PFC. In addition, in the regions of reduced activation such as the parietal and striatal regions, the temporal dynamics were higher in bad performers. Based on the relation between BOLD response and neural firing with the amplitude of the BOLD signal reflecting gamma power and timing dynamics beta power, we argue that in bad performers, an enhanced left PFC recruitment hints towards an enhanced functioning of gamma-band activity in a compensatory manner. This was accompanied by reduced parieto-striatal activity, associated with increased and potentially conflicting beta-band activity.

  12. BOLD cardiovascular magnetic resonance at 3.0 tesla in myocardial ischemia.

    Science.gov (United States)

    Manka, Robert; Paetsch, Ingo; Schnackenburg, Bernhard; Gebker, Rolf; Fleck, Eckart; Jahnke, Cosima

    2010-09-22

    The purpose of this study was to determine the ability of blood oxygen level dependent (BOLD) cardiovascular magnetic resonance (CMR) to detect stress-inducible myocardial ischemic reactions in the presence of angiographically significant coronary artery disease (CAD). Forty-six patients (34 men; age 65 ± 9 years,) with suspected or known coronary artery disease underwent CMR at 3Tesla prior to clinically indicated invasive coronary angiography. BOLD CMR was performed in 3 short axis slices of the heart at rest and during adenosine stress (140 μg/kg/min) followed by late gadolinium enhancement (LGE) imaging. In all 16 standard myocardial segments, T2* values were derived at rest and under adenosine stress. Quantitative coronary angiography served as the standard of reference and defined normal myocardial segments (i.e. all 16 segments in patients without any CAD), ischemic segments (i.e. supplied by a coronary artery with ≥50% luminal narrowing) and non-ischemic segments (i.e. supplied by a non-significantly stenosed coronary artery in patients with significant CAD). Coronary angiography demonstrated significant CAD in 23 patients. BOLD CMR at rest revealed significantly lower T2* values for ischemic segments (26.7 ± 11.6 ms) compared to normal (31.9 ± 11.9 ms; p BOLD CMR at 3Tesla proved feasible and differentiated between ischemic, non-ischemic, and normal myocardial segments in a clinical patient population. BOLD CMR during vasodilator stress identified patients with significant CAD.

  13. Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses.

    Directory of Open Access Journals (Sweden)

    Maxwell R Bennett

    Full Text Available Measurements of blood oxygenation level dependent (BOLD signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular connections.

  14. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kesavadas, Chandrasekharan; Thomas, Bejoy; Kumar Gupta, Arun [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Imaging Sciences and Interventional Radiology, Trivandrum (India); Sujesh, Sreedharan [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Trivandrum (India); Ashalata, Radhakrishnan; Radhakrishnan, Kurupath [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Neurology, Trivandrum (India); Abraham, Mathew [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Neurosurgery, Trivandrum (India)

    2007-10-15

    The role of fMRI in the presurgical evaluation of children with intractable epilepsy is being increasingly recognized. Real-time fMRI allows the clinician to visualize functional brain activation in real time. Since there is no off-line data analysis as in conventional fMRI, the overall time for the procedure is reduced, making it clinically feasible in a busy clinical sitting. (1) To study the accuracy of real-time fMRI in comparison to conventional fMRI with off-line processing; (2) to determine its effectiveness in mapping the eloquent cortex and language lateralization in comparison to invasive procedures such as intraoperative cortical stimulation and Wada testing; and (3) to evaluate the role of fMRI in presurgical decision making in children with epilepsy. A total of 23 patients (age range 6-18 years) underwent fMRI with sensorimotor, visual and language paradigms. Data processing was done in real time using in-line BOLD. The results of real-time fMRI matched those of off-line processing done using the well-accepted standard technique of statistical parametric mapping (SPM) in all the initial ten patients in whom the two techniques were compared. Coregistration of the fMRI data on a 3-D FLAIR sequence rather than a T1-weighted image gave better information regarding the relationship of the lesion to the area of activation. The results of intraoperative cortical stimulation and fMRI matched in six out of six patients, while the Wada test and fMRI had similar results in four out of five patients in whom these techniques were performed. In the majority of patients in this series the technique influenced patient management. Real-time fMRI is an easily performed and reliable technique in the presurgical workup of children with epilepsy. (orig.)

  15. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy

    International Nuclear Information System (INIS)

    Kesavadas, Chandrasekharan; Thomas, Bejoy; Kumar Gupta, Arun; Sujesh, Sreedharan; Ashalata, Radhakrishnan; Radhakrishnan, Kurupath; Abraham, Mathew

    2007-01-01

    The role of fMRI in the presurgical evaluation of children with intractable epilepsy is being increasingly recognized. Real-time fMRI allows the clinician to visualize functional brain activation in real time. Since there is no off-line data analysis as in conventional fMRI, the overall time for the procedure is reduced, making it clinically feasible in a busy clinical sitting. (1) To study the accuracy of real-time fMRI in comparison to conventional fMRI with off-line processing; (2) to determine its effectiveness in mapping the eloquent cortex and language lateralization in comparison to invasive procedures such as intraoperative cortical stimulation and Wada testing; and (3) to evaluate the role of fMRI in presurgical decision making in children with epilepsy. A total of 23 patients (age range 6-18 years) underwent fMRI with sensorimotor, visual and language paradigms. Data processing was done in real time using in-line BOLD. The results of real-time fMRI matched those of off-line processing done using the well-accepted standard technique of statistical parametric mapping (SPM) in all the initial ten patients in whom the two techniques were compared. Coregistration of the fMRI data on a 3-D FLAIR sequence rather than a T1-weighted image gave better information regarding the relationship of the lesion to the area of activation. The results of intraoperative cortical stimulation and fMRI matched in six out of six patients, while the Wada test and fMRI had similar results in four out of five patients in whom these techniques were performed. In the majority of patients in this series the technique influenced patient management. Real-time fMRI is an easily performed and reliable technique in the presurgical workup of children with epilepsy. (orig.)

  16. Wavelet entropy of BOLD time series : an application to Rolandic epilepsy

    NARCIS (Netherlands)

    Gupta, Lalit; Jansen, Jacobus F.A.; Hofman, Paul A.M.; Besseling, René M.H.; de Louw, Anton J.A.; Aldenkamp, Albert P.; Backes, Walter H.

    2017-01-01

    Purpose: To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in

  17. Audiovisual synchrony enhances BOLD responses in a brain network including multisensory STS while also enhancing target-detection performance for both modalities

    Science.gov (United States)

    Marchant, Jennifer L; Ruff, Christian C; Driver, Jon

    2012-01-01

    The brain seeks to combine related inputs from different senses (e.g., hearing and vision), via multisensory integration. Temporal information can indicate whether stimuli in different senses are related or not. A recent human fMRI study (Noesselt et al. [2007]: J Neurosci 27:11431–11441) used auditory and visual trains of beeps and flashes with erratic timing, manipulating whether auditory and visual trains were synchronous or unrelated in temporal pattern. A region of superior temporal sulcus (STS) showed higher BOLD signal for the synchronous condition. But this could not be related to performance, and it remained unclear if the erratic, unpredictable nature of the stimulus trains was important. Here we compared synchronous audiovisual trains to asynchronous trains, while using a behavioral task requiring detection of higher-intensity target events in either modality. We further varied whether the stimulus trains had predictable temporal pattern or not. Synchrony (versus lag) between auditory and visual trains enhanced behavioral sensitivity (d') to intensity targets in either modality, regardless of predictable versus unpredictable patterning. The analogous contrast in fMRI revealed BOLD increases in several brain areas, including the left STS region reported by Noesselt et al. [2007: J Neurosci 27:11431–11441]. The synchrony effect on BOLD here correlated with the subject-by-subject impact on performance. Predictability of temporal pattern did not affect target detection performance or STS activity, but did lead to an interaction with audiovisual synchrony for BOLD in inferior parietal cortex. PMID:21953980

  18. Load-dependent dysfunction of the putamen during attentional processing in patients with clinically isolated syndrome suggestive of multiple sclerosis.

    Science.gov (United States)

    Tortorella, C; Romano, R; Direnzo, V; Taurisano, P; Zoccolella, S; Iaffaldano, P; Fazio, L; Viterbo, R; Popolizio, T; Blasi, G; Bertolino, A; Trojano, M

    2013-08-01

    Load-related functional magnetic resonance imaging (fMRI) abnormalities of brain activity during performance of attention tasks have been described in definite multiple sclerosis (MS). No data are available in clinically isolated syndrome (CIS) suggestive of MS. The objective of this research is to evaluate in CIS patients the fMRI pattern of brain activation during an attention task and to explore the effect of increasing task load demand on neurofunctional modifications. Twenty-seven untreated CIS patients and 32 age- and sex-matched healthy controls (HCs) underwent fMRI while performing the Variable Attentional Control (VAC) task, a cognitive paradigm requiring increasing levels of attentional control processing. Random-effects models were used for statistical analyses of fMRI data. CIS patients had reduced accuracy and greater reaction time at the VAC task compared with HCs (p=0.007). On blood oxygenation level-dependent (BOLD)-fMRI, CIS patients had greater activity in the right parietal cortex (p=0.0004) compared with HCs. Furthermore, CIS patients had greater activity at the lower (p=0.05) and reduced activity at the greater (p=0.04) level of attentional control demand in the left putamen, compared with HCs. This study demonstrates the failure of attentional control processing in CIS. The load-related fMRI dysfunction of the putamen supports the role of basal ganglia in the failure of attention observed at the earliest stage of MS.

  19. Risk patterns and correlated brain activities. Multidimensional statistical analysis of FMRI data in economic decision making study.

    Science.gov (United States)

    van Bömmel, Alena; Song, Song; Majer, Piotr; Mohr, Peter N C; Heekeren, Hauke R; Härdle, Wolfgang K

    2014-07-01

    Decision making usually involves uncertainty and risk. Understanding which parts of the human brain are activated during decisions under risk and which neural processes underly (risky) investment decisions are important goals in neuroeconomics. Here, we analyze functional magnetic resonance imaging (fMRI) data on 17 subjects who were exposed to an investment decision task from Mohr, Biele, Krugel, Li, and Heekeren (in NeuroImage 49, 2556-2563, 2010b). We obtain a time series of three-dimensional images of the blood-oxygen-level dependent (BOLD) fMRI signals. We apply a panel version of the dynamic semiparametric factor model (DSFM) presented in Park, Mammen, Wolfgang, and Borak (in Journal of the American Statistical Association 104(485), 284-298, 2009) and identify task-related activations in space and dynamics in time. With the panel DSFM (PDSFM) we can capture the dynamic behavior of the specific brain regions common for all subjects and represent the high-dimensional time-series data in easily interpretable low-dimensional dynamic factors without large loss of variability. Further, we classify the risk attitudes of all subjects based on the estimated low-dimensional time series. Our classification analysis successfully confirms the estimated risk attitudes derived directly from subjects' decision behavior.

  20. The fMRI study on the front-parietal activation in abacus mental calculation trained children

    International Nuclear Information System (INIS)

    Zhao Kunyuan; Wang Bin; Long Jinfeng; Li Lixin; Shen Xiaojun

    2010-01-01

    Objective: To investigate the difference in front-parietal activation between the trained and untrained children engaged in addition and multiplication with functional magnetic resonance imaging (fMRI), and to explore the role of abacus mental calculation in brain development. Methods: Twenty-four children trained with abacus mental calculation and twelve untrained children performed mental calculation tasks including addition, multiplication and number-object control judging tasks. Blood oxygenation level dependence (BOLD) fMRI was performed when they were calculating. All data were analyzed by SPM2 (statistical parametric mapping 2) to generate the brain activation map. Results: The performance of the trained group had better correctness and shorter reaction time than that of the untrained group. The front-parietal activation between two groups had obvious difference. The activation involved less prefrontal cortex in the trained group than in the untrained group (P<0.05). The parietal activation in the trained group was mainly in the posterior superior parietal lobe/ precuneus, whereas the activation areas focused on the inferior parietal lobule in the untrained group. Conclusion: Abacus mental calculation involves multiple functional areas. and these areas may work together as a whole in processing arithmetic problems. Abacus mental calculation not only enhances the information processing in some brain areas and improves the utilization efficiency of neural resources, but also plays an important role in developing brain. (authors)

  1. Global Functional Connectivity Differences between Sleep-Like States in Urethane Anesthetized Rats Measured by fMRI.

    Directory of Open Access Journals (Sweden)

    Ekaterina Zhurakovskaya

    Full Text Available Sleep is essential for nervous system functioning and sleep disorders are associated with several neurodegenerative diseases. However, the macroscale connectivity changes in brain networking during different sleep states are poorly understood. One of the hindering factors is the difficulty to combine functional connectivity investigation methods with spontaneously sleeping animals, which prevents the use of numerous preclinical animal models. Recent studies, however, have implicated that urethane anesthesia can uniquely induce different sleep-like brain states, resembling rapid eye movement (REM and non-REM (NREM sleep, in rodents. Therefore, the aim of this study was to assess changes in global connectivity and topology between sleep-like states in urethane anesthetized rats, using blood oxygenation level dependent (BOLD functional magnetic resonance imaging. We detected significant changes in corticocortical (increased in NREM-like state and corticothalamic connectivity (increased in REM-like state. Additionally, in graph analysis the modularity, the measure of functional integration in the brain, was higher in NREM-like state than in REM-like state, indicating a decrease in arousal level, as in normal sleep. The fMRI findings were supported by the supplementary electrophysiological measurements. Taken together, our results show that macroscale functional connectivity changes between sleep states can be detected robustly with resting-state fMRI in urethane anesthetized rats. Our findings pave the way for studies in animal models of neurodegenerative diseases where sleep abnormalities are often one of the first markers for the disorder development.

  2. Cerebrospinal fluid neurofilament tracks fMRI correlates of attention at the first attack of multiple sclerosis.

    Science.gov (United States)

    Tortorella, C; Direnzo, V; Taurisano, P; Romano, R; Ruggieri, M; Zoccolella, S; Mastrapasqua, M; Popolizio, T; Blasi, G; Bertolino, A; Trojano, M

    2015-04-01

    Identifying markers of cognitive dysfunction in multiple sclerosis (MS) is extremely challenging since it means supplying potential biomarkers for neuroprotective therapeutic strategies. The aim of this study is to investigate the relationship between fMRI correlates of attention performance and cerebrospinal fluid (CSF) neurofilament light chain (NFL) levels in patients with clinically isolated syndrome (CIS) suggestive of MS. Twenty-one untreated, cognitively preserved CIS patients underwent BOLD-fMRI while performing the Variable Attentional Control (VAC) task, a cognitive paradigm requiring increasing levels of attentional control processing. CSF NFL was assessed by ELISA technique. SPM8 random-effects models were used for statistical analyses of fMRI data (p<0.05 corrected). Repeated-measures ANOVA on imaging data showed an interaction between attentional control load and NFL levels in the right putamen. At the high level of attentional control demand CIS patients with "low NFL levels" showed greater activity in the putamen compared with subjects with "high NFL levels" (p=0.001). These results are independent of cognitive impairment index. Our findings suggest a relationship between CSF NFL levels and load-dependent failure of putaminal recruitment pattern during sustained attention in CIS and suggest a role of CSF NFL as a marker of subclinical abnormality of cognitive pathway recruitment in CIS. © The Author(s), 2014.

  3. Correlations of noninvasive BOLD and TOLD MRI with pO2 and relevance to tumor radiation response.

    Science.gov (United States)

    Hallac, Rami R; Zhou, Heling; Pidikiti, Rajesh; Song, Kwang; Stojadinovic, Strahinja; Zhao, Dawen; Solberg, Timothy; Peschke, Peter; Mason, Ralph P

    2014-05-01

    To examine the potential use of blood oxygenation level dependent (BOLD) and tissue oxygenation level dependent (TOLD) contrast MRI to assess tumor oxygenation and predict radiation response. BOLD and TOLD MRI were performed on Dunning R3327-AT1 rat prostate tumors during hyperoxic gas breathing challenge at 4.7 T. Animals were divided into two groups. In Group 1 (n = 9), subsequent (19) F MRI based on spin lattice relaxation of hexafluorobenzene reporter molecule provided quantitative oximetry for comparison. For Group 2 rats (n = 13) growth delay following a single dose of 30 Gy was compared with preirradiation BOLD and TOLD assessments. Oxygen (100%O2 ) and carbogen (95%O2 /5%CO2 ) challenge elicited similar BOLD, TOLD and pO2 responses. Strong correlations were observed between BOLD or R2* response and quantitative (19) F pO2 measurements. TOLD response showed a general trend with weaker correlation. Irradiation caused a significant tumor growth delay and tumors with larger changes in TOLD and R1 values upon oxygen breathing exhibited significantly increased tumor growth delay. These results provide further insight into the relationships between oxygen sensitive (BOLD/TOLD) MRI and tumor pO2 . Moreover, a larger increase in R1 response to hyperoxic gas challenge coincided with greater tumor growth delay following irradiation. Copyright © 2013 Wiley Periodicals, Inc.

  4. Exploiting magnetic resonance angiography imaging improves model estimation of BOLD signal.

    Directory of Open Access Journals (Sweden)

    Zhenghui Hu

    Full Text Available The change of BOLD signal relies heavily upon the resting blood volume fraction ([Formula: see text] associated with regional vasculature. However, existing hemodynamic data assimilation studies pretermit such concern. They simply assign the value in a physiologically plausible range to get over ill-conditioning of the assimilation problem and fail to explore actual [Formula: see text]. Such performance might lead to unreliable model estimation. In this work, we present the first exploration of the influence of [Formula: see text] on fMRI data assimilation, where actual [Formula: see text] within a given cortical area was calibrated by an MR angiography experiment and then was augmented into the assimilation scheme. We have investigated the impact of [Formula: see text] on single-region data assimilation and multi-region data assimilation (dynamic cause modeling, DCM in a classical flashing checkerboard experiment. Results show that the employment of an assumed [Formula: see text] in fMRI data assimilation is only suitable for fMRI signal reconstruction and activation detection grounded on this signal, and not suitable for estimation of unobserved states and effective connectivity study. We thereby argue that introducing physically realistic [Formula: see text] in the assimilation process may provide more reliable estimation of physiological information, which contributes to a better understanding of the underlying hemodynamic processes. Such an effort is valuable and should be well appreciated.

  5. Intersession reliability of fMRI activation for heat pain and motor tasks

    Science.gov (United States)

    Quiton, Raimi L.; Keaser, Michael L.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.

    2014-01-01

    As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this

  6. Spatiotemporal alignment of in utero BOLD-MRI series.

    Science.gov (United States)

    Turk, Esra Abaci; Luo, Jie; Gagoski, Borjan; Pascau, Javier; Bibbo, Carolina; Robinson, Julian N; Grant, P Ellen; Adalsteinsson, Elfar; Golland, Polina; Malpica, Norberto

    2017-08-01

    To present a method for spatiotemporal alignment of in-utero magnetic resonance imaging (MRI) time series acquired during maternal hyperoxia for enabling improved quantitative tracking of blood oxygen level-dependent (BOLD) signal changes that characterize oxygen transport through the placenta to fetal organs. The proposed pipeline for spatiotemporal alignment of images acquired with a single-shot gradient echo echo-planar imaging includes 1) signal nonuniformity correction, 2) intravolume motion correction based on nonrigid registration, 3) correction of motion and nonrigid deformations across volumes, and 4) detection of the outlier volumes to be discarded from subsequent analysis. BOLD MRI time series collected from 10 pregnant women during 3T scans were analyzed using this pipeline. To assess pipeline performance, signal fluctuations between consecutive timepoints were examined. In addition, volume overlap and distance between manual region of interest (ROI) delineations in a subset of frames and the delineations obtained through propagation of the ROIs from the reference frame were used to quantify alignment accuracy. A previously demonstrated rigid registration approach was used for comparison. The proposed pipeline improved anatomical alignment of placenta and fetal organs over the state-of-the-art rigid motion correction methods. In particular, unexpected temporal signal fluctuations during the first normoxia period were significantly decreased (P quantitative studies of placental function by improving spatiotemporal alignment across placenta and fetal organs. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:403-412. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Distinction between Neural and Vascular BOLD Oscillations and Intertwined Heart Rate Oscillations at 0.1 Hz in the Resting State and during Movement.

    Directory of Open Access Journals (Sweden)

    Gert Pfurtscheller

    Full Text Available In the resting state, blood oxygen level-dependent (BOLD oscillations with a frequency of about 0.1 Hz are conspicuous. Whether their origin is neural or vascular is not yet fully understood. Furthermore, it is not clear whether these BOLD oscillations interact with slow oscillations in heart rate (HR. To address these two questions, we estimated phase-locking (PL values between precentral gyrus (PCG and insula in 25 scanner-naïve individuals during rest and stimulus-paced finger movements in both hemispheres. PL was quantified in terms of time delay and duration in the frequency band 0.07 to 0.13 Hz. Results revealed both positive and negative time delays. Positive time delays characterize neural BOLD oscillations leading in the PCG, whereas negative time delays represent vascular BOLD oscillations leading in the insula. About 50% of the participants revealed positive time delays distinctive for neural BOLD oscillations, either with short or long unilateral or bilateral phase-locking episodes. An expected preponderance of neural BOLD oscillations was found in the left hemisphere during right-handed movement and unexpectedly in the right hemisphere during rest. Only neural BOLD oscillations were significantly associated with heart rate variability (HRV in the 0.1-Hz range in the first resting state. It is well known that participating in magnetic resonance imaging (MRI studies may be frightening and cause anxiety. In this respect it is important to note that the most significant hemispheric asymmetry (p<0.002 with a right-sided dominance of neural BOLD and a left-sided dominance of vascular BOLD oscillations was found in the first resting session in the scanner-naïve individuals. Whether the enhanced left-sided perfusion (dominance of vascular BOLD or the right-sided dominance of neural BOLD is related to the increased level of anxiety, attention or stress needs further research.

  8. Higher frequency network activity flow predicts lower frequency node activity in intrinsic low-frequency BOLD fluctuations.

    Science.gov (United States)

    Bajaj, Sahil; Adhikari, Bhim Mani; Dhamala, Mukesh

    2013-01-01

    The brain remains electrically and metabolically active during resting conditions. The low-frequency oscillations (LFO) of the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI) coherent across distributed brain regions are known to exhibit features of this activity. However, these intrinsic oscillations may undergo dynamic changes in time scales of seconds to minutes during resting conditions. Here, using wavelet-transform based time-frequency analysis techniques, we investigated the dynamic nature of default-mode networks from intrinsic BOLD signals recorded from participants maintaining visual fixation during resting conditions. We focused on the default-mode network consisting of the posterior cingulate cortex (PCC), the medial prefrontal cortex (mPFC), left middle temporal cortex (LMTC) and left angular gyrus (LAG). The analysis of the spectral power and causal flow patterns revealed that the intrinsic LFO undergo significant dynamic changes over time. Dividing the frequency interval 0 to 0.25 Hz of LFO into four intervals slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073-0.198 Hz) and slow-2 (0.198-0.25 Hz), we further observed significant positive linear relationships of slow-4 in-out flow of network activity with slow-5 node activity, and slow-3 in-out flow of network activity with slow-4 node activity. The network activity associated with respiratory related frequency (slow-2) was found to have no relationship with the node activity in any of the frequency intervals. We found that the net causal flow towards a node in slow-3 band was correlated with the number of fibers, obtained from diffusion tensor imaging (DTI) data, from the other nodes connecting to that node. These findings imply that so-called resting state is not 'entirely' at rest, the higher frequency network activity flow can predict the lower frequency node activity, and the network activity flow can reflect underlying structural

  9. Simultaneous Imaging of CBF Change and BOLD with Saturation-Recovery-T1 Method.

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    Full Text Available A neuroimaging technique based on the saturation-recovery (SR-T1 MRI method was applied for simultaneously imaging blood oxygenation level dependence (BOLD contrast and cerebral blood flow change (ΔCBF, which is determined by CBF-sensitive T1 relaxation rate change (ΔR1CBF. This technique was validated by quantitatively examining the relationships among ΔR1CBF, ΔCBF, BOLD and relative CBF change (rCBF, which was simultaneously measured by laser Doppler flowmetry under global ischemia and hypercapnia conditions, respectively, in the rat brain. It was found that during ischemia, BOLD decreased 23.1±2.8% in the cortical area; ΔR1CBF decreased 0.020±0.004s-1 corresponding to a ΔCBF decrease of 1.07±0.24 ml/g/min and 89.5±1.8% CBF reduction (n=5, resulting in a baseline CBF value (=1.18 ml/g/min consistent with the literature reports. The CBF change quantification based on temperature corrected ΔR1CBF had a better accuracy than apparent R1 change (ΔR1app; nevertheless, ΔR1app without temperature correction still provides a good approximation for quantifying CBF change since perfusion dominates the evolution of the longitudinal relaxation rate (R1app. In contrast to the excellent consistency between ΔCBF and rCBF measured during and after ischemia, the BOLD change during the post-ischemia period was temporally disassociated with ΔCBF, indicating distinct CBF and BOLD responses. Similar results were also observed for the hypercapnia study. The overall results demonstrate that the SR-T1 MRI method is effective for noninvasive and quantitative imaging of both ΔCBF and BOLD associated with physiological and/or pathological changes.

  10. Is fMRI ?noise? really noise? Resting state nuisance regressors remove variance with network structure

    OpenAIRE

    Bright, Molly G.; Murphy, Kevin

    2015-01-01

    Noise correction is a critical step towards accurate mapping of resting state BOLD fMRI connectivity. Noise sources related to head motion or physiology are typically modelled by nuisance regressors, and a generalised linear model is applied to regress out the associated signal variance. In this study, we use independent component analysis (ICA) to characterise the data variance typically discarded in this pre-processing stage in a cohort of 12 healthy volunteers. The signal variance removed ...

  11. Applying independent component analysis to clinical fMRI at 7 T

    OpenAIRE

    Simon Daniel Robinson; Veronika eSchöpf; Pedro eCardoso; Alexander eGeissler; Alexander eGeissler; Florian Ph.S Fischmeister; Florian Ph.S Fischmeister; Moritz eWurnig; Moritz eWurnig; Siegfried eTrattnig; Roland eBeisteiner; Roland eBeisteiner

    2013-01-01

    Increased BOLD sensitivity at 7 T offers the possibility to increase the reliability of fMRI, but ultra-high field is also associated with an increase in artifacts related to head motion, Nyquist ghosting and parallel imaging reconstruction errors. In this study, the ability of Independent Component Analysis (ICA) to separate activation from these artifacts was assessed in a 7 T study of neurological patients performing chin and hand motor tasks. ICA was able to isolate primary motor activati...

  12. The brain effects of laser acupuncture in healthy individuals: an FMRI investigation.

    Directory of Open Access Journals (Sweden)

    Im Quah-Smith

    2010-09-01

    Full Text Available As laser acupuncture is being increasingly used to treat mental disorders, we sought to determine whether it has a biologically plausible effect by using functional magnetic resonance imaging (fMRI to investigate the cerebral activation patterns from laser stimulation of relevant acupoints.Ten healthy subjects were randomly stimulated with a fibreoptic infrared laser on 4 acupoints (LR14, CV14, LR8 and HT7 used for depression following the principles of Traditional Chinese Medicine (TCM, and 1 control non-acupoint (sham point in a blocked design (alternating verum laser and placebo laser/rest blocks, while the blood oxygenation level-dependent (BOLD fMRI response was recorded from the whole brain on a 3T scanner. Many of the acupoint laser stimulation conditions resulted in different patterns of neural activity. Regions with significantly increased activation included the limbic cortex (cingulate and the frontal lobe (middle and superior frontal gyrus. Laser acupuncture tended to be associated with ipsilateral brain activation and contralateral deactivation that therefore cannot be simply attributed to somatosensory stimulation.We found that laser stimulation of acupoints lead to activation of frontal-limbic-striatal brain regions, with the pattern of neural activity somewhat different for each acupuncture point. This is the first study to investigate laser acupuncture on a group of acupoints useful in the management of depression. Differing activity patterns depending on the acupoint site were demonstrated, suggesting that neurological effects vary with the site of stimulation. The mechanisms of activation and deactivation and their effects on depression warrant further investigation.

  13. Socially bold personality in the real communication and Internet communication: the analysis of representations of people of the different age

    Directory of Open Access Journals (Sweden)

    Pogodina A. V.

    2017-03-01

    Full Text Available The article is concerned with the results of the study, subject of which is the submis- sion of the respondents of the different age groups about the social and bold personality. Required property of the respondents was the presence in the Internet environment and participation in various social networks. They assessed social and bold personal- ity in such contexts of communication, as real communication and Internet communication. Analyses were undertaken to determine the structural and content features of emotional and semantic representations of the phenomenon of the social and bold personality, depending on the context of communication, but also the detection of age-sensitive representations of the young respondents (19—35 years, middle-aged respondents (36-55 years and older respondents (from 56 to 70 years. The concept of the “social and bold personality in real communion” is shown to have a high semantic relevance, strongly marked positive emotional coloration and a similar factor structure for respondents of all age groups. The concept of the “social and bold personality in online communication” with a high semantic significance in the perception of the young respondents moves into a zone of moderate and semantic importance in representations of the middle-aged and older respondents. In representations of the respondents of all age groups, the attractiveness of the "social and bold personality in Internet communication" is less than in comparison with the "social and bold personality in the real communication". The age-specific of the social representations about social and bold personality in the real and virtual communication has been analysed in detail.

  14. Real-time fMRI pattern decoding and neurofeedback using FRIEND: an FSL-integrated BCI toolbox.

    Science.gov (United States)

    Sato, João R; Basilio, Rodrigo; Paiva, Fernando F; Garrido, Griselda J; Bramati, Ivanei E; Bado, Patricia; Tovar-Moll, Fernanda; Zahn, Roland; Moll, Jorge

    2013-01-01

    The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity) and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available.

  15. Real-time fMRI pattern decoding and neurofeedback using FRIEND: an FSL-integrated BCI toolbox.

    Directory of Open Access Journals (Sweden)

    João R Sato

    Full Text Available The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM, fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available.

  16. Real-Time fMRI Pattern Decoding and Neurofeedback Using FRIEND: An FSL-Integrated BCI Toolbox

    Science.gov (United States)

    Sato, João R.; Basilio, Rodrigo; Paiva, Fernando F.; Garrido, Griselda J.; Bramati, Ivanei E.; Bado, Patricia; Tovar-Moll, Fernanda; Zahn, Roland; Moll, Jorge

    2013-01-01

    The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity) and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available. PMID:24312569

  17. Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.

    Science.gov (United States)

    Erdoğan, Sinem B; Yücel, Meryem A; Akın, Ata

    2014-02-15

    Functional near infrared spectroscopy (fNIRS) is a promising method for monitoring cerebral hemodynamics with a wide range of clinical applications. fNIRS signals are contaminated with systemic physiological interferences from both the brain and superficial tissues, resulting in a poor estimation of the task related neuronal activation. In this study, we use the anatomical resolution of functional magnetic resonance imaging (fMRI) to extract scalp and brain vascular signals separately and construct an optically weighted spatial average of the fMRI blood oxygen level-dependent (BOLD) signal for characterizing the scalp signal contribution to fNIRS measurements. We introduce an extended superficial signal regression (ESSR) method for canceling physiology-based systemic interference where the effects of cerebral and superficial systemic interference are treated separately. We apply and validate our method on the optically weighted BOLD signals, which are obtained by projecting the fMRI image onto optical measurement space by use of the optical forward problem. The performance of ESSR method in removing physiological artifacts is compared to i) a global signal regression (GSR) method and ii) a superficial signal regression (SSR) method. The retrieved signals from each method are compared with the neural signals that represent the 'ground truth' brain activation cleaned from cerebral systemic fluctuations. We report significant improvements in the recovery of task induced neural activation with the ESSR method when compared to the other two methods as reflected in the Pearson R(2) coefficient and mean square error (MSE) metrics (two tailed paired t-tests, pnoise (CNR) improvement (60%). Our findings suggest that, during a cognitive task i) superficial scalp signal contribution to fNIRS signals varies significantly among different regions on the forehead and ii) using an average scalp measurement together with a local measure of superficial hemodynamics better accounts

  18. Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7T.

    NARCIS (Netherlands)

    Boyacioglu, R.; Schulz, J.; Koopmans, P.J.; Barth, M.; Norris, David Gordon

    2015-01-01

    A multiband multi-echo (MBME) sequence is implemented and compared to a matched standard multi-echo (ME) protocol to investigate the potential improvement in sensitivity and spatial specificity at 7 T for resting state and task fMRI. ME acquisition is attractive because BOLD sensitivity is less

  19. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.

    Directory of Open Access Journals (Sweden)

    Lukas Scheef

    Full Text Available Functional magnetic resonance imaging (fMRI in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD responses in sensorimotor cortex (SMC. Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level.Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL. Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p < 0.05, whole-brain FWE-corrected.Using a custom-designed neonatal MR-coil, we found significant positive BOLD responses in contralateral SMC after unilateral passive sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13. Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC increase in tSNR, as compared to the 'adult' MR-coil.Our findings strengthen the

  20. Sub-Millimeter T2 Weighted fMRI at 7 T: Comparison of 3D-GRASE and 2D SE-EPI

    Directory of Open Access Journals (Sweden)

    Valentin G. Kemper

    2015-05-01

    Full Text Available Functional magnetic resonance imaging (fMRI allows studying human brain function non-invasively up to the spatial resolution of cortical columns and layers. Most fMRI acquisitions rely on the blood oxygenation level dependent (BOLD contrast employing T2* weighted 2D multi-slice echo-planar imaging (EPI. At ultra-high magnetic field (i.e. 7 T and above, it has been shown experimentally and by simulation, that T2 weighted acquisitions yield a signal that is spatially more specific to the site of neuronal activity at the cost of functional sensitivity. This study compared two T2 weighted imaging sequences, inner-volume 3D Gradient-and-Spin-Echo (3D-GRASE and 2D Spin-Echo EPI (SE-EPI, with evaluation of their imaging point-spread function, functional specificity, and functional sensitivity at sub-millimeter resolution. Simulations and measurements of the imaging point-spread function revealed that the strongest anisotropic blurring in 3D-GRASE (along the second phase-encoding direction was about 60 % higher than the strongest anisotropic blurring in 2D SE-EPI (along the phase-encoding direction In a visual paradigm, the BOLD sensitivity of 3D-GRASE was found to be superior due to its higher temporal signal-to-noise ratio. High resolution cortical depth profiles suggested that the contrast mechanisms are similar between the two sequences, however, 2D SE-EPI had a higher surface bias owing to the higher T2* contribution of the longer in-plane EPI echo-train for full field of view compared to the reduced field of view of zoomed 3D-GRASE.

  1. Distributed BOLD-response in association cortex vector state space predicts reaction time during selective attention.

    Science.gov (United States)

    Musso, Francesco; Konrad, Andreas; Vucurevic, Goran; Schäffner, Cornelius; Friedrich, Britta; Frech, Peter; Stoeter, Peter; Winterer, Georg

    2006-02-15

    Human cortical information processing is thought to be dominated by distributed activity in vector state space (Churchland, P.S., Sejnowski, T.J., 1992. The Computational Brain. MIT Press, Cambridge.). In principle, it should be possible to quantify distributed brain activation with independent component analysis (ICA) through vector-based decomposition, i.e., through a separation of a mixture of sources. Using event-related functional magnetic resonance imaging (fMRI) during a selective attention-requiring task (visual oddball), we explored how the number of independent components within activated cortical areas is related to reaction time. Prior to ICA, the activated cortical areas were determined on the basis of a General linear model (GLM) voxel-by-voxel analysis of the target stimuli (checkerboard reversal). Two activated cortical areas (temporoparietal cortex, medial prefrontal cortex) were further investigated as these cortical regions are known to be the sites of simultaneously active electromagnetic generators which give rise to the compound event-related potential P300 during oddball task conditions. We found that the number of independent components more strongly predicted reaction time than the overall level of "activation" (GLM BOLD-response) in the left temporoparietal area whereas in the medial prefrontal cortex both ICA and GLM predicted reaction time equally well. Comparable correlations were not seen when principle components were used instead of independent components. These results indicate that the number of independently activated components, i.e., a high level of cortical activation complexity in cortical vector state space, may index particularly efficient information processing during selective attention-requiring tasks. To our best knowledge, this is the first report describing a potential relationship between neuronal generators of cognitive processes, the associated electrophysiological evidence for the existence of distributed networks

  2. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention.

    Science.gov (United States)

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L

    2013-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. We have hypothesized that the changes in neural activity observed during increased cholinergic function reflect an increase in neural efficiency that leads to improved task performance. The current study tested this hypothesis by assessing neural efficiency based on cholinergically-mediated effects on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover fMRI study. Following an infusion of physostigmine (1 mg/h) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Physostigmine administration also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus

  3. The supraspinal neural correlate of bladder cold sensation--an fMRI study.

    Science.gov (United States)

    Mehnert, Ulrich; Michels, Lars; Zempleni, Monika-Zita; Schurch, Brigitte; Kollias, Spyros

    2011-06-01

    In recent years, functional imaging studies have revealed a supraspinal network, which is involved in perception and processing of bladder distention. Very little information exists on the cortical representation of C-fiber transmitted temperature sensation of the human bladder, although C-fibers seem to be involved in the pathomechanisms of bladder dysfunctions. Our aim was, therefore, to evaluate the outcome of bladder cold stimulation on supraspinal activity using functional magnetic resonance imaging (fMRI). A block design fMRI study was performed in 14 healthy females at the MR-center of the University of Zurich. After catheterization, all subjects were investigated in a 3.0-Tesla Scanner. The scanning consisted of 10 repetitive cycles. Each cycle consisted of five conditions: REST, INFUSION, SENSATION, DRAIN 1, and DRAIN 2. Cold saline was passively infused at 4-8°C during scanning. Not more than 100 ml were infused per cycle. Blood-oxygen-level-dependent (BOLD) signal analysis of the different conditions was compared to REST. All activations were evaluated on a random effects level at P = 0.001. Activation of brain regions for bladder cold stimulation (DRAIN 1 period) was found bilaterally in the inferior parietal lobe [Brodmann area (BA) 40], the right insula (BA 13), the right cerebellar posterior lobe, the right middle temporal gyrus (BA 20), and the right postcentral gyrus (BA 3). In conclusion, bladder cooling caused a different supraspinal activation pattern compared to what is known to occur during bladder distention. This supports our hypothesis that cold sensation is processed differently from bladder distension at the supraspinal level. Copyright © 2010 Wiley-Liss, Inc.

  4. Abnormal regional homogeneity in Parkinson's disease: a resting state fMRI study

    International Nuclear Information System (INIS)

    Li, Y.; Liang, P.; Jia, X.; Li, K.

    2016-01-01

    Aim: To examine the functional brain alterations in Parkinson's disease (PD) by measuring blood oxygenation level dependent (BOLD) functional MRI (fMRI) signals at rest while controlling for the structural atrophy. Materials and methods: Twenty-three PD patients and 20 age, gender, and education level matched normal controls (NC) were included in this study. Resting state fMRI and structural MRI data were acquired. The resting state brain activity was measured by the regional homogeneity (ReHo) method and the grey matter (GM) volume was attained by the voxel-based morphology (VBM) analysis. Two-sample t-test was then performed to detect the group differences with structural atrophy as a covariate. Results: VBM analysis showed GM volume reductions in the left superior frontal gyrus, left paracentral lobule, and left middle frontal gyrus in PD patients as compared to NC. There were widespread ReHo differences between NC and PD patients. Compared to NC, PD patients showed significant alterations in the motor network, including decreased ReHo in the right primary sensory cortex (S1), while increased ReHo in the left premotor area (PMA) and left dorsolateral prefrontal cortex (DLPFC). In addition, a cluster in the left superior occipital gyrus (SOG) also showed increased ReHo in PD patients. Conclusion: The current findings indicate that significant changes of ReHo in the motor and non-motor cortices have been detected in PD patients, independent of age, gender, education level, and structural atrophy. The present study thus suggests ReHo abnormalities as a potential biomarker for the diagnosis of PD and further provides insights into the biological mechanism of the disease. - Highlights: • Functional changes were found in PD patients independent of structural atrophy. • Both increased and decreased ReHo were observed in motor network regions in PD. • Increased ReHo was detected in visual association cortex for PD patients.

  5. Does the individual adaption of standardized speech paradigmas for clinical functional Magnetic Resonance Imaging (fMRI) effect the localization of the language-dominant hemisphere and of Broca's and Wernicke's areas

    International Nuclear Information System (INIS)

    Konrad, F.; Nennig, E.; Kress, B.; Sartor, K.; Stippich, C.; Ochmann, H.

    2005-01-01

    Purpose: Functional magnetic resonance imaging (fMRI) localizes Broca's area (B) and Wernicke's area (W) and the hemisphere dominant for language. In clinical fMRI, adapting the stimulation paradigms to each patient's individual cognitive capacity is crucial for diagnostic success. To interpret clinical fMRI findings correctly, we studied the effect of varying frequency and number of stimuli on functional localization, determination of language dominance and BOLD signals. Materials and Methods: Ten volunteers (VP) were investigated at 1.5 Tesla during visually triggered sentence generation using a standardized block design. In four different measurements, the stimuli were presented to each VP with frequencies of (1/1)s, (1/2)s,(1/3)s and (1/6)s. Results: The functional localizations and the correlations of the measured BOLD signals to the applied hemodynamic reference function (r) were almost independent from frequency and number of the stimuli in both hemispheres, whereas the relative BOLD signal changes (ΔS) in B and W increased with the stimulation rate, which also changed the lateralization indices. The strongest BOLD activations were achieved with the highest stimulation rate or with the maximum language production task, respectively. Conclusion: The adaptation of language paradigms necessary in clinical fMRI does not alter the functional localizations but changes the BOLD signals and language lateralization which should not be attributed to the underlying brain pathology. (orig.)

  6. [Does the individual adaptation of standardized speech paradigmas for clinical functional magnetic resonance imaging (fMRI) effect the localization of the language-dominant hemisphere and of Broca's and Wernicke's areas].

    Science.gov (United States)

    Konrad, F; Nennig, E; Ochmann, H; Kress, B; Sartor, K; Stippich, C

    2005-03-01

    Functional magnetic resonance imaging (fMRI) localizes Broca's area (B) and Wernicke's area (W) and the hemisphere dominant for language. In clinical fMRI, adapting the stimulation paradigms to each patient's individual cognitive capacity is crucial for diagnostic success. To interpret clinical fMRI findings correctly, we studied the effect of varying frequency and number of stimuli on functional localization, determination of language dominance and BOLD signals. Ten volunteers (VP) were investigated at 1.5 Tesla during visually triggered sentence generation using a standardized block design. In four different measurements, the stimuli were presented to each VP with frequencies of 1/1 s, (1/2) s, (1/3) s and (1/6) s. The functional localizations and the correlations of the measured BOLD signals to the applied hemodynamic reference function (r) were almost independent from frequency and number of the stimuli in both hemispheres, whereas the relative BOLD signal changes (DeltaS) in B and W increased with the stimulation rate, which also changed the lateralization indices. The strongest BOLD activations were achieved with the highest stimulation rate or with the maximum language production task, respectively. The adaptation of language paradigms necessary in clinical fMRI does not alter the functional localizations but changes the BOLD signals and language lateralization which should not be attributed to the underlying brain pathology.

  7. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation

    DEFF Research Database (Denmark)

    Kim, S.G.; Rostrup, Egill; Larsson, H.B.

    1999-01-01

    signal changes were measured simultaneously using the flow-sensitive alternating inversion recovery (FAIR) technique. During hypercapnia established by an end-tidal CO2 increase of 1.46 kPa, CBF in the visual cortex increased by 47.3 +/- 17.3% (mean +/- SD; n = 9), and deltaR2* was -0.478 +/- 0.147 sec......The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging depends on at least partial uncoupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) changes. By measuring CBF and BOLD simultaneously, the relative change in CMRO2 can...

  8. Sex differences, hormones, and fMRI stress response circuitry deficits in psychoses.

    Science.gov (United States)

    Goldstein, Jill M; Lancaster, Katie; Longenecker, Julia M; Abbs, Brandon; Holsen, Laura M; Cherkerzian, Sara; Whitfield-Gabrieli, Susan; Makris, Nicolas; Tsuang, Ming T; Buka, Stephen L; Seidman, Larry J; Klibanski, Anne

    2015-06-30

    Response to stress is dysregulated in psychosis (PSY). fMRI studies showed hyperactivity in hypothalamus (HYPO), hippocampus (HIPP), amygdala (AMYG), anterior cingulate (ACC), orbital and medial prefrontal (OFC; mPFC) cortices, with some studies reporting sex differences. We predicted abnormal steroid hormone levels in PSY would be associated with sex differences in hyperactivity in HYPO, AMYG, and HIPP, and hypoactivity in PFC and ACC, with more severe deficits in men. We studied 32 PSY cases (50.0% women) and 39 controls (43.6% women) using a novel visual stress challenge while collecting blood. PSY males showed BOLD hyperactivity across all hypothesized regions, including HYPO and ACC by FWE-correction. Females showed hyperactivity in HIPP and AMYG and hypoactivity in OFC and mPFC, the latter FWE-corrected. Interaction of group by sex was significant in mPFC (F = 7.00, p = 0.01), with PSY females exhibiting the lowest activity. Male hyperactivity in HYPO and ACC was significantly associated with hypercortisolemia post-stress challenge, and mPFC with low androgens. Steroid hormones and neural activity were dissociated in PSY women. Findings suggest disruptions in neural circuitry-hormone associations in response to stress are sex-dependent in psychosis, particularly in prefrontal cortex. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Visual Sexual Stimulation and Erection, a Brief Review with New fMRI Data.

    Science.gov (United States)

    Wu, Sharon L; Chow, Maggie S M; L, Jiang Y; Yang, Jingjin; Zhou, Hao; Yew, David T

    2017-05-31

    This review examines brain sites involved in sexual stimulation. New data on brain activation sites in individuals having erections concomitant with visual erotic stimulation were documented. The activation was chiefly at the midbrain around the cerebral peduncle, and in the pons centering on the tegmentum, they are indicated by blood oxygenation level dependent (BOLD) images captured by functional magnetic resonance imaging (fMRI). The cerebellum and inferior temporal lobe were activated more extensively in individuals viewing pornographic movie with a concomitant erection than those without. Similarly, individuals with erection had activations in the midbrain and pons, while drug addicts had neither erections nor any of these brainstem active sites. From our observation in the new data, we deduced three possible transmitters might be involved in erection: i) cholinergic neurons forming descending pathways and associated with motor activity ii) gamma-aminobutyric acid (GABA), directly or indirectly via decreasing pathways, modulating autonomic vascular responses in the penile vasculature causing the filling of blood iii) GABA decreases to stimulate dopamine increase in ventral tegmentum of the brain, leading to euphoric responses. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. BOLD signal and functional connectivity associated with loving kindness meditation

    Science.gov (United States)

    Garrison, Kathleen A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2014-01-01

    Loving kindness is a form of meditation involving directed well-wishing, typically supported by the silent repetition of phrases such as “may all beings be happy,” to foster a feeling of selfless love. Here we used functional magnetic resonance imaging to assess the neural substrate of loving kindness meditation in experienced meditators and novices. We first assessed group differences in blood oxygen level-dependent (BOLD) signal during loving kindness meditation. We next used a relatively novel approach, the intrinsic connectivity distribution of functional connectivity, to identify regions that differ in intrinsic connectivity between groups, and then used a data-driven approach to seed-based connectivity analysis to identify which connections differ between groups. Our findings suggest group differences in brain regions involved in self-related processing and mind wandering, emotional processing, inner speech, and memory. Meditators showed overall reduced BOLD signal and intrinsic connectivity during loving kindness as compared to novices, more specifically in the posterior cingulate cortex/precuneus (PCC/PCu), a finding that is consistent with our prior work and other recent neuroimaging studies of meditation. Furthermore, meditators showed greater functional connectivity during loving kindness between the PCC/PCu and the left inferior frontal gyrus, whereas novices showed greater functional connectivity during loving kindness between the PCC/PCu and other cortical midline regions of the default mode network, the bilateral posterior insula lobe, and the bilateral parahippocampus/hippocampus. These novel findings suggest that loving kindness meditation involves a present-centered, selfless focus for meditators as compared to novices. PMID:24944863

  11. BOLD cardiovascular magnetic resonance at 3.0 tesla in myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Gebker Rolf

    2010-09-01

    Full Text Available Abstract Background The purpose of this study was to determine the ability of Blood Oxygen Level Dependent (BOLD cardiovascular magnetic resonance (CMR to detect stress-inducible myocardial ischemic reactions in the presence of angiographically significant coronary artery disease (CAD. Methods Forty-six patients (34 men; age 65 ± 9 years, with suspected or known coronary artery disease underwent CMR at 3Tesla prior to clinically indicated invasive coronary angiography. BOLD CMR was performed in 3 short axis slices of the heart at rest and during adenosine stress (140 μg/kg/min followed by late gadolinium enhancement (LGE imaging. In all 16 standard myocardial segments, T2* values were derived at rest and under adenosine stress. Quantitative coronary angiography served as the standard of reference and defined normal myocardial segments (i.e. all 16 segments in patients without any CAD, ischemic segments (i.e. supplied by a coronary artery with ≥50% luminal narrowing and non-ischemic segments (i.e. supplied by a non-significantly stenosed coronary artery in patients with significant CAD. Results Coronary angiography demonstrated significant CAD in 23 patients. BOLD CMR at rest revealed significantly lower T2* values for ischemic segments (26.7 ± 11.6 ms compared to normal (31.9 ± 11.9 ms; p Conclusions Rest and stress BOLD CMR at 3Tesla proved feasible and differentiated between ischemic, non-ischemic, and normal myocardial segments in a clinical patient population. BOLD CMR during vasodilator stress identified patients with significant CAD.

  12. Correlative BOLD MR imaging of stages of synovitis in a rabbit model of antigen-induced arthritis

    International Nuclear Information System (INIS)

    Doria, Andrea S.; Crawley, Adrian; Gahunia, Harpal; Rayner, Tammy; Tassos, Vivian; Zhong, Anguo; Moineddin, Rahim; Pritzker, Kenneth; Mendes, Maria; Jong, Roland; Salter, Robert B.

    2012-01-01

    Because of the ability of blood-oxygen-level-dependent (BOLD) MRI to assess blood oxygenation changes within the microvasculature, this technique holds potential for evaluating early perisynovial changes in inflammatory arthritis. To evaluate the feasibility of BOLD MRI to detect interval perisynovial changes in knees of rabbits with inflammatory arthritis. Rabbit knees were injected with albumin (n=9) or saline (n=6) intra-articularly, or were not injected (control knees, n=9). Except for two rabbits (albumin-injected, n=2 knees; saline-injected, n=2 knees) that unexpectedly died on days 7 and 21 of the experiment, respectively, all other animals were scanned with BOLD MRI on days 0, 1, 7, 14, 21 and 28 after induction of arthritis. T2*-weighted gradient-echo MRI was performed during alternate 30 s of normoxia/hyperoxia. BOLD MRI measurements were compared with clinical, laboratory and histological markers. Percentage of activated voxels was significantly greater in albumin-injected knees than in contralateral saline-injected knees (P=0.04). For albumin-injected knees (P < 0.05) and among different categories of knees (P=0.009), the percentage of activated BOLD voxels varied over time. A quadratic curve for on-and-off BOLD difference was delineated for albumin- and saline-injected knees over time (albumin-injected, P=0.047; saline-injected, P=0.009). A trend toward a significant difference in synovial histological scores between albumin-injected and saline-injected knees was noted only for acute scores (P=0.07). As a proof of concept, BOLD MRI can depict perisynovial changes during progression of experimental arthritis. (orig.)

  13. Correlative BOLD MR imaging of stages of synovitis in a rabbit model of antigen-induced arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Doria, Andrea S. [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); University of Toronto, Department of Medical Imaging, Toronto (Canada); Crawley, Adrian [University of Toronto, Department of Medical Imaging, Toronto (Canada); Toronto Western Hospital, Department of Medical Imaging, Toronto (Canada); Gahunia, Harpal; Rayner, Tammy; Tassos, Vivian; Zhong, Anguo [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Moineddin, Rahim [Family and Community Medicine, Department of Public Health, Toronto (Canada); Pritzker, Kenneth; Mendes, Maria; Jong, Roland [Mount Sinai Hospital, Department of Pathology and Laboratory Medicine, Toronto (Canada); Salter, Robert B. [Hospital for Sick Children, Department of Orthopedic Surgery, Toronto (Canada)

    2012-01-15

    Because of the ability of blood-oxygen-level-dependent (BOLD) MRI to assess blood oxygenation changes within the microvasculature, this technique holds potential for evaluating early perisynovial changes in inflammatory arthritis. To evaluate the feasibility of BOLD MRI to detect interval perisynovial changes in knees of rabbits with inflammatory arthritis. Rabbit knees were injected with albumin (n=9) or saline (n=6) intra-articularly, or were not injected (control knees, n=9). Except for two rabbits (albumin-injected, n=2 knees; saline-injected, n=2 knees) that unexpectedly died on days 7 and 21 of the experiment, respectively, all other animals were scanned with BOLD MRI on days 0, 1, 7, 14, 21 and 28 after induction of arthritis. T2*-weighted gradient-echo MRI was performed during alternate 30 s of normoxia/hyperoxia. BOLD MRI measurements were compared with clinical, laboratory and histological markers. Percentage of activated voxels was significantly greater in albumin-injected knees than in contralateral saline-injected knees (P=0.04). For albumin-injected knees (P < 0.05) and among different categories of knees (P=0.009), the percentage of activated BOLD voxels varied over time. A quadratic curve for on-and-off BOLD difference was delineated for albumin- and saline-injected knees over time (albumin-injected, P=0.047; saline-injected, P=0.009). A trend toward a significant difference in synovial histological scores between albumin-injected and saline-injected knees was noted only for acute scores (P=0.07). As a proof of concept, BOLD MRI can depict perisynovial changes during progression of experimental arthritis. (orig.)

  14. PHYCAA: Data-driven measurement and removal of physiological noise in BOLD fMRI

    DEFF Research Database (Denmark)

    Churchill, Nathan W.; Yourganov, Grigori; Spring, Robyn

    2012-01-01

    , autocorrelated physiological noise sources with reproducible spatial structure, using an adaptation of Canonical Correlation Analysis performed in a split-half resampling framework. The technique is able to identify physiological effects with vascular-linked spatial structure, and an intrinsic dimensionality...... with physiological noise, and real data-driven model prediction and reproducibility, for both block and event-related task designs. This is demonstrated compared to no physiological noise correction, and to the widely used RETROICOR (Glover et al., 2000) physiological denoising algorithm, which uses externally...

  15. Detection and Characterization of Single-Trial fMRI BOLD Responses : Paradigm Free Mapping

    NARCIS (Netherlands)

    Gaudes, Cesar Caballero; Petridou, Natalia; Dryden, Ian L.; Bai, Li; Francis, Susan T.; Gowland, Penny A.

    This work presents a novel method of mapping the brain's response to single stimuli in space and time without prior knowledge of the paradigm timing: paradigm free mapping (PFM). This method is based on deconvolution of the hemodynamic response from the voxel time series assuming a linear response

  16. Delayed discrimination of spatial frequency for gratings of different orientation: behavioral and fMRI evidence for low-level perceptual memory stores in early visual cortex.

    Science.gov (United States)

    Baumann, Oliver; Endestad, Tor; Magnussen, Svein; Greenlee, Mark W

    2008-07-01

    The concept of perceptual memory refers to the neural and cognitive processes underlying the storage of specific stimulus features such as spatial frequency, orientation, shape, contrast, and color. Psychophysical studies of perceptual memory indicate that observers can retain visual information about the spatial frequency of Gabor patterns independent of the orientation with which they are presented. Compared to discrimination of gratings with the same orientation, reaction times to orthogonally oriented gratings, however, increase suggesting additional processing. Using event-related fMRI we examined the pattern of neural activation evoked when subjects discriminated the spatial frequency of Gabors presented with the same or orthogonal orientation. Blood-oxygen level dependent BOLD fMRI revealed significantly elevated bilateral activity in visual areas (V1, V2) when the gratings to be compared had an orthogonal orientation, compared to when they had the same orientation. These findings suggest that a change in an irrelevant stimulus dimension requires additional processing in primary and secondary visual areas. The finding that the task-irrelevant stimulus property (orientation) had no significant effect on the prefrontal and intraparietal cortex supports a model of working memory in which discrimination and retention of basic stimulus dimensions is based on low-level perceptual memory stores that are located at an early stage in the visual process. Our findings suggest that accessing different stores requires time and has higher metabolic costs.

  17. A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T.

    Science.gov (United States)

    Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G; Poser, Benedikt A; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor

    2016-01-01

    To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using [Formula: see text] mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T.

  18. Measurement of oxygen extraction fraction (OEF): An optimized BOLD signal model for use with hypercapnic and hyperoxic calibration.

    Science.gov (United States)

    Merola, Alberto; Murphy, Kevin; Stone, Alan J; Germuska, Michael A; Griffeth, Valerie E M; Blockley, Nicholas P; Buxton, Richard B; Wise, Richard G

    2016-04-01

    Several techniques have been proposed to estimate relative changes in cerebral metabolic rate of oxygen consumption (CMRO2) by exploiting combined BOLD fMRI and cerebral blood flow data in conjunction with hypercapnic or hyperoxic respiratory challenges. More recently, methods based on respiratory challenges that include both hypercapnia and hyperoxia have been developed to assess absolute CMRO2, an important parameter for understanding brain energetics. In this paper, we empirically optimize a previously presented "original calibration model" relating BOLD and blood flow signals specifically for the estimation of oxygen extraction fraction (OEF) and absolute CMRO2. To do so, we have created a set of synthetic BOLD signals using a detailed BOLD signal model to reproduce experiments incorporating hypercapnic and hyperoxic respiratory challenges at 3T. A wide range of physiological conditions was simulated by varying input parameter values (baseline cerebral blood volume (CBV0), baseline cerebral blood flow (CBF0), baseline oxygen extraction fraction (OEF0) and hematocrit (Hct)). From the optimization of the calibration model for estimation of OEF and practical considerations of hypercapnic and hyperoxic respiratory challenges, a new "simplified calibration model" is established which reduces the complexity of the original calibration model by substituting the standard parameters α and β with a single parameter θ. The optimal value of θ is determined (θ=0.06) across a range of experimental respiratory challenges. The simplified calibration model gives estimates of OEF0 and absolute CMRO2 closer to the true values used to simulate the experimental data compared to those estimated using the original model incorporating literature values of α and β. Finally, an error propagation analysis demonstrates the susceptibility of the original and simplified calibration models to measurement errors and potential violations in the underlying assumptions of isometabolism

  19. Post-contractile BOLD contrast in skeletal muscle at 7 T reveals inter-individual heterogeneity in the physiological responses to muscle contraction.

    Science.gov (United States)

    Towse, Theodore F; Elder, Christopher P; Bush, Emily C; Klockenkemper, Samuel W; Bullock, Jared T; Dortch, Richard D; Damon, Bruce M

    2016-12-01

    Muscle blood oxygenation-level dependent (BOLD) contrast is greater in magnitude and potentially more influenced by extravascular BOLD mechanisms at 7 T than it is at lower field strengths. Muscle BOLD imaging of muscle contractions at 7 T could, therefore, provide greater or different contrast than at 3 T. The purpose of this study was to evaluate the feasibility of using BOLD imaging at 7 T to assess the physiological responses to in vivo muscle contractions. Thirteen subjects (four females) performed a series of isometric contractions of the calf muscles while being scanned in a Philips Achieva 7 T human imager. Following 2 s maximal isometric plantarflexion contractions, BOLD signal transients ranging from 0.3 to 7.0% of the pre-contraction signal intensity were observed in the soleus muscle. We observed considerable inter-subject variability in both the magnitude and time course of the muscle BOLD signal. A subset of subjects (n = 7) repeated the contraction protocol at two different repetition times (T R : 1000 and 2500 ms) to determine the potential of T 1 -related inflow effects on the magnitude of the post-contractile BOLD response. Consistent with previous reports, there was no difference in the magnitude of the responses for the two T R values (3.8 ± 0.9 versus 4.0 ± 0.6% for T R  = 1000 and 2500 ms, respectively; mean ± standard error). These results demonstrate that studies of the muscle BOLD responses to contractions are feasible at 7 T. Compared with studies at lower field strengths, post-contractile 7 T muscle BOLD contrast may afford greater insight into microvascular function and dysfunction. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area.

    Science.gov (United States)

    Sarfeld, Anna-Sophia; Diekhoff, Svenja; Wang, Ling E; Liuzzi, Gianpiero; Uludağ, Kamil; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2012-05-01

    Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) are well-established tools for investigating the human motor system in-vivo. We here studied the relationship between movement-related fMRI signal changes in the primary motor cortex (M1) and electrophysiological properties of the hand motor area assessed with neuronavigated TMS in 17 healthy subjects. The voxel showing the highest task-related BOLD response in the left hand motor area during right hand movements was identified for each individual subject. This fMRI peak voxel in M1 served as spatial target for coil positioning during neuronavigated TMS. We performed correlation analyses between TMS parameters, BOLD signal estimates and effective connectivity parameters of M1 assessed with dynamic causal modeling (DCM). The results showed a negative correlation between the movement-related BOLD signal in left M1 and resting as well as active motor threshold (MT) obtained for left M1. The DCM analysis revealed that higher excitability of left M1 was associated with a stronger coupling between left supplementary motor area (SMA) and M1. Furthermore, BOLD activity in left M1 correlated with ipsilateral silent period (ISP), i.e. the stronger the task-related BOLD response in left M1, the higher interhemispheric inhibition effects targeting right M1. DCM analyses revealed a positive correlation between the coupling of left SMA with left M1 and the duration of ISP. The data show that TMS parameters assessed for the hand area of M1 do not only reflect the intrinsic properties at the stimulation site but also interactions with remote areas in the human motor system. Copyright © 2011 Wiley-Liss, Inc.

  1. Self-regulation of brain activity in patients with postherpetic neuralgia: a double-blind randomized study using real-time FMRI neurofeedback.

    Science.gov (United States)

    Guan, Min; Ma, Lijia; Li, Li; Yan, Bin; Zhao, Lu; Tong, Li; Dou, Shewei; Xia, Linjie; Wang, Meiyun; Shi, Dapeng

    2015-01-01

    A pilot study has shown that real-time fMRI (rtfMRI) neurofeedback could be an alternative approach for chronic pain treatment. Considering the relative small sample of patients recruited and not strictly controlled condition, it is desirable to perform a replication as well as a double-blinded randomized study with a different control condition in chronic pain patients. Here we conducted a rtfMRI neurofeedback study in a subgroup of pain patients - patients with postherpetic neuralgia (PHN) and used a different sham neurofeedback control. We explored the feasibility of self-regulation of the rostral anterior cingulate cortex (rACC) activation in patients with PHN through rtfMRI neurofeedback and regulation of pain perception. Sixteen patients (46-71 years) with PHN were randomly allocated to a experimental group (n = 8) or a control group (n = 8). 2 patients in the control group were excluded for large head motion. The experimental group was given true feedback information from their rACC whereas the control group was given sham feedback information from their posterior cingulate cortex (PCC). All subjects were instructed to perform an imagery task to increase and decrease activation within the target region using rtfMRI neurofeedback. Online analysis showed 6/8 patients in the experimental group were able to increase and decrease the blood oxygen level dependent (BOLD) fMRI signal magnitude during intermittent feedback training. However, this modulation effect was not observed in the control group. Offline analysis showed that the percentage of BOLD signal change of the target region between the last and first training in the experimental group was significantly different from the control group's and was also significantly different than 0. The changes of pain perception reflected by numerical rating scale (NRS) in the experimental group were significantly different from the control group. However, there existed no significant correlations between BOLD signal

  2. Fitness Consequences of Boldness in Juvenile and Adult Largemouth Bass.

    Science.gov (United States)

    Ballew, Nicholas G; Mittelbach, Gary G; Scribner, Kim T

    2017-04-01

    To date, most studies investigating the relationship between personality traits and fitness have focused on a single measure of fitness (such as survival) at a specific life stage. However, many personality traits likely have multiple effects on fitness, potentially operating across different functional contexts and stages of development. Here, we address the fitness consequences of boldness, under seminatural conditions, across life stages and functional contexts in largemouth bass (Micropterus salmoides). Specifically, we report the effect of boldness on (1) juvenile survivorship in an outdoor pond containing natural prey and predators and (2) adult reproductive success in three outdoor ponds across three reproductive seasons (years). Juvenile survival was negatively affected by boldness, with bolder juveniles having a lower probability of survival than shyer juveniles. In contrast, bolder adult male bass had greater reproductive success than their shyer male counterparts. Female reproductive success was not affected by boldness. These findings demonstrate that boldness can affect fitness differently across life stages. Further, boldness was highly consistent across years and significantly heritable, which suggests that boldness has a genetic component. Thus, our results support theory suggesting that fitness trade-offs across life stages may contribute to the maintenance of personality variation within populations.

  3. Weed or wheel! FMRI, behavioural, and toxicological investigations of how cannabis smoking affects skills necessary for driving.

    Science.gov (United States)

    Battistella, Giovanni; Fornari, Eleonora; Thomas, Aurélien; Mall, Jean-Frédéric; Chtioui, Haithem; Appenzeller, Monique; Annoni, Jean-Marie; Favrat, Bernard; Maeder, Philippe; Giroud, Christian

    2013-01-01

    Marijuana is the most widely used illicit drug, however its effects on cognitive functions underlying safe driving remain mostly unexplored. Our goal was to evaluate the impact of cannabis on the driving ability of occasional smokers, by investigating changes in the brain network involved in a tracking task. The subject characteristics, the percentage of Δ(9)-Tetrahydrocannabinol in the joint, and the inhaled dose were in accordance with real-life conditions. Thirty-one male volunteers were enrolled in this study that includes clinical and toxicological aspects together with functional magnetic resonance imaging of the brain and measurements of psychomotor skills. The fMRI paradigm was based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. We show that cannabis smoking, even at low Δ(9)-Tetrahydrocannabinol blood concentrations, decreases psychomotor skills and alters the activity of the brain networks involved in cognition. The relative decrease of Blood Oxygen Level Dependent response (BOLD) after cannabis smoking in the anterior insula, dorsomedial thalamus, and striatum compared to placebo smoking suggests an alteration of the network involved in saliency detection. In addition, the decrease of BOLD response in the right superior parietal cortex and in the dorsolateral prefrontal cortex indicates the involvement of the Control Executive network known to operate once the saliencies are identified. Furthermore, cannabis increases activity in the rostral anterior cingulate cortex and ventromedial prefrontal cortices, suggesting an increase in self-oriented mental activity. Subjects are more attracted by intrapersonal stimuli ("self") and fail to attend to task performance, leading to an insufficient allocation of task-oriented resources and to sub-optimal performance. These effects correlate with the subjective feeling of confusion rather than with the blood level of Δ(9)-Tetrahydrocannabinol

  4. Weed or wheel! FMRI, behavioural, and toxicological investigations of how cannabis smoking affects skills necessary for driving.

    Directory of Open Access Journals (Sweden)

    Giovanni Battistella

    Full Text Available Marijuana is the most widely used illicit drug, however its effects on cognitive functions underlying safe driving remain mostly unexplored. Our goal was to evaluate the impact of cannabis on the driving ability of occasional smokers, by investigating changes in the brain network involved in a tracking task. The subject characteristics, the percentage of Δ(9-Tetrahydrocannabinol in the joint, and the inhaled dose were in accordance with real-life conditions. Thirty-one male volunteers were enrolled in this study that includes clinical and toxicological aspects together with functional magnetic resonance imaging of the brain and measurements of psychomotor skills. The fMRI paradigm was based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. We show that cannabis smoking, even at low Δ(9-Tetrahydrocannabinol blood concentrations, decreases psychomotor skills and alters the activity of the brain networks involved in cognition. The relative decrease of Blood Oxygen Level Dependent response (BOLD after cannabis smoking in the anterior insula, dorsomedial thalamus, and striatum compared to placebo smoking suggests an alteration of the network involved in saliency detection. In addition, the decrease of BOLD response in the right superior parietal cortex and in the dorsolateral prefrontal cortex indicates the involvement of the Control Executive network known to operate once the saliencies are identified. Furthermore, cannabis increases activity in the rostral anterior cingulate cortex and ventromedial prefrontal cortices, suggesting an increase in self-oriented mental activity. Subjects are more attracted by intrapersonal stimuli ("self" and fail to attend to task performance, leading to an insufficient allocation of task-oriented resources and to sub-optimal performance. These effects correlate with the subjective feeling of confusion rather than with the blood level of Δ(9

  5. Weed or Wheel! fMRI, Behavioural, and Toxicological Investigations of How Cannabis Smoking Affects Skills Necessary for Driving

    Science.gov (United States)

    Thomas, Aurélien; Mall, Jean-Frédéric; Chtioui, Haithem; Appenzeller, Monique; Annoni, Jean-Marie; Favrat, Bernard

    2013-01-01

    Marijuana is the most widely used illicit drug, however its effects on cognitive functions underling safe driving remain mostly unexplored. Our goal was to evaluate the impact of cannabis on the driving ability of occasional smokers, by investigating changes in the brain network involved in a tracking task. The subject characteristics, the percentage of Δ9-Tetrahydrocannabinol in the joint, and the inhaled dose were in accordance with real-life conditions. Thirty-one male volunteers were enrolled in this study that includes clinical and toxicological aspects together with functional magnetic resonance imaging of the brain and measurements of psychomotor skills. The fMRI paradigm was based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. We show that cannabis smoking, even at low Δ9-Tetrahydrocannabinol blood concentrations, decreases psychomotor skills and alters the activity of the brain networks involved in cognition. The relative decrease of Blood Oxygen Level Dependent response (BOLD) after cannabis smoking in the anterior insula, dorsomedial thalamus, and striatum compared to placebo smoking suggests an alteration of the network involved in saliency detection. In addition, the decrease of BOLD response in the right superior parietal cortex and in the dorsolateral prefrontal cortex indicates the involvement of the Control Executive network known to operate once the saliencies are identified. Furthermore, cannabis increases activity in the rostral anterior cingulate cortex and ventromedial prefrontal cortices, suggesting an increase in self-oriented mental activity. Subjects are more attracted by intrapersonal stimuli (“self”) and fail to attend to task performance, leading to an insufficient allocation of task-oriented resources and to sub-optimal performance. These effects correlate with the subjective feeling of confusion rather than with the blood level of Δ9-Tetrahydrocannabinol

  6. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    NARCIS (Netherlands)

    Luijten, M.; Machielsen, M.W.J.; Veltman, D.J.; Hester, R.; de Haan, L.; Franken, I.H.A.

    2014-01-01

    Background: Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The

  7. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    NARCIS (Netherlands)

    Luijten, Maartje; Machielsen, Marise W. J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H. A.

    2014-01-01

    Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined

  8. Adaptation of a haptic robot in a 3T fMRI.

    Science.gov (United States)

    Snider, Joseph; Plank, Markus; May, Larry; Liu, Thomas T; Poizner, Howard

    2011-10-04

    Functional magnetic resonance imaging (fMRI) provides excellent functional brain imaging via the BOLD signal with advantages including non-ionizing radiation, millimeter spatial accuracy of anatomical and functional data, and nearly real-time analyses. Haptic robots provide precise measurement and control of position and force of a cursor in a reasonably confined space. Here we combine these two technologies to allow precision experiments involving motor control with haptic/tactile environment interaction such as reaching or grasping. The basic idea is to attach an 8 foot end effecter supported in the center to the robot allowing the subject to use the robot, but shielding it and keeping it out of the most extreme part of the magnetic field from the fMRI machine (Figure 1). The Phantom Premium 3.0, 6DoF, high-force robot (SensAble Technologies, Inc.) is an excellent choice for providing force-feedback in virtual reality experiments, but it is inherently non-MR safe, introduces significant noise to the sensitive fMRI equipment, and its electric motors may be affected by the fMRI's strongly varying magnetic field. We have constructed a table and shielding system that allows the robot to be safely introduced into the fMRI environment and limits both the degradation of the fMRI signal by the electrically noisy motors and the degradation of the electric motor performance by the strongly varying magnetic field of the fMRI. With the shield, the signal to noise ratio (SNR: mean signal/noise standard deviation) of the fMRI goes from a baseline of ~380 to ~330, and ~250 without the shielding. The remaining noise appears to be uncorrelated and does not add artifacts to the fMRI of a test sphere (Figure 2). The long, stiff handle allows placement of the robot out of range of the most strongly varying parts of the magnetic field so there is no significant effect of the fMRI on the robot. The effect of the handle on the robot's kinematics is minimal since it is lightweight (~2

  9. Disrupted Topological Organization in Whole-Brain Functional Networks of Heroin-Dependent Individuals: A Resting-State fMRI Study

    OpenAIRE

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subj...

  10. To be so bold: boldness is repeatable and related to within individual behavioural variability in North Island robins.

    Science.gov (United States)

    He, Ruchuan; Pagani-Núñez, Emilio; Chevallier, Clément; Barnett, Craig R A

    2017-07-01

    Behavioural research traditionally focusses on the mean responses of a group of individuals rather than variation in behaviour around the mean or among individuals. However, examining the variation in behaviour among and within individuals may also yield important insights into the evolution and maintenance of behaviour. Repeatability is the most commonly used measure of variability among individuals in behavioural research. However, there are other forms of variation within populations that have received less attention. One such measure is intraindividual variation in behaviour (IIV), which is a short-term fluctuation of within-individual behaviour. Such variation in behaviour might be important during interactions because it could decrease the ability of conspecific and heterospecific individuals to predict the behaviour of the subject, thus increasing the cost of the interaction. In this experiment, we made repeated measures of the latency of North Island robins to attack a prey in a novel situation (a form of boldness) and examined (i) repeatability of boldness (the propensity to take a risk), (ii) IIV of boldness, and (iii) whether there was a significant relationship between these two traits (a behavioural syndrome). We found that boldness was highly repeatable, that there were high levels of IIV in boldness, and that there was a negative relationship between boldness and IIV in boldness. This suggests that despite high levels of repeatability for this behaviour, there were also still significant differences in IIV among different individuals within the population. Moreover, bolder individuals had significantly less IIV in their boldness, which suggests that they were forming routines (which reduces behavioural variability) compared to shyer individuals. Our results definitively demonstrate that IIV itself varies across individuals and is linked with key behavioural traits, and we argue for the importance of future studies aimed at understanding its causes

  11. Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data.

    Science.gov (United States)

    Sharaev, Maksim G; Zavyalova, Viktoria V; Ushakov, Vadim L; Kartashov, Sergey I; Velichkovsky, Boris M

    2016-01-01

    The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078-0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain's functioning at resting state.

  12. Effective connectivity within the default mode network: dynamic causal modeling of resting-state fMRI data

    Directory of Open Access Journals (Sweden)

    Maksim eSharaev

    2016-02-01

    Full Text Available The Default Mode Network (DMN is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of BOLD (Blood-oxygen-level dependent activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e. effective connectivity, however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex mPFC, the posterior cingulate cortex PCC, left and right intraparietal cortex LIPC and RIPC. For this purpose fMRI (functional magnetic resonance imaging data from 30 healthy subjects (1000 time points from each one was acquired and spectral dynamic causal modeling (DCM on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078–0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p<0.05. Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain’s functioning at resting state.

  13. Does the individual adaption of standardized speech paradigmas for clinical functional Magnetic Resonance Imaging (fMRI) effect the localization of the language-dominant hemisphere and of Broca's and Wernicke's areas; Beeinflusst die individuelle Anpassung standardisierter Sprachparadigmen fuer die klinische funktionelle Magnetresonanztomographie (fMRT) die Lokalisation der sprachdominanten Hemisphaere, des Broca- und des Wernicke-Sprachzentrums?

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, F.; Nennig, E.; Kress, B.; Sartor, K.; Stippich, C. [Abteilung Neuroradiologie, Neurologische Klinik, Universitaetsklinikum Heidelberg (Germany); Ochmann, H. [Neurochirurgische Klinik, Universitaetsklinikum Heidelberg (Germany)

    2005-03-01

    Purpose: Functional magnetic resonance imaging (fMRI) localizes Broca's area (B) and Wernicke's area (W) and the hemisphere dominant for language. In clinical fMRI, adapting the stimulation paradigms to each patient's individual cognitive capacity is crucial for diagnostic success. To interpret clinical fMRI findings correctly, we studied the effect of varying frequency and number of stimuli on functional localization, determination of language dominance and BOLD signals. Materials and Methods: Ten volunteers (VP) were investigated at 1.5 Tesla during visually triggered sentence generation using a standardized block design. In four different measurements, the stimuli were presented to each VP with frequencies of (1/1)s, (1/2)s,(1/3)s and (1/6)s. Results: The functional localizations and the correlations of the measured BOLD signals to the applied hemodynamic reference function (r) were almost independent from frequency and number of the stimuli in both hemispheres, whereas the relative BOLD signal changes ({delta}S) in B and W increased with the stimulation rate, which also changed the lateralization indices. The strongest BOLD activations were achieved with the highest stimulation rate or with the maximum language production task, respectively. Conclusion: The adaptation of language paradigms necessary in clinical fMRI does not alter the functional localizations but changes the BOLD signals and language lateralization which should not be attributed to the underlying brain pathology. (orig.)

  14. Using BOLD imaging to measure renal oxygenation dynamics in rats injected with diuretics

    International Nuclear Information System (INIS)

    Kusakabe, Yoshinori; Matsushita, Taro; Honda, Saori; Okada, Sakie; Murase, Kenya

    2010-01-01

    We used blood oxygenation level-dependent magnetic resonance imaging (BOLD MRI) to measure renal oxygenation dynamics in rats injected with diuretics and evaluated diuretic effect on renal oxygenation. We performed BOLD MRI studies in 32 rats using a 1.5-tesla MR imaging system for animal experiments. We intravenously injected rats with saline (n=7), furosemide (n=7), acetazolamide (n=6), or mannitol (n=6). For controls, 6 rats were not injected with drugs. We estimated the apparent transverse relaxation rate (R 2 *) from the apparent transverse relaxation time (T 2 *)-weighted images and measured the time course of R 2 * at 4-min intervals over approximately 30 min. Compared with preadministration values, the R 2 * value did not change significantly in either the cortex or medulla in the control and mannitol groups but decreased significantly in the saline group; the R 2 * value significantly decreased in the medulla but did not change significantly in the cortex in the furosemide group; and the R 2 * value significantly increased in the medulla and significantly decreased in the cortex in the acetazolamide group. Our study results suggest that BOLD MRI is useful for evaluating the dynamics of renal oxygenation in response to various diuretics in the renal cortex and in the medulla. (author)

  15. Frequency-dependent changes in the amplitude of low-frequency fluctuations in patients with Wilson's disease: a resting-state fMRI study.

    Science.gov (United States)

    Hu, Xiaopeng; Chen, Siyi; Huang, Chang-Bing; Qian, Yinfeng; Yu, Yongqiang

    2017-06-01

    To investigate the frequency-dependent changes in the amplitude of low-frequency fluctuations (ALFF) in patients with Wilson's disease (WD). Resting-state function magnetic resonance imaging (R-fMRI) were employed to measure the amplitude of ALFF in 28 patients with WD and 27 matched normal controls. Slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.073 Hz) frequency bands were analyzed. Apart from the observation of atrophy in the cerebellum, basal ganglia, occipital gyrus, frontal gyrus, precentral gyrus, and paracentral lobule, we also found widespread differences in ALFF of the two bands in the medial frontal gyrus, inferior temporal gyrus, insula, basal ganglia, hippocampus/parahippocampal gyrus, and thalamus bilaterally. Compared to normal controls, WD patients had increased ALFF in the posterior lobe of the cerebellum, inferior temporal gyrus, brain stem, basal ganglia, and decreased ALFF in the anterior lobe of the cerebellum and medial frontal gyrus. Specifically, we observed that the ALFF abnormalities in the cerebellum and middle frontal gyrus were greater in the slow-5 than in the slow-4 band. Correlation analysis showed consistently positive correlations between urinary copper excretion (Cu), serum ceruloplasmin (CP) and ALFFs in the cerebellum. Our study suggests the accumulation of copper profoundly impaired intrinsic brain activity and the impairments seem to be frequency-dependent. These results provide further insights into the understanding of the pathophysiology of WD.

  16. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    Science.gov (United States)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral

  17. Interneuronal systems of the cervical spinal cord assessed with BOLD imaging at 1.5 T

    International Nuclear Information System (INIS)

    Stracke, C.P.; Schoth, F.; Moeller-Hartmann, W.; Krings, T.; Pettersson, L.G.

    2005-01-01

    The purpose of this study was to investigate if functional activity with spinal cord somatosensory stimulation can be visualized using BOLD fMRI. We investigated nine healthy volunteers using a somatosensory stimulus generator. The stimuli were applied in three different runs at the first, third, and fifth finger tip of the right hand, respectively, corresponding to dermatomes c6, c7, and c8. The stimuli gave an increase of BOLD signal (activation) in three different locations of the spinal cord and brain stem. First, activations could be seen in the spinal segment corresponding to the stimulated dermatome in seven out of nine volunteers for c6 stimulation, two out of eight for c7, and three out of eight for c8. These activations were located close to the posterior margin of the spinal cord, presumably reflecting synaptic transmission to dorsal horn interneurons. Second, activation in the medulla oblongata was evident in four subjects, most likely corresponding to the location of the nucleus cuneatus. The third location of activation, which was the strongest and most reliable observed was inside the spinal cord in the c3 and c4 segments. Activation at these spinal levels was almost invariably observed independently of the dermatome stimulated (9/9 for c6, 8/8 for c7, and 7/8 for c8 stimulation). These activations may pertain to an interneuronal system at this spinal level. The results are discussed in relation to neurophysiological studies on cervical spinal interneuronal pathways in animals and humans. (orig.)

  18. The Impact of Accelerated Right Prefrontal High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS on Cue-Reactivity: An fMRI Study on Craving in Recently Detoxified Alcohol-Dependent Patients.

    Directory of Open Access Journals (Sweden)

    Sarah C Herremans

    Full Text Available In alcohol-dependent patients craving is a difficult-to-treat phenomenon. It has been suggested that high-frequency (HF repetitive transcranial magnetic stimulation (rTMS may have beneficial effects. However, exactly how this application exerts its effect on the underlying craving neurocircuit is currently unclear. In an effort to induce alcohol craving and to maximize detection of HF-rTMS effects to cue-induced alcohol craving, patients were exposed to a block and event-related alcohol cue-reactivity paradigm while being scanned with fMRI. Hence, we assessed the effect of right dorsolateral prefrontal cortex (DLPFC stimulation on cue-induced and general alcohol craving, and the related craving neurocircuit. Twenty-six recently detoxified alcohol-dependent patients were included. First, we evaluated the impact of one sham-controlled stimulation session. Second, we examined the effect of accelerated right DLPFC HF-rTMS treatment: here patients received 15 sessions in an open label accelerated design, spread over 4 consecutive days. General craving significantly decreased after 15 active HF-rTMS sessions. However, cue-induced alcohol craving was not altered. Our brain imaging results did not show that the cue-exposure affected the underlying craving neurocircuit after both one and fifteen active HF-rTMS sessions. Yet, brain activation changes after one and 15 HF-rTMS sessions, respectively, were observed in regions associated with the extended reward system and the default mode network, but only during the presentation of the event-related paradigm. Our findings indicate that accelerated HF-rTMS applied to the right DLPFC does not manifestly affect the craving neurocircuit during an alcohol-related cue-exposure, but instead it may influence the attentional network.

  19. Systematic protocol for assessment of the validity of BOLD MRI in a rabbit model of inflammatory arthritis at 1.5 tesla

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Michael W.; Nathanael, George; Kis, Antonella; Amirabadi, Afsaneh; Zhong, Anguo; Rayner, Tammy; Weiss, Ruth; Detzler, Garry; Gahunia, Harpal [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Jong, Roland [Mount Sinai Hospital, Department of Pathology and Laboratory Medicine, Toronto (Canada); Moineddin, Rahim [Family and Community Medicine, Department of Public Health, Toronto (Canada); Crawley, Adrian [University of Toronto, Department of Medical Imaging, Toronto (Canada); Toronto Western Hospital, Department of Medical Imaging, Toronto (Canada); Doria, Andrea S. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); University of Toronto, Department of Medical Imaging, Toronto (Canada)

    2014-05-15

    Blood-oxygen-level-dependent (BOLD) MRI has the potential to identify regions of early hypoxic and vascular joint changes in inflammatory arthritis. There is no standard protocol for analysis of BOLD MRI measurements in musculoskeletal disorders. To optimize the following BOLD MRI reading parameters: (1) statistical threshold values (low, r > 0.01 versus high, r > 0.2); (2) summary measures of BOLD contrast (percentage of activated voxels [PT%] versus percentage signal difference between on-and-off signal intensities [diff{sub o}n{sub o}ff]); and (3) direction of BOLD response (positive, negative and positive + negative). Using BOLD MRI protocols at 1.5 T, arthritic (n = 21) and contralateral (n = 21) knees of 21 juvenile rabbits were imaged at baseline and on days 1, 14 and 28 after a unilateral intra-articular injection of carrageenan. Nine non-injected rabbits served as external control knees (n = 18). By comparing arthritic to contralateral knees, receiver operating characteristic curves were used to determine diagnostic accuracy. Using diff{sub o}n{sub o}ff and positive + negative responses, a threshold of r > 0.01 was more accurate than r > 0.2 (P = 0.03 at day 28). Comparison of summary measures yielded no statistically significant difference (P > 0.05). Although positive + negative (AUC = 0.86 at day 28) and negative responses (AUC = 0.90 at day 28) for PT% were the most diagnostically accurate, positive + negative responses for diff{sub o}n{sub o}ff (AUC = 0.78 at day 28) also had acceptable accuracy. The most clinically relevant reading parameters included a lower threshold of r > 0.01 and a positive + negative BOLD response. We propose that diff{sub o}n{sub o}ff is a more clinically relevant summary measure of BOLD MRI, while PT% can be used as an ancillary measure. (orig.)

  20. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.

    Science.gov (United States)

    Whittingstall, Kevin; Bartels, Andreas; Singh, Vanessa; Kwon, Soyoung; Logothetis, Nikos K

    2010-10-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an

  1. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone

    Directory of Open Access Journals (Sweden)

    Kelsey Moore

    2016-11-01

    Full Text Available Blood oxygen level dependent (BOLD imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (µ opioid receptor knock-outs (MuKO in response to oxycodone (OXY. Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high µ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala and hypothalamus, and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex and prelimbic cortex. Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala and preoptic areas. This result indicates that most effects of OXY on positive BOLD are mediated by the µ opioid receptor (on-target effects. OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122 and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum, and in some case intensified (hippocampus. Negative BOLD analysis therefore shows activation and deactivation events in the absence of the µ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects. Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY

  2. Differences in cortical coding of heat evoked pain beyond the perceived intensity: an fMRI and EEG study.

    Science.gov (United States)

    Haefeli, Jenny; Freund, Patrick; Kramer, John L K; Blum, Julia; Luechinger, Roger; Curt, Armin

    2014-04-01

    Imaging studies have identified a wide network of brain areas activated by nociceptive stimuli and revealed differences in somatotopic representation of highly distinct stimulation sites (foot vs. hand) in the primary (S1) and secondary (S2) somatosensory cortices. Somatotopic organization between adjacent dermatomes and differences in cortical coding of similarly perceived nociceptive stimulation are less well studied. Here, cortical processing following contact heat nociceptive stimulation of cervical (C4, C6, and C8) and trunk (T10) dermatomes were recorded in 20 healthy subjects using functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Stimulation of T10 compared with the C6 and C8 revealed significant higher response intensity in the left S1 (contralateral) and the right S2 (ipsilateral) even when the perceived pain was equal between stimulation sites. Accordingly, contact heat evoked potentials following stimulation of T10 showed significantly higher N2P2 amplitudes compared to C6 and C8. Adjacent dermatomes did not reveal a distinct somatotopical representation. Within the assessed cervical and trunk dermatomes, nociceptive cortical processing to heat differs significantly in magnitude even when controlling for pain perception. This study provides evidence that controlling for pain perception is not sufficient to compare directly the magnitude of cortical processing [blood oxygen level dependence (BOLD) response and amplitude of evoked potentials] between body sites. Copyright © 2013 Wiley Periodicals, Inc.

  3. The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI.

    Science.gov (United States)

    Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain

    2018-01-01

    Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg) . Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency.

  4. The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI

    Directory of Open Access Journals (Sweden)

    Fatma Gargouri

    2018-02-01

    Full Text Available Resting state functional MRI (rs-fMRI is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step and the scr (where we applied realignment, tCompCor and smoothing as a final step strategies had the highest mean values of global efficiency (eg. Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step, had the highest mean local efficiency (el values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency.

  5. The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI

    Science.gov (United States)

    Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain

    2018-01-01

    Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg). Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency. PMID:29497372

  6. Dissociative part-dependent biopsychosocial reactions to backward masked angry and neutral faces: An fMRI study of dissociative identity disorder.

    Science.gov (United States)

    Schlumpf, Yolanda R; Nijenhuis, Ellert R S; Chalavi, Sima; Weder, Ekaterina V; Zimmermann, Eva; Luechinger, Roger; La Marca, Roberto; Reinders, A A T Simone; Jäncke, Lutz

    2013-01-01

    part-dependent biopsychosocial reactions to masked neutral and angry faces. As EP, they are overactivated, and as ANP underactivated. The findings support TSDP. Major clinical implications are discussed.

  7. Dissociative part-dependent biopsychosocial reactions to backward masked angry and neutral faces: An fMRI study of dissociative identity disorder☆

    Science.gov (United States)

    Schlumpf, Yolanda R.; Nijenhuis, Ellert R.S.; Chalavi, Sima; Weder, Ekaterina V.; Zimmermann, Eva; Luechinger, Roger; La Marca, Roberto; Reinders, A.A.T. Simone; Jäncke, Lutz

    2013-01-01

    . Conclusions DID patients have dissociative part-dependent biopsychosocial reactions to masked neutral and angry faces. As EP, they are overactivated, and as ANP underactivated. The findings support TSDP. Major clinical implications are discussed. PMID:24179849

  8. An fMRI study of Agency

    DEFF Research Database (Denmark)

    Charalampaki, Angeliki

    2017-01-01

    Motor area has a distinct directionality, depending on the stage of the volitional movement. In this study, we were interested in assessing the neuronal mechanism underlying this phenomenon. We therefore performed an fMRI study of Agency, to exploit the high spatial resolution this imaging technique...... displays. For the purposes of our study twenty participants were recruited. The experimental procedure we considered appropriate to study the Sense of Agency, involved participants laying inside the fMRI scanner and while they had no visual feedback of their hand, they were instructed to draw straight...... lines on a tablet with a digital pen. They could only see the consequences of their movement as a cursor’s movement on a screen. After finishing their movement, participants were requested to make a judgment over whether they felt they were the Agent of the observed movement or not. The analysis of our...

  9. Applying independent component analysis to clinical FMRI at 7 t

    OpenAIRE

    Robinson, Simon Daniel; Schöpf, Veronika; Cardoso, Pedro; Geissler, Alexander; Fischmeister, Florian P S; Wurnig, Moritz; Trattnig, Siegfried; Beisteiner, Roland

    2013-01-01

    Increased BOLD sensitivity at 7 T offers the possibility to increase the reliability of fMRI, but ultra-high field is also associated with an increase in artifacts related to head motion, Nyquist ghosting, and parallel imaging reconstruction errors. In this study, the ability of independent component analysis (ICA) to separate activation from these artifacts was assessed in a 7 T study of neurological patients performing chin and hand motor tasks. ICA was able to isolate primary motor activat...

  10. Metabolic Changes Underlying Bold Signal Variations after Administration of Zolpidem

    International Nuclear Information System (INIS)

    Rodriguez-Rojas, Rafael; Machado, Calixto; Alvarez, Lazaro; Carballo, Maylen; Perez-Nellar, Jesus; Estevez, Mario; Pavon, Nancy; Chinchilla, Mauricio

    2010-12-01

    Zolpidem is a non-benzodiazepine drug belonging to the imidazopiridine class, which has selectivity for stimulating the effect of gamma aminobutyric acid [GABA] and is used for the therapy of insomnia. Nonetheless, several reports have been published over recent years about a paradoxical arousing effect of Zolpidem in patients with severe brain damage. We studied a PVS case using 1 H-MRS and BOLD signal, before and after Zolpidem administration. Significantly increased BOLD signal was localized in left frontal superior cortex, bilateral cingulated areas, left thalamus and right head of the caudate nucleus. A transient activation was observed in frontal cortex, comprising portions of anterior cingulate, medial, and orbito-frontal cortices. Additionally, significant pharmacological activation in sensory-motor cortex is observed 1 hour after Zolpidem intake. Significant linear correlations of BOLD signal changes were found with primary concentrations of NAA, Glx and Lac in the right frontal cortex. We discussed that when Zolpidem attaches to the modified GABA receptors of the neurodormant cells, dormancy is switched off, inducing brain activation. This might explain the significant correlations of BOLD signal changes and 1 H-MRS metabolites in our patient. We concluded that 1 H-MRS and BOLD signal assessment might contribute to study neurovascular coupling in PVS cases after Zolpidem administration. Although this is a report of a single case, considering our results we recommend to apply this methodology in series of PVS and MCS patients. (author)

  11. Comparison between subjects with long- and short-allele carriers in the BOLD signal within amygdala during emotional tasks

    Science.gov (United States)

    Hadi, Shamil; Siadat, Mohamad R.; Babajani-Feremi, Abbas

    2012-03-01

    Emotional tasks may result in a strong blood oxygen level-dependent (BOLD) signal in the amygdala in 5- HTTLRP short-allele. Reduced anterior cingulate cortex (ACC)-amygdala connectivity in short-allele provides a potential mechanistic account for the observed increase in amygdala activity. In our study, fearful and threatening facial expressions were presented to two groups of 12 subjects with long- and short-allele carriers. The BOLD signals of the left amygdala of each group were averaged to increase the signal-to-noise ratio. A Bayesian approach was used to estimate the model parameters to elucidate the underlying hemodynamic mechanism. Our results showed a positive BOLD signal in the left amygdala for short-allele individuals, and a negative BOLD signal in the same region for long-allele individuals. This is due to the fact that short-allele is associated with lower availability of serotonin transporter (5-HTT) and this leads to an increase of serotonin (5-HT) concentration in the cACC-amygdala synapse.

  12. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    Science.gov (United States)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  13. Arterial Spin Labeling (ASL) fMRI: advantages, theoretical constrains, and experimental challenges in neurosciences.

    Science.gov (United States)

    Borogovac, Ajna; Asllani, Iris

    2012-01-01

    Cerebral blood flow (CBF) is a well-established correlate of brain function and therefore an essential parameter for studying the brain at both normal and diseased states. Arterial spin labeling (ASL) is a noninvasive fMRI technique that uses arterial water as an endogenous tracer to measure CBF. ASL provides reliable absolute quantification of CBF with higher spatial and temporal resolution than other techniques. And yet, the routine application of ASL has been somewhat limited. In this review, we start by highlighting theoretical complexities and technical challenges of ASL fMRI for basic and clinical research. While underscoring the main advantages of ASL versus other techniques such as BOLD, we also expound on inherent challenges and confounds in ASL perfusion imaging. In closing, we expound on several exciting developments in the field that we believe will make ASL reach its full potential in neuroscience research.

  14. Internal representations for face detection: an application of noise-based image classification to BOLD responses.

    Science.gov (United States)

    Nestor, Adrian; Vettel, Jean M; Tarr, Michael J

    2013-11-01

    What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally-coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise-based image classification in conjunction with fMRI to help uncover the structure of high-level perceptual representations. Copyright © 2012 Wiley Periodicals, Inc.

  15. Nocebo-induced modulation of cerebral itch processing - An fMRI study.

    Science.gov (United States)

    van de Sand, Missanga F; Menz, Mareike M; Sprenger, Christian; Büchel, Christian

    2018-02-01

    It has been shown repeatedly that perceiving itch-related pictures or listening to a lecture on itch can enhance itch sensation and scratching behaviour (Niemeier and Gieler, 2000; Holle et al., 2012; Lloyd et al., 2013), indicating that itch is strongly influenced by expectations. Using fMRI, we investigated the neural correlates of the itch-related nocebo effect in healthy male and female human subjects. Itch sensation on the left forearm was induced by cutaneous histamine application and thermally modulated, with cooling leading to higher itch. Nocebo-induced aggravation of histaminergic itch was achieved by ostensibly treating volunteers with "transcutaneous electrical nerve stimulation (TENS)" about which subjects were instructed that it would increase itch. During a conditioning phase subjects indeed experienced stronger itch due to slightly altered cooling and histamine concentrations, but attributed it to the alleged "TENS stimulation". Importantly, in the subsequent test phase where no "TENS" or electrical stimulation was applied, volunteers significantly reported stronger itch during the nocebo as compared to the control condition. Comparing BOLD responses during nocebo in contrast to control, we observed increased activity in contralateral (right) rolandic operculum. Opercular involvement was repeatedly reported in studies related to the expectation of stimulus intensification and might thus represent an early area integrating expectation information with somatosensory information. Finally, functional coupling between the insula and the periaqueductal gray (PAG) was enhanced specifically in the nocebo condition. This cortex-PAG interaction indicates that context-dependent top-down modulation during itch might represent a shared mechanism with other modalities such as pain. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Physiologic characterization of inflammatory arthritis in a rabbit model with BOLD and DCE MRI at 1.5 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Nasui, Otilia C.; Chan, Michael W.; Nathanael, George; Rayner, Tammy; Weiss, Ruth; Detzler, Garry; Zhong, Anguo [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); Crawley, Adrian [University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Toronto Western Hospital, Department of Medical Imaging, Toronto, ON (Canada); Miller, Elka [Children' s Hospital of Eastern Ontario (CHEO), Department of Diagnostic Imaging, Ottawa, ON (Canada); Belik, Jaques [The Hospital for Sick Children, Department of Neonatology, Toronto, ON (Canada); Cheng, Hai-Ling; Kassner, Andrea; Doria, Andrea S. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Moineddin, Rahim [Department of Public Health, Family and Community Medicine, Toronto, ON (Canada); Jong, Roland; Rogers, Marianne [Mount Sinai Hospital, Department of Pathology, Toronto, ON (Canada)

    2014-11-15

    Our aim was to test the feasibility of blood oxygen level dependent magnetic resonance imaging (BOLD MRI) and dynamic contrast-enhanced (DCE) MRI to monitor periarticular hypoxic/inflammatory changes over time in a juvenile rabbit model of arthritis. We examined arthritic and contralateral nonarthritic knees of 21 juvenile rabbits at baseline and days 1,14, and 28 after induction of arthritis by unilateral intra-articular injection of carrageenin with BOLD and DCE MRI at 1.5 Tesla (T). Nine noninjected rabbits served as controls. Associations between BOLD and DCE-MRI and corresponding intra-articular oxygen pressure (PO{sub 2}) and blood flow [blood perfusion units (BPU)] (polarographic probes, reference standards) or clinical-histological data were measured by correlation coefficients. Percentage BOLD MRI change obtained in contralateral knees correlated moderately with BPU on day 0 (r = -0.51, p = 0.02) and excellently on day 28 (r = -0.84, p = 0.03). A moderate correlation was observed between peak enhancement DCE MRI (day 1) and BPU measurements in arthritic knees (r = 0.49, p = 0.04). In acute arthritis, BOLD and DCE MRI highly correlated (r = 0.89, p = 0.04; r = 1.0, p < 0.0001) with histological scores in arthritic knees. The proposed techniques are feasible to perform at 1.5 T, and they hold potential as surrogate measures to monitor hypoxic and inflammatory changes over time in arthritis at higher-strength MRI fields. (orig.)

  17. BOLD quantified renal pO2 is sensitive to pharmacological challenges in rats.

    Science.gov (United States)

    Thacker, Jon; Zhang, Jeff L; Franklin, Tammy; Prasad, Pottumarthi

    2017-07-01

    Blood oxygen level-dependent (BOLD) MRI has been effectively used to monitor changes in renal oxygenation. However, R2* (or T2*) is not specific to blood oxygenation and is dependent on other factors. This study investigates the use of a statistical model that takes these factors into account and maps BOLD MRI measurements to blood pO2. Spin echo and gradient echo images were obtained in six Sprague-Dawley rats and R2 and R2* maps were computed. Measurements were made at baseline, post-nitric oxide synthase inhibitor (L-NAME), and post-furosemide administration. A simulation of each region was performed to map R2' (computed as R2*-R2) to blood pO2. At baseline, blood pO2 in the outer medulla was 30.5 ± 1.2 mmHg and 51.9 ± 5.2 mmHg in the cortex, in agreement with previous invasive studies. Blood pO2 was found to decrease within the outer medulla following L-NAME (P pO2 in the cortex increased following furosemide (P pO2 is sensitive to pharmacological challenges, and baseline pO2 is comparable to literature values. Reporting pO2 instead of R2* could lead to a greater clinical impact of renal BOLD MRI and facilitate the identification of hypoxic regions. Magn Reson Med 78:297-302, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Regional homogeneity changes in prelingually deafened patients: a resting-state fMRI study

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Xian, Junfang; Lv, Bin; Li, Meng; Li, Yong; Liu, Zhaohui; Wang, Zhenchang

    2010-03-01

    Resting-state functional magnetic resonance imaging (fMRI) is a technique that measures the intrinsic function of brain and has some advantages over task-induced fMRI. Regional homogeneity (ReHo) assesses the similarity of the time series of a given voxel with its nearest neighbors on a voxel-by-voxel basis, which reflects the temporal homogeneity of the regional BOLD signal. In the present study, we used the resting state fMRI data to investigate the ReHo changes of the whole brain in the prelingually deafened patients relative to normal controls. 18 deaf patients and 22 healthy subjects were scanned. Kendall's coefficient of concordance (KCC) was calculated to measure the degree of regional coherence of fMRI time courses. We found that regional coherence significantly decreased in the left frontal lobe, bilateral temporal lobes and right thalamus, and increased in the postcentral gyrus, cingulate gyrus, left temporal lobe, left thalamus and cerebellum in deaf patients compared with controls. These results show that the prelingually deafened patients have higher degree of regional coherence in the paleocortex, and lower degree in neocortex. Since neocortex plays an important role in the development of auditory, these evidences may suggest that the deaf persons reorganize the paleocortex to offset the loss of auditory.

  19. Task effects on BOLD signal correlates of implicit syntactic processing

    Science.gov (United States)

    Caplan, David

    2010-01-01

    BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed. PMID:20671983

  20. Attention-dependent modulation of cortical taste circuits revealed by Granger causality with signal-dependent noise.

    Directory of Open Access Journals (Sweden)

    Qiang Luo

    2013-10-01

    Full Text Available We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention.

  1. Functional magnetic resonance imaging (fMRI) for fetal oxygenation during maternal hypoxia: initial results

    International Nuclear Information System (INIS)

    Wedegaertner, U.; Adam, G.; Tchirikov, M.; Schroeder, H.; Koch, M.

    2002-01-01

    Purpose: To investigate the potential of fMRI to measure changes in fetal tissue oxygenation during acute maternal hypoxia in fetal lambs. Material and Methods: Two ewes carrying singleton fetuses (gestational age 125 and 131 days) underwent MR imaging under inhalation anesthesia. BOLD imaging of the fetal brain, liver and myocardium was performed during acute maternal hypoxia (oxygen replaced by N 2 O). Maternal oxygen saturation and heart rate were monitored by a pulse-oxymeter attached to the maternal tongue. Results: Changes of fetal tissue oxygenation during maternal hypoxia were clearly visible with BOLD MRI. Signal intensity decreases were more distinct in liver and heart (∝40%) from control than in the fetal brain (∝10%). Conclusions: fMRI is a promising diagnostic tool to determine fetal tissue oxygenation and may open new opportunities in monitoring fetal well being in high risk pregnancies complicated by uteroplacentar insufficiency. Different signal changes in liver/heart and brain may reflect a centralization of the fetal blood flow. (orig.) [de

  2. A method for independent component graph analysis of resting-state fMRI

    DEFF Research Database (Denmark)

    de Paula, Demetrius Ribeiro; Ziegler, Erik; Abeyasinghe, Pubuditha M.

    2017-01-01

    Introduction Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non-contiguou......Introduction Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non......-contiguous regions. To date, the spatial patterns of the networks have been analyzed with techniques developed for volumetric data. Objective Here, we detail a graph building technique that allows these ICNs to be analyzed with graph theory. Methods First, ICA was performed at the single-subject level in 15 healthy...... parcellated regions. Third, between-node functional connectivity was established by building edge weights for each networks. Group-level graph analysis was finally performed for each network and compared to the classical network. Results Network graph comparison between the classically constructed network...

  3. Does education play a role in language reorganization after surgery in drug refractory temporal lobe epilepsy: An fMRI based study?

    Science.gov (United States)

    Chaudhary, Kapil; Ramanujam, Bhargavi; Kumaran, S Senthil; Chandra, P Sarat; Wadhawan, Ashima Nehra; Garg, Ajay; Tripathi, Manjari

    2017-10-01

    groups after ATLR; significant worsening in the abstract ability subtest was noted in the LES group, whereas in the HES group there was an improvement. Blood-oxygen-level dependent (BOLD) activation during language tasks was observed in both cerebral hemispheres in the TLE cases, while it was observed in the traditional left hemispheric language areas in controls. Postoperatively, greater BOLD activation was observed in the left inferior frontal gyri (IFG, r=0.65 * ; peducation was similar to that of healthy controls, implying that education has an effect on the functional reorganization/recovery of language areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Functional magnetic resonance imaging (fMRI) for fetal oxygenation during maternal hypoxia: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Wedegaertner, U.; Adam, G. [Abt. fuer Diagnostische und Interventionelle Radiologie, Klinik und Poliklinik fuer Radiologie, UKE Hamburg (Germany); Tchirikov, M.; Schroeder, H. [Abt. fuer experimentelle Gynaekologie der Universitaetsfrauenklinik, Klinik und Poliklinik fuer Frauenheilkunde, UKE, Hamburg (Germany); Koch, M. [Klinik und Poliklinik fuer Neurologie, UKE Hamburg (Germany)

    2002-06-01

    Purpose: To investigate the potential of fMRI to measure changes in fetal tissue oxygenation during acute maternal hypoxia in fetal lambs. Material and Methods: Two ewes carrying singleton fetuses (gestational age 125 and 131 days) underwent MR imaging under inhalation anesthesia. BOLD imaging of the fetal brain, liver and myocardium was performed during acute maternal hypoxia (oxygen replaced by N{sub 2}O). Maternal oxygen saturation and heart rate were monitored by a pulse-oxymeter attached to the maternal tongue. Results: Changes of fetal tissue oxygenation during maternal hypoxia were clearly visible with BOLD MRI. Signal intensity decreases were more distinct in liver and heart ({proportional_to}40%) from control than in the fetal brain ({proportional_to}10%). Conclusions: fMRI is a promising diagnostic tool to determine fetal tissue oxygenation and may open new opportunities in monitoring fetal well being in high risk pregnancies complicated by uteroplacentar insufficiency. Different signal changes in liver/heart and brain may reflect a centralization of the fetal blood flow. (orig.) [German] Ziel: Untersuchung des Potentiales der funktionellen MRT (BOLD) in der Darstellung von Veraenderungen in der Sauerstoffsaettigung fetaler Gewebe waehrend akuter materner Hypoxie bei fetalen Laemmern. Material und Methoden: Die MR-Untersuchung wurde an zwei Mutterschafen mit 125 und 131 Tage alten Feten in Inhalationsnarkose durchgefuehrt. Die BOLD Messungen von fetaler Leber, Myokard und Gehirn erfolgten waehrend einer akuten Hypoxiephase des Muttertieres, in der Sauerstoff durch N{sub 2}O ersetzt wurde. Die materne Sauerstoffsaettigung und Herzfrequenz wurde durch ein Pulsoxymeter ueberwacht. Ergebnisse: Aenderungen der fetalen Gewebsoxygenierung waehrend einer akuten Hypoxiephase der Mutter waren mit der BOLD-MR-Bildgebung deutlich darstellbar. In der fetalen Leber und dem Myokard zeigte sich ein staerkerer Signalabfall um ca. 40% von den Kontrollwerten als im fetalen

  5. Presurgical motor, somatosensory and language fMRI: Technical feasibility and limitations in 491 patients over 13 years

    International Nuclear Information System (INIS)

    Tyndall, Anthony J.; Reinhardt, Julia; Stippich, Christoph; Tronnier, Volker; Mariani, Luigi

    2017-01-01

    To analyse the long-term feasibility and limitations of presurgical fMRI in a cohort of tumour and epilepsy patients with different MR-scanners at 1.5 and 3.0 T. Four hundred and ninety-one consecutive patients undergoing presurgical fMRI between 2000 and 2012 on five different MR-scanners using established paradigms and semi-automated data processing were included. Success rates of task performance and BOLD-activation were determined for motor and somatosensory somatotopic mapping and language localisation. Procedural success, failures and imaging artifacts were analysed. MR-field strengths were compared. Two thousand three hundred fifteen of 2348 (98.6 %) attempted paradigms (1033 motor, 1220 speech, 95 somatosensory) were successfully performed. 100 paradigms (4.3 %) were repetition runs. 23 speech, 6 motor and 2 sensory paradigms failed for non-compliance and technical issues. Most language paradigm failures were noted in overt sentence generation. Average significant BOLD-activation was higher for motor than language paradigms (95.8 vs. 81.6 %). Most language paradigms showed significantly higher activation rates at 3 T compared to 1.5 T, whereas no significant difference was found for motor paradigms. fMRI proved very robust for the presurgical localisation of the different motor and somatosensory body representations, as well as Broca's and Wernicke's language areas across different MR-scanners at 1.5 and 3.0 T over 13 years. (orig.)

  6. Presurgical motor, somatosensory and language fMRI: Technical feasibility and limitations in 491 patients over 13 years

    Energy Technology Data Exchange (ETDEWEB)

    Tyndall, Anthony J.; Reinhardt, Julia; Stippich, Christoph [University Hospital Basel, Division of Diagnostic and Interventional Neuroradiology, Basel (Switzerland); Tronnier, Volker [University Hospital Schleswig-Holstein, Luebeck Campus, Department of Neurosurgery, Luebeck (Germany); Mariani, Luigi [University Hospitals Basel, Department of Neurosurgery, Basel (Switzerland)

    2017-01-15

    To analyse the long-term feasibility and limitations of presurgical fMRI in a cohort of tumour and epilepsy patients with different MR-scanners at 1.5 and 3.0 T. Four hundred and ninety-one consecutive patients undergoing presurgical fMRI between 2000 and 2012 on five different MR-scanners using established paradigms and semi-automated data processing were included. Success rates of task performance and BOLD-activation were determined for motor and somatosensory somatotopic mapping and language localisation. Procedural success, failures and imaging artifacts were analysed. MR-field strengths were compared. Two thousand three hundred fifteen of 2348 (98.6 %) attempted paradigms (1033 motor, 1220 speech, 95 somatosensory) were successfully performed. 100 paradigms (4.3 %) were repetition runs. 23 speech, 6 motor and 2 sensory paradigms failed for non-compliance and technical issues. Most language paradigm failures were noted in overt sentence generation. Average significant BOLD-activation was higher for motor than language paradigms (95.8 vs. 81.6 %). Most language paradigms showed significantly higher activation rates at 3 T compared to 1.5 T, whereas no significant difference was found for motor paradigms. fMRI proved very robust for the presurgical localisation of the different motor and somatosensory body representations, as well as Broca's and Wernicke's language areas across different MR-scanners at 1.5 and 3.0 T over 13 years. (orig.)

  7. Identification of Voxels Confounded by Venous Signals Using Resting-State fMRI Functional Connectivity Graph Clustering

    Directory of Open Access Journals (Sweden)

    Klaudius eKalcher

    2015-12-01

    Full Text Available Identifying venous voxels in fMRI datasets is important to increase the specificity of fMRI analyses to microvasculature in the vicinity of the neural processes triggering the BOLD response. This is, however, difficult to achieve in particular in typical studies where magnitude images of BOLD EPI are the only data available. In this study, voxelwise functional connectivity graphs were computed on minimally preprocessed low TR (333 ms multiband resting-state fMRI data, using both high positive and negative correlations to define edges between nodes (voxels. A high correlation threshold for binarization ensures that most edges in the resulting sparse graph reflect the high coherence of signals in medium to large veins. Graph clustering based on the optimization of modularity was then employed to identify clusters of coherent voxels in this graph, and all clusters of 50 or more voxels were then interpreted as corresponding to medium to large veins. Indeed, a comparison with SWI reveals that 75.6 ± 5.9% of voxels within these large clusters overlap with veins visible in the SWI image or lie outside the brain parenchyma. Some of the remainingdifferences between the two modalities can be explained by imperfect alignment or geometric distortions between the two images. Overall, the graph clustering based method for identifying venous voxels has a high specificity as well as the additional advantages of being computed in the same voxel grid as the fMRI dataset itself and not needingany additional data beyond what is usually acquired (and exported in standard fMRI experiments.

  8. Dictionary-driven Ischemia Detection from Cardiac Phase-Resolved Myocardial BOLD MRI at Rest

    Science.gov (United States)

    Bevilacqua, Marco; Dharmakumar, Rohan; Tsaftaris, Sotirios A.

    2016-01-01

    Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP–BOLD) MRI provides a unique opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) method which relies on the inherent spatio-temporal correlation between oxygenation and wall motion to formalize a joint learning and detection problem based on dictionary decomposition. Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns dictionaries to represent only normal observations (corresponding to myocardial territories remote to ischemia). Anomaly detection is based on a modified version of One-class Support Vector Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP–BOLD data set from a canine experimental model emulating acute coronary syndromes. Comparing early ischemic territories identified with UID against infarct territories (after several hours of ischemia), we find that IE, as measured by UID, is highly correlated (Pearson’s r = 0.84) w.r.t. infarct size. When advances in automated registration and segmentation of CP–BOLD images and full coverage 3D acquisitions become available, we hope that this method can enable pixel-level assessment of ischemia with this truly non-invasive imaging technique. PMID:26292338

  9. Hypoxia in Prostate Cancer: Correlation of BOLD-MRI With Pimonidazole Immunohistochemistry-Initial Observations

    International Nuclear Information System (INIS)

    Hoskin, Peter J.; Carnell, Dawn M.; Taylor, N. Jane; Smith, Rowena E.; Stirling, J. James; Daley, Frances M.; Saunders, Michele I.; Bentzen, Soren M.; Collins, David J.; D'Arcy, James A.; Padhani, Anwar P.

    2007-01-01

    Purpose: To investigate the ability of blood oxygen level-dependent (BOLD) MRI to depict clinically significant prostate tumor hypoxia. Methods and Materials: Thirty-three patients with prostate carcinoma undergoing radical prostatectomy were studied preoperatively, using gradient echo sequences without and with contrast medium enhancement, to map relative tissue oxygenation according to relaxivity rates and relative blood volume (rBV). Pimonidazole was administered preoperatively, and whole-mount sections of selected tumor-bearing slices were stained for pimonidazole fixation and tumor and nontumor localization. Histologic and imaging parameters were independently mapped onto patient prostate outlines. Using 5-mm grids, 861 nontumor grid locations were compared with 237 tumor grids (with >50% tumor per location) using contingency table analysis with respect to the ability of imaging to predict pimonidazole staining. Results: Twenty patients completed the imaging and histologic protocols. Pimonidazole staining was found in 33% of nontumor and in 70% of tumor grids. The sensitivity of the MR relaxivity parameter R 2 * in depicting tumor hypoxia was high (88%), improving with the addition of low rBV information (95%) without changing specificity (36% and 29%, respectively). High R 2 * increased the positive predictive value for hypoxia by 6% (70% to 76%); conversely, low R 2 * decreased the likelihood of hypoxia being present by 26% (70% to 44%) and by 41% (71% to 30%) when combined with rBV information. Conclusion: R 2 * maps from BOLD-MRI have high sensitivity but low specificity for defining intraprostatic tumor hypoxia. This together with the negative predictive value of 70% when combined with blood volume information makes BOLD-MRI a potential noninvasive technique for mapping prostatic tumor hypoxia

  10. fMRI of pain studies using laser-induced heat on skin with and without the loved one near the subject - a pilot study on 'love hurts'

    Science.gov (United States)

    Sofina, T.; Kamil, W. A.; Ahmad, A. H.

    2014-11-01

    The aims of this study are to image and investigate the areas of brain response to laser-induced heat pain, to analyse for any difference in the brain response when a subject is alone and when her loved one is present next to the MRI gantry. Pain stimuli was delivered using Th-YAG laser to four female subjects. Blood-Oxygenation-Level-Dependent (BOLD) fMRI experiment was performed using blocked design paradigm with five blocks of painful (P) stimuli and five blocks of non-painful (NP) stimuli arranged in pseudorandom order with an 18 seconds rest (R) between each stimulation phase. Brain images were obtained from 3T Philips Achieva MRI scanner using 32-channel SENSE head coil. A T1-weighted image (TR/TE/slice/FOV = 9ms/4ms/4mm slices/240×240mm) was obtained for verification of brain anatomical structures. An echo-planar-imaging sequence were used for the functional scans (TR/TE/slice/flip/FOV=2000ms/35ms/4mm slices/90°/220×220mm). fMRI data sets were analysed using SPM 8.0 involving preprocessing steps followed by t-contrast analysis for individuals and FFX analysis. In both with and without-loved-one conditions, neuronal responses were seen in the somatosensory gyrus, supramarginal gyrus, thalamus and insula regions, consistent with pain-related areas. FFX analysis showed that the presence of loved one produced more activation in the frontal and supramarginal gyrus during painful and non-painful stimulations compared to absence of a loved one. Brain response to pain is modulated by the presence of a loved one, causing more activation in the cognitive/emotional area i.e. 'love hurts'.

  11. Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation

    International Nuclear Information System (INIS)

    Siegel, Andrew M; Culver, Joseph P; Mandeville, Joseph B; Boas, David A

    2003-01-01

    The time courses of oxyhaemoglobin ([HbO 2 ]), deoxyhaemoglobin ([HbR]) and total haemoglobin ([HbT]) concentration changes following cortical activation in rats by electrical forepaw stimulation were measured using diffuse optical tomography (DOT) and compared to similar measurements performed previously with fMRI at 2.0 T and 4.7 T. We also explored the qualitative effects of varying stimulus parameters on the temporal evolution of the hemodynamic response. DOT images were reconstructed at a depth of 1.5 mm over a 1 cm square area from 2 mm anterior to bregma to 8 mm posterior to bregma. The measurement set included 9 sources and 16 detectors with an imaging frame rate of 10 Hz. Both DOT [HbR] and [HbO 2 ] time courses were compared to the fMRI BOLD time course during stimulation, and the DOT [HbT] time course was compared to the fMRI cerebral plasma volume (CPV) time course. We believe that DOT and fMRI can provide similar temporal information for both blood volume and deoxyhaemoglobin changes, which helps to cross-validate these two techniques and to demonstrate that DOT can be useful as a complementary modality to fMRI for investigating the hemodynamic response to neuronal activity

  12. Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Andrew M [Tufts University Bioengineering Center, Medford, MA 02155 (United States); Culver, Joseph P [Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129 (United States); Mandeville, Joseph B [Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129 (United States); Boas, David A [Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129 (United States)

    2003-05-21

    The time courses of oxyhaemoglobin ([HbO{sub 2}]), deoxyhaemoglobin ([HbR]) and total haemoglobin ([HbT]) concentration changes following cortical activation in rats by electrical forepaw stimulation were measured using diffuse optical tomography (DOT) and compared to similar measurements performed previously with fMRI at 2.0 T and 4.7 T. We also explored the qualitative effects of varying stimulus parameters on the temporal evolution of the hemodynamic response. DOT images were reconstructed at a depth of 1.5 mm over a 1 cm square area from 2 mm anterior to bregma to 8 mm posterior to bregma. The measurement set included 9 sources and 16 detectors with an imaging frame rate of 10 Hz. Both DOT [HbR] and [HbO{sub 2}] time courses were compared to the fMRI BOLD time course during stimulation, and the DOT [HbT] time course was compared to the fMRI cerebral plasma volume (CPV) time course. We believe that DOT and fMRI can provide similar temporal information for both blood volume and deoxyhaemoglobin changes, which helps to cross-validate these two techniques and to demonstrate that DOT can be useful as a complementary modality to fMRI for investigating the hemodynamic response to neuronal activity.

  13. Outcome dependency alters the neural substrates of impression formation

    Science.gov (United States)

    Ames, Daniel L.; Fiske, Susan T.

    2015-01-01

    How do people maintain consistent impressions of other people when other people are often inconsistent? The present research addresses this question by combining recent neuroscientific insights with ecologically meaningful behavioral methods. Participants formed impressions of real people whom they met in a personally involving situation. fMRI and supporting behavioral data revealed that outcome dependency (i.e., depending on another person for a desired outcome) alters previously identified neural dynamics of impression formation. Consistent with past research, a functional localizer identified a region of dorsomedial PFC previously linked to social impression formation. In the main task, this ROI revealed the predicted patterns of activity across outcome dependency conditions: greater BOLD response when information confirmed (vs. violated) social expectations if participants were outcome-independent and the reverse pattern if participants were outcome-dependent. We suggest that, although social perceivers often discount expectancy-disconfirming information as noise, being dependent on another person for a desired outcome focuses impression-formation processing on the most diagnostic information, rather than on the most tractable information. PMID:23850465

  14. Sexually dimorphic functional connectivity in response to high vs. low energy-dense food cues in obese humans: an fMRI study.

    Science.gov (United States)

    Atalayer, Deniz; Pantazatos, Spiro P; Gibson, Charlisa D; McOuatt, Haley; Puma, Lauren; Astbury, Nerys M; Geliebter, Allan

    2014-10-15

    Sexually-dimorphic behavioral and biological aspects of human eating have been described. Using psychophysiological interaction (PPI) analysis, we investigated sex-based differences in functional connectivity with a key emotion-processing region (amygdala, AMG) and a key reward-processing area (ventral striatum, VS) in response to high vs. low energy-dense (ED) food images using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in obese persons in fasted and fed states. When fed, in response to high vs. low-ED food cues, obese men (vs. women) had greater functional connectivity with AMG in right subgenual anterior cingulate, whereas obese women had greater functional connectivity with AMG in left angular gyrus and right primary motor areas. In addition, when fed, AMG functional connectivity with pre/post-central gyrus was more associated with BMI in women (vs. men). When fasted, obese men (vs. women) had greater functional connectivity with AMG in bilateral supplementary frontal and primary motor areas, left precuneus, and right cuneus, whereas obese women had greater functional connectivity with AMG in left inferior frontal gyrus, right thalamus, and dorsomedial prefrontal cortex. When fed, greater functional connectivity with VS was observed in men in bilateral supplementary and primary motor areas, left postcentral gyrus, and left precuneus. These sex-based differences in functional connectivity in response to visual food cues may help partly explain differential eating behavior, pathology prevalence, and outcomes in men and women. Published by Elsevier Inc.

  15. Boldness and intermittent locomotion in the bluegill sunfish, Lepomis macrochirus

    OpenAIRE

    Alexander D.M. Wilson; Jean-Guy J. Godin

    2009-01-01

    Intermittent locomotion, characterized by moves interspersed with pauses, is a common pattern of locomotion in animals, but its ecological and evolutionary significance relative to continuous locomotion remains poorly understood. Although many studies have examined individual differences in both intermittent locomotion and boldness separately, to our knowledge, no study to date has investigated the relationship between these 2 traits. Characterizing and understanding this relationship is impo...

  16. Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network

    Directory of Open Access Journals (Sweden)

    Silvia Tommasin

    2017-07-01

    Full Text Available Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN, are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task.

  17. Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network

    Science.gov (United States)

    Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Assan, Ibrahim Eid; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico

    2017-01-01

    Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task. PMID:28845420

  18. Increased BOLD activation to predator stressor in subiculum and midbrain of amphetamine-sensitized maternal rats.

    Science.gov (United States)

    Febo, Marcelo; Pira, Ashley S

    2011-03-25

    Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1mg/kg, i.p. ×3days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Exploring BOLD changes during spatial attention in non-stimulated visual cortex.

    Directory of Open Access Journals (Sweden)

    Linda Heinemann

    Full Text Available Blood oxygen level-dependent (BOLD responses were measured in parts of primary visual cortex that represented unstimulated visual field regions at different distances from a stimulated central target location. The composition of the visual scene varied by the presence or absence of additional peripheral distracter stimuli. Bottom-up effects were assessed by comparing peripheral activity during central stimulation vs. no stimulation. Top-down effects were assessed by comparing active vs. passive conditions. In passive conditions subjects simply watched the central letter stimuli and in active conditions they had to report occurrence of pre-defined targets in a rapid serial letter stream. Onset of the central letter stream enhanced activity in V1 representations of the stimulated region. Within representations of the periphery activation decreased and finally turned into deactivation with increasing distance from the stimulated location. This pattern was most pronounced in the active conditions and during the presence of peripheral stimuli. Active search for a target did not lead to additional enhancement at areas representing the attentional focus but to a stronger deactivation in the vicinity. Suppressed neuronal activity was also found in the non distracter condition suggesting a top-down attention driven effect. Our observations suggest that BOLD signal decreases in primary visual cortex are modulated by bottom-up sensory-driven factors such as the presence of distracters in the visual field as well as by top-down attentional processes.

  20. Task-related modulations of BOLD low-frequency fluctuations within the default mode network

    Science.gov (United States)

    Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Eid Assan, Ibrahim; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico

    2017-07-01

    Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33±6 years, 8F/12M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the steady-state execution of a sustained working memory n-back task. We found that the steady state execution of such a task impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to steady-state task execution, can contribute to a better understanding of how brain networks rearrange themselves in response of a task.

  1. Background MR gradient noise and non-auditory BOLD activations: a data-driven perspective.

    Science.gov (United States)

    Haller, Sven; Homola, György A; Scheffler, Klaus; Beckmann, Christian F; Bartsch, Andreas J

    2009-07-28

    The effect of echoplanar imaging (EPI) acoustic background noise on blood oxygenation level dependent (BOLD) activations was investigated. Two EPI pulse sequences were compared: (i) conventional EPI with a pulsating sound component of typically 8-10 Hz, which is a potent physiological stimulus, and (ii) the more recently developed continuous-sound EPI, which is perceived as less distractive despite equivalent peak sound pressure levels. Sixteen healthy subjects performed an established demanding visual n-back working memory task. Using an exploratory data analysis technique (tensorial probabilistic independent component analysis; tensor-PICA), we studied the inter-session/within-subject response variability introduced by continuous-sound versus conventional EPI acoustic background noise in addition to temporal and spatial signal characteristics. The analysis revealed a task-related component associated with the established higher-level working memory and motor feedback response network, which exhibited a significant 19% increase in its average effect size for the continuous-sound as opposed to conventional EPI. Stimulus-related lower-level activations, such as primary visual areas, were not modified. EPI acoustic background noise influences much more than the auditory system per se. This analysis provides additional evidence for an enhancement of task-related, extra-auditory BOLD activations by continuous-sound EPI due to less distractive acoustic background gradient noise.

  2. Simultaneous functional imaging using fPET and fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Villien, Marjorie [CERMEP (France)

    2015-05-18

    Brain mapping of task-associated changes in metabolism with PET has been accomplished by subtracting scans acquired during two distinct static states. We have demonstrated that PET can provide truly dynamic information on cerebral energy metabolism using constant infusion of FDG and multiple stimuli in a single experiment. We demonstrate here that the functional PET (fPET-FDG) method accomplished simultaneously with fMRI, can enable the first direct comparisons in time, space and magnitude of hemodynamics and oxygen and glucose consumption. The imaging studies were performed on a 3T Tim-Trio MR scanner modified to support an MR-compatible BrainPET insert. Ten healthy subjects were included. The total PET acquisition and infusion time was 90 minutes. We did 3 blocks of right hand fingers tapping for 10 minutes at 30, 50 and 70 minutes after the beginning of the PET acquisition. ASL and BOLD imaging were acquired simultaneously during the motor paradigm. Changes in glucose utilization are easily observed as changes in the TAC slope of the PET data (FDG utilization rate) and in the derivative signal during motor stimuli in the activated voxels. PET and MRI (ASL, and BOLD) activations are largely colocalized but with very different statistical significance and temporal dynamic, especially in the ipsilateral side of the stimuli. This study demonstrated that motor activation can be measured dynamically during a single FDG PET scan. The complementary nature of fPET-FDG to fMRI capitalizes on the emerging technology of hybrid MR-PET scanners. fPET-FDG, combined with quantitative fMRI methods, allow us to simultaneously measure dynamic changes in glucose utilization and hemodynamic, addressing vital questions about neurovascular coupling.

  3. Age differences in the motor control of speech: An fMRI study of healthy aging.

    Science.gov (United States)

    Tremblay, Pascale; Sato, Marc; Deschamps, Isabelle

    2017-05-01

    Healthy aging is associated with a decline in cognitive, executive, and motor processes that are concomitant with changes in brain activation patterns, particularly at high complexity levels. While speech production relies on all these processes, and is known to decline with age, the mechanisms that underlie these changes remain poorly understood, despite the importance of communication on everyday life. In this cross-sectional group study, we investigated age differences in the neuromotor control of speech production by combining behavioral and functional magnetic resonance imaging (fMRI) data. Twenty-seven healthy adults underwent fMRI while performing a speech production task consisting in the articulation of nonwords of different sequential and motor complexity. Results demonstrate strong age differences in movement time (MT), with longer and more variable MT in older adults. The fMRI results revealed extensive age differences in the relationship between BOLD signal and MT, within and outside the sensorimotor system. Moreover, age differences were also found in relation to sequential complexity within the motor and attentional systems, reflecting both compensatory and de-differentiation mechanisms. At very high complexity level (high motor complexity and high sequence complexity), age differences were found in both MT data and BOLD response, which increased in several sensorimotor and executive control areas. Together, these results suggest that aging of motor and executive control mechanisms may contribute to age differences in speech production. These findings highlight the importance of studying functionally relevant behavior such as speech to understand the mechanisms of human brain aging. Hum Brain Mapp 38:2751-2771, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Simultaneous functional imaging using fPET and fMRI

    International Nuclear Information System (INIS)

    Villien, Marjorie

    2015-01-01

    Brain mapping of task-associated changes in metabolism with PET has been accomplished by subtracting scans acquired during two distinct static states. We have demonstrated that PET can provide truly dynamic information on cerebral energy metabolism using constant infusion of FDG and multiple stimuli in a single experiment. We demonstrate here that the functional PET (fPET-FDG) method accomplished simultaneously with fMRI, can enable the first direct comparisons in time, space and magnitude of hemodynamics and oxygen and glucose consumption. The imaging studies were performed on a 3T Tim-Trio MR scanner modified to support an MR-compatible BrainPET insert. Ten healthy subjects were included. The total PET acquisition and infusion time was 90 minutes. We did 3 blocks of right hand fingers tapping for 10 minutes at 30, 50 and 70 minutes after the beginning of the PET acquisition. ASL and BOLD imaging were acquired simultaneously during the motor paradigm. Changes in glucose utilization are easily observed as changes in the TAC slope of the PET data (FDG utilization rate) and in the derivative signal during motor stimuli in the activated voxels. PET and MRI (ASL, and BOLD) activations are largely colocalized but with very different statistical significance and temporal dynamic, especially in the ipsilateral side of the stimuli. This study demonstrated that motor activation can be measured dynamically during a single FDG PET scan. The complementary nature of fPET-FDG to fMRI capitalizes on the emerging technology of hybrid MR-PET scanners. fPET-FDG, combined with quantitative fMRI methods, allow us to simultaneously measure dynamic changes in glucose utilization and hemodynamic, addressing vital questions about neurovascular coupling.

  5. Nonlinear neural network for hemodynamic model state and input estimation using fMRI data

    KAUST Repository

    Karam, Ayman M.; Laleg-Kirati, Taous-Meriem; Zayane, Chadia; Kashou, Nasser H.

    2014-01-01

    and event-related BOLD data are used to test the algorithm on real experiments. The proposed method is accurate and robust even in the presence of signal noise and it does not depend on sampling interval. Moreover, the structure of the NARX networks

  6. Visual cortex and auditory cortex activation in early binocularly blind macaques: A BOLD-fMRI study using auditory stimuli.

    Science.gov (United States)

    Wang, Rong; Wu, Lingjie; Tang, Zuohua; Sun, Xinghuai; Feng, Xiaoyuan; Tang, Weijun; Qian, Wen; Wang, Jie; Jin, Lixin; Zhong, Yufeng; Xiao, Zebin

    2017-04-15

    Cross-modal plasticity within the visual and auditory cortices of early binocularly blind macaques is not well studied. In this study, four healthy neonatal macaques were assigned to group A (control group) or group B (binocularly blind group). Sixteen months later, blood oxygenation level-dependent functional imaging (BOLD-fMRI) was conducted to examine the activation in the visual and auditory cortices of each macaque while being tested using pure tones as auditory stimuli. The changes in the BOLD response in the visual and auditory cortices of all macaques were compared with immunofluorescence staining findings. Compared with group A, greater BOLD activity was observed in the bilateral visual cortices of group B, and this effect was particularly obvious in the right visual cortex. In addition, more activated volumes were found in the bilateral auditory cortices of group B than of group A, especially in the right auditory cortex. These findings were consistent with the fact that there were more c-Fos-positive cells in the bilateral visual and auditory cortices of group B compared with group A (p visual cortices of binocularly blind macaques can be reorganized to process auditory stimuli after visual deprivation, and this effect is more obvious in the right than the left visual cortex. These results indicate the establishment of cross-modal plasticity within the visual and auditory cortices. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.

    Science.gov (United States)

    Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M

    2016-06-01

    Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.

  8. The effect of renal denervation on kidney oxygenation as determined by BOLD MRI in patients with hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Vink, E.E.; Boer, A.; Blankestijn, P.J. [University Medical Center Utrecht, Department of Nephrology, P.O. Box 85500, GA, Utrecht (Netherlands); Verloop, W.L.; Voskuil, M. [University Medical Center Utrecht, Department of Cardiology, Utrecht (Netherlands); Spiering, W.; Leiner, T. [University Medical Center Utrecht, Department of Vascular Medicine, Utrecht (Netherlands); Vonken, E.; Hoogduin, J.M. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Bots, M.L. [University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands)

    2015-07-15

    Renal denervation (RDN) is a promising therapy for resistant hypertension. RDN is assumed to decrease sympathetic activity. Consequently, RDN can potentially increase renal oxygenation. Blood oxygen level-dependent MRI (BOLD-MRI) provides a non-invasive tool to determine renal oxygenation in humans. The aim of the current study was to investigate the effect of RDN on renal oxygenation as determined by BOLD-MRI. Patients with resistant hypertension or the inability to follow a stable drug regimen due to unacceptable side effects were included. BOLD-MRI was performed before and 12 months after RDN. Twenty-seven patients were imaged on 3 T and 19 on 1.5 T clinical MRI systems. Fifty-four patients were included, 46 patients (23 men, mean age 57 years) completed the study. Mean 24-h BP changed from 163(±20)/98(±14) mmHg to 154(±22)/92(±13) mmHg (p = 0.001 and p < 0.001). eGFR did not change after RDN [77(±18) vs. 79(±20) mL/min/1.73 m{sup 2}; p = 0.13]. RDN did not affect renal oxygenation [1.5 T: cortical R2*: 12.5(±0.9) vs. 12.5(±0.9), p = 0.94; medullary R2*: 19.6(±1.7) vs. 19.3(1.4), p = 0.40; 3 T: cortical R2*: 18.1(±0.8) vs. 17.8(±1.2), p = 0.47; medullary R2*: 27.4(±1.9) vs. 26.7(±1.8), p = 0.19]. The current study shows that RDN does not lead to changes in renal oxygenation 1 year after RDN as determined by BOLD-MRI. (orig.)

  9. Approaches to brain stress testing: BOLD magnetic resonance imaging with computer-controlled delivery of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    W Alan C Mutch

    Full Text Available BACKGROUND: An impaired vascular response in the brain regionally may indicate reduced vascular reserve and vulnerability to ischemic injury. Changing the carbon dioxide (CO(2 tension in arterial blood is commonly used as a cerebral vasoactive stimulus to assess the cerebral vascular response, changing cerebral blood flow (CBF by up to 5-11 percent/mmHg in normal adults. Here we describe two approaches to generating the CO(2 challenge using a computer-controlled gas blender to administer: i a square wave change in CO(2 and, ii a ramp stimulus, consisting of a continuously graded change in CO(2 over a range. Responses were assessed regionally by blood oxygen level dependent (BOLD magnetic resonance imaging (MRI. METHODOLOGY/PRINCIPAL FINDINGS: We studied 8 patients with known cerebrovascular disease (carotid stenosis or occlusion and 2 healthy subjects. The square wave stimulus was used to study the dynamics of the vascular response, while the ramp stimulus assessed the steady-state response to CO(2. Cerebrovascular reactivity (CVR maps were registered by color coding and overlaid on the anatomical scans generated with 3 Tesla MRI to assess the corresponding BOLD signal change/mmHg change in CO(2, voxel-by-voxel. Using a fractal temporal approach, detrended fluctuation analysis (DFA maps of the processed raw BOLD signal per voxel over the same CO(2 range were generated. Regions of BOLD signal decrease with increased CO(2 (coded blue were seen in all of these high-risk patients, indicating regions of impaired CVR. All patients also demonstrated regions of altered signal structure on DFA maps (Hurst exponents less than 0.5; coded blue indicative of anti-persistent noise. While 'blue' CVR maps remained essentially stable over the time of analysis, 'blue' DFA maps improved. CONCLUSIONS/SIGNIFICANCE: This combined dual stimulus and dual analysis approach may be complementary in identifying vulnerable brain regions and thus constitute a regional as

  10. The role of the DLPFC in inductive reasoning of MCI patients and normal agings: an fMRI study.

    Science.gov (United States)

    Yang, YanHui; Liang, PeiPeng; Lu, ShengFu; Li, KunCheng; Zhong, Ning

    2009-08-01

    Previous studies of young people have revealed that the left dorsolateral prefrontal cortex (DLPFC) plays an important role in inductive reasoning. An fMRI experiment was performed in this study to examine whether the left DLPFC was involved in inductive reasoning of MCI patients and normal aging, and whether the activation pattern of this region was different between MCI patients and normal aging. The fMRI results indicated that MCI patients had no difference from normal aging in behavior performance (reaction time and accuracy) and the activation pattern of DLPFC. However, the BOLD response of the DLPFC region for MCI patients was weaker than that for normal aging, and the functional connectivity between the bilateral DLPFC regions for MCI patients was significantly higher than for normal aging. Taken together, these results indicated that DLPFC plays an important role in inductive reasoning of aging, and the functional abnormity of DLPFC may be an earlier marker of MCI before structural alterations.

  11. Applying independent component analysis to clinical fMRI at 7 T

    Directory of Open Access Journals (Sweden)

    Simon Daniel Robinson

    2013-09-01

    Full Text Available Increased BOLD sensitivity at 7 T offers the possibility to increase the reliability of fMRI, but ultra-high field is also associated with an increase in artifacts related to head motion, Nyquist ghosting and parallel imaging reconstruction errors. In this study, the ability of Independent Component Analysis (ICA to separate activation from these artifacts was assessed in a 7 T study of neurological patients performing chin and hand motor tasks. ICA was able to isolate primary motor activation with negligible contamination by motion effects. The results of General Linear Model (GLM analysis of these data were, in contrast, heavily contaminated by motion. Secondary motor areas, basal ganglia and thalamus involvement were apparent in ICA results, but there was low capability to isolate activation in the same brain regions in the GLM analysis, indicating that ICA was more sensitive as well as more specific. A method was developed to simplify the assessment of the large number of independent components. Task-related activation components could be automatically identified via intuitive and effective features. These findings demonstrate that ICA is a practical and sensitive analysis approach in high field fMRI studies, particularly where motion is evoked. Promising applications of ICA in clinical fMRI include presurgical planning and the study of pathologies affecting subcortical brain areas.

  12. Bayesian spatiotemporal model of fMRI data using transfer functions.

    Science.gov (United States)

    Quirós, Alicia; Diez, Raquel Montes; Wilson, Simon P

    2010-09-01

    This research describes a new Bayesian spatiotemporal model to analyse BOLD fMRI studies. In the temporal dimension, we describe the shape of the hemodynamic response function (HRF) with a transfer function model. The spatial continuity and local homogeneity of the evoked responses are modelled by a Gaussian Markov random field prior on the parameter indicating activations. The proposal constitutes an extension of the spatiotemporal model presented in a previous approach [Quirós, A., Montes Diez, R. and Gamerman, D., 2010. Bayesian spatiotemporal model of fMRI data, Neuroimage, 49: 442-456], offering more flexibility in the estimation of the HRF and computational advantages in the resulting MCMC algorithm. Simulations from the model are performed in order to ascertain the performance of the sampling scheme and the ability of the posterior to estimate model parameters, as well as to check the model sensitivity to signal to noise ratio. Results are shown on synthetic data and on a real data set from a block-design fMRI experiment. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. Network modelling methods for FMRI.

    Science.gov (United States)

    Smith, Stephen M; Miller, Karla L; Salimi-Khorshidi, Gholamreza; Webster, Matthew; Beckmann, Christian F; Nichols, Thomas E; Ramsey, Joseph D; Woolrich, Mark W

    2011-01-15

    There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Early Changes in Alpha Band Power and DMN BOLD Activity in Alzheimer’s Disease: A Simultaneous Resting State EEG-fMRI Study

    Directory of Open Access Journals (Sweden)

    Katharina Brueggen

    2017-10-01

    Full Text Available Simultaneous resting state functional magnetic resonance imaging (rsfMRI–resting state electroencephalography (rsEEG studies in healthy adults showed robust positive associations of signal power in the alpha band with BOLD signal in the thalamus, and more heterogeneous associations in cortical default mode network (DMN regions. Negative associations were found in occipital regions. In Alzheimer’s disease (AD, rsfMRI studies revealed a disruption of the DMN, while rsEEG studies consistently reported a reduced power within the alpha band. The present study is the first to employ simultaneous rsfMRI-rsEEG in an AD sample, investigating the association of alpha band power and BOLD signal, compared to healthy controls (HC. We hypothesized to find reduced positive associations in DMN regions and reduced negative associations in occipital regions in the AD group. Simultaneous resting state fMRI–EEG was recorded in 14 patients with mild AD and 14 HC, matched for age and gender. Power within the EEG alpha band (8–12 Hz, 8–10 Hz, and 10–12 Hz was computed from occipital electrodes and served as regressor in voxel-wise linear regression analyses, to assess the association with the BOLD signal. Compared to HC, the AD group showed significantly decreased positive associations between BOLD signal and occipital alpha band power in clusters in the superior, middle and inferior frontal cortex, inferior temporal lobe and thalamus (p < 0.01, uncorr., cluster size ≥ 50 voxels. This group effect was more pronounced in the upper alpha sub-band, compared to the lower alpha sub-band. Notably, we observed a high inter-individual heterogeneity. Negative associations were only reduced in the lower alpha range in the hippocampus, putamen and cerebellum. The present study gives first insights into the relationship of resting-state EEG and fMRI characteristics in an AD sample. The results suggest that positive associations between alpha band power and BOLD

  15. The BOLD cerebrovascular reactivity response to progressive hypercapnia in young and elderly

    DEFF Research Database (Denmark)

    Bhogal, Alex A.; De Vis, Jill B.; Siero, Jeroen C.W.

    2016-01-01

    to broaden our interpretation of the BOLD-CVR response. Significant age-related differences were observed. Grey matter CVR at 7 mm Hg above resting PetCO2 was lower amongst elderly (0.19 ± 0.06%ΔBOLD/mm Hg) as compared to young subjects (0.26 ± 0.07%ΔBOLD/mm Hg). White matter CVR at 7 mm Hg above baseline...

  16. Development of BOLD signal hemodynamic responses in the human brain

    NARCIS (Netherlands)

    Arichi, T.; Varela, M.; Melendez-Calderon, A.; Allievi, A.; Merchant, N.; Tusor, N.; Counsell, S.J.; Burdet, E.; Beckmann, Christian; Edwards, A.D.

    2012-01-01

    In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing

  17. Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study.

    Science.gov (United States)

    Maffei, Vincenzo; Macaluso, Emiliano; Indovina, Iole; Orban, Guy; Lacquaniti, Francesco

    2010-01-01

    Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1g), under reversed gravity (-1g), or at constant speed (0g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1g targets than either 0g or -1g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1g to 0g and to -1g. In the second experiment, subjects intercepted 1g, 0g, and -1g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1g targets in the first experiment, were also significantly more active during 1g trials than during -1g trials both in RM and LAM. The activity in 0g trials was again intermediate between that in 1g trials and that in -1g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM.

  18. Lutein and Zeaxanthin Are Positively Associated with Visual–Spatial Functioning in Older Adults: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Catherine M. Mewborn

    2018-04-01

    Full Text Available Lutein (L and zeaxanthin (Z are two xanthophyll carotenoids that have antioxidant and anti-inflammatory properties. Previous work has demonstrated their importance for eye health and preventing diseases such as age-related macular degeneration. An emerging literature base has also demonstrated the importance of L and Z in cognition, neural structure, and neural efficiency. The present study aimed to better understand the mechanisms by which L and Z relate to cognition, in particular, visual–spatial processing and decision-making in older adults. We hypothesized that markers of higher levels of L and Z would be associated with better neural efficiency during a visual–spatial processing task. L and Z were assessed via standard measurement of blood serum and retinal concentrations. Visual–spatial processing and decision-making were assessed via a judgment of line orientation task (JLO completed during a functional magnetic resonance imaging (fMRI scan. The results demonstrated that individuals with higher concentrations of L and Z showed a decreased blood-oxygen-level dependent (BOLD signal during task performance (i.e., “neural efficiency” in key areas associated with visual–spatial perception, processing, decision-making, and motor coordination, including the lateral occipital cortex, occipital pole, superior and middle temporal gyri, superior parietal lobule, superior and middle frontal gyri, and pre- and post-central gyri. To our knowledge, this is the first investigation of the relationship of L and Z to visual–spatial processing at a neural level using in vivo methodology. Our findings suggest that L and Z may impact brain health and cognition in older adults by enhancing neurobiological efficiency in a variety of regions that support visual perception and decision-making.

  19. Gamma rays induced bold seeded high yielding mutant in chickpea

    International Nuclear Information System (INIS)

    Wani, A.A.; Anis, M.

    2001-01-01

    In pulses especially in chickpea (Cicer arietinum L.), genetic variability has been exhausted due to natural selection and hence conventional breeding methods are not very fruitful. Mutation techniques are the best methods to enlarge the genetically conditioned variability of a species within a short time and have played a significant role in the development of many crop varieties. Investigations on the effects of ionizing radiations and chemical mutagens in induction of macro-mutations have received much attention owing to their utmost importance in plant breeding. The present study reports a bold seeded mutant in chickpea, the most dominating pulse crop on the Indian subcontinent. Fresh seeds of chickpea variety 'Pusa-212' were procured from IARI, New Delhi and treated with different doses/concentrations of gamma rays ( 60 Co source at NBRI, Lucknow) and ethyl methanesulphonate (EMS), individually as well as in combination, to raise the M1 generation. Seeds of M 1 plants were sown to raise M2 plant progenies. A bold seeded mutant was isolated from 400 Gy gamma ray treatments. The mutant was confirmed as true bred, all the mutant seeds gave rise to morphologically similar plants in M 3 , which were quite distinct from the control. The bold seeded mutant showed 'gigas' characteristics and vigorous growth. The plant remained initially straight but later on attained a trailing habit due to heavy secondary branching. The leaves, petioles, flowers, pods and seeds were almost double that of the parent variety, in size. The flowering occurred 10 days later than the parent and maturity was also delayed accordingly. Observations were recorded on various quantitative traits. Plant height and number of primary branches showed a significant improvement over the parent. It is interesting to note that the number of pods and number of seeds per pod significantly decreased. However, the hundred seed weight (31.73±0.59g) in the mutant plants was more than double in the parent

  20. fMRI study of language activation in schizophrenia, schizoaffective disorder and in individuals genetically at high risk.

    Science.gov (United States)

    Li, Xiaobo; Branch, Craig A; Ardekani, Babak A; Bertisch, Hilary; Hicks, Chindo; DeLisi, Lynn E

    2007-11-01

    Structural and functional abnormalities have been found in language-related brain regions in patients with schizophrenia. We previously reported findings pointing to differences in word processing between people with schizophrenia and individuals who are at high-risk for schizophrenia using a voxel-based (whole brain) fMRI approach. We now extend this finding to specifically examine functional activity in three language related cortical regions using a larger cohort of individuals. A visual lexical discrimination task was performed by 36 controls, 21 subjects at high genetic-risk for schizophrenia, and 20 patients with schizophrenia during blood oxygenation level dependent (BOLD) fMRI scanning. Activation in bilateral inferior frontal gyri (Brodmann's area 44-45), bilateral inferior parietal lobe (Brodmann's area 39-40), and bilateral superior temporal gyri (Brodmann's area 22) was investigated. For all subjects, two-tailed Pearson correlations were calculated between the computed laterality index and a series of cognitive test scores determining language functioning. Regional activation in Brodmann's area 44-45 was left lateralized in normal controls, while high-risk subjects and patients with schizophrenia or schizoaffective disorder showed more bilateral activation. No significant differences among the three diagnostic groups in the other two regions of interest (Brodmann's area 22 or areas 39-40) were found. Furthermore, the apparent reasons for loss of leftward language lateralization differed between groups. In high-risk subjects, the loss of lateralization was based on reduced left hemisphere activation, while in the patient group, it was due to increased right side activation. Language ability related cognitive scores were positively correlations with the laterality indices obtained from Brodmann's areas 44-45 in the high-risk group, and with the laterality indices from Brodmann's areas 22 and 44-45 in the patient group. This study reinforces previous

  1. FMRI evidence of 'mirror' responses to geometric shapes.

    Directory of Open Access Journals (Sweden)

    Clare Press

    Full Text Available Mirror neurons may be a genetic adaptation for social interaction. Alternatively, the associative hypothesis proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv and inferior parietal lobule (IPL. Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control.

  2. FMRI evidence of 'mirror' responses to geometric shapes.

    Science.gov (United States)

    Press, Clare; Catmur, Caroline; Cook, Richard; Widmann, Hannah; Heyes, Cecilia; Bird, Geoffrey

    2012-01-01

    Mirror neurons may be a genetic adaptation for social interaction. Alternatively, the associative hypothesis proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control.

  3. The continuing challenge of understanding and modeling hemodynamic variation in fMRI

    OpenAIRE

    Handwerker, Daniel A.; Gonzalez-Castillo, Javier; D’Esposito, Mark; Bandettini, Peter A.

    2012-01-01

    Interpretation of fMRI data depends on our ability to understand or model the shape of the hemodynamic response (HR) to a neural event. Although the HR has been studied almost since the beginning of fMRI, we are still far from having robust methods to account for the full range of known HR variation in typical fMRI analyses. This paper reviews how the authors and others contributed to our understanding of HR variation. We present an overview of studies that describe HR variation across voxels...

  4. The Evaluation of Preprocessing Choices in Single-Subject BOLD fMRI Using NPAIRS Performance Metrics

    DEFF Research Database (Denmark)

    Stephen, LaConte; Rottenberg, David; Strother, Stephen

    2003-01-01

    to obtain cross-validation-based model performance estimates of prediction accuracy and global reproducibility for various degrees of model complexity. We rely on the concept of an analysis chain meta-model in which all parameters of the preprocessing steps along with the final statistical model are treated...

  5. Fourier power, subjective distance, and object categories all provide plausible models of BOLD responses in scene-selective visual areas

    Science.gov (United States)

    Lescroart, Mark D.; Stansbury, Dustin E.; Gallant, Jack L.

    2015-01-01

    Perception of natural visual scenes activates several functional areas in the human brain, including the Parahippocampal Place Area (PPA), Retrosplenial Complex (RSC), and the Occipital Place Area (OPA). It is currently unclear what specific scene-related features are represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA might represent at least three qualitatively different classes of features: (1) 2D features related to Fourier power; (2) 3D spatial features such as the distance to objects in a scene; or (3) abstract features such as the categories of objects in a scene. To determine which of these hypotheses best describes the visual representation in scene-selective areas, we applied voxel-wise modeling (VM) to BOLD fMRI responses elicited by a set of 1386 images of natural scenes. VM provides an efficient method for testing competing hypotheses by comparing predictions of brain activity based on encoding models that instantiate each hypothesis. Here we evaluated three different encoding models that instantiate each of the three hypotheses listed above. We used linear regression to fit each encoding model to the fMRI data recorded from each voxel, and we evaluated each fit model by estimating the amount of variance it predicted in a withheld portion of the data set. We found that voxel-wise models based on Fourier power or the subjective distance to objects in each scene predicted much of the variance predicted by a model based on object categories. Furthermore, the response variance explained by these three models is largely shared, and the individual models explain little unique variance in responses. Based on an evaluation of previous studies and the data we present here, we conclude that there is currently no good basis to favor any one of the three alternative hypotheses about visual representation in scene-selective areas. We offer suggestions for further studies that may help resolve this issue. PMID:26594164

  6. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.

    Science.gov (United States)

    Andoh, J; Ferreira, M; Leppert, I R; Matsushita, R; Pike, B; Zatorre, R J

    2017-02-15

    Resting-state fMRI studies have become very important in cognitive neuroscience because they are able to identify BOLD fluctuations in brain circuits involved in motor, cognitive, or perceptual processes without the use of an explicit task. Such approaches have been fruitful when applied to various disordered populations, or to children or the elderly. However, insufficient attention has been paid to the consequences of the loud acoustic scanner noise associated with conventional fMRI acquisition, which could be an important confounding factor affecting auditory and/or cognitive networks in resting-state fMRI. Several approaches have been developed to mitigate the effects of acoustic noise on fMRI signals, including sparse sampling protocols and interleaved silent steady state (ISSS) acquisition methods, the latter being used only for task-based fMRI. Here, we developed an ISSS protocol for resting-state fMRI (rs-ISSS) consisting of rapid acquisition of a set of echo planar imaging volumes following each silent period, during which the steady state longitudinal magnetization was maintained with a train of relatively silent slice-selective excitation pulses. We evaluated the test-retest reliability of intensity and spatial extent of connectivity networks of fMRI BOLD signal across three different days for rs-ISSS and compared it with a standard resting-state fMRI (rs-STD). We also compared the strength and distribution of connectivity networks between rs-ISSS and rs-STD. We found that both rs-ISSS and rs-STD showed high reproducibility of fMRI signal across days. In addition, rs-ISSS showed a more robust pattern of functional connectivity within the somatosensory and motor networks, as well as an auditory network compared with rs-STD. An increased connectivity between the default mode network and the language network and with the anterior cingulate cortex (ACC) network was also found for rs-ISSS compared with rs-STD. Finally, region of interest analysis showed

  7. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.

    Science.gov (United States)

    Erdoğan, Sinem B; Tong, Yunjie; Hocke, Lia M; Lindsey, Kimberly P; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, "dynamic global signal regression" (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional "static" global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps.

  8. Continuous EEG-fMRI in Pre-Surgical Evaluation of a Patient with Symptomatic Seizures: Bold Activation Linked to Interictal Epileptic Discharges Caused by Cavernoma.

    Science.gov (United States)

    Avesani, M; Formaggio, E; Milanese, F; Baraldo, A; Gasparini, A; Cerini, R; Bongiovanni, L G; Pozzi Mucelli, R; Fiaschi, A; Manganotti, P

    2008-04-07

    We used continuous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) to identify the linkage between the "epileptogenic" and the "irritative" area in a patient with symptomatic epilepsy (cavernoma, previously diagnosed and surgically treated), i.e. a patient with a well known "epileptogenic area", and to increase the possibility of a non invasive pre-surgical evaluation of drug-resistant epilepsies. A compatible MRI system was used (EEG with 29 scalp electrodes and two electrodes for ECG and EMG) and signals were recorded with a 1.5 Tesla MRI scanner. After the recording session and MRI artifact removal, EEG data were analyzed offline and used as paradigms in fMRI study. Activation (EEG sequences with interictal slow-spiked-wave activity) and rest (sequences of normal EEG) conditions were compared to identify the potential resulting focal increase in BOLD signal and to consider if this is spatially linked to the interictal focus used as a paradigm and to the lesion. We noted an increase in the BOLD signal in the left neocortical temporal region, laterally and posteriorly to the poro-encephalic cavity (residual of cavernoma previously removed), that is around the "epileptogenic area". In our study "epileptogenic" and "irritative" areas were connected with each other. Combined EEG-fMRI may become routine in clinical practice for a better identification of an irritative and lesional focus in patients with symptomatic drug-resistant epilepsy.

  9. Working memory load-dependent spatio-temporal activity of single-trial P3 response detected with an adaptive wavelet denoiser.

    Science.gov (United States)

    Zhang, Qiushi; Yang, Xueqian; Yao, Li; Zhao, Xiaojie

    2017-03-27

    Working memory (WM) refers to the holding and manipulation of information during cognitive tasks. Its underlying neural mechanisms have been explored through both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Trial-by-trial coupling of simultaneously collected EEG and fMRI signals has become an important and promising approach to study the spatio-temporal dynamics of such cognitive processes. Previous studies have demonstrated a modulation effect of the WM load on both the BOLD response in certain brain areas and the amplitude of P3. However, much remains to be explored regarding the WM load-dependent relationship between the amplitude of ERP components and cortical activities, and the low signal-to-noise ratio (SNR) of the EEG signal still poses a challenge to performing single-trial analyses. In this paper, we investigated the spatio-temporal activities of P3 during an n-back verbal WM task by introducing an adaptive wavelet denoiser into the extraction of single-trial P3 features and using general linear model (GLM) to integrate simultaneously collected EEG and fMRI data. Our results replicated the modulation effect of the WM load on the P3 amplitude. Additionally, the activation of single-trial P3 amplitudes was detected in multiple brain regions, including the insula, the cuneus, the lingual gyrus (LG), and the middle occipital gyrus (MOG). Moreover, we found significant correlations between P3 features and behavioral performance. These findings suggest that the single-trial integration of simultaneous EEG and fMRI signals may provide new insights into classical cognitive functions. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Crossing the implementation chasm: a proposal for bold action.

    Science.gov (United States)

    Lorenzi, Nancy M; Novak, Laurie L; Weiss, Jacob B; Gadd, Cynthia S; Unertl, Kim M

    2008-01-01

    As health care organizations dramatically increase investment in information technology (IT) and the scope of their IT projects, implementation failures become critical events. Implementation failures cause stress on clinical units, increase risk to patients, and result in massive costs that are often not recoverable. At an estimated 28% success rate, the current level of investment defies management logic. This paper asserts that there are "chasms" in IT implementations that represent risky stages in the process. Contributors to the chasms are classified into four categories: design, management, organization, and assessment. The American College of Medical Informatics symposium participants recommend bold action to better understand problems and challenges in implementation and to improve the ability of organizations to bridge these implementation chasms. The bold action includes the creation of a Team Science for Implementation strategy that allows for participation from multiple institutions to address the long standing and costly implementation issues. The outcomes of this endeavor will include a new focus on interdisciplinary research and an inter-organizational knowledge base of strategies and methods to optimize implementations and subsequent achievement of organizational objectives.

  11. Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective.

    Science.gov (United States)

    Gilson, Matthieu

    2018-04-01

    Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input-output mapping-determined by EC-for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data-movie viewing versus resting state-illustrates that changes in local variability and changes in brain coordination go hand in hand.

  12. Mapping cerebrovascular reactivity using concurrent fMRI and near infrared spectroscopy

    Science.gov (United States)

    Tong, Yunjie; Bergethon, Peter R.; Frederick, Blaise d.

    2011-02-01

    Cerebrovascular reactivity (CVR) reflects the compensatory dilatory capacity of cerebral vasculature to a dilatory stimulus and is an important indicator of brain vascular reserve. fMRI has been proven to be an effective imaging technique to obtain the CVR map when the subjects perform CO2 inhalation or the breath holding task (BH). However, the traditional data analysis inaccurately models the BOLD using a boxcar function with fixed time delay. We propose a novel way to process the fMRI data obtained during a blocked BH by using the simultaneously collected near infrared spectroscopy (NIRS) data as regressor1. In this concurrent NIRS and fMRI study, 6 healthy subjects performed a blocked BH (5 breath holds with 20s durations intermitted by 40s of regular breathing). A NIRS probe of two sources and two detectors separated by 3 cm was placed on the right side of prefrontal area of the subjects. The time course of changes in oxy-hemoglobin (Δ[HbO]) was calculated from NIRS data and shifted in time by various amounts, and resampled to the fMRI acquisition rate. Each shifted time course was used as regressor in FEAT (the analysis tool in FSL). The resulting z-statistic maps were concatenated in time and the maximal value was taken along the time for all the voxels to generate a 3-D CVR map. The new method produces more accurate and thorough CVR maps; moreover, it enables us to produce a comparable baseline cerebral vascular map if applied to resting state (RS) data.

  13. Research progress of BOLD-functional MRI of hepatic encephalopathy

    International Nuclear Information System (INIS)

    Ni Ling; Zhang Longjiang; Lu Guangming

    2013-01-01

    Hepatic encephalopathy (HE), characterized by a wide spectrum of clinical manifestations, ranging from behavior abnormality, conscious disorder and even coma, is a consequence of liver dysfunction in both acute and chronic hepatic diseases. Minimal hepatic encephalopathy (MHE) refers to a subgroup of cirrhotic patients without clinical overt hepatic encephalopathy symptoms hut with abnormalities in neuro -cognitive functions. HE/MHE can have a far-reaching impact on quality of life and prognosis. The exact neuropathology mechanism was still unclear. Recently, functional MRI (fMRI) has been increasingly applied for investigating the neuro-pathophysiological mechanism of HE. This paper will review the fMRI research applied on uncovering the neuropathology mechanism of HE. (authors)

  14. Consistency in boldness, activity and exploration at different stages of life

    Science.gov (United States)

    2013-01-01

    Background Animals show consistent individual behavioural patterns over time and over situations. This phenomenon has been referred to as animal personality or behavioural syndromes. Little is known about consistency of animal personalities over entire life times. We investigated the repeatability of behaviour in common voles (Microtus arvalis) at different life stages, with different time intervals, and in different situations. Animals were tested using four behavioural tests in three experimental groups: 1. before and after maturation over three months, 2. twice as adults during one week, and 3. twice as adult animals over three months, which resembles a substantial part of their entire adult life span of several months. Results Different behaviours were correlated within and between tests and a cluster analysis showed three possible behavioural syndrome-axes, which we name boldness, exploration and activity. Activity and exploration behaviour in all tests was highly repeatable in adult animals tested over one week. In animals tested over maturation, exploration behaviour was consistent whereas activity was not. Voles that were tested as adults with a three-month interval showed the opposite pattern with stable activity but unstable exploration behaviour. Conclusions The consistency in behaviour over time suggests that common voles do express stable personality over short time. Over longer periods however, behaviour is more flexible and depending on life stage (i.e. tested before/after maturation or as adults) of the tested individual. Level of boldness or activity does not differ between tested groups and maintenance of variation in behavioural traits can therefore not be explained by expected future assets as reported in other studies. PMID:24314274

  15. Negative BOLD in sensory cortices during verbal memory: a component in generating internal representations?

    Science.gov (United States)

    Azulay, Haim; Striem, Ella; Amedi, Amir

    2009-05-01

    People tend to close their eyes when trying to retrieve an event or a visual image from memory. However the brain mechanisms behind this phenomenon remain poorly understood. Recently, we showed that during visual mental imagery, auditory areas show a much more robust deactivation than during visual perception. Here we ask whether this is a special case of a more general phenomenon involving retrieval of intrinsic, internally stored information, which would result in crossmodal deactivations in other sensory cortices which are irrelevant to the task at hand. To test this hypothesis, a group of 9 sighted individuals were scanned while performing a memory retrieval task for highly abstract words (i.e., with low imaginability scores). We also scanned a group of 10 congenitally blind, which by definition do not have any visual imagery per se. In sighted subjects, both auditory and visual areas were robustly deactivated during memory retrieval, whereas in the blind the auditory cortex was deactivated while visual areas, shown previously to be relevant for this task, presented a positive BOLD signal. These results suggest that deactivation may be most prominent in task-irrelevant sensory cortices whenever there is a need for retrieval or manipulation of internally stored representations. Thus, there is a task-dependent balance of activation and deactivation that might allow maximization of resources and filtering out of non relevant information to enable allocation of attention to the required task. Furthermore, these results suggest that the balance between positive and negative BOLD might be crucial to our understanding of a large variety of intrinsic and extrinsic tasks including high-level cognitive functions, sensory processing and multisensory integration.

  16. fMRI of pain studies using laser-induced heat on skin with and without the loved one near the subject – a pilot study on 'love hurts'

    International Nuclear Information System (INIS)

    Sofina, T; Kamil, W A; Ahmad, A H

    2014-01-01

    The aims of this study are to image and investigate the areas of brain response to laser-induced heat pain, to analyse for any difference in the brain response when a subject is alone and when her loved one is present next to the MRI gantry. Pain stimuli was delivered using Th-YAG laser to four female subjects. Blood-Oxygenation-Level-Dependent (BOLD) fMRI experiment was performed using blocked design paradigm with five blocks of painful (P) stimuli and five blocks of non-painful (NP) stimuli arranged in pseudorandom order with an 18 seconds rest (R) between each stimulation phase. Brain images were obtained from 3T Philips Achieva MRI scanner using 32-channel SENSE head coil. A T1-weighted image (TR/TE/slice/FOV = 9ms/4ms/4mm slices/240×240mm) was obtained for verification of brain anatomical structures. An echo-planar-imaging sequence were used for the functional scans (TR/TE/slice/flip/FOV=2000ms/35ms/4mm slices/90°/220×220mm). fMRI data sets were analysed using SPM 8.0 involving preprocessing steps followed by t-contrast analysis for individuals and FFX analysis. In both with and without-loved-one conditions, neuronal responses were seen in the somatosensory gyrus, supramarginal gyrus, thalamus and insula regions, consistent with pain-related areas. FFX analysis showed that the presence of loved one produced more activation in the frontal and supramarginal gyrus during painful and non-painful stimulations compared to absence of a loved one. Brain response to pain is modulated by the presence of a loved one, causing more activation in the cognitive/emotional area i.e. 'love hurts'

  17. Functional anatomy of the masking level difference, an fMRI study.

    Directory of Open Access Journals (Sweden)

    David S Wack

    Full Text Available INTRODUCTION: Masking level differences (MLDs are differences in the hearing threshold for the detection of a signal presented in a noise background, where either the phase of the signal or noise is reversed between ears. We use N0/Nπ to denote noise presented in-phase/out-of-phase between ears and S0/Sπ to denote a 500 Hz sine wave signal as in/out-of-phase. Signal detection level for the noise/signal combinations N0Sπ and NπS0 is typically 10-20 dB better than for N0S0. All combinations have the same spectrum, level, and duration of both the signal and the noise. METHODS: Ten participants (5 female, age: 22-43, with N0Sπ-N0S0 MLDs greater than 10 dB, were imaged using a sparse BOLD fMRI sequence, with a 9 second gap (1 second quiet preceding stimuli. Band-pass (400-600 Hz noise and an enveloped signal (.25 second tone burst, 50% duty-cycle were used to create the stimuli. Brain maps of statistically significant regions were formed from a second-level analysis using SPM5. RESULTS: The contrast NπS0- N0Sπ had significant regions of activation in the right pulvinar, corpus callosum, and insula bilaterally. The left inferior frontal gyrus had significant activation for contrasts N0Sπ-N0S0 and NπS0-N0S0. The contrast N0S0-N0Sπ revealed a region in the right insula, and the contrast N0S0-NπS0 had a region of significance in the left insula. CONCLUSION: Our results extend the view that the thalamus acts as a gating mechanism to enable dichotic listening, and suggest that MLD processing is accomplished through thalamic communication with the insula, which communicate across the corpus callosum to either enhance or diminish the binaural signal (depending on the MLD condition. The audibility improvement of the signal with both MLD conditions is likely reflected by activation in the left inferior frontal gyrus, a late stage in the what/where model of auditory processing.

  18. Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.

    Science.gov (United States)

    Wen, Haiguang; Liu, Zhongming

    2016-06-01

    Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity observed

  19. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing

    Science.gov (United States)

    Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A.

    2017-01-01

    Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region. PMID:29249950

  20. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing.

    Science.gov (United States)

    Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A

    2017-01-01

    Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.

  1. Evaluating the impact of spatio-temporal smoothness constraints on the BOLD hemodynamic response function estimation: an analysis based on Tikhonov regularization

    International Nuclear Information System (INIS)

    Casanova, R; Yang, L; Hairston, W D; Laurienti, P J; Maldjian, J A

    2009-01-01

    Recently we have proposed the use of Tikhonov regularization with temporal smoothness constraints to estimate the BOLD fMRI hemodynamic response function (HRF). The temporal smoothness constraint was imposed on the estimates by using second derivative information while the regularization parameter was selected based on the generalized cross-validation function (GCV). Using one-dimensional simulations, we previously found this method to produce reliable estimates of the HRF time course, especially its time to peak (TTP), being at the same time fast and robust to over-sampling in the HRF estimation. Here, we extend the method to include simultaneous temporal and spatial smoothness constraints. This method does not need Gaussian smoothing as a pre-processing step as usually done in fMRI data analysis. We carried out two-dimensional simulations to compare the two methods: Tikhonov regularization with temporal (Tik-GCV-T) and spatio-temporal (Tik-GCV-ST) smoothness constraints on the estimated HRF. We focus our attention on quantifying the influence of the Gaussian data smoothing and the presence of edges on the performance of these techniques. Our results suggest that the spatial smoothing introduced by regularization is less severe than that produced by Gaussian smoothing. This allows more accurate estimates of the response amplitudes while producing similar estimates of the TTP. We illustrate these ideas using real data. (note)

  2. Acetazolamide-augmented dynamic BOLD (aczBOLD imaging for assessing cerebrovascular reactivity in chronic steno-occlusive disease of the anterior circulation: An initial experience

    Directory of Open Access Journals (Sweden)

    Junjie Wu

    2017-01-01

    Full Text Available The purpose of this study was to measure cerebrovascular reactivity (CVR in chronic steno-occlusive disease using a novel approach that couples BOLD imaging with acetazolamide (ACZ vasoreactivity (aczBOLD, to evaluate dynamic effects of ACZ on BOLD and to establish the relationship between aczBOLD and dynamic susceptibility contrast (DSC perfusion MRI. Eighteen patients with unilateral chronic steno-occlusive disease of the anterior circulation underwent a 20-min aczBOLD imaging protocol, with ACZ infusion starting at 5 min of scan initiation. AczBOLD reactivity was calculated on a voxel-by-voxel basis to generate CVR maps for subsequent quantitative analyses. Reduced CVR was observed in the diseased vs. the normal hemisphere both by qualitative and quantitative assessment (gray matter (GM: 4.13% ± 1.16% vs. 4.90% ± 0.98%, P = 0.002; white matter (WM: 2.83% ± 1.23% vs. 3.50% ± 0.94%, P = 0.005. In all cases BOLD signal began increasing immediately following ACZ infusion, approaching a plateau at ~8.5 min after infusion, with the tissue volume of reduced augmentation increasing progressively with time, peaking at 2.60 min (time range above 95% of the maximum value: 0–4.43 min for the GM and 1.80 min (time range above 95% of the maximum value: 1.40–3.53 min for the WM. In the diseased hemisphere, aczBOLD CVR significantly correlated with baseline DSC time-to-maximum of the residue function (Tmax (P = 0.008 for the WM and normalized cerebral blood flow (P = 0.003 for the GM, and P = 0.001 for the WM. AczBOLD provides a novel, safe, easily implementable approach to CVR measurement in the routine clinical environments. Further studies can establish quantitative thresholds from aczBOLD towards identification of patients at heightened risk of recurrent ischemia and cognitive decline.

  3. Functional interactions of HIV-infection and methamphetamine dependence during motor programming.

    Science.gov (United States)

    Archibald, Sarah L; Jacobson, Mark W; Fennema-Notestine, Christine; Ogasawara, Miki; Woods, Steven P; Letendre, Scott; Grant, Igor; Jernigan, Terry L

    2012-04-30

    Methamphetamine (METH) dependence is frequently comorbid with HIV infection and both have been linked to alterations of brain structure and function. In a previous study, we showed that the brain volume loss characteristic of HIV infection contrasts with METH-related volume increases in striatum and parietal cortex, suggesting distinct neurobiological responses to HIV and METH (Jernigan et al., 2005). Functional magnetic resonance imaging (fMRI) has the potential to reveal functional interactions between the effects of HIV and METH. In the present study, 50 participants were studied in four groups: an HIV+ group, a recently METH-dependent group, a dually affected group, and a group of unaffected community comparison subjects. An fMRI paradigm consisting of motor sequencing tasks of varying levels of complexity was administered to examine blood oxygenation level dependent (BOLD) changes. Within all groups, activity increased significantly with increasing task complexity in large clusters within sensorimotor and parietal cortex, basal ganglia, cerebellum, and cingulate. The task complexity effect was regressed on HIV status, METH status, and the HIV×METH interaction term in a simultaneous multiple regression. HIV was associated with less complexity-related activation in striatum, whereas METH was associated with less complexity-related activation in parietal regions. Significant interaction effects were observed in both cortical and subcortical regions; and, contrary to expectations, the complexity-related activation was less aberrant in dually affected than in single risk participants, in spite of comparable levels of neurocognitive impairment among the clinical groups. Thus, HIV and METH dependence, perhaps through their effects on dopaminergic systems, may have opposing functional effects on neural circuits involved in motor programming. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Perceptual learning of motion direction discrimination with suppressed and unsuppressed MT in humans: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Benjamin Thompson

    Full Text Available The middle temporal area of the extrastriate visual cortex (area MT is integral to motion perception and is thought to play a key role in the perceptual learning of motion tasks. We have previously found, however, that perceptual learning of a motion discrimination task is possible even when the training stimulus contains locally balanced, motion opponent signals that putatively suppress the response of MT. Assuming at least partial suppression of MT, possible explanations for this learning are that 1 training made MT more responsive by reducing motion opponency, 2 MT remained suppressed and alternative visual areas such as V1 enabled learning and/or 3 suppression of MT increased with training, possibly to reduce noise. Here we used fMRI to test these possibilities. We first confirmed that the motion opponent stimulus did indeed suppress the BOLD response within hMT+ compared to an almost identical stimulus without locally balanced motion signals. We then trained participants on motion opponent or non-opponent stimuli. Training with the motion opponent stimulus reduced the BOLD response within hMT+ and greater reductions in BOLD response were correlated with greater amounts of learning. The opposite relationship between BOLD and behaviour was found at V1 for the group trained on the motion-opponent stimulus and at both V1 and hMT+ for the group trained on the non-opponent motion stimulus. As the average response of many cells within MT to motion opponent stimuli is the same as their response to non-directional flickering noise, the reduced activation of hMT+ after training may reflect noise reduction.

  5. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects

    Science.gov (United States)

    Bogdanov, Volodymyr B.; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V.; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F.; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean

    2017-01-01

    The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n = 7), increased (n = 10) or stayed unchanged (n = 7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80 s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267

  6. A scalable multi-resolution spatio-temporal model for brain activation and connectivity in fMRI data

    KAUST Repository

    Castruccio, Stefano; Ombao, Hernando; Genton, Marc G.

    2018-01-01

    Functional Magnetic Resonance Imaging (fMRI) is a primary modality for studying brain activity. Modeling spatial dependence of imaging data at different spatial scales is one of the main challenges of contemporary neuroimaging, and it could allow

  7. Archetypal Analysis for Modeling Multisubject fMRI Data

    DEFF Research Database (Denmark)

    Hinrich, Jesper Løve; Bardenfleth, Sophia Elizabeth; Røge, Rasmus

    2016-01-01

    are assumed to be generated by a set of 'prototype' time series. Archetypal analysis (AA) provides a promising alternative, combining the advantages of component-model flexibility with highly interpretable latent 'archetypes' (similar to cluster-model prototypes). To date, AA has not been applied to group......-level fMRI; a major limitation is that it does not generalize to multi-subject datasets, which may have significant variations in blood oxygenation-level-dependent signal and heteroscedastic noise. We develop multi-subject AA (MS-AA), which accounts for group-level data by assuming that archetypal...... performance when modelling archetypes for a motor task experiment. The procedure extracts a 'seed map' across subjects, used to provide brain parcellations with subject-specific temporal profiles. Our approach thus decomposes multisubject fMRI data into distinct interpretable component archetypes that may...

  8. Towards prognostic biomarkers from BOLD fluctuations to differentiate a first epileptic seizure from new-onset epilepsy.

    Science.gov (United States)

    Gupta, Lalit; Janssens, Rick; Vlooswijk, Mariëlle C G; Rouhl, Rob P W; de Louw, Anton; Aldenkamp, Albert P; Ulman, Shrutin; Besseling, René M H; Hofman, Paul A M; van Kranen-Mastenbroek, Vivianne H; Hilkman, Danny M; Jansen, Jacobus F A; Backes, Walter H

    2017-03-01

    The diagnosis of epilepsy cannot be reliably made prior to a patient's second seizure in most cases. Therefore, adequate diagnostic tools are needed to differentiate subjects with a first seizure from those with a seizure preceding the onset of epilepsy. The objective was to explore spontaneous blood oxygen level-dependent (BOLD) fluctuations in subjects with a first-ever seizure and patients with new-onset epilepsy (NOE), and to find characteristic biomarkers for seizure recurrence after the first seizure. We examined 17 first-seizure subjects, 19 patients with new-onset epilepsy (NOE), and 18 healthy controls. All subjects underwent clinical investigation and received electroencephalography and resting-state functional magnetic resonance imaging (MRI). The BOLD time series were analyzed in terms of regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFFs). We found significantly stronger amplitudes (higher fALFFs) in patients with NOE relative to first-seizure subjects and healthy controls. The frequency range of 73-198 mHz (slow-3 subband) appeared most useful for discriminating patients with NOE from first-seizure subjects. The ReHo measure did not show any significant differences. The fALFF appears to be a noninvasive measure that characterizes spontaneous BOLD fluctuations and shows stronger amplitudes in the slow-3 subband of patients with NOE relative first-seizure subjects and healthy controls. A larger study population with follow-up is required to determine whether fALFF holds promise as a potential biomarker for identifying subjects at increased risk to develop epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  9. The Possible Role of CO2 in Producing A Post-Stimulus CBF and BOLD Undershoot

    Science.gov (United States)

    Yücel, Meryem A.; Devor, Anna; Akin, Ata; Boas, David A.

    2009-01-01

    Comprehending the underlying mechanisms of neurovascular coupling is important for understanding the pathogenesis of neurodegenerative diseases related to uncoupling. Moreover, it elucidates the casual relation between the neural signaling and the hemodynamic responses measured with various imaging modalities such as functional magnetic resonance imaging (fMRI). There are mainly two hypotheses concerning this mechanism: a metabolic hypothesis and a neurogenic hypothesis. We have modified recent models of neurovascular coupling adding the effects of both NO (nitric oxide) kinetics, which is a well-known neurogenic vasodilator, and CO2 kinetics as a metabolic vasodilator. We have also added the Hodgkin–Huxley equations relating the membrane potentials to sodium influx through the membrane. Our results show that the dominant factor in the hemodynamic response is NO, however CO2 is important in producing a brief post-stimulus undershoot in the blood flow response that in turn modifies the fMRI blood oxygenation level-dependent post-stimulus undershoot. Our results suggest that increased cerebral blood flow during stimulation causes CO2 washout which then results in a post-stimulus hypocapnia induced vasoconstrictive effect. PMID:20027233

  10. The BOLD-fMRI study of behavior inhibition in chronic heroin addicts

    International Nuclear Information System (INIS)

    Yuan Fei; Yuan Yi; Liu Yinshe; Zhao Jun; Weng Xuchu

    2011-01-01

    Objective: To identify the neural mechanisms of impulsivity and the response inhibition deficits of the chronic heroin users using event-related functional MRI (stop-signal task). Methods: Seventeen individuals with heroin dependence and 17 healthy control subjects underwent fMRI scan while executing stop -signal task after anatomical scanning in 3.0 T scanner. The AFNI package was used for fMRI data preprocessing and statistical analysis. Results: The behavioral data showed that the stop signal reaction rime (SSRT) of heroin users was significantly longer than that of the control group. There was no significant difference in activation of the primary motor cortex and supplementary motor area between two groups. Comparing to the control group, heroin users had weaker activation in the right dorsal lateral prefrontal cortex, right inferior prefrontal cortex, and anterior cingulated cortex, but stronger activation in bilateral striatum and amygdala while behavioral inhibition needed. Conclusion: The results suggest that heroin users have significant changes within impulsivity and inhibitory network, where the right prefrontal cortex is considered as main region for inhibition, while the anterior cingulated cortex is associated with error monitoring, and the amygdale controls impulsivity and emotion. (authors)

  11. Children’s head motion during fMRI tasks is heritable and stable over time

    Directory of Open Access Journals (Sweden)

    Laura E. Engelhardt

    2017-06-01

    Full Text Available Head motion during fMRI scans negatively impacts data quality, and as post-acquisition techniques for addressing motion become increasingly stringent, data retention decreases. Studies conducted with adult participants suggest that movement acts as a relatively stable, heritable phenotype that serves as a marker for other genetically influenced phenotypes. Whether these patterns extend downward to childhood has critical implications for the interpretation and generalizability of fMRI data acquired from children. We examined factors affecting scanner motion in two samples: a population-based twin sample of 73 participants (ages 7–12 years and a case-control sample of 32 non-struggling and 78 struggling readers (ages 8–11 years, 30 of whom were scanned multiple times. Age, but not ADHD symptoms, was significantly related to scanner movement. Movement also varied as a function of task type, run length, and session length. Twin pair concordance for head motion was high for monozygotic twins and moderate for dizygotic twins. Cross-session test-retest reliability was high. Together, these findings suggest that children’s head motion is a genetically influenced trait that has the potential to systematically affect individual differences in BOLD changes within and across groups. We discuss recommendations for future work and best practices for pediatric neuroimaging.

  12. Nonlinear neural network for hemodynamic model state and input estimation using fMRI data

    KAUST Repository

    Karam, Ayman M.

    2014-11-01

    Originally inspired by biological neural networks, artificial neural networks (ANNs) are powerful mathematical tools that can solve complex nonlinear problems such as filtering, classification, prediction and more. This paper demonstrates the first successful implementation of ANN, specifically nonlinear autoregressive with exogenous input (NARX) networks, to estimate the hemodynamic states and neural activity from simulated and measured real blood oxygenation level dependent (BOLD) signals. Blocked and event-related BOLD data are used to test the algorithm on real experiments. The proposed method is accurate and robust even in the presence of signal noise and it does not depend on sampling interval. Moreover, the structure of the NARX networks is optimized to yield the best estimate with minimal network architecture. The results of the estimated neural activity are also discussed in terms of their potential use.

  13. Determination of hemispheric dominance with mental rotation using functional transcranial Doppler sonography and FMRI.

    Science.gov (United States)

    Hattemer, Katja; Plate, Annika; Heverhagen, Johannes T; Haag, Anja; Keil, Boris; Klein, Karl Martin; Hermsen, Anke; Oertel, Wolfgang H; Hamer, Hajo M; Rosenow, Felix; Knake, Susanne

    2011-01-01

    the aim of this study was to investigate specific activation patterns and potential gender differences during mental rotation and to investigate whether functional magnetic resonance imaging (fMRI) and functional transcranial Doppler sonography (fTCD) lateralize hemispheric dominance concordantly. regional brain activation and hemispheric dominance during mental rotation (cube perspective test) were investigated in 10 female and 10 male healthy subjects using fMRI and fTCD. significant activation was found in the superior parietal lobe, at the parieto-occipital border, in the middle and superior frontal gyrus bilaterally, and the right inferior frontal gyrus using fMRI. Men showed a stronger lateralization to the right hemisphere during fMRI and a tendency toward stronger right-hemispheric activation during fTCD. Furthermore, more activation in frontal and parieto-occipital regions of the right hemisphere was observed using fMRI. Hemispheric dominance for mental rotation determined by the 2 methods correlated well (P= .008), but did not show concordant results in every single subject. the neural basis of mental rotation depends on a widespread bilateral network. Hemispheric dominance for mental rotation determined by fMRI and fTCD, though correlating well, is not always concordant. Hemispheric lateralization of complex cortical functions such as spatial rotation therefore should be investigated using multimodal imaging approaches, especially if used clinically as a tool for the presurgical evaluation of patients undergoing neurosurgery. Copyright © 2009 by the American Society of Neuroimaging.

  14. SU-D-207A-03: Potential Role of BOLD MRI in Discrimination of Aggressive Tumor Habitat in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ford, J; Lopez, C; Tschudi, Y; Breto, A; Padgett, K; Pollack, A; Stoyanova, R [University of Miami Miller School of Medicine, Miami, FL (United States)

    2016-06-15

    Purpose: To determine whether blood oxygenation level dependent (BOLD) MRI signal measured in prostate cancer patients, in addition to quantitative diffusion and perfusion parameters from multiparametric (mp)MRI exams, can help discriminate aggressive and/or radioresistant lesions. Methods: Several ongoing clinical trials in our institution require mpMRI exam to determine eligibility (presence of identifiable tumor lesion on mpMRI) and prostate volumes for dose escalation. Upon consent, patients undergo fiducial markers placement and a T2*-weighted imaging at the time of CT sim to facilitate the fusion. In a retrospective analysis eleven clinical trial patients were identified who had undergone mpMRI on GE 3T magnet, followed by T2*-weighted imaging (time-period mean±SD = 48±20 days) using a consistent protocol (gradient echo, TR/TE=30/11.8ms, flip angle=12, matrix=256×256×75, voxel size=1.25×1.25×2.5mm). ROIs for prostate tumor lesions were automatically determined using ADC threshold ≤1200 µm2/s. Although the MR protocol was not intended for BOLD analysis, we utilized the T2*-weighted signal normalized to that in nearby muscle; likewise, T2-weighted lesion signal was normalized to muscle, following rigid registration of the T2 to T2* images. The ratio of these normalized signals, T2*/T2, is a measure of BOLD effect in the prostate tumors. Perfusion parameters (Ktrans, ve, kep) were also calculated. Results: T2*/T2 (mean±SE) was found to be substantially lower for Gleason score (GS) 8&9 (0.82±0.04) compared to GS 7 (1.08±0.07). A k-means cluster analysis of T2*/T2 versus kep = Ktrans/ve revealed two distinct clusters, one with higher T2*/T2 and lower kep, containing only GS 7 lesions, and another with lower T2*/T2 and higher kep, associated with tumor aggressiveness. This latter cluster contained all GS 8&9 lesions, as well as some GS 7. Conclusion: BOLD MRI, in addition to ADC and kep, may play a role (perhaps orthogonal to Gleason score) in

  15. A novel approach to calibrate the Hemodynamic Model using functional Magnetic Resonance Imaging (fMRI) measurements

    KAUST Repository

    Khoram, Nafiseh

    2016-01-21

    Background The calibration of the hemodynamic model that describes changes in blood flow and blood oxygenation during brain activation is a crucial step for successfully monitoring and possibly predicting brain activity. This in turn has the potential to provide diagnosis and treatment of brain diseases in early stages. New Method We propose an efficient numerical procedure for calibrating the hemodynamic model using some fMRI measurements. The proposed solution methodology is a regularized iterative method equipped with a Kalman filtering-type procedure. The Newton component of the proposed method addresses the nonlinear aspect of the problem. The regularization feature is used to ensure the stability of the algorithm. The Kalman filter procedure is incorporated here to address the noise in the data. Results Numerical results obtained with synthetic data as well as with real fMRI measurements are presented to illustrate the accuracy, robustness to the noise, and the cost-effectiveness of the proposed method. Comparison with Existing Method(s) We present numerical results that clearly demonstrate that the proposed method outperforms the Cubature Kalman Filter (CKF), one of the most prominent existing numerical methods. Conclusion We have designed an iterative numerical technique, called the TNM-CKF algorithm, for calibrating the mathematical model that describes the single-event related brain response when fMRI measurements are given. The method appears to be highly accurate and effective in reconstructing the BOLD signal even when the measurements are tainted with high noise level (as high as 30%).

  16. Altered auditory BOLD response to conspecific birdsong in zebra finches with stuttered syllables.

    Directory of Open Access Journals (Sweden)

    Henning U Voss

    2010-12-01

    Full Text Available How well a songbird learns a song appears to depend on the formation of a robust auditory template of its tutor's song. Using functional magnetic resonance neuroimaging we examine auditory responses in two groups of zebra finches that differ in the type of song they sing after being tutored by birds producing stuttering-like syllable repetitions in their songs. We find that birds that learn to produce the stuttered syntax show attenuated blood oxygenation level-dependent (BOLD responses to tutor's song, and more pronounced responses to conspecific song primarily in the auditory area field L of the avian forebrain, when compared to birds that produce normal song. These findings are consistent with the presence of a sensory song template critical for song learning in auditory areas of the zebra finch forebrain. In addition, they suggest a relationship between an altered response related to familiarity and/or saliency of song stimuli and the production of variant songs with stuttered syllables.

  17. How doctors diagnose diseases and prescribe treatments: an fMRI study of diagnostic salience

    OpenAIRE

    Melo, Marcio; Gusso, Gustavo D. F.; Levites, Marcelo; Amaro Jr., Edson; Massad, Eduardo; Lotufo, Paulo A.; Zeidman, Peter; Price, Cathy J.; Friston, Karl J.

    2017-01-01

    Understanding the brain mechanisms involved in diagnostic reasoning may contribute to the development of methods that reduce errors in medical practice. In this study we identified similar brain systems for diagnosing diseases, prescribing treatments, and naming animals and objects using written information as stimuli. Employing time resolved modeling of blood oxygen level dependent (BOLD) responses enabled time resolved (400 milliseconds epochs) analyses. With this approach it was possible t...

  18. Multilingualism and fMRI: Longitudinal Study of Second Language Acquisition

    Science.gov (United States)

    Andrews, Edna; Frigau, Luca; Voyvodic-Casabo, Clara; Voyvodic, James; Wright, John

    2013-01-01

    BOLD fMRI is often used for the study of human language. However, there are still very few attempts to conduct longitudinal fMRI studies in the study of language acquisition by measuring auditory comprehension and reading. The following paper is the first in a series concerning a unique longitudinal study devoted to the analysis of bi- and multilingual subjects who are: (1) already proficient in at least two languages; or (2) are acquiring Russian as a second/third language. The focus of the current analysis is to present data from the auditory sections of a set of three scans acquired from April, 2011 through April, 2012 on a five-person subject pool who are learning Russian during the study. All subjects were scanned using the same protocol for auditory comprehension on the same General Electric LX 3T Signa scanner in Duke University Hospital. Using a multivariate analysis of covariance (MANCOVA) for statistical analysis, proficiency measurements are shown to correlate significantly with scan results in the Russian conditions over time. The importance of both the left and right hemispheres in language processing is discussed. Special attention is devoted to the importance of contextualizing imaging data with corresponding behavioral and empirical testing data using a multivariate analysis of variance. This is the only study to date that includes: (1) longitudinal fMRI data with subject-based proficiency and behavioral data acquired in the same time frame; and (2) statistical modeling that demonstrates the importance of covariate language proficiency data for understanding imaging results of language acquisition. PMID:24961428

  19. Multilingualism and fMRI: Longitudinal Study of Second Language Acquisition

    Directory of Open Access Journals (Sweden)

    John Wright

    2013-05-01

    Full Text Available BOLD fMRI is often used for the study of human language. However, there are still very few attempts to conduct longitudinal fMRI studies in the study of language acquisition by measuring auditory comprehension and reading. The following paper is the first in a series concerning a unique longitudinal study devoted to the analysis of bi- and multilingual subjects who are: (1 already proficient in at least two languages; or (2 are acquiring Russian as a second/third language. The focus of the current analysis is to present data from the auditory sections of a set of three scans acquired from April, 2011 through April, 2012 on a five-person subject pool who are learning Russian during the study. All subjects were scanned using the same protocol for auditory comprehension on the same General Electric LX 3T Signa scanner in Duke University Hospital. Using a multivariate analysis of covariance (MANCOVA for statistical analysis, proficiency measurements are shown to correlate significantly with scan results in the Russian conditions over time. The importance of both the left and right hemispheres in language processing is discussed. Special attention is devoted to the importance of contextualizing imaging data with corresponding behavioral and empirical testing data using a multivariate analysis of variance. This is the only study to date that includes: (1 longitudinal fMRI data with subject-based proficiency and behavioral data acquired in the same time frame; and (2 statistical modeling that demonstrates the importance of covariate language proficiency data for understanding imaging results of language acquisition.

  20. Multilingualism and fMRI: Longitudinal Study of Second Language Acquisition.

    Science.gov (United States)

    Andrews, Edna; Frigau, Luca; Voyvodic-Casabo, Clara; Voyvodic, James; Wright, John

    2013-05-28

    BOLD fMRI is often used for the study of human language. However, there are still very few attempts to conduct longitudinal fMRI studies in the study of language acquisition by measuring auditory comprehension and reading. The following paper is the first in a series concerning a unique longitudinal study devoted to the analysis of bi- and multilingual subjects who are: (1) already proficient in at least two languages; or (2) are acquiring Russian as a second/third language. The focus of the current analysis is to present data from the auditory sections of a set of three scans acquired from April, 2011 through April, 2012 on a five-person subject pool who are learning Russian during the study. All subjects were scanned using the same protocol for auditory comprehension on the same General Electric LX 3T Signa scanner in Duke University Hospital. Using a multivariate analysis of covariance (MANCOVA) for statistical analysis, proficiency measurements are shown to correlate significantly with scan results in the Russian conditions over time. The importance of both the left and right hemispheres in language processing is discussed. Special attention is devoted to the importance of contextualizing imaging data with corresponding behavioral and empirical testing data using a multivariate analysis of variance. This is the only study to date that includes: (1) longitudinal fMRI data with subject-based proficiency and behavioral data acquired in the same time frame; and (2) statistical modeling that demonstrates the importance of covariate language proficiency data for understanding imaging results of language acquisition.

  1. To Boldly Go: Practical Career Advice for Young Scientists

    Science.gov (United States)

    Fiske, P.

    1998-05-01

    Young scientists in nearly every field are finding the job market of the 1990's a confusing and frustrating place. Ph.D. supply is far larger than that needed to fill entry-level positions in "traditional" research careers. More new Ph.D. and Master's degree holders are considering a wider range of careers in and out of science, but feel ill-prepared and uninformed about their options. Some feel their Ph.D. training has led them to a dead-end. I present a thorough and practical overview to the process of career planning and job hunting in the 1990's, from the perspective of a young scientist. I cover specific steps that young scientists can take to broaden their horizons, strengthen their skills, and present their best face to potential employers. An important part of this is the realization that most young scientists possess a range of valuable "transferable skills" that are highly sought after by employers in and out of science. I will summarize the specifics of job hunting in the 90's, including informational interviewing, building your network, developing a compelling CV and resume, cover letters, interviewing, based on my book "To Boldly Go: A Practical Career Guide for Scientists". I will also identify other resources available for young scientists. Finally, I will highlight individual stories of Ph.D.-trained scientists who have found exciting and fulfilling careers outside the "traditional" world of academia.

  2. Gamma-ray-induced bold seeded early maturing groundnut selections

    Energy Technology Data Exchange (ETDEWEB)

    Manoharan, V; Thangavelu, S [Regional Research Station, Vriddhachalam, Tamil Nadu (India)

    1990-07-01

    Full text: ''Chico'' is an early maturing (85-90 days) erect groundnut (Arachis hypogaea L.) genotype utilised in groundnut improvement to incorporate earliness in high yielding varieties. Though it has high shelling out-turn, its yield potential is low since it has small seeds. Mutation breeding was started with the objective of improving the seed size. In a preliminary experiment, dry seeds were treated with 20, 30, 40 or 50 kR of gamma rays. The M{sub 1} generation was grown during the post rainy season of 1988-1989. The M{sub 2} generation was planted as individual plant progeny rows during the rainy season of 1989. 105 progeny rows were studied, the total number of M{sub 2} plants being 1,730. All the M{sub 2} plants were harvested 90 days after sowing. Seven mutants with bold seed size were obtained. The mutants had 100 kernel weight ranging from 22.2 to 40.4 g compared to 21.1 g of control. The study is in progress. (author)

  3. Gamma-ray-induced bold seeded early maturing groundnut selections

    International Nuclear Information System (INIS)

    Manoharan, V.; Thangavelu, S.

    1990-01-01

    Full text: ''Chico'' is an early maturing (85-90 days) erect groundnut (Arachis hypogaea L.) genotype utilised in groundnut improvement to incorporate earliness in high yielding varieties. Though it has high shelling out-turn, its yield potential is low since it has small seeds. Mutation breeding was started with the objective of improving the seed size. In a preliminary experiment, dry seeds were treated with 20, 30, 40 or 50 kR of gamma rays. The M 1 generation was grown during the post rainy season of 1988-1989. The M 2 generation was planted as individual plant progeny rows during the rainy season of 1989. 105 progeny rows were studied, the total number of M 2 plants being 1,730. All the M 2 plants were harvested 90 days after sowing. Seven mutants with bold seed size were obtained. The mutants had 100 kernel weight ranging from 22.2 to 40.4 g compared to 21.1 g of control. The study is in progress. (author)

  4. Sex Differences in Stress Response Circuitry Activation Dependent on Female Hormonal Cycle

    Science.gov (United States)

    Goldstein, Jill M.; Jerram, Matthew; Abbs, Brandon; Whitfield-Gabrieli, Susan; Makris, Nikos

    2010-01-01

    Understanding sex differences in stress regulation has important implications for understanding basic physiological differences in the male and female brain and their impact on vulnerability to sex differences in chronic medical disorders associated with stress response circuitry. In this fMRI study, we demonstrated that significant sex differences in brain activity in stress response circuitry were dependent on women's menstrual cycle phase. Twelve healthy Caucasian premenopausal women were compared to a group of healthy men from the same population, based on age, ethnicity, education, and right-handedness. Subjects were scanned using negative valence/high arousal versus neutral visual stimuli that we demonstrated activated stress response circuitry (amygdala, hypothalamus, hippocampus, brainstem, orbitofrontal and medial prefrontal cortices (OFC and mPFC), and anterior cingulate gyrus (ACG). Women were scanned twice based on normal variation in menstrual cycle hormones (i.e., early follicular (EF) compared with late follicular-midcycle menstrual phases (LF/MC)). Using SPM8b, there were few significant differences in BOLD signal changes in men compared to EF women, except ventromedial (VMN) and lateral (LHA) hypothalamus, left amygdala, and ACG. In contrast, men exhibited significantly greater BOLD signal changes compared to LF/MC women on bilateral ACG and OFC, mPFC, LHA, VMN, hippocampus, and periaqueductal gray, with largest effect sizes in mPFC and OFC. Findings suggest that sex differences in stress response circuitry are hormonally regulated via the impact of subcortical brain activity on the cortical control of arousal, and demonstrate that females have been endowed with a natural hormonal capacity to regulate the stress response that differs from males. PMID:20071507

  5. "Boldness" in the domestic dog differs among breeds and breed groups.

    Science.gov (United States)

    Starling, Melissa J; Branson, Nicholas; Thomson, Peter C; McGreevy, Paul D

    2013-07-01

    "Boldness" in dogs is believed to be one end of the shy-bold axis, representing a super-trait. Several personality traits fall under the influence of this super-trait. Previous studies on boldness in dogs have found differences among breeds, but grouping breeds on the basis of behavioural similarities has been elusive. This study investigated differences in the expression of boldness among dog breeds, kennel club breed groups, and sub-groups of kennel club breed groups by way of a survey on dog personality circulated among Australian dog-training clubs and internet forums and lists. Breed had a significant effect on boldness (F=1.63, numDF=111, denDF=272, ppurpose. Retrievers were significantly bolder than flushing and pointing breeds (Reg. Coef.=2.148; S.E.=0.593; pdogs. Differences in boldness among groups and sub-groups suggest that behavioural tendencies may be influenced by historical purpose regardless of whether that purpose still factors in selective breeding. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Reduced Pain Sensation and Reduced BOLD Signal in Parietofrontal Networks during Religious Prayer

    DEFF Research Database (Denmark)

    Elmholdt, Else-Marie; Skewes, Joshua Charles; Dietz, Martin

    2017-01-01

    Previous studies suggest that religious prayer can alter the experience of pain via expectation mechanisms. While brain processes related to other types of top-down modulation of pain have been studied extensively, no research has been conducted on the potential effects of active religious coping....... Here, we aimed at investigating the neural mechanisms during pain modulation by prayer and their dependency on the opioidergic system. Twenty-eight devout Protestants performed religious prayer and a secular contrast prayer during painful electrical stimulation in two fMRI sessions. Naloxone or saline...... was administered prior to scanning. Results show that pain intensity was reduced by 11% and pain unpleasantness by 26% during religious prayer compared to secular prayer. Expectancy predicted large amounts (70–89%) of the variance in pain intensity. Neuroimaging results revealed reduced neural activity during...

  7. Integration of BOLD-fMRI and DTI into radiation treatment planning for high-grade gliomas located near the primary motor cortexes and corticospinal tracts

    International Nuclear Information System (INIS)

    Wang, Minglei; Ma, Hui; Wang, Xiaodong; Guo, Yanhong; Xia, Xinshe; Xia, Hechun; Guo, Yulin; Huang, Xueying; He, Hong; Jia, Xiaoxiong; Xie, Yan

    2015-01-01

    The main objective of this study was to evaluate the efficacy of integrating the blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) and diffusion tensor imaging (DTI) data into radiation treatment planning for high-grade gliomas located near the primary motor cortexes (PMCs) and corticospinal tracts (CSTs). A total of 20 patients with high-grade gliomas adjacent to PMCs and CSTs between 2012 and 2014 were recruited. The bilateral PMCs and CSTs were located in the normal regions without any overlapping with target volume of the lesions. BOLD-fMRI, DTI and conventional MRI were performed on patients (Karnofsky performance score ≥ 70) before radical radiotherapy treatment. Four different imaging studies were conducted in each patient: a planning computed tomography (CT), an anatomical MRI, a DTI and a BOLD-fMRI. For each case, three treatment plans (3DCRT, IMRT and IMRT-PMC&CST) were developed by 3 different physicists using the Pinnacle planning system. Our study has shown that there was no significant difference between the 3DCRT and IMRT plans in terms of dose homogeneity, but IMRT displayed better planning target volume (PTV) dose conformity. In addition, we have found that the Dmax and Dmean to the ipsilateral and contralateral PMC and CST regions were considerably decreased in IMRT-PMC&CST group (p < 0.001). In conclusion, integration of BOLD-fMRI and DTI into radiation treatment planning is feasible and beneficial. With the assistance of the above-described techniques, the bilateral PMCs and CSTs adjacent to the target volume could be clearly marked as OARs and spared during treatment

  8. A Java-based fMRI processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines.

    Science.gov (United States)

    Zhang, Jing; Liang, Lichen; Anderson, Jon R; Gatewood, Lael; Rottenberg, David A; Strother, Stephen C

    2008-01-01

    As functional magnetic resonance imaging (fMRI) becomes widely used, the demands for evaluation of fMRI processing pipelines and validation of fMRI analysis results is increasing rapidly. The current NPAIRS package, an IDL-based fMRI processing pipeline evaluation framework, lacks system interoperability and the ability to evaluate general linear model (GLM)-based pipelines using prediction metrics. Thus, it can not fully evaluate fMRI analytical software modules such as FSL.FEAT and NPAIRS.GLM. In order to overcome these limitations, a Java-based fMRI processing pipeline evaluation system was developed. It integrated YALE (a machine learning environment) into Fiswidgets (a fMRI software environment) to obtain system interoperability and applied an algorithm to measure GLM prediction accuracy. The results demonstrated that the system can evaluate fMRI processing pipelines with univariate GLM and multivariate canonical variates analysis (CVA)-based models on real fMRI data based on prediction accuracy (classification accuracy) and statistical parametric image (SPI) reproducibility. In addition, a preliminary study was performed where four fMRI processing pipelines with GLM and CVA modules such as FSL.FEAT and NPAIRS.CVA were evaluated with the system. The results indicated that (1) the system can compare different fMRI processing pipelines with heterogeneous models (NPAIRS.GLM, NPAIRS.CVA and FSL.FEAT) and rank their performance by automatic performance scoring, and (2) the rank of pipeline performance is highly dependent on the preprocessing operations. These results suggest that the system will be of value for the comparison, validation, standardization and optimization of functional neuroimaging software packages and fMRI processing pipelines.

  9. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.

    Science.gov (United States)

    Xie, Jianwen; Douglas, Pamela K; Wu, Ying Nian; Brody, Arthur L; Anderson, Ariana E

    2017-04-15

    Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (pcoding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (pcoding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Restructuring Reward Mechanisms in Nicotine Addiction: A Pilot fMRI Study of Mindfulness-Oriented Recovery Enhancement for Cigarette Smokers

    Directory of Open Access Journals (Sweden)

    B. Froeliger

    2017-01-01

    Full Text Available The primary goal of this pilot feasibility study was to examine the effects of Mindfulness-Oriented Recovery Enhancement (MORE, a behavioral treatment grounded in dual-process models derived from cognitive science, on frontostriatal reward processes among cigarette smokers. Healthy adult (N=13; mean (SD age 49 ± 12.2 smokers provided informed consent to participate in a 10-week study testing MORE versus a comparison group (CG. All participants underwent two fMRI scans: pre-tx and after 8-weeks of MORE. Emotion regulation (ER, smoking cue reactivity (CR, and resting-state functional connectivity (rsFC were assessed at each fMRI visit; smoking and mood were assessed throughout. As compared to the CG, MORE significantly reduced smoking (d=2.06 and increased positive affect (d=2.02. MORE participants evidenced decreased CR-BOLD response in ventral striatum (VS; d=1.57 and ventral prefrontal cortex (vPFC; d=1.7 and increased positive ER-BOLD in VS (dVS=2.13 and vPFC (dvmPFC=2.66. Importantly, ER was correlated with smoking reduction (r’s = .68 to .91 and increased positive affect (r’s = .52 to .61. These findings provide preliminary evidence that MORE may facilitate the restructuring of reward processes and play a role in treating the pathophysiology of nicotine addiction.

  11. BOLD/VENTURE-4, Reactor Analysis System with Sensitivity and Burnup

    International Nuclear Information System (INIS)

    1998-01-01

    1 - Description of program or function: The system of codes can be used to solve nuclear reactor core static neutronics and reactor history exposure problems. BOLD/VENTURE-4: First order perturbation and time-dependent sensitivity theories can be applied. Control rod positioning may be modeled explicitly and refueling treated with repositioning and recycle. Special capability is coded to model the continuously fueled core and to solve the importance and dominant harmonics problems. The modules of the code system are: VENTNEUT: VENTURE neutronics module; DRIVER and CONTRL: Control module; BURNER: Exposure calculation for reactor core analysis; FILEDTOR: File editor; INPROSER: Input processor; EXPOSURE: BURNER code module; REACRATE: Reaction rate calculation; CNTRODPO: Control rod positioning; FUELMANG: Fuel management positioning and accounting; PERTUBAT: Perturbation reactivity importance analyses; sensitivity analysis; DEPTHMOD: Static and time-dependent perturbation sensitivity analysis. The special processors are: DVENTR: Handles the input to the VENTURE module; DCMACR: Converts CITATION macroscopic cross sections to microscopic cross sections; DCRSPR: Produces input for the CROSPROS module; DUTLIN: Adds or replaces problem input data without exiting the program; DENMAN: Repositions fuel; DMISLY: Miscellaneous tasks. Standard interface files between modules are binary sequential files that follow a standardized format. VENTURE-PC: The microcomputer version is a subset of the mainframe version. The modules and special processors which are not part of VENTURE-PC are: REACRATE, CNTRODPO, PERTUBAT, FUELMANG, DEPTHMOD, DMISLY. 2 - method of solution: BOLD-VENTURE-4: The neutronics problems are solved by applying the multigroup diffusion theory representation of neutron transport applying an over-relaxation inner iteration, outer iteration scheme. Special modeling is used or source correction is done during iteration to solve importance and harmonics problems. No

  12. Implicit seque