WorldWideScience

Sample records for dependence spatial scale

  1. Towards a taxonomy of spatial scale-dependence

    DEFF Research Database (Denmark)

    Sandel, Brody Steven

    2015-01-01

    Spatial scale-dependence is a ubiquitous feature of ecological systems. This presents a challenge for ecologists who seek to discern general principles. A solution is to search for generalities in patterns of scale-dependence – that is, what kinds of things are scale-dependent, in what ways, and ...

  2. Spatial dependencies between large-scale brain networks.

    Directory of Open Access Journals (Sweden)

    Robert Leech

    Full Text Available Functional neuroimaging reveals both increases (task-positive and decreases (task-negative in neural activation with many tasks. Many studies show a temporal relationship between task positive and task negative networks that is important for efficient cognitive functioning. Here we provide evidence for a spatial relationship between task positive and negative networks. There are strong spatial similarities between many reported task negative brain networks, termed the default mode network, which is typically assumed to be a spatially fixed network. However, this is not the case. The spatial structure of the DMN varies depending on what specific task is being performed. We test whether there is a fundamental spatial relationship between task positive and negative networks. Specifically, we hypothesize that the distance between task positive and negative voxels is consistent despite different spatial patterns of activation and deactivation evoked by different cognitive tasks. We show significantly reduced variability in the distance between within-condition task positive and task negative voxels than across-condition distances for four different sensory, motor and cognitive tasks--implying that deactivation patterns are spatially dependent on activation patterns (and vice versa, and that both are modulated by specific task demands. We also show a similar relationship between positively and negatively correlated networks from a third 'rest' dataset, in the absence of a specific task. We propose that this spatial relationship may be the macroscopic analogue of microscopic neuronal organization reported in sensory cortical systems, and that this organization may reflect homeostatic plasticity necessary for efficient brain function.

  3. Seed harvesting by a generalist consumer is context-dependent: Interactive effects across multiple spatial scales

    Science.gov (United States)

    Ostoja, Steven M.; Schupp, Eugene W.; Klinger, Rob

    2013-01-01

    Granivore foraging decisions affect consumer success and determine the quantity and spatial pattern of seed survival. These decisions are influenced by environmental variation at spatial scales ranging from landscapes to local foraging patches. In a field experiment, the effects of seed patch variation across three spatial scales on seed removal by western harvester ants Pogonomyrmex occidentalis were evaluated. At the largest scale we assessed harvesting in different plant communities, at the intermediate scale we assessed harvesting at different distances from ant mounds, and at the smallest scale we assessed the effects of interactions among seed species in local seed neighborhoods on seed harvesting (i.e. resource–consumer interface). Selected seed species were presented alone (monospecific treatment) and in mixture with Bromus tectorum (cheatgrass; mixture treatment) at four distances from P. occidentalis mounds in adjacent intact sagebrush and non-native cheatgrass-dominated communities in the Great Basin, Utah, USA. Seed species differed in harvest, with B. tectorum being least preferred. Large and intermediate scale variation influenced harvest. More seeds were harvested in sagebrush than in cheatgrass-dominated communities (largest scale), and the quantity of seed harvested varied with distance from mounds (intermediate-scale), although the form of the distance effect differed between plant communities. At the smallest scale, seed neighborhood affected harvest, but the patterns differed among seed species considered. Ants harvested fewer seeds from mixed-seed neighborhoods than from monospecific neighborhoods, suggesting context dependence and potential associational resistance. Further, the effects of plant community and distance from mound on seed harvest in mixtures differed from their effects in monospecific treatments. Beyond the local seed neighborhood, selection of seed resources is better understood by simultaneously evaluating removal at

  4. Statistical inference and visualization in scale-space for spatially dependent images

    KAUST Repository

    Vaughan, Amy

    2012-03-01

    SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for statistical inferences. In this paper we develop a spatial SiZer for finding significant features and conducting goodness-of-fit tests for spatially dependent images. The spatial SiZer utilizes a family of kernel estimates of the image and provides not only exploratory data analysis but also statistical inference with spatial correlation taken into account. It is also capable of comparing the observed image with a specific null model being tested by adjusting the statistical inference using an assumed covariance structure. Pixel locations having statistically significant differences between the image and a given null model are highlighted by arrows. The spatial SiZer is compared with the existing independent SiZer via the analysis of simulated data with and without signal on both planar and spherical domains. We apply the spatial SiZer method to the decadal temperature change over some regions of the Earth. © 2011 The Korean Statistical Society.

  5. Bridging asymptotic independence and dependence in spatial exbtremes using Gaussian scale mixtures

    KAUST Repository

    Huser, Raphaël

    2017-06-23

    Gaussian scale mixtures are constructed as Gaussian processes with a random variance. They have non-Gaussian marginals and can exhibit asymptotic dependence unlike Gaussian processes, which are asymptotically independent except in the case of perfect dependence. In this paper, we study the extremal dependence properties of Gaussian scale mixtures and we unify and extend general results on their joint tail decay rates in both asymptotic dependence and independence cases. Motivated by the analysis of spatial extremes, we propose flexible yet parsimonious parametric copula models that smoothly interpolate from asymptotic dependence to independence and include the Gaussian dependence as a special case. We show how these new models can be fitted to high threshold exceedances using a censored likelihood approach, and we demonstrate that they provide valuable information about tail characteristics. In particular, by borrowing strength across locations, our parametric model-based approach can also be used to provide evidence for or against either asymptotic dependence class, hence complementing information given at an exploratory stage by the widely used nonparametric or parametric estimates of the χ and χ̄ coefficients. We demonstrate the capacity of our methodology by adequately capturing the extremal properties of wind speed data collected in the Pacific Northwest, US.

  6. Bridging asymptotic independence and dependence in spatial exbtremes using Gaussian scale mixtures

    KAUST Repository

    Huser, Raphaë l; Opitz, Thomas; Thibaud, Emeric

    2017-01-01

    Gaussian scale mixtures are constructed as Gaussian processes with a random variance. They have non-Gaussian marginals and can exhibit asymptotic dependence unlike Gaussian processes, which are asymptotically independent except in the case of perfect dependence. In this paper, we study the extremal dependence properties of Gaussian scale mixtures and we unify and extend general results on their joint tail decay rates in both asymptotic dependence and independence cases. Motivated by the analysis of spatial extremes, we propose flexible yet parsimonious parametric copula models that smoothly interpolate from asymptotic dependence to independence and include the Gaussian dependence as a special case. We show how these new models can be fitted to high threshold exceedances using a censored likelihood approach, and we demonstrate that they provide valuable information about tail characteristics. In particular, by borrowing strength across locations, our parametric model-based approach can also be used to provide evidence for or against either asymptotic dependence class, hence complementing information given at an exploratory stage by the widely used nonparametric or parametric estimates of the χ and χ̄ coefficients. We demonstrate the capacity of our methodology by adequately capturing the extremal properties of wind speed data collected in the Pacific Northwest, US.

  7. Statistical inference and visualization in scale-space for spatially dependent images

    KAUST Repository

    Vaughan, Amy; Jun, Mikyoung; Park, Cheolwoo

    2012-01-01

    SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for statistical inferences. In this paper we develop a spatial SiZer for finding significant features and conducting goodness-of-fit tests

  8. Investigating the dependence of SCM simulated precipitation and clouds on the spatial scale of large-scale forcing at SGP

    Science.gov (United States)

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    2017-08-01

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version of the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. Other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.

  9. Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK

    International Nuclear Information System (INIS)

    Rothwell, James J.; Evans, Martin G.; Lindsay, John B.; Allott, Timothy E.H.

    2007-01-01

    Increasingly, within-site and regional comparisons of peatland lead pollution have been undertaken using the inventory approach. The peatlands of the Peak District, southern Pennines, UK, have received significant atmospheric inputs of lead over the last few hundred years. A multi-core study at three peatland sites in the Peak District demonstrates significant within-site spatial variability in industrial lead pollution. Stochastic simulations reveal that 15 peat cores are required to calculate reliable lead inventories at the within-site and within-region scale for this highly polluted area of the southern Pennines. Within-site variability in lead pollution is dominant at the within-region scale. The study demonstrates that significant errors may be associated with peatland lead inventories at sites where only a single peat core has been used to calculate an inventory. Meaningful comparisons of lead inventories at the regional or global scale can only be made if the within-site variability of lead pollution has been quantified reliably. - Multiple peat cores are required for accurate peatland Pb inventories

  10. Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK.

    Science.gov (United States)

    Rothwell, James J; Evans, Martin G; Lindsay, John B; Allott, Timothy E H

    2007-01-01

    Increasingly, within-site and regional comparisons of peatland lead pollution have been undertaken using the inventory approach. The peatlands of the Peak District, southern Pennines, UK, have received significant atmospheric inputs of lead over the last few hundred years. A multi-core study at three peatland sites in the Peak District demonstrates significant within-site spatial variability in industrial lead pollution. Stochastic simulations reveal that 15 peat cores are required to calculate reliable lead inventories at the within-site and within-region scale for this highly polluted area of the southern Pennines. Within-site variability in lead pollution is dominant at the within-region scale. The study demonstrates that significant errors may be associated with peatland lead inventories at sites where only a single peat core has been used to calculate an inventory. Meaningful comparisons of lead inventories at the regional or global scale can only be made if the within-site variability of lead pollution has been quantified reliably.

  11. Scale-dependent approaches to modeling spatial epidemiology of chronic wasting disease.

    Science.gov (United States)

    Conner, Mary M.; Gross, John E.; Cross, Paul C.; Ebinger, Michael R.; Gillies, Robert; Samuel, Michael D.; Miller, Michael W.

    2007-01-01

    This e-book is the product of a second workshop that was funded and promoted by the United States Geological Survey to enhance cooperation between states for the management of chronic wasting disease (CWD). The first workshop addressed issues surrounding the statistical design and collection of surveillance data for CWD. The second workshop, from which this document arose, followed logically from the first workshop and focused on appropriate methods for analysis, interpretation, and use of CWD surveillance and related epidemiology data. Consequently, the emphasis of this e-book is on modeling approaches to describe and gain insight of the spatial epidemiology of CWD. We designed this e-book for wildlife managers and biologists who are responsible for the surveillance of CWD in their state or agency. We chose spatial methods that are popular or common in the spatial epidemiology literature and evaluated them for their relevance to modeling CWD. Our opinion of the usefulness and relevance of each method was based on the type of field data commonly collected as part of CWD surveillance programs and what we know about CWD biology, ecology, and epidemiology. Specifically, we expected the field data to consist primarily of the infection status of a harvested or culled sample along with its date of collection (not date of infection), location, and demographic status. We evaluated methods in light of the fact that CWD does not appear to spread rapidly through wild populations, relative to more highly contagious viruses, and can be spread directly from animal to animal or indirectly through environmental contamination.

  12. Spatial ecology across scales.

    Science.gov (United States)

    Hastings, Alan; Petrovskii, Sergei; Morozov, Andrew

    2011-04-23

    The international conference 'Models in population dynamics and ecology 2010: animal movement, dispersal and spatial ecology' took place at the University of Leicester, UK, on 1-3 September 2010, focusing on mathematical approaches to spatial population dynamics and emphasizing cross-scale issues. Exciting new developments in scaling up from individual level movement to descriptions of this movement at the macroscopic level highlighted the importance of mechanistic approaches, with different descriptions at the microscopic level leading to different ecological outcomes. At higher levels of organization, different macroscopic descriptions of movement also led to different properties at the ecosystem and larger scales. New developments from Levy flight descriptions to the incorporation of new methods from physics and elsewhere are revitalizing research in spatial ecology, which will both increase understanding of fundamental ecological processes and lead to tools for better management.

  13. Spatial heterogeneity and scale-dependent habitat selection for two sympatric raptors in mixed-grass prairie.

    Science.gov (United States)

    Atuo, Fidelis Akunke; O'Connell, Timothy John

    2017-08-01

    Sympatric predators are predicted to partition resources, especially under conditions of food limitation. Spatial heterogeneity that influences prey availability might play an important role in the scales at which potential competitors select habitat. We assessed potential mechanisms for coexistence by examining the role of heterogeneity in resource partitioning between sympatric raptors overwintering in the southern Great Plains. We conducted surveys for wintering Red-tailed hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyanea ) at two state wildlife management areas in Oklahoma, USA. We used information from repeated distance sampling to project use locations in a GIS. We applied resource selection functions to model habitat selection at three scales and analyzed for niche partitioning using the outlying mean index. Habitat selection of the two predators was mediated by spatial heterogeneity. The two predators demonstrated significant fine-scale discrimination in habitat selection in homogeneous landscapes, but were more sympatric in heterogeneous landscapes. Red-tailed hawk used a variety of cover types in heterogeneous landscapes but specialized on riparian forest in homogeneous landscapes. Northern Harrier specialized on upland grasslands in homogeneous landscapes but selected more cover types in heterogeneous landscapes. Our study supports the growing body of evidence that landscapes can affect animal behaviors. In the system we studied, larger patches of primary land cover types were associated with greater allopatry in habitat selection between two potentially competing predators. Heterogeneity within the scale of raptor home ranges was associated with greater sympatry in use and less specialization in land cover types selected.

  14. Up, down, and all around: scale-dependent spatial variation in rocky-shore communities of Fildes Peninsula, King George Island, Antarctica.

    Directory of Open Access Journals (Sweden)

    Nelson Valdivia

    Full Text Available Understanding the variation of biodiversity along environmental gradients and multiple spatial scales is relevant for theoretical and management purposes. Hereby, we analysed the spatial variability in diversity and structure of intertidal and subtidal macrobenthic Antarctic communities along vertical environmental stress gradients and across multiple horizontal spatial scales. Since biotic interactions and local topographic features are likely major factors for coastal assemblages, we tested the hypothesis that fine-scale processes influence the effects of the vertical environmental stress gradients on the macrobenthic diversity and structure. We used nested sampling designs in the intertidal and subtidal habitats, including horizontal spatial scales ranging from few centimetres to 1000s of metres along the rocky shore of Fildes Peninsula, King George Island. In both intertidal and subtidal habitats, univariate and multivariate analyses showed a marked vertical zonation in taxon richness and community structure. These patterns depended on the horizontal spatial scale of observation, as all analyses showed a significant interaction between height (or depth and the finer spatial scale analysed. Variance and pseudo-variance components supported our prediction for taxon richness, community structure, and the abundance of dominant species such as the filamentous green alga Urospora penicilliformis (intertidal, the herbivore Nacella concinna (intertidal, the large kelp-like Himantothallus grandifolius (subtidal, and the red crustose red alga Lithothamnion spp. (subtidal. We suggest that in coastal ecosystems strongly governed by physical factors, fine-scale processes (e.g. biotic interactions and refugia availability are still relevant for the structuring and maintenance of the local communities. The spatial patterns found in this study serve as a necessary benchmark to understand the dynamics and adaptation of natural assemblages in response to

  15. Ant mosaics in Bornean primary rain forest high canopy depend on spatial scale, time of day, and sampling method

    Directory of Open Access Journals (Sweden)

    Kalsum M. Yusah

    2018-01-01

    Full Text Available Background Competitive interactions in biological communities can be thought of as giving rise to “assembly rules” that dictate the species that are able to co-exist. Ant communities in tropical canopies often display a particular pattern, an “ant mosaic”, in which competition between dominant ant species results in a patchwork of mutually exclusive territories. Although ant mosaics have been well-documented in plantation landscapes, their presence in pristine tropical forests remained contentious until recently. Here we assess presence of ant mosaics in a hitherto under-investigated forest stratum, the emergent trees of the high canopy in primary tropical rain forest, and explore how the strength of any ant mosaics is affected by spatial scale, time of day, and sampling method. Methods To test whether these factors might impact the detection of ant mosaics in pristine habitats, we sampled ant communities from emergent trees, which rise above the highest canopy layers in lowland dipterocarp rain forests in North Borneo (38.8–60.2 m, using both baiting and insecticide fogging. Critically, we restricted sampling to only the canopy of each focal tree. For baiting, we carried out sampling during both the day and the night. We used null models of species co-occurrence to assess patterns of segregation at within-tree and between-tree scales. Results The numerically dominant ant species on the emergent trees sampled formed a diverse community, with differences in the identity of dominant species between times of day and sampling methods. Between trees, we found patterns of ant species segregation consistent with the existence of ant mosaics using both methods. Within trees, fogged ants were segregated, while baited ants were segregated only at night. Discussion We conclude that ant mosaics are present within the emergent trees of the high canopy of tropical rain forest in Malaysian Borneo, and that sampling technique, spatial scale, and time

  16. Spatial dependence of extreme rainfall

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  17. Spatial patterns and scale-dependent relationships between macrozooplankton and fish in the Bay of Biscay: an acoustic study

    KAUST Repository

    Lezama-Ochoa, A

    2011-10-20

    Macrozooplankton plays a key role in pelagic ecosystems as a link between lower trophic levels and fish. However, although its ecological role is usually considered in polar ecosystems, it is rarely considered in temperate ones. To obtain comprehensive information on the macrozooplankton distribution in the Bay of Biscay we adapted a bi-frequency acoustic method developed for the Humboldt Current system. This method can be used to extract continuous and simultaneous high-resolution information on the spatiotemporal patterns of biomass distributions of macrozooplankton and pelagic fish throughout the diel cycle. The 2 distributions were mapped using geostatistical techniques. We applied kriging with external drifts, which accounts for both diel and across-shore changes in macrozooplankton biomass. We then used a cross-variogram to determine the scale-dependent relationships between macrozooplankton and fish. The results show how macrozooplankton and fish are distributed according to the different ecological domains (coast, shelf, shelf-break and offshore) along the Spanish and French coasts. Specific macrozooplankton hotspots were observed, but macrozooplankton was generally more abundant offshore than inshore, whereas fish showed the opposite trend. This pattern was confirmed by the aggregation sizes, which increased towards oceanic waters for macrozooplankton and decreased for fish. Finally, the correlation between fish and macrozooplankton was positive on a small scale (<30 nautical miles) and negative on a large scale (>30 nautical miles).

  18. Scale-Dependent Grasp

    OpenAIRE

    Kaneko, Makoto; Shirai, Tatsuya; Tsuji, Toshio

    2000-01-01

    This paper discusses the scale-dependent grasp.Suppose that a human approaches an object initially placed on atable and finally achieves an enveloping grasp. Under such initialand final conditions, he (or she) unconsciously changes the graspstrategy according to the size of objects, even though they havesimilar geometry. We call the grasp planning the scale-dependentgrasp. We find that grasp patterns are also changed according tothe surface friction and the geometry of cross section in additi...

  19. Spatial dependence of predictions from image segmentation: a methods to determine appropriate scales for producing land-management information

    Science.gov (United States)

    A challenge in ecological studies is defining scales of observation that correspond to relevant ecological scales for organisms or processes. Image segmentation has been proposed as an alternative to pixel-based methods for scaling remotely-sensed data into ecologically-meaningful units. However, to...

  20. Scale dependent inference in landscape genetics

    Science.gov (United States)

    Samuel A. Cushman; Erin L. Landguth

    2010-01-01

    Ecological relationships between patterns and processes are highly scale dependent. This paper reports the first formal exploration of how changing scale of research away from the scale of the processes governing gene flow affects the results of landscape genetic analysis. We used an individual-based, spatially explicit simulation model to generate patterns of genetic...

  1. Probing Mantle Heterogeneity Across Spatial Scales

    Science.gov (United States)

    Hariharan, A.; Moulik, P.; Lekic, V.

    2017-12-01

    Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long

  2. Toward seamless hydrologic predictions across spatial scales

    NARCIS (Netherlands)

    Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Rakovec, Oldrich; Zink, Matthias; Wanders, Niko; Eisner, Stephanie; Müller Schmied, Hannes; Sutanudjaja, Edwin; Warrach-Sagi, Kirsten; Attinger, Sabine

    2017-01-01

    Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1-10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the

  3. Scale dependence of deuteron electrodisintegration

    Science.gov (United States)

    More, S. N.; Bogner, S. K.; Furnstahl, R. J.

    2017-11-01

    Background: Isolating nuclear structure properties from knock-out reactions in a process-independent manner requires a controlled factorization, which is always to some degree scale and scheme dependent. Understanding this dependence is important for robust extractions from experiment, to correctly use the structure information in other processes, and to understand the impact of approximations for both. Purpose: We seek insight into scale dependence by exploring a model calculation of deuteron electrodisintegration, which provides a simple and clean theoretical laboratory. Methods: By considering various kinematic regions of the longitudinal structure function, we can examine how the components—the initial deuteron wave function, the current operator, and the final-state interactions (FSIs)—combine at different scales. We use the similarity renormalization group to evolve each component. Results: When evolved to different resolutions, the ingredients are all modified, but how they combine depends strongly on the kinematic region. In some regions, for example, the FSIs are largely unaffected by evolution, while elsewhere FSIs are greatly reduced. For certain kinematics, the impulse approximation at a high renormalization group resolution gives an intuitive picture in terms of a one-body current breaking up a short-range correlated neutron-proton pair, although FSIs distort this simple picture. With evolution to low resolution, however, the cross section is unchanged but a very different and arguably simpler intuitive picture emerges, with the evolved current efficiently represented at low momentum through derivative expansions or low-rank singular value decompositions. Conclusions: The underlying physics of deuteron electrodisintegration is scale dependent and not just kinematics dependent. As a result, intuition about physics such as the role of short-range correlations or D -state mixing in particular kinematic regimes can be strongly scale dependent

  4. What You See Depends on Your Point of View: Comparison of Greenness Indices Across Spatial and Temporal Scales and What That Means for Mule Deer Migration and Fitness

    Science.gov (United States)

    Miller, B. W.; Chong, G.; Steltzer, H.; Aikens, E.; Morisette, J. T.; Talbert, C.; Talbert, M.; Shory, R.; Krienert, J. M.; Gurganus, D.

    2015-12-01

    Climate change models for the north­ern Rocky Mountains predict warming and changes in water availability that may alter vegetation. Changes to vegetation may include timing of plant life-history events, or phenology, such as green-up, flower­ing, and senescence. These changes could make forage available earlier in the growing season, but shifts in phenol­ogy may also result in earlier senescence (die-off or dormancy) and reduced overall production. Greenness indices such as the normalized difference vegetation index (NDVI) are regularly used to quantify greenness over large areas using remotely sensed reflectance data. The timing and scale of current satellite data, however, may be insufficient to capture fine-scale differences in phenology that are important indicators of habitat quality. The Wyoming Range Mule Deer herd is one of the largest in the west but it declined precipitously in the early 1990s and has not recovered. Accurate measurement of greenness over space and time would allow managers to better understand the role of plant phenology and productivity in mule deer population dynamics, for example. To connect spatial and temporal patterns of plant productivity with habitat quality, we compare greenness patterns (MODIS data) with migratory mule deer movement (GPS collars). Sagebrush systems provide winter habitat for mule deer. To understand sagebrush phenology as an indicator of productivity, we constructed NDVI time series and compared dates of phenological stages and magnitudes of greenness from three perspectives: at-surface/species-specific (mantis sensors: downward looking, <1m above vegetation); near surface/site-specific (PhenoCam: oblique, 2m); and satellite/landscape-scale (varied platforms). Greenness indices from these sensors contribute unique insights to understanding vegetation phenology, snow cover and reflectance. Understanding phenology and productivity at multiple scales can help guide resource management decisions related to

  5. Grizzly bear habitat selection is scale dependent.

    Science.gov (United States)

    Ciarniello, Lana M; Boyce, Mark S; Seip, Dale R; Heard, Douglas C

    2007-07-01

    The purpose of our study is to show how ecologists' interpretation of habitat selection by grizzly bears (Ursus arctos) is altered by the scale of observation and also how management questions would be best addressed using predetermined scales of analysis. Using resource selection functions (RSF) we examined how variation in the spatial extent of availability affected our interpretation of habitat selection by grizzly bears inhabiting mountain and plateau landscapes. We estimated separate models for females and males using three spatial extents: within the study area, within the home range, and within predetermined movement buffers. We employed two methods for evaluating the effects of scale on our RSF designs. First, we chose a priori six candidate models, estimated at each scale, and ranked them using Akaike Information Criteria. Using this method, results changed among scales for males but not for females. For female bears, models that included the full suite of covariates predicted habitat use best at each scale. For male bears that resided in the mountains, models based on forest successional stages ranked highest at the study-wide and home range extents, whereas models containing covariates based on terrain features ranked highest at the buffer extent. For male bears on the plateau, each scale estimated a different highest-ranked model. Second, we examined differences among model coefficients across the three scales for one candidate model. We found that both the magnitude and direction of coefficients were dependent upon the scale examined; results varied between landscapes, scales, and sexes. Greenness, reflecting lush green vegetation, was a strong predictor of the presence of female bears in both landscapes and males that resided in the mountains. Male bears on the plateau were the only animals to select areas that exposed them to a high risk of mortality by humans. Our results show that grizzly bear habitat selection is scale dependent. Further, the

  6. Spatial scale separation in regional climate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Feser, F.

    2005-07-01

    In this thesis the concept of scale separation is introduced as a tool for first improving regional climate model simulations and, secondly, to explicitly detect and describe the added value obtained by regional modelling. The basic idea behind this is that global and regional climate models have their best performance at different spatial scales. Therefore the regional model should not alter the global model's results at large scales. The for this purpose designed concept of nudging of large scales controls the large scales within the regional model domain and keeps them close to the global forcing model whereby the regional scales are left unchanged. For ensemble simulations nudging of large scales strongly reduces the divergence of the different simulations compared to the standard approach ensemble that occasionally shows large differences for the individual realisations. For climate hindcasts this method leads to results which are on average closer to observed states than the standard approach. Also the analysis of the regional climate model simulation can be improved by separating the results into different spatial domains. This was done by developing and applying digital filters that perform the scale separation effectively without great computational effort. The separation of the results into different spatial scales simplifies model validation and process studies. The search for 'added value' can be conducted on the spatial scales the regional climate model was designed for giving clearer results than by analysing unfiltered meteorological fields. To examine the skill of the different simulations pattern correlation coefficients were calculated between the global reanalyses, the regional climate model simulation and, as a reference, of an operational regional weather analysis. The regional climate model simulation driven with large-scale constraints achieved a high increase in similarity to the operational analyses for medium-scale 2 meter

  7. Toward seamless hydrologic predictions across spatial scales

    Science.gov (United States)

    Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Rakovec, Oldrich; Zink, Matthias; Wanders, Niko; Eisner, Stephanie; Müller Schmied, Hannes; Sutanudjaja, Edwin H.; Warrach-Sagi, Kirsten; Attinger, Sabine

    2017-09-01

    Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1-10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR) technique offers a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.

  8. Toward seamless hydrologic predictions across spatial scales

    Directory of Open Access Journals (Sweden)

    L. Samaniego

    2017-09-01

    Full Text Available Land surface and hydrologic models (LSMs/HMs are used at diverse spatial resolutions ranging from catchment-scale (1–10 km to global-scale (over 50 km applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR technique offers a practical and robust method that provides consistent (seamless parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.

  9. Simple spatial scaling rules behind complex cities.

    Science.gov (United States)

    Li, Ruiqi; Dong, Lei; Zhang, Jiang; Wang, Xinran; Wang, Wen-Xu; Di, Zengru; Stanley, H Eugene

    2017-11-28

    Although most of wealth and innovation have been the result of human interaction and cooperation, we are not yet able to quantitatively predict the spatial distributions of three main elements of cities: population, roads, and socioeconomic interactions. By a simple model mainly based on spatial attraction and matching growth mechanisms, we reveal that the spatial scaling rules of these three elements are in a consistent framework, which allows us to use any single observation to infer the others. All numerical and theoretical results are consistent with empirical data from ten representative cities. In addition, our model can also provide a general explanation of the origins of the universal super- and sub-linear aggregate scaling laws and accurately predict kilometre-level socioeconomic activity. Our work opens a new avenue for uncovering the evolution of cities in terms of the interplay among urban elements, and it has a broad range of applications.

  10. SPATIAL DISTRIBUTION OF POVERTY AT DIFFERENT SCALES

    Directory of Open Access Journals (Sweden)

    Gandhi PAWITAN

    2010-01-01

    Full Text Available Poverty mapping is usually developed from some sources of data, such as from census and survey data. In some practical application, the poverty was measured usually by household income or expenditure of daily basic consumption. Using different scales and zoning on a particular set of spatial data may leads to problems in interpreting the results. In practice, organizations publish statistics and maps at a particular area level. Minot and Baulch (2005a discussed some consequences of using aggregated level data in poverty mapping, which may affect the validity of the output. The key point of this paper is to compare spatial distribution of the poverty at two different scale, which is the province and district level. How the spatial distribution of the poverty at province level can be use to infer the distribution at the district level. The geographical weighted regression will be applied, and the poverty data of Vietnam will be used as an illustration.

  11. Spatial dependence of predictions from image segmentation: A variogram-based method to determine appropriate scales for producing land-management information

    Science.gov (United States)

    A significant challenge in ecological studies has been defining scales of observation that correspond to the relevant ecological scales for organisms or processes of interest. Remote sensing has become commonplace in ecological studies and management, but the default resolution of imagery often used...

  12. The Spatial Scaling of Global Rainfall Extremes

    Science.gov (United States)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  13. Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models

    Science.gov (United States)

    Haslauer, C. P.; Bárdossy, A.

    2017-12-01

    A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.

  14. Spatial distribution of enzyme driven reactions at micro-scales

    Science.gov (United States)

    Kandeler, Ellen; Boeddinghaus, Runa; Nassal, Dinah; Preusser, Sebastian; Marhan, Sven; Poll, Christian

    2017-04-01

    Studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of soil microorganisms that dominate in natural environments. In comparison with aquatic systems, soils are particularly heterogeneous. Soil heterogeneity results from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimetres to several hundred metres, the spatial structure of soil enzymes is less clear. Previous work has primarily focused on spatial heterogeneity at a single analytical scale using the distribution of individual cells, specific types of organisms or collective parameters such as bacterial abundance or total microbial biomass. There are fewer studies that have considered variations in community function and soil enzyme activities. This presentation will give an overview about recent studies focusing on spatial pattern of different soil enzymes in the terrestrial environment. Whereas zymography allows the visualization of enzyme pattern in the close vicinity of roots, micro-sampling strategies followed by MUF analyses clarify micro-scale pattern of enzymes associated to specific microhabitats (micro-aggregates, organo-mineral complexes, subsoil compartments).

  15. Spatial-dependence recurrence sample entropy

    Science.gov (United States)

    Pham, Tuan D.; Yan, Hong

    2018-03-01

    Measuring complexity in terms of the predictability of time series is a major area of research in science and engineering, and its applications are spreading throughout many scientific disciplines, where the analysis of physiological signals is perhaps the most widely reported in literature. Sample entropy is a popular measure for quantifying signal irregularity. However, the sample entropy does not take sequential information, which is inherently useful, into its calculation of sample similarity. Here, we develop a method that is based on the mathematical principle of the sample entropy and enables the capture of sequential information of a time series in the context of spatial dependence provided by the binary-level co-occurrence matrix of a recurrence plot. Experimental results on time-series data of the Lorenz system, physiological signals of gait maturation in healthy children, and gait dynamics in Huntington's disease show the potential of the proposed method.

  16. Temporal scaling and spatial statistical analyses of groundwater level fluctuations

    Science.gov (United States)

    Sun, H.; Yuan, L., Sr.; Zhang, Y.

    2017-12-01

    Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.

  17. Redefining yield gaps at various spatial scales

    Science.gov (United States)

    Meng, K.; Fishman, R.; Norstrom, A. V.; Diekert, F. K.; Engstrom, G.; Gars, J.; McCarney, G. R.; Sjostedt, M.

    2013-12-01

    Recent research has highlighted the prevalence of 'yield gaps' around the world and the importance of closing them for global food security. However, the traditional concept of yield gap -defined as the difference between observed and optimal yield under biophysical conditions - omit relevant socio-economic and ecological constraints and thus offer limited guidance on potential policy interventions. This paper proposes alternative definitions of yield gaps by incorporating rich, high resolution, national and sub-national agricultural datasets. We examine feasible efforts to 'close yield gaps' at various spatial scales and across different socio-economic and ecological domains.

  18. On scale dependence of hardness

    International Nuclear Information System (INIS)

    Shorshorov, M.Kh.; Alekhin, V.P.; Bulychev, S.I.

    1977-01-01

    The concept of hardness as a structure-sensitive characteristic of a material is considered. It is shown that in conditions of a decreasing stress field under the inventor the hardness function is determined by the average distance, Lsub(a), between the stops (fixed and sessile dislocations, segregation particles, etc.). In the general case, Lsub(a) depends on the size of the impression and explains the great diversity of hardness functions. The concept of average true deformation rate on depression is introduced

  19. Spatial scales of pollution from variable resolution satellite imaging

    International Nuclear Information System (INIS)

    Chudnovsky, Alexandra A.; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM 2.5 as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM 2.5 and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM 2.5 ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM 2.5 levels and wind speed. - Highlights: ► The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. ► High resolution MAIAC AOD 1 km retrieval can be used to investigate within-city PM 2.5 variability. ► Low pollution days exhibit higher spatial variability of AOD and PM 2.5 then moderate pollution days. ► AOD spatial variability within urban area is higher during the lower wind speed conditions. - The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. The new high-resolution MAIAC AOD retrieval has the potential to capture PM 2.5 variability at the intra-urban scale.

  20. Spatial scales of pollution from variable resolution satellite imaging.

    Science.gov (United States)

    Chudnovsky, Alexandra A; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(2.5) as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM(2.5) and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM(2.5) ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM(2.5) levels and wind speed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Spatial Dependence of Crime in Monterrey, Mexico

    Directory of Open Access Journals (Sweden)

    Ernesto Aguayo Téllez

    2014-06-01

    Full Text Available This paper studies the impact that the characteristics of the environment have on crime using neighborhood aggregate data of the Monterrey Metropolitan Area for the year 2010. Data spatial autocorrelation is corroborated, i.e. neighborhoods with high crime rates have a positive impact on the crime rates of its surrounding neighborhoods. Once it was controlled through the bias caused by spatial autocorrelation and data censoring, it is evidenced that the likelihood of being a crime victim and the probability of becoming an offender is positively related to variables such as unemployment, the percentage of young men and the existence of schools, hospitals or markets in the neighborhood.

  2. Evolution of scaling emergence in large-scale spatial epidemic spreading.

    Science.gov (United States)

    Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan

    2011-01-01

    Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.

  3. Scale dependency of American marten (Martes americana) habitat relations [Chapter 12

    Science.gov (United States)

    Andrew J. Shirk; Tzeidle N. Wasserman; Samuel A. Cushman; Martin G. Raphael

    2012-01-01

    Animals select habitat resources at multiple spatial scales; therefore, explicit attention to scale-dependency when modeling habitat relations is critical to understanding how organisms select habitat in complex landscapes. Models that evaluate habitat variables calculated at a single spatial scale (e.g., patch, home range) fail to account for the effects of...

  4. Spatial scale and β-diversity of terrestrial vertebrates in Mexico

    OpenAIRE

    Ochoa-Ochoa, Leticia M.; Munguía, Mariana; Lira-Noriega, Andrés; Sánchez-Cordero, Víctor; Flores-Villela, Oscar; Navarro-Sigüenza, Adolfo; Rodríguez, Pilar

    2014-01-01

    Patterns of diversity are scale dependent and beta-diversity is not the exception. Mexico is megadiverse due to its high beta diversity, but little is known if it is scale-dependent and/or taxonomic-dependent. We explored these questions based on the self-similarity hypothesis of beta-diversity across spatial scales. Using geographic distribution ranges of 2 513 species, we compared the beta-diversity patterns of 4 groups of terrestrial vertebrates, across 7 spatial scales (from ~10 km² to 16...

  5. Uncertainty Quantification in Scale-Dependent Models of Flow in Porous Media: SCALE-DEPENDENT UQ

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovsky, A. M. [Computational Mathematics Group, Pacific Northwest National Laboratory, Richland WA USA; Panzeri, M. [Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Milano Italy; Tartakovsky, G. D. [Hydrology Group, Pacific Northwest National Laboratory, Richland WA USA; Guadagnini, A. [Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Milano Italy

    2017-11-01

    Equations governing flow and transport in heterogeneous porous media are scale-dependent. We demonstrate that it is possible to identify a support scale $\\eta^*$, such that the typically employed approximate formulations of Moment Equations (ME) yield accurate (statistical) moments of a target environmental state variable. Under these circumstances, the ME approach can be used as an alternative to the Monte Carlo (MC) method for Uncertainty Quantification in diverse fields of Earth and environmental sciences. MEs are directly satisfied by the leading moments of the quantities of interest and are defined on the same support scale as the governing stochastic partial differential equations (PDEs). Computable approximations of the otherwise exact MEs can be obtained through perturbation expansion of moments of the state variables in orders of the standard deviation of the random model parameters. As such, their convergence is guaranteed only for the standard deviation smaller than one. We demonstrate our approach in the context of steady-state groundwater flow in a porous medium with a spatially random hydraulic conductivity.

  6. Temporal and spatial scaling impacts on extreme precipitation

    Science.gov (United States)

    Eggert, B.; Berg, P.; Haerter, J. O.; Jacob, D.; Moseley, C.

    2015-01-01

    Both in the current climate and in the light of climate change, understanding of the causes and risk of precipitation extremes is essential for protection of human life and adequate design of infrastructure. Precipitation extreme events depend qualitatively on the temporal and spatial scales at which they are measured, in part due to the distinct types of rain formation processes that dominate extremes at different scales. To capture these differences, we first filter large datasets of high-resolution radar measurements over Germany (5 min temporally and 1 km spatially) using synoptic cloud observations, to distinguish convective and stratiform rain events. In a second step, for each precipitation type, the observed data are aggregated over a sequence of time intervals and spatial areas. The resulting matrix allows a detailed investigation of the resolutions at which convective or stratiform events are expected to contribute most to the extremes. We analyze where the statistics of the two types differ and discuss at which resolutions transitions occur between dominance of either of the two precipitation types. We characterize the scales at which the convective or stratiform events will dominate the statistics. For both types, we further develop a mapping between pairs of spatially and temporally aggregated statistics. The resulting curve is relevant when deciding on data resolutions where statistical information in space and time is balanced. Our study may hence also serve as a practical guide for modelers, and for planning the space-time layout of measurement campaigns. We also describe a mapping between different pairs of resolutions, possibly relevant when working with mismatched model and observational resolutions, such as in statistical bias correction.

  7. Spatial dependence of pair correlations (nuclear scissors)

    International Nuclear Information System (INIS)

    Bal'butsev, E.B.; Malov, L.A.

    2009-01-01

    The solution of time-dependent Hartree-Fock-Bogolyubov equations by the Wigner function moments method leads to the appearance of low-lying modes whose description requires accurate knowledge of the anomalous density matrix. It is shown that calculations with the Woods-Saxon potential satisfy this requirement

  8. Hemispherical power asymmetry from scale-dependent modulated reheating

    International Nuclear Information System (INIS)

    McDonald, John

    2013-01-01

    We propose a new model for the hemispherical power asymmetry of the CMB based on modulated reheating. Non-Gaussianity from modulated reheating can be small enough to satisfy the bound from Planck if the dominant modulation of the inflaton decay rate is linear in the modulating field σ. σ must then acquire a spatially-modulated power spectrum with a red scale-dependence. This can be achieved if the primordial perturbation of σ is generated via tachyonic growth of a complex scalar field. Modulated reheating due to σ then produces a spatially modulated and scale-dependent sub-dominant contribution to the adiabatic density perturbation. We show that it is possible to account for the observed asymmetry while remaining consistent with bounds from quasar number counts, non-Gaussianity and the CMB temperature quadupole. The model predicts that the adiabatic perturbation spectral index and its running will be modified by the modulated reheating component

  9. Geo-Ontologies Are Scale Dependent

    Science.gov (United States)

    Frank, A. U.

    2009-04-01

    Philosophers aim at a single ontology that describes "how the world is"; for information systems we aim only at ontologies that describe a conceptualization of reality (Guarino 1995; Gruber 2005). A conceptualization of the world implies a spatial and temporal scale: what are the phenomena, the objects and the speed of their change? Few articles (Reitsma et al. 2003) seem to address that an ontology is scale specific (but many articles indicate that ontologies are scale-free in another sense namely that they are scale free in the link densities between concepts). The scale in the conceptualization can be linked to the observation process. The extent of the support of the physical observation instrument and the sampling theorem indicate what level of detail we find in a dataset. These rules apply for remote sensing or sensor networks alike. An ontology of observations must include scale or level of detail, and concepts derived from observations should carry this relation forward. A simple example: in high resolution remote sensing image agricultural plots and roads between them are shown, at lower resolution, only the plots and not the roads are visible. This gives two ontologies, one with plots and roads, the other with plots only. Note that a neighborhood relation in the two different ontologies also yield different results. References Gruber, T. (2005). "TagOntology - a way to agree on the semantics of tagging data." Retrieved October 29, 2005., from http://tomgruber.org/writing/tagontology-tagcapm-talk.pdf. Guarino, N. (1995). "Formal Ontology, Conceptual Analysis and Knowledge Representation." International Journal of Human and Computer Studies. Special Issue on Formal Ontology, Conceptual Analysis and Knowledge Representation, edited by N. Guarino and R. Poli 43(5/6). Reitsma, F. and T. Bittner (2003). Process, Hierarchy, and Scale. Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information ScienceInternational Conference

  10. Spatial scales, stakeholders and the valuation of ecosystem services

    NARCIS (Netherlands)

    Hein, L.G.; Koppen, van C.S.A.; Groot, de R.S.; Ierland, van E.C.

    2006-01-01

    Since the late 1960s, the valuation of ecosystem services has received ample attention in scientific literature. However, to date, there has been relatively little elaboration of the various spatial and temporal scales at which ecosystem services are supplied. This paper analyzes the spatial scales

  11. Modeling spatial processes with unknown extremal dependence class

    KAUST Repository

    Huser, Raphaë l G.; Wadsworth, Jennifer L.

    2017-01-01

    Many environmental processes exhibit weakening spatial dependence as events become more extreme. Well-known limiting models, such as max-stable or generalized Pareto processes, cannot capture this, which can lead to a preference for models

  12. Kernel parameter dependence in spatial factor analysis

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2010-01-01

    kernel PCA. Shawe-Taylor and Cristianini [4] is an excellent reference for kernel methods in general. Bishop [5] and Press et al. [6] describe kernel methods among many other subjects. The kernel version of PCA handles nonlinearities by implicitly transforming data into high (even infinite) dimensional...... feature space via the kernel function and then performing a linear analysis in that space. In this paper we shall apply a kernel version of maximum autocorrelation factor (MAF) [7, 8] analysis to irregularly sampled stream sediment geochemistry data from South Greenland and illustrate the dependence...... of the kernel width. The 2,097 samples each covering on average 5 km2 are analyzed chemically for the content of 41 elements....

  13. Effect of Variable Spatial Scales on USLE-GIS Computations

    Science.gov (United States)

    Patil, R. J.; Sharma, S. K.

    2017-12-01

    Use of appropriate spatial scale is very important in Universal Soil Loss Equation (USLE) based spatially distributed soil erosion modelling. This study aimed at assessment of annual rates of soil erosion at different spatial scales/grid sizes and analysing how changes in spatial scales affect USLE-GIS computations using simulation and statistical variabilities. Efforts have been made in this study to recommend an optimum spatial scale for further USLE-GIS computations for management and planning in the study area. The present research study was conducted in Shakkar River watershed, situated in Narsinghpur and Chhindwara districts of Madhya Pradesh, India. Remote Sensing and GIS techniques were integrated with Universal Soil Loss Equation (USLE) to predict spatial distribution of soil erosion in the study area at four different spatial scales viz; 30 m, 50 m, 100 m, and 200 m. Rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and satellite image of the area were used for preparation of the thematic maps for various USLE factors. Annual rates of soil erosion were estimated for 15 years (1992 to 2006) at four different grid sizes. The statistical analysis of four estimated datasets showed that sediment loss dataset at 30 m spatial scale has a minimum standard deviation (2.16), variance (4.68), percent deviation from observed values (2.68 - 18.91 %), and highest coefficient of determination (R2 = 0.874) among all the four datasets. Thus, it is recommended to adopt this spatial scale for USLE-GIS computations in the study area due to its minimum statistical variability and better agreement with the observed sediment loss data. This study also indicates large scope for use of finer spatial scales in spatially distributed soil erosion modelling.

  14. Search in spatial scale-free networks

    International Nuclear Information System (INIS)

    Thadakamalla, H P; Albert, R; Kumara, S R T

    2007-01-01

    We study the decentralized search problem in a family of parameterized spatial network models that are heterogeneous in node degree. We investigate several algorithms and illustrate that some of these algorithms exploit the heterogeneity in the network to find short paths by using only local information. In addition, we demonstrate that the spatial network model belongs to a classof searchable networks for a wide range of parameter space. Further, we test these algorithms on the US airline network which belongs to this class of networks and demonstrate that searchability is a generic property of the US airline network. These results provide insights on designing the structure of distributed networks that need effective decentralized search algorithms

  15. Small-scale spatial cognition in pigeons.

    Science.gov (United States)

    Cheng, Ken; Spetch, Marcia L; Kelly, Debbie M; Bingman, Verner P

    2006-05-01

    Roberts and Van Veldhuizen's [Roberts, W.A., Van Veldhuizen, N., 1985. Spatial memory in pigeons on the radial maze. J. Exp. Psychol.: Anim. Behav. Proc. 11, 241-260] study on pigeons in the radial maze sparked research on landmark use by pigeons in lab-based tasks as well as variants of the radial-maze task. Pigeons perform well on open-field versions of the radial maze, with feeders scattered on the laboratory floor. Pigeons can also be trained to search precisely for buried food. The search can be based on multiple landmarks, but is sometimes controlled by just one or two landmarks, with the preferred landmarks varying across individuals. Findings are similar in landmark-based searching on a computer monitor and on a lab floor, despite many differences between the two kinds of tasks. A number of general learning principles are found in landmark-based searching, such as cue competition, generalization and peak shift, and selective attention. Pigeons also learn the geometry of the environment in which they are searching. Neurophysiological studies have implicated the hippocampal formation (HF) in avian spatial cognition, with the right hippocampus hypothesized to play a more important role in the spatial recognition of goal locations. Most recently, single-cell recording from the pigeon's hippocampal formation has revealed cells with different properties from the classic 'place' cells of rats, as well as differences in the two sides of the hippocampus.

  16. Scale Dependence of Spatiotemporal Intermittence of Rain

    Science.gov (United States)

    Kundu, Prasun K.; Siddani, Ravi K.

    2011-01-01

    It is a common experience that rainfall is intermittent in space and time. This is reflected by the fact that the statistics of area- and/or time-averaged rain rate is described by a mixed distribution with a nonzero probability of having a sharp value zero. In this paper we have explored the dependence of the probability of zero rain on the averaging space and time scales in large multiyear data sets based on radar and rain gauge observations. A stretched exponential fannula fits the observed scale dependence of the zero-rain probability. The proposed formula makes it apparent that the space-time support of the rain field is not quite a set of measure zero as is sometimes supposed. We also give an ex.planation of the observed behavior in tenus of a simple probabilistic model based on the premise that rainfall process has an intrinsic memory.

  17. Exploiting scale dependence in cosmological averaging

    International Nuclear Information System (INIS)

    Mattsson, Teppo; Ronkainen, Maria

    2008-01-01

    We study the role of scale dependence in the Buchert averaging method, using the flat Lemaitre–Tolman–Bondi model as a testing ground. Within this model, a single averaging scale gives predictions that are too coarse, but by replacing it with the distance of the objects R(z) for each redshift z, we find an O(1%) precision at z<2 in the averaged luminosity and angular diameter distances compared to their exact expressions. At low redshifts, we show the improvement for generic inhomogeneity profiles, and our numerical computations further verify it up to redshifts z∼2. At higher redshifts, the method breaks down due to its inability to capture the time evolution of the inhomogeneities. We also demonstrate that the running smoothing scale R(z) can mimic acceleration, suggesting that it could be at least as important as the backreaction in explaining dark energy as an inhomogeneity induced illusion

  18. Panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable

    NARCIS (Netherlands)

    Elhorst, J. Paul

    2001-01-01

    This paper surveys panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable. In particular, it focuses on the specification and estimation of four panel data models commonly used in applied research: the fixed effects model, the random effects model, the

  19. Redefining territorial scales and the strategic role of spatial planning

    DEFF Research Database (Denmark)

    Galland, Daniel; Elinbaum, Pablo

    2015-01-01

    This paper argues that spatial planning systems tend to redefine and reinterpret conventional territorial scales through the dual adoption and articulation of legal instruments and spatial strategies at different levels of planning administration. In depicting such redefinition, this paper delves...... into the cases of Denmark and Catalonia through an analysis concerned with: i) the strategic spatial role attributed to each level of planning; and ii) the redefinition of territorial scales as a result of changing political objectives and spatial relationships occurring between planning levels. The assessment...... pertaining to the strategic roles of spatial planning instruments as well as the evolving redefinition of territorial scales in both Denmark and Catalonia suggests that the conventional, hierarchical ‘cascade-shaped’ ideal of policy implementation is superseded. While both cases tend to converge...

  20. Selection of spatial reference frames depends on task's demands

    Directory of Open Access Journals (Sweden)

    Greeshma Sharma

    2016-12-01

    Full Text Available Spatial reference frames (SRF are the means of representing spatial relations or locations either in an egocentric coordinate system (centred on navigator or in an allocentric coordinate system (Centred on object. It is necessary to understand when and how spatial representation switches between allocentric and egocentric reference frames in context to spatial tasks. The objective of this study was to explore if the elementary spatial representation does exist, whether it would remain consistent or change under the influence of a task's demand. Also, we explored how the SRF would assist if the environment is enriched with landmarks, having multiple routes for wayfinding. The results showed that the switching of SRF depends not only on the default representation but also on a task's demand. They also demonstrated that participants who were using allocentric representation performed better in the presence of landmarks.

  1. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Badawi, N.; Aamand, Jens

    2014-01-01

    across pesticide classes: they include some soil characteristics (pH) and some agricultural management practices (pesticide application, tillage), while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance......Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we...... critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates...

  2. The importance of spatial models for estimating the strength of density dependence

    DEFF Research Database (Denmark)

    Thorson, James T.; Skaug, Hans J.; Kristensen, Kasper

    2014-01-01

    the California Coast. In this case, the nonspatial model estimates implausible oscillatory dynamics on an annual time scale, while the spatial model estimates strong autocorrelation and is supported by model selection tools. We conclude by discussing the importance of improved data archiving techniques, so...... that spatial models can be used to re-examine classic questions regarding the presence and strength of density dependence in wild populations Read More: http://www.esajournals.org/doi/abs/10.1890/14-0739.1...

  3. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    Science.gov (United States)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale

  4. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications

    Directory of Open Access Journals (Sweden)

    Arnaud eDechesne

    2014-12-01

    Full Text Available Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates inter-studies comparisons. However, it is clear that the presence and activity of pesticide degraders is often highly spatially variable with coefficients of variation often exceeding 50% and frequently displays nonrandom spatial patterns. A few controlling factors have tentatively been identified across pesticide classes: they include some soil characteristics (pH and some agricultural management practices (pesticide application, tillage, while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance of spatial heterogeneity on the fate of pesticides in soil has been difficult to obtain but modelling and experimental systems that do not include soil’s full complexity reveal that this heterogeneity must be considered to improve prediction of pesticide biodegradation rates or of leaching risks. Overall, studying the spatial heterogeneity of pesticide biodegradation is a relatively new field at the interface of agronomy, microbial ecology, and geosciences and a wealth of novel data is being collected from these different disciplinary perspectives. We make suggestions on possible avenues to take full advantage of these investigations for a better understanding and prediction of the fate of pesticides in soil.

  5. A Structural Equation Approach to Models with Spatial Dependence

    NARCIS (Netherlands)

    Oud, Johan H. L.; Folmer, Henk

    We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it

  6. A structural equation approach to models with spatial dependence

    NARCIS (Netherlands)

    Oud, J.H.L.; Folmer, H.

    2008-01-01

    We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it

  7. A Structural Equation Approach to Models with Spatial Dependence

    NARCIS (Netherlands)

    Oud, J.H.L.; Folmer, H.

    2008-01-01

    We introduce the class of structural equation models (SEMs) and corresponding estimation procedures into a spatial dependence framework. SEM allows both latent and observed variables within one and the same (causal) model. Compared with models with observed variables only, this feature makes it

  8. Algorithmic foundation of multi-scale spatial representation

    CERN Document Server

    Li, Zhilin

    2006-01-01

    With the widespread use of GIS, multi-scale representation has become an important issue in the realm of spatial data handling. However, no book to date has systematically tackled the different aspects of this discipline. Emphasizing map generalization, Algorithmic Foundation of Multi-Scale Spatial Representation addresses the mathematical basis of multi-scale representation, specifically, the algorithmic foundation.Using easy-to-understand language, the author focuses on geometric transformations, with each chapter surveying a particular spatial feature. After an introduction to the essential operations required for geometric transformations as well as some mathematical and theoretical background, the book describes algorithms for a class of point features/clusters. It then examines algorithms for individual line features, such as the reduction of data points, smoothing (filtering), and scale-driven generalization, followed by a discussion of algorithms for a class of line features including contours, hydrog...

  9. Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales.

    Science.gov (United States)

    Pirih, Primož; Wilts, Bodo D; Stavenga, Doekele G

    2011-10-01

    The males of many pierid butterflies have iridescent wings, which presumably function in intraspecific communication. The iridescence is due to nanostructured ridges of the cover scales. We have studied the iridescence in the males of a few members of Coliadinae, Gonepteryx aspasia, G. cleopatra, G. rhamni, and Colias croceus, and in two members of the Colotis group, Hebomoia glaucippe and Colotis regina. Imaging scatterometry demonstrated that the pigmentary colouration is diffuse whereas the structural colouration creates a directional, line-shaped far-field radiation pattern. Angle-dependent reflectance measurements demonstrated that the directional iridescence distinctly varies among closely related species. The species-dependent scale curvature determines the spatial properties of the wing iridescence. Narrow beam illumination of flat scales results in a narrow far-field iridescence pattern, but curved scales produce broadened patterns. The restricted spatial visibility of iridescence presumably plays a role in intraspecific signalling.

  10. Modeling spatial processes with unknown extremal dependence class

    KAUST Repository

    Huser, Raphaël G.

    2017-03-17

    Many environmental processes exhibit weakening spatial dependence as events become more extreme. Well-known limiting models, such as max-stable or generalized Pareto processes, cannot capture this, which can lead to a preference for models that exhibit a property known as asymptotic independence. However, weakening dependence does not automatically imply asymptotic independence, and whether the process is truly asymptotically (in)dependent is usually far from clear. The distinction is key as it can have a large impact upon extrapolation, i.e., the estimated probabilities of events more extreme than those observed. In this work, we present a single spatial model that is able to capture both dependence classes in a parsimonious manner, and with a smooth transition between the two cases. The model covers a wide range of possibilities from asymptotic independence through to complete dependence, and permits weakening dependence of extremes even under asymptotic dependence. Censored likelihood-based inference for the implied copula is feasible in moderate dimensions due to closed-form margins. The model is applied to oceanographic datasets with ambiguous true limiting dependence structure.

  11. Baseflow physical characteristics differ at multiple spatial scales in stream networks across diverse biomes

    Science.gov (United States)

    Janine Ruegg; Walter K. Dodds; Melinda D. Daniels; Ken R. Sheehan; Christina L. Baker; William B. Bowden; Kaitlin J. Farrell; Michael B. Flinn; Tamara K. Harms; Jeremy B. Jones; Lauren E. Koenig; John S. Kominoski; William H. McDowell; Samuel P. Parker; Amy D. Rosemond; Matt T. Trentman; Matt Whiles; Wilfred M. Wollheim

    2016-01-01

    ContextSpatial scaling of ecological processes is facilitated by quantifying underlying habitat attributes. Physical and ecological patterns are often measured at disparate spatial scales limiting our ability to quantify ecological processes at broader spatial scales using physical attributes.

  12. Improving left spatial neglect through music scale playing.

    Science.gov (United States)

    Bernardi, Nicolò Francesco; Cioffi, Maria Cristina; Ronchi, Roberta; Maravita, Angelo; Bricolo, Emanuela; Zigiotto, Luca; Perucca, Laura; Vallar, Giuseppe

    2017-03-01

    The study assessed whether the auditory reference provided by a music scale could improve spatial exploration of a standard musical instrument keyboard in right-brain-damaged patients with left spatial neglect. As performing music scales involves the production of predictable successive pitches, the expectation of the subsequent note may facilitate patients to explore a larger extension of space in the left affected side, during the production of music scales from right to left. Eleven right-brain-damaged stroke patients with left spatial neglect, 12 patients without neglect, and 12 age-matched healthy participants played descending scales on a music keyboard. In a counterbalanced design, the participants' exploratory performance was assessed while producing scales in three feedback conditions: With congruent sound, no-sound, or random sound feedback provided by the keyboard. The number of keys played and the timing of key press were recorded. Spatial exploration by patients with left neglect was superior with congruent sound feedback, compared to both Silence and Random sound conditions. Both the congruent and incongruent sound conditions were associated with a greater deceleration in all groups. The frame provided by the music scale improves exploration of the left side of space, contralateral to the right hemisphere, damaged in patients with left neglect. Performing a scale with congruent sounds may trigger at some extent preserved auditory and spatial multisensory representations of successive sounds, thus influencing the time course of space scanning, and ultimately resulting in a more extensive spatial exploration. These findings offer new perspectives also for the rehabilitation of the disorder. © 2015 The British Psychological Society.

  13. Spatial-frequency dependent binocular imbalance in amblyopia.

    Science.gov (United States)

    Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C; Bex, Peter J

    2015-11-25

    While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy.

  14. Human seizures couple across spatial scales through travelling wave dynamics

    Science.gov (United States)

    Martinet, L.-E.; Fiddyment, G.; Madsen, J. R.; Eskandar, E. N.; Truccolo, W.; Eden, U. T.; Cash, S. S.; Kramer, M. A.

    2017-04-01

    Epilepsy--the propensity toward recurrent, unprovoked seizures--is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms--namely, the effects of an increased extracellular potassium concentration diffusing in space--that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures--and connecting these dynamics to specific biological mechanisms--promises new insights to treat this devastating disease.

  15. The scale dependence of optical diversity in a prairie ecosystem

    Science.gov (United States)

    Gamon, J. A.; Wang, R.; Stilwell, A.; Zygielbaum, A. I.; Cavender-Bares, J.; Townsend, P. A.

    2015-12-01

    Biodiversity loss, one of the most crucial challenges of our time, endangers ecosystem services that maintain human wellbeing. Traditional methods of measuring biodiversity require extensive and costly field sampling by biologists with extensive experience in species identification. Remote sensing can be used for such assessment based upon patterns of optical variation. This provides efficient and cost-effective means to determine ecosystem diversity at different scales and over large areas. Sampling scale has been described as a "fundamental conceptual problem" in ecology, and is an important practical consideration in both remote sensing and traditional biodiversity studies. On the one hand, with decreasing spatial and spectral resolution, the differences among different optical types may become weak or even disappear. Alternately, high spatial and/or spectral resolution may introduce redundant or contradictory information. For example, at high resolution, the variation within optical types (e.g., between leaves on a single plant canopy) may add complexity unrelated to specie richness. We studied the scale-dependence of optical diversity in a prairie ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, USA using a variety of spectrometers from several platforms on the ground and in the air. Using the coefficient of variation (CV) of spectra as an indicator of optical diversity, we found that high richness plots generally have a higher coefficient of variation. High resolution imaging spectrometer data (1 mm pixels) showed the highest sensitivity to richness level. With decreasing spatial resolution, the difference in CV between richness levels decreased, but remained significant. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods.

  16. Modeling Spatial Dependence of Rainfall Extremes Across Multiple Durations

    Science.gov (United States)

    Le, Phuong Dong; Leonard, Michael; Westra, Seth

    2018-03-01

    Determining the probability of a flood event in a catchment given that another flood has occurred in a nearby catchment is useful in the design of infrastructure such as road networks that have multiple river crossings. These conditional flood probabilities can be estimated by calculating conditional probabilities of extreme rainfall and then transforming rainfall to runoff through a hydrologic model. Each catchment's hydrological response times are unlikely to be the same, so in order to estimate these conditional probabilities one must consider the dependence of extreme rainfall both across space and across critical storm durations. To represent these types of dependence, this study proposes a new approach for combining extreme rainfall across different durations within a spatial extreme value model using max-stable process theory. This is achieved in a stepwise manner. The first step defines a set of common parameters for the marginal distributions across multiple durations. The parameters are then spatially interpolated to develop a spatial field. Storm-level dependence is represented through the max-stable process for rainfall extremes across different durations. The dependence model shows a reasonable fit between the observed pairwise extremal coefficients and the theoretical pairwise extremal coefficient function across all durations. The study demonstrates how the approach can be applied to develop conditional maps of the return period and return level across different durations.

  17. Mapping spatial patterns of denitrifiers at large scales (Invited)

    Science.gov (United States)

    Philippot, L.; Ramette, A.; Saby, N.; Bru, D.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.

    2010-12-01

    Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 739 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.

  18. Non-Stationary Dependence Structures for Spatial Extremes

    KAUST Repository

    Huser, Raphaël

    2016-03-03

    Max-stable processes are natural models for spatial extremes because they provide suitable asymptotic approximations to the distribution of maxima of random fields. In the recent past, several parametric families of stationary max-stable models have been developed, and fitted to various types of data. However, a recurrent problem is the modeling of non-stationarity. In this paper, we develop non-stationary max-stable dependence structures in which covariates can be easily incorporated. Inference is performed using pairwise likelihoods, and its performance is assessed by an extensive simulation study based on a non-stationary locally isotropic extremal t model. Evidence that unknown parameters are well estimated is provided, and estimation of spatial return level curves is discussed. The methodology is demonstrated with temperature maxima recorded over a complex topography. Models are shown to satisfactorily capture extremal dependence.

  19. Spatial connections in regional climate model rainfall outputs at different temporal scales: Application of network theory

    Science.gov (United States)

    Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui

    2018-01-01

    Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are

  20. Effect of Spatial-Dependent Utility on Social Group Domination

    Science.gov (United States)

    Rodriguez, Nathaniel; Meyertholen, Andrew

    2012-02-01

    The mathematical modeling of social group competition has garnered much attention. We consider a model originated by Abrams and Strogatz [Nature 424, 900 (2003)] that predicts the extinction of one of two social groups. This model assigns a utility to each social group, which is constant over the entire society. We find by allowing this utility to vary over a society, through the introduction of a network or spatial dependence, this model may result in the coexistence of the two social groups.

  1. Spatial occupancy models applied to atlas data show Southern Ground Hornbills strongly depend on protected areas.

    Science.gov (United States)

    Broms, Kristin M; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L

    2014-03-01

    Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.

  2. Water harvesting options in the drylands at different spatial scales

    OpenAIRE

    Ali, Akhtar; Oweis, Theib; Rashid, Mohammad; El-Naggar, Sobhi; Aal, Atef Abdul

    2007-01-01

    The effect of spatial-scale variations on water harvesting has been evaluated at micro-catchment, hillside/farm, and watershed (=catchment) scales in three relatively dry environments in Syria, Pakistan and Egypt. Micro-catchment water harvesting captures localized runoff only through independent micro-catchment systems and is not influenced by hill slope runoff and stream flows. In Syria, it was found that only a fraction of total runoff from a catchment is collected, with no significant eff...

  3. Using Remote Sensing to Determine the Spatial Scales of Estuaries

    Science.gov (United States)

    Davis, C. O.; Tufillaro, N.; Nahorniak, J.

    2016-02-01

    One challenge facing Earth system science is to understand and quantify the complexity of rivers, estuaries, and coastal zone regions. Earlier studies using data from airborne hyperspectral imagers (Bissett et al., 2004, Davis et al., 2007) demonstrated from a very limited data set that the spatial scales of the coastal ocean could be resolved with spatial sampling of 100 m Ground Sample Distance (GSD) or better. To develop a much larger data set (Aurin et al., 2013) used MODIS 250 m data for a wide range of coastal regions. Their conclusion was that farther offshore 500 m GSD was adequate to resolve large river plume features while nearshore regions (a few kilometers from the coast) needed higher spatial resolution data not available from MODIS. Building on our airborne experience, the Hyperspectral Imager for the Coastal Ocean (HICO, Lucke et al., 2011) was designed to provide hyperspectral data for the coastal ocean at 100 m GSD. HICO operated on the International Space Station for 5 years and collected over 10,000 scenes of the coastal ocean and other regions around the world. Here we analyze HICO data from an example set of major river delta regions to assess the spatial scales of variability in those systems. In one system, the San Francisco Bay and Delta, we also analyze Landsat 8 OLI data at 30 m and 15 m to validate the 100 m GSD sampling scale for the Bay and assess spatial sampling needed as you move up river.

  4. Variability of the raindrop size distribution at small spatial scales

    Science.gov (United States)

    Berne, A.; Jaffrain, J.

    2010-12-01

    Because of the interactions between atmospheric turbulence and cloud microphysics, the raindrop size distribution (DSD) is strongly variable in space and time. The spatial variability of the DSD at small spatial scales (below a few km) is not well documented and not well understood, mainly because of a lack of adequate measurements at the appropriate resolutions. A network of 16 disdrometers (Parsivels) has been designed and set up over EPFL campus in Lausanne, Switzerland. This network covers a typical operational weather radar pixel of 1x1 km2. The question of the significance of the variability of the DSD at such small scales is relevant for radar remote sensing of rainfall because the DSD is often assumed to be uniform within a radar sample volume and because the Z-R relationships used to convert the measured radar reflectivity Z into rain rate R are usually derived from point measurements. Thanks to the number of disdrometers, it was possible to quantify the spatial variability of the DSD at the radar pixel scale and to show that it can be significant. In this contribution, we show that the variability of the total drop concentration, of the median volume diameter and of the rain rate are significant, taking into account the sampling uncertainty associated with disdrometer measurements. The influence of this variability on the Z-R relationship can be non-negligible. Finally, the spatial structure of the DSD is quantified using a geostatistical tool, the variogram, and indicates high spatial correlation within a radar pixel.

  5. Prediction of spatially variable unsaturated hydraulic conductivity using scaled particle-size distribution functions

    NARCIS (Netherlands)

    Nasta, P.; Romano, N.; Assouline, S; Vrugt, J.A.; Hopmans, J.W.

    2013-01-01

    Simultaneous scaling of soil water retention and hydraulic conductivity functions provides an effective means to characterize the heterogeneity and spatial variability of soil hydraulic properties in a given study area. The statistical significance of this approach largely depends on the number of

  6. Perspectives of Spatial Scale in a Wildland Forest Epidemic

    Science.gov (United States)

    W.W. Dillon; S.E. Haas; D.M. Rizzo; R.K. Meentemeyer

    2014-01-01

    The challenge of observing interactions between plant pathogens, their hosts, and environmental heterogeneity across multiple spatial scales commonly limits our ability to understand and manage wildland forest epidemics. Using the forest pathogen Phytophthora ramorum as a case study, we established 20 multiscale field sites to analyze how host-...

  7. Appropriatie spatial scales to achieve model output uncertainty goals

    NARCIS (Netherlands)

    Booij, Martijn J.; Melching, Charles S.; Chen, Xiaohong; Chen, Yongqin; Xia, Jun; Zhang, Hailun

    2008-01-01

    Appropriate spatial scales of hydrological variables were determined using an existing methodology based on a balance in uncertainties from model inputs and parameters extended with a criterion based on a maximum model output uncertainty. The original methodology uses different relationships between

  8. Water-safety strategies and local-scale spatial quality

    NARCIS (Netherlands)

    Nillesen, A.L.

    2013-01-01

    Delta regions throughout the world are subject to increasing flood risks. For protection, regional water safety strategies are being developed. Local-scale spatial qualities should be included in their evaluation. An experimental methodology has been developed for this purpose. This paper

  9. Choosing appropriate temporal and spatial scales for ecological ...

    Indian Academy of Sciences (India)

    Unknown

    region of the world, which he called a “biome”, had a natural plant .... 143) sums up the current world view in ecology quite bluntly: The idea ..... considerations of spatial scale, however, management practices .... not have the seed bank to respond to a historically ... predictive knowledge about the workings of natural systems ...

  10. Environmental Impacts of Large Scale Biochar Application Through Spatial Modeling

    Science.gov (United States)

    Huber, I.; Archontoulis, S.

    2017-12-01

    In an effort to study the environmental (emissions, soil quality) and production (yield) impacts of biochar application at regional scales we coupled the APSIM-Biochar model with the pSIMS parallel platform. So far the majority of biochar research has been concentrated on lab to field studies to advance scientific knowledge. Regional scale assessments are highly needed to assist decision making. The overall objective of this simulation study was to identify areas in the USA that have the most gain environmentally from biochar's application, as well as areas which our model predicts a notable yield increase due to the addition of biochar. We present the modifications in both APSIM biochar and pSIMS components that were necessary to facilitate these large scale model runs across several regions in the United States at a resolution of 5 arcminutes. This study uses the AgMERRA global climate data set (1980-2010) and the Global Soil Dataset for Earth Systems modeling as a basis for creating its simulations, as well as local management operations for maize and soybean cropping systems and different biochar application rates. The regional scale simulation analysis is in progress. Preliminary results showed that the model predicts that high quality soils (particularly those common to Iowa cropping systems) do not receive much, if any, production benefit from biochar. However, soils with low soil organic matter ( 0.5%) do get a noteworthy yield increase of around 5-10% in the best cases. We also found N2O emissions to be spatial and temporal specific; increase in some areas and decrease in some other areas due to biochar application. In contrast, we found increases in soil organic carbon and plant available water in all soils (top 30 cm) due to biochar application. The magnitude of these increases (% change from the control) were larger in soil with low organic matter (below 1.5%) and smaller in soils with high organic matter (above 3%) and also dependent on biochar

  11. Measuring lateral saturated soil hydraulic conductivity at different spatial scales

    Science.gov (United States)

    Di Prima, Simone; Marrosu, Roberto; Pirastru, Mario; Niedda, Marcello

    2017-04-01

    Among the soil hydraulic properties, saturated soil hydraulic conductivity, Ks, is particularly important since it controls many hydrological processes. Knowledge of this soil property allows estimation of dynamic indicators of the soil's ability to transmit water down to the root zone. Such dynamic indicators are valuable tools to quantify land degradation and developing 'best management' land use practice (Castellini et al., 2016; Iovino et al., 2016). In hillslopes, lateral saturated soil hydraulic conductivity, Ks,l, is a key factor since it controls subsurface flow. However, Ks,l data collected by point-scale measurements, including infiltrations tests, could be unusable for interpreting field hydrological processes and particularly subsurface flow in hillslopes. Therefore, they are generally not representative of subsurface processes at hillslope-scale due mainly to soil heterogeneities and the unknown total extent and connectivity of macropore network in the porous medium. On the other hand, large scale Ks,l measurements, which allow to average soil heterogeneities, are difficult and costly, thus remain rare. Reliable Ks,l values should be measured on a soil volume similar to the representative elementary volume (REV) in order to incorporate the natural heterogeneity of the soil. However, the REV may be considered site-specific since it is expected to increase for soils with macropores (Brooks et al., 2004). In this study, laboratory and in-situ Ks,l values are compared in order to detect the dependency Ks,l from the spatial scale of investigation. The research was carried out at a hillslope located in the Baratz Lake watershed, in northwest Sardinia, Italy, characterized by degraded vegetation (grassland established after fire or clearing of the maquis). The experimental area is about 60 m long, with an extent of approximately 2000 m2, and a mean slope of 30%. The soil depth is about 35 to 45 cm. The parent material is a very dense grayish, altered

  12. Empirical spatial econometric modelling of small scale neighbourhood

    Science.gov (United States)

    Gerkman, Linda

    2012-07-01

    The aim of the paper is to model small scale neighbourhood in a house price model by implementing the newest methodology in spatial econometrics. A common problem when modelling house prices is that in practice it is seldom possible to obtain all the desired variables. Especially variables capturing the small scale neighbourhood conditions are hard to find. If there are important explanatory variables missing from the model, the omitted variables are spatially autocorrelated and they are correlated with the explanatory variables included in the model, it can be shown that a spatial Durbin model is motivated. In the empirical application on new house price data from Helsinki in Finland, we find the motivation for a spatial Durbin model, we estimate the model and interpret the estimates for the summary measures of impacts. By the analysis we show that the model structure makes it possible to model and find small scale neighbourhood effects, when we know that they exist, but we are lacking proper variables to measure them.

  13. Impact of Spatial Scales on the Intercomparison of Climate Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Steptoe, Michael; Chang, Zheng; Link, Robert; Clarke, Leon; Maciejewski, Ross

    2017-01-01

    Scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment, but intercomparison and similarity analysis of different climate scenarios based on multiple simulation runs remain challenging. Although spatial heterogeneity plays a key role in modeling climate and human systems, little research has been performed to understand the impact of spatial variations and scales on similarity analysis of climate scenarios. To address this issue, the authors developed a geovisual analytics framework that lets users perform similarity analysis of climate scenarios from the Global Change Assessment Model (GCAM) using a hierarchical clustering approach.

  14. Spatial scaling of regional strategic programmes in Finland

    DEFF Research Database (Denmark)

    Makkonen, Teemu; Inkinen, Tommi

    2014-01-01

    framework. Spatial scales proved to be a black box for regional strategies in Finland. Regional strategic programmes use a similar language that ignores the spatial variations of their locations. Clusters and regional innovation systems should be considered as parts of vertical and horizontal interlinkages...... within the economy and not as individual islands of organizational proximities in isolated contexts. It is argued here that an imprecise understanding of the innovation systems and cluster approaches, both conceptually and practically, has led to some ambiguity, resulting in the use of these terms...

  15. A full scale approximation of covariance functions for large spatial data sets

    KAUST Repository

    Sang, Huiyan

    2011-10-10

    Gaussian process models have been widely used in spatial statistics but face tremendous computational challenges for very large data sets. The model fitting and spatial prediction of such models typically require O(n 3) operations for a data set of size n. Various approximations of the covariance functions have been introduced to reduce the computational cost. However, most existing approximations cannot simultaneously capture both the large- and the small-scale spatial dependence. A new approximation scheme is developed to provide a high quality approximation to the covariance function at both the large and the small spatial scales. The new approximation is the summation of two parts: a reduced rank covariance and a compactly supported covariance obtained by tapering the covariance of the residual of the reduced rank approximation. Whereas the former part mainly captures the large-scale spatial variation, the latter part captures the small-scale, local variation that is unexplained by the former part. By combining the reduced rank representation and sparse matrix techniques, our approach allows for efficient computation for maximum likelihood estimation, spatial prediction and Bayesian inference. We illustrate the new approach with simulated and real data sets. © 2011 Royal Statistical Society.

  16. A full scale approximation of covariance functions for large spatial data sets

    KAUST Repository

    Sang, Huiyan; Huang, Jianhua Z.

    2011-01-01

    Gaussian process models have been widely used in spatial statistics but face tremendous computational challenges for very large data sets. The model fitting and spatial prediction of such models typically require O(n 3) operations for a data set of size n. Various approximations of the covariance functions have been introduced to reduce the computational cost. However, most existing approximations cannot simultaneously capture both the large- and the small-scale spatial dependence. A new approximation scheme is developed to provide a high quality approximation to the covariance function at both the large and the small spatial scales. The new approximation is the summation of two parts: a reduced rank covariance and a compactly supported covariance obtained by tapering the covariance of the residual of the reduced rank approximation. Whereas the former part mainly captures the large-scale spatial variation, the latter part captures the small-scale, local variation that is unexplained by the former part. By combining the reduced rank representation and sparse matrix techniques, our approach allows for efficient computation for maximum likelihood estimation, spatial prediction and Bayesian inference. We illustrate the new approach with simulated and real data sets. © 2011 Royal Statistical Society.

  17. Spatial data analysis for exploration of regional scale geothermal resources

    Science.gov (United States)

    Moghaddam, Majid Kiavarz; Noorollahi, Younes; Samadzadegan, Farhad; Sharifi, Mohammad Ali; Itoi, Ryuichi

    2013-10-01

    Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100 °C/km and heat flow over 100 mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

  18. Scale dependence of effective media properties

    International Nuclear Information System (INIS)

    Tidwell, V.C.; VonDoemming, J.D.; Martinez, K.

    1992-01-01

    For problems where media properties are measured at one scale and applied at another, scaling laws or models must be used in order to define effective properties at the scale of interest. The accuracy of such models will play a critical role in predicting flow and transport through the Yucca Mountain Test Site given the sensitivity of these calculations to the input property fields. Therefore, a research programhas been established to gain a fundamental understanding of how properties scale with the aim of developing and testing models that describe scaling behavior in a quantitative-manner. Scaling of constitutive rock properties is investigated through physical experimentation involving the collection of suites of gas permeability data measured over a range of discrete scales. Also, various physical characteristics of property heterogeneity and the means by which the heterogeneity is measured and described are systematically investigated to evaluate their influence on scaling behavior. This paper summarizes the approach that isbeing taken toward this goal and presents the results of a scoping study that was conducted to evaluate the feasibility of the proposed research

  19. Scale Dependence of Dark Energy Antigravity

    Science.gov (United States)

    Perivolaropoulos, L.

    2002-09-01

    We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.

  20. ION-SCALE TURBULENCE IN THE INNER HELIOSPHERE: RADIAL DEPENDENCE

    Energy Technology Data Exchange (ETDEWEB)

    Comisel, H.; Motschmann, U.; Büchner, J.; Narita, Y.; Nariyuki, Y. [University of Toyama, Faculty of Human Development, 3190, Gofuku, Toyama, 930-8555 (Japan)

    2015-10-20

    The evolution of the ion-scale plasma turbulence in the inner heliosphere is studied by associating the plasma parameters for hybrid-code turbulence simulations to the radial distance from the Sun via a Solar wind model based mapping procedure. Using a mapping based on a one-dimensional solar wind expansion model, the resulting ion-kinetic scale turbulence is related to the solar wind distance from the Sun. For this purpose the mapping is carried out for various values of ion beta that correspond to the heliocentric distance. It is shown that the relevant normal modes such as ion cyclotron and ion Bernstein modes will occur first at radial distances of about 0.2–0.3 AU, i.e., near the Mercury orbit. This finding can be used as a reference, a prediction to guide the in situ measurements to be performed by the upcoming Solar Orbiter and Solar Probe Plus missions. Furthermore, a radial dependence of the wave-vector anisotropy was obtained. For astrophysical objects this means that the spatial scales of filamentary structures in interstellar media or astrophysical jets can be predicted for photometric observations.

  1. Resource heterogeneity and foraging behaviour of cattle across spatial scales

    Directory of Open Access Journals (Sweden)

    Demment Montague W

    2009-04-01

    Full Text Available Abstract Background Understanding the mechanisms that influence grazing selectivity in patchy environments is vital to promote sustainable production and conservation of cultivated and natural grasslands. To better understand how patch size and spatial dynamics influence selectivity in cattle, we examined grazing selectivity under 9 different treatments by offering alfalfa and fescue in patches of 3 sizes spaced with 1, 4, and 8 m between patches along an alley. We hypothesized that (1 selectivity is driven by preference for the forage species that maximizes forage intake over feeding scales ranging from single bites to patches along grazing paths, (2 that increasing patch size enhances selectivity for the preferred species, and that (3 increasing distances between patches restricts selectivity because of the aggregation of scale-specific behaviours across foraging scales. Results Cows preferred and selected alfalfa, the species that yielded greater short-term intake rates (P Conclusion We conclude that patch size and spacing affect components of intake rate and, to a lesser extent, the selectivity of livestock at lower hierarchies of the grazing process, particularly by enticing livestock to make more even use of the available species as patches are spaced further apart. Thus, modifications in the spatial pattern of plant patches along with reductions in the temporal and spatial allocation of grazing may offer opportunities to improve uniformity of grazing by livestock and help sustain biodiversity and stability of plant communities.

  2. Disease spread across multiple scales in a spatial hierarchy: effect of host spatial structure and of inoculum quantity and distribution.

    Science.gov (United States)

    Gosme, Marie; Lucas, Philippe

    2009-07-01

    Spatial patterns of both the host and the disease influence disease spread and crop losses. Therefore, the manipulation of these patterns might help improve control strategies. Considering disease spread across multiple scales in a spatial hierarchy allows one to capture important features of epidemics developing in space without using explicitly spatialized variables. Thus, if the system under study is composed of roots, plants, and planting hills, the effect of host spatial pattern can be studied by varying the number of plants per planting hill. A simulation model based on hierarchy theory was used to simulate the effects of large versus small planting hills, low versus high level of initial infections, and aggregated versus uniform distribution of initial infections. The results showed that aggregating the initially infected plants always resulted in slower epidemics than spreading out the initial infections uniformly. Simulation results also showed that, in most cases, disease epidemics were slower in the case of large host aggregates (100 plants/hill) than with smaller aggregates (25 plants/hill), except when the initially infected plants were both numerous and spread out uniformly. The optimal strategy for disease control depends on several factors, including initial conditions. More importantly, the model offers a framework to account for the interplay between the spatial characteristics of the system, rates of infection, and aggregation of the disease.

  3. Sequential dependencies in magnitude scaling of loudness

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Jesteadt, Walt

    2013-01-01

    Ten normally hearing listeners used a programmable sone-potentiometer knob to adjust the level of a 1000-Hz sinusoid to match the loudness of numbers presented to them in a magnitude production task. Three different power-law exponents (0.15, 0.30, and 0.60) and a log-law with equal steps in d......B were used to program the sone-potentiometer. The knob settings systematically influenced the form of the loudness function. Time series analysis was used to assess the sequential dependencies in the data, which increased with increasing exponent and were greatest for the log-law. It would be possible......, therefore, to choose knob properties that minimized these dependencies. When the sequential dependencies were removed from the data, the slope of the loudness functions did not change, but the variability decreased. Sequential dependencies were only present when the level of the tone on the previous trial...

  4. Spatial modeling of agricultural land use change at global scale

    Science.gov (United States)

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  5. Sparing land for biodiversity at multiple spatial scales

    Directory of Open Access Journals (Sweden)

    Johan eEkroos

    2016-01-01

    Full Text Available A common approach to the conservation of farmland biodiversity and the promotion of multifunctional landscapes, particularly in landscapes containing only small remnants of non-crop habitats, has been to maintain landscape heterogeneity and reduce land-use intensity. In contrast, it has recently been shown that devoting specific areas of non-crop habitats to conservation, segregated from high-yielding farmland (‘land sparing’, can more effectively conserve biodiversity than promoting low-yielding, less intensively managed farmland occupying larger areas (‘land sharing’. In the present paper we suggest that the debate over the relative merits of land sparing or land sharing is partly blurred by the differing spatial scales at which it is suggested that land sparing should be applied. We argue that there is no single correct spatial scale for segregating biodiversity protection and commodity production in multifunctional landscapes. Instead we propose an alternative conceptual construct, which we call ‘multiple-scale land sparing’, targeting biodiversity and ecosystem services in transformed landscapes. We discuss how multiple-scale land sparing may overcome the apparent dichotomy between land sharing and land sparing and help to find acceptable compromises that conserve biodiversity and landscape multifunctionality.

  6. Visual dependence and spatial orientation in benign paroxysmal positional vertigo.

    Science.gov (United States)

    Nair, Maitreyi A; Mulavara, Ajitkumar P; Bloomberg, Jacob J; Sangi-Haghpeykar, Haleh; Cohen, Helen S

    2018-01-01

    People with benign paroxysmal positional vertigo (BPPV) probably have otoconial particles displaced from the utricle into the posterior semicircular canal. This unilateral change in the inertial load distributions of the labyrinth may result in visual dependence and may affect balance control. The goal of this study was to explore the interaction between visual dependence and balance control. We compared 23 healthy controls to 17 people with unilateral BPPV on the Clinical Test of Sensory Interaction and Balance on compliant foam with feet together, the Rod-and-Frame Test and a Mental Rotation Test. In controls, but not BPPV subjects, subjects with poor balance scores had significantly greater visual dependence, indicating that reliance on visual cues can affect balance control. BPPV and control subjects did not differ on the mental rotation task overall but BPPV reaction time was greater at greater orietantions, suggesting that this cognitive function was affected by BPPV. The side of impairment was strongly related to the side of perceived bias in the Earth vertical determined by BPPV subjects, indicating the relationship between the effect of asymmetric otolith unloading with simultaneous canal loading on spatial orientation perception.

  7. Is the permeability of naturally fractured rocks scale dependent?

    Science.gov (United States)

    Azizmohammadi, Siroos; Matthäi, Stephan K.

    2017-09-01

    The equivalent permeability, keq of stratified fractured porous rocks and its anisotropy is important for hydrocarbon reservoir engineering, groundwater hydrology, and subsurface contaminant transport. However, it is difficult to constrain this tensor property as it is strongly influenced by infrequent large fractures. Boreholes miss them and their directional sampling bias affects the collected geostatistical data. Samples taken at any scale smaller than that of interest truncate distributions and this bias leads to an incorrect characterization and property upscaling. To better understand this sampling problem, we have investigated a collection of outcrop-data-based Discrete Fracture and Matrix (DFM) models with mechanically constrained fracture aperture distributions, trying to establish a useful Representative Elementary Volume (REV). Finite-element analysis and flow-based upscaling have been used to determine keq eigenvalues and anisotropy. While our results indicate a convergence toward a scale-invariant keq REV with increasing sample size, keq magnitude can have multi-modal distributions. REV size relates to the length of dilated fracture segments as opposed to overall fracture length. Tensor orientation and degree of anisotropy also converge with sample size. However, the REV for keq anisotropy is larger than that for keq magnitude. Across scales, tensor orientation varies spatially, reflecting inhomogeneity of the fracture patterns. Inhomogeneity is particularly pronounced where the ambient stress selectively activates late- as opposed to early (through-going) fractures. While we cannot detect any increase of keq with sample size as postulated in some earlier studies, our results highlight a strong keq anisotropy that influences scale dependence.

  8. Scale dependence and small x behaviour of polarized parton distributions

    CERN Document Server

    Ball, R D; Ridolfi, G; Forte, S; Ridolfi, G

    1995-01-01

    We discuss perturbative evolution of the polarized structure function g_1 in the (x,Q^2) plane, with special regard to the small-x region. We determine g_1 in terms of polarized quark and gluon distributions using coefficient functions to order alpha_s. At small x g_1 then displays substantial scale dependence, which necessarily implies a corresponding scale dependence in the large-x region. This scale dependence has significant consequences for the extraction of the first moment from the experimental data, reducing its value while increasing the error. Conversely, the scale dependence may be used to constrain the size of the polarized gluon distribution.

  9. Scheme and scale dependences of leading electroweak corrections

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Sirlin, A.

    1996-01-01

    The scheme and scale dependences of leading M t -dependent contributions to Δρ, Δr, and τ, which arise because of the truncation of the perturbative series, are investigated by comparing expressions in the on-shell and MS schemes of renormalization, and studying their scale variations. Starting from the conventional on-shell formulae, we find rather large scheme and scale dependences. We then propose a simple, physically motivated modification of the conventional expressions and show that it leads to a sharp reduction in the scheme and scale dependences. Implications for electroweak physics are discussed. (orig.)

  10. Spatial scaling of net primary productivity using subpixel landcover information

    Science.gov (United States)

    Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.

    2008-10-01

    Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.

  11. Validity and factor structure of the bodybuilding dependence scale

    OpenAIRE

    Smith, D; Hale, B

    2004-01-01

    Objectives: To investigate the factor structure, validity, and reliability of the bodybuilding dependence scale and to investigate differences in bodybuilding dependence between men and women and competitive and non-competitive bodybuilders.

  12. Optical network scaling: roles of spectral and spatial aggregation.

    Science.gov (United States)

    Arık, Sercan Ö; Ho, Keang-Po; Kahn, Joseph M

    2014-12-01

    As the bit rates of routed data streams exceed the throughput of single wavelength-division multiplexing channels, spectral and spatial traffic aggregation become essential for optical network scaling. These aggregation techniques reduce network routing complexity by increasing spectral efficiency to decrease the number of fibers, and by increasing switching granularity to decrease the number of switching components. Spectral aggregation yields a modest decrease in the number of fibers but a substantial decrease in the number of switching components. Spatial aggregation yields a substantial decrease in both the number of fibers and the number of switching components. To quantify routing complexity reduction, we analyze the number of multi-cast and wavelength-selective switches required in a colorless, directionless and contentionless reconfigurable optical add-drop multiplexer architecture. Traffic aggregation has two potential drawbacks: reduced routing power and increased switching component size.

  13. N2O emission hotspots at different spatial scales and governing factors for small scale hotspots

    International Nuclear Information System (INIS)

    Heuvel, R.N. van den; Hefting, M.M.; Tan, N.C.G.; Jetten, M.S.M.; Verhoeven, J.T.A.

    2009-01-01

    Chronically nitrate-loaded riparian buffer zones show high N 2 O emissions. Often, a large part of the N 2 O is emitted from small surface areas, resulting in high spatial variability in these buffer zones. These small surface areas with high N 2 O emissions (hotspots) need to be investigated to generate knowledge on the factors governing N 2 O emissions. In this study the N 2 O emission variability was investigated at different spatial scales. Therefore N 2 O emissions from three 32 m 2 grids were determined in summer and winter. Spatial variation and total emission were determined on three different scales (0.3 m 2 , 0.018 m 2 and 0.0013 m 2 ) at plots with different levels of N 2 O emissions. Spatial variation was high at all scales determined and highest at the smallest scale. To test possible factors inducing small scale hotspots, soil samples were collected for slurry incubation to determine responses to increased electron donor/acceptor availability. Acetate addition did increase N 2 O production, but nitrate addition failed to increase total denitrification or net N 2 O production. N 2 O production was similar in all soil slurries, independent of their origin from high or low emission soils, indicating that environmental conditions (including physical factors like gas diffusion) rather than microbial community composition governed N 2 O emission rates

  14. [Spatial scale effect of urban land use landscape pattern in Shanghai City].

    Science.gov (United States)

    Xu, Li-Hua; Yue, Wen Ze; Cao, Yu

    2007-12-01

    Based on geographic information system (GIS) and remote sensing (RS) techniques, the landscape classes of urban land use in Shanghai City were extracted from SPOT images with 5 m spatial resolution in 2002, and then, the classified data were applied to quantitatively explore the change patterns of several basic landscape metrics at different scales. The results indicated that landscape metrics were sensitive to grain- and extent variance. Urban landscape pattern was spatially dependent. In other words, different landscape metrics showed different responses to scale. The resolution of 40 m was an intrinsic observing scale for urban landscape in Shanghai City since landscape metrics showed random characteristics while the grain was less than 40 m. The extent of 24 km was a symbol scale in a series of extents, which was consistent with the boundary between urban built-up area and suburban area in Shanghai City. As a result, the extent of 12 km away from urban center would be an intrinsic handle scale for urban landscape in Shanghai City. However, due to the complexity of urban structure and asymmetry of urban spatial expansion, the intrinsic handle scale was not regular extent, and the square with size of 24 km was just an approximate intrinsic extent for Shanghai City.

  15. Toward micro-scale spatial modeling of gentrification

    Science.gov (United States)

    O'Sullivan, David

    A simple preliminary model of gentrification is presented. The model is based on an irregular cellular automaton architecture drawing on the concept of proximal space, which is well suited to the spatial externalities present in housing markets at the local scale. The rent gap hypothesis on which the model's cell transition rules are based is discussed. The model's transition rules are described in detail. Practical difficulties in configuring and initializing the model are described and its typical behavior reported. Prospects for further development of the model are discussed. The current model structure, while inadequate, is well suited to further elaboration and the incorporation of other interesting and relevant effects.

  16. Relevance of multiple spatial scales in habitat models: A case study with amphibians and grasshoppers

    Science.gov (United States)

    Altmoos, Michael; Henle, Klaus

    2010-11-01

    Habitat models for animal species are important tools in conservation planning. We assessed the need to consider several scales in a case study for three amphibian and two grasshopper species in the post-mining landscapes near Leipzig (Germany). The two species groups were selected because habitat analyses for grasshoppers are usually conducted on one scale only whereas amphibians are thought to depend on more than one spatial scale. First, we analysed how the preference to single habitat variables changed across nested scales. Most environmental variables were only significant for a habitat model on one or two scales, with the smallest scale being particularly important. On larger scales, other variables became significant, which cannot be recognized on lower scales. Similar preferences across scales occurred in only 13 out of 79 cases and in 3 out of 79 cases the preference and avoidance for the same variable were even reversed among scales. Second, we developed habitat models by using a logistic regression on every scale and for all combinations of scales and analysed how the quality of habitat models changed with the scales considered. To achieve a sufficient accuracy of the habitat models with a minimum number of variables, at least two scales were required for all species except for Bufo viridis, for which a single scale, the microscale, was sufficient. Only for the European tree frog ( Hyla arborea), at least three scales were required. The results indicate that the quality of habitat models increases with the number of surveyed variables and with the number of scales, but costs increase too. Searching for simplifications in multi-scaled habitat models, we suggest that 2 or 3 scales should be a suitable trade-off, when attempting to define a suitable microscale.

  17. A reliability and utility study of the Care Dependency Scale

    NARCIS (Netherlands)

    Dijkstra, A.; Buist, G.; Moorer, P.; Dassen, T.

    2000-01-01

    The purpose of this study was to examine the reliability and utility of the Care Dependency Scale (CDS). This 15-item scale has been developed recently for assessing the care dependency of demented or menially handicapped inpatients. Data for this study were collected from 153 demented and 139

  18. Scaling and spatial complementarity of tectonic earthquake swarms

    KAUST Repository

    Passarelli, Luigi

    2017-11-10

    Tectonic earthquake swarms (TES) often coincide with aseismic slip and sometimes precede damaging earthquakes. In spite of recent progress in understanding the significance and properties of TES at plate boundaries, their mechanics and scaling are still largely uncertain. Here we evaluate several TES that occurred during the past 20 years on a transform plate boundary in North Iceland. We show that the swarms complement each other spatially with later swarms discouraged from fault segments activated by earlier swarms, which suggests efficient strain release and aseismic slip. The fault area illuminated by earthquakes during swarms may be more representative of the total moment release than the cumulative moment of the swarm earthquakes. We use these findings and other published results from a variety of tectonic settings to discuss general scaling properties for TES. The results indicate that the importance of TES in releasing tectonic strain at plate boundaries may have been underestimated.

  19. In-situ materials characterization across spatial and temporal scales

    CERN Document Server

    Graafsma, Heinz; Zhang, Xiao; Frenken, Joost

    2014-01-01

    The behavior of nanoscale materials can change rapidly with time either because the environment changes rapidly, or because the influence of the environment propagates quickly across the intrinsically small dimensions of nanoscale materials. Extremely fast time resolution studies using X-rays, electrons and neutrons are of very high interest to many researchers and is a fast-evolving and interesting field for the study of dynamic processes. Therefore, in situ structural characterization and measurements of structure-property relationships covering several decades of length and time scales (from atoms to millimeters and femtoseconds to hours) with high spatial and temporal resolutions are crucially important to understand the synthesis and behavior of multidimensional materials. The techniques described in this book will permit access to the real-time dynamics of materials, surface processes, and chemical and biological reactions at various time scales. This book provides an interdisciplinary reference for res...

  20. Density dependence of reactor performance with thermal confinement scalings

    International Nuclear Information System (INIS)

    Stotler, D.P.

    1992-03-01

    Energy confinement scalings for the thermal component of the plasma published thus far have a different dependence on plasma density and input power than do scalings for the total plasma energy. With such thermal scalings, reactor performance (measured by Q, the ratio of the fusion power to the sum of the ohmic and auxiliary input powers) worsens with increasing density. This dependence is the opposite of that found using scalings based on the total plasma energy, indicating that reactor operation concepts may need to be altered if this density dependence is confirmed in future research

  1. Optofluidic intracavity spectroscopy for spatially, temperature, and wavelength dependent refractometry

    Science.gov (United States)

    Kindt, Joel D.

    A microfluidic refractometer was designed based on previous optofluidic intracavity spectroscopy (OFIS) chips utilized to distinguish healthy and cancerous cells. The optofluidic cavity is realized by adding high reflectivity dielectric mirrors to the top and bottom of a microfluidic channel. This creates a plane-plane Fabry-Perot optical cavity in which the resonant wavelengths are highly dependent on the optical path length inside the cavity. Refractometry is a useful method to determine the nature of fluids, including the concentration of a solute in a solvent as well as the temperature of the fluid. Advantages of microfluidic systems are the easy integration with lab-on-chip devices and the need for only small volumes of fluid. The unique abilities of the microfluidic refractometer in this thesis include its spatial, temperature, and wavelength dependence. Spatial dependence of the transmission spectrum is inherent through a spatial filtering process implemented with an optical fiber and microscope objective. A sequence of experimental observations guided the change from using the OFIS chip as a cell discrimination device to a complimentary refractometer. First, it was noted the electrode structure within the microfluidic channel, designed to trap and manipulate biological cells with dielectrophoretic (DEP) forces, caused the resonant wavelengths to blue-shift when the electrodes were energized. This phenomenon is consistent with the negative dn/dT property of water and water-based solutions. Next, it was necessary to develop a method to separate the optical path length into physical path length and refractive index. Air holes were placed near the microfluidic channel to exclusively measure the cavity length with the known refractive index of air. The cavity length was then interpolated across the microfluidic channel, allowing any mechanical changes to be taken into account. After the separation of physical path length and refractive index, it was of interest

  2. Spatial structure and scaling of macropores in hydrological process at small catchment scale

    Science.gov (United States)

    Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter

    2013-04-01

    During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video

  3. Spatial Scaling of Global Rainfall and Flood Extremes

    Science.gov (United States)

    Devineni, Naresh; Lall, Upmanu; Xi, Chen; Ward, Philip

    2014-05-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration and spatial extent of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (up to 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances and floods. We present the first ever results on a global analysis of the scaling characteristics of extreme rainfall and flood event duration, volumes and contiguous flooded areas as a result of large scale organization of long duration rainfall events. Results are organized by latitude and with reference to the phases of ENSO, and reveal surprising invariance across latitude. Speculation as to the potential relation to the dynamical factors is presented

  4. Grouping and crowding affect target appearance over different spatial scales.

    Directory of Open Access Journals (Sweden)

    Bilge Sayim

    Full Text Available Crowding is the impairment of peripheral target perception by nearby flankers. A number of recent studies have shown that crowding shares many features with grouping. Here, we investigate whether effects of crowding and grouping on target perception are related by asking whether they operate over the same spatial scale. A target letter T had two sets of flanking Ts of varying orientations. The first set was presented close to the target, yielding strong crowding. The second set was either close enough to cause crowding on their own or too far to cause crowding on their own. The Ts of the second set had the same orientation that either matched the target's orientation (Grouped condition or not (Ungrouped condition. In Experiment 1, the Grouped flankers reduced crowding independently of their distance from the target, suggesting that grouping operated over larger distances than crowding. In Experiments 2 and 3 we found that grouping did not affect sensitivity but produced a strong bias to report that the grouped orientation was present at the target location whether or not it was. Finally, we investigated whether this bias was a response or perceptual bias, rejecting the former in favor of a perceptual grouping explanation. We suggest that the effect of grouping is to assimilate the target to the identity of surrounding flankers when they are all the same, and that this shape assimilation effect differs in its spatial scale from the integration effect of crowding.

  5. The spatial scale for cisco recruitment dynamics in Lake Superior during 1978-2007

    Science.gov (United States)

    Rook, Benjamin J.; Hansen, Michael J.; Gorman, Owen T.

    2012-01-01

    The cisco Coregonus artedi was once the most abundant fish species in the Great Lakes, but currently cisco populations are greatly reduced and management agencies are attempting to restore the species throughout the basin. To increase understanding of the spatial scale at which density‐independent and density‐dependent factors influence cisco recruitment dynamics in the Great Lakes, we used a Ricker stock–recruitment model to identify and quantify the appropriate spatial scale for modeling age‐1 cisco recruitment dynamics in Lake Superior. We found that the recruitment variation of ciscoes in Lake Superior was best described by a five‐parameter regional model with separate stock–recruitment relationships for the western, southern, eastern, and northern regions. The spatial scale for modeling was about 260 km (range = 230–290 km). We also found that the density‐independent recruitment rate and the rate of compensatory density dependence varied among regions at different rates. The density‐independent recruitment rate was constant among regions (3.6 age‐1 recruits/spawner), whereas the rate of compensatory density dependence varied 16‐fold among regions (range = −0.2 to −2.9/spawner). Finally, we found that peak recruitment and the spawning stock size that produced peak recruitment varied among regions. Both peak recruitment (0.5–7.1 age‐1 recruits/ha) and the spawning stock size that produced peak recruitment (0.3–5.3 spawners/ha) varied 16‐fold among regions. Our findings support the hypothesis that the factors driving cisco recruitment operate within four different regions of Lake Superior, suggest that large‐scale abiotic factors are more important than small‐scale biotic factors in influencing cisco recruitment, and suggest that fishery managers throughout Lake Superior and the entire Great Lakes basin should address cisco restoration and management efforts on a regional scale in each lake.

  6. Spatial structure of ion-scale plasma turbulence

    Directory of Open Access Journals (Sweden)

    Yasuhito eNarita

    2014-03-01

    Full Text Available Spatial structure of small-scale plasma turbulence is studied under different conditions of plasma parameter beta directly in the three-dimensional wave vector domain. Two independent approaches are taken: observations of turbulent magnetic field fluctuations in the solar wind measured by four Cluster spacecraft, and direct numerical simulations of plasma turbulence using the hybrid code AIKEF, both resolving turbulence on the ion kinetic scales. The two methods provide independently evidence of wave vector anisotropy as a function of beta. Wave vector anisotropy is characterized primarily by an extension of the energy spectrum in the direction perpendicular to the large-scale magnetic field. The spectrum is strongly anisotropic at lower values of beta, and is more isotropic at higher values of beta. Cluster magnetic field data analysis also provides evidence of axial asymmetry of the spectrum in the directions around the large-scale field. Anisotropy is interpreted as filament formation as plasma evolves into turbulence. Axial asymmetry is interpreted as the effect of radial expansion of the solar wind from the corona.

  7. Scale dependence in habitat selection: The case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain)

    Science.gov (United States)

    Maria C. Mateo Sanchez; Samuel A. Cushman; Santiago Saura

    2013-01-01

    Animals select habitat resources at multiple spatial scales. Thus, explicit attention to scale dependency in species-habitat relationships is critical to understand the habitat suitability patterns as perceived by organisms in complex landscapes. Identification of the scales at which particular environmental variables influence habitat selection may be as important as...

  8. Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale.

    Directory of Open Access Journals (Sweden)

    Nicolas Chemidlin Prévost-Bouré

    Full Text Available Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2: i to examine their spatial structuring; ii to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landesdependent on the region. Bacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at

  9. Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale.

    Science.gov (United States)

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P A; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landescommunities' composition turnovers. The relative importance of processes and filters was assessed by distance-based redundancy analysis. This study demonstrates significant community composition turnover rates for soil bacteria and fungi, which were dependent on the region. Bacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at coarse (80 to 120 km radius) and/or medium (40 to 65 km radius) spatial scales, suggesting dispersal limitations at these scales.

  10. Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum.

    Science.gov (United States)

    Rico, Y; Wagner, H H

    2016-11-01

    Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations.

  11. The time dependent propensity function for acceleration of spatial stochastic simulation of reaction–diffusion systems

    International Nuclear Information System (INIS)

    Fu, Jin; Wu, Sheng; Li, Hong; Petzold, Linda R.

    2014-01-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy

  12. Long-range spatial dependence in fractured rock. Empirical evidence and implications for tracer transport

    International Nuclear Information System (INIS)

    Painter, S.

    1999-02-01

    Nonclassical stochastic continuum models incorporating long-range spatial dependence are evaluated as models for fractured crystalline rock. Open fractures and fracture zones are not modeled explicitly in this approach. The fracture zones and intact rock are modeled as a single stochastic continuum. The large contrasts between the fracture zones and unfractured rock are accounted for by making use of random field models specifically designed for highly variable systems. Hydraulic conductivity data derived from packer tests in the vicinity of the Aespoe Hard Rock Laboratory form the basis for the evaluation. The Aespoe log K data were found to be consistent with a fractal scaling model based on bounded fractional Levy motion (bfLm), a model that has been used previously to model highly variable sedimentary formations. However, the data are not sufficient to choose between this model, a fractional Brownian motion model for the normal-score transform of log K, and a conventional geostatistical model. Stochastic simulations conditioned by the Aespoe data coupled with flow and tracer transport calculations demonstrate that the models with long-range dependence predict earlier arrival times for contaminants. This demonstrates the need to evaluate this class of models when assessing the performance of proposed waste repositories. The relationship between intermediate-scale and large-scale transport properties in media with long-range dependence is also addressed. A new Monte Carlo method for stochastic upscaling of intermediate-scale field data is proposed

  13. Describing a multitrophic plant-herbivore-parasitoid system at four spatial scales

    Science.gov (United States)

    Cuautle, M.; Parra-Tabla, V.

    2014-02-01

    Herbivore-parasitoid interactions must be studied using a multitrophic and multispecies approach. The strength and direction of multiple effects through trophic levels may change across spatial scales. In this work, we use the herbaceous plant Ruellia nudiflora, its moth herbivore Tripudia quadrifera, and several parasitoid morphospecies that feed on the herbivore to answer the following questions: Do herbivore and parasitoid attack levels vary depending on the spatial scale considered? With which plant characteristics are the parasitoid and the herbivore associated? Do parasitoid morphospecies vary in the magnitude of their positive indirect effect on plant reproduction? We evaluated three approximations of herbivore and parasitoid abundance (raw numbers, ratios, and attack rates) at four spatial scales: regional (three different regions which differ in terms of abiotic and biotic characteristics); population (i.e. four populations within each region); patch (four 1 m2 plots in each population); and plant level (using a number of plant characteristics). Finally, we determined whether parasitoids have a positive indirect effect on plant reproductive success (seed number). Herbivore and parasitoid numbers differed at three of the spatial scales considered. However, herbivore/fruit ratio and attack rates did not differ at the population level. Parasitoid/host ratio and attack rates did not differ at any scale, although there was a tendency of a higher attack in one region. At the plant level, herbivore and parasitoid abundances were related to different plant traits, varying the importance and the direction (positive or negative) of those traits. In addition, only one parasitoid species (Bracon sp.) had a positive effect on plant fitness saving up to 20% of the seeds in a fruit. These results underline the importance of knowing the scales that are relevant to organisms at different trophic levels and distinguish between the specific effects of species.

  14. The Resilience of Coral Reefs Across a Hierarchy of Spatial and Temporal scales

    Science.gov (United States)

    Mumby, P. J.

    2016-02-01

    Resilience is a dynamical property of ecosystems that integrates processes of recovery, disturbance and internal dynamics, including reinforcing feedbacks. As such, resilience is a useful framework to consider how ecosystems respond to multiple drivers occurring over multiple scales. Many insights have emerged recently including the way in which stressors can combine synergistically to deplete resilience. However, while recent advances have mapped resilience across seascapes, most studies have not captured emergent spatial dependencies and dynamics across the seascape (e.g., independent box models are run across the seascape in isolation). Here, we explore the dynamics that emerge when the seascape is `wired up' using data on larval dispersal, thereby giving a fully spatially-realistic model. We then consider how dynamics change across even larger, biogeographic scales, posing the question, `are there robust and global "rules of thumb" for the resilience of a single ecosystem?'. Answers to this question will help managers tailor their interventions and research needs for their own jurisdiction.

  15. Variation in estuarine littoral nematode populations over three spatial scales

    Science.gov (United States)

    Hodda, M.

    1990-04-01

    The population characteristics of the nematode fauna from five replicate cores taken over four seasons at nine sites within mangroves, at three different estuaries on the south-east coast of Australia, are compared. Using cluster analysis, principal co-ordinate analysis and other statistical techniques, the variation in nematode populations is identified as arising from several sources: temperature changes between the more northerly and southerly estuaries (5%); changes in grain size and organic content of the sediment between sites (22%); changes between sites in the frequency of samples containing certain types of food, particularly associated with pools of water and surface topography (30%); stochastic changes in nematode populations within individual samples, probably caused by small scale spatial and temporal variability in food sources (35%); and seasonal changes at all the sites and estuaries (8%). The implications of this pattern of variation for the biology of the nematodes is discussed.

  16. Scale-dependent seasonal pool habitat use by sympatric Wild Brook Trout and Brown Trout populations

    Science.gov (United States)

    Davis, Lori A.; Wagner, Tyler

    2016-01-01

    Sympatric populations of native Brook Trout Salvelinus fontinalis and naturalized Brown Trout Salmo truttaexist throughout the eastern USA. An understanding of habitat use by sympatric populations is of importance for fisheries management agencies because of the close association between habitat and population dynamics. Moreover, habitat use by stream-dwelling salmonids may be further complicated by several factors, including the potential for fish to display scale-dependent habitat use. Discrete-choice models were used to (1) evaluate fall and early winter daytime habitat use by sympatric Brook Trout and Brown Trout populations based on available residual pool habitat within a stream network and (2) assess the sensitivity of inferred habitat use to changes in the spatial scale of the assumed available habitat. Trout exhibited an overall preference for pool habitats over nonpool habitats; however, the use of pools was nonlinear over time. Brook Trout displayed a greater preference for deep residual pool habitats than for shallow pool and nonpool habitats, whereas Brown Trout selected for all pool habitat categories similarly. Habitat use by both species was found to be scale dependent. At the smallest spatial scale (50 m), habitat use was primarily related to the time of year and fish weight. However, at larger spatial scales (250 and 450 m), habitat use varied over time according to the study stream in which a fish was located. Scale-dependent relationships in seasonal habitat use by Brook Trout and Brown Trout highlight the importance of considering scale when attempting to make inferences about habitat use; fisheries managers may want to consider identifying the appropriate spatial scale when devising actions to restore and protect Brook Trout populations and their habitats.

  17. Flexible hydrological modeling - Disaggregation from lumped catchment scale to higher spatial resolutions

    Science.gov (United States)

    Tran, Quoc Quan; Willems, Patrick; Pannemans, Bart; Blanckaert, Joris; Pereira, Fernando; Nossent, Jiri; Cauwenberghs, Kris; Vansteenkiste, Thomas

    2015-04-01

    Based on an international literature review on model structures of existing rainfall-runoff and hydrological models, a generalized model structure is proposed. It consists of different types of meteorological components, storage components, splitting components and routing components. They can be spatially organized in a lumped way, or on a grid, spatially interlinked by source-to-sink or grid-to-grid (cell-to-cell) routing. The grid size of the model can be chosen depending on the application. The user can select/change the spatial resolution depending on the needs and/or the evaluation of the accuracy of the model results, or use different spatial resolutions in parallel for different applications. Major research questions addressed during the study are: How can we assure consistent results of the model at any spatial detail? How can we avoid strong or sudden changes in model parameters and corresponding simulation results, when one moves from one level of spatial detail to another? How can we limit the problem of overparameterization/equifinality when we move from the lumped model to the spatially distributed model? The proposed approach is a step-wise one, where first the lumped conceptual model is calibrated using a systematic, data-based approach, followed by a disaggregation step where the lumped parameters are disaggregated based on spatial catchment characteristics (topography, land use, soil characteristics). In this way, disaggregation can be done down to any spatial scale, and consistently among scales. Only few additional calibration parameters are introduced to scale the absolute spatial differences in model parameters, but keeping the relative differences as obtained from the spatial catchment characteristics. After calibration of the spatial model, the accuracies of the lumped and spatial models were compared for peak, low and cumulative runoff total and sub-flows (at downstream and internal gauging stations). For the distributed models, additional

  18. Physics in space-time with scale-dependent metrics

    Science.gov (United States)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  19. Anomalous scaling in an age-dependent branching model

    OpenAIRE

    Keller-Schmidt, Stephanie; Tugrul, Murat; Eguiluz, Victor M.; Hernandez-Garcia, Emilio; Klemm, Konstantin

    2010-01-01

    We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age $\\tau$ as $\\tau^{-\\alpha}$. Depending on the exponent $\\alpha$, the scaling of tree depth with tree size $n$ displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition ($\\alpha=1$) tree depth grows as $(\\log n)^2$. This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus p...

  20. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh.

    Science.gov (United States)

    Bi, Qifang; Azman, Andrew S; Satter, Syed Moinuddin; Khan, Azharul Islam; Ahmed, Dilruba; Riaj, Altaf Ahmed; Gurley, Emily S; Lessler, Justin

    2016-02-01

    Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets) near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs) to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98), type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00), and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00) exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a cholera endemic

  1. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh.

    Directory of Open Access Journals (Sweden)

    Qifang Bi

    2016-02-01

    Full Text Available Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98, type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00, and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00 exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a

  2. Soil fauna through the landscape window: factors shaping surface-and soil-dwelling communities across spatial scales in cork-oak mosaics

    NARCIS (Netherlands)

    Martins da Silva, P.; Berg, M.P.; Alves da Silva, A.; Dias, S.; Leitão, P.J.; Chamberlain, D.; Niemelä, J.; Serrano, A.R.M.; Sousa, J.P.

    2015-01-01

    Context: The role of ecological processes governing community structure are dependent on the spatial distances among local communities and the degree of habitat heterogeneity at a given spatial scale. Also, they depend on the dispersal ability of the targeted organisms collected throughout a

  3. Scaling-up spatially-explicit ecological models using graphics processors

    NARCIS (Netherlands)

    Koppel, Johan van de; Gupta, Rohit; Vuik, Cornelis

    2011-01-01

    How the properties of ecosystems relate to spatial scale is a prominent topic in current ecosystem research. Despite this, spatially explicit models typically include only a limited range of spatial scales, mostly because of computing limitations. Here, we describe the use of graphics processors to

  4. Relevant Spatial Scales of Chemical Variation in Aplysina aerophoba

    Directory of Open Access Journals (Sweden)

    Oriol Sacristan-Soriano

    2011-11-01

    Full Text Available Understanding the scale at which natural products vary the most is critical because it sheds light on the type of factors that regulate their production. The sponge Aplysina aerophoba is a common Mediterranean sponge inhabiting shallow waters in the Mediterranean and its area of influence in Atlantic Ocean. This species contains large concentrations of brominated alkaloids (BAs that play a number of ecological roles in nature. Our research investigates the ecological variation in BAs of A. aerophoba from a scale of hundred of meters to thousand kilometers. We used a nested design to sample sponges from two geographically distinct regions (Canary Islands and Mediterranean, over 2500 km, with two zones within each region (less than 50 km, two locations within each zone (less than 5 km, and two sites within each location (less than 500 m. We used high-performance liquid chromatography to quantify multiple BAs and a spectrophotometer to quantify chlorophyll a (Chl a. Our results show a striking degree of variation in both natural products and Chl a content. Significant variation in Chl a content occurred at the largest and smallest geographic scales. The variation patterns of BAs also occurred at the largest and smallest scales, but varied depending on which BA was analyzed. Concentrations of Chl a and isofistularin-3 were negatively correlated, suggesting that symbionts may impact the concentration of some of these compounds. Our results underline the complex control of the production of secondary metabolites, with factors acting at both small and large geographic scales affecting the production of multiple secondary metabolites.

  5. Anomalous scaling in an age-dependent branching model.

    Science.gov (United States)

    Keller-Schmidt, Stephanie; Tuğrul, Murat; Eguíluz, Víctor M; Hernández-García, Emilio; Klemm, Konstantin

    2015-02-01

    We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ(-α). Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)(2). This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point.

  6. Context-dependent spatially periodic activity in the human entorhinal cortex.

    Science.gov (United States)

    Nadasdy, Zoltan; Nguyen, T Peter; Török, Ágoston; Shen, Jason Y; Briggs, Deborah E; Modur, Pradeep N; Buchanan, Robert J

    2017-04-25

    The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency.

  7. Validity and factor structure of the bodybuilding dependence scale.

    Science.gov (United States)

    Smith, D; Hale, B

    2004-04-01

    To investigate the factor structure, validity, and reliability of the bodybuilding dependence scale and to investigate differences in bodybuilding dependence between men and women and competitive and non-competitive bodybuilders. Seventy two male competitive bodybuilders, 63 female competitive bodybuilders, 87 male non-competitive bodybuilders, and 63 non-competitive female bodybuilders completed the bodybuilding dependence scale (BDS), the exercise dependence questionnaire (EDQ), and the muscle dysmorphia inventory (MDI). Confirmatory factor analysis of the BDS supported a three factor model of bodybuilding dependence, consisting of social dependence, training dependence, and mastery dependence (Q = 3.16, CFI = 0.98, SRMR = 0.04). Internal reliability of all three subscales was high (Cronbach's alpha = 0.92, 0.92, and 0.93 respectively). Significant (pbodybuilders scored significantly (pbodybuilders. However, there were no significant sex differences on any of the BDS subscales (p>0.05). The three factor BDS appears to be a reliable and valid measure of bodybuilding dependence. Symptoms of bodybuilding dependence are more prevalent in competitive bodybuilders than non-competitive ones, but there are no significant sex differences in bodybuilding dependence.

  8. Spatial coherence and large-scale drivers of drought

    Science.gov (United States)

    Svensson, Cecilia; Hannaford, Jamie

    2017-04-01

    Drought is a potentially widespread and generally multifaceted natural phenomenon affecting all aspects of the hydrological cycle. It mainly manifests itself at seasonal, or longer, time scales. Here, we use seasonal river flows across the climatologically and topographically diverse UK to investigate the spatial coherence of drought, and explore its oceanic and atmospheric drivers. A better understanding of the spatial characteristics and drivers will improve forecasting and help increase drought preparedness. The location of the UK in the mid-latitude belt of predominantly westerly winds, together with a pronounced topographical divide running roughly from north to south, produce strong windward and leeward effects. Weather fronts associated with storms tracking north-eastward between Scotland and Iceland typically lead to abundant precipitation in the mountainous north and west, while the south and east remain drier. In contrast, prolonged precipitation in eastern Britain tends to be associated with storms on a more southerly track, producing precipitation in onshore winds on the northern side of depressions. Persistence in the preferred storm tracks can therefore result in periods of wet/dry conditions across two main regions of the UK, a mountainous northwest region exposed to westerly winds and a more sheltered, lowland southeast region. This is reflected in cluster analyses of monthly river flow anomalies. A further division into three clusters separates out a region of highly permeable, slowly responding, catchments in the southeast. An expectation that the preferred storm tracks over seasonal time scales can be captured by atmospheric airflow indices, which in turn may be related to oceanic conditions, suggests that statistical methods may be used to describe the relationships between UK regional streamflows, and oceanic and atmospheric drivers. Such relationships may be concurrent or lagged, and the longer response time of the group of permeable

  9. Spatial Heterogeneity of the Forest Canopy Scales with the Heterogeneity of an Understory Shrub Based on Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Catherine K. Denny

    2017-04-01

    Full Text Available Spatial heterogeneity of vegetation is an important landscape characteristic, but is difficult to assess due to scale-dependence. Here we examine how spatial patterns in the forest canopy affect those of understory plants, using the shrub Canada buffaloberry (Shepherdia canadensis (L. Nutt. as a focal species. Evergreen and deciduous forest canopy and buffaloberry shrub presence were measured with line-intercept sampling along ten 2-km transects in the Rocky Mountain foothills of west-central Alberta, Canada. Relationships between overstory canopy and understory buffaloberry presence were assessed for scales ranging from 2 m to 502 m. Fractal dimensions of both canopy and buffaloberry were estimated and then related using box-counting methods to evaluate spatial heterogeneity based on patch distribution and abundance. Effects of canopy presence on buffaloberry were scale-dependent, with shrub presence negatively related to evergreen canopy cover and positively related to deciduous cover. The effect of evergreen canopy was significant at a local scale between 2 m and 42 m, while that of deciduous canopy was significant at a meso-scale between 150 m and 358 m. Fractal analysis indicated that buffaloberry heterogeneity positively scaled with evergreen canopy heterogeneity, but was unrelated to that of deciduous canopy. This study demonstrates that evergreen canopy cover is a determinant of buffaloberry heterogeneity, highlighting the importance of spatial scale and canopy composition in understanding canopy-understory relationships.

  10. Scale dependence of the diversity–stability relationship in a temperate grassland

    Science.gov (United States)

    Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo

    2018-01-01

    A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity–stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m2). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity–area relationship was significantly higher than that of the stability–area relationship, resulting in a decline of the slope of the diversity–stability relationship with increasing area.Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes. PMID:29725139

  11. Scale dependence of the diversity-stability relationship in a temperate grassland.

    Science.gov (United States)

    Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo

    2018-05-01

    A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity-stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m 2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m 2 ). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity-area relationship was significantly higher than that of the stability-area relationship, resulting in a decline of the slope of the diversity-stability relationship with increasing area. Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes.

  12. [Development of a New Scale for Gauging Smartphone Dependence].

    Science.gov (United States)

    Toda, Masahiro; Nishio, Nobuhiro; Takeshita, Tatsuya

    2015-01-01

    We designed a scale to gauge smartphone dependence and assessed its reliability and validity. A prototype self-rating smartphone-dependence scale was tested on 133 medical students who use smartphones more frequently than other devices to access web pages. Each response was scored on a Likert scale (0, 1, 2, 3), with higher scores indicating greater dependence. To select items for the final scale, exploratory factor analysis was conducted. On the basis of factor analysis results, we designed the Wakayama Smartphone-Dependence Scale (WSDS) comprising 21 items with 3 subscales: immersion in Internet communication; using a smartphone for extended periods of time and neglecting social obligations and other tasks; using a smartphone while doing something else and neglect of etiquette. Our analysis confirmed the validity of the different elements of the WSDS: the reliability coefficient (Cronbach's alpha) values of all subscales and total WSDS were from 0.79 to 0.83 and 0.88, respectively. These findings suggest that the WSDS is a useful tool for rating smartphone dependence.

  13. Movement reveals scale dependence in habitat selection of a large ungulate

    Science.gov (United States)

    Northrup, Joseph; Anderson, Charles R.; Hooten, Mevin B.; Wittemyer, George

    2016-01-01

    Ecological processes operate across temporal and spatial scales. Anthropogenic disturbances impact these processes, but examinations of scale dependence in impacts are infrequent. Such examinations can provide important insight to wildlife–human interactions and guide management efforts to reduce impacts. We assessed spatiotemporal scale dependence in habitat selection of mule deer (Odocoileus hemionus) in the Piceance Basin of Colorado, USA, an area of ongoing natural gas development. We employed a newly developed animal movement method to assess habitat selection across scales defined using animal-centric spatiotemporal definitions ranging from the local (defined from five hour movements) to the broad (defined from weekly movements). We extended our analysis to examine variation in scale dependence between night and day and assess functional responses in habitat selection patterns relative to the density of anthropogenic features. Mule deer displayed scale invariance in the direction of their response to energy development features, avoiding well pads and the areas closest to roads at all scales, though with increasing strength of avoidance at coarser scales. Deer displayed scale-dependent responses to most other habitat features, including land cover type and habitat edges. Selection differed between night and day at the finest scales, but homogenized as scale increased. Deer displayed functional responses to development, with deer inhabiting the least developed ranges more strongly avoiding development relative to those with more development in their ranges. Energy development was a primary driver of habitat selection patterns in mule deer, structuring their behaviors across all scales examined. Stronger avoidance at coarser scales suggests that deer behaviorally mediated their interaction with development, but only to a degree. At higher development densities than seen in this area, such mediation may not be possible and thus maintenance of sufficient

  14. Global sensitivity analysis for models with spatially dependent outputs

    International Nuclear Information System (INIS)

    Iooss, B.; Marrel, A.; Jullien, M.; Laurent, B.

    2011-01-01

    The global sensitivity analysis of a complex numerical model often calls for the estimation of variance-based importance measures, named Sobol' indices. Meta-model-based techniques have been developed in order to replace the CPU time-expensive computer code with an inexpensive mathematical function, which predicts the computer code output. The common meta-model-based sensitivity analysis methods are well suited for computer codes with scalar outputs. However, in the environmental domain, as in many areas of application, the numerical model outputs are often spatial maps, which may also vary with time. In this paper, we introduce an innovative method to obtain a spatial map of Sobol' indices with a minimal number of numerical model computations. It is based upon the functional decomposition of the spatial output onto a wavelet basis and the meta-modeling of the wavelet coefficients by the Gaussian process. An analytical example is presented to clarify the various steps of our methodology. This technique is then applied to a real hydrogeological case: for each model input variable, a spatial map of Sobol' indices is thus obtained. (authors)

  15. On the Soft Limit of the Large Scale Structure Power Spectrum: UV Dependence

    CERN Document Server

    Garny, Mathias; Porto, Rafael A; Sagunski, Laura

    2015-01-01

    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agr...

  16. Scale-Dependence of Processes Structuring Dung Beetle Metacommunities Using Functional Diversity and Community Deconstruction Approaches

    Science.gov (United States)

    da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution

  17. Spatial and temporal distribution of onroad CO2 emissions at the Urban spatial scale

    Science.gov (United States)

    Song, Y.; Gurney, K. R.; Zhou, Y.; Mendoza, D. L.

    2011-12-01

    The Hestia Project is a multi-disciplinary effort to help better understand the spatial and temporal distribution of fossil fuel carbon dioxide (CO2) emission at urban scale. Onroad transportation is an essential source of CO2 emissions. This study examines two urban domains: Marion County (Indianapolis) and Los Angeles County and explores the methods and results associated with the spatial and temporal distribution of local urban onroad CO2 emissions. We utilize a bottom-up approach and spatially distribute county emissions based on the Annual Average Daily Traffic (AADT) counts provided by local Department of Transportation. The total amount of CO2 emissions is calculated by the National Mobile Inventory Model (NMIM) for Marion County and the EMission FACtors (EMFAC) model for Los Angeles County. The NMIM model provides CO2 emissions based on vehicle miles traveled (VMT) data at the county-level from the national county database (NCD). The EMFAC model provides CO2 emissions for California State based on vehicle activities, including VMT, vehicle population and fuel types. A GIS road atlas is retrieved from the US Census Bureau. Further spatial analysis and integration are performed by GIS software to distribute onroad CO2 emission according to the traffic volume. The temporal allocation of onroad CO2 emission is based on the hourly traffic data obtained from the Metropolitan Planning Orgnizations (MPO) for Marion County and Department of Transportation for Los Angeles County. The annual CO2 emissions are distributed according to each hourly fraction of traffic counts. Due to the fact that ATR stations are unevenly distributed in space, we create Thiessen polygons such that each road segment is linked to the nearest neighboring ATR station. The hourly profile for each individual station is then combined to create a "climatology" of CO2 emissions in time on each road segment. We find that for Marion County in the year 2002, urban interstate and arterial roads have

  18. A probabilistic approach to quantifying spatial patterns of flow regimes and network-scale connectivity

    Science.gov (United States)

    Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca

    2017-04-01

    The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of

  19. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field

    Science.gov (United States)

    Franklin, Rima B.; Mills, Aaron L.

    2003-01-01

    To better understand the distribution of soil microbial communities at multiple spatial scales, a survey was conducted to examine the spatial organization of community structure in a wheat field in eastern Virginia (USA). Nearly 200 soil samples were collected at a variety of separation distances ranging from 2.5 cm to 11 m. Whole-community DNA was extracted from each sample, and community structure was compared using amplified fragment length polymorphism (AFLP) DNA fingerprinting. Relative similarity was calculated between each pair of samples and compared using geostatistical variogram analysis to study autocorrelation as a function of separation distance. Spatial autocorrelation was found at scales ranging from 30 cm to more than 6 m, depending on the sampling extent considered. In some locations, up to four different correlation length scales were detected. The presence of nested scales of variability suggests that the environmental factors regulating the development of the communities in this soil may operate at different scales. Kriging was used to generate maps of the spatial organization of communities across the plot, and the results demonstrated that bacterial distributions can be highly structured, even within a habitat that appears relatively homogeneous at the plot and field scale. Different subsets of the microbial community were distributed differently across the plot, and this is thought to be due to the variable response of individual populations to spatial heterogeneity associated with soil properties. c2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

  20. Parameter Scaling for Epidemic Size in a Spatial Epidemic Model with Mobile Individuals.

    Directory of Open Access Journals (Sweden)

    Chiyori T Urabe

    Full Text Available In recent years, serious infectious diseases tend to transcend national borders and widely spread in a global scale. The incidence and prevalence of epidemics are highly influenced not only by pathogen-dependent disease characteristics such as the force of infection, the latent period, and the infectious period, but also by human mobility and contact patterns. However, the effect of heterogeneous mobility of individuals on epidemic outcomes is not fully understood. Here, we aim to elucidate how spatial mobility of individuals contributes to the final epidemic size in a spatial susceptible-exposed-infectious-recovered (SEIR model with mobile individuals in a square lattice. After illustrating the interplay between the mobility parameters and the other parameters on the spatial epidemic spreading, we propose an index as a function of system parameters, which largely governs the final epidemic size. The main contribution of this study is to show that the proposed index is useful for estimating how parameter scaling affects the final epidemic size. To demonstrate the effectiveness of the proposed index, we show that there is a positive correlation between the proposed index computed with the real data of human airline travels and the actual number of positive incident cases of influenza B in the entire world, implying that the growing incidence of influenza B is attributed to increased human mobility.

  1. Large-Scale Spatial Dynamics of Intertidal Mussel (

    NARCIS (Netherlands)

    Folmer, E.O.; Drent, J.; Troost, K.; Büttger, H.; Dankers, N.; Jansen, J.; van Stralen, M.; Millat, G.; Herlyn, M.; Philippart, C.J.M.

    2014-01-01

    Intertidal blue mussel beds are important for the functioning and community composition of coastal ecosystems. Modeling spatial dynamics of intertidal mussel beds is complicated because suitable habitat is spatially heterogeneously distributed and recruitment and loss are hard to predict. To get

  2. Attention to Hierarchical Level Influences Attentional Selection of Spatial Scale

    Science.gov (United States)

    Flevaris, Anastasia V.; Bentin, Shlomo; Robertson, Lynn C.

    2011-01-01

    Ample evidence suggests that global perception may involve low spatial frequency (LSF) processing and that local perception may involve high spatial frequency (HSF) processing (Shulman, Sullivan, Gish, & Sakoda, 1986; Shulman & Wilson, 1987; Robertson, 1996). It is debated whether SF selection is a low-level mechanism associating global…

  3. Temporal Modulation Detection Depends on Sharpness of Spatial Tuning.

    Science.gov (United States)

    Zhou, Ning; Cadmus, Matthew; Dong, Lixue; Mathews, Juliana

    2018-04-25

    Prior research has shown that in electrical hearing, cochlear implant (CI) users' speech recognition performance is related in part to their ability to detect temporal modulation (i.e., modulation sensitivity). Previous studies have also shown better speech recognition when selectively stimulating sites with good modulation sensitivity rather than all stimulation sites. Site selection based on channel interaction measures, such as those using imaging or psychophysical estimates of spread of neural excitation, has also been shown to improve speech recognition. This led to the question of whether temporal modulation sensitivity and spatial selectivity of neural excitation are two related variables. In the present study, CI users' modulation sensitivity was compared for sites with relatively broad or narrow neural excitation patterns. This was achieved by measuring temporal modulation detection thresholds (MDTs) at stimulation sites that were significantly different in their sharpness of the psychophysical spatial tuning curves (PTCs) and measuring MDTs at the same sites in monopolar (MP) and bipolar (BP) stimulation modes. Nine postlingually deafened subjects implanted with Cochlear Nucleus® device took part in the study. Results showed a significant correlation between the sharpness of PTCs and MDTs, indicating that modulation detection benefits from a more spatially restricted neural activation pattern. There was a significant interaction between stimulation site and mode. That is, using BP stimulation only improved MDTs at stimulation sites with broad PTCs but had no effect or sometimes a detrimental effect on MDTs at stimulation sites with sharp PTCs. This interaction could suggest that a criterion number of nerve fibers is needed to achieve optimal temporal resolution, and, to achieve optimized speech recognition outcomes, individualized selection of site-specific current focusing strategies may be necessary. These results also suggest that the removal of

  4. Linking the influence and dependence of people on biodiversity across scales

    Science.gov (United States)

    Isbell, Forest; Gonzalez, Andrew; Loreau, Michel; Cowles, Jane; Díaz, Sandra; Hector, Andy; Mace, Georgina M.; Wardle, David A.; O’Connor, Mary I.; Duffy, J. Emmett; Turnbull, Lindsay A.; Thompson, Patrick L.; Larigauderie, Anne

    2017-01-01

    Biodiversity enhances many of nature’s benefits to people, including the regulation of climate and the production of wood in forests, livestock forage in grasslands and fish in aquatic ecosystems. Yet people are now driving the sixth mass extinction event in Earth’s history. Human dependence and influence on biodiversity have mainly been studied separately and at contrasting scales of space and time, but new multiscale knowledge is beginning to link these relationships. Biodiversity loss substantially diminishes several ecosystem services by altering ecosystem functioning and stability, especially at the large temporal and spatial scales that are most relevant for policy and conservation. PMID:28569811

  5. Linking the influence and dependence of people on biodiversity across scales.

    Science.gov (United States)

    Isbell, Forest; Gonzalez, Andrew; Loreau, Michel; Cowles, Jane; Díaz, Sandra; Hector, Andy; Mace, Georgina M; Wardle, David A; O'Connor, Mary I; Duffy, J Emmett; Turnbull, Lindsay A; Thompson, Patrick L; Larigauderie, Anne

    2017-05-31

    Biodiversity enhances many of nature's benefits to people, including the regulation of climate and the production of wood in forests, livestock forage in grasslands and fish in aquatic ecosystems. Yet people are now driving the sixth mass extinction event in Earth's history. Human dependence and influence on biodiversity have mainly been studied separately and at contrasting scales of space and time, but new multiscale knowledge is beginning to link these relationships. Biodiversity loss substantially diminishes several ecosystem services by altering ecosystem functioning and stability, especially at the large temporal and spatial scales that are most relevant for policy and conservation.

  6. Fine-scale spatial distribution of plants and resources on a sandy soil in the Sahel

    NARCIS (Netherlands)

    Rietkerk, M.G.; Ouedraogo, T.; Kumar, L.; Sanou, S.; Langevelde, F. van; Kiema, A.; Koppel, J. van de; Andel, J. van; Hearne, J.; Skidmore, A.K.; Ridder, N. de; Stroosnijder, L.; Prins, H.H.T.

    2002-01-01

    We studied fine-scale spatial plant distribution in relation to the spatial distribution of erodible soil particles, organic matter, nutrients and soil water on a sandy to sandy loam soil in the Sahel. We hypothesized that the distribution of annual plants would be highly spatially autocorrelated

  7. Scale-dependent intrinsic entropies of complex time series.

    Science.gov (United States)

    Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E

    2016-04-13

    Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).

  8. Beta-diversity of ectoparasites at two spatial scales: nested hierarchy, geography and habitat type.

    Science.gov (United States)

    Warburton, Elizabeth M; van der Mescht, Luther; Stanko, Michal; Vinarski, Maxim V; Korallo-Vinarskaya, Natalia P; Khokhlova, Irina S; Krasnov, Boris R

    2017-06-01

    Beta-diversity of biological communities can be decomposed into (a) dissimilarity of communities among units of finer scale within units of broader scale and (b) dissimilarity of communities among units of broader scale. We investigated compositional, phylogenetic/taxonomic and functional beta-diversity of compound communities of fleas and gamasid mites parasitic on small Palearctic mammals in a nested hierarchy at two spatial scales: (a) continental scale (across the Palearctic) and (b) regional scale (across sites within Slovakia). At each scale, we analyzed beta-diversity among smaller units within larger units and among larger units with partitioning based on either geography or ecology. We asked (a) whether compositional, phylogenetic/taxonomic and functional dissimilarities of flea and mite assemblages are scale dependent; (b) how geographical (partitioning of sites according to geographic position) or ecological (partitioning of sites according to habitat type) characteristics affect phylogenetic/taxonomic and functional components of dissimilarity of ectoparasite assemblages and (c) whether assemblages of fleas and gamasid mites differ in their degree of dissimilarity, all else being equal. We found that compositional, phylogenetic/taxonomic, or functional beta-diversity was greater on a continental rather than a regional scale. Compositional and phylogenetic/taxonomic components of beta-diversity were greater among larger units than among smaller units within larger units, whereas functional beta-diversity did not exhibit any consistent trend regarding site partitioning. Geographic partitioning resulted in higher values of beta-diversity of ectoparasites than ecological partitioning. Compositional and phylogenetic components of beta-diversity were higher in fleas than mites but the opposite was true for functional beta-diversity in some, but not all, traits.

  9. Spatial dependence of color assimilation by the watercolor effect.

    Science.gov (United States)

    Devinck, Frédéric; Delahunt, Peter B; Hardy, Joseph L; Spillmann, Lothar; Werner, John S

    2006-01-01

    Color assimilation with bichromatic contours was quantified for spatial extents ranging from von Bezold-type color assimilation to the watercolor effect. The magnitude and direction of assimilative hue change was measured as a function of the width of a rectangular stimulus. Assimilation was quantified by hue cancellation. Large hue shifts were required to null the color of stimuli < or = 9.3 min of arc in width, with an exponential decrease for stimuli increasing up to 7.4 deg. When stimuli were viewed through an achromatizing lens, the magnitude of the assimilation effect was reduced for narrow stimuli, but not for wide ones. These results demonstrate that chromatic aberration may account, in part, for color assimilation over small, but not large, surface areas.

  10. Stimulus-dependent effects on tactile spatial acuity

    Directory of Open Access Journals (Sweden)

    Tommerdahl M

    2005-10-01

    "bilateral" condition, in which 25 Hz flutter was delivered to the two points on the attended hand and a second stimulus (either flutter or vibration was delivered to the unattended hand. The two-point limen was reduced (i.e., spatial acuity was improved under the complex stimulus condition when compared to the control stimulus condition. Specifically, whereas adding vibration to the unilateral two-point flutter stimulus improved spatial acuity by 20 to 25%, the two-point limen was not significantly affected by substantial changes in stimulus amplitude (between 100 – 200 μm. In contrast, simultaneous stimulation of the unattended hand (contralateral to the attended site, impaired spatial acuity by 20% with flutter stimulation and by 30% with vibration stimulation. Conclusion It was found that the addition of 200 Hz vibration to a two-point 25 Hz flutter stimulus significantly improved a subject's ability to discriminate between two points on the skin. Since previous studies showed that 200 Hz vibration preferentially evokes activity in cortical area SII and reduces or inhibits the spatial extent of activity in SI in the same hemisphere, the findings in this paper raise the possibility that although SI activity plays a major role in two-point discrimination on the skin, influences relayed to SI from SII in the same hemisphere may contribute importantly to SI's ability to differentially respond to stimuli applied to closely spaced skin points on the same side of the body midline.

  11. Modeling of spatial dependence in wind power forecast uncertainty

    DEFF Research Database (Denmark)

    Papaefthymiou, George; Pinson, Pierre

    2008-01-01

    It is recognized today that short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with a paramount information on the uncertainty of expected wind generation. When considering different areas covering a region, they are produced independently, and thus...... neglect the interdependence structure of prediction errors, induced by movement of meteorological fronts, or more generally by inertia of meteorological systems. This issue is addressed here by describing a method that permits to generate interdependent scenarios of wind generation for spatially...... distributed wind power production for specific look-ahead times. The approach is applied to the case of western Denmark split in 5 zones, for a total capacity of more than 2.1 GW. The interest of the methodology for improving the resolution of probabilistic forecasts, for a range of decision-making problems...

  12. One-dimensional spatially dependent solute transport in semi ...

    African Journals Online (AJOL)

    Space dependent retardation factor is also taken. The nature of porous media and solute pollutant are considered chemically non-reactive. Initially porous domain is considered solute free and the input source condition is considered uniformly continuous. A new transformation is introduced to solve the advection dispersion ...

  13. Non-Stationary Dependence Structures for Spatial Extremes

    KAUST Repository

    Huser, Raphaë l; Genton, Marc G.

    2016-01-01

    been developed, and fitted to various types of data. However, a recurrent problem is the modeling of non-stationarity. In this paper, we develop non-stationary max-stable dependence structures in which covariates can be easily incorporated. Inference

  14. Scaling and spatial complementarity of tectonic earthquake swarms

    KAUST Repository

    Passarelli, Luigi; Rivalta, Eleonora; Jonsson, Sigurjon; Hensch, Martin; Metzger, Sabrina; Jakobsdó ttir, Steinunn S.; Maccaferri, Francesco; Corbi, Fabio; Dahm, Torsten

    2017-01-01

    are still largely uncertain. Here we evaluate several TES that occurred during the past 20 years on a transform plate boundary in North Iceland. We show that the swarms complement each other spatially with later swarms discouraged from fault segments

  15. Environmental factors at different spatial scales governing soil fauna community patterns in fragmented forests.

    NARCIS (Netherlands)

    Martins da Silva, P.; Berg, M.P.; Serrano, A.R.M.; Dubs, F.; Sousa, J.P.

    2012-01-01

    Spatial and temporal changes in community structure of soil organisms may result from a myriad of processes operating at a hierarchy of spatial scales, from small-scale habitat conditions to species movements among patches and large-sale landscape features. To disentangle the relative importance of

  16. An analytical evaluation for spatial-dependent intra-pebble Dancoff factor and escape probability

    International Nuclear Information System (INIS)

    Kim, Songhyun; Kim, Hong-Chul; Kim, Jong Kyung; Kim, Soon Young; Noh, Jae Man

    2009-01-01

    The analytical evaluation of spatial-dependent intra-pebble Dancoff factors and their escape probabilities is pursued by the model developed in this study. Intra-pebble Dancoff factors and their escape probabilities are calculated as a function of fuel kernel radius, number of fuel kernels, and fuel region radius. The method in this study can be easily utilized to analyze the tendency of spatial-dependent intra-pebble Dancoff factor and spatial-dependent fuel region escape probability for the various geometries because it is faster than the MCNP method as well as good accuracy. (author)

  17. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    Science.gov (United States)

    Mishra, U.; Riley, W. J.

    2015-07-01

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data set with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained

  18. Geo-spatial Cognition on Human's Social Activity Space Based on Multi-scale Grids

    Directory of Open Access Journals (Sweden)

    ZHAI Weixin

    2016-12-01

    Full Text Available Widely applied location aware devices, including mobile phones and GPS receivers, have provided great convenience for collecting large volume individuals' geographical information. The researches on the human's society behavior space has attracts an increasingly number of researchers. In our research, based on location-based Flickr data From 2004 to May, 2014 in China, we choose five levels of spatial grids to form the multi-scale frame for investigate the correlation between the scale and the geo-spatial cognition on human's social activity space. The HT-index is selected as the fractal inspired by Alexander to estimate the maturity of the society activity on different scales. The results indicate that that the scale characteristics are related to the spatial cognition to a certain extent. It is favorable to use the spatial grid as a tool to control scales for geo-spatial cognition on human's social activity space.

  19. Bias-correction and Spatial Disaggregation for Climate Change Impact Assessments at a basin scale

    Science.gov (United States)

    Nyunt, Cho; Koike, Toshio; Yamamoto, Akio; Nemoto, Toshihoro; Kitsuregawa, Masaru

    2013-04-01

    Basin-scale climate change impact studies mainly rely on general circulation models (GCMs) comprising the related emission scenarios. Realistic and reliable data from GCM is crucial for national scale or basin scale impact and vulnerability assessments to build safety society under climate change. However, GCM fail to simulate regional climate features due to the imprecise parameterization schemes in atmospheric physics and coarse resolution scale. This study describes how to exclude some unsatisfactory GCMs with respect to focused basin, how to minimize the biases of GCM precipitation through statistical bias correction and how to cover spatial disaggregation scheme, a kind of downscaling, within in a basin. GCMs rejection is based on the regional climate features of seasonal evolution as a bench mark and mainly depends on spatial correlation and root mean square error of precipitation and atmospheric variables over the target region. Global Precipitation Climatology Project (GPCP) and Japanese 25-uear Reanalysis Project (JRA-25) are specified as references in figuring spatial pattern and error of GCM. Statistical bias-correction scheme comprises improvements of three main flaws of GCM precipitation such as low intensity drizzled rain days with no dry day, underestimation of heavy rainfall and inter-annual variability of local climate. Biases of heavy rainfall are conducted by generalized Pareto distribution (GPD) fitting over a peak over threshold series. Frequency of rain day error is fixed by rank order statistics and seasonal variation problem is solved by using a gamma distribution fitting in each month against insi-tu stations vs. corresponding GCM grids. By implementing the proposed bias-correction technique to all insi-tu stations and their respective GCM grid, an easy and effective downscaling process for impact studies at the basin scale is accomplished. The proposed method have been examined its applicability to some of the basins in various climate

  20. Scale dependence of acoustic velocities. An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Gotusso, Angelamaria Pillitteri

    2001-06-01

    Reservoir and overburden data (e.g. seismic, sonic log and core data) are collected at different stages of field development, at different scales, and under different measurement conditions. A more precise reservoir characterization could be obtained by combining all the collected data. Reliable data may also be obtained from drill cuttings. This methodology can give data in quasi-real time, it is easily applicable, and cheap. It is then important, to understand the relationship between results obtained from measurements at different scales. In this Thesis acoustic velocities measured at several different laboratory scales are presented. This experimental study was made in order to give the base for the development of a model aiming to use/combine appropriately the data collected at different scales. The two main aspects analyzed are the experimental limitations due to the decrease in sample size and the significance of measurements in relation to material heterogeneities. Plexiglas, an isotropic, non-dispersive artificial material, with no expected scale effect, was used to evaluate the robustness of the measurement techniques. The results emphasize the importance of the wavelength used with respect to the sample length. If the sample length (L) is at least 5 time bigger than wavelength used ({lambda}), then the measured velocities do not depend on sample size. Leca stone, an artificial isotropic material containing spherical grains was used to evaluate the combined effects of technique, heterogeneities and sample length. The ratio between the scale of the heterogeneities and the sample length has to be taken in to account. In this case velocities increase with decreasing sample length when the ratio L/{lambda} is smaller than 10-15 and at the same time the ratio between sample length and grain size is greater than 10. Measurements on natural rocks demonstrate additional influence of grain mineralogy, shape and orientation. Firenzuola sandstone shows scale and

  1. A multi-scale spatial model of hepatitis-B viral dynamics.

    Directory of Open Access Journals (Sweden)

    Quentin Cangelosi

    Full Text Available Chronic hepatitis B viral infection (HBV afflicts around 250 million individuals globally and few options for treatment exist. Once infected, the virus entrenches itself in the liver with a notoriously resilient colonisation of viral DNA (covalently-closed circular DNA, cccDNA. The majority of infections are cleared, yet we do not understand why 5% of adult immune responses fail leading to the chronic state with its collateral morbid effects such as cirrhosis and eventual hepatic carcinoma. The liver environment exhibits particularly complex spatial structures for metabolic processing and corresponding distributions of nutrients and transporters that may influence successful HBV entrenchment. We assembled a multi-scaled mathematical model of the fundamental hepatic processing unit, the sinusoid, into a whole-liver representation to investigate the impact of this intrinsic spatial heterogeneity on the HBV dynamic. Our results suggest HBV may be exploiting spatial aspects of the liver environment. We distributed increased HBV replication rates coincident with elevated levels of nutrients in the sinusoid entry point (the periportal region in tandem with similar distributions of hepatocyte transporters key to HBV invasion (e.g., the sodium-taurocholate cotransporting polypeptide or NTCP, or immune system activity. According to our results, such co-alignment of spatial distributions may contribute to persistence of HBV infections, depending on spatial distributions and intensity of immune response as well. Moreover, inspired by previous HBV models and experimentalist suggestions of extra-hepatic HBV replication, we tested in our model influence of HBV blood replication and observe an overall nominal effect on persistent liver infection. Regardless, we confirm prior results showing a solo cccDNA is sufficient to re-infect an entire liver, with corresponding concerns for transplantation and treatment.

  2. ON THE SPATIAL SCALES OF WAVE HEATING IN THE SOLAR CHROMOSPHERE

    International Nuclear Information System (INIS)

    Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc

    2015-01-01

    Dissipation of magnetohydrodynamic (MHD) wave energy has been proposed as a viable heating mechanism in the solar chromospheric plasma. Here, we use a simplified one-dimensional model of the chromosphere to theoretically investigate the physical processes and spatial scales that are required for the efficient dissipation of Alfvén waves and slow magnetoacoustic waves. We consider the governing equations for a partially ionized hydrogen-helium plasma in the single-fluid MHD approximation and include realistic wave damping mechanisms that may operate in the chromosphere, namely, Ohmic and ambipolar magnetic diffusion, viscosity, thermal conduction, and radiative losses. We perform an analytic local study in the limit of small amplitudes to approximately derive the lengthscales for critical damping and efficient dissipation of MHD wave energy. We find that the critical dissipation lengthscale for Alfvén waves depends strongly on the magnetic field strength and ranges from 10 m to 1 km for realistic field strengths. The damping of Alfvén waves is dominated by Ohmic diffusion for weak magnetic field and low heights in the chromosphere, and by ambipolar diffusion for strong magnetic field and medium/large heights in the chromosphere. Conversely, the damping of slow magnetoacoustic waves is less efficient, and spatial scales shorter than 10 m are required for critical damping. Thermal conduction and viscosity govern the damping of slow magnetoacoustic waves and play an equally important role at all heights. These results indicate that the spatial scales at which strong wave heating may work in the chromosphere are currently unresolved by observations

  3. ON THE SPATIAL SCALES OF WAVE HEATING IN THE SOLAR CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Roberto; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain); Carbonell, Marc, E-mail: roberto.soler@uib.es [Institute of Applied Computing and Community Code (IAC), Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)

    2015-09-10

    Dissipation of magnetohydrodynamic (MHD) wave energy has been proposed as a viable heating mechanism in the solar chromospheric plasma. Here, we use a simplified one-dimensional model of the chromosphere to theoretically investigate the physical processes and spatial scales that are required for the efficient dissipation of Alfvén waves and slow magnetoacoustic waves. We consider the governing equations for a partially ionized hydrogen-helium plasma in the single-fluid MHD approximation and include realistic wave damping mechanisms that may operate in the chromosphere, namely, Ohmic and ambipolar magnetic diffusion, viscosity, thermal conduction, and radiative losses. We perform an analytic local study in the limit of small amplitudes to approximately derive the lengthscales for critical damping and efficient dissipation of MHD wave energy. We find that the critical dissipation lengthscale for Alfvén waves depends strongly on the magnetic field strength and ranges from 10 m to 1 km for realistic field strengths. The damping of Alfvén waves is dominated by Ohmic diffusion for weak magnetic field and low heights in the chromosphere, and by ambipolar diffusion for strong magnetic field and medium/large heights in the chromosphere. Conversely, the damping of slow magnetoacoustic waves is less efficient, and spatial scales shorter than 10 m are required for critical damping. Thermal conduction and viscosity govern the damping of slow magnetoacoustic waves and play an equally important role at all heights. These results indicate that the spatial scales at which strong wave heating may work in the chromosphere are currently unresolved by observations.

  4. Spatial dependence of plasma oscillations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Holst, Thorsten; Hansen, Jørn Bindslev

    1991-01-01

    of an applied magnetic field. Numerical simulations of the governing partial-differential sine-Gordon equation were performed and compared to the experimental results and a perturbation analysis. The theoretical results support the experiments and allow us to interpret the observed crossover as due...... field threading the tunneling barrier. We compare measurements where the plasma frequency was tuned either by applying a magnetic field or by raising the temperature. A crossover from short- to long-junction behavior of the functional dependence of the plasma oscillations was observed in the case...

  5. Quantifying spatial scaling patterns and their local and regional correlates in headwater streams: implications for resilience

    Directory of Open Access Journals (Sweden)

    Emma Göthe

    2014-09-01

    Full Text Available The distribution of functional traits within and across spatiotemporal scales has been used to quantify and infer the relative resilience across ecosystems. We use explicit spatial modeling to evaluate within- and cross-scale redundancy in headwater streams, an ecosystem type with a hierarchical and dendritic network structure. We assessed the cross-scale distribution of functional feeding groups of benthic invertebrates in Swedish headwater streams during two seasons. We evaluated functional metrics, i.e., Shannon diversity, richness, and evenness, and the degree of redundancy within and across modeled spatial scales for individual feeding groups. We also estimated the correlates of environmental versus spatial factors of both functional composition and the taxonomic composition of functional groups for each spatial scale identified. Measures of functional diversity and within-scale redundancy of functions were similar during both seasons, but both within- and cross-scale redundancy were low. This apparent low redundancy was partly attributable to a few dominant taxa explaining the spatial models. However, rare taxa with stochastic spatial distributions might provide additional information and should therefore be considered explicitly for complementing future resilience assessments. Otherwise, resilience may be underestimated. Finally, both environmental and spatial factors correlated with the scale-specific functional and taxonomic composition. This finding suggests that resilience in stream networks emerges as a function of not only local conditions but also regional factors such as habitat connectivity and invertebrate dispersal.

  6. Quantifying spatial scaling patterns and their local and regional correlates in headwater streams: Implications for resilience

    Science.gov (United States)

    Gothe, Emma; Sandin, Leonard; Allen, Craig R.; Angeler, David G.

    2014-01-01

    The distribution of functional traits within and across spatiotemporal scales has been used to quantify and infer the relative resilience across ecosystems. We use explicit spatial modeling to evaluate within- and cross-scale redundancy in headwater streams, an ecosystem type with a hierarchical and dendritic network structure. We assessed the cross-scale distribution of functional feeding groups of benthic invertebrates in Swedish headwater streams during two seasons. We evaluated functional metrics, i.e., Shannon diversity, richness, and evenness, and the degree of redundancy within and across modeled spatial scales for individual feeding groups. We also estimated the correlates of environmental versus spatial factors of both functional composition and the taxonomic composition of functional groups for each spatial scale identified. Measures of functional diversity and within-scale redundancy of functions were similar during both seasons, but both within- and cross-scale redundancy were low. This apparent low redundancy was partly attributable to a few dominant taxa explaining the spatial models. However, rare taxa with stochastic spatial distributions might provide additional information and should therefore be considered explicitly for complementing future resilience assessments. Otherwise, resilience may be underestimated. Finally, both environmental and spatial factors correlated with the scale-specific functional and taxonomic composition. This finding suggests that resilience in stream networks emerges as a function of not only local conditions but also regional factors such as habitat connectivity and invertebrate dispersal.

  7. Three-dimensional solutions in media with spatial dependence of nonlinear refractive index

    International Nuclear Information System (INIS)

    Kovachev, L.M.; Kaymakanova, N.I.; Dakova, D.Y.; Pavlov, L.I.; Donev, S.G.; Pavlov, R.L.

    2004-01-01

    We investigate a nonparaxial vector generalization of the scalar 3D+1 Nonlinear Schrodinger Equation (NSE). Exact analytical 3D+1 soliton solutions are obtained for the first time in media of spatial dependence of the nonlinear refractive index

  8. Selecting Appropriate Spatial Scale for Mapping Plastic-Mulched Farmland with Satellite Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Hasituya

    2017-03-01

    Full Text Available In recent years, the area of plastic-mulched farmland (PMF has undergone rapid growth and raised remarkable environmental problems. Therefore, mapping the PMF plays a crucial role in agricultural production, environmental protection and resource management. However, appropriate data selection criteria are currently lacking. Thus, this study was carried out in two main plastic-mulching practice regions, Jizhou and Guyuan, to look for an appropriate spatial scale for mapping PMF with remote sensing. The average local variance (ALV function was used to obtain the appropriate spatial scale for mapping PMF based on the GaoFen-1 (GF-1 satellite imagery. Afterwards, in order to validate the effectiveness of the selected method and to interpret the relationship between the appropriate spatial scale derived from the ALV and the spatial scale with the highest classification accuracy, we classified the imagery with varying spatial resolution by the Support Vector Machine (SVM algorithm using the spectral features, textural features and the combined spectral and textural features respectively. The results indicated that the appropriate spatial scales from the ALV lie between 8 m and 20 m for mapping the PMF both in Jizhou and Guyuan. However, there is a proportional relation: the spatial scale with the highest classification accuracy is at the 1/2 location of the appropriate spatial scale generated from the ALV in Jizhou and at the 2/3 location of the appropriate spatial scale generated from the ALV in Guyuan. Therefore, the ALV method for quantitatively selecting the appropriate spatial scale for mapping PMF with remote sensing imagery has theoretical and practical significance.

  9. CMB scale dependent non-Gaussianity from massive gravity during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Domènech, Guillem; Hiramatsu, Takashi; Lin, Chunshan; Sasaki, Misao [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 (Japan); Shiraishi, Maresuke [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba, 277-8583 (Japan); Wang, Yi, E-mail: guillem.domenech@yukawa.kyoto-u.ac.jp, E-mail: hiramatz@yukawa.kyoto-u.ac.jp, E-mail: chunshan.lin@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: shiraishi-m@t.kagawa-nct.ac.jp, E-mail: phyw@ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2017-05-01

    We consider a cosmological model in which the tensor mode becomes massive during inflation, and study the Cosmic Microwave Background (CMB) temperature and polarization bispectra arising from the mixing between the scalar mode and the massive tensor mode during inflation. The model assumes the existence of a preferred spatial frame during inflation. The local Lorentz invariance is already broken in cosmology due to the existence of a preferred rest frame. The existence of a preferred spatial frame further breaks the remaining local SO(3) invariance and in particular gives rise to a mass in the tensor mode. At linear perturbation level, we minimize our model so that the vector mode remains non-dynamical, while the scalar mode is the same as the one in single-field slow-roll inflation. At non-linear perturbation level, this inflationary massive graviton phase leads to a sizeable scalar-scalar-tensor coupling, much greater than the scalar-scalar-scalar one, as opposed to the conventional case. This scalar-scalar-tensor interaction imprints a scale dependent feature in the CMB temperature and polarization bispectra. Very intriguingly, we find a surprizing similarity between the predicted scale dependence and the scale-dependent non-Gaussianities at low multipoles hinted in the WMAP and Planck results.

  10. When local extinction and colonization of river fishes can be predicted by regional occupancy: the role of spatial scales.

    Directory of Open Access Journals (Sweden)

    Benjamin Bergerot

    Full Text Available Predicting which species are likely to go extinct is perhaps one of the most fundamental yet challenging tasks for conservation biologists. This is particularly relevant for freshwater ecosystems which tend to have the highest proportion of species threatened with extinction. According to metapopulation theories, local extinction and colonization rates of freshwater subpopulations can depend on the degree of regional occupancy, notably due to rescue effects. However, relationships between extinction, colonization, regional occupancy and the spatial scales at which they operate are currently poorly known.And Findings: We used a large dataset of freshwater fish annual censuses in 325 stream reaches to analyse how annual extinction/colonization rates of subpopulations depend on the regional occupancy of species. For this purpose, we modelled the regional occupancy of 34 fish species over the whole French river network and we tested how extinction/colonization rates could be predicted by regional occupancy described at five nested spatial scales. Results show that extinction and colonization rates depend on regional occupancy, revealing existence a rescue effect. We also find that these effects are scale dependent and their absolute contribution to colonization and extinction tends to decrease from river section to larger basin scales.In terms of management, we show that regional occupancy quantification allows the evaluation of local species extinction/colonization dynamics and reduction of local extinction risks for freshwater fish species implies the preservation of suitable habitats at both local and drainage basin scales.

  11. When local extinction and colonization of river fishes can be predicted by regional occupancy: the role of spatial scales.

    Science.gov (United States)

    Bergerot, Benjamin; Hugueny, Bernard; Belliard, Jérôme

    2013-01-01

    Predicting which species are likely to go extinct is perhaps one of the most fundamental yet challenging tasks for conservation biologists. This is particularly relevant for freshwater ecosystems which tend to have the highest proportion of species threatened with extinction. According to metapopulation theories, local extinction and colonization rates of freshwater subpopulations can depend on the degree of regional occupancy, notably due to rescue effects. However, relationships between extinction, colonization, regional occupancy and the spatial scales at which they operate are currently poorly known. And Findings: We used a large dataset of freshwater fish annual censuses in 325 stream reaches to analyse how annual extinction/colonization rates of subpopulations depend on the regional occupancy of species. For this purpose, we modelled the regional occupancy of 34 fish species over the whole French river network and we tested how extinction/colonization rates could be predicted by regional occupancy described at five nested spatial scales. Results show that extinction and colonization rates depend on regional occupancy, revealing existence a rescue effect. We also find that these effects are scale dependent and their absolute contribution to colonization and extinction tends to decrease from river section to larger basin scales. In terms of management, we show that regional occupancy quantification allows the evaluation of local species extinction/colonization dynamics and reduction of local extinction risks for freshwater fish species implies the preservation of suitable habitats at both local and drainage basin scales.

  12. Spatial data analysis and integration for regional-scale geothermal potential mapping, West Java, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Carranza, Emmanuel John M.; Barritt, Sally D. [Department of Earth Systems Analysis, International Institute for Geo-information Science and Earth Observation (ITC), Enschede (Netherlands); Wibowo, Hendro; Sumintadireja, Prihadi [Laboratory of Volcanology and Geothermal, Geology Department, Institute of Technology Bandung (ITB), Bandung (Indonesia)

    2008-06-15

    Conceptual modeling and predictive mapping of potential for geothermal resources at the regional-scale in West Java are supported by analysis of the spatial distribution of geothermal prospects and thermal springs, and their spatial associations with geologic features derived from publicly available regional-scale spatial data sets. Fry analysis shows that geothermal occurrences have regional-scale spatial distributions that are related to Quaternary volcanic centers and shallow earthquake epicenters. Spatial frequency distribution analysis shows that geothermal occurrences have strong positive spatial associations with Quaternary volcanic centers, Quaternary volcanic rocks, quasi-gravity lows, and NE-, NNW-, WNW-trending faults. These geological features, with their strong positive spatial associations with geothermal occurrences, constitute spatial recognition criteria of regional-scale geothermal potential in a study area. Application of data-driven evidential belief functions in GIS-based predictive mapping of regional-scale geothermal potential resulted in delineation of high potential zones occupying 25% of West Java, which is a substantial reduction of the search area for further exploration of geothermal resources. The predicted high potential zones delineate about 53-58% of the training geothermal areas and 94% of the validated geothermal occurrences. The results of this study demonstrate the value of regional-scale geothermal potential mapping in: (a) data-poor situations, such as West Java, and (b) regions with geotectonic environments similar to the study area. (author)

  13. Scale Dependence of Magnetic Helicity in the Solar Wind

    Science.gov (United States)

    Brandenburg, Axel; Subramanian, Kandaswamy; Balogh, Andre; Goldstein, Melvyn L.

    2011-01-01

    We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k approximately equal to 2AU(sup -1) (or frequency nu approximately equal to 2 microHz) at distances below 2.8AU and at k approximately equal to 30AU(sup -1) (or nu approximately equal to 25 microHz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10(sup 45) Mx(sup 2) cycle(sup -1) at large scales and to a three times lower value at smaller scales.

  14. Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250

    KAUST Repository

    Attili, Antonio

    2012-03-21

    The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.

  15. Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio

    2012-01-01

    The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.

  16. Scale-Dependent Habitat Selection and Size-Based Dominance in Adult Male American Alligators.

    Directory of Open Access Journals (Sweden)

    Bradley A Strickland

    Full Text Available Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17 on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their

  17. Scale-dependent habitat selection and size-based dominance in adult male American alligators

    Science.gov (United States)

    Strickland, Bradley A.; Vilella, Francisco; Belant, Jerrold L.

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance

  18. Scaling local species-habitat relations to the larger landscape with a hierarchical spatial count model

    Science.gov (United States)

    Thogmartin, W.E.; Knutson, M.G.

    2007-01-01

    Much of what is known about avian species-habitat relations has been derived from studies of birds at local scales. It is entirely unclear whether the relations observed at these scales translate to the larger landscape in a predictable linear fashion. We derived habitat models and mapped predicted abundances for three forest bird species of eastern North America using bird counts, environmental variables, and hierarchical models applied at three spatial scales. Our purpose was to understand habitat associations at multiple spatial scales and create predictive abundance maps for purposes of conservation planning at a landscape scale given the constraint that the variables used in this exercise were derived from local-level studies. Our models indicated a substantial influence of landscape context for all species, many of which were counter to reported associations at finer spatial extents. We found land cover composition provided the greatest contribution to the relative explained variance in counts for all three species; spatial structure was second in importance. No single spatial scale dominated any model, indicating that these species are responding to factors at multiple spatial scales. For purposes of conservation planning, areas of predicted high abundance should be investigated to evaluate the conservation potential of the landscape in their general vicinity. In addition, the models and spatial patterns of abundance among species suggest locations where conservation actions may benefit more than one species. ?? 2006 Springer Science+Business Media B.V.

  19. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    Science.gov (United States)

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes

  20. Scale dependence in species turnover reflects variance in species occupancy.

    Science.gov (United States)

    McGlinn, Daniel J; Hurlbert, Allen H

    2012-02-01

    Patterns of species turnover may reflect the processes driving community dynamics across scales. While the majority of studies on species turnover have examined pairwise comparison metrics (e.g., the average Jaccard dissimilarity), it has been proposed that the species-area relationship (SAR) also offers insight into patterns of species turnover because these two patterns may be analytically linked. However, these previous links only apply in a special case where turnover is scale invariant, and we demonstrate across three different plant communities that over 90% of the pairwise turnover values are larger than expected based on scale-invariant predictions from the SAR. Furthermore, the degree of scale dependence in turnover was negatively related to the degree of variance in the occupancy frequency distribution (OFD). These findings suggest that species turnover diverges from scale invariance, and as such pairwise turnover and the slope of the SAR are not redundant. Furthermore, models developed to explain the OFD should be linked with those developed to explain species turnover to achieve a more unified understanding of community structure.

  1. Spatial dependence and correlation of rainfall in the Danube catchment and its role in flood risk assessment.

    Science.gov (United States)

    Martina, M. L. V.; Vitolo, R.; Todini, E.; Stephenson, D. B.; Cook, I. M.

    2009-04-01

    The possibility that multiple catastrophic events occur within a given timespan and affect the same portfolio of insured properties may induce enhanced risk. For this reason, in the insurance industry it is of interest to characterise not only the point probability of catastrophic events, but also their spatial structure. As far as floods are concerned it is important to determine the probability of having multiple simultaneous events in different parts of the same basin: in this case, indeed, the loss in a portfolio can be significantly different. Understanding the spatial structure of the precipitation field is a necessary step for the proper modelling of the spatial dependence and correlation of river discharge. Several stochastic models are available in the scientific literature for the multi-site generation of precipitation. Although most models achieve good performance in modelling mean values, temporal variability and inter-site dependence of extremes are still delicate issues. In this work we aim at identifying the main spatial characteristics of the precipitation structure and then at analysing them in a real case. We consider data from a large network of raingauges in the Danube catchment. This catchment is a good example of a large-scale catchment where the spatial correlation of flood events can radically change the effect in term of flood damage.

  2. Spatial and topographic trends in forest expansion and biomass change, from regional to local scales.

    Science.gov (United States)

    Buma, Brian; Barrett, Tara M

    2015-09-01

    Natural forest growth and expansion are important carbon sequestration processes globally. Climate change is likely to increase forest growth in some regions via CO2 fertilization, increased temperatures, and altered precipitation; however, altered disturbance regimes and climate stress (e.g. drought) will act to reduce carbon stocks in forests as well. Observations of asynchrony in forest change is useful in determining current trends in forest carbon stocks, both in terms of forest density (e.g. Mg ha(-1) ) and spatially (extent and location). Monitoring change in natural (unmanaged) areas is particularly useful, as while afforestation and recovery from historic land use are currently large carbon sinks, the long-term viability of those sinks depends on climate change and disturbance dynamics at their particular location. We utilize a large, unmanaged biome (>135 000 km(2) ) which spans a broad latitudinal gradient to explore how variation in location affects forest density and spatial patterning: the forests of the North American temperate rainforests in Alaska, which store >2.8 Pg C in biomass and soil, equivalent to >8% of the C in contiguous US forests. We demonstrate that the regional biome is shifting; gains exceed losses and are located in different spatio-topographic contexts. Forest gains are concentrated on northerly aspects, lower elevations, and higher latitudes, especially in sheltered areas, whereas loss is skewed toward southerly aspects and lower latitudes. Repeat plot-scale biomass data (n = 759) indicate that within-forest biomass gains outpace losses (live trees >12.7 cm diameter, 986 Gg yr(-1) ) on gentler slopes and in higher latitudes. This work demonstrates that while temperate rainforest dynamics occur at fine spatial scales (biomass accumulation suggest the potential for relatively rapid biome shifts and biomass changes. © 2015 John Wiley & Sons Ltd.

  3. Space- and time-dependent quantum dynamics of spatially indirect excitons in semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Grasselli, Federico, E-mail: federico.grasselli@unimore.it; Goldoni, Guido, E-mail: guido.goldoni@unimore.it [Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena (Italy); CNR-NANO S3, Institute for Nanoscience, Via Campi 213/a, 41125 Modena (Italy); Bertoni, Andrea, E-mail: andrea.bertoni@nano.cnr.it [CNR-NANO S3, Institute for Nanoscience, Via Campi 213/a, 41125 Modena (Italy)

    2015-01-21

    We study the unitary propagation of a two-particle one-dimensional Schrödinger equation by means of the Split-Step Fourier method, to study the coherent evolution of a spatially indirect exciton (IX) in semiconductor heterostructures. The mutual Coulomb interaction of the electron-hole pair and the electrostatic potentials generated by external gates and acting on the two particles separately are taken into account exactly in the two-particle dynamics. As relevant examples, step/downhill and barrier/well potential profiles are considered. The space- and time-dependent evolutions during the scattering event as well as the asymptotic time behavior are analyzed. For typical parameters of GaAs-based devices, the transmission or reflection of the pair turns out to be a complex two-particle process, due to comparable and competing Coulomb, electrostatic, and kinetic energy scales. Depending on the intensity and anisotropy of the scattering potentials, the quantum evolution may result in excitation of the IX internal degrees of freedom, dissociation of the pair, or transmission in small periodic IX wavepackets due to dwelling of one particle in the barrier region. We discuss the occurrence of each process in the full parameter space of the scattering potentials and the relevance of our results for current excitronic technologies.

  4. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales

    KAUST Repository

    Jiang, Lijian; Efendiev, Yalchin; Ginting, Victor

    2010-01-01

    In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.

  5. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales

    KAUST Repository

    Jiang, Lijian

    2010-08-01

    In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.

  6. Integrating cross-scale analysis in the spatial and temporal domains for classification of behavioral movement

    Directory of Open Access Journals (Sweden)

    Ali Soleymani

    2014-06-01

    Full Text Available Since various behavioral movement patterns are likely to be valid within different, unique ranges of spatial and temporal scales (e.g., instantaneous, diurnal, or seasonal with the corresponding spatial extents, a cross-scale approach is needed for accurate classification of behaviors expressed in movement. Here, we introduce a methodology for the characterization and classification of behavioral movement data that relies on computing and analyzing movement features jointly in both the spatial and temporal domains. The proposed methodology consists of three stages. In the first stage, focusing on the spatial domain, the underlying movement space is partitioned into several zonings that correspond to different spatial scales, and features related to movement are computed for each partitioning level. In the second stage, concentrating on the temporal domain, several movement parameters are computed from trajectories across a series of temporal windows of increasing sizes, yielding another set of input features for the classification. For both the spatial and the temporal domains, the ``reliable scale'' is determined by an automated procedure. This is the scale at which the best classification accuracy is achieved, using only spatial or temporal input features, respectively. The third stage takes the measures from the spatial and temporal domains of movement, computed at the corresponding reliable scales, as input features for behavioral classification. With a feature selection procedure, the most relevant features contributing to known behavioral states are extracted and used to learn a classification model. The potential of the proposed approach is demonstrated on a dataset of adult zebrafish (Danio rerio swimming movements in testing tanks, following exposure to different drug treatments. Our results show that behavioral classification accuracy greatly increases when firstly cross-scale analysis is used to determine the best analysis scale, and

  7. Investigations of grain size dependent sediment transport phenomena on multiple scales

    Science.gov (United States)

    Thaxton, Christopher S.

    Sediment transport processes in coastal and fluvial environments resulting from disturbances such as urbanization, mining, agriculture, military operations, and climatic change have significant impact on local, regional, and global environments. Primarily, these impacts include the erosion and deposition of sediment, channel network modification, reduction in downstream water quality, and the delivery of chemical contaminants. The scale and spatial distribution of these effects are largely attributable to the size distribution of the sediment grains that become eligible for transport. An improved understanding of advective and diffusive grain-size dependent sediment transport phenomena will lead to the development of more accurate predictive models and more effective control measures. To this end, three studies were performed that investigated grain-size dependent sediment transport on three different scales. Discrete particle computer simulations of sheet flow bedload transport on the scale of 0.1--100 millimeters were performed on a heterogeneous population of grains of various grain sizes. The relative transport rates and diffusivities of grains under both oscillatory and uniform, steady flow conditions were quantified. These findings suggest that boundary layer formalisms should describe surface roughness through a representative grain size that is functionally dependent on the applied flow parameters. On the scale of 1--10m, experiments were performed to quantify the hydrodynamics and sediment capture efficiency of various baffles installed in a sediment retention pond, a commonly used sedimentation control measure in watershed applications. Analysis indicates that an optimum sediment capture effectiveness may be achieved based on baffle permeability, pond geometry and flow rate. Finally, on the scale of 10--1,000m, a distributed, bivariate watershed terain evolution module was developed within GRASS GIS. Simulation results for variable grain sizes and for

  8. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    Directory of Open Access Journals (Sweden)

    Nicholas R Vaughn

    Full Text Available Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  9. Task-Management Method Using R-Tree Spatial Cloaking for Large-Scale Crowdsourcing

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-12-01

    Full Text Available With the development of sensor technology and the popularization of the data-driven service paradigm, spatial crowdsourcing systems have become an important way of collecting map-based location data. However, large-scale task management and location privacy are important factors for participants in spatial crowdsourcing. In this paper, we propose the use of an R-tree spatial cloaking-based task-assignment method for large-scale spatial crowdsourcing. We use an estimated R-tree based on the requested crowdsourcing tasks to reduce the crowdsourcing server-side inserting cost and enable the scalability. By using Minimum Bounding Rectangle (MBR-based spatial anonymous data without exact position data, this method preserves the location privacy of participants in a simple way. In our experiment, we showed that our proposed method is faster than the current method, and is very efficient when the scale is increased.

  10. Real-time distribution of pelagic fish: combining hydroacoustics, GIS and spatial modelling at a fine spatial scale.

    Science.gov (United States)

    Muška, Milan; Tušer, Michal; Frouzová, Jaroslava; Mrkvička, Tomáš; Ricard, Daniel; Seďa, Jaromír; Morelli, Federico; Kubečka, Jan

    2018-03-29

    Understanding spatial distribution of organisms in heterogeneous environment remains one of the chief issues in ecology. Spatial organization of freshwater fish was investigated predominantly on large-scale, neglecting important local conditions and ecological processes. However, small-scale processes are of an essential importance for individual habitat preferences and hence structuring trophic cascades and species coexistence. In this work, we analysed the real-time spatial distribution of pelagic freshwater fish in the Římov Reservoir (Czechia) observed by hydroacoustics in relation to important environmental predictors during 48 hours at 3-h interval. Effect of diurnal cycle was revealed of highest significance in all spatial models with inverse trends between fish distribution and predictors in day and night in general. Our findings highlighted daytime pelagic fish distribution as highly aggregated, with general fish preferences for central, deep and highly illuminated areas, whereas nighttime distribution was more disperse and fish preferred nearshore steep sloped areas with higher depth. This turnover suggests prominent movements of significant part of fish assemblage between pelagic and nearshore areas on a diel basis. In conclusion, hydroacoustics, GIS and spatial modelling proved as valuable tool for predicting local fish distribution and elucidate its drivers, which has far reaching implications for understanding freshwater ecosystem functioning.

  11. The Relationship between Spatial and Temporal Magnitude Estimation of Scientific Concepts at Extreme Scales

    Science.gov (United States)

    Price, Aaron; Lee, H.

    2010-01-01

    Many astronomical objects, processes, and events exist and occur at extreme scales of spatial and temporal magnitudes. Our research draws upon the psychological literature, replete with evidence of linguistic and metaphorical links between the spatial and temporal domains, to compare how students estimate spatial and temporal magnitudes associated with objects and processes typically taught in science class.. We administered spatial and temporal scale estimation tests, with many astronomical items, to 417 students enrolled in 12 undergraduate science courses. Results show that while the temporal test was more difficult, students’ overall performance patterns between the two tests were mostly similar. However, asymmetrical correlations between the two tests indicate that students think of the extreme ranges of spatial and temporal scales in different ways, which is likely influenced by their classroom experience. When making incorrect estimations, students tended to underestimate the difference between the everyday scale and the extreme scales on both tests. This suggests the use of a common logarithmic mental number line for both spatial and temporal magnitude estimation. However, there are differences between the two tests in the errors student make in the everyday range. Among the implications discussed is the use of spatio-temporal reference frames, instead of smooth bootstrapping, to help students maneuver between scales of magnitude and the use of logarithmic transformations between reference frames. Implications for astronomy range from learning about spectra to large scale galaxy structure.

  12. Spatial Variability of Indicators of Jiaokou Reservoir Under Different Sampling Scales

    Directory of Open Access Journals (Sweden)

    WEI Wen-juan

    2016-12-01

    Full Text Available This research determined total nitrogen, total phosphorus, ammonia nitrogen and potassium permanganate contents in different scales of Jiaokou reservoir with the purpose of exploring the applicability of spatial variability and its characteristic in different sampling scales. The results showed that, compared the sampling scales of 100 m with 200 m, there were some differences among four indicators in the spatial variation, interpolation simulation and spatial distribution. About the testing model fit, the fitting model for the total nitrogen, permanganate index was Gaussian model, the fitting model for total phosphorus, ammonia nitrogen was the spherical model; Combining evaluation of parameters of models and comprehensive evaluation of spatial interpolation, total nitrogen, total phosphorus showed stronger spatial correlation and better interpolation simulation quality on the sampling scales of 200 m, while total phosphorus and permanganate index showed certain advantages on the 100 m scale; On the aspect of spatial distributions, the contents of ammonia nitrogen and potassium permanganate were mainly affected by human factors, the total phosphorus was affected by internal factors of the reservoir, while total nitrogen was closely related to farming activities around reservoir. The above results showed that total nitrogen, ammonia nitrogen were more available for the 200 m scales and total phosphorus, potassium permanganate were more available for the 100 m scales.

  13. Effects of spatial scale on the perception and assessment of risk of natural disturbance in forested ecosystems: examples from northeastern Oregon

    Science.gov (United States)

    R. James Barbour; Miles Hemstrom; Alan Ager; Jane L. Hayes

    2005-01-01

    The perception and measurement of the risk of natural disturbances often varies depending on the spatial and temporal scales over which information is collected or analyzed. This can lead to conflicting conclusions about severity of current or past disturbances or the risk of future ones. Failure to look across scales also complicates local implementation of policies...

  14. A Spatial Framework to Map Heat Health Risks at Multiple Scales.

    Science.gov (United States)

    Ho, Hung Chak; Knudby, Anders; Huang, Wei

    2015-12-18

    In the last few decades extreme heat events have led to substantial excess mortality, most dramatically in Central Europe in 2003, in Russia in 2010, and even in typically cool locations such as Vancouver, Canada, in 2009. Heat-related morbidity and mortality is expected to increase over the coming centuries as the result of climate-driven global increases in the severity and frequency of extreme heat events. Spatial information on heat exposure and population vulnerability may be combined to map the areas of highest risk and focus mitigation efforts there. However, a mismatch in spatial resolution between heat exposure and vulnerability data can cause spatial scale issues such as the Modifiable Areal Unit Problem (MAUP). We used a raster-based model to integrate heat exposure and vulnerability data in a multi-criteria decision analysis, and compared it to the traditional vector-based model. We then used the Getis-Ord G(i) index to generate spatially smoothed heat risk hotspot maps from fine to coarse spatial scales. The raster-based model allowed production of maps at spatial resolution, more description of local-scale heat risk variability, and identification of heat-risk areas not identified with the vector-based approach. Spatial smoothing with the Getis-Ord G(i) index produced heat risk hotspots from local to regional spatial scale. The approach is a framework for reducing spatial scale issues in future heat risk mapping, and for identifying heat risk hotspots at spatial scales ranging from the block-level to the municipality level.

  15. Characterizing the multi–scale spatial structure of remotely sensed evapotranspiration with information theory

    Directory of Open Access Journals (Sweden)

    N. A. Brunsell

    2011-08-01

    Full Text Available A more thorough understanding of the multi-scale spatial structure of land surface heterogeneity will enhance understanding of the relationships and feedbacks between land surface conditions, mass and energy exchanges between the surface and the atmosphere, and regional meteorological and climatological conditions. The objectives of this study were to (1 quantify which spatial scales are dominant in determining the evapotranspiration flux between the surface and the atmosphere and (2 to quantify how different spatial scales of atmospheric and surface processes interact for different stages of the phenological cycle. We used the ALEXI/DisALEXI model for three days (DOY 181, 229 and 245 in 2002 over the Ft. Peck Ameriflux site to estimate the latent heat flux from Landsat, MODIS and GOES satellites. We then applied a multiresolution information theory methodology to quantify these interactions across different spatial scales and compared the dynamics across the different sensors and different periods. We note several important results: (1 spatial scaling characteristics vary with day, but are usually consistent for a given sensor, but (2 different sensors give different scalings, and (3 the different sensors exhibit different scaling relationships with driving variables such as fractional vegetation and near surface soil moisture. In addition, we note that while the dominant length scale of the vegetation index remains relatively constant across the dates, the contribution of the vegetation index to the derived latent heat flux varies with time. We also note that length scales determined from MODIS are consistently larger than those determined from Landsat, even at scales that should be detectable by MODIS. This may imply an inability of the MODIS sensor to accurately determine the fine scale spatial structure of the land surface. These results aid in identifying the dominant cross-scale nature of local to regional biosphere

  16. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration

    KAUST Repository

    Ershadi, Ali; McCabe, Matthew; Evans, Jason P.; Walker, Jeffrey P.

    2013-01-01

    The influence of spatial resolution on the estimation of land surface heat fluxes from remote sensing is poorly understood. In this study, the effects of aggregation from fine (< 100 m) to medium (approx. 1. km) scales are investigated using high

  17. The small-scale spatial distribution of an invading moth

    DEFF Research Database (Denmark)

    Nash, David Richard; Agassiz, David J. L.; Godfray, H. C. J.

    1995-01-01

    We studied the spread of a small leaf-mining moth [Phyllonorycter leucographella (Zeller), Gracillariidae] after its accidental introduction into the British Isles. At large geographical scales, previous work had shown the spread to be well described by a travelling wave of constant velocity. Her...

  18. Spatial scale of similarity as an indicator of metacommunity stability in exploited marine systems.

    Science.gov (United States)

    Shackell, Nancy L; Fisher, Jonathan A D; Frank, Kenneth T; Lawton, Peter

    2012-01-01

    The spatial scale of similarity among fish communities is characteristically large in temperate marine systems: connectivity is enhanced by high rates of dispersal during the larval/juvenile stages and the increased mobility of large-bodied fish. A larger spatial scale of similarity (low beta diversity) is advantageous in heavily exploited systems because locally depleted populations are more likely to be "rescued" by neighboring areas. We explored whether the spatial scale of similarity changed from 1970 to 2006 due to overfishing of dominant, large-bodied groundfish across a 300 000-km2 region of the Northwest Atlantic. Annually, similarities among communities decayed slowly with increasing geographic distance in this open system, but through time the decorrelation distance declined by 33%, concomitant with widespread reductions in biomass, body size, and community evenness. The decline in connectivity stemmed from an erosion of community similarity among local subregions separated by distances as small as 100 km. Larger fish, of the same species, contribute proportionally more viable offspring, so observed body size reductions will have affected maternal output. The cumulative effect of nonlinear maternal influences on egg/larval quality may have compromised the spatial scale of effective larval dispersal, which may account for the delayed recovery of certain member species. Our study adds strong support for using the spatial scale of similarity as an indicator of metacommunity stability both to understand the spatial impacts of exploitation and to refine how spatial structure is used in management plans.

  19. Spatial structure arising from neighbour-dependent bias in collective cell movement

    Directory of Open Access Journals (Sweden)

    Rachelle N. Binny

    2016-02-01

    Full Text Available Mathematical models of collective cell movement often neglect the effects of spatial structure, such as clustering, on the population dynamics. Typically, they assume that individuals interact with one another in proportion to their average density (the mean-field assumption which means that cell–cell interactions occurring over short spatial ranges are not accounted for. However, in vitro cell culture studies have shown that spatial correlations can play an important role in determining collective behaviour. Here, we take a combined experimental and modelling approach to explore how individual-level interactions give rise to spatial structure in a moving cell population. Using imaging data from in vitro experiments, we quantify the extent of spatial structure in a population of 3T3 fibroblast cells. To understand how this spatial structure arises, we develop a lattice-free individual-based model (IBM and simulate cell movement in two spatial dimensions. Our model allows an individual’s direction of movement to be affected by interactions with other cells in its neighbourhood, providing insights into how directional bias generates spatial structure. We consider how this behaviour scales up to the population level by using the IBM to derive a continuum description in terms of the dynamics of spatial moments. In particular, we account for spatial correlations between cells by considering dynamics of the second spatial moment (the average density of pairs of cells. Our numerical results suggest that the moment dynamics description can provide a good approximation to averaged simulation results from the underlying IBM. Using our in vitro data, we estimate parameters for the model and show that it can generate similar spatial structure to that observed in a 3T3 fibroblast cell population.

  20. Spatial structure arising from neighbour-dependent bias in collective cell movement.

    Science.gov (United States)

    Binny, Rachelle N; Haridas, Parvathi; James, Alex; Law, Richard; Simpson, Matthew J; Plank, Michael J

    2016-01-01

    Mathematical models of collective cell movement often neglect the effects of spatial structure, such as clustering, on the population dynamics. Typically, they assume that individuals interact with one another in proportion to their average density (the mean-field assumption) which means that cell-cell interactions occurring over short spatial ranges are not accounted for. However, in vitro cell culture studies have shown that spatial correlations can play an important role in determining collective behaviour. Here, we take a combined experimental and modelling approach to explore how individual-level interactions give rise to spatial structure in a moving cell population. Using imaging data from in vitro experiments, we quantify the extent of spatial structure in a population of 3T3 fibroblast cells. To understand how this spatial structure arises, we develop a lattice-free individual-based model (IBM) and simulate cell movement in two spatial dimensions. Our model allows an individual's direction of movement to be affected by interactions with other cells in its neighbourhood, providing insights into how directional bias generates spatial structure. We consider how this behaviour scales up to the population level by using the IBM to derive a continuum description in terms of the dynamics of spatial moments. In particular, we account for spatial correlations between cells by considering dynamics of the second spatial moment (the average density of pairs of cells). Our numerical results suggest that the moment dynamics description can provide a good approximation to averaged simulation results from the underlying IBM. Using our in vitro data, we estimate parameters for the model and show that it can generate similar spatial structure to that observed in a 3T3 fibroblast cell population.

  1. High Arctic Nitrous Oxide Emissions Found on Large Spatial Scales

    Science.gov (United States)

    Wilkerson, J. P.; Sayres, D. S.; Dobosy, R.; Anderson, J. G.

    2017-12-01

    As the planet warms, greenhouse gas emissions from thawing permafrost can potentially increase the net radiative forcing in our climate structure. However, knowledge about Arctic N2O emissions is particularly sparse. Increasing evidence suggests emissions from permafrost thaw may be a significant natural source of N2O. This evidence, though, is either based on lab experiments or in situ chamber studies, which have extremely limited spatial coverage. Consequently, it has not been confirmed to what extent these high emissions are representative of broader arctic regions. Using an airborne eddy covariance flux technique, we measured N2O fluxes over large regions of Alaska in August 2013. From these measurements, we directly show that large areas of this Arctic region have high N2O emissions.

  2. Pollinator communities in strawberry crops - variation at multiple spatial scales.

    Science.gov (United States)

    Ahrenfeldt, E J; Klatt, B K; Arildsen, J; Trandem, N; Andersson, G K S; Tscharntke, T; Smith, H G; Sigsgaard, L

    2015-08-01

    Predicting potential pollination services of wild bees in crops requires knowledge of their spatial distribution within fields. Field margins can serve as nesting and foraging habitats for wild bees and can be a source of pollinators. Regional differences in pollinator community composition may affect this spill-over of bees. We studied how regional and local differences affect the spatial distribution of wild bee species richness, activity-density and body size in crop fields. We sampled bees both from the field centre and at two different types of semi-natural field margins, grass strips and hedges, in 12 strawberry fields. The fields were distributed over four regions in Northern Europe, representing an almost 1100 km long north-south gradient. Even over this gradient, daytime temperatures during sampling did not differ significantly between regions and did therefore probably not impact bee activity. Bee species richness was higher in field margins compared with field centres independent of field size. However, there was no difference between centre and margin in body-size or activity-density. In contrast, bee activity-density increased towards the southern regions, whereas the mean body size increased towards the north. In conclusion, our study revealed a general pattern across European regions of bee diversity, but not activity-density, declining towards the field interior which suggests that the benefits of functional diversity of pollinators may be difficult to achieve through spill-over effects from margins to crop. We also identified dissimilar regional patterns in bee diversity and activity-density, which should be taken into account in conservation management.

  3. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    International Nuclear Information System (INIS)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R.

    2004-01-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales

  4. Scale-dependence of land use effects on water quality of streams in agricultural catchments

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Oliver; Niyogi, Dev K.; Townsend, Colin R

    2004-07-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive. - Land use influences water quality of streams at various spatial scales.

  5. Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales

    Science.gov (United States)

    Abiodun, Olanrewaju O.; Guan, Huade; Post, Vincent E. A.; Batelaan, Okke

    2018-05-01

    In most hydrological systems, evapotranspiration (ET) and precipitation are the largest components of the water balance, which are difficult to estimate, particularly over complex terrain. In recent decades, the advent of remotely sensed data based ET algorithms and distributed hydrological models has provided improved spatially upscaled ET estimates. However, information on the performance of these methods at various spatial scales is limited. This study compares the ET from the MODIS remotely sensed ET dataset (MOD16) with the ET estimates from a SWAT hydrological model on graduated spatial scales for the complex terrain of the Sixth Creek Catchment of the Western Mount Lofty Ranges, South Australia. ET from both models was further compared with the coarser-resolution AWRA-L model at catchment scale. The SWAT model analyses are performed on daily timescales with a 6-year calibration period (2000-2005) and 7-year validation period (2007-2013). Differences in ET estimation between the SWAT and MOD16 methods of up to 31, 19, 15, 11 and 9 % were observed at respectively 1, 4, 9, 16 and 25 km2 spatial resolutions. Based on the results of the study, a spatial scale of confidence of 4 km2 for catchment-scale evapotranspiration is suggested in complex terrain. Land cover differences, HRU parameterisation in AWRA-L and catchment-scale averaging of input climate data in the SWAT semi-distributed model were identified as the principal sources of weaker correlations at higher spatial resolution.

  6. Temporal and Spatial Scales of Labrador Sea Water Formation

    Science.gov (United States)

    Clarke, R. A.

    1984-01-01

    Labrador Sea Water is an intermediate water found at the same density and depth range in the North Atlantic as the Mediterranean water. It is formed by convection from the sea surface to depths greather than 2 km in winter in the Western Labrador Sea. The processes leading to deep convection begin with the formation of a 200 km scale cyclonic circulation about denser than average upper layer water in the Western Labrador Sea. This circulation pattern is hypothesized to be driven by an ocean/atmosphere heat exchange that has its maximum in this region. By early March, if deep convection is taking place, one sees that this body of denser upper waters penetrates to the top of the deep temperature/salinity maximum marking the core of the North Atlantic Deep Water. We note that the horizontal scale of this body is still 100-200 km normal to the coastline.

  7. Landscape degradation at different spatial scales caused by aridification

    OpenAIRE

    Meyer Burghard Christian; Mezősi Gábor; Kovács Ferenc

    2017-01-01

    Landscape responses to degradation caused by aridification bring the landscape system into a new equilibrium state. The system transformation may entail irreversible changes to its constituting parameters. This paper analyses the impact of aridification on landscape degradation processes in the sand-covered landscapes of the Hungarian Danube-Tisza Interfluve region at the regional, landscape, and local site scales. Changes in groundwater level (well data), lake surface area (Modified Normaliz...

  8. On the nonlinearity of spatial scales in extreme weather attribution statements

    Science.gov (United States)

    Angélil, Oliver; Stone, Daíthí; Perkins-Kirkpatrick, Sarah; Alexander, Lisa V.; Wehner, Michael; Shiogama, Hideo; Wolski, Piotr; Ciavarella, Andrew; Christidis, Nikolaos

    2018-04-01

    In the context of ongoing climate change, extreme weather events are drawing increasing attention from the public and news media. A question often asked is how the likelihood of extremes might have changed by anthropogenic greenhouse-gas emissions. Answers to the question are strongly influenced by the model used, duration, spatial extent, and geographic location of the event—some of these factors often overlooked. Using output from four global climate models, we provide attribution statements characterised by a change in probability of occurrence due to anthropogenic greenhouse-gas emissions, for rainfall and temperature extremes occurring at seven discretised spatial scales and three temporal scales. An understanding of the sensitivity of attribution statements to a range of spatial and temporal scales of extremes allows for the scaling of attribution statements, rendering them relevant to other extremes having similar but non-identical characteristics. This is a procedure simple enough to approximate timely estimates of the anthropogenic contribution to the event probability. Furthermore, since real extremes do not have well-defined physical borders, scaling can help quantify uncertainty around attribution results due to uncertainty around the event definition. Results suggest that the sensitivity of attribution statements to spatial scale is similar across models and that the sensitivity of attribution statements to the model used is often greater than the sensitivity to a doubling or halving of the spatial scale of the event. The use of a range of spatial scales allows us to identify a nonlinear relationship between the spatial scale of the event studied and the attribution statement.

  9. Dependency on scale of power numbers of Rushton disc turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bujalski, W.; Nienow, A.W.; Chatwin, S.; Cooke, M.

    1987-01-01

    Extensive and very accurate power numbers have been obtained for a wide range of Rushton disc turbines using water as the working fluid in six fully baffled vessels from 0.22 to 1.83 m diameter. The results show that for Reynolds numbers greater than or equal to 2 x 10/sup 4/, the average peak power number anti Po is dependent on the disc thickness (x/sub 1/) to impeller diameter (D) ratio and to the vessel diameter (T). Provided x/sub 1//D is constant, anti Po is independent of impeller to vessel ratio in the range 0.25 less than or equal to D/T less than or equal to 0.70. For 0.01 less than or equal to x/sub 1//D less than or equal to 0.05 and for the range of vessels studied, the equation anti Po = 2.5(x/sub 1//D)/sup -0.2/ (T/T/sub 0/)/sup 0.065/ fitted the data to within +/- 3% where T/sub 0/ is a 1 m diameter vessel. An F-test shows that the inclusion of the small effect of scale, (T/T/sub 0/), is statistically significant at the 99% level. The implications of these scale and geometrical effects for mixing research, process design and scale-up are discussed.

  10. The Effect Of Omitted Spatial Effects And Social Dependence In The Modelling Of Household Expenditure For Fruits And Vegetables

    Directory of Open Access Journals (Sweden)

    Łaszkiewicz Edyta

    2014-12-01

    Full Text Available As is well known, ignoring spatial heterogeneity leads to biased parameter estimates, while omitting the spatial lag of a dependent variable results in biasness and inconsistency (Anselin, 1988. However, the common approach to analysing households’ expenditures is to ignore the potential spatial effects and social dependence. In light of this, the aim of this paper is to examine the consequences of omitting the spatial effects as well as social dependence in households’ expenditures.

  11. Time-scales for runoff and erosion estimates, with implications for spatial scaling

    Science.gov (United States)

    Kirkby, M. J.; Irvine, B. J.; Dalen, E. N.

    2009-04-01

    Using rainfall data at high temporal resolution, runoff may be estimated for every bucket-tip, or for aggregated hourly or daily periods. Although there is no doubt that finer resolution gives substantially better estimates, many models make use of coarser time steps because these data are more widely available. This paper makes comparisons between runoff estimates based on infiltration measurements used with high resolution rainfall data for SE Spain and theoretical work on improving the time resolution in the PESERA model from daily to hourly values, for areas where these are available. For a small plot at fine temporal scale, runoff responds to bursts of intense rainfall which, for the Guadalentin catchment, typically lasts for about 30 minutes. However, when a larger area is considered, the large and unstructured variability in infiltration capacity produces an aggregate runoff that differs substantially from estimates using average infiltration parameters (in the Green-Ampt equation). When these estimates are compared with estimates based on rainfall for aggregated hourly or daily periods, using a simpler infiltration model, it can be seen that there a substantial scatter, as expected, but that suitable parameterisation can provide reasonable average estimates. Similar conclusions may be drawn for erosion estimates, assuming that sediment transport is proportional to a power of runoff discharge.. The spatial implications of these estimates can be made explicit with fine time resolution, showing that, with observed low overland flow velocities, only a small fraction of the hillside is generally able to deliver runoff to the nearest channel before rainfall intensity drops and runoff re-infiltrates. For coarser time resolutions, this has to be parameterised as a delivery ratio, and we show that how this ratio can be rationally estimated from rainfall characteristics.

  12. A gender- and sexual orientation-dependent spatial attentional effect of invisible images

    OpenAIRE

    Jiang, Yi; Costello, Patricia; Fang, Fang; Huang, Miner; He, Sheng

    2006-01-01

    Human observers are constantly bombarded with a vast amount of information. Selective attention helps us to quickly process what is important while ignoring the irrelevant. In this study, we demonstrate that information that has not entered observers' consciousness, such as interocularly suppressed (invisible) erotic pictures, can direct the distribution of spatial attention. Furthermore, invisible erotic information can either attract or repel observers' spatial attention depending on their ...

  13. Time dependent analysis of Xenon spatial oscillations in small power reactors

    International Nuclear Information System (INIS)

    Decco, Claudia Cristina Ghirardello

    1997-01-01

    This work presents time dependent analysis of xenon spatial oscillations studying the influence of the power density distribution, type of reactivity perturbation, power level and core size, using the one-dimensional and three-dimensional analysis with the MID2 and citation codes, respectively. It is concluded that small pressurized water reactors with height smaller than 1.5 m are stable and do not have xenon spatial oscillations. (author)

  14. Delineation and validation of river network spatial scales for water resources and fisheries management.

    Science.gov (United States)

    Wang, Lizhu; Brenden, Travis; Cao, Yong; Seelbach, Paul

    2012-11-01

    Identifying appropriate spatial scales is critically important for assessing health, attributing data, and guiding management actions for rivers. We describe a process for identifying a three-level hierarchy of spatial scales for Michigan rivers. Additionally, we conduct a variance decomposition of fish occurrence, abundance, and assemblage metric data to evaluate how much observed variability can be explained by the three spatial scales as a gage of their utility for water resources and fisheries management. The process involved the development of geographic information system programs, statistical models, modification by experienced biologists, and simplification to meet the needs of policy makers. Altogether, 28,889 reaches, 6,198 multiple-reach segments, and 11 segment classes were identified from Michigan river networks. The segment scale explained the greatest amount of variation in fish abundance and occurrence, followed by segment class, and reach. Segment scale also explained the greatest amount of variation in 13 of the 19 analyzed fish assemblage metrics, with segment class explaining the greatest amount of variation in the other six fish metrics. Segments appear to be a useful spatial scale/unit for measuring and synthesizing information for managing rivers and streams. Additionally, segment classes provide a useful typology for summarizing the numerous segments into a few categories. Reaches are the foundation for the identification of segments and segment classes and thus are integral elements of the overall spatial scale hierarchy despite reaches not explaining significant variation in fish assemblage data.

  15. The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach

    Science.gov (United States)

    Smith, Tony E.; Lee, Ka Lok

    2012-01-01

    There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is independent of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce "spurious correlation" that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.

  16. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    KAUST Repository

    Jha, Sanjeev Kumar

    2015-07-21

    A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here, the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 km and 10 km resolution for a twenty year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference dataset indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local scale estimates of precipitation and temperature from General Circulation Models. This article is protected by copyright. All rights reserved.

  17. Spatial up-scaling of the retention by matrix diffusion

    International Nuclear Information System (INIS)

    Poteri, A.

    2006-11-01

    This work has been carried out as a part of the European research project FUNMIG: Fundamental processes of radionuclide migration (www.funmig.com). FUNMIG is a four year project that will be carried out between years 2005 and 2008. Participation of the VTT to the FUNMIG project is jointly funded by EU and Posiva Oy. The present report is an 18th month project delivery (PID4.6.1) of the work package 4.6. Work package 4.6 covers up-scaling processes of the retention and transport processes in the crystalline rock. (orig.)

  18. Reliability Analysis of 6-Component Star Markov Repairable System with Spatial Dependence

    Directory of Open Access Journals (Sweden)

    Liying Wang

    2017-01-01

    Full Text Available Star repairable systems with spatial dependence consist of a center component and several peripheral components. The peripheral components are arranged around the center component, and the performance of each component depends on its spatial “neighbors.” Vector-Markov process is adapted to describe the performance of the system. The state space and transition rate matrix corresponding to the 6-component star Markov repairable system with spatial dependence are presented via probability analysis method. Several reliability indices, such as the availability, the probabilities of visiting the safety, the degradation, the alert, and the failed state sets, are obtained by Laplace transform method and a numerical example is provided to illustrate the results.

  19. Redshift space correlations and scale-dependent stochastic biasing of density peaks

    Science.gov (United States)

    Desjacques, Vincent; Sheth, Ravi K.

    2010-01-01

    We calculate the redshift space correlation function and the power spectrum of density peaks of a Gaussian random field. Our derivation, which is valid on linear scales k≲0.1hMpc-1, is based on the peak biasing relation given by Desjacques [Phys. Rev. DPRVDAQ1550-7998, 78, 103503 (2008)10.1103/PhysRevD.78.103503]. In linear theory, the redshift space power spectrum is Ppks(k,μ)=exp⁡(-f2σvel2k2μ2)[bpk(k)+bvel(k)fμ2]2Pδ(k), where μ is the angle with respect to the line of sight, σvel is the one-dimensional velocity dispersion, f is the growth rate, and bpk(k) and bvel(k) are k-dependent linear spatial and velocity bias factors. For peaks, the value of σvel depends upon the functional form of bvel. When the k dependence is absent from the square brackets and bvel is set to unity, the resulting expression is assumed to describe models where the bias is linear and deterministic, but the velocities are unbiased. The peak model is remarkable because it has unbiased velocities in this same sense—peak motions are driven by dark matter flows—but, in order to achieve this, bvel must be k dependent. We speculate that this is true in general: k dependence of the spatial bias will lead to k dependence of bvel even if the biased tracers flow with the dark matter. Because of the k dependence of the linear bias parameters, standard manipulations applied to the peak model will lead to k-dependent estimates of the growth factor that could erroneously be interpreted as a signature of modified dark energy or gravity. We use the Fisher formalism to show that the constraint on the growth rate f is degraded by a factor of 2 if one allows for a k-dependent velocity bias of the peak type. Our analysis also demonstrates that the Gaussian smoothing term is part and parcel of linear theory. We discuss a simple estimate of nonlinear evolution and illustrate the effect of the peak bias on the redshift space multipoles. For k≲0.1hMpc-1, the peak bias is deterministic but k

  20. Macroecological factors shape local-scale spatial patterns in agriculturalist settlements.

    Science.gov (United States)

    Tao, Tingting; Abades, Sebastián; Teng, Shuqing; Huang, Zheng Y X; Reino, Luís; Chen, Bin J W; Zhang, Yong; Xu, Chi; Svenning, Jens-Christian

    2017-11-15

    Macro-scale patterns of human systems ranging from population distribution to linguistic diversity have attracted recent attention, giving rise to the suggestion that macroecological rules shape the assembly of human societies. However, in which aspects the geography of our own species is shaped by macroecological factors remains poorly understood. Here, we provide a first demonstration that macroecological factors shape strong local-scale spatial patterns in human settlement systems, through an analysis of spatial patterns in agriculturalist settlements in eastern mainland China based on high-resolution Google Earth images. We used spatial point pattern analysis to show that settlement spatial patterns are characterized by over-dispersion at fine spatial scales (0.05-1.4 km), consistent with territory segregation, and clumping at coarser spatial scales beyond the over-dispersion signals, indicating territorial clustering. Statistical modelling shows that, at macroscales, potential evapotranspiration and topographic heterogeneity have negative effects on territory size, but positive effects on territorial clustering. These relationships are in line with predictions from territory theory for hunter-gatherers as well as for many animal species. Our results help to disentangle the complex interactions between intrinsic spatial processes in agriculturalist societies and external forcing by macroecological factors. While one may speculate that humans can escape ecological constraints because of unique abilities for environmental modification and globalized resource transportation, our work highlights that universal macroecological principles still shape the geography of current human agricultural societies. © 2017 The Author(s).

  1. Landscape degradation at different spatial scales caused by aridification

    Directory of Open Access Journals (Sweden)

    Meyer Burghard Christian

    2017-12-01

    Full Text Available Landscape responses to degradation caused by aridification bring the landscape system into a new equilibrium state. The system transformation may entail irreversible changes to its constituting parameters. This paper analyses the impact of aridification on landscape degradation processes in the sand-covered landscapes of the Hungarian Danube-Tisza Interfluve region at the regional, landscape, and local site scales. Changes in groundwater level (well data, lake surface area (Modified Normalized Difference Water Index and vegetation cover (Enhanced Vegetation Index were analysed over time periods of 12–60 years. Significant regional variation in decreasing groundwater levels is observed and limits the regional applicability of this indicator. Applying the lake surface area parameter from remote sensing data demonstrated greater utility, identifying several local lakes in the landscapes which have dried out. Analysis of the vegetation response indicated minor changes over the 2000–2014 time period and did not indicate a landscape system change. Landscape degradation as a result of changes in groundwater, vegetation, land cover and land use is clearly identified exclusively in local lake areas, but at the landscape scale, changes in the water balance are found in phases of system stability and transformation. Thresholds are identified to support policy and management towards landscape degradation neutrality.

  2. Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography

    International Nuclear Information System (INIS)

    Chen Guanghong; Zambelli, Joseph; Li Ke; Bevins, Nicholas; Qi Zhihua

    2011-01-01

    Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot-Lau interferometer system. Results: For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness. Conclusions: The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.

  3. Understanding relationships among ecosystem services across spatial scales and over time

    Science.gov (United States)

    Qiu, Jiangxiao; Carpenter, Stephen R.; Booth, Eric G.; Motew, Melissa; Zipper, Samuel C.; Kucharik, Christopher J.; Loheide, Steven P., II; Turner, Monica G.

    2018-05-01

    Sustaining ecosystem services (ES), mitigating their tradeoffs and avoiding unfavorable future trajectories are pressing social-environmental challenges that require enhanced understanding of their relationships across scales. Current knowledge of ES relationships is often constrained to one spatial scale or one snapshot in time. In this research, we integrated biophysical modeling with future scenarios to examine changes in relationships among eight ES indicators from 2001–2070 across three spatial scales—grid cell, subwatershed, and watershed. We focused on the Yahara Watershed (Wisconsin) in the Midwestern United States—an exemplar for many urbanizing agricultural landscapes. Relationships among ES indicators changed over time; some relationships exhibited high interannual variations (e.g. drainage vs. food production, nitrate leaching vs. net ecosystem exchange) and even reversed signs over time (e.g. perennial grass production vs. phosphorus yield). Robust patterns were detected for relationships among some regulating services (e.g. soil retention vs. water quality) across three spatial scales, but other relationships lacked simple scaling rules. This was especially true for relationships of food production vs. water quality, and drainage vs. number of days with runoff >10 mm, which differed substantially across spatial scales. Our results also showed that local tradeoffs between food production and water quality do not necessarily scale up, so reducing local tradeoffs may be insufficient to mitigate such tradeoffs at the watershed scale. We further synthesized these cross-scale patterns into a typology of factors that could drive changes in ES relationships across scales: (1) effects of biophysical connections, (2) effects of dominant drivers, (3) combined effects of biophysical linkages and dominant drivers, and (4) artificial scale effects, and concluded with management implications. Our study highlights the importance of taking a dynamic

  4. Shellfish reefs increase water storage capacity on intertidal flats over extensive spatial scales

    NARCIS (Netherlands)

    Nieuwhof, S.; van Belzen, J.; Oteman, B.; van de Koppel, J.; Herman, P.M.J.; van der Wal, D.

    2018-01-01

    Ecosystem engineering species can affect their environment at multiple spatial scales, from the local scale up to a significant distance, by indirectly affecting the surrounding habitats. Structural changes in the landscape can have important consequences for ecosystem functioning, for example, by

  5. Selection of fire-created snags at two spatial scales by cavity-nesting birds

    Science.gov (United States)

    Victoria A. Saab; Ree Brannon; Jonathan Dudley; Larry Donohoo; Dave Vanderzanden; Vicky Johnson; Henry Lachowski

    2002-01-01

    We examined the use of snag stands by seven species of cavity-nesting birds from 1994-1998. Selection of snags was studied in logged and unlogged burned forests at two spatial scales: microhabitat (local vegetation characteristics) and landscape (composition and patterning of surrounding vegetation types). We modeled nest occurrence at the landscape scale by using...

  6. On the soft limit of the large scale structure power spectrum. UV dependence

    International Nuclear Information System (INIS)

    Garny, Mathias

    2015-08-01

    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an 'anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ∝ 10% effect, and plausibly smaller.

  7. Uniform functional structure across spatial scales in an intertidal benthic assemblage.

    Science.gov (United States)

    Barnes, R S K; Hamylton, Sarah

    2015-05-01

    To investigate the causes of the remarkable similarity of emergent assemblage properties that has been demonstrated across disparate intertidal seagrass sites and assemblages, this study examined whether their emergent functional-group metrics are scale related by testing the null hypothesis that functional diversity and the suite of dominant functional groups in seagrass-associated macrofauna are robust structural features of such assemblages and do not vary spatially across nested scales within a 0.4 ha area. This was carried out via a lattice of 64 spatially referenced stations. Although densities of individual components were patchily dispersed across the locality, rank orders of importance of the 14 functional groups present, their overall functional diversity and evenness, and the proportions of the total individuals contained within each showed, in contrast, statistically significant spatial uniformity, even at areal scales functional groups in their geospatial context also revealed weaker than expected levels of spatial autocorrelation, and then only at the smaller scales and amongst the most dominant groups, and only a small number of negative correlations occurred between the proportional importances of the individual groups. In effect, such patterning was a surface veneer overlying remarkable stability of assemblage functional composition across all spatial scales. Although assemblage species composition is known to be homogeneous in some soft-sediment marine systems over equivalent scales, this combination of patchy individual components yet basically constant functional-group structure seems as yet unreported. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Spatial scales of carbon flow in a river food web

    Science.gov (United States)

    Finlay, J.C.; Khandwala, S.; Power, M.E.

    2002-01-01

    Spatial extents of food webs that support stream and river consumers are largely unknown, but such information is essential for basic understanding and management of lotic ecosystems. We used predictable variation in algal ??13C with water velocity, and measurements of consumer ??13C and ??15N to examine carbon flow and trophic structure in food webs of the South Fork Eel River in Northern California. Analyses of ??13C showed that the most abundant macroinvertebrate groups (collector-gatherers and scrapers) relied on algae from local sources within their riffle or shallow pool habitats. In contrast, filter-feeding invertebrates in riffles relied in part on algal production derived from upstream shallow pools. Riffle invertebrate predators also relied in part on consumers of pool-derived algal carbon. One abundant taxon drifting from shallow pools and riffles (baetid mayflies) relied on algal production derived from the habitats from which they dispersed. The trophic linkage from pool algae to riffle invertebrate predators was thus mediated through either predation on pool herbivores dispersing into riffles, or on filter feeders. Algal production in shallow pool habitats dominated the resource base of vertebrate predators in all habitats at the end of the summer. We could not distinguish between the trophic roles of riffle algae and terrestrial detritus, but both carbon sources appeared to play minor roles for vertebrate consumers. In shallow pools, small vertebrates, including three-spined stickleback (Gasterosteus aculeatus), roach (Hesperoleucas symmetricus), and rough-skinned newts (Taricha granulosa), relied on invertebrate prey derived from local pool habitats. During the most productive summer period, growth of all size classes of steelhead and resident rainbow trout (Oncorhynchus mykiss) in all habitats (shallow pools, riffles, and deep unproductive pools) was largely derived from algal production in shallow pools. Preliminary data suggest that the strong

  9. Modeling spatial-temporal operations with context-dependent associative memories.

    Science.gov (United States)

    Mizraji, Eduardo; Lin, Juan

    2015-10-01

    We organize our behavior and store structured information with many procedures that require the coding of spatial and temporal order in specific neural modules. In the simplest cases, spatial and temporal relations are condensed in prepositions like "below" and "above", "behind" and "in front of", or "before" and "after", etc. Neural operators lie beneath these words, sharing some similarities with logical gates that compute spatial and temporal asymmetric relations. We show how these operators can be modeled by means of neural matrix memories acting on Kronecker tensor products of vectors. The complexity of these memories is further enhanced by their ability to store episodes unfolding in space and time. How does the brain scale up from the raw plasticity of contingent episodic memories to the apparent stable connectivity of large neural networks? We clarify this transition by analyzing a model that flexibly codes episodic spatial and temporal structures into contextual markers capable of linking different memory modules.

  10. Spatial scaling of core and dominant forest cover in the Upper Mississippi and Illinois River floodplains, USA

    Science.gov (United States)

    De Jager, Nathan R.; Rohweder, Jason J.

    2011-01-01

    Different organisms respond to spatial structure in different terms and across different spatial scales. As a consequence, efforts to reverse habitat loss and fragmentation through strategic habitat restoration ought to account for the different habitat density and scale requirements of various taxonomic groups. Here, we estimated the local density of floodplain forest surrounding each of ~20 million 10-m forested pixels of the Upper Mississippi and Illinois River floodplains by using moving windows of multiple sizes (1–100 ha). We further identified forest pixels that met two local density thresholds: 'core' forest pixels were nested in a 100% (unfragmented) forested window and 'dominant' forest pixels were those nested in a >60% forested window. Finally, we fit two scaling functions to declines in the proportion of forest cover meeting these criteria with increasing window length for 107 management-relevant focal areas: a power function (i.e. self-similar, fractal-like scaling) and an exponential decay function (fractal dimension depends on scale). The exponential decay function consistently explained more variation in changes to the proportion of forest meeting both the 'core' and 'dominant' criteria with increasing window length than did the power function, suggesting that elevation, soil type, hydrology, and human land use constrain these forest types to a limited range of scales. To examine these scales, we transformed the decay constants to measures of the distance at which the probability of forest meeting the 'core' and 'dominant' criteria was cut in half (S 1/2, m). S 1/2 for core forest was typically between ~55 and ~95 m depending on location along the river, indicating that core forest cover is restricted to extremely fine scales. In contrast, half of all dominant forest cover was lost at scales that were typically between ~525 and 750 m, but S 1/2 was as long as 1,800 m. S 1/2 is a simple measure that (1) condenses information derived from multi-scale

  11. Deforestation Induced Climate Change: Effects of Spatial Scale.

    Science.gov (United States)

    Longobardi, Patrick; Montenegro, Alvaro; Beltrami, Hugo; Eby, Michael

    2016-01-01

    Deforestation is associated with increased atmospheric CO2 and alterations to the surface energy and mass balances that can lead to local and global climate changes. Previous modelling studies show that the global surface air temperature (SAT) response to deforestation depends on latitude, with most simulations showing that high latitude deforestation results in cooling, low latitude deforestation causes warming and that the mid latitude response is mixed. These earlier conclusions are based on simulated large scal land cover change, with complete removal of trees from whole latitude bands. Using a global climate model we examine the effects of removing fractions of 5% to 100% of forested areas in the high, mid and low latitudes. All high latitude deforestation scenarios reduce mean global SAT, the opposite occurring for low latitude deforestation, although a decrease in SAT is simulated over low latitude deforested areas. Mid latitude SAT response is mixed. In all simulations deforested areas tend to become drier and have lower SAT, although soil temperatures increase over deforested mid and low latitude grid cells. For high latitude deforestation fractions of 45% and above, larger net primary productivity, in conjunction with colder and drier conditions after deforestation cause an increase in soil carbon large enough to produce a net decrease of atmospheric CO2. Our results reveal the complex interactions between soil carbon dynamics and other climate subsystems in the energy partition responses to land cover change.

  12. Deforestation Induced Climate Change: Effects of Spatial Scale.

    Directory of Open Access Journals (Sweden)

    Patrick Longobardi

    Full Text Available Deforestation is associated with increased atmospheric CO2 and alterations to the surface energy and mass balances that can lead to local and global climate changes. Previous modelling studies show that the global surface air temperature (SAT response to deforestation depends on latitude, with most simulations showing that high latitude deforestation results in cooling, low latitude deforestation causes warming and that the mid latitude response is mixed. These earlier conclusions are based on simulated large scal land cover change, with complete removal of trees from whole latitude bands. Using a global climate model we examine the effects of removing fractions of 5% to 100% of forested areas in the high, mid and low latitudes. All high latitude deforestation scenarios reduce mean global SAT, the opposite occurring for low latitude deforestation, although a decrease in SAT is simulated over low latitude deforested areas. Mid latitude SAT response is mixed. In all simulations deforested areas tend to become drier and have lower SAT, although soil temperatures increase over deforested mid and low latitude grid cells. For high latitude deforestation fractions of 45% and above, larger net primary productivity, in conjunction with colder and drier conditions after deforestation cause an increase in soil carbon large enough to produce a net decrease of atmospheric CO2. Our results reveal the complex interactions between soil carbon dynamics and other climate subsystems in the energy partition responses to land cover change.

  13. Dependence and physical exercise: Spanish validation of the Exercise Dependence Scale-Revised (EDS-R).

    Science.gov (United States)

    Sicilia, Alvaro; González-Cutre, David

    2011-05-01

    The purpose of this study was to validate the Spanish version of the Exercise Dependence Scale-Revised (EDS-R). To achieve this goal, a sample of 531 sport center users was used and the psychometric properties of the EDS-R were examined through different analyses. The results supported both the first-order seven-factor model and the higher-order model (seven first-order factors and one second-order factor). The structure of both models was invariant across age. Correlations among the subscales indicated a related factor model, supporting construct validity of the scale. Alpha values over .70 (except for Reduction in Other Activities) and suitable levels of temporal stability were obtained. Users practicing more than three days per week had higher scores in all subscales than the group practicing with a frequency of three days or fewer. The findings of this study provided reliability and validity for the EDS-R in a Spanish context.

  14. Care dependency of hospitalized children: testing the Care Dependency Scale for Paediatrics in a cross-cultural comparison.

    Science.gov (United States)

    Tork, Hanan; Dassen, Theo; Lohrmann, Christa

    2009-02-01

    This paper is a report of a study to examine the psychometric properties of the Care Dependency Scale for Paediatrics in Germany and Egypt and to compare the care dependency of school-age children in both countries. Cross-cultural differences in care dependency of older adults have been documented in the literature, but little is known about the differences and similarities with regard to children's care dependency in different cultures. A convenience sample of 258 school-aged children from Germany and Egypt participated in the study in 2005. The reliability of the Care Dependency Scale for Paediatrics was assessed in terms of internal consistency and interrater reliability. Factor analysis (principal component analysis) was employed to verify the construct validity. A Visual Analogue Scale was used to investigate the criterion-related validity. Good internal consistency was detected both for the Arabic and German versions. Factor analysis revealed one factor for both versions. A Pearson's correlation between the Care Dependency Scale for Paediatrics and Visual Analogue Scale was statistically significant for both versions indicating criterion-related validity. Statistically significant differences between the participants were detected regarding the mean sum score on the Care Dependency Scale for Paediatrics. The Care Dependency Scale for Paediatrics is a reliable and valid tool for assessing the care dependency of children and is recommended for assessing the care dependency of children from different ethnic origins. Differences in care dependency between German and Egyptian children were detected, which might be due to cultural differences.

  15. Modelling aggregation on the large scale and regularity on the small scale in spatial point pattern datasets

    DEFF Research Database (Denmark)

    Lavancier, Frédéric; Møller, Jesper

    We consider a dependent thinning of a regular point process with the aim of obtaining aggregation on the large scale and regularity on the small scale in the resulting target point process of retained points. Various parametric models for the underlying processes are suggested and the properties...

  16. Species and Scale Dependence of Bacterial Motion Dynamics

    Science.gov (United States)

    Sund, N. L.; Yang, X.; Parashar, R.; Plymale, A.; Hu, D.; Kelly, R.; Scheibe, T. D.

    2017-12-01

    Many metal reducing bacteria are motile with their motion characteristics described by run-and-tumble behavior exhibiting series of flights (jumps) and waiting (residence) time spanning a wide range of values. Accurate models of motility allow for improved design and evaluation of in-situ bioremediation in the subsurface. While many bioremediation models neglect the motion of the bacteria, others treat motility using an advection dispersion equation, which assumes that the motion of the bacteria is Brownian.The assumption of Brownian motion to describe motility has enormous implications on predictive capabilities of bioremediation models, yet experimental evidence of this assumption is mixed [1][2][3]. We hypothesize that this is due to the species and scale dependence of the motion dynamics. We test our hypothesis by analyzing videos of motile bacteria of five different species in open domains. Trajectories of individual cells ranging from several seconds to few minutes in duration are extracted in neutral conditions (in the absence of any chemical gradient). The density of the bacteria is kept low so that the interaction between the bacteria is minimal. Preliminary results show a transition from Fickian (Brownian) to non-Fickian behavior for one species of bacteria (Pelosinus) and persistent Fickian behavior of another species (Geobacter).Figure: Video frames of motile bacteria with the last 10 seconds of their trajectories drawn in red. (left) Pelosinus and (right) Geobacter.[1] Ariel, Gil, et al. "Swarming bacteria migrate by Lévy Walk." Nature Communications 6 (2015).[2] Saragosti, Jonathan, Pascal Silberzan, and Axel Buguin. "Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis." PloS one 7.4 (2012): e35412.[3] Wu, Mingming, et al. "Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique." Applied and Environmental Microbiology 72.7 (2006): 4987-4994.

  17. Scale dependence of rock friction at high work rate.

    Science.gov (United States)

    Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Takizawa, Shigeru; Xu, Shiqing; Kawakata, Hironori

    2015-12-10

    Determination of the frictional properties of rocks is crucial for an understanding of earthquake mechanics, because most earthquakes are caused by frictional sliding along faults. Prior studies using rotary shear apparatus revealed a marked decrease in frictional strength, which can cause a large stress drop and strong shaking, with increasing slip rate and increasing work rate. (The mechanical work rate per unit area equals the product of the shear stress and the slip rate.) However, those important findings were obtained in experiments using rock specimens with dimensions of only several centimetres, which are much smaller than the dimensions of a natural fault (of the order of 1,000 metres). Here we use a large-scale biaxial friction apparatus with metre-sized rock specimens to investigate scale-dependent rock friction. The experiments show that rock friction in metre-sized rock specimens starts to decrease at a work rate that is one order of magnitude smaller than that in centimetre-sized rock specimens. Mechanical, visual and material observations suggest that slip-evolved stress heterogeneity on the fault accounts for the difference. On the basis of these observations, we propose that stress-concentrated areas exist in which frictional slip produces more wear materials (gouge) than in areas outside, resulting in further stress concentrations at these areas. Shear stress on the fault is primarily sustained by stress-concentrated areas that undergo a high work rate, so those areas should weaken rapidly and cause the macroscopic frictional strength to decrease abruptly. To verify this idea, we conducted numerical simulations assuming that local friction follows the frictional properties observed on centimetre-sized rock specimens. The simulations reproduced the macroscopic frictional properties observed on the metre-sized rock specimens. Given that localized stress concentrations commonly occur naturally, our results suggest that a natural fault may lose its

  18. Genetic structuring of northern myotis (Myotis septentrionalis) at multiple spatial scales

    Science.gov (United States)

    Johnson, Joshua B.; Roberts, James H.; King, Timothy L.; Edwards, John W.; Ford, W. Mark; Ray, David A.

    2014-01-01

    Although groups of bats may be genetically distinguishable at large spatial scales, the effects of forest disturbances, particularly permanent land use conversions on fine-scale population structure and gene flow of summer aggregations of philopatric bat species are less clear. We genotyped and analyzed variation at 10 nuclear DNA microsatellite markers in 182 individuals of the forest-dwelling northern myotis (Myotis septentrionalis) at multiple spatial scales, from within first-order watersheds scaling up to larger regional areas in West Virginia and New York. Our results indicate that groups of northern myotis were genetically indistinguishable at any spatial scale we considered, and the collective population maintained high genetic diversity. It is likely that the ability to migrate, exploit small forest patches, and use networks of mating sites located throughout the Appalachian Mountains, Interior Highlands, and elsewhere in the hibernation range have allowed northern myotis to maintain high genetic diversity and gene flow regardless of forest disturbances at local and regional spatial scales. A consequence of maintaining high gene flow might be the potential to minimize genetic founder effects following population declines caused currently by the enzootic White-nose Syndrome.

  19. Spatial Variation of Magnitude Scaling Factors During the 2010 Darfield and 2011 Christchurch, New Zealand, Earthquakes

    OpenAIRE

    Carter, William Lake

    2016-01-01

    Magnitude Scaling Factors (MSF) account for the durational effects of strong ground shaking on the inducement of liquefaction within the simplified liquefaction evaluation procedure which is the most commonly used approach for assessing liquefaction potential worldwide. Within the context of the simplified procedure, the spatial variation in the seismic demand imposed on the soil traditionally has been assumed to be solely a function of the spatial variation of the peak amplitude of the groun...

  20. Seasonal dependence of large-scale Birkeland currents

    International Nuclear Information System (INIS)

    Fujii, R.; Iijima, T.; Potemra, T.A.; Sugiura, M.

    1981-01-01

    The seasonal dependence of large-scale Birkeland currents has been determined from the analysis of vector magnetic field data acquired by the TRIAD satellite in the northern hemisphere. Statistical characteristics of single sheet (i.e., net currents) and double sheet Birkeland currents were determined from 555 TRIAD passes during the summer, and 408 passes during the winter (more complicated multiple-sheet current systems were not included in this study). The average K/sub p/ value for the summer events is 1.9 and for the winter events is 2.0. The principal results include the following: (1) The single sheet Birkeland currents are statistically observed more often than the double sheet currents in the dayside of the auroral zone during any season. The single sheet currents are also observed more often in the summer than in the winter (as much as 2 to 3 times as often depending upon the MLT sector). (2) The intensities of the single and double sheet Birkeland currents on the dayside, from approximately 1000 MLT to 1800 MLT, are larger during the summer (in comparison to winter) by a factor of about 2. (3) The intensities of the double sheet Birkeland currents in the nightside (the dominant system in this local time) do not show a significant difference from summer to winter. (4) The single and double sheet currents in the dayside (between 0600 and 1800 MLT) appear at higher latitudes (by about 1 0 to 3 0 ) during the summer in comparison to the winter. These characterisctis suggest that the Birkeland current intensities are controlled by the ionosphere conductivity in the polar region. The greater occurrence of single sheet Birkeland currents during the summertime supports the suggestion that these currents close via the polar cap when the conductivity there is sufficiently high to permit it

  1. Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Shi, Linxi; Glick, Stephen J.; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-01-15

    Purpose: To determine the x-ray photon energy dependence of the anatomic power spectrum of the breast when imaged with dedicated breast computed tomography (CT). Methods: A theoretical framework for scaling the empirically determined anatomic power spectrum at one x-ray photon energy to that at any given x-ray photon energy when imaged with dedicated breast CT was developed. Theory predicted that when the anatomic power spectrum is fitted with a power curve of the form k f{sup -{beta}}, where k and {beta} are fit coefficients and f is spatial frequency, the exponent {beta} would be independent of x-ray photon energy (E), and the amplitude k scales with the square of the difference in energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues. Twenty mastectomy specimens based numerical phantoms that were previously imaged with a benchtop flat-panel cone-beam CT system were converted to 3D distribution of glandular weight fraction (f{sub g}) and were used to verify the theoretical findings. The 3D power spectrum was computed in terms of f{sub g} and after converting to linear attenuation coefficients at monoenergetic x-ray photon energies of 20-80 keV in 5 keV intervals. The 1D power spectra along the axes were extracted and fitted with a power curve of the form k f{sup -{beta}}. The energy dependence of k and {beta} were analyzed. Results: For the 20 mastectomy specimen based numerical phantoms used in the study, the exponent {beta} was found to be in the range of 2.34-2.42, depending on the axis of measurement. Numerical simulations agreed with the theoretical predictions that for a power-law anatomic spectrum of the form k f{sup -{beta}}, {beta} was independent of E and k(E) =k{sub 1}[{mu}{sub g}(E) -{mu}{sub a}(E)]{sup 2}, where k{sub 1} is a constant, and {mu}{sub g}(E) and {mu}{sub a}(E) represent the energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues, respectively. Conclusions: Numerical

  2. Measuring floodplain spatial patterns using continuous surface metrics at multiple scales

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Interactions between fluvial processes and floodplain ecosystems occur upon a floodplain surface that is often physically complex. Spatial patterns in floodplain topography have only recently been quantified over multiple scales, and discrepancies exist in how floodplain surfaces are perceived to be spatially organised. We measured spatial patterns in floodplain topography for pool 9 of the Upper Mississippi River, USA, using moving window analyses of eight surface metrics applied to a 1 × 1 m2 DEM over multiple scales. The metrics used were Range, SD, Skewness, Kurtosis, CV, SDCURV,Rugosity, and Vol:Area, and window sizes ranged from 10 to 1000 m in radius. Surface metric values were highly variable across the floodplain and revealed a high degree of spatial organisation in floodplain topography. Moran's I correlograms fit to the landscape of each metric at each window size revealed that patchiness existed at nearly all window sizes, but the strength and scale of patchiness changed within window size, suggesting that multiple scales of patchiness and patch structure exist in the topography of this floodplain. Scale thresholds in the spatial patterns were observed, particularly between the 50 and 100 m window sizes for all surface metrics and between the 500 and 750 m window sizes for most metrics. These threshold scales are ~ 15–20% and 150% of the main channel width (1–2% and 10–15% of the floodplain width), respectively. These thresholds may be related to structuring processes operating across distinct scale ranges. By coupling surface metrics, multi-scale analyses, and correlograms, quantifying floodplain topographic complexity is possible in ways that should assist in clarifying how floodplain ecosystems are structured.

  3. Advancements in Modelling of Land Surface Energy Fluxes with Remote Sensing at Different Spatial Scales

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw

    uxes, such as sensible heat ux, ground heat ux and net radiation, are also necessary. While it is possible to measure those uxes with ground-based instruments at local scales, at region scales they usually need to be modelled or estimated with the help of satellite remote sensing data. Even though...... to increase the spatial resolution of the reliable DTD-modelled fluxes from 1 km to 30 m. Furthermore, synergies between remote sensing based models and distributed hydrological models were studied with the aim of improving spatial performance of the hydrological models through incorporation of remote sensing...... of this study was to look at, and improve, various approaches for modelling the land-surface energy uxes at different spatial scales. The work was done using physically-based Two-Source Energy Balance (TSEB) approach as well as semi-empirical \\Triangle" approach. The TSEB-based approach was the main focus...

  4. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity

    Directory of Open Access Journals (Sweden)

    Hannah L. Buckley

    2014-09-01

    Full Text Available The role of species’ interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran’s eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners’ genetic variation. Different lichen taxa showed some variation in

  5. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity.

    Science.gov (United States)

    Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M

    2014-01-01

    The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence

  6. Quantifying Forest Spatial Pattern Trends at Multiple Extents: An Approach to Detect Significant Changes at Different Scales

    Directory of Open Access Journals (Sweden)

    Ludovico Frate

    2014-09-01

    Full Text Available We propose a procedure to detect significant changes in forest spatial patterns and relevant scales. Our approach consists of four sequential steps. First, based on a series of multi-temporal forest maps, a set of geographic windows of increasing extents are extracted. Second, for each extent and date, specific stochastic simulations that replicate real-world spatial pattern characteristics are run. Third, by computing pattern metrics on both simulated and real maps, their empirical distributions and confidence intervals are derived. Finally, multi-temporal scalograms are built for each metric. Based on cover maps (1954, 2011 with a resolution of 10 m we analyze forest pattern changes in a central Apennines (Italy reserve at multiple spatial extents (128, 256 and 512 pixels. We identify three types of multi-temporal scalograms, depending on pattern metric behaviors, describing different dynamics of natural reforestation process. The statistical distribution and variability of pattern metrics at multiple extents offers a new and powerful tool to detect forest variations over time. Similar procedures can (i help to identify significant changes in spatial patterns and provide the bases to relate them to landscape processes; (ii minimize the bias when comparing pattern metrics at a single extent and (iii be extended to other landscapes and scales.

  7. Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales

    Directory of Open Access Journals (Sweden)

    O. O. Abiodun

    2018-05-01

    Full Text Available In most hydrological systems, evapotranspiration (ET and precipitation are the largest components of the water balance, which are difficult to estimate, particularly over complex terrain. In recent decades, the advent of remotely sensed data based ET algorithms and distributed hydrological models has provided improved spatially upscaled ET estimates. However, information on the performance of these methods at various spatial scales is limited. This study compares the ET from the MODIS remotely sensed ET dataset (MOD16 with the ET estimates from a SWAT hydrological model on graduated spatial scales for the complex terrain of the Sixth Creek Catchment of the Western Mount Lofty Ranges, South Australia. ET from both models was further compared with the coarser-resolution AWRA-L model at catchment scale. The SWAT model analyses are performed on daily timescales with a 6-year calibration period (2000–2005 and 7-year validation period (2007–2013. Differences in ET estimation between the SWAT and MOD16 methods of up to 31, 19, 15, 11 and 9 % were observed at respectively 1, 4, 9, 16 and 25 km2 spatial resolutions. Based on the results of the study, a spatial scale of confidence of 4 km2 for catchment-scale evapotranspiration is suggested in complex terrain. Land cover differences, HRU parameterisation in AWRA-L and catchment-scale averaging of input climate data in the SWAT semi-distributed model were identified as the principal sources of weaker correlations at higher spatial resolution.

  8. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.

    Science.gov (United States)

    Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel

    2017-12-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Scale dependency of fractional flow dimension in a fractured formation

    Directory of Open Access Journals (Sweden)

    Y.-C. Chang

    2011-07-01

    Full Text Available The flow dimensions of fractured media were usually predefined before the determination of the hydraulic parameters from the analysis of field data in the past. However, it would be improper to make assumption about the flow geometry of fractured media before site characterization because the hydraulic structures and flow paths are complex in the fractured media. An appropriate way to investigate the hydrodynamic behavior of a fracture system is to determine the flow dimension and aquifer parameters simultaneously. The objective of this study is to analyze a set of field data obtained from four observation wells during an 11-day hydraulic test at Chingshui geothermal field (CGF in Taiwan in determining the hydrogeologic properties of the fractured formation. Based on the generalized radial flow (GRF model and the optimization scheme, simulated annealing, an approach is therefore developed for the data analyses. The GRF model allows the flow dimension to be integer or fractional. We found that the fractional flow dimension of CGF increases near linearly with the distance between the pumping well and observation well, i.e. the flow dimension of CGF exhibits scale-dependent phenomenon. This study provides insights into interpretation of fracture flow at CGF and gives a reference for characterizing the hydrogeologic properties of fractured media.

  10. Spatially dependent burnup implementation into the nodal program based on the finite element response matrix method

    International Nuclear Information System (INIS)

    Yoriyaz, H.

    1986-01-01

    In this work a spatial burnup scheme and feedback effects has been implemented into the FERM ( 'Finite Element Response Matrix' )program. The spatially dependent neutronic parameters have been considered in three levels: zonewise calculation, assembly wise calculation and pointwise calculation. Flux and power distributions and the multiplication factor were calculated and compared with the results obtained by CITATIOn program. These comparisons showed that processing time in the Ferm code has been hundred of times shorter and no significant difference has been observed in the assembly average power distribution. (Author) [pt

  11. On Spatial Resolution in Habitat Models: Can Small-scale Forest Structure Explain Capercaillie Numbers?

    Directory of Open Access Journals (Sweden)

    Ilse Storch

    2002-06-01

    Full Text Available This paper explores the effects of spatial resolution on the performance and applicability of habitat models in wildlife management and conservation. A Habitat Suitability Index (HSI model for the Capercaillie (Tetrao urogallus in the Bavarian Alps, Germany, is presented. The model was exclusively built on non-spatial, small-scale variables of forest structure and without any consideration of landscape patterns. The main goal was to assess whether a HSI model developed from small-scale habitat preferences can explain differences in population abundance at larger scales. To validate the model, habitat variables and indirect sign of Capercaillie use (such as feathers or feces were mapped in six study areas based on a total of 2901 20 m radius (for habitat variables and 5 m radius sample plots (for Capercaillie sign. First, the model's representation of Capercaillie habitat preferences was assessed. Habitat selection, as expressed by Ivlev's electivity index, was closely related to HSI scores, increased from poor to excellent habitat suitability, and was consistent across all study areas. Then, habitat use was related to HSI scores at different spatial scales. Capercaillie use was best predicted from HSI scores at the small scale. Lowering the spatial resolution of the model stepwise to 36-ha, 100-ha, 400-ha, and 2000-ha areas and relating Capercaillie use to aggregated HSI scores resulted in a deterioration of fit at larger scales. Most importantly, there were pronounced differences in Capercaillie abundance at the scale of study areas, which could not be explained by the HSI model. The results illustrate that even if a habitat model correctly reflects a species' smaller scale habitat preferences, its potential to predict population abundance at larger scales may remain limited.

  12. SEASONAL DIFFERENCES IN SPATIAL SCALES OF CHLOROPHYLL-A CONCENTRATION IN LAKE TAIHU,CHINA

    Directory of Open Access Journals (Sweden)

    Y. Bao

    2012-08-01

    Full Text Available Spatial distribution of chlorophyll-a (chla concentration in Lake Taihu is non-uniform and seasonal variability. Chla concentration retrieval algorithms were separately established using measured data and remote sensing images (HJ-1 CCD and MODIS data in October 2010, March 2011, and September 2011. Then parameters of semi- variance were calculated on the scale of 30m, 250m and 500m for analyzing spatial heterogeneity in different seasons. Finally, based on the definitions of Lumped chla (chlaL and Distributed chla (chlaD, seasonal model of chla concentration scale error was built. The results indicated that: spatial distribution of chla concentration in spring was more uniform. In summer and autumn, chla concentration in the north of the lake such as Meiliang Bay and Zhushan Bay was higher than that in the south of Lake Taihu. Chla concentration on different scales showed the similar structure in the same season, while it had different structure in different seasons. And inversion chla concentration from MODIS 500m had a greater scale error. The spatial scale error changed with seasons. It was higher in summer and autumn than that in spring. The maximum relative error can achieve 23%.

  13. Spatial dependencies of wind power and interrelations with spot price dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Elberg, Christina; Hagspiel, Simeon

    2013-06-15

    Wind power has seen a strong growth over the last decade. Due to its high intermittency, spot prices have become more volatile and exhibit correlated behavior with wind power fed into the system. In this paper, we develop a stochastic simulation model that incorporates the spatial dependencies of wind power and its interrelations with spot prices: We employ a structural supply and demand based model for the electricity spot price that takes into account stochastic production quantities of wind power. Spatial dependencies are modeled with the help of copulas, thus linking the single turbine wind power to the aggregated wind power in a market. The model is applied to the German electricity market where wind power already today makes up a significant share of total power production. Revenue distributions and the market value of different wind power plants are analyzed. We find that the specific location of the considered wind turbine, i.e. its spatial dependency with respect to the aggregated wind power in the system, is of high relevance for its market value. Many of the analyzed locations show an upper tail dependence that adversely impacts the market value. This effect becomes more important for increasing levels of wind power penetration.

  14. Spatial dependencies of wind power and interrelations with spot price dynamics

    International Nuclear Information System (INIS)

    Elberg, Christina; Hagspiel, Simeon

    2013-01-01

    Wind power has seen a strong growth over the last decade. Due to its high intermittency, spot prices have become more volatile and exhibit correlated behavior with wind power fed into the system. In this paper, we develop a stochastic simulation model that incorporates the spatial dependencies of wind power and its interrelations with spot prices: We employ a structural supply and demand based model for the electricity spot price that takes into account stochastic production quantities of wind power. Spatial dependencies are modeled with the help of copulas, thus linking the single turbine wind power to the aggregated wind power in a market. The model is applied to the German electricity market where wind power already today makes up a significant share of total power production. Revenue distributions and the market value of different wind power plants are analyzed. We find that the specific location of the considered wind turbine, i.e. its spatial dependency with respect to the aggregated wind power in the system, is of high relevance for its market value. Many of the analyzed locations show an upper tail dependence that adversely impacts the market value. This effect becomes more important for increasing levels of wind power penetration.

  15. Understanding the Complexity of Temperature Dynamics in Xinjiang, China, from Multitemporal Scale and Spatial Perspectives

    Directory of Open Access Journals (Sweden)

    Jianhua Xu

    2013-01-01

    Full Text Available Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including the correlation dimension (CD, classical statistics, and geostatistics. The main conclusions are as follows (1 The integer CD values indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2 The complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics, at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal, and annual scales. (3 The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics are derived from the complex landform.

  16. Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data

    Science.gov (United States)

    Lin, S.; Li, J.; Liu, Q.

    2018-04-01

    Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  17. Algorithms for large scale singular value analysis of spatially variant tomography systems

    International Nuclear Information System (INIS)

    Cao-Huu, Tuan; Brownell, G.; Lachiver, G.

    1996-01-01

    The problem of determining the eigenvalues of large matrices occurs often in the design and analysis of modem tomography systems. As there is an interest in solving systems containing an ever-increasing number of variables, current research effort is being made to create more robust solvers which do not depend on some special feature of the matrix for convergence (e.g. block circulant), and to improve the speed of already known and understood solvers so that solving even larger systems in a reasonable time becomes viable. Our standard techniques for singular value analysis are based on sparse matrix factorization and are not applicable when the input matrices are large because the algorithms cause too much fill. Fill refers to the increase of non-zero elements in the LU decomposition of the original matrix A (the system matrix). So we have developed iterative solutions that are based on sparse direct methods. Data motion and preconditioning techniques are critical for performance. This conference paper describes our algorithmic approaches for large scale singular value analysis of spatially variant imaging systems, and in particular of PCR2, a cylindrical three-dimensional PET imager 2 built at the Massachusetts General Hospital (MGH) in Boston. We recommend the desirable features and challenges for the next generation of parallel machines for optimal performance of our solver

  18. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales

    OpenAIRE

    Austin, ?sa N.; Hansen, Joakim P.; Donadi, Serena; Ekl?f, Johan S.

    2017-01-01

    Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer) and spatial scales (local and regional), using causal model...

  19. Post-fire bedload sediment delivery across spatial scales in the interior western United States

    Science.gov (United States)

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2014-01-01

    Post-fire sediment yields can be up to three orders of magnitude greater than sediment yields in unburned forests. Much of the research on post-fire erosion rates has been at small scales (100m2 or less), and post-fire sediment delivery rates across spatial scales have not been quantified in detail. We developed relationships for post-fire bedload sediment delivery...

  20. Spatial connectivity, scaling, and temporal trajectories as emergent urban stormwater impacts

    Science.gov (United States)

    Jovanovic, T.; Gironas, J. A.; Hale, R. L.; Mejia, A.

    2016-12-01

    Urban watersheds are structurally complex systems comprised of multiple components (e.g., streets, pipes, ponds, vegetated swales, wetlands, riparian corridors, etc.). These multiple engineered components interact in unanticipated and nontrivial ways with topographic conditions, climate variability, land use/land cover changes, and the underlying eco-hydrogeomorphic dynamics. Such interactions can result in emergent urban stormwater impacts with cascading effects that can negatively influence the overall functioning of the urban watershed. For example, the interaction among many detention ponds has been shown, in some situations, to synchronize flow volumes and ultimately lead to downstream flow amplifications and increased pollutant mobilization. Additionally, interactions occur at multiple temporal and spatial scales requiring that urban stormwater dynamics be represented at the long-term temporal (decadal) and across spatial scales (from the single lot to the watershed scale). In this study, we develop and implement an event-based, high-resolution, network hydro-engineering model (NHEM), and demonstrate an approach to reconstruct the long-term regional infrastructure and land use/land cover conditions of an urban watershed. As the study area, we select an urban watershed in the metropolitan area of Scottsdale, Arizona. Using the reconstructed landscapes to drive the NHEM, we find that distinct surficial, hydrologic connectivity patterns result from the intersection of hydrologic processes, infrastructure, and land use/land cover arrangements. These spatial patters, in turn, exhibit scaling characteristics. For example, the scaling of urban watershed dispersion mechanisms shows altered scaling exponents with respect to pre-urban conditions. For example, the scaling exponent associated with geomorphic dispersion tends to increase for urban conditions, reflecting increased surficial path heterogeneity. Both the connectivity and scaling results can be used to

  1. Spatially dependent biotic and abiotic factors drive survivorship and physical structure of green roof vegetation.

    Science.gov (United States)

    Aloisio, Jason M; Palmer, Matthew I; Giampieri, Mario A; Tuininga, Amy R; Lewis, James D

    2017-01-01

    Plant survivorship depends on biotic and abiotic factors that vary at local and regional scales. This survivorship, in turn, has cascading effects on community composition and the physical structure of vegetation. Survivorship of native plant species is variable among populations planted in environmentally stressful habitats like urban roofs, but the degree to which factors at different spatial scales affect survivorship in urban systems is not well understood. We evaluated the effects of biotic and abiotic factors on survivorship, composition, and physical structure of two native perennial species assemblages, one characterized by a mixture of C 4 grasses and forbs (Hempstead Plains, HP) and one characterized by a mixture of C 3 grasses and forbs (Rocky Summit, RS), that were initially sown at equal ratios of growth forms (5:1:4; grass, N-fixing forb and non-N-fixing forb) in replicate 2-m 2 plots planted on 10 roofs in New York City (New York, USA). Of 24 000 installed plants, 40% survived 23 months after planting. Within-roof factors explained 71% of variation in survivorship, with biotic (species identity and assemblage) factors accounting for 54% of the overall variation, and abiotic (growing medium depth and plot location) factors explaining 17% of the variation. Among-roof factors explained 29% of variation in survivorship and increased solar radiation correlated with decreased survivorship. While growing medium properties (pH, nutrients, metals) differed among roofs there was no correlation with survivorship. Percent cover and sward height increased with increasing survivorship. At low survivorship, cover of the HP assemblage was greater compared to the RS assemblage. Sward height of the HP assemblage was about two times greater compared to the RS assemblage. These results highlight the effects of local biotic and regional abiotic drivers on community composition and physical structure of green roof vegetation. As a result, initial green roof plant

  2. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    correlation function g4(r,t) and corresponding "structure factor" S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times, and so are sensitive to dynamical heterogeneity. We study g4(r,t) and S4(q,t) via molecular dynamics......Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...

  3. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Science.gov (United States)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling

  4. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2013-07-01

    Full Text Available Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE in NPP modelled at the 1 km resolution is reduced from 14.8 g C m−2 yr−1 to 4.8 g C m−2 yr−1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m−2 yr−1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI and elevation have small and additive effects on improving

  5. Reliability and validity of the Severity of Dependence Scale for detecting cannabis dependence in frequent cannabis users

    NARCIS (Netherlands)

    van der Pol, P.; Liebregts, N.; de Graaf, R.; Korf, D.J.; van den Brink, W.; van Laar, M.

    2013-01-01

    The Severity of Dependence Scale (SDS) measures with five items the degree of psychological dependence on several illicit drugs, including cannabis. Its psychometric properties have not yet been examined in young adult frequent cannabis users, an eminently high-risk group for cannabis dependence.

  6. A Bayesian multidimensional scaling procedure for the spatial analysis of revealed choice data

    NARCIS (Netherlands)

    DeSarbo, WS; Kim, Y; Fong, D

    1999-01-01

    We present a new Bayesian formulation of a vector multidimensional scaling procedure for the spatial analysis of binary choice data. The Gibbs sampler is gainfully employed to estimate the posterior distribution of the specified scalar products, bilinear model parameters. The computational procedure

  7. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales

    NARCIS (Netherlands)

    Aartsma, Y.S.Y.; Bianchi, F.J.J.A.; Werf, van der W.; Poelman, E.H.; Dicke, M.

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger

  8. Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX'08 field campaign

    Science.gov (United States)

    Robust spatial information about environmental water use at field scales and daily to seasonal timesteps will benefit many applications in agriculture and water resource management. This information is particularly critical in arid climates where freshwater resources are limited or expensive, and g...

  9. Extreme daily precipitation in Western Europe with climate change at appropriate spatial scales

    NARCIS (Netherlands)

    Booij, Martijn J.

    2002-01-01

    Extreme daily precipitation for the current and changed climate at appropriate spatial scales is assessed. This is done in the context of the impact of climate change on flooding in the river Meuse in Western Europe. The objective is achieved by determining and comparing extreme precipitation from

  10. A large-scale multi-species spatial depletion model for overwintering waterfowl

    NARCIS (Netherlands)

    Baveco, J.M.; Kuipers, H.; Nolet, B.A.

    2011-01-01

    In this paper, we develop a model to evaluate the capacity of accommodation areas for overwintering waterfowl, at a large spatial scale. Each day geese are distributed over roosting sites. Based on the energy minimization principle, the birds daily decide which surrounding fields to exploit within

  11. Towards the spatial coherence of biogeographical regionalizations at subcontinental and landscape scales

    Czech Academy of Sciences Publication Activity Database

    Divíšek, Jan; Storch, D.; Zelený, D.; Culek, M.

    2016-01-01

    Roč. 43, č. 43 (2016), s. 2489-2501 ISSN 0305-0270 Institutional support: RVO:68145535 Keywords : beta diversity * biogeographical regions * spatial scale Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 4.248, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/jbi.12832/full

  12. Spatial dependence of void coefficient in the University of Arizona TRIGA research reactor

    International Nuclear Information System (INIS)

    Spriggs, Gregory D.; Doane, Harry; Wells, Robert

    1980-01-01

    The spatial dependence of the moderator void coefficient of reactivity in the axial direction was experimentally measured in the A-ring using a hollow, air-filled aluminum cylinder. It was found that the void coefficient was positive in the central region of the fuel section reaching a maximum value of approximately + .045 cents/cm 3 and was negative towards the outer edges of the fuel section reaching a maximum of - .09 cents/cm 3 . (author)

  13. Considerations of scale in the analysis of spatial pattern of plant disease epidemics.

    Science.gov (United States)

    Turechek, William W; McRoberts, Neil

    2013-01-01

    Scale is an important but somewhat neglected subject in plant pathology. Scale serves as an abstract concept, providing a framework for organizing observations and theoretical models, and plays a functional role in the organization of ecological communities and physical processes. Rich methodological resources are available to plant pathologists interested in considering either or both aspects of scale in their research. We summarize important concepts in both areas of the literature, particularly as they apply to the spatial pattern of plant disease, and highlight some new results that emphasize the importance of scaling on the emergence of different types of probability distribution in empirical observation. We also highlight the important links between heterogeneity and scale, which are of central importance in plant disease epidemiology and the analysis of spatial pattern. We consider statistical approaches that are available, where actual physical scale is known, and for more conceptual research on hierarchies, where scale plays a more abstract role, particularly for field-based research. For the latter, we highlight methods that plant pathologists could consider to account for the effect of scale in the design of field studies.

  14. Soil bacteria and fungi respond on different spatial scales to invasion by the legume Lespedeza cuneata

    Directory of Open Access Journals (Sweden)

    Anthony C Yannarell

    2011-06-01

    Full Text Available The spatial scale on which microbial communities respond to plant invasions may provide important clues as to the nature of potential invader-microbe interactions. Lespedeza cuneata (Dum. Cours. G. Don is an invasive legume that may benefit from associations with mycorrhizal fungi; however, it has also been suggested that the plant is allelopathetic and may alter the soil chemistry of invaded sites through secondary metabolites in its root exudates or litter. Thus, L. cuneata invasion may interact with soil microorganisms on a variety of scales. We investigated L. cuneata-related changes to soil bacterial and fungal communities at two spatial scales using multiple sites from across its invaded N. American range. Using whole community DNA fingerprinting, we characterized microbial community variation at the scale of entire invaded sites and at the scale of individual plants. Based on permutational multivariate analysis of variance, soil bacterial communities in heavily invaded sites were significantly different from those of uninvaded sites, but bacteria did not show any evidence of responding at very local scales around individual plants. In contrast, soil fungi did not change significantly at the scale of entire sites, but there were significant differences between fungal communities of native versus exotic plants within particular sites. The differential scaling of bacterial and fungal responses indicates that L. cuneata interacts differently with soil bacteria and soil fungi, and these microorganisms may play very different roles in the invasion process of this plant.

  15. Size scale dependence of compressive instabilities in layered composites in the presence of stress gradients

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    The compressive strength of unidirectionally or layer-wise reinforced composite materials in direction parallel to their reinforcement is limited by micro-buckling instabilities. Although the inherent compressive strength of a given material micro-structure can easily be determined by assessing its...... compressive stress but also on spatial stress or strain gradients, rendering failure initiation size scale dependent. The present work demonstrates and investigates the aforementioned effect through numerical simulations of periodically layered structures withnotches and holes under bending and compressive...... loads, respectively. The presented results emphasize the importance of the reinforcing layer thickness on the load carrying capacity of the investigated structures, at a constant volumetric fraction of the reinforcement. The observed strengthening at higher values of the relative layer thickness...

  16. Spatially Different Tissue-Scale Diffusivity Shapes ANGUSTIFOLIA3 Gradient in Growing Leaves.

    Science.gov (United States)

    Kawade, Kensuke; Tanimoto, Hirokazu; Horiguchi, Gorou; Tsukaya, Hirokazu

    2017-09-05

    The spatial gradient of signaling molecules is pivotal for establishing developmental patterns of multicellular organisms. It has long been proposed that these gradients could arise from the pure diffusion process of signaling molecules between cells, but whether this simplest mechanism establishes the formation of the tissue-scale gradient remains unclear. Plasmodesmata are unique channel structures in plants that connect neighboring cells for molecular transport. In this study, we measured cellular- and tissue-scale kinetics of molecular transport through plasmodesmata in Arabidopsis thaliana developing leaf primordia by fluorescence recovery assays. These trans-scale measurements revealed biophysical properties of diffusive molecular transport through plasmodesmata and revealed that the tissue-scale diffusivity, but not the cellular-scale diffusivity, is spatially different along the leaf proximal-to-distal axis. We found that the gradient in cell size along the developmental axis underlies this spatially different tissue-scale diffusivity. We then asked how this diffusion-based framework functions in establishing a signaling gradient of endogenous molecules. ANGUSTIFOLIA3 (AN3) is a transcriptional co-activator, and as we have shown here, it forms a long-range signaling gradient along the leaf proximal-to-distal axis to determine a cell-proliferation domain. By genetically engineering AN3 mobility, we assessed each contribution of cell-to-cell movement and tissue growth to the distribution of the AN3 gradient. We constructed a diffusion-based theoretical model using these quantitative data to analyze the AN3 gradient formation and demonstrated that it could be achieved solely by the diffusive molecular transport in a growing tissue. Our results indicate that the spatially different tissue-scale diffusivity is a core mechanism for AN3 gradient formation. This provides evidence that the pure diffusion process establishes the formation of the long-range signaling

  17. Native birds and alien insects: spatial density dependence in songbird predation of invading oak gallwasps.

    Directory of Open Access Journals (Sweden)

    Karsten Schönrogge

    Full Text Available Revealing the interactions between alien species and native communities is central to understanding the ecological consequences of range expansion. Much has been learned through study of the communities developing around invading herbivorous insects. Much less, however, is known about the significance of such aliens for native vertebrate predators for which invaders may represent a novel food source. We quantified spatial patterns in native bird predation of invading gall-inducing Andricus wasps associated with introduced Turkey oak (Quercus cerris at eight sites across the UK. These gallwasps are available at high density before the emergence of caterpillars that are the principle spring food of native insectivorous birds. Native birds showed positive spatial density dependence in gall attack rates at two sites in southern England, foraging most extensively on trees with highest gall densities. In a subsequent study at one of these sites, positive spatial density dependence persisted through four of five sequential week-long periods of data collection. Both patterns imply that invading galls are a significant resource for at least some native bird populations. Density dependence was strongest in southern UK bird populations that have had longest exposure to the invading gallwasps. We hypothesise that this pattern results from the time taken for native bird populations to learn how to exploit this novel resource.

  18. Spatial short-term memory is impaired in dependent betel quid chewers.

    Science.gov (United States)

    Chiu, Meng-Chun; Shen, Bin; Li, Shuo-Heng; Ho, Ming-Chou

    2016-08-01

    Betel quid is regarded as a human carcinogen by the World Health Organization. It remains unknown whether chewing betel quid has a chronic effect on healthy betel quid chewers' memory. The present study aims to investigate whether chewing betel quid can affect short-term memory (STM). Three groups of participants (24 dependent chewers, 24 non-dependent chewers, and 24 non-chewers) were invited to carry out the matrix span task, the object span task, and the digit span task. All span tasks' results were adopted to assess spatial STM, visual STM, and verbal STM, respectively. Besides, there are three set sizes (small, medium, and large) in each span task. For the matrix span task, results showed that the dependent chewers had worse performances than the non-dependent chewers and the non-chewers at medium and large set sizes. For the object span task and digit span task, there were no differences in between groups. In each group, recognition performances were worse with the increasing set size and showing successful manipulation of memory load. The current study provided the first evidence that dependent betel quid chewing can selectively impair spatial STM rather than visual STM and verbal STM. Theoretical and practical implications of this result are discussed.

  19. A spatial picture of the synthetic large-scale motion from dynamic roughness

    Science.gov (United States)

    Huynh, David; McKeon, Beverley

    2017-11-01

    Jacobi and McKeon (2011) set up a dynamic roughness apparatus to excite a synthetic, travelling wave-like disturbance in a wind tunnel, boundary layer study. In the present work, this dynamic roughness has been adapted for a flat-plate, turbulent boundary layer experiment in a water tunnel. A key advantage of operating in water as opposed to air is the longer flow timescales. This makes accessible higher non-dimensional actuation frequencies and correspondingly shorter synthetic length scales, and is thus more amenable to particle image velocimetry. As a result, this experiment provides a novel spatial picture of the synthetic mode, the coupled small scales, and their streamwise development. It is demonstrated that varying the roughness actuation frequency allows for significant tuning of the streamwise wavelength of the synthetic mode, with a range of 3 δ-13 δ being achieved. Employing a phase-locked decomposition, spatial snapshots are constructed of the synthetic large scale and used to analyze its streamwise behavior. Direct spatial filtering is used to separate the synthetic large scale and the related small scales, and the results are compared to those obtained by temporal filtering that invokes Taylor's hypothesis. The support of AFOSR (Grant # FA9550-16-1-0361) is gratefully acknowledged.

  20. Ataxia rating scales are age-dependent in healthy children

    NARCIS (Netherlands)

    Brandsma, Rick; Spits, Anne H.; Kuiper, Marieke J.; Lunsing, Roelinka J.; Burger, Huibert; Kremer, Hubertus P.; Sival, Deborah A.

    AIM: To investigate ataxia rating scales in children for reliability and the effect of age and sex. METHOD: Three independent neuropaediatric observers cross-sectionally scored a set of paediatric ataxia rating scales in a group of 52 healthy children (26 males, 26 females) aged 4 to 16 years (mean

  1. Ataxia rating scales are age-dependent in healthy children

    NARCIS (Netherlands)

    Brandsma, Rick; Spits, Anne H.; Kuiper, Marieke J.; Lunsing, Roelinka J.; Burger, Huibert; Kremer, Hubertus P.; Sival, Deborah A.; Barisic, N.; Baxter, P.; Brankovic-Sreckovic, V.; Calabrò, G. E.; Catsman-Berrevoets, C.; de Coo, Ifm; Craiu, D.; Dan, B.; Gburek-Augustat, J.; Kammoun-Feki, F.; Kennedy, C.; Mancini, F.; Mirabelli-Badenier, M.; Nemeth, A.; Newton, R.; Poll-The, B. T.; Steinlin, M.; Synofzik, M.; Topcu, M.; Triki, C.; Valente, E. M.

    2014-01-01

    To investigate ataxia rating scales in children for reliability and the effect of age and sex. Three independent neuropaediatric observers cross-sectionally scored a set of paediatric ataxia rating scales in a group of 52 healthy children (26 males, 26 females) aged 4 to 16 years (mean age 10y 5mo

  2. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  3. Interpreting Carbon Fluxes from a Spatially Heterogeneous Peatland with Thawing Permafrost: Scaling from Plant Community Scale to Ecosystem Scale

    Science.gov (United States)

    Harder, S. R.; Roulet, N. T.; Strachan, I. B.; Crill, P. M.; Persson, A.; Pelletier, L.; Watt, C.

    2014-12-01

    Various microforms, created by spatial differential thawing of permafrost, make up the subarctic heterogeneous Stordalen peatland complex (68°22'N, 19°03'E), near Abisko, Sweden. This results in significantly different peatland vegetation communities across short distances, as well as differences in wetness, temperature and peat substrates. We have been measuring the spatially integrated CO2, heat and water vapour fluxes from this peatland complex using eddy covariance and the CO2 exchange from specific plant communities within the EC tower footprint since spring 2008. With this data we are examining if it is possible to derive the spatially integrated ecosystem-wide fluxes from community-level simple light use efficiency (LUE) and ecosystem respiration (ER) models. These models have been developed using several years of continuous autochamber flux measurements for the three major plant functional types (PFTs) as well as knowledge of the spatial variability of the vegetation, water table and active layer depths. LIDAR was used to produce a 1 m resolution digital evaluation model of the complex and the spatial distribution of PFTs was obtained from concurrent high-resolution digital colour air photography trained from vegetation surveys. Continuous water table depths have been measured for four years at over 40 locations in the complex, and peat temperatures and active layer depths are surveyed every 10 days at more than 100 locations. The EC footprint is calculated for every half-hour and the PFT based models are run with the corresponding environmental variables weighted for the PFTs within the EC footprint. Our results show that the Sphagnum, palsa, and sedge PFTs have distinctly different LUE models, and that the tower fluxes are dominated by a blend of the Sphagnum and palsa PFTs. We also see a distinctly different energy partitioning between the fetches containing intact palsa and those with thawed palsa: the evaporative efficiency is higher and the Bowen

  4. Spatially continuous dataset at local scale of Taita Hills in Kenya and Mount Kilimanjaro in Tanzania

    Directory of Open Access Journals (Sweden)

    Sizah Mwalusepo

    2016-09-01

    Full Text Available Climate change is a global concern, requiring local scale spatially continuous dataset and modeling of meteorological variables. This dataset article provided the interpolated temperature, rainfall and relative humidity dataset at local scale along Taita Hills and Mount Kilimanjaro altitudinal gradients in Kenya and Tanzania, respectively. The temperature and relative humidity were recorded hourly using automatic onset THHOBO data loggers and rainfall was recorded daily using GENERALR wireless rain gauges. Thin plate spline (TPS was used to interpolate, with the degree of data smoothing determined by minimizing the generalized cross validation. The dataset provide information on the status of the current climatic conditions along the two mountainous altitudinal gradients in Kenya and Tanzania. The dataset will, thus, enhance future research. Keywords: Spatial climate data, Climate change, Modeling, Local scale

  5. Concepts: Integrating population survey data from different spatial scales, sampling methods, and species

    Science.gov (United States)

    Dorazio, Robert; Delampady, Mohan; Dey, Soumen; Gopalaswamy, Arjun M.; Karanth, K. Ullas; Nichols, James D.

    2017-01-01

    Conservationists and managers are continually under pressure from the public, the media, and political policy makers to provide “tiger numbers,” not just for protected reserves, but also for large spatial scales, including landscapes, regions, states, nations, and even globally. Estimating the abundance of tigers within relatively small areas (e.g., protected reserves) is becoming increasingly tractable (see Chaps. 9 and 10), but doing so for larger spatial scales still presents a formidable challenge. Those who seek “tiger numbers” are often not satisfied by estimates of tiger occupancy alone, regardless of the reliability of the estimates (see Chaps. 4 and 5). As a result, wherever tiger conservation efforts are underway, either substantially or nominally, scientists and managers are frequently asked to provide putative large-scale tiger numbers based either on a total count or on an extrapolation of some sort (see Chaps. 1 and 2).

  6. An intercomparison of remotely sensed soil moisture products at various spatial scales over the Iberian Peninsula

    NARCIS (Netherlands)

    Parinussa, R.M.; Yilmaz, M.T.; Anderson, M.; Hain, C.; de Jeu, R.A.M.

    2013-01-01

    Soil moisture (SM) can be retrieved from active microwave (AM), passive microwave (PM) and thermal infrared (TIR) observations, each having unique spatial and temporal coverages. A limitation of TIR-based retrievals is a dependence on cloud-free conditions, whereas microwave retrievals are almost

  7. Effects of Spatial Patch Arrangement and Scale of Covarying Resources on Growth and Intraspecific Competition of a Clonal Plant.

    Science.gov (United States)

    Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai

    2016-01-01

    Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale.

  8. Direction of information flow in large-scale resting-state networks is frequency-dependent

    NARCIS (Netherlands)

    Hillebrand, Arjan; Tewarie, Prejaas; Van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A.; Van Straaten, Elisabeth C W; Stam, Cornelis J.

    2016-01-01

    Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these

  9. Effect of spatial and temporal scales on habitat suitability modeling: A case study of Ommastrephes bartramii in the northwest pacific ocean

    Science.gov (United States)

    Gong, Caixia; Chen, Xinjun; Gao, Feng; Tian, Siquan

    2014-12-01

    Temporal and spatial scales play important roles in fishery ecology, and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution. The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling, with the western stock of winter-spring cohort of neon flying squid ( Ommastrephes bartramii) in the northwest Pacific Ocean as an example. In this study, the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used. We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°, 1° and 2°), four longitude scales (0.5°, 1°, 2° and 4°), and three temporal scales (week, fortnight, and month). The coefficients of variation (CV) of the weekly, biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise. This study shows that the optimal temporal and spatial scales with the lowest CV are month, and 0.5° latitude and 0.5° longitude for O. bartramii in the northwest Pacific Ocean. This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts. We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling.

  10. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  11. Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti

    Directory of Open Access Journals (Sweden)

    Andrew Curtis

    2016-02-01

    Full Text Available The cartographic challenge in many developing world environments suffering a high disease burden is a lack of granular environmental covariates suitable for modeling disease outcomes. As a result, epidemiological questions, such as how disease diffuses at intra urban scales are extremely difficult to answer. This paper presents a novel geospatial methodology, spatial video, which can be used to collect and map environmental covariates, while also supporting field epidemiology. An example of epidemic cholera in a coastal town of Haiti is used to illustrate the potential of this new method. Water risks from a 2012 spatial video collection are used to guide a 2014 survey, which concurrently included the collection of water samples, two of which resulted in positive lab results “of interest” (bacteriophage specific for clinical cholera strains to the current cholera situation. By overlaying sample sites on 2012 water risk maps, a further fifteen proposed water sample locations are suggested. These resulted in a third spatial video survey and an additional “of interest” positive water sample. A potential spatial connection between the “of interest” water samples is suggested. The paper concludes with how spatial video can be an integral part of future fine-scale epidemiological investigations for different pathogens.

  12. Neural correlates of reward-based spatial learning in persons with cocaine dependence.

    Science.gov (United States)

    Tau, Gregory Z; Marsh, Rachel; Wang, Zhishun; Torres-Sanchez, Tania; Graniello, Barbara; Hao, Xuejun; Xu, Dongrong; Packard, Mark G; Duan, Yunsuo; Kangarlu, Alayar; Martinez, Diana; Peterson, Bradley S

    2014-02-01

    Dysfunctional learning systems are thought to be central to the pathogenesis of and impair recovery from addictions. The functioning of the brain circuits for episodic memory or learning that support goal-directed behavior has not been studied previously in persons with cocaine dependence (CD). Thirteen abstinent CD and 13 healthy participants underwent MRI scanning while performing a task that requires the use of spatial cues to navigate a virtual-reality environment and find monetary rewards, allowing the functional assessment of the brain systems for spatial learning, a form of episodic memory. Whereas both groups performed similarly on the reward-based spatial learning task, we identified disturbances in brain regions involved in learning and reward in CD participants. In particular, CD was associated with impaired functioning of medial temporal lobe (MTL), a brain region that is crucial for spatial learning (and episodic memory) with concomitant recruitment of striatum (which normally participates in stimulus-response, or habit, learning), and prefrontal cortex. CD was also associated with enhanced sensitivity of the ventral striatum to unexpected rewards but not to expected rewards earned during spatial learning. We provide evidence that spatial learning in CD is characterized by disturbances in functioning of an MTL-based system for episodic memory and a striatum-based system for stimulus-response learning and reward. We have found additional abnormalities in distributed cortical regions. Consistent with findings from animal studies, we provide the first evidence in humans describing the disruptive effects of cocaine on the coordinated functioning of multiple neural systems for learning and memory.

  13. A critical look at spatial scale choices in satellite-based aerosol indirect effect studies

    Science.gov (United States)

    Grandey, B. S.; Stier, P.

    2010-12-01

    Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of font-size: 10px; color: #000;">dlnNefont-size: 10px; color: #000;">dlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of font-size: 10px; color: #000;">dlnrefont-size: 10px; color: #000;">dlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4° × 4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of font-size: 10px; color: #000;">dlnNefont-size: 10px; color: #000;">dlnτa and font-size: 10px; color: #000;">dlnrefont-size: 10px; color: #000;">dlnτa. For regions on the scale of 60° × 60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80% relative to that calculated for regions on the scale of 1° × 1°.

  14. What spatial scales are believable for climate model projections of sea surface temperature?

    Science.gov (United States)

    Kwiatkowski, Lester; Halloran, Paul R.; Mumby, Peter J.; Stephenson, David B.

    2014-09-01

    Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (coral bleaching frequency and other marine processes linked to SST warming.

  15. Patterns of allozyme variation in diploid and tetraploid Centaurea jacea at different spatial scales.

    Science.gov (United States)

    Hardy, O J; Vekemans, X

    2001-05-01

    The extent and spatial patterns of genetic variation at allozyme markers were investigated within and between diploid and autotetraploid knapweeds (Centaurea jacea L. sensu lato, Asteraceae) at contrasted geographic scales: (1) among populations sampled from a diploid-tetraploid contact zone in the northeastern part of the Belgian Ardennes, and (2) within mixed populations from that zone where diploids and tetraploids coexist. Our data were also compared with a published dataset by Sommer (1990) describing allozyme variation in separate diploid and tetraploid knapweeds populations collected throughout Europe. Genetic diversity was higher in tetraploids. In the Belgian Ardennes and within the mixed populations, both cytotypes had similar levels of spatial genetic structure, they were genetically differentiated, and their distributions of allele frequencies were not spatially correlated. In contrast, at the European scale, diploids and tetraploids did not show differentiated gene pools and presented a strong correlation between their patterns of spatial genetic variation. Numerical simulations showed that the striking difference in patterns observed at small and large geographic scales could be accounted for by a combination of (1) isolation by distance within cytotypes; and (2) partial reproductive barriers between cytotypes and/or recurrent formation of tetraploids. We suggest that this may explain the difficulty of the taxonomic treatment of knapweeds and of polyploid complexes in general.

  16. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities.

    Science.gov (United States)

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks

  17. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities

    Directory of Open Access Journals (Sweden)

    Valerio Santangelo

    2018-02-01

    Full Text Available Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010 to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory in one spatial location. The analysis of the independent components (ICs revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC. The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among

  18. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River.

    Directory of Open Access Journals (Sweden)

    Johannes Radinger

    importance of considering habitat at spatial scales larger than the sampling site, and (iii that the importance of (river morphological habitat characteristics differs depending on the spatial scale.

  19. Spatially-Dependent Modelling of Pulsar Wind Nebula G0.9+0.1

    Science.gov (United States)

    van Rensburg, C.; Krüger, P. P.; Venter, C.

    2018-03-01

    We present results from a leptonic emission code that models the spectral energy distribution of a pulsar wind nebula by solving a Fokker-Planck-type transport equation and calculating inverse Compton and synchrotron emissivities. We have created this time-dependent, multi-zone model to investigate changes in the particle spectrum as they traverse the pulsar wind nebula, by considering a time and spatially-dependent B-field, spatially-dependent bulk particle speed implying convection and adiabatic losses, diffusion, as well as radiative losses. Our code predicts the radiation spectrum at different positions in the nebula, yielding the surface brightness versus radius and the nebular size as function of energy. We compare our new model against more basic models using the observed spectrum of pulsar wind nebula G0.9+0.1, incorporating data from H.E.S.S. as well as radio and X-ray experiments. We show that simultaneously fitting the spectral energy distribution and the energy-dependent source size leads to more stringent constraints on several model parameters.

  20. Scaling precipitation input to spatially distributed hydrological models by measured snow distribution

    Directory of Open Access Journals (Sweden)

    Christian Vögeli

    2016-12-01

    Full Text Available Accurate knowledge on snow distribution in alpine terrain is crucial for various applicationssuch as flood risk assessment, avalanche warning or managing water supply and hydro-power.To simulate the seasonal snow cover development in alpine terrain, the spatially distributed,physics-based model Alpine3D is suitable. The model is typically driven by spatial interpolationsof observations from automatic weather stations (AWS, leading to errors in the spatial distributionof atmospheric forcing. With recent advances in remote sensing techniques, maps of snowdepth can be acquired with high spatial resolution and accuracy. In this work, maps of the snowdepth distribution, calculated from summer and winter digital surface models based on AirborneDigital Sensors (ADS, are used to scale precipitation input data, with the aim to improve theaccuracy of simulation of the spatial distribution of snow with Alpine3D. A simple method toscale and redistribute precipitation is presented and the performance is analysed. The scalingmethod is only applied if it is snowing. For rainfall the precipitation is distributed by interpolation,with a simple air temperature threshold used for the determination of the precipitation phase.It was found that the accuracy of spatial snow distribution could be improved significantly forthe simulated domain. The standard deviation of absolute snow depth error is reduced up toa factor 3.4 to less than 20 cm. The mean absolute error in snow distribution was reducedwhen using representative input sources for the simulation domain. For inter-annual scaling, themodel performance could also be improved, even when using a remote sensing dataset from adifferent winter. In conclusion, using remote sensing data to process precipitation input, complexprocesses such as preferential snow deposition and snow relocation due to wind or avalanches,can be substituted and modelling performance of spatial snow distribution is improved.

  1. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  2. Variability in results from negative binomial models for Lyme disease measured at different spatial scales.

    Science.gov (United States)

    Tran, Phoebe; Waller, Lance

    2015-01-01

    Lyme disease has been the subject of many studies due to increasing incidence rates year after year and the severe complications that can arise in later stages of the disease. Negative binomial models have been used to model Lyme disease in the past with some success. However, there has been little focus on the reliability and consistency of these models when they are used to study Lyme disease at multiple spatial scales. This study seeks to explore how sensitive/consistent negative binomial models are when they are used to study Lyme disease at different spatial scales (at the regional and sub-regional levels). The study area includes the thirteen states in the Northeastern United States with the highest Lyme disease incidence during the 2002-2006 period. Lyme disease incidence at county level for the period of 2002-2006 was linked with several previously identified key landscape and climatic variables in a negative binomial regression model for the Northeastern region and two smaller sub-regions (the New England sub-region and the Mid-Atlantic sub-region). This study found that negative binomial models, indeed, were sensitive/inconsistent when used at different spatial scales. We discuss various plausible explanations for such behavior of negative binomial models. Further investigation of the inconsistency and sensitivity of negative binomial models when used at different spatial scales is important for not only future Lyme disease studies and Lyme disease risk assessment/management but any study that requires use of this model type in a spatial context. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Directory of Open Access Journals (Sweden)

    C. M. R. Mateo

    2017-10-01

    Full Text Available Global-scale river models (GRMs are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC is assumed, simulation results deteriorate with finer spatial resolution; Nash–Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  4. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p 0.46, p 0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  5. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Science.gov (United States)

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-10-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  6. Immediate and delayed recall of a small-scale spatial array.

    Science.gov (United States)

    Tlauka, Michael; Donaldson, Phillip; Bonnar, Daniel

    2015-01-01

    The study examined people's spatial memory of a small-scale array of objects. Earlier work has primarily relied on short-retention intervals, and to date it is not known whether performance is affected by longer intervals between learning and recall. In the present investigation, university students studied seven target objects. Recall was tested immediately after learning and after an interval of seven days. Performance was found to be similar in the immediate and delayed conditions, and the results suggested that recall was facilitated by egocentric and intrinsic cues. The findings are discussed with reference to recent investigations that have shown task parameters can influence spatial recall.

  7. Nursing-care dependency : Development of an assessment scale for demented and mentally handicapped patients

    NARCIS (Netherlands)

    Dijkstra, Ate; Buist, Girbe; Dassen, T

    1996-01-01

    This article describing the first phase in the development of an assessment scale of nursing-care dependency (NCD) for Dutch demented and mentally handicapped patients focuses on the background to the study and the content validation of the nursing-care dependency scale. The scale aims to

  8. Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution.

    Science.gov (United States)

    Brede, Jens; Atodiresei, Nicolae; Kuck, Stefan; Lazić, Predrag; Caciuc, Vasile; Morikawa, Yoshitada; Hoffmann, Germar; Blügel, Stefan; Wiesendanger, Roland

    2010-07-23

    We investigate the spin- and energy-dependent tunneling through a single organic molecule (CoPc) adsorbed on a ferromagnetic Fe thin film, spatially resolved by low-temperature spin-polarized scanning tunneling microscopy. Interestingly, the metal ion as well as the organic ligand show a significant spin dependence of tunneling current flow. State-of-the-art ab initio calculations including also van der Waals interactions reveal a strong hybridization of molecular orbitals and substrate 3d states. The molecule is anionic due to a transfer of one electron, resulting in a nonmagnetic (S=0) state. Nevertheless, tunneling through the molecule exhibits a pronounced spin dependence due to spin-split molecule-surface hybrid states.

  9. Spatial scaling of bacterial community diversity at shallow hydrothermal vents: a global comparison

    Science.gov (United States)

    Pop Ristova, P.; Hassenrueck, C.; Molari, M.; Fink, A.; Bühring, S. I.

    2016-02-01

    Marine shallow hydrothermal vents are extreme environments, often characterized by discharge of fluids with e.g. high temperatures, low pH, and laden with elements toxic to higher organisms. They occur at continental margins around the world's oceans, but represent fragmented, isolated habitats of locally small areal coverage. Microorganisms contribute the main biomass at shallow hydrothermal vent ecosystems and build the basis of the food chain by autotrophic fixation of carbon both via chemosynthesis and photosynthesis, occurring simultaneously. Despite their importance and unique capacity to adapt to these extreme environments, little is known about the spatial scales on which the alpha- and beta-diversity of microbial communities vary at shallow vents, and how the geochemical habitat heterogeneity influences shallow vent biodiversity. Here for the first time we investigated the spatial scaling of microbial biodiversity patterns and their interconnectivity at geochemically diverse shallow vents on a global scale. This study presents data on the comparison of bacterial community structures on large (> 1000 km) and small (0.1 - 100 m) spatial scales as derived from ARISA and Illumina sequencing. Despite the fragmented global distribution of shallow hydrothermal vents, similarity of vent bacterial communities decreased with geographic distance, confirming the ubiquity of distance-decay relationship. Moreover, at all investigated vents, pH was the main factor locally structuring these communities, while temperature influenced both the alpha- and beta-diversity.

  10. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    Science.gov (United States)

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  11. The spatial scale of genetic subdivision in populations of Ifremeria nautilei, a hydrothermal-vent gastropod from the southwest Pacific

    Directory of Open Access Journals (Sweden)

    Thaler Andrew D

    2011-12-01

    Full Text Available Abstract Background Deep-sea hydrothermal vents provide patchy, ephemeral habitats for specialized communities of animals that depend on chemoautotrophic primary production. Unlike eastern Pacific hydrothermal vents, where population structure has been studied at large (thousands of kilometres and small (hundreds of meters spatial scales, population structure of western Pacific vents has received limited attention. This study addresses the scale at which genetic differentiation occurs among populations of a western Pacific vent-restricted gastropod, Ifremeria nautilei. Results We used mitochondrial and DNA microsatellite markers to infer patterns of gene flow and population subdivision. A nested sampling strategy was employed to compare genetic diversity in discrete patches of Ifremeria nautilei separated by a few meters within a single vent field to distances as great as several thousand kilometres between back-arc basins that encompass the known range of the species. No genetic subdivisions were detected among patches, mounds, or sites within Manus Basin. Although I. nautilei from Lau and North Fiji Basins (~1000 km apart also exhibited no evidence for genetic subdivision, these populations were genetically distinct from the Manus Basin population. Conclusions An unknown process that restricts contemporary gene flow isolates the Manus Basin population of Ifremeria nautilei from widespread populations that occupy the North Fiji and Lau Basins. A robust understanding of the genetic structure of hydrothermal vent populations at multiple spatial scales defines natural conservation units and can help minimize loss of genetic diversity in situations where human activities are proposed and managed.

  12. Convergence Hypothesis: Evidence from Panel Unit Root Test with Spatial Dependence

    Directory of Open Access Journals (Sweden)

    Lezheng Liu

    2006-10-01

    Full Text Available In this paper we test the convergence hypothesis by using a revised 4- step procedure of panel unit root test suggested by Evans and Karras (1996. We use data on output for 24 OECD countries over 40 years long. Whether the convergence, if any, is conditional or absolute is also examined. According to a proposition by Baltagi, Bresson, and Pirotte (2005, we incorporate spatial autoregressive error into a fixedeffect panel model to account for not only the heterogeneous panel structure, but also spatial dependence, which might induce lower statistical power of conventional panel unit root test. Our empirical results indicate that output is converging among OECD countries. However, convergence is characterized as conditional. The results also report a relatively lower convergent speed compared to conventional panel studies.

  13. A gender- and sexual orientation-dependent spatial attentional effect of invisible images.

    Science.gov (United States)

    Jiang, Yi; Costello, Patricia; Fang, Fang; Huang, Miner; He, Sheng

    2006-11-07

    Human observers are constantly bombarded with a vast amount of information. Selective attention helps us to quickly process what is important while ignoring the irrelevant. In this study, we demonstrate that information that has not entered observers' consciousness, such as interocularly suppressed (invisible) erotic pictures, can direct the distribution of spatial attention. Furthermore, invisible erotic information can either attract or repel observers' spatial attention depending on their gender and sexual orientation. While unaware of the suppressed pictures, heterosexual males' attention was attracted to invisible female nudes, heterosexual females' attention was attracted to invisible male nudes, gay males behaved similarly to heterosexual females, and gay/bisexual females performed in-between heterosexual males and females.

  14. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    Science.gov (United States)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and

  15. Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines

    Science.gov (United States)

    Bardal, L. M.; Sætran, L. R.

    2016-09-01

    Wind measurements a short distance upstream of a wind turbine can provide input for a feedforward wind turbine controller. Since the turbulent wind field will be different at the point/plane of measurement and the rotor plane the degree of correlation between wind speed at two points in space both in the longitudinal and lateral direction should be evaluated. This study uses a 2D array of mast mounted anemometers to evaluate cross-correlation of longitudinal wind speed. The degree of correlation is found to increase with height and decrease with atmospheric stability. The correlation is furthermore considerably larger for longitudinal separation than for lateral separation. The integral length scale of turbulence is also considered.

  16. Analysis of streamflow variability in Alpine catchments at multiple spatial and temporal scales

    Science.gov (United States)

    Pérez Ciria, T.; Chiogna, G.

    2017-12-01

    Alpine watersheds play a pivotal role in Europe for water provisioning and for hydropower production. In these catchments, temporal fluctuations of river discharge occur at multiple temporal scales due to natural as well as anthropogenic driving forces. In the last decades, modifications of the flow regime have been observed and their origin lies in the complex interplay between construction of dams for hydro power production, changes in water management policies and climatic changes. The alteration of the natural flow has negative impacts on the freshwater biodiversity and threatens the ecosystem integrity of the Alpine region. Therefore, understanding the temporal and spatial variability of river discharge has recently become a particular concern for environmental protection and represents a crucial contribution to achieve sustainable water resources management in the Alps. In this work, time series analysis is conducted for selected gauging stations in the Inn and the Adige catchments, which cover a large part of the central and eastern region of the Alps. We analyze the available time series using the continuous wavelet transform and change-point analyses for determining how and where changes have taken place. Although both catchments belong to different climatic zones of the Greater Alpine Region, streamflow properties share some similar characteristics. The comparison of the collected streamflow time series in the two catchments permits detecting gradients in the hydrological system dynamics that depend on station elevation, longitudinal location in the Alps and catchment area. This work evidences that human activities (e.g., water management practices and flood protection measures, changes in legislation and market regulation) have major impacts on streamflow and should be rigorously considered in hydrological models.

  17. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources

    DEFF Research Database (Denmark)

    Hybel, Anne-Marie; Godskesen, Berit; Rygaard, Martin

    2015-01-01

    used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2......) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial......Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were...

  18. Simulation of spatially dependent excitation rates and power deposition in RF discharges for plasma processing

    International Nuclear Information System (INIS)

    Kushner, M.J.; Anderson, H.M.; Hargis, P.J.

    1985-01-01

    In low pressure, radio frequency (RF) discharges of the type used in plasma processing of semiconductor materials, the rate of electron impact excitation and energy transfer processes depends upon both the phase of the RF excitation and position in the discharge. Electron impact collisions create radicals that diffuse or drift to the surfaces of interest where they are adsorbed or otherwise react. To the extent that these radicals have a finite lifetime, their transport time from point of creation to surface of interest is an important parameter. The spatial dependence of the rate of the initial electron impact collisions is therefore also an important parameter. The power that sustains the discharge is coupled into the system by two mechanisms: a high energy e-beam component of the electron distribution resulting from electrons falling through or being accelerated by the sheaths, and by joule heating in the body of the plasma. In this paper, the authors discuss the spatial dependence of excitation rates and the method of power deposition iin RF discharges of the type used for plasma processing

  19. Focal adhesion kinase regulates neuronal growth, synaptic plasticity and hippocampus-dependent spatial learning and memory.

    Science.gov (United States)

    Monje, Francisco J; Kim, Eun-Jung; Pollak, Daniela D; Cabatic, Maureen; Li, Lin; Baston, Arthur; Lubec, Gert

    2012-01-01

    The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase abundantly expressed in the mammalian brain and highly enriched in neuronal growth cones. Inhibitory and facilitatory activities of FAK on neuronal growth have been reported and its role in neuritic outgrowth remains controversial. Unlike other tyrosine kinases, such as the neurotrophin receptors regulating neuronal growth and plasticity, the relevance of FAK for learning and memory in vivo has not been clearly defined yet. A comprehensive study aimed at determining the role of FAK in neuronal growth, neurotransmitter release and synaptic plasticity in hippocampal neurons and in hippocampus-dependent learning and memory was therefore undertaken using the mouse model. Gain- and loss-of-function experiments indicated that FAK is a critical regulator of hippocampal cell morphology. FAK mediated neurotrophin-induced neuritic outgrowth and FAK inhibition affected both miniature excitatory postsynaptic potentials and activity-dependent hippocampal long-term potentiation prompting us to explore the possible role of FAK in spatial learning and memory in vivo. Our data indicate that FAK has a growth-promoting effect, is importantly involved in the regulation of the synaptic function and mediates in vivo hippocampus-dependent spatial learning and memory. Copyright © 2011 S. Karger AG, Basel.

  20. Velocity correlations and spatial dependencies between neighbors in a unidirectional flow of pedestrians

    Science.gov (United States)

    Porzycki, Jakub; WÄ s, Jarosław; Hedayatifar, Leila; Hassanibesheli, Forough; Kułakowski, Krzysztof

    2017-08-01

    The aim of the paper is an analysis of self-organization patterns observed in the unidirectional flow of pedestrians. On the basis of experimental data from Zhang et al. [J. Zhang et al., J. Stat. Mech. (2011) P06004, 10.1088/1742-5468/2011/06/P06004], we analyze the mutual positions and velocity correlations between pedestrians when walking along a corridor. The angular and spatial dependencies of the mutual positions reveal a spatial structure that remains stable during the crowd motion. This structure differs depending on the value of n , for the consecutive n th -nearest-neighbor position set. The preferred position for the first-nearest neighbor is on the side of the pedestrian, while for further neighbors, this preference shifts to the axis of movement. The velocity correlations vary with the angle formed by the pair of neighboring pedestrians and the direction of motion and with the time delay between pedestrians' movements. The delay dependence of the correlations shows characteristic oscillations, produced by the velocity oscillations when striding; however, a filtering of the main frequency of individual striding out reduces the oscillations only partially. We conclude that pedestrians select their path directions so as to evade the necessity of continuously adjusting their speed to their neighbors'. They try to keep a given distance, but follow the person in front of them, as well as accepting and observing pedestrians on their sides. Additionally, we show an empirical example that illustrates the shape of a pedestrian's personal space during movement.

  1. ESTIMATING GROSS PRIMARY PRODUCTION IN CROPLAND WITH HIGH SPATIAL AND TEMPORAL SCALE REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    S. Lin

    2018-04-01

    Full Text Available Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km. The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012 Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1 the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR is about 50 % (R2 = 0.52 and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64; 2 estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day, which has better performance than using MODIS 1-km NDVI/EVI product import; 3 using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  2. Research into the influence of spatial variability and scale on the parameterization of hydrological processes

    Science.gov (United States)

    Wood, Eric F.

    1993-01-01

    The objectives of the research were as follows: (1) Extend the Representative Elementary Area (RE) concept, first proposed and developed in Wood et al, (1988), to the water balance fluxes of the interstorm period (redistribution, evapotranspiration and baseflow) necessary for the analysis of long-term water balance processes. (2) Derive spatially averaged water balance model equations for spatially variable soil, topography and vegetation, over A RANGE OF CLIMATES. This is a necessary step in our goal to derive consistent hydrologic results up to GCM grid scales necessary for global climate modeling. (3) Apply the above macroscale water balance equations with remotely sensed data and begin to explore the feasibility of parameterizing the water balance constitutive equations at GCM grid scale.

  3. Turbulence modification by periodically modulated scale-depending forcing

    NARCIS (Netherlands)

    Kuczaj, Arkadiusz K.; Geurts, Bernardus J.; Lohse, Detlef; van de Water, W.

    2006-01-01

    The response of turbulent flow to time-modulated forcing is studied by direct numerical simulation of the Navier-Stokes equations. The forcing is modulated via periodic energy input variations at a frequency $\\omega$. Such forcing of the large-scales is shown to yield a response maximum at

  4. Turbulence modification by periodically modulated scale-dependent forcing

    NARCIS (Netherlands)

    Kuczaj, A.K.; Geurts, B.J.; Lohse, D.; Water, van de W.

    2006-01-01

    The response of turbulent flow to time-modulated forcing is studied by direct numerical simulation of the Navier-Stokes equations. The forcing is modulated via periodic energy input variations at a frequency !. Such forcing of the large-scales is shown to yield a response maximum at frequencies in

  5. Turbulence modification by periodically modulated scale-dependent forcing

    NARCIS (Netherlands)

    Kuczaj, A.K.; Geurts, B.J.; Lohse, D.; Water, van de W.

    2008-01-01

    The response of turbulent flow to time-modulated forcing is studied by direct numerical simulation of the Navier–Stokes equations. The forcing is modulated via periodic energy-input variations at a frequency ¿. Harmonically modulated forcing of the large scales is shown to yield a response maximum

  6. Turbulence modification by periodically modulated scale-dependent forcing

    NARCIS (Netherlands)

    Kuczaj, Arkadiusz K.; Geurts, Bernardus J.; Lohse, Detlef; van de Water, W.

    2008-01-01

    The response of turbulent flow to time-modulated forcing is studied by direct numerical simulation of the Navier–Stokes equations. The forcing is modulated via periodic energy-input variations at a frequency x. Harmonically modulated forcing of the large scales is shown to yield a response maximum

  7. Time-dependent scaling patterns in high frequency financial data

    Science.gov (United States)

    Nava, Noemi; Di Matteo, Tiziana; Aste, Tomaso

    2016-10-01

    We measure the influence of different time-scales on the intraday dynamics of financial markets. This is obtained by decomposing financial time series into simple oscillations associated with distinct time-scales. We propose two new time-varying measures of complexity: 1) an amplitude scaling exponent and 2) an entropy-like measure. We apply these measures to intraday, 30-second sampled prices of various stock market indices. Our results reveal intraday trends where different time-horizons contribute with variable relative amplitudes over the course of the trading day. Our findings indicate that the time series we analysed have a non-stationary multifractal nature with predominantly persistent behaviour at the middle of the trading session and anti-persistent behaviour at the opening and at the closing of the session. We demonstrate that these patterns are statistically significant, robust, reproducible and characteristic of each stock market. We argue that any modelling, analytics or trading strategy must take into account these non-stationary intraday scaling patterns.

  8. A multi-scale spatial approach to address environmental effects of small hydropower development.

    Science.gov (United States)

    McManamay, Ryan A; Samu, Nicole; Kao, Shih-Chieh; Bevelhimer, Mark S; Hetrick, Shelaine C

    2015-01-01

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

  9. Studying neighborhood crime across different macro spatial scales: The case of robbery in 4 cities.

    Science.gov (United States)

    Hipp, John R; Wo, James C; Kim, Young-An

    2017-11-01

    Whereas there is a burgeoning literature focusing on the spatial distribution of crime events across neighborhoods or micro-geographic units in a specific city, the present study expands this line of research by selecting four cities that vary across two macro-spatial dimensions: population in the micro-environment, and population in the broader macro-environment. We assess the relationship between measures constructed at different spatial scales and robbery rates in blocks in four cities: 1) San Francisco (high in micro- and macro-environment population); 2) Honolulu (high in micro- but low in macro-environment population); 3) Los Angeles (low in micro- but high in macro-environment population); 4) Sacramento (low in micro- and macro-environment population). Whereas the socio-demographic characteristics of residents further than ½ mile away do not impact robbery rates, the number of people up to 2.5 miles away are related to robbery rates, especially in the two cities with smaller micro-environment population, implying a larger spatial scale than is often considered. The results show that coefficient estimates differ somewhat more between cities differing in micro-environment population compared to those differing based on macro-environment population. It is therefore necessary to consider the broader macro-environment even when focusing on the level of crime across neighborhoods or micro-geographic units within an area. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales

    DEFF Research Database (Denmark)

    Eiserhardt, Wolf L.; Svenning, J.-C.; Kissling, W. Daniel

    2011-01-01

    , and dispersal again at all scales. For species richness, climate and dispersal appear to be important at continental to global scales, soil at landscape and broader scales, and topography at landscape and finer scales. Some scale–predictor combinations have not been studied or deserve further attention, e......Background The palm family occurs in all tropical and sub-tropical regions of the world. Palms are of high ecological and economical importance, and display complex spatial patterns of species distributions and diversity. Scope This review summarizes empirical evidence for factors that determine...... palm species distributions, community composition and species richness such as the abiotic environment (climate, soil chemistry, hydrology and topography), the biotic environment (vegetation structure and species interactions) and dispersal. The importance of contemporary vs. historical impacts...

  11. A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint.

    Directory of Open Access Journals (Sweden)

    Chaogui Kang

    Full Text Available We generalized the recently introduced "radiation model", as an analog to the generalization of the classic "gravity model", to consolidate its nature of universality for modeling diverse mobility systems. By imposing the appropriate scaling exponent λ, normalization factor κ and system constraints including searching direction and trip OD constraint, the generalized radiation model accurately captures real human movements in various scenarios and spatial scales, including two different countries and four different cities. Our analytical results also indicated that the generalized radiation model outperformed alternative mobility models in various empirical analyses.

  12. Data, data everywhere: detecting spatial patterns in fine-scale ecological information collected across a continent

    Science.gov (United States)

    Kevin M. Potter; Frank H. Koch; Christopher M. Oswalt; Basil V. Iannone

    2016-01-01

    Context Fine-scale ecological data collected across broad regions are becoming increasingly available. Appropriate geographic analyses of these data can help identify locations of ecological concern. Objectives We present one such approach, spatial association of scalable hexagons (SASH), whichidentifies locations where ecological phenomena occur at greater...

  13. Field Scale Spatial Modelling of Surface Soil Quality Attributes in Controlled Traffic Farming

    Science.gov (United States)

    Guenette, Kris; Hernandez-Ramirez, Guillermo

    2017-04-01

    The employment of controlled traffic farming (CTF) can yield improvements to soil quality attributes through the confinement of equipment traffic to tramlines with the field. There is a need to quantify and explain the spatial heterogeneity of soil quality attributes affected by CTF to further improve our understanding and modelling ability of field scale soil dynamics. Soil properties such as available nitrogen (AN), pH, soil total nitrogen (STN), soil organic carbon (SOC), bulk density, macroporosity, soil quality S-Index, plant available water capacity (PAWC) and unsaturated hydraulic conductivity (Km) were analysed and compared among trafficked and un-trafficked areas. We contrasted standard geostatistical methods such as ordinary kriging (OK) and covariate kriging (COK) as well as the hybrid method of regression kriging (ROK) to predict the spatial distribution of soil properties across two annual cropland sites actively employing CTF in Alberta, Canada. Field scale variability was quantified more accurately through the inclusion of covariates; however, the use of ROK was shown to improve model accuracy despite the regression model composition limiting the robustness of the ROK method. The exclusion of traffic from the un-trafficked areas displayed significant improvements to bulk density, macroporosity and Km while subsequently enhancing AN, STN and SOC. The ability of the regression models and the ROK method to account for spatial trends led to the highest goodness-of-fit and lowest error achieved for the soil physical properties, as the rigid traffic regime of CTF altered their spatial distribution at the field scale. Conversely, the COK method produced the most optimal predictions for the soil nutrient properties and Km. The use of terrain covariates derived from light ranging and detection (LiDAR), such as of elevation and topographic position index (TPI), yielded the best models in the COK method at the field scale.

  14. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    OpenAIRE

    C. M. R. Mateo; C. M. R. Mateo; D. Yamazaki; D. Yamazaki; H. Kim; A. Champathong; J. Vaze; T. Oki; T. Oki

    2017-01-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development...

  15. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    OpenAIRE

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-01-01

    Global-scale River Models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representation of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction,...

  16. Block scale interpretation on the spatial distribution of the fracture system in the study sites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Bae, Dae Seok; Kim, Chun Soo; Koh, Yong Kweon; Kim, Geon Young [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-05-01

    The safety of waste disposal can be achieved by a complete isolation of radioactive wastes from biosphere or by a retardation of nuclide migration to reach an acceptable dose level. For the deep geological disposal of high-level radioactive waste, the potential pathways of nuclide primarily depend on the spatial distribution characteristics of conductive fractures in rock mass. This study aims to characterize the spatial distribution characteristics of regional lineaments and background fracture system in eastern and western-type granite rock mass. The spatial distribution characteristics of the fracture system around 500m depth has been estimated based on the homogeneous discontinuity domain except for the highly fractured upper zone. 6 refs., 16 figs., 7 tabs. (Author)

  17. Determination of spatially dependent transfer function of zero power reactor by using pseudo-random incentive

    International Nuclear Information System (INIS)

    Kostic, Lj.

    1973-01-01

    Specially constructed fast reactivity oscillator was stimulating the zero power reactor by a stimulus which caused pseudo-random reactivity changes. Measuring system included stochastic oscillator BCR-1 supplied by pseudo-random pulses from noise generator GBS-16, instrumental tape-recorder, system for data acquisition and digital computer ZUSE-Z-23. For measuring the spatially dependent transfer function, reactor response was measured at a number of different positions of stochastic oscillator and ionization chamber. In order to keep the reactor system linear, experiment was limited to small reactivity fluctuations. Experimental results were compared to theoretical ones

  18. Spatial dependence and origin of the ambient doce due to neutron activation processes in linear accelerators

    International Nuclear Information System (INIS)

    Ruiz Egea, E.; Sanchez Carrascal, M.; Torres Pozas, S.; Monja Ray, P. de la; Perez Molina, J. L.; Madan Rodriguez, C.; Luque Japon, L.; Morera Molina, A.; Hernandez Perez, A.; Barquero Bravo, Y.; Morengo Pedagna, I.; Oliva Gordillo, M. C.; Martin Olivar, R.

    2011-01-01

    In order to try to determine the high dose in the bunker of a Linear Accelerator clinical use trying to measure the spatial dependence of the sane f ron the isocenter to tite gateway to the Board ceeking to establich the origin of it. This doce measurements performed with an ionization charober at different locations incide the bunker after an irradiation of 400 Monitor Units verifying the doce rate per minute for an hour, and accumulating the doce received during that period of time.

  19. Empirical Mode Decomposition on the sphere: application to the spatial scales of surface temperature variations

    Directory of Open Access Journals (Sweden)

    N. Fauchereau

    2008-06-01

    Full Text Available Empirical Mode Decomposition (EMD is applied here in two dimensions over the sphere to demonstrate its potential as a data-adaptive method of separating the different scales of spatial variability in a geophysical (climatological/meteorological field. After a brief description of the basics of the EMD in 1 then 2 dimensions, the principles of its application on the sphere are explained, in particular via the use of a zonal equal area partitioning. EMD is first applied to an artificial dataset, demonstrating its capability in extracting the different (known scales embedded in the field. The decomposition is then applied to a global mean surface temperature dataset, and we show qualitatively that it extracts successively larger scales of temperature variations related, for example, to topographic and large-scale, solar radiation forcing. We propose that EMD can be used as a global data-adaptive filter, which will be useful in analysing geophysical phenomena that arise as the result of forcings at multiple spatial scales.

  20. Spatial and temporal dependence of the convective electric field in Saturn’s inner magnetosphere

    Science.gov (United States)

    Andriopoulou, M.; Roussos, E.; Krupp, N.; Paranicas, C.; Thomsen, M.; Krimigis, S.; Dougherty, M. K.; Glassmeier, K.-H.

    2014-02-01

    The recently established presence of a convective electric field in Saturn’s inner and middle magnetosphere, with an average pointing approximately towards midnight and an intensity less than 1 mV/m, is one of the most puzzling findings by the Cassini spacecraft. In order to better characterize the properties of this electric field, we augmented the original analysis method used to identify it (Andriopoulou et al., 2012) and applied it to an extended energetic electron microsignature dataset, constructed from observations at the vicinity of four saturnian moons. We study the average characteristics of the convective pattern and additionally its temporal and spatial variations. In our updated dataset we include data from the recent Cassini orbits and also microsignatures from the two moons, Rhea and Enceladus, allowing us to further extend this analysis to cover a greater time period as well as larger radial distances within the saturnian magnetosphere. When data from the larger radial range and more recent orbits are included, we find that the originally inferred electric field pattern persists, and in fact penetrates at least as far in as the orbit of Enceladus, a region of particular interest due to the plasma loading that takes place there. We perform our electric field calculations by setting the orientation of the electric field as a free, time-dependent parameter, removing the pointing constraints from previous works. Analytical but also numerical techniques have been employed, that help us overcome possible errors that could have been introduced from simplified assumptions used previously. We find that the average electric field pointing is not directed exactly at midnight, as we initially assumed, but is found to be stably displaced by approximately 12-32° from midnight, towards dawn. The fact, however, that the field’s pointing is much more variable in short time scales, in addition to our observations that it penetrates inside the orbit of Enceladus

  1. Scale dependence and small-x behaviour of polarized parton distributions

    International Nuclear Information System (INIS)

    Ball, R.D.; Forte, S.; Ridolfi, G.

    1995-01-01

    We discuss perturbative evolution of the polarized structure function g 1 in the (x, Q 2 ) plane, with special regard to the small-x region. We determine g 1 in terms of polarized quark and gluon distributions using coefficient functions to order α s . At small x g 1 then displays substantial scale dependence, which necessarily implies a corresponding scale dependence in the large-x region. This scale dependence has significant consequences for the extraction of the first moment from the experimental data, reducing its value while increasing the error. Conversely, the scale dependence may be used to constrain the size of the polarized gluon distribution. ((orig.))

  2. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal

  3. [Creation of a scale for evaluating attitudes of partners toward alcohol dependency].

    Science.gov (United States)

    Sugawara, Tazuko; Morita, Noriaki; Nakatani, Youji

    2013-12-01

    The aim of this study was to develop a scale to evaluate characteristics of how alcohol-dependent people perceive the attitudes of their partners toward alcohol dependency. Based on previous research, we created the "Attitudes of partners toward alcohol dependency" scale, from the perspective of the alcohol dependent individual. Using the new scale, 71 alcohol-dependent people (52 men, 19 women) were surveyed after obtaining their consent, and the reliability and validity of the scale were tested. The results identified 3 factors, "indifference", "acceptance" and "hypersensitivity", and factorial validity was verified. Relatively high reliability was obtained on each sub-scale (alpha = .60-.82). Furthermore, correlations were obtained with the alcohol-dependency "Denial and Awareness Scale (for alcohol-dependent people)" and with the 13-item "Usefulness of heterosexual love relations for recovery from alcohol dependency" questionnaire, which includes content on "beneficial" or "obstructive" to recovery, and with the satisfaction and the importance of relations. This demonstrates that the "Attitudes of partners toward alcohol dependency" scale has reliability and criterion-related validity. The scale facilitates evaluation of types of attitudes of partners toward alcohol dependency, and may thus be useful as one tool for investigating the influence of partners in heterosexual love relationships for recovery, and for providing advice.

  4. Long term socio-ecological research across temporal and spatial scales

    Science.gov (United States)

    Singh, S. J.; Haberl, H.

    2012-04-01

    Long term socio-ecological research across temporal and spatial scales Simron Jit Singh and Helmut Haberl Institute of Social Ecology, Vienna, Austria Understanding trajectories of change in coupled socio-ecological (or human-environment) systems requires monitoring and analysis at several spatial and temporal scales. Long-term ecosystem research (LTER) is a strand of research coupled with observation systems and infrastructures (LTER sites) aimed at understanding how global change affects ecosystems around the world. In recent years it has been increasingly recognized that sustainability concerns require extending this approach to long-term socio-ecological research, i.e. a more integrated perspective that focuses on interaction processes between society and ecosystems over longer time periods. Thus, Long-Term Socio-Ecological Research, abbreviated LTSER, aims at observing, analyzing, understanding and modelling of changes in coupled socio-ecological systems over long periods of time. Indeed, the magnitude of the problems we now face is an outcome of a much longer process, accelerated by industrialisation since the nineteenth century. The paper will provide an overview of a book (in press) on LTSER with particular emphasis on 'socio-ecological transitions' in terms of material, energy and land use dynamics across temporal and spatial scales.

  5. Spatial epidemiological techniques in cholera mapping and analysis towards a local scale predictive modelling

    Science.gov (United States)

    Rasam, A. R. A.; Ghazali, R.; Noor, A. M. M.; Mohd, W. M. N. W.; Hamid, J. R. A.; Bazlan, M. J.; Ahmad, N.

    2014-02-01

    Cholera spatial epidemiology is the study of the spread and control of the disease spatial pattern and epidemics. Previous studies have shown that multi-factorial causation such as human behaviour, ecology and other infectious risk factors influence the disease outbreaks. Thus, understanding spatial pattern and possible interrelationship factors of the outbreaks are crucial to be explored an in-depth study. This study focuses on the integration of geographical information system (GIS) and epidemiological techniques in exploratory analyzing the cholera spatial pattern and distribution in the selected district of Sabah. Spatial Statistic and Pattern tools in ArcGIS and Microsoft Excel software were utilized to map and analyze the reported cholera cases and other data used. Meanwhile, cohort study in epidemiological technique was applied to investigate multiple outcomes of the disease exposure. The general spatial pattern of cholera was highly clustered showed the disease spread easily at a place or person to others especially 1500 meters from the infected person and locations. Although the cholera outbreaks in the districts are not critical, it could be endemic at the crowded areas, unhygienic environment, and close to contaminated water. It was also strongly believed that the coastal water of the study areas has possible relationship with the cholera transmission and phytoplankton bloom since the areas recorded higher cases. GIS demonstrates a vital spatial epidemiological technique in determining the distribution pattern and elucidating the hypotheses generating of the disease. The next research would be applying some advanced geo-analysis methods and other disease risk factors for producing a significant a local scale predictive risk model of the disease in Malaysia.

  6. Spatial epidemiological techniques in cholera mapping and analysis towards a local scale predictive modelling

    International Nuclear Information System (INIS)

    Rasam, A R A; Ghazali, R; Noor, A M M; Mohd, W M N W; Hamid, J R A; Bazlan, M J; Ahmad, N

    2014-01-01

    Cholera spatial epidemiology is the study of the spread and control of the disease spatial pattern and epidemics. Previous studies have shown that multi-factorial causation such as human behaviour, ecology and other infectious risk factors influence the disease outbreaks. Thus, understanding spatial pattern and possible interrelationship factors of the outbreaks are crucial to be explored an in-depth study. This study focuses on the integration of geographical information system (GIS) and epidemiological techniques in exploratory analyzing the cholera spatial pattern and distribution in the selected district of Sabah. Spatial Statistic and Pattern tools in ArcGIS and Microsoft Excel software were utilized to map and analyze the reported cholera cases and other data used. Meanwhile, cohort study in epidemiological technique was applied to investigate multiple outcomes of the disease exposure. The general spatial pattern of cholera was highly clustered showed the disease spread easily at a place or person to others especially 1500 meters from the infected person and locations. Although the cholera outbreaks in the districts are not critical, it could be endemic at the crowded areas, unhygienic environment, and close to contaminated water. It was also strongly believed that the coastal water of the study areas has possible relationship with the cholera transmission and phytoplankton bloom since the areas recorded higher cases. GIS demonstrates a vital spatial epidemiological technique in determining the distribution pattern and elucidating the hypotheses generating of the disease. The next research would be applying some advanced geo-analysis methods and other disease risk factors for producing a significant a local scale predictive risk model of the disease in Malaysia

  7. Understanding the stopover of migratory birds: a scale dependent approach

    Science.gov (United States)

    Frank R. Moore; Mark S. Woodrey; Jeffrey J. Buler; Stefan Woltmann; Ted R. Simons

    2005-01-01

    The development of comprehensive conservation strategies and management plans for migratory birds depends on understanding migrant-habitat relations throughout the annual cycle, including the time when migrants stopover en route. Yet, the complexity of migration makes the assessment of habitat requirements and development of a comprehensive...

  8. Direction of information flow in large-scale resting-state networks is frequency-dependent.

    Science.gov (United States)

    Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A; van Straaten, Elisabeth C W; Stam, Cornelis J

    2016-04-05

    Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.

  9. Community functional responses to soil and climate at multiple spatial scales: when does intraspecific variation matter?

    Directory of Open Access Journals (Sweden)

    Andrew Siefert

    Full Text Available Despite increasing evidence of the importance of intraspecific trait variation in plant communities, its role in community trait responses to environmental variation, particularly along broad-scale climatic gradients, is poorly understood. We analyzed functional trait variation among early-successional herbaceous plant communities (old fields across a 1200-km latitudinal extent in eastern North America, focusing on four traits: vegetative height, leaf area, specific leaf area (SLA, and leaf dry matter content (LDMC. We determined the contributions of species turnover and intraspecific variation to between-site functional dissimilarity at multiple spatial scales and community trait responses to edaphic and climatic factors. Among-site variation in community mean trait values and community trait responses to the environment were generated by a combination of species turnover and intraspecific variation, with species turnover making a greater contribution for all traits. The relative importance of intraspecific variation decreased with increasing geographic and environmental distance between sites for SLA and leaf area. Intraspecific variation was most important for responses of vegetative height and responses to edaphic compared to climatic factors. Individual species displayed strong trait responses to environmental factors in many cases, but these responses were highly variable among species and did not usually scale up to the community level. These findings provide new insights into the role of intraspecific trait variation in plant communities and the factors controlling its relative importance. The contribution of intraspecific variation to community trait responses was greatest at fine spatial scales and along edaphic gradients, while species turnover dominated at broad spatial scales and along climatic gradients.

  10. Temporal and Spatial Scales Matter: Circannual Habitat Selection by Bird Communities in Vineyards.

    Directory of Open Access Journals (Sweden)

    Claire Guyot

    Full Text Available Vineyards are likely to be regionally important for wildlife, but we lack biodiversity studies in this agroecosystem which is undergoing a rapid management revolution. As vine cultivation is restricted to arid and warm climatic regions, biodiversity-friendly management would promote species typical of southern biomes. Vineyards are often intensively cultivated, mostly surrounded by few natural features and offering a fairly mineral appearance with little ground vegetation cover. Ground vegetation cover and composition may further strongly vary with respect to season, influencing patterns of habitat selection by ecological communities. We investigated season-specific bird-habitat associations to highlight the importance of semi-natural habitat features and vineyard ground vegetation cover throughout the year. Given that avian habitat selection varies according to taxa, guilds and spatial scale, we modelled bird-habitat associations in all months at two spatial scales using mixed effects regression models. At the landscape scale, birds were recorded along 10 1-km long transects in Southwestern Switzerland (February 2014 -January 2015. At the field scale, we compared the characteristics of visited and unvisited vineyard fields (hereafter called parcels. Bird abundance in vineyards tripled in winter compared to summer. Vineyards surrounded by a greater amount of hedges and small woods harboured higher bird abundance, species richness and diversity, especially during the winter season. Regarding ground vegetation, birds showed a season-specific habitat selection pattern, notably a marked preference for ground-vegetated parcels in winter and for intermediate vegetation cover in spring and summer. These season-specific preferences might be related to species-specific life histories: more insectivorous, ground-foraging species occur during the breeding season whereas granivores predominate in winter. These results highlight the importance of

  11. Scale-dependent geomorphic responses to active restoration and implications for cutthroat trout

    Science.gov (United States)

    Salant, N.; Miller, S. W.

    2009-12-01

    The predominant goal of instream habitat restoration is to increase the diversity, density and/or biomass of aquatic organisms through enhanced physical heterogeneity and increased food availability. In physically homogenized systems, habitat restoration is most commonly achieved at the reach-scale through the addition of structures or channel reconfiguration. Despite the completion of over 6,000 restoration projects in the United States, studies of fish responses to habitat restoration have largely produced equivocal results. Paradoxically, restoration monitoring overwhelmingly focuses on fish response without understanding how these responses link to the physical variables being altered and the scale at which geomorphic changes occur. Our study investigates whether instream habitat restoration affects geomorphic conditions at spatial scales relevant to the organism of interest (i.e. the spatial scale of the variables limiting to that organism). We measure the effects of active restoration on geomorphic metrics at three spatial scales (local, unit, and reach) using a before-after-control-impact design in a historically disturbed and heavily managed cutthroat trout stream. Observed trout habitat preferences (for spawning and juvenile/adult residence) are used to identify the limiting physical variables and are compared to the scale of spatially explicit geomorphic responses. Four reaches representing three different stages of restoration (before, one month and one year after) are surveyed for local-scale physical conditions, unit- and reach-scale morphology, resident fish use, and redd locations. Local-scale physical metrics include depth, nearbed and average velocity, overhead cover, particle size, and water quality metrics. Point measurements stratified by morphological unit are used to determine physical variability among unit types. Habitat complexity and availability are assessed at the reach-scale from topographic surveys and unit maps. Our multi-scale

  12. Context-dependent modulation of hippocampal and cortical recruitment during remote spatial memory retrieval.

    Science.gov (United States)

    Lopez, Joëlle; Herbeaux, Karin; Cosquer, Brigitte; Engeln, Michel; Muller, Christophe; Lazarus, Christine; Kelche, Christian; Bontempi, Bruno; Cassel, Jean-Christophe; de Vasconcelos, Anne Pereira

    2012-04-01

    According to systems consolidation, as hippocampal-dependent memories mature over time, they become additionally (or exclusively) dependent on extra-hippocampal structures. We assessed the recruitment of hippocampal and cortical structures on remote memory retrieval in a performance-degradation resistant (PDR; no performance degradation with time) versus performance-degradation prone (PDP; performance degraded with time) context. Using a water-maze task in two contexts with a hidden platform and three control conditions (home cage, visible platform with or without access to distal cues), we compared neuronal activation (c-Fos imaging) patterns in the dorsal hippocampus and the medial prefrontal cortex (mPFC) after the retrieval of recent (5 days) versus remote (25 days) spatial memory. In the PDR context, the hippocampus exhibited greater c-Fos protein expression on remote than recent memory retrieval, be it in the visible or hidden platform group. In the PDP context, hippocampal activation increased at the remote time point and only in the hidden platform group. In the anterior cingulate cortex, c-Fos expression was greater for remote than for recent memory retrieval and only in the PDR context. The necessity of the mPFC for remote memory retrieval in the PDR context was confirmed using region-specific lidocaine inactivation, which had no impact on recent memory. Conversely, inactivation of the dorsal hippocampus impaired both recent and remote memory in the PDR context, and only recent memory in the PDP context, in which remote memory performance was degraded. While confirming that neuronal circuits supporting spatial memory consolidation are reorganized in a time-dependent manner, our findings further indicate that mPFC and hippocampus recruitment (i) depends on the content and perhaps the strength of the memory and (ii) may be influenced by the environmental conditions (e.g., cue saliency, complexity) in which memories are initially formed and subsequently

  13. Experimental study of parametric dependence of electron-scale turbulence in a spherical tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Mazzucato, E.; Bell, R. E.; Diallo, A.; LeBlanc, B. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Domier, C. W.; Lee, K. C. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2012-05-15

    Electron-scale turbulence is predicted to drive anomalous electron thermal transport. However, experimental study of its relation with transport is still in its early stage. On the National Spherical Tokamak Experiment (NSTX), electron-scale density fluctuations are studied with a novel tangential microwave scattering system with high radial resolution of {+-}2 cm. Here, we report a study of parametric dependence of electron-scale turbulence in NSTX H-mode plasmas. The dependence on density gradient is studied through the observation of a large density gradient variation in the core induced by an edge localized mode (ELM) event, where we found the first clear experimental evidence of density gradient stabilization of electron-gyro scale turbulence in a fusion plasma. This observation, coupled with linear gyro-kinetic calculations, leads to the identification of the observed instability as toroidal electron temperature gradient (ETG) modes. It is observed that longer wavelength ETG modes, k{sub Up-Tack }{rho}{sub s} Less-Than-Or-Equivalent-To 10 ({rho}{sub s} is the ion gyroradius at electron temperature and k{sub Up-Tack} is the wavenumber perpendicular to local equilibrium magnetic field), are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in electron thermal diffusivity. Comparisons with nonlinear ETG gyrokinetic simulations show ETG turbulence may be able to explain the experimental electron heat flux observed before the ELM event. The collisionality dependence of electron-scale turbulence is also studied by systematically varying plasma current and toroidal field, so that electron gyroradius ({rho}{sub e}), electron beta ({beta}{sub e}), and safety factor (q{sub 95}) are kept approximately constant. More than a factor of two change in electron collisionality, {nu}{sub e}{sup *}, was achieved, and we found that the spectral power of electron-scale turbulence appears to increase as {nu}{sub e}{sup *} is

  14. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales.

    Science.gov (United States)

    Austin, Åsa N; Hansen, Joakim P; Donadi, Serena; Eklöf, Johan S

    2017-01-01

    Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer) and spatial scales (local and regional), using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales, and that high

  15. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales.

    Directory of Open Access Journals (Sweden)

    Åsa N Austin

    Full Text Available Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer and spatial scales (local and regional, using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales

  16. Assessment of the spatial scaling behaviour of floods in the United Kingdom

    Science.gov (United States)

    Formetta, Giuseppe; Stewart, Elizabeth; Bell, Victoria

    2017-04-01

    Floods are among the most dangerous natural hazards, causing loss of life and significant damage to private and public property. Regional flood-frequency analysis (FFA) methods are essential tools to assess the flood hazard and plan interventions for its mitigation. FFA methods are often based on the well-known index flood method that assumes the invariance of the coefficient of variation of floods with drainage area. This assumption is equivalent to the simple scaling or self-similarity assumption for peak floods, i.e. their spatial structure remains similar in a particular, relatively simple, way to itself over a range of scales. Spatial scaling of floods has been evaluated at national scale for different countries such as Canada, USA, and Australia. According our knowledge. Such a study has not been conducted for the United Kingdom even though the standard FFA method there is based on the index flood assumption. In this work we present an integrated approach to assess of the spatial scaling behaviour of floods in the United Kingdom using three different methods: product moments (PM), probability weighted moments (PWM), and quantile analysis (QA). We analyse both instantaneous and daily annual observed maximum floods and performed our analysis both across the entire country and in its sub-climatic regions as defined in the Flood Studies Report (NERC, 1975). To evaluate the relationship between the k-th moments or quantiles and the drainage area we used both regression with area alone and multiple regression considering other explanatory variables to account for the geomorphology, amount of rainfall, and soil type of the catchments. The latter multiple regression approach was only recently demonstrated being more robust than the traditional regression with area alone that can lead to biased estimates of scaling exponents and misinterpretation of spatial scaling behaviour. We tested our framework on almost 600 rural catchments in UK considered as entire region and

  17. The Effect of Reversible Abolition of Basolateral Amygdala on Hippocampal Dependent Spatial Memory Processes in Mice

    Directory of Open Access Journals (Sweden)

    A Rashidy-Pour

    2004-04-01

    Full Text Available Introduction: Many evidences have suggested that the Basolateral Amygdala (BLA are probably involved in emotional learning and modulation of spatial memory processes. The aim of this present study was assessment of the effect of reversible abolition of BLA on spatial memory processes in a place avoidance learning model in a stable environment. Methods and Materials: Long-Evans strain rats (280-320 gr. were selected and cannulae aimed at the BLA were surgically implanted bilaterally. The mice were trained to avoid a 60° segment of the arena by punishing with a mild foot shock upon entering the area. The punished sector was defined by room cues during the place avoidance training, which occurred in a single 30-min session and the avoidance memory was assessed during a 30-min extinction trial after 24 hours. The time of the first entry and the number of entrances into the punished sector during extinction were used to measure the place avoidance memory. Bilateral injections of Tetrodotoxin (5ng/0.6ml per side were used to inactivate the BLA 60 min before acquisition, immediately, 60 and 120 min after training, or 60 min before the retrieval test. Control mice were injected saline at the same time. Results : The results indicated that acquisition, consolidation (immediately, 60 min after training and retrieval of spatial memory in stable arena were impaired (p0.05. Conclusion: We conclude that the Basolateral Amygdala (BLA modulate spatial memory processes in place avoidance learning model in stable arena and this effect in regard to consolidation is time dependent.

  18. Novel scatter compensation with energy and spatial dependent corrections in positron emission tomography

    International Nuclear Information System (INIS)

    Guerin, Bastien

    2010-01-01

    We developed and validated a fast Monte Carlo simulation of PET acquisitions based on the SimSET program modeling accurately the propagation of gamma photons in the patient as well as the block-based PET detector. Comparison of our simulation with another well validated code, GATE, and measurements on two GE Discovery ST PET scanners showed that it models accurately energy spectra (errors smaller than 4.6%), the spatial resolution of block-based PET scanners (6.1%), scatter fraction (3.5%), sensitivity (2.3%) and count rates (12.7%). Next, we developed a novel scatter correction incorporating the energy and position of photons detected in list-mode. Our approach is based on the reformulation of the list-mode likelihood function containing the energy distribution of detected coincidences in addition to their spatial distribution, yielding an EM reconstruction algorithm containing spatial and energy dependent correction terms. We also proposed using the energy in addition to the position of gamma photons in the normalization of the scatter sinogram. Finally, we developed a method for estimating primary and scatter photons energy spectra from total spectra detected in different sectors of the PET scanner. We evaluated the accuracy and precision of our new spatio-spectral scatter correction and that of the standard spatial correction using realistic Monte Carlo simulations. These results showed that incorporating the energy in the scatter correction reduces bias in the estimation of the absolute activity level by ∼ 60% in the cold regions of the largest patients and yields quantification errors less than 13% in all regions. (author)

  19. SPATIALLY DEPENDENT HEATING AND IONIZATION IN AN ICME OBSERVED BY BOTH ACE AND ULYSSES

    Energy Technology Data Exchange (ETDEWEB)

    Lepri, Susan T. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109-2143 (United States); Laming, J. Martin; Rakowski, Cara E. [Space Science Division, Naval Research Laboratory, Code 7674L, Washington, DC 20375-5321 (United States); Von Steiger, Rudolf [International Space Science Institute, Bern CH-3012 (Switzerland)

    2012-12-01

    The 2005 January 21 interplanetary coronal mass ejection (ICME) observed by multiple spacecraft at L1 was also observed from January 21-February 4 at Ulysses (5.3 AU). Previous studies of this ICME have found evidence suggesting that the flanks of a magnetic cloud like structure associated with this ICME were observed at L1 while a more central cut through the associated magnetic cloud was observed at Ulysses. This event allows us to study spatial variation across the ICME and relate it to the eruption at the Sun. In order to examine the spatial dependence of the heating in this ICME, we present an analysis and comparison of the heavy ion composition observed during the passage of the ICME at L1 and at Ulysses. Using SWICS, we compare the heavy ion composition across the two different observation cuts through the ICME and compare it with predictions for heating during the eruption based on models of the time-dependent ionization balance throughout the event.

  20. Determination of spatially dependent diffusion parameters in bovine bone using Kalman filter.

    Science.gov (United States)

    Shokry, Abdallah; Ståhle, Per; Svensson, Ingrid

    2015-11-07

    Although many studies have been made for homogenous constant diffusion, bone is an inhomogeneous material. It has been suggested that bone porosity decreases from the inner boundaries to the outer boundaries of the long bones. The diffusivity of substances in the bone matrix is believed to increase as the bone porosity increases. In this study, an experimental set up is used where bovine bone samples, saturated with potassium chloride (KCl), were put into distilled water and the conductivity of the water was followed. Chloride ions in the bone samples escaped out in the water through diffusion and the increase of the conductivity was measured. A one-dimensional, spatially dependent mathematical model describing the diffusion process is used. The diffusion parameters in the model are determined using a Kalman filter technique. The parameters for spatially dependent at endosteal and periosteal surfaces are found to be (12.8 ± 4.7) × 10(-11) and (5 ± 3.5) × 10(-11)m(2)/s respectively. The mathematical model function using the obtained diffusion parameters fits very well with the experimental data with mean square error varies from 0.06 × 10(-6) to 0.183 × 10(-6) (μS/m)(2). Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Sun-controlled spatial and time-dependent cycles in the climatic/weather system

    International Nuclear Information System (INIS)

    Njau, E.C.

    1990-11-01

    We show, on the basis of meteorological records, that certain spatial and time-dependent cycles exist in the earth-atmosphere system (EAS). These cycles seem to be associated with sunspot cycles and hence have been referred to in the text as ''data-derived solar cycles''. Our analysis establishes three important characteristics of the data-derived solar cycles (DSC's). Firstly the crests and troughs of these data-derived solar cycles are mostly latitudinally aligned and have (zonal) spatial wavelengths greater than about 7 degrees of longitude. Secondly the DSC's have periods mostly lying between 6 years and 12 years. In certain stations, some DSC's coincide quite well with corresponding sunspot cycles. Thirdly the crests and troughs of the DSC's drift eastwards at speeds exceeding about 1.5 longitude degrees per year. Furthermore, these DSC's display peak-to-peak amplitudes of about 2 deg. C along East Africa. On the basis of earlier work and bearing in mind the considerable temperature-dependence of the stratospheric ozone layer, we predict existence of latitudinally aligned enhancement and depletion structures (corresponding to the DSC's) in the stratospheric ozone layer within cloudless midnight-to-predawn sectors. (author). 9 refs, 5 figs

  2. BOLD repetition decreases in object-responsive ventral visual areas depend on spatial attention.

    Science.gov (United States)

    Eger, E; Henson, R N A; Driver, J; Dolan, R J

    2004-08-01

    Functional imaging studies of priming-related repetition phenomena have become widely used to study neural object representation. Although blood oxygenation level-dependent (BOLD) repetition decreases can sometimes be observed without awareness of repetition, any role for spatial attention in BOLD repetition effects remains largely unknown. We used fMRI in 13 healthy subjects to test whether BOLD repetition decreases for repeated objects in ventral visual cortices depend on allocation of spatial attention to the prime. Subjects performed a size-judgment task on a probe object that had been attended or ignored in a preceding prime display of 2 lateralized objects. Reaction times showed faster responses when the probe was the same object as the attended prime, independent of the view tested (identical vs. mirror image). No behavioral effect was evident from unattended primes. BOLD repetition decreases for attended primes were found in lateral occipital and fusiform regions bilaterally, which generalized across identical and mirror-image repeats. No repetition decreases were observed for ignored primes. Our results suggest a critical role for attention in achieving visual representations of objects that lead to both BOLD signal decreases and behavioral priming on repeated presentation.

  3. The epidemiology and small-scale spatial heterogeneity of urinary schistosomiasis in Lusaka province, Zambia

    Directory of Open Access Journals (Sweden)

    Christopher Simoonga

    2008-11-01

    Full Text Available In line with the aims of the “National Bilharzia Control Programme” and the “School Health and Nutrition Programme” in Zambia, a study on urinary schistosomiasis was conducted in 20 primary schools of Lusaka province to further our understanding of the epidemiology of the infection, and to enhance spatial targeting of control. We investigated risk factors associated with urinary schistosomiasis, and examined small-scale spatial heterogeneity in prevalence, using data collected from 1,912 schoolchildren, 6 to 15-year-old, recruited from 20 schools in Kafue and Luangwa districts. The risk factors identified included geographical location, altitude, normalized difference vegetation index (NDVI, maximum temperature, age, sex of the child and intermediate host snail abundance. Three logistic regression models were fitted assuming different random effects to allow for spatial structuring. The mean prevalence rate was 9.6%, with significance difference between young and older children (odds ratio (OR = 0.71; 95% confidence interval (CI = 0.51-0.96. The risk of infection was related to intermediate host snail abundance (OR = 1.03; 95% CI = 1.00-1.05 and vegetation cover (OR = 1.04; 95% CI = 1.00-1.07. Schools located either on the plateau and the valley also differed in prevalence and intensity of infection for moderate infection to none (OR = 1.64; 95% CI = 1.36- 1.96. The overall predictive performance of the spatial random effects model was higher than the ordinary logistic regression. In addition, evidence of heterogeneity of the infection risk was found at the micro-geographical level. A sound understanding of small-scale heterogeneity, caused by spatial aggregation of schoolchildren, is important to inform health planners for implementing control schistosomiasis interventions.

  4. Mechanisms Causing Hypoxia in the Baltic Sea at Different Spatial and Temporal Scales

    Science.gov (United States)

    Conley, D. J.; Carstensen, J.; Gustafsson, B.; Slomp, C. P.

    2016-02-01

    A number of synthesis efforts have documented the world-wide increase in hypoxia, which is primarily driven by nutrient inputs with consequent organic matter enrichment. Physical factors including freshwater or saltwater inputs, stratification and temperature also play an important role in causing and sustaining hypoxia. The Baltic Sea provides an interesting case study to examine changes in oxygen dynamics over time because of the diversity of the types of hypoxia that occur, which ranges from episodic to seasonal hypoxia to perennial hypoxia. Hypoxia varies spatially across the basin with differences between open water bottoms and coastal systems. In addition, the extent and intensity of hypoxia has also varied greatly over the history of the basin, e.g. the last 8000 years. We will examine the mechanisms causing hypoxia at different spatial and temporal scales. The hydrodynamical setting is an important governing factor controlling possible time scales of hypoxia, but enhanced nutrient fluxes and global warming amplify oxygen depletion when oxygen supply by physical processes cannot meet oxygen demands from respiration. Our results indicate that climate change is counteracting management efforts to reduce hypoxia. We will address how hypoxia in the Baltic Sea is terminated at different scales. More importantly, we will explore the prospects of getting rid of hypoxia with the nutrient reductions that have been agreed upon by the countries in the Baltic Sea basin and discuss the time scales of improvement in bottom water oxygen conditions.

  5. Spatial Scaling of the Profile of Selective Attention in the Visual Field.

    Science.gov (United States)

    Gannon, Matthew A; Knapp, Ashley A; Adams, Thomas G; Long, Stephanie M; Parks, Nathan A

    2016-01-01

    Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs) to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load) and visual angle (1.0° or 2.5°). Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.

  6. Spatial Scaling of the Profile of Selective Attention in the Visual Field.

    Directory of Open Access Journals (Sweden)

    Matthew A Gannon

    Full Text Available Neural mechanisms of selective attention must be capable of adapting to variation in the absolute size of an attended stimulus in the ever-changing visual environment. To date, little is known regarding how attentional selection interacts with fluctuations in the spatial expanse of an attended object. Here, we use event-related potentials (ERPs to investigate the scaling of attentional enhancement and suppression across the visual field. We measured ERPs while participants performed a task at fixation that varied in its attentional demands (attentional load and visual angle (1.0° or 2.5°. Observers were presented with a stream of task-relevant stimuli while foveal, parafoveal, and peripheral visual locations were probed by irrelevant distractor stimuli. We found two important effects in the N1 component of visual ERPs. First, N1 modulations to task-relevant stimuli indexed attentional selection of stimuli during the load task and further correlated with task performance. Second, with increased task size, attentional modulation of the N1 to distractor stimuli showed a differential pattern that was consistent with a scaling of attentional selection. Together, these results demonstrate that the size of an attended stimulus scales the profile of attentional selection across the visual field and provides insights into the attentional mechanisms associated with such spatial scaling.

  7. Context-dependent effects of background colour in free recall with spatially grouped words.

    Science.gov (United States)

    Sakai, Tetsuya; Isarida, Toshiko K; Isarida, Takeo

    2010-10-01

    Three experiments investigated context-dependent effects of background colour in free recall with groups of items. Undergraduates (N=113) intentionally studied 24 words presented in blocks of 6 on a computer screen with two different background colours. The two background colours were changed screen-by-screen randomly (random condition) or alternately (alternation condition) during the study period. A 30-second filled retention interval was imposed before an oral free-recall test. A signal for free recall was presented throughout the test on one of the colour background screens presented at study. Recalled words were classified as same- or different-context words according to whether the background colours at study and test were the same or different. The random condition produced significant context-dependent effects, whereas the alternation condition showed no context-dependent effects, regardless of whether the words were presented once or twice. Furthermore, the words presented on the same screen were clustered in recall, whereas the words presented against the same background colour but on different screens were not clustered. The present results imply: (1) background colours can cue spatially massed words; (2) background colours act as temporally local context; and (3) predictability of the next background colour modulates the context-dependent effect.

  8. Regulation of the demographic structure in isomorphic biphasic life cycles at the spatial fine scale.

    Directory of Open Access Journals (Sweden)

    Vasco Manuel Nobre de Carvalho da Silva Vieira

    Full Text Available Isomorphic biphasic algal life cycles often occur in the environment at ploidy abundance ratios (Haploid:Diploid different from 1. Its spatial variability occurs within populations related to intertidal height and hydrodynamic stress, possibly reflecting the niche partitioning driven by their diverging adaptation to the environment argued necessary for their prevalence (evolutionary stability. Demographic models based in matrix algebra were developed to investigate which vital rates may efficiently generate an H:D variability at a fine spatial resolution. It was also taken into account time variation and type of life strategy. Ploidy dissimilarities in fecundity rates set an H:D spatial structure miss-fitting the ploidy fitness ratio. The same happened with ploidy dissimilarities in ramet growth whenever reproductive output dominated the population demography. Only through ploidy dissimilarities in looping rates (stasis, breakage and clonal growth did the life cycle respond to a spatially heterogeneous environment efficiently creating a niche partition. Marginal locations were more sensitive than central locations. Related results have been obtained experimentally and numerically for widely different life cycles from the plant and animal kingdoms. Spore dispersal smoothed the effects of ploidy dissimilarities in fertility and enhanced the effects of ploidy dissimilarities looping rates. Ploidy dissimilarities in spore dispersal could also create the necessary niche partition, both over the space and time dimensions, even in spatial homogeneous environments and without the need for conditional differentiation of the ramets. Fine scale spatial variability may be the key for the prevalence of isomorphic biphasic life cycles, which has been neglected so far.

  9. Revealing the regime of shallow coral reefs at patch scale by continuous spatial modeling

    Directory of Open Access Journals (Sweden)

    Antoine eCollin

    2014-11-01

    Full Text Available Reliably translating real-world spatial patterns of ecosystems is critical for understanding processes susceptible to reinforce resilience. However the great majority of studies in spatial ecology use thematic maps to describe habitats and species in a binary scheme. By discretizing the transitional areas and neglecting the gradual replacement across a given space, the thematic approach may suffer from substantial limitations when interpreting patterns created by many continuous variables. Here, local and regional spectral proxies were used to design and spatially map at very fine scale a continuous index dedicated to one of the most complex seascapes, the coral reefscape. Through a groundbreaking merge of bottom-up and top-down approach, we demonstrate that three to seven-habitat continuous indices can be modeled by nine, six, four and three spectral proxies, respectively, at 0.5 m spatial resolution using hand- and spaceborne measurements. We map the seven-habitat continuous index, spanning major Indo-Pacific coral reef habitats through the far red-green normalized difference ratio over the entire lagoon of a low (Tetiaroa atoll and a high volcanic (Moorea island in French Polynesia with 84% and 82% accuracy, respectively. Further examinations of the two resulting spatial models using a customized histoscape (density function of model values distributed on a concentric strip across the reef crest-coastline distance show that Tetiaroa exhibits a greater variety of coral reef habitats than Moorea. By designing such easy-to-implement, transferrable spectral proxies of coral reef regime, this study initiates a framework for spatial ecologists tackling coral reef biodiversity, responses to stresses, perturbations and shifts. We discuss the limitations and contributions of our findings towards the study of worldwide coral reef resilience following stochastic environmental change.

  10. What could we learn about high energy particle physics from cosmological observations at largest spatial scales ?

    Directory of Open Access Journals (Sweden)

    Gorbunov Dmitry

    2017-01-01

    Full Text Available The very well known example of cosmology testing particle physics is the number of relativistic particles (photons and three active neutrinos within the Standard Model at primordial nucleosynthesis. These days the earliest moment we can hope to probe with present cosmological data is the early time inflation. The particle physics conditions there and now are different because of different energy scales and different values of the scalar fields, that usually prohibits a reliable connection between the particle physics parameters at the two interesting epochs. The physics at the highest energy scales may be probed with observations at the largest spatial scales (just somewhat smaller than the size of the visible Universe. However, we are not (yet ready to make the tests realistic, because of lack of a self-consistent theoretical description of the presently favorite cosmological models to be valid right after inflation.

  11. Community turnover of wood-inhabiting fungi across hierarchical spatial scales.

    Directory of Open Access Journals (Sweden)

    Nerea Abrego

    Full Text Available For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor, forest site (random factor, nested within management type and study plots (randomly placed plots within each study site. To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet

  12. Genetic differentiation over a small spatial scale of the sand fly Lutzomyia vexator (Diptera: Psychodidae).

    Science.gov (United States)

    Neal, Allison T; Ross, Max S; Schall, Jos J; Vardo-Zalik, Anne M

    2016-10-18

    The geographic scale and degree of genetic differentiation for arthropod vectors that transmit parasites play an important role in the distribution, prevalence and coevolution of pathogens of human and wildlife significance. We determined the genetic diversity and population structure of the sand fly Lutzomyia vexator over spatial scales from 0.56 to 3.79 km at a study region in northern California. The study was provoked by observations of differentiation at fine spatial scales of a lizard malaria parasite vectored by Lu. vexator. A microsatellite enrichment/next-generation sequencing protocol was used to identify variable microsatellite loci within the genome of Lu. vexator. Alleles present at these loci were examined in four populations of Lu. vexator in Hopland, CA. Population differentiation was assessed using Fst and D (of Cavalli-Sforza and Edwards), and the program Structure was used to determine the degree of subdivision present. The effective population size for the sand fly populations was also calculated. Eight microsatellite markers were characterized and revealed high genetic diversity (uHe = 0.79-0.92, Na = 12-24) and slight but significant differentiation across the fine spatial scale examined (average pairwise D = 0.327; F ST  = 0.0185 (95 % bootstrapped CI: 0.0102-0.0264). Even though the insects are difficult to capture using standard methods, the estimated population size was thousands per local site. The results argue that Lu. vexator at the study sites are abundant and not highly mobile, which may influence the overall transmission dynamics of the lizard malaria parasite, Plasmodium mexicanum, and other parasites transmitted by this species.

  13. Neutrino masses, scale-dependent growth, and redshift-space distortions

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Oscar F., E-mail: oscarh@physics.mcgill.ca [Marianopolis College, 4873 Westmount Ave., Westmount, QC H3Y 1X9 (Canada)

    2017-06-01

    Massive neutrinos leave a unique signature in the large scale clustering of matter. We investigate the wavenumber dependence of the growth factor arising from neutrino masses and use a Fisher analysis to determine the aspects of a galaxy survey needed to measure this scale dependence.

  14. Process Inference from High Frequency Temporal Variations in Dissolved Organic Carbon (DOC) Dynamics Across Nested Spatial Scales

    Science.gov (United States)

    Tunaley, C.; Tetzlaff, D.; Lessels, J. S.; Soulsby, C.

    2014-12-01

    In order to understand aquatic ecosystem functioning it is critical to understand the processes that control the spatial and temporal variations in DOC. DOC concentrations are highly dynamic, however, our understanding at short, high frequency timescales is still limited. Optical sensors which act as a proxy for DOC provide the opportunity to investigate near-continuous DOC variations in order to understand the hydrological and biogeochemical processes that control concentrations at short temporal scales. Here we present inferred 15 minute stream water DOC data for a 12 month period at three nested scales (1km2, 3km2 and 31km2) for the Bruntland Burn, a headwater catchment in NE Scotland. High frequency data were measured using FDOM and CDOM probes which work by measuring the fluorescent component and coloured component, respectively, of DOC when exposed to ultraviolet light. Both FDOM and CDOM were strongly correlated (r2 >0.8) with DOC allowing high frequency estimations. Results show the close coupling of DOC with discharge throughout the sampling period at all three spatial scales. However, analysis at the event scale highlights anticlockwise hysteresis relationships between DOC and discharge due to the delay in DOC being flushed from the increasingly large areas of peaty soils as saturation zones expand and increase hydrological connectivity. Lag times vary between events dependent on antecedent conditions. During a 10 year drought period in late summer 2013 it was apparent that very small changes in discharge on a 15 minute timescale result in high increases in DOC. This suggests transport limitation during this period where DOC builds up in the soil and is not flushed regularly, therefore any subsequent increase in discharge results in large DOC peaks. The high frequency sensors also reveal diurnal variability during summer months related to the photo-oxidation, evaporative and biological influences of DOC during the day. This relationship is less

  15. Fluctuation measurements at c/ωpe spatial scales in a tokamak

    International Nuclear Information System (INIS)

    Haines, E.J.; Tan, I.H.; Prager, S.C.

    1994-07-01

    Magnetic and electrostatic fluctuations have been measured at the short scale length of the collisionless skin depth (c/ω pe using small magnetic and electrostatic probes in the Tokapole II tokamak. For certain conditions and at high frequency (MHz range) the amplitude is observed to increase as wavelength is decreased toward the c/ω pe scale. Wavelength dependence is inferred from measurements with probes of varying sizes. The amplitude of the turbulence at the c/ω pe scale is smaller than the dominant low frequency turbulence, and is thus not relevant to transport in Tokapole II. Comparison with theoretical treatments of c/ω pe turbulence is discussed

  16. Seeing the forest through the trees: Considering roost-site selection at multiple spatial scales

    Science.gov (United States)

    Jachowski, David S.; Rota, Christopher T.; Dobony, Christopher A.; Ford, W. Mark; Edwards, John W.

    2016-01-01

    Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007–2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural

  17. A spatial method to calculate small-scale fisheries effort in data poor scenarios.

    Science.gov (United States)

    Johnson, Andrew Frederick; Moreno-Báez, Marcia; Giron-Nava, Alfredo; Corominas, Julia; Erisman, Brad; Ezcurra, Exequiel; Aburto-Oropeza, Octavio

    2017-01-01

    To gauge the collateral impacts of fishing we must know where fishing boats operate and how much they fish. Although small-scale fisheries land approximately the same amount of fish for human consumption as industrial fleets globally, methods of estimating their fishing effort are comparatively poor. We present an accessible, spatial method of calculating the effort of small-scale fisheries based on two simple measures that are available, or at least easily estimated, in even the most data-poor fisheries: the number of boats and the local coastal human population. We illustrate the method using a small-scale fisheries case study from the Gulf of California, Mexico, and show that our measure of Predicted Fishing Effort (PFE), measured as the number of boats operating in a given area per day adjusted by the number of people in local coastal populations, can accurately predict fisheries landings in the Gulf. Comparing our values of PFE to commercial fishery landings throughout the Gulf also indicates that the current number of small-scale fishing boats in the Gulf is approximately double what is required to land theoretical maximum fish biomass. Our method is fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in small-scale fisheries. This new method provides an important first step towards estimating the fishing effort of small-scale fleets globally.

  18. Spatial Heterogeneity, Scale, Data Character and Sustainable Transport in the Big Data Era

    Science.gov (United States)

    Jiang, Bin

    2018-04-01

    In light of the emergence of big data, I have advocated and argued for a paradigm shift from Tobler's law to scaling law, from Euclidean geometry to fractal geometry, from Gaussian statistics to Paretian statistics, and - more importantly - from Descartes' mechanistic thinking to Alexander's organic thinking. Fractal geometry falls under the third definition of fractal - that is, a set or pattern is fractal if the scaling of far more small things than large ones recurs multiple times (Jiang and Yin 2014) - rather than under the second definition of fractal, which requires a power law between scales and details (Mandelbrot 1982). The new fractal geometry is more towards living geometry that "follows the rules, constraints, and contingent conditions that are, inevitably, encountered in the real world" (Alexander et al. 2012, p. 395), not only for understanding complexity, but also for creating complex or living structure (Alexander 2002-2005). This editorial attempts to clarify why the paradigm shift is essential and to elaborate on several concepts, including spatial heterogeneity (scaling law), scale (or the fourth meaning of scale), data character (in contrast to data quality), and sustainable transport in the big data era.

  19. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    Science.gov (United States)

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  20. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration

    KAUST Repository

    Ershadi, Ali

    2013-04-01

    The influence of spatial resolution on the estimation of land surface heat fluxes from remote sensing is poorly understood. In this study, the effects of aggregation from fine (< 100 m) to medium (approx. 1. km) scales are investigated using high resolution Landsat 5 overpasses. A temporal sequence of satellite imagery and needed meteorological data were collected over an agricultural region, capturing distinct variations in crop stage and phenology. Here, we investigate both the impact of aggregating the input forcing and of aggregating the derived latent heat flux. In the input aggregation scenario, the resolution of the Landsat based radiance data was increased incrementally from 120. m to 960. m, with the land surface temperature calculated at each specific resolution. Reflectance based land surface parameters such as vegetation height and leaf area index were first calculated at the native 30. m Landsat resolution and then aggregated to multiple spatial scales. Using these data and associated meteorological forcing, surface heat fluxes were calculated at each distinct resolution using the Surface Energy Balance System (SEBS) model. Results indicate that aggregation of input forcing using a simple averaging method has limited effect on the land surface temperature and available energy, but can reduce evapotranspiration estimates at the image scale by up to 15%, and at the pixel scale by up to 50%. It was determined that the predominant reason for the latent heat flux reduction in SEBS was a decrease in the aerodynamic resistance at coarser resolutions, which originates from a change in the roughness length parameters of the land surface due to the aggregation. In addition, the magnitude of errors in surface heat flux estimation due to input aggregation was observed to be a function of the heterogeneity of the land surface and evaporative elements. In examining the response of flux aggregation, fine resolution (120. m) heat fluxes were aggregated to coarser

  1. Coarse-scale spatial and ecological analysis of tuberculosis in cattle: an investigation in Jalisco, Mexico

    Directory of Open Access Journals (Sweden)

    Horacio Zendejas-Martínez

    2008-11-01

    Full Text Available We have tested the hypothesis that coarse-scale environmental features are associated with spatial variation in bovine tuberculosis (BTB prevalence, based on extensive sampling and testing of cattle in the state of Jalisco, Mexico. Ecological niche models were developed to summarize relationships between BTB occurrences and aspects of climate, topography and surface. Model predictions, however, reflected the distributions of dairy cattle versus beef cattle, and the non-random nature of sampling any cattle, but did not succeed in detecting environmental correlates at spatial resolutions of 1 km. Given that the tests employed seek any predictivity better than random expectations, making the finding of no environmental associations conservative, we conclude that BTB prevalence is independent of coarsescale environmental features.

  2. Multi-scale spatial controls of understory vegetation in Douglas-fir–western hemlock forests of western Oregon, USA

    Science.gov (United States)

    Julia I. Burton; Lisa M. Ganio; Klaus J. Puettmann

    2014-01-01

    Forest understory vegetation is influenced by broad-scale variation in climate, intermediate scale variation in topography, disturbance and neighborhood interactions. However, little is known about how these multi-scale controls interact to influence observed spatial patterns. We examined relationships between the aggregated cover of understory plant species (%...

  3. Scaling model for a speed-dependent vehicle noise spectrum

    Directory of Open Access Journals (Sweden)

    Giovanni Zambon

    2017-06-01

    Full Text Available Considering the well-known features of the noise emitted by moving sources, a number of vehicle characteristics such as speed, unladen mass, engine size, year of registration, power and fuel were recorded in a dedicated monitoring campaign performed in three different places, each characterized by different number of lanes and the presence of nearby reflective surfaces. A full database of 144 vehicles (cars was used to identify statistically relevant features. In order to compare the vehicle transit noise in different environmental condition, all 1/3-octave band spectra were normalized and analysed. Unsupervised clustering algorithms were employed to group together spectrum levels with similar profiles. Our results corroborate the well-known fact that speed is the most relevant characteristic to discriminate between different vehicle noise spectrum. In keeping with this fact, we present a new approach to predict analytically noise spectra for a given vehicle speed. A set of speed-dependent analytical functions are suggested in order to fit the normalized average spectrum profile at different speeds. This approach can be useful for predicting vehicle speed based purely on its noise spectrum pattern. The present work is complementary to the accurate analysis of noise sources based on the beamforming technique.

  4. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling

    Science.gov (United States)

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-01-01

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974

  5. Temporal and spatial scaling of the genetic structure of a vector-borne plant pathogen.

    Science.gov (United States)

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Almeida, Rodrigo P P

    2014-02-01

    The ecology of plant pathogens of perennial crops is affected by the long-lived nature of their immobile hosts. In addition, changes to the genetic structure of pathogen populations may affect disease epidemiology and management practices; examples include local adaptation of more fit genotypes or introduction of novel genotypes from geographically distant areas via human movement of infected plant material or insect vectors. We studied the genetic structure of Xylella fastidiosa populations causing disease in sweet orange plants in Brazil at multiple scales using fast-evolving molecular markers (simple-sequence DNA repeats). Results show that populations of X. fastidiosa were regionally isolated, and that isolation was maintained for populations analyzed a decade apart from each other. However, despite such geographic isolation, local populations present in year 2000 were largely replaced by novel genotypes in 2009 but not as a result of migration. At a smaller spatial scale (individual trees), results suggest that isolates within plants originated from a shared common ancestor. In summary, new insights on the ecology of this economically important plant pathogen were obtained by sampling populations at different spatial scales and two different time points.

  6. Design of an omnidirectional single-point photodetector for large-scale spatial coordinate measurement

    Science.gov (United States)

    Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei

    2017-10-01

    In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.

  7. Improving neutron multiplicity counting for the spatial dependence of multiplication: Results for spherical plutonium samples

    Energy Technology Data Exchange (ETDEWEB)

    Göttsche, Malte, E-mail: malte.goettsche@physik.uni-hamburg.de; Kirchner, Gerald

    2015-10-21

    The fissile mass deduced from a neutron multiplicity counting measurement of high mass dense items is underestimated if the spatial dependence of the multiplication is not taken into account. It is shown that an appropriate physics-based correction successfully removes the bias. It depends on four correction coefficients which can only be exactly determined if the sample geometry and composition are known. In some cases, for example in warhead authentication, available information on the sample will be very limited. MCNPX-PoliMi simulations have been performed to obtain the correction coefficients for a range of spherical plutonium metal geometries, with and without polyethylene reflection placed around the spheres. For hollow spheres, the analysis shows that the correction coefficients can be approximated with high accuracy as a function of the sphere's thickness depending only slightly on the radius. If the thickness remains unknown, less accurate estimates of the correction coefficients can be obtained from the neutron multiplication. The influence of isotopic composition is limited. The correction coefficients become somewhat smaller when reflection is present.

  8. Spatial dependence in wind and optimal wind power allocation: A copula-based analysis

    International Nuclear Information System (INIS)

    Grothe, Oliver; Schnieders, Julius

    2011-01-01

    The investment decision on the placement of wind turbines is, neglecting legal formalities, mainly driven by the aim to maximize the expected annual energy production of single turbines. The result is a concentration of wind farms at locations with high average wind speed. While this strategy may be optimal for single investors maximizing their own return on investment, the resulting overall allocation of wind turbines may be unfavorable for energy suppliers and the economy because of large fluctuations in the overall wind power output. This paper investigates to what extent optimal allocation of wind farms in Germany can reduce these fluctuations. We analyze stochastic dependencies of wind speed for a large data set of German on- and offshore weather stations and find that these dependencies turn out to be highly nonlinear but constant over time. Using copula theory we determine the value at risk of energy production for given allocation sets of wind farms and derive optimal allocation plans. We find that the optimized allocation of wind farms may substantially stabilize the overall wind energy supply on daily as well as hourly frequency. - Highlights: → Spatial modeling of wind forces in Germany. → A novel way to assess nonlinear dependencies of wind forces by copulas. → Wind turbine allocation by maximizing lower quantiles of energy production. → Optimal results show major increase in reliable part of wind energy.

  9. How spatial and temporal rainfall variability affect runoff across basin scales: insights from field observations in the (semi-)urbanised Charlotte watershed

    Science.gov (United States)

    Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.

    2017-12-01

    Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.

  10. Indicators of biodiversity and ecosystem services: A synthesis across ecosystems and spatial scales

    Science.gov (United States)

    Feld, C.K.; Da Silva, P.M.; Sousa, J.P.; De Bello, F.; Bugter, R.; Grandin, U.; Hering, D.; Lavorel, S.; Mountford, O.; Pardo, I.; Partel, M.; Rombke, J.; Sandin, Leonard; Jones, K. Bruce; Harrison, P.

    2009-01-01

    According to the Millennium Ecosystem Assessment, common indicators are needed to monitor the loss of biodiversity and the implications for the sustainable provision of ecosystem services. However, a variety of indicators are already being used resulting in many, mostly incompatible, monitoring systems. In order to synthesise the different indicator approaches and to detect gaps in the development of common indicator systems, we examined 531 indicators that have been reported in 617 peer-reviewed journal articles between 1997 and 2007. Special emphasis was placed on comparing indicators of biodiversity and ecosystem services across ecosystems (forests, grass- and shrublands, wetlands, rivers, lakes, soils and agro-ecosystems) and spatial scales (from patch to global scale). The application of biological indicators was found most often focused on regional and finer spatial scales with few indicators applied across ecosystem types. Abiotic indicators, such as physico-chemical parameters and measures of area and fragmentation, are most frequently used at broader (regional to continental) scales. Despite its multiple dimensions, biodiversity is usually equated with species richness only. The functional, structural and genetic components of biodiversity are poorly addressed despite their potential value across habitats and scales. Ecosystem service indicators are mostly used to estimate regulating and supporting services but generally differ between ecosystem types as they reflect ecosystem-specific services. Despite great effort to develop indicator systems over the past decade, there is still a considerable gap in the widespread use of indicators for many of the multiple components of biodiversity and ecosystem services, and a need to develop common monitoring schemes within and across habitats. Filling these gaps is a prerequisite for linking biodiversity dynamics with ecosystem service delivery and to achieving the goals of global and sub-global initiatives to halt

  11. Non-native salmonids affect amphibian occupancy at multiple spatial scales

    Science.gov (United States)

    Pilliod, David S.; Hossack, Blake R.; Bahls, Peter F.; Bull, Evelyn L.; Corn, Paul Stephen; Hokit, Grant; Maxell, Bryce A.; Munger, James C.; Wyrick, Aimee

    2010-01-01

    Aim The introduction of non-native species into aquatic environments has been linked with local extinctions and altered distributions of native species. We investigated the effect of non-native salmonids on the occupancy of two native amphibians, the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), across three spatial scales: water bodies, small catchments and large catchments. Location Mountain lakes at ≥ 1500 m elevation were surveyed across the northern Rocky Mountains, USA. Methods We surveyed 2267 water bodies for amphibian occupancy (based on evidence of reproduction) and fish presence between 1986 and 2002 and modelled the probability of amphibian occupancy at each spatial scale in relation to habitat availability and quality and fish presence. Results After accounting for habitat features, we estimated that A. macrodactylum was 2.3 times more likely to breed in fishless water bodies than in water bodies with fish. Ambystoma macrodactylum also was more likely to occupy small catchments where none of the water bodies contained fish than in catchments where at least one water body contained fish. However, the probability of salamander occupancy in small catchments was also influenced by habitat availability (i.e. the number of water bodies within a catchment) and suitability of remaining fishless water bodies. We found no relationship between fish presence and salamander occupancy at the large-catchment scale, probably because of increased habitat availability. In contrast to A. macrodactylum, we found no relationship between fish presence and R. luteiventris occupancy at any scale. Main conclusions Our results suggest that the negative effects of non-native salmonids can extend beyond the boundaries of individual water bodies and increase A. macrodactylum extinction risk at landscape scales. We suspect that niche overlap between non-native fish and A. macrodactylum at higher elevations in the northern Rocky

  12. A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti.

    Science.gov (United States)

    Curtis, Andrew; Blackburn, Jason K; Widmer, Jocelyn M; Morris, J Glenn

    2013-04-15

    Fine-scale and longitudinal geospatial analysis of health risks in challenging urban areas is often limited by the lack of other spatial layers even if case data are available. Underlying population counts, residential context, and associated causative factors such as standing water or trash locations are often missing unless collected through logistically difficult, and often expensive, surveys. The lack of spatial context also hinders the interpretation of results and designing intervention strategies structured around analytical insights. This paper offers a ubiquitous spatial data collection approach using a spatial video that can be used to improve analysis and involve participatory collaborations. A case study will be used to illustrate this approach with three health risks mapped at the street scale for a coastal community in Haiti. Spatial video was used to collect street and building scale information, including standing water, trash accumulation, presence of dogs, cohort specific population characteristics, and other cultural phenomena. These data were digitized into Google Earth and then coded and analyzed in a GIS using kernel density and spatial filtering approaches. The concentrations of these risks around area schools which are sometimes sources of diarrheal disease infection because of the high concentration of children and variable sanitary practices will show the utility of the method. In addition schools offer potential locations for cholera education interventions. Previously unavailable fine scale health risk data vary in concentration across the town, with some schools being proximate to greater concentrations of the mapped risks. The spatial video is also used to validate coded data and location specific risks within these "hotspots". Spatial video is a tool that can be used in any environment to improve local area health analysis and intervention. The process is rapid and can be repeated in study sites through time to track spatio

  13. The effects of spatial scale on breakdown of leaves in a tropical watershed.

    Directory of Open Access Journals (Sweden)

    Renan S Rezende

    Full Text Available The objective was to assess the effects of natural variation in the physical structure of the environment on biological communities and on the processing of Eucalyptus cloeziana and Inga laurina and to identify the controlling factors at different scales along stream order gradients. The study area consisted of 14 sampling sites distributed within a tropical watershed (1st, 2nd, 3rd and 4th order streams replicated in 4 sub-basins. Our samples consisted of 3 g of leaves of E. cloeziana (high-quality and I. laurina (low-quality placed in 252 bags with 10mm mesh (measured by the chemical composition of the detritus. Four samples of each leaf type were collected periodically (three times over a period of 75-125 days and washed on a sieve to separate the invertebrates. A series of leaf disks were cut to determine ash-free dry mass, polyphenol, lignin, cellulose, total microbial biomass and fungal biomass, and the remaining material was oven-dried to determine the dry weight. We performed analyses within and between spatial scales (regional and local to assess which watershed scale was the more import determinant of the leaf breakdown rate (k. The microbial and shredder were most influenced at the local scale (stream order. Shredders were influenced by microorganisms, with stronger interactions between them than were found to drive the k at the local scale. Moreover, differences in the overall k and abiotic variables were more strongly influenced at the regional scale (sub-basin, showing that the study scale alters the response of the studied variables. We found higher k values at higher values of water velocity, dissolved oxygen and temperature, all of which accelerate biological metabolism in response to variations on the regional scale. Watersheds with warmer microclimates and streams with higher nutrient levels and oxygen could be accelerating the ecosystem metabolism, independent of the detritus quality.

  14. Large-scale changes in network interactions as a physiological signature of spatial neglect.

    Science.gov (United States)

    Baldassarre, Antonello; Ramsey, Lenny; Hacker, Carl L; Callejas, Alicia; Astafiev, Serguei V; Metcalf, Nicholas V; Zinn, Kristi; Rengachary, Jennifer; Snyder, Abraham Z; Carter, Alex R; Shulman, Gordon L; Corbetta, Maurizio

    2014-12-01

    The relationship between spontaneous brain activity and behaviour following focal injury is not well understood. Here, we report a large-scale study of resting state functional connectivity MRI and spatial neglect following stroke in a large (n=84) heterogeneous sample of first-ever stroke patients (within 1-2 weeks). Spatial neglect, which is typically more severe after right than left hemisphere injury, includes deficits of spatial attention and motor actions contralateral to the lesion, and low general attention due to impaired vigilance/arousal. Patients underwent structural and resting state functional MRI scans, and spatial neglect was measured using the Posner spatial cueing task, and Mesulam and Behavioural Inattention Test cancellation tests. A principal component analysis of the behavioural tests revealed a main factor accounting for 34% of variance that captured three correlated behavioural deficits: visual neglect of the contralesional visual field, visuomotor neglect of the contralesional field, and low overall performance. In an independent sample (21 healthy subjects), we defined 10 resting state networks consisting of 169 brain regions: visual-fovea and visual-periphery, sensory-motor, auditory, dorsal attention, ventral attention, language, fronto-parietal control, cingulo-opercular control, and default mode. We correlated the neglect factor score with the strength of resting state functional connectivity within and across the 10 resting state networks. All damaged brain voxels were removed from the functional connectivity:behaviour correlational analysis. We found that the correlated behavioural deficits summarized by the factor score were associated with correlated multi-network patterns of abnormal functional connectivity involving large swaths of cortex. Specifically, dorsal attention and sensory-motor networks showed: (i) reduced interhemispheric functional connectivity; (ii) reduced anti-correlation with fronto-parietal and default mode

  15. Mapping Submarine Groundwater Discharge - how to investigate spatial discharge variability on coastal and beach scales

    Science.gov (United States)

    Stieglitz, T. C.; Burnett, W. C.; Rapaglia, J.

    2008-12-01

    Submarine groundwater discharge (SGD) is now increasingly recognized as an important component in the water balance, water quality and ecology of the coastal zone. A multitude of methods are currently employed to study SGD, ranging from point flux measurements with seepage meters to methods integrating over various spatial and temporal scales such as hydrological models, geophysical techniques or surface water tracer approaches. From studies in a large variety of hydrogeological settings, researchers in this field have come to expect that SGD is rarely uniformly distributed. Here we discuss the application of: (a) the mapping of subsurface electrical conductivity in a discharge zone on a beach; and (b) the large-scale mapping of radon in coastal surface water to improving our understanding of SGD and its spatial variability. On a beach scale, as part of intercomparison studies of a UNESCO/IAEA working group, mapping of subsurface electrical conductivity in a beach face have elucidated the non-uniform distribution of SGD associated with rock fractures, volcanic settings and man-made structures (e.g., piers, jetties). Variations in direct point measurements of SGD flux with seepage meters were linked to the subsurface conductivity distribution. We demonstrate how the combination of these two techniques may complement one another to better constrain SGD measurements. On kilometer to hundred kilometer scales, the spatial distribution and regional importance of SGD can be investigated by mapping relevant tracers in the coastal ocean. The radon isotope Rn-222 is a commonly used tracer for SGD investigations due to its significant enrichment in groundwater, and continuous mapping of this tracer, in combination with ocean water salinity, can be used to efficiently infer locations of SGD along a coastline on large scales. We use a surface-towed, continuously recording multi-detector setup installed on a moving vessel. This tool was used in various coastal environments, e

  16. Communicating Climate Uncertainties: Challenges and Opportunities Related to Spatial Scales, Extreme Events, and the Warming 'Hiatus'

    Science.gov (United States)

    Casola, J. H.; Huber, D.

    2013-12-01

    Many media, academic, government, and advocacy organizations have achieved sophistication in developing effective messages based on scientific information, and can quickly translate salient aspects of emerging climate research and evolving observations. However, there are several ways in which valid messages can be misconstrued by decision makers, leading them to inaccurate conclusions about the risks associated with climate impacts. Three cases will be discussed: 1) Issues of spatial scale in interpreting climate observations: Local climate observations may contradict summary statements about the effects of climate change on larger regional or global spatial scales. Effectively addressing these differences often requires communicators to understand local and regional climate drivers, and the distinction between a 'signal' associated with climate change and local climate 'noise.' Hydrological statistics in Missouri and California are shown to illustrate this case. 2) Issues of complexity related to extreme events: Climate change is typically invoked following a wide range of damaging meteorological events (e.g., heat waves, landfalling hurricanes, tornadoes), regardless of the strength of the relationship between anthropogenic climate change and the frequency or severity of that type of event. Examples are drawn from media coverage of several recent events, contrasting useful and potentially confusing word choices and frames. 3) Issues revolving around climate sensitivity: The so-called 'pause' or 'hiatus' in global warming has reverberated strongly through political and business discussions of climate change. Addressing the recent slowdown in warming yields an important opportunity to raise climate literacy in these communities. Attempts to use recent observations as a wedge between climate 'believers' and 'deniers' is likely to be counterproductive. Examples are drawn from Congressional testimony and media stories. All three cases illustrate ways that decision

  17. Spatial structure of soil properties at different scales of Mt. Kilimanjaro, Tanzania

    Science.gov (United States)

    Kühnel, Anna; Huwe, Bernd

    2013-04-01

    Soils of tropical mountain ecosystems provide important ecosystem services like water and carbon storage, water filtration and erosion control. As these ecosystems are threatened by global warming and the conversion of natural to human-modified landscapes, it is important to understand the implications of these changes. Within the DFG Research Unit "Kilimanjaro ecosystems under global change: Linking biodiversity, biotic interactions and biogeochemical ecosystem processes", we study the spatial heterogeneity of soils and the available water capacity for different land use systems. In the savannah zone of Mt. Kilimanjaro, maize fields are compared to natural savannah ecosystems. In the lower montane forest zone, coffee plantations, traditional home gardens, grasslands and natural forests are studied. We characterize the soils with respect to soil hydrology, emphasizing on the spatial variability of soil texture and bulk density at different scales. Furthermore soil organic carbon and nitrogen, cation exchange capacity and the pH-value are measured. Vis/Nir-Spectroscopy is used to detect small scale physical and chemical heterogeneity within soil profiles, as well as to get information of soil properties on a larger scale. We aim to build a spectral database for these soil properties for the Kilimanjaro region in order to get rapid information for geostatistical analysis. Partial least square regression with leave one out cross validation is used for model calibration. Results for silt and clay content, as well as carbon and nitrogen content are promising, with adjusted R² ranging from 0.70 for silt to 0.86 for nitrogen. Furthermore models for other nutrients, cation exchange capacity and available water capacity will be calibrated. We compare heterogeneity within and across the different ecosystems and state that spatial structure characteristics and complexity patterns in soil parameters can be quantitatively related to biodiversity and functional diversity

  18. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    Science.gov (United States)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  19. Spatial abundance and clustering of Culicoides (Diptera: Ceratopogonidae) on a local scale

    DEFF Research Database (Denmark)

    Kirkeby, Carsten; Bødker, Rene; Stockmarr, Anders

    2013-01-01

    , and cluster locations shifted between catch nights. No significant temporal autocorrelation was detected. CAR models for both species groups identified a significant positive impact of humidity and significant negative impacts of precipitation and wind turbulence. Temperature was also found to be significant...... abundance pattern of these two species groups in the field by intensive sampling with a grid of light traps on 16 catch nights. Neighboring trap catches can be spatially dependent on each other, hence we developed a conditional autoregressive (CAR) model framework to test a number of spatial and non...... of Culicoides moved around in a dynamic pattern varying between catch nights. This conforms with the modeling but was not explained by any of the tested covariates. The mean abundance within these clusters was up to 11 times higher for the Obsoletus group and 4 times higher for the Pulicaris group compared...

  20. Wave actions and topography determine the small-scale spatial distribution of newly settled Asari clams Ruditapes philippinarum on a tidal flat

    Science.gov (United States)

    Nambu, Ryogen; Saito, Hajime; Tanaka, Yoshio; Higano, Junya; Kuwahara, Hisami

    2012-03-01

    There are many studies on spatial distributions of Asari clam Ruditapes philippinarum adults on tidal flats but few have dealt with spatial distributions of newly settled Asari clam (physical/topographical conditions on tidal flats. We examined small-scale spatial distributions of newly settled individuals on the Matsunase tidal flat, central Japan, during the low spring tides on two days 29th-30th June 2007, together with the shear stress from waves and currents on the flat. The characteristics of spatial distribution of newly settled Asari clam markedly varied depending on both of hydrodynamic and topographical conditions on the tidal flat. Using generalized linear models (GLMs), factors responsible for affecting newly settled Asari clam density and its spatial distribution were distinguished between sampling days, with "crest" sites always having a negative influence each on the density and the distribution on both sampling days. The continuously recorded data for the wave-current flows at the "crest" site on the tidal flat showed that newly settled Asari clam, as well as bottom sediment particles, at the "crest" site to be easily displaced. Small-scale spatial distributions of newly settled Asari clam changed with more advanced benthic stages in relation to the wave shear stress.

  1. Scaling of Thermal Images at Different Spatial Resolution: The Mixed Pixel Problem

    Directory of Open Access Journals (Sweden)

    Hamlyn G. Jones

    2014-07-01

    Full Text Available The consequences of changes in spatial resolution for application of thermal imagery in plant phenotyping in the field are discussed. Where image pixels are significantly smaller than the objects of interest (e.g., leaves, accurate estimates of leaf temperature are possible, but when pixels reach the same scale or larger than the objects of interest, the observed temperatures become significantly biased by the background temperature as a result of the presence of mixed pixels. Approaches to the estimation of the true leaf temperature that apply both at the whole-pixel level and at the sub-pixel level are reviewed and discussed.

  2. Search for extra spatial dimensions and TeV scale quantum gravity at LEP-2

    International Nuclear Information System (INIS)

    Litke, A.M.

    2001-01-01

    A number of measurements which probe the experimental consequences of extra spatial dimensions and TeV scale quantum gravity are accessible at the LEP-2 electron-positron collider. Preliminary results on the following processes, performed with the ALEPH detector at center of mass energies around 200 GeV, are presented: 1. search for direct graviton production in the reaction e + e - →γG; and, 2. search for effects due to virtual graviton exchange in the reactions e + e - →γγ and fermion-anti-fermion pairs

  3. The Spatial Power Motivation Scale: a semi-implicit measure of situational power motivation.

    Science.gov (United States)

    Schoel, Christiane; Zimmer, Katharina; Stahlberg, Dagmar

    2015-01-01

    We introduce a new nonverbal and unobtrusive measure to assess power motive activation, the Spatial Power Motivation Scale (SPMS). The unique features of this instrument are that it is (a) very simple and economical, (b) reliable and valid, and (c) sensitive to situational changes. Study 1 demonstrates the instrument's convergent and discriminant validity with explicit measures. Study 2 demonstrates the instrument's responsiveness to situational power motive salience: anticipating and winning competition versus losing competition and watching television. Studies 3 and 4 demonstrate that thoughts of competition result in higher power motivation specifically for individuals with a high dispositional power motive.

  4. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.

    Science.gov (United States)

    Güell, Aleix G; Cuharuc, Anatolii S; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R

    2015-04-28

    The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.

  5. Alaskan soil carbon stocks: spatial variability and dependence on environmental factors

    Directory of Open Access Journals (Sweden)

    U. Mishra

    2012-09-01

    Full Text Available The direction and magnitude of soil organic carbon (SOC changes in response to climate change depend on the spatial and vertical distributions of SOC. We estimated spatially resolved SOC stocks from surface to C horizon, distinguishing active-layer and permafrost-layer stocks, based on geospatial analysis of 472 soil profiles and spatially referenced environmental variables for Alaska. Total Alaska state-wide SOC stock was estimated to be 77 Pg, with 61% in the active-layer, 27% in permafrost, and 12% in non-permafrost soils. Prediction accuracy was highest for the active-layer as demonstrated by highest ratio of performance to deviation (1.5. Large spatial variability was predicted, with whole-profile, active-layer, and permafrost-layer stocks ranging from 1–296 kg C m−2, 2–166 kg m−2, and 0–232 kg m−2, respectively. Temperature and soil wetness were found to be primary controllers of whole-profile, active-layer, and permafrost-layer SOC stocks. Secondary controllers, in order of importance, were found to be land cover type, topographic attributes, and bedrock geology. The observed importance of soil wetness rather than precipitation on SOC stocks implies that the poor representation of high-latitude soil wetness in Earth system models may lead to large uncertainty in predicted SOC stocks under future climate change scenarios. Under strict caveats described in the text and assuming temperature changes from the A1B Intergovernmental Panel on Climate Change emissions scenario, our geospatial model indicates that the equilibrium average 2100 Alaska active-layer depth could deepen by 11 cm, resulting in a thawing of 13 Pg C currently in permafrost. The equilibrium SOC loss associated with this warming would be highest under continuous permafrost (31%, followed by discontinuous (28%, isolated (24.3%, and sporadic (23.6% permafrost areas. Our high-resolution mapping of soil carbon stock reveals the

  6. Patterns at Multi-Spatial Scales on Tropical Island Stream Insect Assemblages: Gorgona Island Natural National Park, Colombia, Tropical Eastern Pacific

    Directory of Open Access Journals (Sweden)

    Magnolia Longo

    2014-02-01

    Full Text Available Tropical Eastern Pacific island streams (TEPis differ from other neotropical streams in their rainy climate, mixed sedimentary-volcanic geology and faunal composition. Yet, their relationships between environmental characteristics and stream biota remain unexplored. We analyzed the environmental subject at three spatial scales using a fully nested sampling design (6 streams, 2 reaches within each stream, 2 habitats within each reach, and 4 replicates per habitat on Gorgona Island (Colombia. Sampling was carried out in two months with contrasting rainfall during early 2009. We studied the spatial variation of assemblage composition and density along with 27 independent variables within two contrasting rainfall conditions. Five stream-scale variables, two reach-scale variables, and five habitat-scale variables were selected using a Canonical Correspondence Analysis (CCA. A partial CCA showed that the total variance explained was 13.98%, while stream- and habitat-scale variables explained the highest proportion of the variance (5.74 and 5.01%, respectively. Dissolved oxygen (as affected by rainfall, high-density use zone (a management category, and sedimentary geology were the best descriptors of insect assemblages. The two latter descriptors affected fine-scale variables such as total benthic organic matter and gravel substratum, respectively. A Nested ANOVA showed significant differences in total density and richness among streams and habitats, and significant differences between the two sampling months regardless of the spatial scale. The evenness showed a significant stream- and habitat-dependent temporal variability. These results suggested that rainfall regime in Gorgona Island might be a driver of insect assemblage dynamics mediated by water chemistry and substratum properties. Spatial assemblage variability here is greater within habitats (among samples, and a minor fraction occurs at habitat- and stream-scales, while no longitudinal

  7. Impact of spatially correlated pore-scale heterogeneity on drying porous media

    Science.gov (United States)

    Borgman, Oshri; Fantinel, Paolo; Lühder, Wieland; Goehring, Lucas; Holtzman, Ran

    2017-07-01

    We study the effect of spatially-correlated heterogeneity on isothermal drying of porous media. We combine a minimal pore-scale model with microfluidic experiments with the same pore geometry. Our simulated drying behavior compares favorably with experiments, considering the large sensitivity of the emergent behavior to the uncertainty associated with even small manufacturing errors. We show that increasing the correlation length in particle sizes promotes preferential drying of clusters of large pores, prolonging liquid connectivity and surface wetness and thus higher drying rates for longer periods. Our findings improve our quantitative understanding of how pore-scale heterogeneity impacts drying, which plays a role in a wide range of processes ranging from fuel cells to curing of paints and cements to global budgets of energy, water and solutes in soils.

  8. Displays for promotion of public understanding of geological repository concept and the spatial scale

    International Nuclear Information System (INIS)

    Shobu, Nobuhiro; Kashiwazaki, Hiroshi

    2003-05-01

    Japan Nuclear Cycle Development Institutes (JNC) has a few thousands of short term visitors to Geological Isolation Basic Research Facility of Tokai works in every year. From the viewpoint of promotion of the visitor's understanding and also smooth communication between researchers and visitors, the explanation of the technical information on geological disposal should be carried out in more easily understandable methods, as well as conventional tour to the engineering-scale test facility (ENTRY). This paper reports on the background information and the appearance of displays, which were installed at ENTRY, to promote public understanding of geological repository concept and the spatial scale. They have been practically used as one of the explanation tools to support visitor's understanding. (author)

  9. Habitat landscape pattern and connectivity indices : used at varying spatial scales for harmonized reporting in the EBONE project

    NARCIS (Netherlands)

    Estreguil, C.; Caudullo, G.; Whitmore, C.

    2012-01-01

    This study is motivated by biodiversity related policy information needs on ecosystem fragmentation and connectivity. The aim is to propose standardized and repeatable methods to characterize ecosystem landscape structure in a harmonized way at varying spatial scales and thematic resolutions

  10. The Influence of Large-scale Bank Roughness and Floodplain Composition on Spatial and Temporal Variations in Bank Erosion

    Science.gov (United States)

    Hackney, C. R.; Darby, S. E.; Leyland, J.; Aalto, R. E.; Best, J.; Parsons, D. R.; Nicholas, A. P.

    2016-12-01

    Knowledge of bank erosion processes and rates along the world's largest rivers remains incomplete, primarily due to the difficulties of obtaining data pertaining to the key driving processes (i.e., during the floods that drive most bank retreat). Recently, larger scale bank roughness elements (slump blocks and embayments) have been shown to impact upon rates and locations of bank erosion. However, a complete understanding of the way such features affect rates of bank erosion is currently hindered by the lack of detailed concurrent observations of slump block geometry, embayment geometry and flow at formative discharges in natural environments. Here, we report on high spatial resolution topographic (Terrestrial Laser Scanner and Multibeam Echo Souder) and flow (Acoustic Doppler Current Profiler) surveys undertaken on the Mekong River, Cambodia, from which we extract the geometric properties of roughness elements across a range of scales. We combine this data with sub-bottom profile data, revealing the composition of the surrounding floodplain, to link, for the first time, scales of bank roughness to bank material composition. Through the categorisation of a series of cut river banks by roughness geometry, we show how rates and locations of bank erosion are dependent on that roughness and associated bank material changes. We test how observed patterns of bank erosion conform to previously detailed models of embayment development, and provide new insight into processes affecting the retreat of large river banks.

  11. Identification of the key ecological factors influencing vegetation degradation in semi-arid agro-pastoral ecotone considering spatial scales

    Science.gov (United States)

    Peng, Yu; Wang, Qinghui; Fan, Min

    2017-11-01

    When assessing re-vegetation project performance and optimizing land management, identification of the key ecological factors inducing vegetation degradation has crucial implications. Rainfall, temperature, elevation, slope, aspect, land use type, and human disturbance are ecological factors affecting the status of vegetation index. However, at different spatial scales, the key factors may vary. Using Helin County, Inner-Mongolia, China as the study site and combining remote sensing image interpretation, field surveying, and mathematical methods, this study assesses key ecological factors affecting vegetation degradation under different spatial scales in a semi-arid agro-pastoral ecotone. It indicates that the key factors are different at various spatial scales. Elevation, rainfall, and temperature are identified as crucial for all spatial extents. Elevation, rainfall and human disturbance are key factors for small-scale quadrats of 300 m × 300 m and 600 m × 600 m, temperature and land use type are key factors for a medium-scale quadrat of 1 km × 1 km, and rainfall, temperature, and land use are key factors for large-scale quadrats of 2 km × 2 km and 5 km × 5 km. For this region, human disturbance is not the key factor for vegetation degradation across spatial scales. It is necessary to consider spatial scale for the identification of key factors determining vegetation characteristics. The eco-restoration programs at various spatial scales should identify key influencing factors according their scales so as to take effective measurements. The new understanding obtained in this study may help to explore the forces which driving vegetation degradation in the degraded regions in the world.

  12. Place branding in strategic spatial planning : an analysis at the regional scale with special reference to Northern Portugal

    NARCIS (Netherlands)

    da Silva Oliveira, Eduardo Henrique

    2016-01-01

    This PhD thesis brings together the strategic spatial planning approach and place branding, specifically at the regional scale. It critically scrutinizes the actual or potential roles of place branding as an instrument for the attainment of strategic spatial planning goals. This discussion is

  13. An open source platform for multi-scale spatially distributed simulations of microbial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Segre, Daniel [Boston Univ., MA (United States)

    2014-08-14

    The goal of this project was to develop a tool for facilitating simulation, validation and discovery of multiscale dynamical processes in microbial ecosystems. This led to the development of an open-source software platform for Computation Of Microbial Ecosystems in Time and Space (COMETS). COMETS performs spatially distributed time-dependent flux balance based simulations of microbial metabolism. Our plan involved building the software platform itself, calibrating and testing it through comparison with experimental data, and integrating simulations and experiments to address important open questions on the evolution and dynamics of cross-feeding interactions between microbial species.

  14. Scale dependency in effectiveness, isolation, and social-ecological spillover of protected areas.

    Science.gov (United States)

    Ament, Judith M; Cumming, Graeme S

    2016-08-01

    Protected areas are considered vital for the conservation of biodiversity. Given their central role in many conservation strategies, it is important to know whether they adequately protect biodiversity within their boundaries; whether they are becoming more isolated from other natural areas over time; and whether they play a role in facilitating or reducing land-cover change in their surroundings. We used matching methods and national and local analyses of land-cover change to evaluate the combined effectiveness (i.e., avoided natural-cover loss), isolation (i.e., changes in adjacent areas), and spillover effects (i.e., impacts on adjacent areas) of 19 national parks in South Africa from 2000 to 2009. All parks had either similar or lower rates of natural-cover loss than matched control samples. On a national level, mean net loss of natural cover and mean net gain of cultivation cover decreased with distance from park boundary, but there was considerable variation in trends around individual parks, providing evidence for both increased isolation and buffering of protected areas. Fourteen parks had significant positive spillover and reduced natural-cover loss in their surroundings, whereas five parks experienced elevated levels of natural-cover loss. Conclusions about social-ecological spillover effects from protected areas depended heavily on the measures of land-cover change used and the scale at which the results were aggregated. Our findings emphasize the need for high-resolution data when assessing spatially explicit phenomena such as land-cover change and challenge the usefulness of large-scale (coarse grain, broad extent) studies for understanding social-ecological dynamics around protected areas. © 2016 Society for Conservation Biology.

  15. Field Scale Studies on the Spatial Variability of Soil Quality Indicators in Washington State, USA

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Smith

    2011-01-01

    Full Text Available Arable lands are needed for sustainable agricultural systems to support an ever-growing human population. Soil quality needs to be defined to assure that new land brought into crop production is sustainable. To evaluate soil quality, a number of soil attributes will need to be measured, evaluated, and integrated into a soil-quality index using the multivariable indicator kriging (MVIK procedure. This study was conducted to determine the spatial variability and correlation of indicator parameters on a field scale with respect to soil quality and suitability for use with MVIK. The variability of the biological parameters decreased in the order of respiration > enzyme assays and qCO2 > microbial biomass C. The distribution frequency of all parameters except respiration were normal although the spatial distribution across the landscape was highly variable. The biological parameters showed little correlation with each other when all data points were considered; however, when grouped in smaller sections, the correlations were more consistent with observed patterns across the field. To accurately assess soil quality, and arable land use, consideration of spatial and temporal variability, soil conditions, and other controlling factors must be taken into account.

  16. Genome-scale modelling of microbial metabolism with temporal and spatial resolution.

    Science.gov (United States)

    Henson, Michael A

    2015-12-01

    Most natural microbial systems have evolved to function in environments with temporal and spatial variations. A major limitation to understanding such complex systems is the lack of mathematical modelling frameworks that connect the genomes of individual species and temporal and spatial variations in the environment to system behaviour. The goal of this review is to introduce the emerging field of spatiotemporal metabolic modelling based on genome-scale reconstructions of microbial metabolism. The extension of flux balance analysis (FBA) to account for both temporal and spatial variations in the environment is termed spatiotemporal FBA (SFBA). Following a brief overview of FBA and its established dynamic extension, the SFBA problem is introduced and recent progress is described. Three case studies are reviewed to illustrate the current state-of-the-art and possible future research directions are outlined. The author posits that SFBA is the next frontier for microbial metabolic modelling and a rapid increase in methods development and system applications is anticipated. © 2015 Authors; published by Portland Press Limited.

  17. A Self-Organizing Spatial Clustering Approach to Support Large-Scale Network RTK Systems.

    Science.gov (United States)

    Shen, Lili; Guo, Jiming; Wang, Lei

    2018-06-06

    The network real-time kinematic (RTK) technique can provide centimeter-level real time positioning solutions and play a key role in geo-spatial infrastructure. With ever-increasing popularity, network RTK systems will face issues in the support of large numbers of concurrent users. In the past, high-precision positioning services were oriented towards professionals and only supported a few concurrent users. Currently, precise positioning provides a spatial foundation for artificial intelligence (AI), and countless smart devices (autonomous cars, unmanned aerial-vehicles (UAVs), robotic equipment, etc.) require precise positioning services. Therefore, the development of approaches to support large-scale network RTK systems is urgent. In this study, we proposed a self-organizing spatial clustering (SOSC) approach which automatically clusters online users to reduce the computational load on the network RTK system server side. The experimental results indicate that both the SOSC algorithm and the grid algorithm can reduce the computational load efficiently, while the SOSC algorithm gives a more elastic and adaptive clustering solution with different datasets. The SOSC algorithm determines the cluster number and the mean distance to cluster center (MDTCC) according to the data set, while the grid approaches are all predefined. The side-effects of clustering algorithms on the user side are analyzed with real global navigation satellite system (GNSS) data sets. The experimental results indicate that 10 km can be safely used as the cluster radius threshold for the SOSC algorithm without significantly reducing the positioning precision and reliability on the user side.

  18. Groundwater Variability Across Temporal and Spatial Scales in the Central and Northeastern U.S.

    Science.gov (United States)

    Li, Bailing; Rodell, Matthew; Famiglietti, James S.

    2015-01-01

    Depth-to-water measurements from 181 monitoring wells in unconfined or semi-confined aquifers in nine regions of the central and northeastern U.S. were analyzed. Groundwater storage exhibited strong seasonal variations in all regions, with peaks in spring and lows in autumn, and its interannual variability was nearly unbounded, such that the impacts of droughts, floods, and excessive pumping could persist for many years. We found that the spatial variability of groundwater storage anomalies (deviations from the long term mean) increases as a power function of extent scale (square root of area). That relationship, which is linear on a log-log graph, is common to other hydrological variables but had never before been shown with groundwater data. We describe how the derived power function can be used to determine the number of wells needed to estimate regional mean groundwater storage anomalies with a desired level of accuracy, or to assess uncertainty in regional mean estimates from a set number of observations. We found that the spatial variability of groundwater storage anomalies within a region often increases with the absolute value of the regional mean anomaly, the opposite of the relationship between soil moisture spatial variability and mean. Recharge (drainage from the lowest model soil layer) simulated by the Variable Infiltration Capacity (VIC) model was compatible with observed monthly groundwater storage anomalies and month-to-month changes in groundwater storage.

  19. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    Science.gov (United States)

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding

  20. The flexible focus: whether spatial attention is unitary or divided depends on observer goals.

    Science.gov (United States)

    Jefferies, Lisa N; Enns, James T; Di Lollo, Vincent

    2014-04-01

    The distribution of visual attention has been the topic of much investigation, and various theories have posited that attention is allocated either as a single unitary focus or as multiple independent foci. In the present experiment, we demonstrate that attention can be flexibly deployed as either a unitary or a divided focus in the same experimental task, depending on the observer's goals. To assess the distribution of attention, we used a dual-stream Attentional Blink (AB) paradigm and 2 target pairs. One component of the AB, Lag-1 sparing, occurs only if the second target pair appears within the focus of attention. By varying whether the first-target-pair could be expected in a predictable location (always in-stream) or not (unpredictably in-stream or between-streams), observers were encouraged to deploy a divided or a unitary focus, respectively. When the second-target-pair appeared between the streams, Lag-1 sparing occurred for the Unpredictable group (consistent with a unitary focus) but not for the Predictable group (consistent with a divided focus). Thus, diametrically different outcomes occurred for physically identical displays, depending on the expectations of the observer about where spatial attention would be required.

  1. Recognition for old Arabic manuscripts using spatial gray level dependence (SGLD

    Directory of Open Access Journals (Sweden)

    Ahmad M. Abd Al-Aziz

    2011-03-01

    Full Text Available Texture analysis forms the basis of object recognition and classification in several domains, one of these domains is historical document manuscripts because the manuscripts hold our culture heritage and also large numbers of undated manuscripts exist. This paper presents results for historical document classification of old Arabic manuscripts using texture analysis and a segmentation free approach. The main objective is to discriminate between historical documents of different writing styles to three different ages: Contemporary (Modern Age, Ottoman Age and Mamluk Age. This classification depends on a Spatial Gray-level Dependence (SGLD technique which provides eight distinct texture features for each sample document. We applied Stepwise Discriminant Analysis and Multiple discriminant analysis methods to decrease the dimensionality of features and extract training vector features from samples. To classify historical documents into three main historical age classes the decision tree classification is applied. The system has been tested on 48 Arabic historical manuscripts documents from the Dar Al-Kotob Al-Masria Library. Our results so far yield 95.83% correct classification for the historical Arabic documents.

  2. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jason, E-mail: jason.hou@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ivanov, Kostadin N. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Boyarinov, Victor F.; Fomichenko, Peter A. [National Research Centre “Kurchatov Institute”, Kurchatov Sq. 1, Moscow (Russian Federation)

    2017-06-15

    Highlights: • A time-dependent homogenization-free neutron transport benchmark was created. • The first phase, known as the kinetics phase, was described in this work. • Preliminary results for selected 2-D transient exercises were presented. - Abstract: A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for the time-dependent neutron transport calculations without spatial homogenization has been established in order to facilitate the development and assessment of numerical methods for solving the space-time neutron kinetics equations. The benchmark has been named the OECD/NEA C5G7-TD benchmark, and later extended with three consecutive phases each corresponding to one modelling stage of the multi-physics transient analysis of the nuclear reactor core. This paper provides a detailed introduction of the benchmark specification of Phase I, known as the “kinetics phase”, including the geometry description, supporting neutron transport data, transient scenarios in both two-dimensional (2-D) and three-dimensional (3-D) configurations, as well as the expected output parameters from the participants. Also presented are the preliminary results for the initial state 2-D core and selected transient exercises that have been obtained using the Monte Carlo method and the Surface Harmonic Method (SHM), respectively.

  3. Personality Assessment Inventory scale characteristics and factor structure in the assessment of alcohol dependency.

    Science.gov (United States)

    Schinka, J A

    1995-02-01

    Individual scale characteristics and the inventory structure of the Personality Assessment Inventory (PAI; Morey, 1991) were examined by conducting internal consistency and factor analyses of item and scale score data from a large group (N = 301) of alcohol-dependent patients. Alpha coefficients, mean inter-item correlations, and corrected item-total scale correlations for the sample paralleled values reported by Morey for a large clinical sample. Minor differences in the scale factor structure of the inventory from Morey's clinical sample were found. Overall, the findings support the use of the PAI in the assessment of personality and psychopathology of alcohol-dependent patients.

  4. Model-independent test for scale-dependent non-Gaussianities in the cosmic microwave background.

    Science.gov (United States)

    Räth, C; Morfill, G E; Rossmanith, G; Banday, A J; Górski, K M

    2009-04-03

    We present a model-independent method to test for scale-dependent non-Gaussianities in combination with scaling indices as test statistics. Therefore, surrogate data sets are generated, in which the power spectrum of the original data is preserved, while the higher order correlations are partly randomized by applying a scale-dependent shuffling procedure to the Fourier phases. We apply this method to the Wilkinson Microwave Anisotropy Probe data of the cosmic microwave background and find signatures for non-Gaussianities on large scales. Further tests are required to elucidate the origin of the detected anomalies.

  5. Landscapes for Energy and Wildlife: Conservation Prioritization for Golden Eagles across Large Spatial Scales.

    Directory of Open Access Journals (Sweden)

    Jason D Tack

    Full Text Available Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.

  6. Drivers potentially influencing host-bat fly interactions in anthropogenic neotropical landscapes at different spatial scales.

    Science.gov (United States)

    Hernández-Martínez, Jacqueline; Morales-Malacara, Juan B; Alvarez-Añorve, Mariana Yolotl; Amador-Hernández, Sergio; Oyama, Ken; Avila-Cabadilla, Luis Daniel

    2018-05-21

    The anthropogenic modification of natural landscapes, and the consequent changes in the environmental conditions and resources availability at multiple spatial scales can affect complex species interactions involving key-stone species such as bat-parasite interactions. In this study, we aimed to identify the drivers potentially influencing host-bat fly interactions at different spatial scales (at the host, vegetation stand and landscape level), in a tropical anthropogenic landscape. For this purpose, we mist-netted phyllostomid and moormopid bats and collected the bat flies (streblids) parasitizing them in 10 sites representing secondary and old growth forest. In general, the variation in fly communities largely mirrored the variation in bat communities as a result of the high level of specialization characterizing host-bat fly interaction networks. Nevertheless, we observed that: (1) bats roosting dynamics can shape bat-streblid interactions, modulating parasite prevalence and the intensity of infestation; (2) a degraded matrix could favor crowding and consequently the exchange of ectoparasites among bat species, lessening the level of specialization of the interaction networks and promoting novel interactions; and (3) bat-fly interaction can also be shaped by the dilution effect, as a decrease in bat diversity could be associated with a potential increase in the dissemination and prevalence of streblids.

  7. Vulnerability assessments, identity and spatial scale challenges in disaster-risk reduction

    Directory of Open Access Journals (Sweden)

    Edward R. Carr

    2015-11-01

    Full Text Available Current approaches to vulnerability assessment for disaster-risk reduction (DRR commonly apply generalised, a priori determinants of vulnerability to particular hazards in particular places. Although they may allow for policy-level legibility at high levels of spatial scale, these approaches suffer from attribution problems that become more acute as the level of analysis is localised and the population under investigation experiences greater vulnerability. In this article, we locate the source of this problem in a spatial scale mismatch between the essentialist framings of identity behind these generalised determinants of vulnerability and the intersectional, situational character of identity in the places where DRR interventions are designed and implemented. Using the Livelihoods as Intimate Government (LIG approach to identify and understand different vulnerabilities to flooding in a community in southern Zambia, we empirically demonstrate how essentialist framings of identity produce this mismatch. Further, we illustrate a means of operationalising intersectional, situational framings of identity to achieve greater and more productive understandings of hazard vulnerability than available through the application of general determinants of vulnerability to specific places and cases.

  8. Patchiness of Ciliate Communities Sampled at Varying Spatial Scales along the New England Shelf.

    Directory of Open Access Journals (Sweden)

    Jean-David Grattepanche

    Full Text Available Although protists (microbial eukaryotes provide an important link between bacteria and Metazoa in food webs, we do not yet have a clear understanding of the spatial scales on which protist diversity varies. Here, we use a combination of DNA fingerprinting (denaturant gradient gel electrophoresis or DGGE and high-throughput sequencing (HTS to assess the ciliate community in the class Spirotrichea at varying scales of 1-3 km sampled in three locations separated by at least 25 km-offshore, midshelf and inshore-along the New England shelf. Analyses of both abundant community (DGGE and the total community (HTS members reveal that: 1 ciliate communities are patchily distributed inshore (i.e. the middle station of a transect is distinct from its two neighboring stations, whereas communities are more homogeneous among samples within the midshelf and offshore stations; 2 a ciliate closely related to Pelagostrobilidium paraepacrum 'blooms' inshore and; 3 environmental factors may differentially impact the distributions of individual ciliates (i.e. OTUs rather than the community as a whole as OTUs tend to show distinct biogeographies (e.g. some OTUs are restricted to the offshore locations, some to the surface, etc.. Together, these data show the complexity underlying the spatial distributions of marine protists, and suggest that biogeography may be a property of ciliate species rather than communities.

  9. Urban land use decouples plant-herbivore-parasitoid interactions at multiple spatial scales.

    Directory of Open Access Journals (Sweden)

    Amanda E Nelson

    Full Text Available Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor.

  10. Population genetics of the Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis across multiple spatial scales.

    Directory of Open Access Journals (Sweden)

    Shem D Unger

    Full Text Available Conservation genetics is a powerful tool to assess the population structure of species and provides a framework for informing management of freshwater ecosystems. As lotic habitats become fragmented, the need to assess gene flow for species of conservation management becomes a priority. The eastern hellbender (Cryptobranchus alleganiensis alleganiensis is a large, fully aquatic paedamorphic salamander. Many populations are experiencing declines throughout their geographic range, yet the genetic ramifications of these declines are currently unknown. To this end, we examined levels of genetic variation and genetic structure at both range-wide and drainage (hierarchical scales. We collected 1,203 individuals from 77 rivers throughout nine states from June 2007 to August 2011. Levels of genetic diversity were relatively high among all sampling locations. We detected significant genetic structure across populations (Fst values ranged from 0.001 between rivers within a single watershed to 0.218 between states. We identified two genetically differentiated groups at the range-wide scale: 1 the Ohio River drainage and 2 the Tennessee River drainage. An analysis of molecular variance (AMOVA based on landscape-scale sampling of basins within the Tennessee River drainage revealed the majority of genetic variation (∼94-98% occurs within rivers. Eastern hellbenders show a strong pattern of isolation by stream distance (IBSD at the drainage level. Understanding levels of genetic variation and differentiation at multiple spatial and biological scales will enable natural resource managers to make more informed decisions and plan effective conservation strategies for cryptic, lotic species.

  11. Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer

    International Nuclear Information System (INIS)

    Wang, Y.; Tanahashi, M.; Miyauchi, T.

    2007-01-01

    To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar-turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Re ω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (u k ), and decreases to 1.2u k , which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and α:β:γ = -5:1:4 in the transition process. In addition to Kelvin-Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow

  12. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources.

    Science.gov (United States)

    Hybel, A-M; Godskesen, B; Rygaard, M

    2015-09-01

    Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial resolution was identified as a major factor determining the outcome of the impact assessment. For the three case studies, WTA and WSI were 27%-583% higher at Level 1 than impacts calculated for the regional scale. The results highlight that freshwater impact assessments based on regional data, rather than sub-river basin data, may dramatically underestimate the actual impact on the water resource. Furthermore, this study discusses the strengths and shortcomings of the applied indicator approaches. A sensitivity analysis demonstrates that although WSI has the highest environmental relevance, it also has the highest uncertainty, as it requires estimations of non-measurable environmental water requirements. Hence, the development of a methodology to obtain more site-specific and relevant estimations of environmental water requirements should be prioritized. Finally, the demarcation of the groundwater resource in aquifers remains a challenge for establishing a consistent method for benchmarking freshwater impacts caused by groundwater abstraction. Copyright © 2015 Elsevier

  13. Development of a spatial stochastic multimedia exposure model to assess population exposure at a regional scale

    International Nuclear Information System (INIS)

    Caudeville, Julien; Bonnard, Roseline; Boudet, Céline; Denys, Sébastien; Govaert, Gérard; Cicolella, André

    2012-01-01

    Analyzing the relationship between the environment and health has become a major focus of public health efforts in France, as evidenced by the national action plans for health and the environment. These plans have identified the following two priorities: -identify and manage geographic areas where hotspot exposures are a potential risk to human health; and -reduce exposure inequalities. The aim of this study is to develop a spatial stochastic multimedia exposure model for detecting vulnerable populations and analyzing exposure determinants at a fine resolution and regional scale. A multimedia exposure model was developed by INERIS to assess the transfer of substances from the environment to humans through inhalation and ingestion pathways. The RESPIR project adds a spatial dimension by linking GIS (Geographic Information System) to the model. Tools are developed using modeling, spatial analysis and geostatistic methods to build and discretize interesting variables and indicators from different supports and resolutions on a 1-km 2 regular grid. We applied this model to the risk assessment of exposure to metals (cadmium, lead and nickel) using data from a region in France (Nord-Pas-de-Calais). The considered exposure pathways include the atmospheric contaminant inhalation and ingestion of soil, vegetation, meat, egg, milk, fish and drinking water. Exposure scenarios are defined for different reference groups (age, dietary properties, and the fraction of food produced locally). The two largest risks correspond to an ancient industrial site (Metaleurop) and the Lille agglomeration. In these areas, cadmium, vegetation ingestion and soil contamination are the principal determinants of the computed risk. -- Highlights: ► We present a multimedia exposure model for mapping environmental disparities. ► We perform a risk assessment on a region of France at a fine scale for three metals. ► We examine exposure determinants and detect vulnerable population. ► The largest

  14. The care dependency scale for measuring basic human needs: an international comparison.

    Science.gov (United States)

    Dijkstra, Ate; Yönt, Gülendam Hakverdioğlu; Korhan, Esra Akin; Muszalik, Marta; Kędziora-Kornatowska, Kornelia; Suzuki, Mizue

    2012-10-01

    To report a study conducted to compare the utility of the care dependency scale across four countries. The care dependency scale provides a framework for assessing the needs of institutionalized patients for nursing care. Henderson's components of nursing care have been used to specify the variable aspects of the concept of care dependency and to develop the care dependency scale items. The study used a cross-cultural survey design. Patients were recruited from four different countries: Japan, The Netherlands, Poland and Turkey. In each of the participating countries, basic human needs were assessed by nurses using a translated version of the original Dutch care dependency scale. Psychometric properties in terms of reliability and validity of the care dependency scale have been assessed using Cronbach's alpha, Guttman's lambda-2, inter-item correlation and principal components analysis. Data were collected in 2008 and 2009. High internal consistency values were demonstrated. Principal component analysis confirmed the one-factor model reported in earlier studies. Outcomes confirm Henderson's idea that human needs are fundamental appearing in every patient-nurse relationship, independent of the patient's age, the type of care setting and/or cultural background. The psychometric characteristics of the care dependency scale make this instrument very useful for comparative research across countries. © 2012 Blackwell Publishing Ltd.

  15. Regional processes in mangrove ecosystems: Spatial scaling relationships, biomass, and turnover rates following catastrophic disturbance

    Science.gov (United States)

    Ward, G.A.; Smith, T. J.; Whelan, K.R.T.; Doyle, T.W.

    2006-01-01

    Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a -1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration. ?? Springer 2006.

  16. Upscaling of Large-Scale Transport in Spatially Heterogeneous Porous Media Using Wavelet Transformation

    Science.gov (United States)

    Moslehi, M.; de Barros, F.; Ebrahimi, F.; Sahimi, M.

    2015-12-01

    Modeling flow and solute transport in large-scale heterogeneous porous media involves substantial computational burdens. A common approach to alleviate this complexity is to utilize upscaling methods. These processes generate upscaled models with less complexity while attempting to preserve the hydrogeological properties comparable to the original fine-scale model. We use Wavelet Transformations (WT) of the spatial distribution of aquifer's property to upscale the hydrogeological models and consequently transport processes. In particular, we apply the technique to a porous formation with broadly distributed and correlated transmissivity to verify the performance of the WT. First, transmissivity fields are coarsened using WT in such a way that the high transmissivity zones, in which more important information is embedded, mostly remain the same, while the low transmissivity zones are averaged out since they contain less information about the hydrogeological formation. Next, flow and non-reactive transport are simulated in both fine-scale and upscaled models to predict both the concentration breakthrough curves at a control location and the large-scale spreading of the plume around its centroid. The results reveal that the WT of the fields generates non-uniform grids with an average of 2.1% of the number of grid blocks in the original fine-scale models, which eventually leads to a significant reduction in the computational costs. We show that the upscaled model obtained through the WT reconstructs the concentration breakthrough curves and the spreading of the plume at different times accurately. Furthermore, the impacts of the Hurst coefficient, size of the flow domain and the orders of magnitude difference in transmissivity values on the results have been investigated. It is observed that as the heterogeneity and the size of the domain increase, better agreement between the results of fine-scale and upscaled models can be achieved. Having this framework at hand aids

  17. Spatial, temporal, and density-dependent components of habitat quality for a desert owl.

    Directory of Open Access Journals (Sweden)

    Aaron D Flesch

    Full Text Available Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70 than weather (0.17 or conspecifics (0.13, evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways

  18. Spatial Dependence and Determinants of Dairy Farmers' Adoption of Best Management Practices for Water Protection in New Zealand

    Science.gov (United States)

    Yang, Wei; Sharp, Basil

    2017-04-01

    This paper analyses spatial dependence and determinants of the New Zealand dairy farmers' adoption of best management practices to protect water quality. A Bayesian spatial durbin probit model is used to survey data collected from farmers in the Waikato region of New Zealand. The results show that farmers located near each other exhibit similar choice behaviour, indicating the importance of farmer interactions in adoption decisions. The results also address that information acquisition is the most important determinant of farmers' adoption of best management practices. Financial problems are considered a significant barrier to adopting best management practices. Overall, the existence of distance decay effect and spatial dependence in farmers' adoption decisions highlights the importance of accounting for spatial effects in farmers' decision-making, which emerges as crucial to the formulation of sustainable agriculture policy.

  19. Inducible Knockout of the Cyclin-Dependent Kinase 5 Activator p35 Alters Hippocampal Spatial Coding and Neuronal Excitability

    Directory of Open Access Journals (Sweden)

    Eriko Kamiki

    2018-05-01

    Full Text Available p35 is an activating co-factor of Cyclin-dependent kinase 5 (Cdk5, a protein whose dysfunction has been implicated in a wide-range of neurological disorders including cognitive impairment and disease. Inducible deletion of the p35 gene in adult mice results in profound deficits in hippocampal-dependent spatial learning and synaptic physiology, however the impact of the loss of p35 function on hippocampal in vivo physiology and spatial coding remains unknown. Here, we recorded CA1 pyramidal cell activity in freely behaving p35 cKO and control mice and found that place cells in the mutant mice have elevated firing rates and impaired spatial coding, accompanied by changes in the temporal organization of spiking both during exploration and rest. These data shed light on the role of p35 in maintaining cellular and network excitability and provide a physiological correlate of the spatial learning deficits in these mice.

  20. Inducible Knockout of the Cyclin-Dependent Kinase 5 Activator p35 Alters Hippocampal Spatial Coding and Neuronal Excitability

    Science.gov (United States)

    Kamiki, Eriko; Boehringer, Roman; Polygalov, Denis; Ohshima, Toshio; McHugh, Thomas J.

    2018-01-01

    p35 is an activating co-factor of Cyclin-dependent kinase 5 (Cdk5), a protein whose dysfunction has been implicated in a wide-range of neurological disorders including cognitive impairment and disease. Inducible deletion of the p35 gene in adult mice results in profound deficits in hippocampal-dependent spatial learning and synaptic physiology, however the impact of the loss of p35 function on hippocampal in vivo physiology and spatial coding remains unknown. Here, we recorded CA1 pyramidal cell activity in freely behaving p35 cKO and control mice and found that place cells in the mutant mice have elevated firing rates and impaired spatial coding, accompanied by changes in the temporal organization of spiking both during exploration and rest. These data shed light on the role of p35 in maintaining cellular and network excitability and provide a physiological correlate of the spatial learning deficits in these mice. PMID:29867369

  1. Cortical depth dependent population receptive field attraction by spatial attention in human V1

    NARCIS (Netherlands)

    Klein, Barrie P.; Fracasso, Alessio; van Dijk, Jelle A.; Paffen, Chris L.E.; te Pas, Susan F.; Dumoulin