On the sizes of expander graphs and minimum distances of graph codes
DEFF Research Database (Denmark)
Høholdt, Tom; Justesen, Jørn
2014-01-01
We give lower bounds for the minimum distances of graph codes based on expander graphs. The bounds depend only on the second eigenvalue of the graph and the parameters of the component codes. We also give an upper bound on the size of a degree regular graph with given second eigenvalue....
On the size of edge chromatic 5-critical graphs
Directory of Open Access Journals (Sweden)
K. Kayathri
2017-04-01
Full Text Available In this paper, we study the size of edge chromatic 5-critical graphs in several classes of 5-critical graphs. In most of the classes of 5-critical graphs in this paper, we have obtained their exact size and in the other classes of 5-critical graphs, we give new bounds on their number of major vertices and size.
Evolutionary Graphs with Frequency Dependent Fitness
Nie, Pu-Yan; Zhang, Pei-Ai
Evolutionary graph theory was recently proposed by Lieberman et al. in 2005. In the previous papers about evolutionary graphs (EGs), the fitness of the residents in the EGs is in general assumed to be unity, and the fitness of a mutant is assumed to be a constant r. We aim to extend EG to general cases in this paper, namely, the fitness of a mutant is heavily dependent upon frequency. The corresponding properties for these new EGs are analyzed, and the fixation probability is obtained for large population.
Size-dependent thermoelasticity
Directory of Open Access Journals (Sweden)
Ali R. Hadjesfandiari
Full Text Available In this paper a consistent theory is developed for size-dependent thermoelasticity in heterogeneous anisotropic solids. This theory shows that the temperature change can create not only thermal strains, but also thermal mean curvatures in the solids. This formulation is based on the consistent size-dependent continuum mechanics in which the couple-stress tensor is skew-symmetric. Here by including scale-dependent measures in the energy and entropy equations, the general expressions for force- and couple-stresses, as well as entropy density, are obtained. Next, for the linear material the constitutive relations and governing coupled size-dependent thermoelasticity equations are developed. For linear material, one can see that the thermal properties are characterized by the classical symmetric thermal expansion tensor and the new size-dependent skew-symmetric thermal flexion tensor. Thus, for the most general anisotropic case, there are nine independent thermoelastic constants. Interestingly, for isotropic and cubic materials the thermal flexion tensor vanishes, which shows there is no thermal mean curvature
Comparing brain networks of different size and connectivity density using graph theory.
Directory of Open Access Journals (Sweden)
Bernadette C M van Wijk
Full Text Available Graph theory is a valuable framework to study the organization of functional and anatomical connections in the brain. Its use for comparing network topologies, however, is not without difficulties. Graph measures may be influenced by the number of nodes (N and the average degree (k of the network. The explicit form of that influence depends on the type of network topology, which is usually unknown for experimental data. Direct comparisons of graph measures between empirical networks with different N and/or k can therefore yield spurious results. We list benefits and pitfalls of various approaches that intend to overcome these difficulties. We discuss the initial graph definition of unweighted graphs via fixed thresholds, average degrees or edge densities, and the use of weighted graphs. For instance, choosing a threshold to fix N and k does eliminate size and density effects but may lead to modifications of the network by enforcing (ignoring non-significant (significant connections. Opposed to fixing N and k, graph measures are often normalized via random surrogates but, in fact, this may even increase the sensitivity to differences in N and k for the commonly used clustering coefficient and small-world index. To avoid such a bias we tried to estimate the N,k-dependence for empirical networks, which can serve to correct for size effects, if successful. We also add a number of methods used in social sciences that build on statistics of local network structures including exponential random graph models and motif counting. We show that none of the here-investigated methods allows for a reliable and fully unbiased comparison, but some perform better than others.
Complexity of chemical graphs in terms of size, branching, and cyclicity.
Balaban, A T; Mills, D; Kodali, V; Basak, S C
2006-08-01
Chemical graph complexity depends on many factors, but the main ones are size, branching, and cyclicity. Some molecular descriptors embrace together all these three parameters, which cannot then be disentangled. The topological index J (and its refinements that include accounting for bond multiplicity and the presence of heteroatoms) was designed to compensate in a significant measure for graph size and cyclicity, and therefore it contains information mainly on branching. In order to separate these factors, two new indices (F and G) related with J are proposed, which allow to group together graphs with the same size into families of constitutional formulas differing in their branching and cyclicity. A comparison with other topological indices revealed that a few other topological indices vary similarly with index G, notably DN2S4 among the triplet indices, and TOTOP among the indices contained in the Molconn-Z program. This comparison involved all possible chemical graphs (i.e. connected planar graphs with vertex degrees not higher than four) with four through six vertices, and all possible alkanes with four through nine carbon atoms.
Coloring triangle-free graphs with fixed size
DEFF Research Database (Denmark)
Thomassen, Carsten; Gimbel, John
2000-01-01
Combining recent results on colorings and Ramsey theory, we show that if G is a triangle-free graph with e edges then the chromatic number of G is at most cel(1/3)(log e)(-2/3) for some constant c. In a previous paper, we found an upper bound on the chromatic number of a triangle-free graph of ge...
Social networks: Evolving graphs with memory dependent edges
Grindrod, Peter; Parsons, Mark
2011-10-01
The plethora of digital communication technologies, and their mass take up, has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the existence or otherwise of certain infinite products and series involving age dependent model parameters. We show how to differentiate between the alternatives based on a finite set of observations. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.
Coloring graphs from lists with bounded size of their union
Czech Academy of Sciences Publication Activity Database
Král´, D.; Sgall, Jiří
2005-01-01
Roč. 49, č. 3 (2005), s. 177-186 ISSN 0364-9024 R&D Projects: GA ČR(CZ) GA201/01/1195; GA MŠk(CZ) LN00A056 Institutional research plan: CEZ:AV0Z10190503 Keywords : graph coloring * list coloring Subject RIV: BA - General Mathematics Impact factor: 0.319, year: 2005
Edge irregular total labellings for graphs of linear size
DEFF Research Database (Denmark)
Brandt, Stephan; Rautenbach, D.; Miškuf, J.
2009-01-01
As an edge variant of the well-known irregularity strength of a graph G = (V, E) we investigate edge irregular total labellings, i.e. functions f : V ∪ E → {1, 2, ..., k} such that f (u) + f (u v) + f (v) ≠ f (u) + f (u v) + f (v) for every pair of different edges u v, u v ∈ E. The smallest possi...
Multi-label Learning with Missing Labels Using Mixed Dependency Graphs
Wu, Baoyuan
2018-04-06
This work focuses on the problem of multi-label learning with missing labels (MLML), which aims to label each test instance with multiple class labels given training instances that have an incomplete/partial set of these labels (i.e., some of their labels are missing). The key point to handle missing labels is propagating the label information from the provided labels to missing labels, through a dependency graph that each label of each instance is treated as a node. We build this graph by utilizing different types of label dependencies. Specifically, the instance-level similarity is served as undirected edges to connect the label nodes across different instances and the semantic label hierarchy is used as directed edges to connect different classes. This base graph is referred to as the mixed dependency graph, as it includes both undirected and directed edges. Furthermore, we present another two types of label dependencies to connect the label nodes across different classes. One is the class co-occurrence, which is also encoded as undirected edges. Combining with the above base graph, we obtain a new mixed graph, called mixed graph with co-occurrence (MG-CO). The other is the sparse and low rank decomposition of the whole label matrix, to embed high-order dependencies over all labels. Combining with the base graph, the new mixed graph is called as MG-SL (mixed graph with sparse and low rank decomposition). Based on MG-CO and MG-SL, we further propose two convex transductive formulations of the MLML problem, denoted as MLMG-CO and MLMG-SL respectively. In both formulations, the instance-level similarity is embedded through a quadratic smoothness term, while the semantic label hierarchy is used as a linear constraint. In MLMG-CO, the class co-occurrence is also formulated as a quadratic smoothness term, while the sparse and low rank decomposition is incorporated into MLMG-SL, through two additional matrices (one is assumed as sparse, and the other is assumed as low
Grain size dependence of wear in ceramics
International Nuclear Information System (INIS)
Wu, C.C.; Rice, R.W.; Johnson, D.; Platt, B.A.
1985-01-01
Pin-On-Disk (POD), microwear tests of Al 2 O 3 , MgO, MgAl 2 O 4 , and ZrO 2 , most being dense and essentially single phase, showed the reciprocal of wear following a hall-petch type relationship. However, extrapolation to infinite grain size always gave a lower intercept than most or all single-crystal values; in particular, Al 2 O 3 data projects to a negative intercept. Initial macro wear tests of some of the same Al 2 O 3 materials also indicate a hall-petch type grain-size dependence, but with a greatly reduced grain-size dependence, giving a positive hall-petch intercept. Further, the macrowear grain-size dependence appears to decrease with increased wear. It is argued that thermal expansion anisotropy (of Al 2 O 3 ) significantly affects the grain size dependence of POD wear, in particular, giving a negative intercept, while elastic anisotropy is suggested as a factor in the grain-size dependence of the cubic (MgO, MgAl 2 O 4 , and ZrO 2 ) materials. The reduced grain-size dependence in the macrowear tests is attributed to overlapping wear tracks reducing the effects of enhanced wear damage, e.g., from elastic and thermal expansion anisotropies
Graph Transformation and Designing Parallel Sparse Matrix Algorithms beyond Data Dependence Analysis
Directory of Open Access Journals (Sweden)
H.X. Lin
2004-01-01
Full Text Available Algorithms are often parallelized based on data dependence analysis manually or by means of parallel compilers. Some vector/matrix computations such as the matrix-vector products with simple data dependence structures (data parallelism can be easily parallelized. For problems with more complicated data dependence structures, parallelization is less straightforward. The data dependence graph is a powerful means for designing and analyzing parallel algorithms. However, for sparse matrix computations, parallelization based on solely exploiting the existing parallelism in an algorithm does not always give satisfactory results. For example, the conventional Gaussian elimination algorithm for the solution of a tri-diagonal system is inherently sequential, so algorithms specially for parallel computation has to be designed. After briefly reviewing different parallelization approaches, a powerful graph formalism for designing parallel algorithms is introduced. This formalism will be discussed using a tri-diagonal system as an example. Its application to general matrix computations is also discussed. Its power in designing parallel algorithms beyond the ability of data dependence analysis is shown by means of a new algorithm called ACER (Alternating Cyclic Elimination and Reduction algorithm.
STABILITY OF LINEAR MULTIAGENT SCALAR SYSTEMS AND ITS DEPENDENCE ON CONNECTIVITY GRAPH
Directory of Open Access Journals (Sweden)
S. I. Tomashevich
2014-03-01
Full Text Available Multiagent systems are now finding increasingly wide applications in various engineering fields such as energy, transportation, robotics, aviation and others. There are two main aspects to be focused on when organizing multiagent systems: the dynamics of the agents themselves and the ways of their interaction. This interaction is determined by the structure of information connections between agents. Thus, there are several key points of multiagent systems study: the dynamics of individual agents and shape of the information graph. Formation dynamics, in general, is determined by a set of properties of agents and connectivity graph. The paper deals with the relationship between dynamics of agents and Laplace matrix, which is used to set the graph connections. The present research is based on the results given in the known paper by A. Fax and R. Murray (IEEE Trans. AC, 2004. An illustrative example is given, and the application problem of studying the formation dynamics consisting of the group of quadrocopters is presented. Information exchange between agents is determined in the paper by means of the conventional set of graphs. The paper presents an interpretation of the stability conditions and the method of system performance improvement based on these conditions. Motion of quadrocopters group along the flight height is used as an example for methodology application. The simulation results demonstrate the basic dependencies between the information graph shape (and, consequently, the eigenvalues of the Laplacian, which describes this graph and formation stability. Simulation and consideration of Nyquist diagram connection with the key points give an indication of the system stability and take steps to change the control laws. Necessary conditions for the formation stability are obtained on the basis of this research method. Research result makes it possible to create local control laws for agents to ensure the stability of motion in the selected
Adaptive Graph Convolutional Neural Networks
Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou
2018-01-01
Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...
International Nuclear Information System (INIS)
Huang, Fuqun; Smidts, Carol
2017-01-01
Understanding cause-effect relations between concepts in software dependability engineering is fundamental to various research or industrial activities. Cognitive maps are traditionally used to elicit and represent such knowledge; however they seem incapable of accurately representing complex causal mechanisms in dependability engineering. This paper proposes a new notation called Causal Mechanism Graph (CMG) to elicit and represent the cause-effect domain knowledge embedded in experts’ minds or described in the literature. CMG contains a new set of symbols elicited from domain experts to capture the recurring interaction mechanisms between multiple concepts in software dependability engineering. Furthermore, compared to major existing graphic methods, CMG is particularly robust and suitable for mental knowledge elicitation: it allows one to represent the full range of cause-effect knowledge, accurately or fuzzily as one sees fit depending on the depth of knowledge he/she has. This feature combined with excellent reliability and validity poses CMG as a promising method that has the potential to be used in various areas, such as software dependability requirement elicitation, software dependability assessment and dependability risk control. - Highlights: • A new notation CMG for capturing cause-effect conceptual knowledge in software dependability. • CMG is particularly robust and suitable for mental knowledge representation. • CMG is a visual representation that bridges mental knowledge, natural and mathematical language. • CMG possesses excellent representation capability, validity and inter-coder reliability. • CMG is a fundamental method for various areas in dependability engineering.
Simultaneous Budget and Buffer Size Computation for Throughput-Constrained Task Graphs
Wiggers, M.H.; Bekooij, Marco Jan Gerrit; Geilen, Marc C.W.; Basten, Twan
Modern embedded multimedia systems process multiple concurrent streams of data processing jobs. Streams often have throughput requirements. These jobs are implemented on a multiprocessor system as a task graph. Tasks communicate data over buffers, where tasks wait on sufficient space in output
Size-dependent mortality rate profiles.
Roa-Ureta, Ruben H
2016-08-07
Knowledge of mortality rates is crucial to the understanding of population dynamics in populations of free-living fish and invertebrates in marine and freshwater environments, and consequently to sustainable resource management. There is a well developed theory of population dynamics based on age distributions that allow direct estimation of mortality rates. However, for most cases the aging of individuals is difficult or age distributions are not available for other reasons. The body size distribution is a widely available alternative although the theory underlying the formation of its shape is more complicated than in the case of age distributions. A solid theory of the time evolution of a population structured by any physiological variable has been developed in 1960s and 1970s by adapting the Hamilton-Jacobi formulation of classical mechanics, and equations to estimate the body size-distributed mortality profile have been derived for simple cases. Here I extend those results with regards to the size-distributed mortality profile to complex cases of non-stationary populations, individuals growing according to a generalised growth model and seasonally patterned recruitment pulses. I apply resulting methods to two cases in the marine environment, a benthic crustacean population that was growing during the period of observation and whose individuals grow with negative acceleration, and a sea urchin coastal population that is undergoing a stable cycle of two equilibrium points in population size whose individuals grow with varying acceleration that switches sign along the size range. The extension is very general and substantially widens the applicability of the theory. Copyright © 2016 Elsevier Ltd. All rights reserved.
Size dependent polaronic conduction in hematite
Energy Technology Data Exchange (ETDEWEB)
Sharma, Monika; Banday, Azeem; Murugavel, Sevi [Department of Physics and Astrophysics, University of Delhi, Delhi – 110 007 (India)
2016-05-23
Lithium Ion Batteries have been attracted as the major renewable energy source for all portable electronic devices because of its advantages like superior energy density, high theoretical capacity, high specific energy, stable cycling and less memory effects. Recently, α-Fe{sub 2}O{sub 3} has been considered as a potential anode material due to high specific capacity, low cost, high abundance and environmental benignity. We have synthesized α-Fe{sub 2}O{sub 3} with various sizes by using the ball milling and sol-gel procedure. Here, we report the dc conductivity measurement for the crystallite size ranging from 15 nm to 50 nm. It has been observed that the enhancement in the polaronic conductivity nearly two orders in magnitude while reducing the crystallite size from bulk into nano scale level. The enhancement in the conductivity is due to the augmented to compressive strain developed in the material which leads to pronounced decrease in the hopping length of polarons. Thus, nanocrystaline α-Fe{sub 2}O{sub 3} may be a better alternative anode material for lithium ion batteries than earlier reported systems.
Size dependent polaronic conduction in hematite
International Nuclear Information System (INIS)
Sharma, Monika; Banday, Azeem; Murugavel, Sevi
2016-01-01
Lithium Ion Batteries have been attracted as the major renewable energy source for all portable electronic devices because of its advantages like superior energy density, high theoretical capacity, high specific energy, stable cycling and less memory effects. Recently, α-Fe_2O_3 has been considered as a potential anode material due to high specific capacity, low cost, high abundance and environmental benignity. We have synthesized α-Fe_2O_3 with various sizes by using the ball milling and sol-gel procedure. Here, we report the dc conductivity measurement for the crystallite size ranging from 15 nm to 50 nm. It has been observed that the enhancement in the polaronic conductivity nearly two orders in magnitude while reducing the crystallite size from bulk into nano scale level. The enhancement in the conductivity is due to the augmented to compressive strain developed in the material which leads to pronounced decrease in the hopping length of polarons. Thus, nanocrystaline α-Fe_2O_3 may be a better alternative anode material for lithium ion batteries than earlier reported systems.
Memory-Optimized Software Synthesis from Dataflow Program Graphs with Large Size Data Samples
Directory of Open Access Journals (Sweden)
Hyunok Oh
2003-05-01
Full Text Available In multimedia and graphics applications, data samples of nonprimitive type require significant amount of buffer memory. This paper addresses the problem of minimizing the buffer memory requirement for such applications in embedded software synthesis from graphical dataflow programs based on the synchronous dataflow (SDF model with the given execution order of nodes. We propose a memory minimization technique that separates global memory buffers from local pointer buffers: the global buffers store live data samples and the local buffers store the pointers to the global buffer entries. The proposed algorithm reduces 67% memory for a JPEG encoder, 40% for an H.263 encoder compared with unshared versions, and 22% compared with the previous sharing algorithm for the H.263 encoder. Through extensive buffer sharing optimization, we believe that automatic software synthesis from dataflow program graphs achieves the comparable code quality with the manually optimized code in terms of memory requirement.
A random energy model for size dependence : recurrence vs. transience
Külske, Christof
1998-01-01
We investigate the size dependence of disordered spin models having an infinite number of Gibbs measures in the framework of a simplified 'random energy model for size dependence'. We introduce two versions (involving either independent random walks or branching processes), that can be seen as
B-graph sampling to estimate the size of a hidden population
Spreen, M.; Bogaerts, S.
2015-01-01
Link-tracing designs are often used to estimate the size of hidden populations by utilizing the relational links between their members. A major problem in studies of hidden populations is the lack of a convenient sampling frame. The most frequently applied design in studies of hidden populations is
Stimulus size dependence of hue changes induced by chromatic surrounds.
Kellner, Christian Johannes; Wachtler, Thomas
2016-03-01
A chromatic surround induces a change in the perceived hue of a stimulus. This shift in hue depends on the chromatic difference between the stimulus and the surround. We investigated how chromatic induction varies with stimulus size and whether the size dependence depends on the surround hue. Subjects performed asymmetric matching of color stimuli with different sizes in surrounds of different chromaticities. Generally, induced hue shifts decreased with increasing stimulus size. This decrease was quantitatively different for different surround hues. However, when size effects were normalized to an overall induction strength, the chromatic specificity was largely reduced. The separability of inducer chromaticity and stimulus size suggests that these effects are mediated by different neural mechanisms.
Size-dependent electronic properties of metal nanostructures
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Size-dependent electronic properties of metal nanostructures. G.U. Kulkarni. Chemistry and Physics of Materials Unit. Jawaharlal Nehru Centre for Advanced Scientific Research. Bangalore, India. kulkarni@jncasr.ac.in.
Modeling motoneuron firing properties: dependency on size and calcium dynamics
van der Heyden, M. J.; Hilgevoord, A. A.; Bour, L. J.; Ongerboer de Visser, B. W.
1994-01-01
The origin of functional differences between motoneurons of varying size was investigated by employing a one-compartmental motoneuron model containing a slow K+ conductance dependent on the intracellular calcium concentration. The size of the cell was included as an explicit parameter. Simulations
Density-dependence as a size-independent regulatory mechanism
De Vladar, H.P.
2006-01-01
The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the Population. One important class of regulatory functions is the theta-logistic, which
Universal relation for size dependent thermodynamic properties of metallic nanoparticles.
Xiong, Shiyun; Qi, Weihong; Cheng, Yajuan; Huang, Baiyun; Wang, Mingpu; Li, Yejun
2011-06-14
The previous model on surface free energy has been extended to calculate size dependent thermodynamic properties (i.e., melting temperature, melting enthalpy, melting entropy, evaporation temperature, Curie temperature, Debye temperature and specific heat capacity) of nanoparticles. According to the quantitative calculation of size effects on the calculated thermodynamic properties, it is found that most thermodynamic properties of nanoparticles vary linearly with 1/D as a first approximation. In other words, the size dependent thermodynamic properties P(n) have the form of P(n) = P(b)(1 -K/D), in which P(b) is the corresponding bulk value and K is the material constant. This may be regarded as a scaling law for most of the size dependent thermodynamic properties for different materials. The present predictions are consistent literature values. This journal is © the Owner Societies 2011
Endriss, U.; Grandi, U.
Graph aggregation is the process of computing a single output graph that constitutes a good compromise between several input graphs, each provided by a different source. One needs to perform graph aggregation in a wide variety of situations, e.g., when applying a voting rule (graphs as preference
Size dependent magnetism of mass selected deposited transition metal clusters
International Nuclear Information System (INIS)
Lau, T.
2002-05-01
The size dependent magnetic properties of small iron clusters deposited on ultrathin Ni/Cu(100) films have been studied with circularly polarised synchrotron radiation. For X-ray magnetic circular dichroism studies, the magnetic moments of size selected clusters were aligned perpendicular to the sample surface. Exchange coupling of the clusters to the ultrathin Ni/Cu(100) film determines the orientation of their magnetic moments. All clusters are coupled ferromagnetically to the underlayer. With the use of sum rules, orbital and spin magnetic moments as well as their ratios have been extracted from X-ray magnetic circular dichroism spectra. The ratio of orbital to spin magnetic moments varies considerably as a function of cluster size, reflecting the dependence of magnetic properties on cluster size and geometry. These variations can be explained in terms of a strongly size dependent orbital moment. Both orbital and spin magnetic moments are significantly enhanced in small clusters as compared to bulk iron, although this effect is more pronounced for the spin moment. Magnetic properties of deposited clusters are governed by the interplay of cluster specific properties on the one hand and cluster-substrate interactions on the other hand. Size dependent variations of magnetic moments are modified upon contact with the substrate. (orig.)
Size dependence of non-magnetic thickness in YIG nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Niyaifar, M., E-mail: md.niyaifar@gmail.com; Mohammadpour, H.; Dorafshani, M.; Hasanpour, A.
2016-07-01
This study is focused on particle size dependence of structural and magnetic properties in yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}) nanoparticles. A series of YIG samples with different particle size were produced by varying the annealing temperatures. The X-ray analysis revealed an inverse correlation between lattice parameter and the crystallite size. The normal distribution is used for fitting the particles size distribution which is extracted from scanning electron micrographs. Also, by using the results of vibrating sample magnetometer, the magnetic diameter was calculated based on Langevin model in order to investigate the variation of dead layer thickness. Furthermore, the observed line broadening in Mössbauer spectra confirmed the increase of non-magnetic thickness due to the reduction of particle size. - Highlights: • Pure phase Y{sub 3}Fe{sub 5}O{sub 12} nanoparticles are fabricated in different particle size by a thermal treatment. • The size effect on magnetic properties is studied with a core/shell (magnetic/nonmagnetic) model. • The logarithmic variation of (dead layer thickness)/(particle size) ratio with the particle size is investigated. • The results of Mossbauer are explained based on the correlation between lattice constant and particle size variation.
Density-dependence as a size-independent regulatory mechanism.
de Vladar, Harold P
2006-01-21
The growth function of populations is central in biomathematics. The main dogma is the existence of density-dependence mechanisms, which can be modelled with distinct functional forms that depend on the size of the population. One important class of regulatory functions is the theta-logistic, which generalizes the logistic equation. Using this model as a motivation, this paper introduces a simple dynamical reformulation that generalizes many growth functions. The reformulation consists of two equations, one for population size, and one for the growth rate. Furthermore, the model shows that although population is density-dependent, the dynamics of the growth rate does not depend either on population size, nor on the carrying capacity. Actually, the growth equation is uncoupled from the population size equation, and the model has only two parameters, a Malthusian parameter rho and a competition coefficient theta. Distinct sign combinations of these parameters reproduce not only the family of theta-logistics, but also the van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. It is also shown that, except for two critical points, there is a general size-scaling relation that includes those appearing in the most important allometric theories, including the recently proposed Metabolic Theory of Ecology. With this model, several issues of general interest are discussed such as the growth of animal population, extinctions, cell growth and allometry, and the effect of environment over a population.
Size-dependent diffusion promotes the emergence of spatiotemporal patterns
DEFF Research Database (Denmark)
Zhang, Lai; Thygesen, Uffe Høgsbro; Banerjee, Malay
2014-01-01
intraspecific physiological variations at the individual level. Here we explore the impacts of size variation within species resulting from individual ontogeny, on the emergence of spatiotemporal patterns in a fully size-structured population model. We found that size dependency of animal's diffusivity greatly......, we found that the single-generation cycle is more likely to drive spatiotemporal patterns compared to predator-prey cycles, meaning that the mechanism of Hopf bifurcation might be more common than hitherto appreciated since the former cycle is more widespread than the latter in case of interacting...
Size dependence of elastic mechanical properties of nanocrystalline aluminum
Energy Technology Data Exchange (ETDEWEB)
Xu, Wenwu; Dávila, Lilian P., E-mail: ldavila@ucmerced.edu
2017-04-24
The effect of grain size on the elastic mechanical properties of nanocrystalline pure metal Al is quantified by molecular dynamics simulation method. In this work, the largest nanocrystalline Al sample has a mean grain size of 29.6 nm and contains over 100 millions atoms in the modeling system. The simulation results show that the elastic properties including elastic modulus and ultimate tensile strength of nanocrystalline Al are relatively insensitive to the variation of mean grain size above 13 nm yet they become distinctly grain size dependent below 13 nm. Moreover, at a grain size <13 nm, the elastic modulus decreases monotonically with decreasing grain size while the ultimate tensile strength of nanocrystalline Al initially decreases with the decrease of the grain size down to 9 nm and then increases with further reduction of grain size. The increase of ultimate tensile strength below 9 nm is believed to be a result of an extended elasticity in the ultrafine grain size nanocrystalline Al. This study can facilitate the prediction of varied mechanical properties for similar nanocrystalline materials and even guide testing and fabrication schemes of such materials.
Size-Dependent Dynamic Behavior of a Microcantilever Plate
Directory of Open Access Journals (Sweden)
Xiaoming Wang
2012-01-01
Full Text Available Material length scale considerably affects the mechanical properties of microcantilever components. Recently, cantilever-plate-like structures have been commonly used, whereas the lack of studies on their size effects constrains the design, testing, and application of these structures. We have studied the size-dependent dynamic behavior of a cantilever plate based on a modified couple stress theory and the differential quadrature method in this note. The numerical solutions of microcantilever plate equation involving the size effect have been presented. We have also analyzed the bending and vibration of the microcantilever plates considering the size effect and discussed the dependence of the size effect on their geometric dimensions. The results have shown that (1 the mechanical characteristics of the cantilever plate show obvious size effects; as a result, the bending deflection of a microcantilever plate reduces whereas the natural frequency increases effectively and (2 for the plates with the same material, the size effect becomes more obvious when the plates are thinner.
A simple shear limited, single size, time dependent flocculation model
Kuprenas, R.; Tran, D. A.; Strom, K.
2017-12-01
This research focuses on the modeling of flocculation of cohesive sediment due to turbulent shear, specifically, investigating the dependency of flocculation on the concentration of cohesive sediment. Flocculation is important in larger sediment transport models as cohesive particles can create aggregates which are orders of magnitude larger than their unflocculated state. As the settling velocity of each particle is determined by the sediment size, density, and shape, accounting for this aggregation is important in determining where the sediment is deposited. This study provides a new formulation for flocculation of cohesive sediment by modifying the Winterwerp (1998) flocculation model (W98) so that it limits floc size to that of the Kolmogorov micro length scale. The W98 model is a simple approach that calculates the average floc size as a function of time. Because of its simplicity, the W98 model is ideal for implementing into larger sediment transport models; however, the model tends to over predict the dependency of the floc size on concentration. It was found that the modification of the coefficients within the original model did not allow for the model to capture the dependency on concentration. Therefore, a new term within the breakup kernel of the W98 formulation was added. The new formulation results is a single size, shear limited, and time dependent flocculation model that is able to effectively capture the dependency of the equilibrium size of flocs on both suspended sediment concentration and the time to equilibrium. The overall behavior of the new model is explored and showed align well with other studies on flocculation. Winterwerp, J. C. (1998). A simple model for turbulence induced flocculation of cohesive sediment. .Journal of Hydraulic Research, 36(3):309-326.
Evaluation of size dependent design shear strength of reinforced ...
Indian Academy of Sciences (India)
to the development of the size dependent models on the shear strength in ... predict the diagonal cracking strength and the ultimate shear strength of RC ... ing strength of normal beams was by Zsutty (1968) based on the data base available without .... The comparison of the calculated shear strength of the beams is shown.
Spectral properties and lattice-size dependences in cluster algorithms
Kerler, W.
1993-01-01
Simulation results of Ising systems for several update rules, observables, and dimensions are analyzed. The lattice-size dependence is discussed for the autocorrelation times and for the weights of eigenvalues, giving fit results in the case of power laws. Implications of spectral properties are pointed out and the behavior of a particular observable not governed by detailed balance is explained.
Zhang, L.-C.; Patone, M.
2017-01-01
We synthesise the existing theory of graph sampling. We propose a formal definition of sampling in finite graphs, and provide a classification of potential graph parameters. We develop a general approach of Horvitz–Thompson estimation to T-stage snowball sampling, and present various reformulations of some common network sampling methods in the literature in terms of the outlined graph sampling theory.
Degree-Degree Dependencies in Random Graphs with Heavy-Tailed Degrees
van der Hofstad, Remco; Litvak, Nelly
2014-01-01
Mixing patterns in large self-organizing networks, such as the Internet, the World Wide Web, social, and biological networks are often characterized by degree-degree dependencies between neighboring nodes. In assortative networks, the degree-degree dependencies are positive (nodes with similar
Size dependence of the optical spectrum in nanocrystalline silver
International Nuclear Information System (INIS)
Taneja, Praveen; Ayyub, Pushan; Chandra, Ramesh
2002-01-01
We report a detailed study of the optical reflectance in sputter-deposited, nanocrystalline silver thin films in order to understand the marked changes in color that occur with decreasing particle size. In particular, samples with an average particle size in the 20 to 35 nm range are golden yellow, while those with a size smaller than 15 nm are black. We simulate the size dependence of the observed reflection spectra by incorporating Mie's theory of scattering and absorption of light in small particles, into the bulk dielectric constant formalism given by Ehrenreich and Philipp [Phys. Rev. 128, 1622 (1962)]. This provides a general method for understanding the reflected color of a dense collection of nanoparticles, such as in a nanocrystalline thin film. A deviation from Mie's theory is observed due to strong interparticle interactions
Size dependence of efficiency at maximum power of heat engine
Izumida, Y.; Ito, N.
2013-01-01
We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.
Size dependence of efficiency at maximum power of heat engine
Izumida, Y.
2013-10-01
We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.
Graphing trillions of triangles.
Burkhardt, Paul
2017-07-01
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.
Probing size-dependent electrokinetics of hematite aggregates
Energy Technology Data Exchange (ETDEWEB)
Kedra-Królik, Karolina; Rosso, Kevin M.; Zarzycki, Piotr
2017-02-01
Aqueous particle suspensions of many kinds are stabilized by the electrostatic potential developed at their surfaces from reaction with water and ions. An important and less well understood aspect of this stabilization is the dependence of the electrostatic surface potential on particle size. Surface electrostatics are typically probed by measuring particle electrophoretic mobilities and quantified in the electrokinetic potential (f), using commercially available Zeta Potential Analyzers (ZPA). Even though ZPAs provide frequency-spectra (histograms) of electrophoretic mobility and hydrodynamic diameter, typically only the maximal-intensity values are reported, despite the information in the remainder of the spectra. Here we propose a mapping procedure that inter-correlates these histograms to extract additional insight, in this case to probe particle size-dependent electrokinetics. Our method is illustrated for a suspension of prototypical iron (III) oxide (hematite, a-Fe2O3). We found that the electrophoretic mobility and f-potential are a linear function of the aggregate size. By analyzing the distribution of surface site types as a function of aggregate size we show that site coordination increases with increasing aggregate diameter. This observation explains why the acidity of the iron oxide particles decreases with increasing particle size.
Proxy Graph: Visual Quality Metrics of Big Graph Sampling.
Nguyen, Quan Hoang; Hong, Seok-Hee; Eades, Peter; Meidiana, Amyra
2017-06-01
Data sampling has been extensively studied for large scale graph mining. Many analyses and tasks become more efficient when performed on graph samples of much smaller size. The use of proxy objects is common in software engineering for analysis and interaction with heavy objects or systems. In this paper, we coin the term 'proxy graph' and empirically investigate how well a proxy graph visualization can represent a big graph. Our investigation focuses on proxy graphs obtained by sampling; this is one of the most common proxy approaches. Despite the plethora of data sampling studies, this is the first evaluation of sampling in the context of graph visualization. For an objective evaluation, we propose a new family of quality metrics for visual quality of proxy graphs. Our experiments cover popular sampling techniques. Our experimental results lead to guidelines for using sampling-based proxy graphs in visualization.
The energetics and structure of nickel clusters: Size dependence
International Nuclear Information System (INIS)
Cleveland, C.L.; Landman, U.
1991-01-01
The energetics of nickel clusters over a broad size range are explored within the context of the many-body potentials obtained via the embedded atom method. Unconstrained local minimum energy configurations are found for single crystal clusters consisting of various truncations of the cube or octahedron, with and without (110) faces, as well as some monotwinnings of these. We also examine multitwinned structures such as icosahedra and various truncations of the decahedron, such as those of Ino and Marks. These clusters range in size from 142 to over 5000 atoms. As in most such previous studies, such as those on Lennard-Jones systems, we find that icosahedral clusters are favored for the smallest cluster sizes and that Marks' decahedra are favored for intermediate sizes (all our atomic systems larger than about 2300 atoms). Of course very large clusters will be single crystal face-centered-cubic (fcc) polyhedra: the onset of optimally stable single-crystal nickel clusters is estimated to occur at 17 000 atoms. We find, via comparisons to results obtained via atomistic calculations, that simple macroscopic expressions using accurate surface, strain, and twinning energies can usefully predict energy differences between different structures even for clusters of much smaller size than expected. These expressions can be used to assess the relative energetic merits of various structural motifs and their dependence on cluster size
Size-dependent magnetic properties of branchlike nickel oxide nanocrystals
Directory of Open Access Journals (Sweden)
Dan Liu
2017-01-01
Full Text Available Branchlike nickel oxide nanocrystals with narrow size distribution are obtained by a solution growth method. The size-dependent of magnetic properties of the nickel oxides were investigated. The results of magnetic characterization indicate that the NiO nanocrystals with size below 12.8 nm show very weak ferromagnetic state at room temperature due to the uncompensated spins. Both of the average blocking temperature (Tb and the irreversible temperature (Tirr increase with the increase of nanoparticle sizes, while both the remnant magnetization and the coercivity at 300 K increase with the decrease of the particle sizes. Moreover, the disappearance of two-magnon (2M band and redshift of one-phonon longitudinal (1LO and two-phonon LO in vibrational properties due to size reduction are observed. Compared to the one with the spherical morphological, it is also found that nano-structured nickel oxides with the branchlike morphology have larger remnant magnetization and the coercivity at 5 K due to their larger surface-to-volume ratio and greater degree of broken symmetry at the surface or the higher proportion of broken bonds.
Size-dependent deformation behavior of nanocrystalline graphene sheets
Energy Technology Data Exchange (ETDEWEB)
Yang, Zhi [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Huang, Yuhong [College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, Shaanxi (China); Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Sun, Yunjin [Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206 (China); Xu, Kewei, E-mail: kwxu@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Department of Physics and Opt-electronic Engineering, Xi’an University of Arts and Science, Xi’an 710065, Shaanxi (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)
2015-08-15
Highlights: • MD simulation is conducted to study the deformation of nanocrystalline graphene. • Unexpectedly, the elastic modulus decreases with the grain size considerably. • But the fracture stress and strain are nearly insensitive to the grain size. • A composite model with grain domains and GBs as two components is suggested. - Abstract: Molecular dynamics (MD) simulation is conducted to study the deformation behavior of nanocrystalline graphene sheets. It is found that the graphene sheets have almost constant fracture stress and strain, but decreased elastic modulus with grain size. The results are different from the size-dependent strength observed in nanocrystalline metals. Structurally, the grain boundaries (GBs) become a principal component in two-dimensional materials with nano-grains and the bond length in GBs tends to be homogeneously distributed. This is almost the same for all the samples. Hence, the fracture stress and strain are almost size independent. As a low-elastic-modulus component, the GBs increase with reducing grain size and the elastic modulus decreases accordingly. A composite model is proposed to elucidate the deformation behavior.
Nano-material size dependent laser-plasma thresholds
EL Sherbini, Ashraf M.; Parigger, Christian G.
2016-10-01
The reduction of laser fluence for initiation of plasma was measured for zinc monoxide nanoparticles of diameters in the range of 100 to 20 nm. In a previous work by EL Sherbini and Parigger [Wavelength Dependency and Threshold Measurements for Nanoparticle-enhanced Laser-induced Breakdown Spectroscopy, Spectrochim. Acta Part B 116 (2016) 8-15], the hypothesis of threshold dependence on particle size leads to the interpretation of the experiments for varying excitation wavelengths with fixed, 30 nm nanomaterial. The experimental results presented in this work were obtained with 1064 nm Nd:YAG radiation and confirm and validate the suspected reduction due to quenching of the thermal conduction length to the respective sizes of the nanoparticles.
Size-dependent electronic properties of metal nanostructures
Indian Academy of Sciences (India)
Table of contents. Size-dependent electronic properties of metal nanostructures · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Nanocrystalline film at liquid-liquid interface · Slide 21 · Slide 22.
The STAPL Parallel Graph Library
Harshvardhan,
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable distributed graph container and a collection of commonly used parallel graph algorithms. The library introduces pGraph pViews that separate algorithm design from the container implementation. It supports three graph processing algorithmic paradigms, level-synchronous, asynchronous and coarse-grained, and provides common graph algorithms based on them. Experimental results demonstrate improved scalability in performance and data size over existing graph libraries on more than 16,000 cores and on internet-scale graphs containing over 16 billion vertices and 250 billion edges. © Springer-Verlag Berlin Heidelberg 2013.
Particle size- and concentration-dependent separation of magnetic nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Witte, Kerstin, E-mail: witte@micromod.de [University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock (Germany); Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Müller, Knut; Grüttner, Cordula; Westphal, Fritz [Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Str. 4, 18119 Rostock (Germany); Johansson, Christer [Acreo Swedish ICT AB, 40014 Göteborg (Sweden)
2017-04-01
Small magnetic nanoparticles with a narrow size distribution are of great interest for several biomedical applications. When the size of the particles decreases, the magnetic moment of the particles decreases. This leads to a significant increase in the separation time by several orders of magnitude. Therefore, in the present study the separation processes of bionized nanoferrites (BNF) with different sizes and concentrations were investigated with the commercial Sepmag Q system. It was found that an increasing initial particle concentration leads to a reduction of the separation time for large nanoparticles due to the higher probability of building chains. Small nanoparticles showed exactly the opposite behavior with rising particle concentration up to 0.1 mg(Fe)/ml. For higher iron concentrations the separation time remains constant and the measured Z-average decreases in the supernatant at same time intervals. At half separation time a high yield with decreasing hydrodynamic diameter of particles can be obtained using higher initial particle concentrations. - Highlights: • Size dependent separation processes of multicore nanoparticles. • Concentration dependent separation processes of multicore nanoparticles. • Increasing separation time with rising concentrations for small particles. • Large particles show typical cooperative magnetophoresis behavior.
Fixation probability on clique-based graphs
Choi, Jeong-Ok; Yu, Unjong
2018-02-01
The fixation probability of a mutant in the evolutionary dynamics of Moran process is calculated by the Monte-Carlo method on a few families of clique-based graphs. It is shown that the complete suppression of fixation can be realized with the generalized clique-wheel graph in the limit of small wheel-clique ratio and infinite size. The family of clique-star is an amplifier, and clique-arms graph changes from amplifier to suppressor as the fitness of the mutant increases. We demonstrate that the overall structure of a graph can be more important to determine the fixation probability than the degree or the heat heterogeneity. The dependence of the fixation probability on the position of the first mutant is discussed.
Chromospheric rotation. II. Dependence on the size of chromospheric features
Energy Technology Data Exchange (ETDEWEB)
Azzarelli, L; Casalini, P; Cerri, S; Denoth, F [Consiglio Nazionale delle Ricerche, Pisa (Italy). Ist. di Elaborazione della Informazione
1979-08-01
The dependence of solar rotation on the size of the chromospheric tracers is considered. On the basis of an analysis of Ca II K/sub 3/ daily filtergrams taken in the period 8 May-14 August, 1972, chromospheric features can be divided into two classes according to their size. Features with size falling into the range 24 000-110 000 km can be identified with network elements, while those falling into the range 120 000-300 000 km with active regions, or brightness features of comparable size present at high latitudes. The rotation rate is determined separately for the two families of chromospheric features by means of a cross-correlation technique directly yields the average daily displacement of tracers due to rotation. Before computing the cross-correlation functions, chromospheric brightness data have been filtered with appropriate bandpass and highpass filters for separating spatial periodicities whose wavelengths fall into the two ranges of size, characteristic of the network pattern and of the activity centers. A difference less than 1% of the rotation rate of the two families of chromospheric features has been found. This is an indication for a substantial corotation at chromospheric levels of different short-lived features, both related to solar activity and controlled by the convective supergranular motions.
Size-dependent electronic eigenstates of multilayer organic quantum wells
International Nuclear Information System (INIS)
Nguyen Ba An; Hanamura, E.
1995-09-01
A detailed theoretical treatment is given eigenfunctions and eigenenergies of a multilayer organic quantum well sandwiched between two different dielectric media. The abrupt change of dielectric constants at the interfaces distorts the wave function and results in possible surface states in addition to propagating states. The proper boundary conditions are accounted for by the method of image charges. Analytic criteria for existence of surface states are established using the nearest layers approximation, which depend not only on the intralayer parameters but also on the number of layers. The size dependence together with the dependence on signs and relative magnitudes of the structure parameters fully determine the energy spectrum of propagating states as well as the number and the location of surface states. (author). 28 refs, 10 figs, 2 tabs
Minimizing cell size dependence in micromagnetics simulations with thermal noise
Energy Technology Data Exchange (ETDEWEB)
MartInez, E [Departamento de Ingenieria Electromecanica, Universidad de Burgos, Plaza Misael Banuelos, s/n, E-09001, Burgos (Spain); Lopez-DIaz, L [Departamento de Fisica Aplicada. Universidad Salamanca. Plaza de la Merced s/n. Salamanca E-37008 (Spain); Torres, L [Departamento de Fisica Aplicada. Universidad Salamanca. Plaza de la Merced s/n. Salamanca E-37008 (Spain); GarcIa-Cervera, C J [Department of Mathematics. University of California, Santa Barbara, CA 93106 (United States)
2007-02-21
Langevin dynamics treats finite temperature effects in a micromagnetics framework by adding a thermal fluctuation field to the effective field. Several works have addressed the dependence of numerical results on the cell size used to split the ferromagnetic samples on the nanoscale regime. In this paper, some former problems dealing with the dependence on the spatial discretization at finite temperature have been revised. We have focused our attention on the stability of the numerical schemes used to integrate the Langevin equation. In particular, a detailed analysis of results was carried out as a function of the time step. It was confirmed that the mentioned dependence can be minimized if an unconditional stable integration method is used to numerically solve the Langevin equation.
Minimizing cell size dependence in micromagnetics simulations with thermal noise
International Nuclear Information System (INIS)
MartInez, E; Lopez-DIaz, L; Torres, L; GarcIa-Cervera, C J
2007-01-01
Langevin dynamics treats finite temperature effects in a micromagnetics framework by adding a thermal fluctuation field to the effective field. Several works have addressed the dependence of numerical results on the cell size used to split the ferromagnetic samples on the nanoscale regime. In this paper, some former problems dealing with the dependence on the spatial discretization at finite temperature have been revised. We have focused our attention on the stability of the numerical schemes used to integrate the Langevin equation. In particular, a detailed analysis of results was carried out as a function of the time step. It was confirmed that the mentioned dependence can be minimized if an unconditional stable integration method is used to numerically solve the Langevin equation
Localization in random bipartite graphs: Numerical and empirical study
Slanina, František
2017-05-01
We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes. We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge. We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical studies of the Amazon network.
Brouwer, A.E.; Haemers, W.H.; Brouwer, A.E.; Haemers, W.H.
2012-01-01
This chapter presents some simple results on graph spectra.We assume the reader is familiar with elementary linear algebra and graph theory. Throughout, J will denote the all-1 matrix, and 1 is the all-1 vector.
Awrejcewicz, J.; Krysko, V. A.; Yakovleva, T. V.; Pavlov, S. P.; Krysko, V. A.
2018-05-01
A mathematical model of complex vibrations exhibited by contact dynamics of size-dependent beam-plate constructions was derived by taking the account of constraints between these structural members. The governing equations were yielded by variational principles based on the moment theory of elasticity. The centre of the investigated plate was supported by a beam. The plate and the beam satisfied the Kirchhoff/Euler-Bernoulli hypotheses. The derived partial differential equations (PDEs) were reduced to the Cauchy problems by the Faedo-Galerkin method in higher approximations, whereas the Cauchy problem was solved using a few Runge-Kutta methods. Reliability of results was validated by comparing the solutions obtained by qualitatively different methods. Complex vibrations were investigated with the help of methods of nonlinear dynamics such as vibration signals, phase portraits, Fourier power spectra, wavelet analysis, and estimation of the largest Lyapunov exponents based on the Rosenstein, Kantz, and Wolf methods. The effect of size-dependent parameters of the beam and plate on their contact interaction was investigated. It was detected and illustrated that the first contact between the size-dependent structural members implies chaotic vibrations. In addition, problems of chaotic synchronization between a nanoplate and a nanobeam were addressed.
Particle size dependence of biogenic secondary organic aerosol molecular composition
Tu, Peijun; Johnston, Murray V.
2017-06-01
Formation of secondary organic aerosol (SOA) is initiated by the oxidation of volatile organic compounds (VOCs) in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process) to be distinguished from those produced by particle phase reaction (a volume-limited process). In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O / C) ratio and carbon oxidation state (OSc) were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases). Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased), the average O / C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes important.
Particle size dependence of biogenic secondary organic aerosol molecular composition
Directory of Open Access Journals (Sweden)
P. Tu
2017-06-01
Full Text Available Formation of secondary organic aerosol (SOA is initiated by the oxidation of volatile organic compounds (VOCs in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process to be distinguished from those produced by particle phase reaction (a volume-limited process. In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O ∕ C ratio and carbon oxidation state (OSc were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases. Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased, the average O ∕ C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes
Size-dependent structure of silver nanoparticles under high pressure
Energy Technology Data Exchange (ETDEWEB)
Koski, Kristie Jo [Univ. of California, Berkeley, CA (United States)
2008-12-31
Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.
Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles.
Guo, Sijin; Li, Hui; Ma, Mengshi; Fu, Jian; Dong, Yizhou; Guo, Peixuan
2017-12-15
RNA molecules have emerged as promising therapeutics. Like all other drugs, the safety profile and immune response are important criteria for drug evaluation. However, the literature on RNA immunogenicity has been controversial. Here, we used the approach of RNA nanotechnology to demonstrate that the immune response of RNA nanoparticles is size, shape, and sequence dependent. RNA triangle, square, pentagon, and tetrahedron with same shape but different sizes, or same size but different shapes were used as models to investigate the immune response. The levels of pro-inflammatory cytokines induced by these RNA nanoarchitectures were assessed in macrophage-like cells and animals. It was found that RNA polygons without extension at the vertexes were immune inert. However, when single-stranded RNA with a specific sequence was extended from the vertexes of RNA polygons, strong immune responses were detected. These immunostimulations are sequence specific, because some other extended sequences induced little or no immune response. Additionally, larger-size RNA square induced stronger cytokine secretion. 3D RNA tetrahedron showed stronger immunostimulation than planar RNA triangle. These results suggest that the immunogenicity of RNA nanoparticles is tunable to produce either a minimal immune response that can serve as safe therapeutic vectors, or a strong immune response for cancer immunotherapy or vaccine adjuvants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles
Directory of Open Access Journals (Sweden)
Sijin Guo
2017-12-01
Full Text Available RNA molecules have emerged as promising therapeutics. Like all other drugs, the safety profile and immune response are important criteria for drug evaluation. However, the literature on RNA immunogenicity has been controversial. Here, we used the approach of RNA nanotechnology to demonstrate that the immune response of RNA nanoparticles is size, shape, and sequence dependent. RNA triangle, square, pentagon, and tetrahedron with same shape but different sizes, or same size but different shapes were used as models to investigate the immune response. The levels of pro-inflammatory cytokines induced by these RNA nanoarchitectures were assessed in macrophage-like cells and animals. It was found that RNA polygons without extension at the vertexes were immune inert. However, when single-stranded RNA with a specific sequence was extended from the vertexes of RNA polygons, strong immune responses were detected. These immunostimulations are sequence specific, because some other extended sequences induced little or no immune response. Additionally, larger-size RNA square induced stronger cytokine secretion. 3D RNA tetrahedron showed stronger immunostimulation than planar RNA triangle. These results suggest that the immunogenicity of RNA nanoparticles is tunable to produce either a minimal immune response that can serve as safe therapeutic vectors, or a strong immune response for cancer immunotherapy or vaccine adjuvants.
Size and shape dependent lattice parameters of metallic nanoparticles
International Nuclear Information System (INIS)
Qi, W. H.; Wang, M. P.
2005-01-01
A model is developed to account for the size and shape dependent lattice parameters of metallic nanoparticles, where the particle shape difference is considered by introducing a shape factor. It is predicted that the lattice parameters of nanoparticles in several nanometers decrease with decreasing of the particle size, which is consistent with the corresponding experimental results. Furthermore, it is found that the particle shape can lead to 10% of the total lattice variation. The model is a continuous media model and can deal with the nanoparticles larger than 1 nm. Since the shape factor approaches to infinity for nanowires and nanofilms, therefore, the model cannot be generalized to the systems of nanowires and nanofilms. For the input parameters are physical constants of bulk materials, therefore, the present model may be used to predict the lattice variation of different metallic nanoparticles with different lattice structures
Directory of Open Access Journals (Sweden)
Unil Yun
2016-05-01
Full Text Available Frequent graph mining has been proposed to find interesting patterns (i.e., frequent sub-graphs from databases composed of graph transaction data, which can effectively express complex and large data in the real world. In addition, various applications for graph mining have been suggested. Traditional graph pattern mining methods use a single minimum support threshold factor in order to check whether or not mined patterns are interesting. However, it is not a sufficient factor that can consider valuable characteristics of graphs such as graph sizes and features of graph elements. That is, previous methods cannot consider such important characteristics in their mining operations since they only use a fixed minimum support threshold in the mining process. For this reason, in this paper, we propose a novel graph mining algorithm that can consider various multiple, minimum support constraints according to the types of graph elements and changeable minimum support conditions, depending on lengths of graph patterns. In addition, the proposed algorithm performs in mining operations more efficiently because it can minimize duplicated operations and computational overheads by considering symmetry features of graphs. Experimental results provided in this paper demonstrate that the proposed algorithm outperforms previous mining approaches in terms of pattern generation, runtime and memory usage.
A Modal-Logic Based Graph Abstraction
Bauer, J.; Boneva, I.B.; Kurban, M.E.; Rensink, Arend; Ehrig, H; Heckel, R.; Rozenberg, G.; Taentzer, G.
2008-01-01
Infinite or very large state spaces often prohibit the successful verification of graph transformation systems. Abstract graph transformation is an approach that tackles this problem by abstracting graphs to abstract graphs of bounded size and by lifting application of productions to abstract
The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics
Energy Technology Data Exchange (ETDEWEB)
Bai, Gang, E-mail: baigang@njupt.edu.cn [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Zhiguo [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xie, Qiyun; Guo, Yanyan; Li, Wei [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Yan, Xiaobing [College of Electronic and information Engineering, Hebei University, Baoding 071002 (China)
2015-09-15
A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba{sub 0.67}Sr{sub 0.33}TiO{sub 3} above T{sub c} similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.
The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics
Bai, Gang; Liu, Zhiguo; Xie, Qiyun; Guo, Yanyan; Li, Wei; Yan, Xiaobing
2015-09-01
A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.
Size dependent elastic modulus and mechanical resilience of dental enamel.
O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan
2014-03-21
Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spectral fluctuations of quantum graphs
International Nuclear Information System (INIS)
Pluhař, Z.; Weidenmüller, H. A.
2014-01-01
We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry
Palkowski, Marek; Bielecki, Wlodzimierz
2017-06-02
RNA secondary structure prediction is a compute intensive task that lies at the core of several search algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense array codes. However, classical affine loop nest transformations used with these techniques do not optimize effectively codes of dynamic programming of RNA structure predictions. The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled Nussinov loop nest. The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in which only the two outer loops of the Nussinov loop nest are tiled.
Peng, Yifan; Arighi, Cecilia; Wu, Cathy H; Vijay-Shanker, K
2016-01-01
There has been a large growth in the number of biomedical publications that report experimental results. Many of these results concern detection of protein-protein interactions (PPI). In BioCreative V, we participated in the BioC task and developed a PPI system to detect text passages with PPIs in the full-text articles. By adopting the BioC format, the output of the system can be seamlessly added to the biocuration pipeline with little effort required for the system integration. A distinctive feature of our PPI system is that it utilizes extended dependency graph, an intermediate level of representation that attempts to abstract away syntactic variations in text. As a result, we are able to use only a limited set of rules to extract PPI pairs in the sentences, and additional rules to detect additional passages for PPI pairs. For evaluation, we used the 95 articles that were provided for the BioC annotation task. We retrieved the unique PPIs from the BioGRID database for these articles and show that our system achieves a recall of 83.5%. In order to evaluate the detection of passages with PPIs, we further annotated Abstract and Results sections of 20 documents from the dataset and show that an f-value of 80.5% was obtained. To evaluate the generalizability of the system, we also conducted experiments on AIMed, a well-known PPI corpus. We achieved an f-value of 76.1% for sentence detection and an f-value of 64.7% for unique PPI detection.Database URL: http://proteininformationresource.org/iprolink/corpora. © The Author(s) 2016. Published by Oxford University Press.
Size dependent nanomechanics of coil spring shaped polymer nanowires.
Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru
2015-11-27
Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke's law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials.
Injumpa, Wishulada; Ritprajak, Patcharee; Insin, Numpon
2017-04-01
incubation with the highest concentration of 1000 μg/mL. Although 1000 μg/mL of all sizes of the nanocomposites decreased macrophage viability, the cytotoxicity of the nanocomposites was notably less than silica. The inflammatory response of macrophage was also observed by ELISA, and we found that the size of 20 and 40 nm, but not 100 and 200 nm, obviously stimulated IL-6 production. From this study, the preparations of multifunctional superparamagnetic nanocomposites of different sizes along with the size-dependent effects on cellular toxicity and inflammatory response were demonstrated and could be applied for designing of new drug carriers.
Energy Technology Data Exchange (ETDEWEB)
Injumpa, Wishulada [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Ritprajak, Patcharee [Department of Microbiology, and RU in Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 (Thailand); Insin, Numpon, E-mail: Numpon.I@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)
2017-04-01
incubation with the highest concentration of 1000 μg/mL. Although 1000 μg/mL of all sizes of the nanocomposites decreased macrophage viability, the cytotoxicity of the nanocomposites was notably less than silica. The inflammatory response of macrophage was also observed by ELISA, and we found that the size of 20 and 40 nm, but not 100 and 200 nm, obviously stimulated IL-6 production. From this study, the preparations of multifunctional superparamagnetic nanocomposites of different sizes along with the size-dependent effects on cellular toxicity and inflammatory response were demonstrated and could be applied for designing of new drug carriers. - Highlights: • Magnetic iron oxide-silica nanocomposites (MNCs) size series were synthesized. • PPEGMA-MNCs exhibited low cytotoxicity against fibroblast and macrophage lines. • The effects on the sizes of PPEGMA-coated MNCs on immune responses were observed.
DEFF Research Database (Denmark)
Vestergaard, Preben Dahl; Hartnell, Bert L.
2006-01-01
There are many results dealing with the problem of decomposing a fixed graph into isomorphic subgraphs. There has also been work on characterizing graphs with the property that one can delete the edges of a number of edge disjoint copies of the subgraph and, regardless of how that is done, the gr...
Tailored Random Graph Ensembles
International Nuclear Information System (INIS)
Roberts, E S; Annibale, A; Coolen, A C C
2013-01-01
Tailored graph ensembles are a developing bridge between biological networks and statistical mechanics. The aim is to use this concept to generate a suite of rigorous tools that can be used to quantify and compare the topology of cellular signalling networks, such as protein-protein interaction networks and gene regulation networks. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies of random graph ensembles constrained with degree distribution and degree-degree correlation. We also construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities which converges to a strictly uniform measure and is based on edge swaps that conserve all degrees. The acceptance probabilities can be generalized to define Markov chains that target any alternative desired measure on the space of directed or undirected graphs, in order to generate graphs with more sophisticated topological features.
Functional-dependent and size-dependent uptake of nanoparticles in PC12
International Nuclear Information System (INIS)
Sakai, N; Matsui, Y; Nakayama, A; Yoneda, M; Tsuda, A
2011-01-01
It is suggested that the uptake of nanoparticles is changed by the particle size or the surface modification. In this study, we quantified the uptake of nanoparticles in PC12 cells exposed Quantum Dots with different surface modification or fluorescent polystyrene particles with different particle size. The PC12 cells were exposed three types of the Quantum Dots (carboxyl base-functionalized, amino base-functionalized or non-base-functionalized) or three types of the fluorescent particles (22 nm, 100 nm or 1000 nm) for 3 hours. The uptake of the nanoparticles was quantified with a spectrofluorophotometer. The carboxyl base-functionalized Quantum Dots were considerably taken up by the cells than the non-base-functionalized Quantum Dots. Conversely, the amino base-functionalized Quantum Dots were taken up by the cells less frequently than the non-base-functionalized Quantum Dots. The particle number of the 22 nm-nanoparticles taken up by the cells was about 53 times higher than the 100 nm-particles. However, the particle weight of the 100 nm-particles taken up by the cells was higher than that of the 22 nm-nanoparticles. The 1000 nm-particles were adhered to the cell membrane, but they were little taken up by the cells. We concluded that nanoparticles can be taken up nerve cells in functional-dependent and size-dependent manners.
Dependence of strength on particle size in graphite
International Nuclear Information System (INIS)
Kennedy, E.P.; Kennedy, C.R.
The strength to particle size relationship for specially fabricated graphites has been demonstrated and rationalized using fracture mechanics. In the past, similar studies have yielded empirical data using only commercially available material. Thus, experimental verification of these relationships has been difficult. However, the graphites of this study were fabricated by controlling the particle size ranges for a series of isotropic graphites. All graphites that were evaluated had a constant 1.85 g/cm 3 density. Thus, particle size was the only variable. This study also considered the particle size effect on other physical properties; coefficient of thermal expansion (CTE), electrical resistivity, fracture strain, and Young's modulus
International Nuclear Information System (INIS)
Barra, F.; Gaspard, P.
2001-01-01
We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron operator that generalizes previous propositions. In this way, the relaxation rates as well as the chaotic properties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier transforms that decompose the observables and probability densities into sectors corresponding to different values of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open graphs that converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle on the open graph is shown to correspond to the lifetime of a system that undergoes a diffusion process before it escapes
Femoral sizing in total knee arthroplasty is rotation dependant.
Koninckx, Angelique; Deltour, Arnaud; Thienpont, Emmanuel
2014-12-01
The mismatch between the medio-lateral (ML) and the antero-posterior (AP) size of femoral components in total knee arthroplasty (TKA) has been linked to gender, ethnicity, morphotype and height differences in patients. The hypothesis of this study was that the AP size measurement of a femoral component increases with more external rotation in posterior referencing TKA. During a 2-year period, 201 patients were included in this prospective study. The AP distance of the distal femur was measured with an AP sizer of the Vanguard (Biomet, Warsaw, US) knee system. This AP sizer allows to dial in external rotation by 1° increments and to determine the femoral size with an anterior boom. AP size was noted at 0°, 3° and 5° of external rotation and then compared for ML matching. Antero-posterior and corresponding ML sizes match perfectly for the Vanguard at 0° of external rotation and a central boom position on the anterior femoral surface. Then, the anterior boom was positioned on the antero-lateral cortex and the AP size increased a mean (SD) 1 (0.5) mm. With 3° of external rotation, the AP size increased a mean (SD) 2.3 (0.4) mm and for 5° a mean (SD) 3.8 (0.3) mm (P external rotation that is dialled in during surgery. Since these parameters vary case per case, the availability of narrow components offers more surgical options to the surgeon and its importance extends beyond the gender aspect allowing different amounts of external rotation to be used without ML overhang. II.
Size dependent emission stimulation in ZnO nanosheets
International Nuclear Information System (INIS)
Torchynska, T.V.; El Filali, B.
2014-01-01
Photoluminescence (PL), X ray diffraction (XRD) and Raman scattering have been studied in crystalline ZnO nanosheets (NSs) of different sizes, estimated by scanning electronic microscopy (SEM). ZnO NSs with the size from the range of 60–600 nm were created by the electrochemical (anodization) method and followed thermal annealing at 400 °C for 2 h in ambient air. XRD study confirms the wurtzite structure of ZnO NSs and has revealed that the lattice parameters increase monotonically with decreasing NS sizes. Simultaneously the intensity of a set of Raman peaks increases and Raman peaks shift into the low energy range. The surface phonon has been detected in smallest size ZnO NSs. Two types of PL bands deal with a set of phonon replicas of free excitons and the defect related emission have been detected in ZnO NSs. The intensity enhancement of exciton- and defect-related PL bands with decreasing ZnO NS sizes has been detected. The intensity stimulation of exciton-related PL bands is attributed to the realization of the week confinement and the exciton-light coupling with the formation of polariton in small size ZnO NSs of 67–170 nm. The intensity rising of defect-related PL bands is attributed to the concentration enlargement of surface defects when the surface to volume ration increases at decreasing ZnO NS sizes. Numerical simulations of radiative lifetimes and exciton radiative recombination rates in ZnO NSs for different emission wavelengths have been done using the exciton-light coupling model. Then the experimental and numerically simulated PL results have been compared and discussed. - Highlights: • Optical and structural investigations of the ZnO nanosheets with the sizes 60–600 nm. • The enlargement of interplanar distances in the wurtzite ZnO crystal lattice is detected. • The change of optic phonon energy and surface phonon appearing are reveled. • ZnO emission stimulation at the week confinement and electron-light coupling with the
Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Žalnėravičius, Rokas [State Research Institute Center for Physical Sciences and Technology (Lithuania); Paškevičius, Algimantas [Nature Research Centre, Laboratory of Biodeterioration Research (Lithuania); Kurtinaitiene, Marija; Jagminas, Arūnas, E-mail: arunas.jagminas@ftmc.lt [State Research Institute Center for Physical Sciences and Technology (Lithuania)
2016-10-15
The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe{sub 2}O{sub 4} Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract.
Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles
Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas
2016-10-01
The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe2O4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.
Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles
International Nuclear Information System (INIS)
Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas
2016-01-01
The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe_2O_4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract
Shape, size and temperature dependency of thermal expansion ...
Indian Academy of Sciences (India)
M GOYAL
2018-05-19
May 19, 2018 ... Oriental J. Chem.32(4), 2193 (2016), is extended in the present study using Qi and Wang model [Mater. Chem. Phys. ... Nanomaterials; shape factor; size effect; thermal expansion; equation of state. ... als are different from that of their bulk material. ..... and 1c along with the present calculated results. It is.
Size-dependent surface plasmon resonance in silver silica nanocomposites
International Nuclear Information System (INIS)
Thomas, Senoy; Nair, Saritha K; Jamal, E Muhammad Abdul; Anantharaman, M R; Al-Harthi, S H; Varma, Manoj Raama
2008-01-01
Silver silica nanocomposites were obtained by the sol-gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO 3 ) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO 3 concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5 nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5-10 nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory
Size-dependent melting of nanoparticles: Hundred years of ...
Indian Academy of Sciences (India)
point depression of nanoparticles and the variation is linear with the inverse of the particle size. An attempt to ... Different expressions can be derived by assuming different melting hypothesis that explains different variations. ... process, the entire solid is in equilibrium with entire melted particles [1,15] which corresponds to ...
Size- and shape-dependent surface thermodynamic properties of nanocrystals
Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang
2018-05-01
As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.
DEFF Research Database (Denmark)
Seiller, Thomas
2016-01-01
Interaction graphs were introduced as a general, uniform, construction of dynamic models of linear logic, encompassing all Geometry of Interaction (GoI) constructions introduced so far. This series of work was inspired from Girard's hyperfinite GoI, and develops a quantitative approach that should...... be understood as a dynamic version of weighted relational models. Until now, the interaction graphs framework has been shown to deal with exponentials for the constrained system ELL (Elementary Linear Logic) while keeping its quantitative aspect. Adapting older constructions by Girard, one can clearly define...... "full" exponentials, but at the cost of these quantitative features. We show here that allowing interpretations of proofs to use continuous (yet finite in a measure-theoretic sense) sets of states, as opposed to earlier Interaction Graphs constructions were these sets of states were discrete (and finite...
Trudeau, Richard J
1994-01-01
Preface1. Pure Mathematics Introduction; Euclidean Geometry as Pure Mathematics; Games; Why Study Pure Mathematics?; What's Coming; Suggested Reading2. Graphs Introduction; Sets; Paradox; Graphs; Graph diagrams; Cautions; Common Graphs; Discovery; Complements and Subgraphs; Isomorphism; Recognizing Isomorphic Graphs; Semantics The Number of Graphs Having a Given nu; Exercises; Suggested Reading3. Planar Graphs Introduction; UG, K subscript 5, and the Jordan Curve Theorem; Are there More Nonplanar Graphs?; Expansions; Kuratowski's Theorem; Determining Whether a Graph is Planar or
Size-dependent penetrant diffusion in polymer glasses.
Meng, Dong; Zhang, Kai; Kumar, Sanat K
2018-05-18
Molecular Dynamics simulations are used to understand the underpinning basis of the transport of gas-like solutes in deeply quenched polymeric glasses. As found in previous work, small solutes, with sizes smaller than 0.15 times the chain monomer size, move as might be expected in a medium with large pores. In contrast, the motion of larger solutes is activated and is strongly facilitated by matrix motion. In particular, solute motion is coupled to the local elastic fluctuations of the matrix as characterized by the Debye-Waller factor. While similar ideas have been previously proposed for the viscosity of supercooled liquids above their glass transition, to our knowledge, this is the first illustration of this concept in the context of solute mass transport in deeply quenched polymer glasses.
Particle size-dependent radical generation from wildland fire smoke
International Nuclear Information System (INIS)
Leonard, Stephen S.; Castranova, Vince; Chen, Bean T.; Schwegler-Berry, Diane; Hoover, Mark; Piacitelli, Chris; Gaughan, Denise M.
2007-01-01
Firefighting, along with construction, mining and agriculture, ranks among the most dangerous occupations. In addition, the work environment of firefighters is unlike that of any other occupation, not only because of the obvious physical hazards but also due to the respiratory and systemic health hazards of smoke inhalation resulting from combustion. A significant amount of research has been devoted to studying municipal firefighters; however, these studies may not be useful in wildland firefighter exposures, because the two work environments are so different. Not only are wildland firefighters exposed to different combustion products, but their exposure profiles are different. The combustion products wildland firefighters are exposed to can vary greatly in characteristics due to the type and amount of material being burned, soil conditions, temperature and exposure time. Smoke inhalation is one of the greatest concerns for firefighter health and it has been shown that the smoke consists of a large number of particles. These smoke particles contain intermediates of hydrogen, carbon and oxygen free radicals, which may pose a potential health risk. Our investigation looked into the involvement of free radicals in smoke toxicity and the relationship between particle size and radical generation. Samples were collected in discrete aerodynamic particle sizes from a wildfire in Alaska, preserved and then shipped to our laboratory for analysis. Electron spin resonance was used to measure carbon-centered as well as hydroxyl radicals produced by a Fenton-like reaction with wildfire smoke. Further study of reactive oxygen species was conducted using analysis of cellular H 2 O 2 generation, lipid peroxidation of cellular membranes and DNA damage. Results demonstrate that coarse size-range particles contained more carbon radicals per unit mass than the ultrafine particles; however, the ultrafine particles generated more ·OH radicals in the acellular Fenton-like reaction. The
Effects of nanoscale size dependent parameters on lattice thermal ...
Indian Academy of Sciences (India)
diameter dependence also indicates a strong control of surface effect in surface to bulk ratio for the 22 nm wire diameter. ... dimensional systems of variable transverse dimension using a large scale numerical transverse .... include unharmonic interaction (three-phonon Umklapp scattering,τU ), mass difference scat-.
Size-Dependent Materials Properties Toward a Universal Equation
Directory of Open Access Journals (Sweden)
Guisbiers G
2010-01-01
Full Text Available Abstract Due to the lack of experimental values concerning some material properties at the nanoscale, it is interesting to evaluate this theoretically. Through a “top–down” approach, a universal equation is developed here which is particularly helpful when experiments are difficult to lead on a specific material property. It only requires the knowledge of the surface area to volume ratio of the nanomaterial, its size as well as the statistic (Fermi–Dirac or Bose–Einstein followed by the particles involved in the considered material property. Comparison between different existing theoretical models and the proposed equation is done.
Deep Learning with Dynamic Computation Graphs
Looks, Moshe; Herreshoff, Marcello; Hutchins, DeLesley; Norvig, Peter
2017-01-01
Neural networks that compute over graph structures are a natural fit for problems in a variety of domains, including natural language (parse trees) and cheminformatics (molecular graphs). However, since the computation graph has a different shape and size for every input, such networks do not directly support batched training or inference. They are also difficult to implement in popular deep learning libraries, which are based on static data-flow graphs. We introduce a technique called dynami...
Diestel, Reinhard
2017-01-01
This standard textbook of modern graph theory, now in its fifth edition, combines the authority of a classic with the engaging freshness of style that is the hallmark of active mathematics. It covers the core material of the subject with concise yet reliably complete proofs, while offering glimpses of more advanced methods in each field by one or two deeper results, again with proofs given in full detail. The book can be used as a reliable text for an introductory course, as a graduate text, and for self-study. From the reviews: “This outstanding book cannot be substituted with any other book on the present textbook market. It has every chance of becoming the standard textbook for graph theory.”Acta Scientiarum Mathematiciarum “Deep, clear, wonderful. This is a serious book about the heart of graph theory. It has depth and integrity. ”Persi Diaconis & Ron Graham, SIAM Review “The book has received a very enthusiastic reception, which it amply deserves. A masterly elucidation of modern graph theo...
Size-dependent nonlocal effects in plasmonic semiconductor particles
DEFF Research Database (Denmark)
Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn
2017-01-01
Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor materials: intrinsic...... InSb and n-doped GaAs. Our results show that the semiconductors indeed display nonlocal effects, and that these effects are even more pronounced than in metals. In a 150 nm InSb particle at 300 K, the LSP frequency is blueshifted 35%, which is orders of magnitude larger than the blueshift in a metal...... particle of the same size. This property, together with their tunability, makes semiconductors a promising platform for experiments in nonlocal effects. Copyright (C)EPLA, 2017...
Holistic Processing in the Composite Task Depends on Face Size.
Ross, David A; Gauthier, Isabel
Holistic processing is a hallmark of face processing. There is evidence that holistic processing is strongest for faces at identification distance, 2 - 10 meters from the observer. However, this evidence is based on tasks that have been little used in the literature and that are indirect measures of holistic processing. We use the composite task- a well validated and frequently used paradigm - to measure the effect of viewing distance on holistic processing. In line with previous work, we find a congruency x alignment effect that is strongest for faces that are close (2m equivalent distance) than for faces that are further away (24m equivalent distance). In contrast, the alignment effect for same trials, used by several authors to measure holistic processing, produced results that are difficult to interpret. We conclude that our results converge with previous findings providing more direct evidence for an effect of size on holistic processing.
System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow
Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.
2007-06-01
This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.
Size Dependence of Dust Distribution around the Earth Orbit
Energy Technology Data Exchange (ETDEWEB)
Ueda, Takahiro; Takeuchi, Taku [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551 (Japan); Kobayashi, Hiroshi; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro, E-mail: t.ueda@geo.titech.ac.jp [Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602 (Japan)
2017-05-01
In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s {sub max} = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.
Size Dependence of Dust Distribution around the Earth Orbit
International Nuclear Information System (INIS)
Ueda, Takahiro; Takeuchi, Taku; Kobayashi, Hiroshi; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro
2017-01-01
In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s max = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.
Wavelength-Dependent Extinction and Grain Sizes in "Dippers"
Sitko, Michael; Russell, Ray W.; Long, Zachary; Bayyari, Ammar; Assani, Korash; Grady, Carol; Lisse, Carey Michael; Marengo, Massimo; Wisniewski, John
2018-01-01
We have examined inter-night variability of K2-discovered "Dippers" that are not close to being viewed edge-on (as determined from previously-reported ALMA images) using the SpeX spectrograph on NASA's Infrared Telescope facility (IRTF). The three objects observed were EPIC 203850058, EPIC 205151387, and EPIC 204638512 ( = 2MASS J16042165-2130284). Using the ratio of the fluxes from 0.7-2.4 microns between two successive nights, we find that in at least two cases, the extinction increased toward shorter wavelengths. In the case of EPIC 204638512, we find that the properties of the dust differ from that seen in the diffuse interstellar medium and denser molecular clouds. However, the grain properties needed to explain the extinction does resemble those used to model the disks of many young stellar objects. The best fit to the data on EPIC 204638512 includes grains at least 500 microns in size, but lacks grains smaller than 0.25 microns. Since EPIC 204638512 is seen nearly face-on, it is possible the grains are entrained in an accretion flow that preferentially destroys the smallest grains. However, we have no indication of significant gas accretion onto the star in the form of emission lines observed in young low-mass stars. But the He I line at 1.083 microns was seen to change from night to night, and showed a P Cygni profile on one night, suggesting the gas might be outflowing from regions near the star.
Gould, Ronald
2012-01-01
This introduction to graph theory focuses on well-established topics, covering primary techniques and including both algorithmic and theoretical problems. The algorithms are presented with a minimum of advanced data structures and programming details. This thoroughly corrected 1988 edition provides insights to computer scientists as well as advanced undergraduates and graduate students of topology, algebra, and matrix theory. Fundamental concepts and notation and elementary properties and operations are the first subjects, followed by examinations of paths and searching, trees, and networks. S
Chartrand, Gary; Zhang, Ping
2010-01-01
Gary Chartrand has influenced the world of Graph Theory for almost half a century. He has supervised more than a score of Ph.D. dissertations and written several books on the subject. The most widely known of these texts, Graphs and Digraphs, … has much to recommend it, with clear exposition, and numerous challenging examples [that] make it an ideal textbook for the advanced undergraduate or beginning graduate course. The authors have updated their notation to reflect the current practice in this still-growing area of study. By the authors' estimation, the 5th edition is approximately 50% longer than the 4th edition. … the legendary Frank Harary, author of the second graph theory text ever produced, is one of the figures profiled. His book was the standard in the discipline for several decades. Chartrand, Lesniak and Zhang have produced a worthy successor.-John T. Saccoman, MAA Reviews, June 2012 (This book is in the MAA's basic library list.)As with the earlier editions, the current text emphasizes clear...
International Nuclear Information System (INIS)
Sun, Juan; Pantoya, Michelle L.; Simon, Sindee L.
2006-01-01
The oxidation reaction of aluminum nanoparticles with oxygen gas and the thermal behavior of a metastable intermolecular composite (MIC) composed of the aluminum nanoparticles and molybdenum trioxide are studied with differential scanning calorimetry (DSC) as a function of the size and size distribution of the aluminum particles. Both broad and narrow size distributions have been investigated with aluminum particle sizes ranging from 30 to 160 nm; comparisons are also made to the behavior of micrometer-size particles. Several parameters have been used to characterize the reactivity of aluminum nanoparticles, including the fraction of aluminum that reacts prior to aluminum melting, heat of reaction, onset and peak temperatures, and maximum reaction rates. The results indicate that the reactivity of aluminum nanoparticles is significantly higher than that of the micrometer-size samples, but depending on the measure of reactivity, it may also depend strongly on the size distribution. The isoconversional method was used to calculate the apparent activation energy, and the values obtained for both the Al/O 2 and Al/MoO 3 reaction are in the range of 200-300 kJ/mol
Estimation of the PCR efficiency based on a size-dependent modelling of the amplification process
Lalam, N.; Jacob, C.; Jagers, P.
2005-01-01
We propose a stochastic modelling of the PCR amplification process by a size-dependent branching process starting as a supercritical Bienaymé–Galton–Watson transient phase and then having a saturation near-critical size-dependent phase. This model based on the concept of saturation allows one to
Connection between the growth rate distribution and the size dependent crystal growth
Mitrović, M. M.; Žekić, A. A.; IIić, Z. Z.
2002-07-01
The results of investigations of the connection between the growth rate dispersions and the size dependent crystal growth of potassium dihydrogen phosphate (KDP), Rochelle salt (RS) and sodium chlorate (SC) are presented. A possible way out of the existing confusion in the size dependent crystal growth investigations is suggested. It is shown that the size independent growth exists if the crystals belonging to one growth rate distribution maximum are considered separately. The investigations suggest possible reason for the observed distribution maxima widths, and the high data scattering on the growth rate versus the crystal size dependence.
Inverse size scaling of the nucleolus by a concentration-dependent phase transition.
Weber, Stephanie C; Brangwynne, Clifford P
2015-03-02
Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size depends linearly on cell size. However, the mechanisms of organelle size scaling remain unclear. Here, we show that the size of the nucleolus, a membraneless organelle important for cell-size homeostasis [7], is coupled to cell size by an intracellular phase transition. We find that nucleolar size directly scales with cell size in early C. elegans embryos. Surprisingly, however, when embryo size is altered, we observe inverse scaling: nucleolar size increases in small cells and decreases in large cells. We demonstrate that this seemingly contradictory result arises from maternal loading of a fixed number rather than a fixed concentration of nucleolar components, which condense into nucleoli only above a threshold concentration. Our results suggest that the physics of phase transitions can dictate whether an organelle assembles, and, if so, its size, providing a mechanistic link between organelle assembly and cell size. Since the nucleolus is known to play a key role in cell growth, this biophysical readout of cell size could provide a novel feedback mechanism for growth control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huss, Magnus; Gårdmark, Anna; Van Leeuwen, Anieke; de Roos, André M
2012-04-01
Patterns of coexistence among competing species exhibiting size- and food-dependent growth remain largely unexplored. Here we studied mechanisms behind coexistence and shifts in competitive dominance in a size-structured fish guild, representing sprat and herring stocks in the Baltic Sea, using a physiologically structured model of competing populations. The influence of degree of resource overlap and the possibility of undergoing ontogenetic diet shifts were studied as functions of zooplankton and zoobenthos productivity. By imposing different size-dependent mortalities, we could study the outcome of competition under contrasting environmental regimes representing poor and favorable growth conditions. We found that the identity of the dominant species shifted between low and high productivity. Adding a herring-exclusive benthos resource only provided a competitive advantage over sprat when size-dependent mortality was high enough to allow for rapid growth in the zooplankton niche. Hence, the importance of a bottom-up effect of varying productivity was dependent on a strong top-down effect. Although herring could depress shared resources to lower levels than could sprat and also could access an exclusive resource, the smaller size at maturation of sprat allowed it to coexist with herring and, in some cases, exclude it. Our model system, characterized by interactions among size cohorts, allowed for consumer coexistence even at full resource overlap at intermediate productivities when size-dependent mortality was low. Observed shifts in community patterns were crucially dependent on the explicit consideration of size- and food-dependent growth. Accordingly, we argue that accounting for food-dependent growth and size-dependent interactions is necessary to better predict changes in community structure and dynamics following changes in major ecosystem drivers such as resource productivity and mortality, which are fundamental for our ability to manage exploitation of
Body size-dependent Cd accumulation in the zebra mussel Dreissena polymorpha from different routes.
Tang, Wen-Li; Evans, Douglas; Kraemer, Lisa; Zhong, Huan
2017-02-01
Understanding body size-dependent metal accumulation in aquatic organisms (i.e., metal allometry) is critical in interpreting biomonitoring data. While growth has received the most attention, little is known about controls of metal exposure routes on metal allometry. Here, size-dependent Cd accumulation in zebra mussels (Dreissena polymorpha) from different routes were investigated by exposing mussels to A.( 111 Cd spiked algae+ 113 Cd spiked river water) or B.( 111 Cd spiked sediments+ 113 Cd spiked river water). After exposure, 111 Cd or 113 Cd levels in mussel tissue were found to be negatively correlated with tissue weight, while Cd allometry coefficients (b values) were dependent on Cd exposure routes: -0.664 for algae, -0.241 for sediments and -0.379 for river water, compared to -0.582 in un-exposed mussels. By comparing different Cd exposure routes, we found that size-dependent Cd bioaccumulation from algae or river water could be more responsible for the overall size-dependent Cd accumulation in mussels, and the relative importance of the two sources was dependent on mussel size ranges: Cadmium obtained from algae (algae-Cd) was more important in size-dependent Cd accumulation in smaller mussels (tissue dry weight 5 mg). In contrast, sediment-Cd contributed only a small amount to Cd accumulation in zebra mussels and may have little effect on size-dependent Cd bioaccumulation. Our results suggest that size-dependent Cd accumulation in mussels could be largely affected by exposure routes, which should be considered when trying to interpret Cd biomonitoring data of zebra mussels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Software for Graph Analysis and Visualization
Directory of Open Access Journals (Sweden)
M. I. Kolomeychenko
2014-01-01
Full Text Available This paper describes the software for graph storage, analysis and visualization. The article presents a comparative analysis of existing software for analysis and visualization of graphs, describes the overall architecture of application and basic principles of construction and operation of the main modules. Furthermore, a description of the developed graph storage oriented to storage and processing of large-scale graphs is presented. The developed algorithm for finding communities and implemented algorithms of autolayouts of graphs are the main functionality of the product. The main advantage of the developed software is high speed processing of large size networks (up to millions of nodes and links. Moreover, the proposed graph storage architecture is unique and has no analogues. The developed approaches and algorithms are optimized for operating with big graphs and have high productivity.
Yamada, Yuhei; Yamazaki, Yoshihiro
2018-04-01
This study considered a stochastic model for cluster growth in a Markov process with a cluster size dependent additive noise. According to this model, the probability distribution of the cluster size transiently becomes an exponential or a log-normal distribution depending on the initial condition of the growth. In this letter, a master equation is obtained for this model, and derivation of the distributions is discussed.
Chartrand, Gary; Rosen, Kenneth H
2008-01-01
Beginning with the origin of the four color problem in 1852, the field of graph colorings has developed into one of the most popular areas of graph theory. Introducing graph theory with a coloring theme, Chromatic Graph Theory explores connections between major topics in graph theory and graph colorings as well as emerging topics. This self-contained book first presents various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. The remainder of the text deals exclusively with graph colorings. It covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings, and many distance-related vertex coloring...
Response dependence of a ring ionization chamber response on the size of the X radiation field
International Nuclear Information System (INIS)
Yoshizumi, Maira T.; Caldas, Linda V.E.
2009-01-01
A ring monitor ionization chamber was developed at the IPEN-Sao Paulo, Brazil, fixed on a system of collimators which determine the dimension of the radiation field size. This work verified that the ring chamber response depends on the exponential form with the size of de radiation field
Huss, M.; Gårdmark, A.; van Leeuwen, A.; de Roos, A.M.
2012-01-01
Patterns of coexistence among competing species exhibiting size- and food-dependent growth remain largely unexplored. Here we studied mechanisms behind coexistence and shifts in competitive dominance in a size-structured fish guild, representing sprat and herring stocks in the Baltic Sea, using a
Unravelling the size and temperature dependence of exciton lifetimes in colloidal ZnSe quantum dots
Eilers, Joren; Van Hest, Jacobine; Meijerink, A; Donega, Celso De Mello
2014-01-01
We report on the temperature dependence of the band-edge photoluminescence decay of organically capped colloidal ZnSe quantum dots (QDs) in the size range from 4.0 to 7.5 nm. A similar trend is observed for all investigated sizes: the decay time is short (∼5 ns) above 20 K and increases sharply
Size and temperature dependence of the tensile mechanical properties of zinc blende CdSe nanowires
International Nuclear Information System (INIS)
Fu, Bing; Chen, Na; Xie, Yiqun; Ye, Xiang; Gu, Xiao
2013-01-01
The effect of size and temperature on the tensile mechanical properties of zinc blende CdSe nanowires is investigated by all atoms molecular dynamic simulation. We found the ultimate tensile strength and Young's modulus will decrease as the temperature and size of the nanowire increase. The size and temperature dependence are mainly attributed to surface effect and thermally elongation effect. High reversibility of tensile behavior will make zinc blende CdSe nanowires suitable for building efficient nanodevices.
International Nuclear Information System (INIS)
Cui, Zixiang; Duan, Huijuan; Li, Wenjiao; Xue, Yongqiang
2015-01-01
In the processes of preparation and application of nanomaterials, the decomposition reactions of nanomaterials are often involved. However, there is a dramatic difference in decomposition thermodynamics between nanomaterials and the bulk counterparts, and the difference depends on the size of the particles that compose the nanomaterials. In this paper, the decomposition model of a nanoparticle was built, the theory of decomposition thermodynamics of nanomaterials was proposed, and the relations of the size dependence of thermodynamic quantities for the decomposition reactions were deduced. In experiment, taking the thermal decomposition of nano-Cu 2 (OH) 2 CO 3 with different particle sizes (the range of radius is at 8.95–27.4 nm) as a system, the reaction thermodynamic quantities were determined, and the regularities of size dependence of the quantities were summarized. These experimental regularities consist with the above thermodynamic relations. The results show that there is a significant effect of the size of particles composing a nanomaterial on the decomposition thermodynamics. When all the decomposition products are gases, the differences in thermodynamic quantities of reaction between the nanomaterials and the bulk counterparts depend on the particle size; while when one of the decomposition products is a solid, the differences depend on both the initial particle size of the nanoparticle and the decomposition ratio. When the decomposition ratio is very small, these differences are only related to the initial particle size; and when the radius of the nanoparticles approaches or exceeds 10 nm, the reaction thermodynamic functions and the logarithm of the equilibrium constant are linearly associated with the reciprocal of radius, respectively. The thermodynamic theory can quantificationally describe the regularities of the size dependence of thermodynamic quantities for decomposition reactions of nanomaterials, and contribute to the researches and the
KIDNEY SIZE IN INFANTS OF TIGHTLY CONTROLLED INSULIN-DEPENDENT DIABETIC MOTHERS
BOS, AF; AALDERS, AL; VANDOORMAAL, JJ; MARTIJN, A; OKKEN, A
The aim of this study was to evaluate the influence of insulin-dependent diabetes mellitus in pregnant women on the kidney size of their infants. We measured kidney length in the first week of life using ultrasonography in 20 infants of tightly controlled insulin-dependent diabetic mothers and 20
Size and composition dependence of the frozen structures in Co-based bimetallic clusters
International Nuclear Information System (INIS)
Li, Guojian; Wang, Qiang; Cao, Yongze; Du, Jiaojiao; He, Jicheng
2012-01-01
This Letter studies the size-dependent freezing of Co, Co–Ni, and Co–Cu clusters by using molecular dynamics with embedded atom method. Size effect occurs in these three types of clusters. The clusters with large sizes always freeze to form their bulk-like structures. However, the frozen structures for small sizes are generally related to their compositions. The icosahedral clusters are formed for Co clusters (for ⩽3.2 nm diameter) and also for Co–Ni clusters but at a larger size range (for ⩽4.08 nm). Upon the Co–Cu clusters, decahedral structure is obtained for small size (for 2.47 nm). The released energy induced the structural transformation plays a key role in the frozen structures. These results indicate that the preformed clusters with special structures can be tuned by controlling their compositions and sizes. -- Highlights: ► The size effect occurs in the Co, Co–Ni, and Co–Cu clusters. ► The clusters with large sizes always freeze to form their bulk-like structures. ► The frozen structures for small sizes are generally related to their compositions. ► Icosahedron is formed for Co and also for Co–Ni but at a larger size range. ► Upon the Co–Cu clusters, decahedral structure is obtained for small size.
Steiner Distance in Graphs--A Survey
Mao, Yaping
2017-01-01
For a connected graph $G$ of order at least $2$ and $S\\subseteq V(G)$, the \\emph{Steiner distance} $d_G(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. In this paper, we summarize the known results on the Steiner distance parameters, including Steiner distance, Steiner diameter, Steiner center, Steiner median, Steiner interval, Steiner distance hereditary graph, Steiner distance stable graph, average Steiner distance, and Steiner ...
A Heuristic Probabilistic Approach to Estimating Size-Dependent Mobility of Nonuniform Sediment
Woldegiorgis, B. T.; Wu, F. C.; van Griensven, A.; Bauwens, W.
2017-12-01
Simulating the mechanism of bed sediment mobility is essential for modelling sediment dynamics. Despite the fact that many studies are carried out on this subject, they use complex mathematical formulations that are computationally expensive, and are often not easy for implementation. In order to present a simple and computationally efficient complement to detailed sediment mobility models, we developed a heuristic probabilistic approach to estimating the size-dependent mobilities of nonuniform sediment based on the pre- and post-entrainment particle size distributions (PSDs), assuming that the PSDs are lognormally distributed. The approach fits a lognormal probability density function (PDF) to the pre-entrainment PSD of bed sediment and uses the threshold particle size of incipient motion and the concept of sediment mixture to estimate the PSDs of the entrained sediment and post-entrainment bed sediment. The new approach is simple in physical sense and significantly reduces the complexity and computation time and resource required by detailed sediment mobility models. It is calibrated and validated with laboratory and field data by comparing to the size-dependent mobilities predicted with the existing empirical lognormal cumulative distribution function (CDF) approach. The novel features of the current approach are: (1) separating the entrained and non-entrained sediments by a threshold particle size, which is a modified critical particle size of incipient motion by accounting for the mixed-size effects, and (2) using the mixture-based pre- and post-entrainment PSDs to provide a continuous estimate of the size-dependent sediment mobility.
Grain size dependence of the critical current density in YBa2Cu3Ox superconductors
International Nuclear Information System (INIS)
Kuwabara, M.; Shimooka, H.
1989-01-01
The grain size dependence of the critical current density in bulk single-phase YBa 2 Cu 3 O x ceramics was investigated. The grain size of the materials was changed to range approximately from 1.0 to 25 μm by changing the conditions of power processing and sintering, associated with an increase in the sintered density of the materials with increasing grain size. The critical current density has been found to exhibit a significant grain size dependence, changing from 880 A/cm 2 to a value of 100 A/cm 2 with a small increase in the average grain size from 1.2 to 2.0 μm. This seems to provide information about the nature of the weak link between superconducting grains which might govern the critical current density of the materials
Zhang, Chen
2014-09-04
© 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.
Size dependences of crystal structure and magnetic properties of DyMnO{sub 3} nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Tajiri, T., E-mail: tajiri@fukuoka-u.ac.jp [Faculty of Science, Fukuoka University, Fukuoka 814-0180 (Japan); Terashita, N.; Hamamoto, K.; Deguchi, H.; Mito, M. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Morimoto, Y.; Konishi, K. [Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Kohno, A. [Faculty of Science, Fukuoka University, Fukuoka 814-0180 (Japan)
2013-11-15
We synthesized DyMnO{sub 3} nanoparticles with particle sizes of about 7.5–15.3 nm in the pores of mesoporous silica and investigated their crystal structure and magnetic properties. As the particle size decreased, the lattice constants of the DyMnO{sub 3} nanoparticles deviated from those of the bulk crystal, and the Jahn–Teller distortion in the nanoparticle systems decreased. In addition, the estimated lattice strain increased with decreasing particle size. The DyMnO{sub 3} nanoparticles showed superparamagnetic behavior. The blocking temperature and the coercive field increased with decreasing particle size, and this behavior was contrary to the usual magnetic size effects. It is deduced that these unique size dependences of the magnetic properties for the DyMnO{sub 3} nanoparticles were derived from the changes in lattice constants and lattice strain. The anisotropic lattice deformation in the crystal structure of the nanoparticles induces an enhancement of the magnetic anisotropy, which results in the increase in blocking temperature and coercive field with decreasing particle size. - Highlights: • We successfully synthesized DyMnO{sub 3} nanoparticles with particle size of 7.5–15.3 nm. • Lattice strain increases with decreasing particle size. • Lattice constants exhibit anisotropic change with decreasing particle size. • Distortion of crystal structure leads to enhancement of magnetic anisotropy constant. • Blocking temperature and coercive field increases with decreasing particle size.
Continuous-time quantum walk on an extended star graph: Trapping and superradiance transition
Yalouz, Saad; Pouthier, Vincent
2018-02-01
A tight-binding model is introduced for describing the dynamics of an exciton on an extended star graph whose central node is occupied by a trap. On this graph, the exciton dynamics is governed by two kinds of eigenstates: many eigenstates are associated with degenerate real eigenvalues insensitive to the trap, whereas three decaying eigenstates characterized by complex energies contribute to the trapping process. It is shown that the excitonic population absorbed by the trap depends on the size of the graph, only. By contrast, both the size parameters and the absorption rate control the dynamics of the trapping. When these parameters are judiciously chosen, the efficiency of the transfer is optimized resulting in the minimization of the absorption time. Analysis of the eigenstates reveals that such a feature arises around the superradiance transition. Moreover, depending on the size of the network, two situations are highlighted where the transport efficiency is either superoptimized or suboptimized.
Size-dependent reactivity of magnetite nanoparticles: a field-laboratory comparison
Swindle, Andrew L.; Elwood Madden, Andrew S.; Cozzarelli, Isabelle M.; Benamara, Mourad
2014-01-01
Logistic challenges make direct comparisons between laboratory- and field-based investigations into the size-dependent reactivity of nanomaterials difficult. This investigation sought to compare the size-dependent reactivity of nanoparticles in a field setting to a laboratory analog using the specific example of magnetite dissolution. Synthetic magnetite nanoparticles of three size intervals, ∼6 nm, ∼44 nm, and ∼90 nm were emplaced in the subsurface of the USGS research site at the Norman Landfill for up to 30 days using custom-made subsurface nanoparticle holders. Laboratory analog dissolution experiments were conducted using synthetic groundwater. Reaction products were analyzed via TEM and SEM and compared to initial particle characterizations. Field results indicated that an organic coating developed on the particle surfaces largely inhibiting reactivity. Limited dissolution occurred, with the amount of dissolution decreasing as particle size decreased. Conversely, the laboratory analogs without organics revealed greater dissolution of the smaller particles. These results showed that the presence of dissolved organics led to a nearly complete reversal in the size-dependent reactivity trends displayed between the field and laboratory experiments indicating that size-dependent trends observed in laboratory investigations may not be relevant in organic-rich natural systems.
Chromatic polynomials of random graphs
International Nuclear Information System (INIS)
Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian
2010-01-01
Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Size of pancreas in non-insulin-dependent diabetes mellitus: a study based on CT
International Nuclear Information System (INIS)
Shin, Ju Won; Yoon, Soon Min; Yoon, Mi Jin; Song, Moon Gab; Kim, Yoon Suk; Yoon, Young Kyu; Jun, Se June
1997-01-01
To evaluate changes of pancreatic size with aging in control subjects and in non-insulin- dependent diabetic patients. Two groups of non-insulin-dependent diabetic patients were examined; one had been treated with an oral hypoglycemic agent(n=59), and the other with insulin(n=56). The CT findings of 175 patients without clinical evidence of pancreatic disease were included as a normal control. In control subjects, pancreatic size and age correlated. The pancreas was smaller in non-insulin-dependent diabetics than in control subjects and smaller in insulin- treated non-insulin-dependent diabetics than in non-insulin treated patients. The pancreas was smaller in non-insulin-dependent diabetic patients than in control subjects within the same age range
Dependence of US hurricane economic loss on maximum wind speed and storm size
International Nuclear Information System (INIS)
Zhai, Alice R; Jiang, Jonathan H
2014-01-01
Many empirical hurricane economic loss models consider only wind speed and neglect storm size. These models may be inadequate in accurately predicting the losses of super-sized storms, such as Hurricane Sandy in 2012. In this study, we examined the dependences of normalized US hurricane loss on both wind speed and storm size for 73 tropical cyclones that made landfall in the US from 1988 through 2012. A multi-variate least squares regression is used to construct a hurricane loss model using both wind speed and size as predictors. Using maximum wind speed and size together captures more variance of losses than using wind speed or size alone. It is found that normalized hurricane loss (L) approximately follows a power law relation with maximum wind speed (V max ) and size (R), L = 10 c V max a R b , with c determining an overall scaling factor and the exponents a and b generally ranging between 4–12 and 2–4 respectively. Both a and b tend to increase with stronger wind speed. Hurricane Sandy’s size was about three times of the average size of all hurricanes analyzed. Based on the bi-variate regression model that explains the most variance for hurricanes, Hurricane Sandy’s loss would be approximately 20 times smaller if its size were of the average size with maximum wind speed unchanged. It is important to revise conventional empirical hurricane loss models that are only dependent on maximum wind speed to include both maximum wind speed and size as predictors. (letters)
Graph visualization (Invited talk)
Wijk, van J.J.; Kreveld, van M.J.; Speckmann, B.
2012-01-01
Black and white node link diagrams are the classic method to depict graphs, but these often fall short to give insight in large graphs or when attributes of nodes and edges play an important role. Graph visualization aims obtaining insight in such graphs using interactive graphical representations.
Energy Technology Data Exchange (ETDEWEB)
Mammen, Nisha [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, -560064 Bangalore India; Spanu, Leonardo [Shell Technology Center, Shell India Markets Private Limited, -560048 Bangalore India; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Yang, Bing [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Halder, Avik [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Institute for Molecular Engineering, The University of Chicago, 60637 Chicago IL USA; Narasimhan, Shobhana [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, -560064 Bangalore India
2017-12-22
Having the ability to tune the oxidation state of Cu nanoparticles is essential for their utility as catalysts. The degree of oxidation that maximizes product yield and selectivity is known to vary, depending on the particular reaction. Using first principles calculations and XANES measurements, we show that for subnanometer sizes in the gas phase, smaller Cu clusters are more resistant to oxidation. However, this trend is reversed upon deposition on an alumina support. We are able to explain this result in terms of strong cluster-support interactions, which differ significantly for the oxidized and elemental clusters. The stable cluster phases also feature novel oxygen stoichiometries. Our results suggest that one can tune the degree of oxidation of Cu catalysts by optimizing not just their size, but also the support they are deposited on.
Chen, Li Qiang; Fang, Li; Ling, Jian; Ding, Cheng Zhi; Kang, Bin; Huang, Cheng Zhi
2015-03-16
Silver nanoparticles (AgNPs) are increasingly being used as antimicrobial agents and drug carriers in biomedical fields. However, toxicological information on their effects on red blood cells (RBCs) and the mechanisms involved remain sparse. In this article, we examined the size dependent nanotoxicity of AgNPs using three different characteristic sizes of 15 nm (AgNPs15), 50 nm (AgNPs50), and 100 nm (AgNPs100) against fish RBCs. Optical microscopy and transmission electron microscopy observations showed that AgNPs exhibited a size effect on their adsorption and uptake by RBCs. The middle sized AgNPs50, compared with the smaller or bigger ones, showed the highest level of adsorption and uptake by the RBCs, suggesting an optimal size of ∼50 nm for passive uptake by RBCs. The toxic effects determined based on the hemolysis, membrane injury, lipid peroxidation, and antioxidant enzyme production were fairly size and dose dependent. In particular, the smallest sized AgNPs15 displayed a greater ability to induce hemolysis and membrane damage than AgNPs50 and AgNPs100. Such cytotoxicity induced by AgNPs should be attributed to the direct interaction of the nanoparticle with the RBCs, resulting in the production of oxidative stress, membrane injury, and subsequently hemolysis. Overall, the results suggest that particle size is a critical factor influencing the interaction between AgNPs and the RBCs.
Relating zeta functions of discrete and quantum graphs
Harrison, Jonathan; Weyand, Tracy
2018-02-01
We write the spectral zeta function of the Laplace operator on an equilateral metric graph in terms of the spectral zeta function of the normalized Laplace operator on the corresponding discrete graph. To do this, we apply a relation between the spectrum of the Laplacian on a discrete graph and that of the Laplacian on an equilateral metric graph. As a by-product, we determine how the multiplicity of eigenvalues of the quantum graph, that are also in the spectrum of the graph with Dirichlet conditions at the vertices, depends on the graph geometry. Finally we apply the result to calculate the vacuum energy and spectral determinant of a complete bipartite graph and compare our results with those for a star graph, a graph in which all vertices are connected to a central vertex by a single edge.
Anomalous roughness of turbulent interfaces with system size dependent local roughness exponent
International Nuclear Information System (INIS)
Balankin, Alexander S.; Matamoros, Daniel Morales
2005-01-01
In a system far from equilibrium the system size can play the role of control parameter that governs the spatiotemporal dynamics of the system. Accordingly, the kinetic roughness of interfaces in systems far from equilibrium may depend on the system size. To get an insight into this problem, we performed a detailed study of rough interfaces formed in paper combustion experiments. Using paper sheets of different width λ, we found that the turbulent flame fronts display anomalous multi-scaling characterized by non-universal global roughness exponent α and by the system size dependent spectrum of local roughness exponents, ζ q (λ)=ζ 1 (1)q -ω λ φ q =0.93q -0.15 . The structure factor of turbulent flame fronts also exhibits unconventional scaling dependence on λ. These results are expected to apply to a broad range of far from equilibrium systems when the kinetic energy fluctuations exceed a certain critical value.
International Nuclear Information System (INIS)
Sutrakar, Vijay Kumar; Roy Mahapatra, D.
2011-01-01
A novel size dependent FCC (face-centered-cubic) → HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions 20 Å, in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC → HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.
Unraveling the size-dependent optical properties of dissolved organic matter
DEFF Research Database (Denmark)
Wünsch, Urban; Stedmon, Colin; Tranvik, Lars
2018-01-01
The size-dependent optical properties of dissolved organic matter (DOM) from four Swedish lakes were investigated using High Performance Size Exclusion Chromatography (HPSEC) in conjunction with online characterization of absorbance (240–600 nm) and fluorescence (excitation: 275 nm, emission: 300....... This study demonstrates the potential for HPSEC and novel mathematical approaches to provide unprecedented insights into the relationship between optical and chemical properties of DOM in aquatic systems...
Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment
International Nuclear Information System (INIS)
Fu Qiang; Song Xuefeng; Gao Jingyun; Han Xiaobing; Zhao Qing; Yu Dapeng; Jin Yu; Jiang Xingyu
2010-01-01
Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).
Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment.
Fu, Qiang; Jin, Yu; Song, Xuefeng; Gao, Jingyun; Han, Xiaobing; Jiang, Xingyu; Zhao, Qing; Yu, Dapeng
2010-03-05
Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).
Hanif, Zahid; Ahmed, Farrukh R; Shin, Seung Won; Kim, Young-Kee; Um, Soong Ho
2014-07-01
A controlled preparation of cellulose nanocrystals of different sizes and shapes has been carried out by acid hydrolysis of microcrystalline cellulose. The size- and concentration-dependent toxicity effects of the resulting cellulose nanocrystals were evaluated against two different cell lines, NIH3T3 murine embryo fibroblasts and HCT116 colon adenocarcinoma. It could serve as a therapeutic platform for cancer treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Eigenfunction statistics on quantum graphs
International Nuclear Information System (INIS)
Gnutzmann, S.; Keating, J.P.; Piotet, F.
2010-01-01
We investigate the spatial statistics of the energy eigenfunctions on large quantum graphs. It has previously been conjectured that these should be described by a Gaussian Random Wave Model, by analogy with quantum chaotic systems, for which such a model was proposed by Berry in 1977. The autocorrelation functions we calculate for an individual quantum graph exhibit a universal component, which completely determines a Gaussian Random Wave Model, and a system-dependent deviation. This deviation depends on the graph only through its underlying classical dynamics. Classical criteria for quantum universality to be met asymptotically in the large graph limit (i.e. for the non-universal deviation to vanish) are then extracted. We use an exact field theoretic expression in terms of a variant of a supersymmetric σ model. A saddle-point analysis of this expression leads to the estimates. In particular, intensity correlations are used to discuss the possible equidistribution of the energy eigenfunctions in the large graph limit. When equidistribution is asymptotically realized, our theory predicts a rate of convergence that is a significant refinement of previous estimates. The universal and system-dependent components of intensity correlation functions are recovered by means of an exact trace formula which we analyse in the diagonal approximation, drawing in this way a parallel between the field theory and semiclassics. Our results provide the first instance where an asymptotic Gaussian Random Wave Model has been established microscopically for eigenfunctions in a system with no disorder.
Pragmatic Graph Rewriting Modifications
Rodgers, Peter; Vidal, Natalia
1999-01-01
We present new pragmatic constructs for easing programming in visual graph rewriting programming languages. The first is a modification to the rewriting process for nodes the host graph, where nodes specified as 'Once Only' in the LHS of a rewrite match at most once with a corresponding node in the host graph. This reduces the previously common use of tags to indicate the progress of matching in the graph. The second modification controls the application of LHS graphs, where those specified a...
Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.
2017-04-01
In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.
Álvarez, E
2015-12-09
© Inter-Research 2016. Shelf waters of the Cantabrian Sea (southern Bay of Biscay) are productive ecosystems with a marked seasonality. We present the results from 1 yr of monthly monitoring of the phytoplankton community together with an intensive sampling carried out in 2 contrasting scenarios during the summer and autumn in a mid-shelf area. Stratification was apparent on the shelf in summer, while the water column was comparatively well mixed in autumn. The size structure of the photoautotrophic community, from pico-to micro-phytoplankton, was tightly coupled with the meteo-climatic and hydrographical conditions. Over the short term, variations in the size structure and chlorophyll content of phytoplankton cells were related to changes in the physico-chemical environment, through changes in the availability of nutrients and light. Uncoupling between the dynamics of carbon biomass and chlorophyll resulted in chlorophyll to carbon ratios dependent on body size. The slope of the size dependence of chlorophyll content increased with increasing irradiance, reflecting different photoacclimation plasticity from pico-to micro-phytoplankton. The results have important implications for the productivity and the fate of biogenic carbon in this region, since the size dependence of photosynthetic rates is directly related to the size scaling of chlorophyll content.
Á lvarez, E; Moran, Xose Anxelu G.; Ló pez-Urrutia, Á
2015-01-01
© Inter-Research 2016. Shelf waters of the Cantabrian Sea (southern Bay of Biscay) are productive ecosystems with a marked seasonality. We present the results from 1 yr of monthly monitoring of the phytoplankton community together with an intensive sampling carried out in 2 contrasting scenarios during the summer and autumn in a mid-shelf area. Stratification was apparent on the shelf in summer, while the water column was comparatively well mixed in autumn. The size structure of the photoautotrophic community, from pico-to micro-phytoplankton, was tightly coupled with the meteo-climatic and hydrographical conditions. Over the short term, variations in the size structure and chlorophyll content of phytoplankton cells were related to changes in the physico-chemical environment, through changes in the availability of nutrients and light. Uncoupling between the dynamics of carbon biomass and chlorophyll resulted in chlorophyll to carbon ratios dependent on body size. The slope of the size dependence of chlorophyll content increased with increasing irradiance, reflecting different photoacclimation plasticity from pico-to micro-phytoplankton. The results have important implications for the productivity and the fate of biogenic carbon in this region, since the size dependence of photosynthetic rates is directly related to the size scaling of chlorophyll content.
Energy Technology Data Exchange (ETDEWEB)
Armbruster, Oskar; Naghilou, Aida [University of Vienna, Department of Physical Chemistry, Währinger Straße 42, A-1090 Vienna (Austria); Kitzler, Markus [TU Wien, Photonics Institute, Gusshausstraße 27-29, A-1040 Vienna (Austria); Kautek, Wolfgang, E-mail: wolfgang.kautek@univie.ac.at [University of Vienna, Department of Physical Chemistry, Währinger Straße 42, A-1090 Vienna (Austria)
2017-02-28
Highlights: • Influence of laser spot size and pulse number on the ablation of solids. • An extended defect model describes the dependence of the threshold fluence on the basis of high and low density defects. • Successfully applied to silicon and stainless steel. - Abstract: Laser spot size and pulse number are two major parameters influencing the ablation of solids. The extended defect model describes the dependence of the threshold fluence on the basis of high and low density defects. This model was successfully applied to silicon and stainless steel. It is demonstrated that heat accumulation cannot describe the experimental results.
Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds
Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.
2015-02-01
Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.
Measurements of the size dependence of the concentration of nonvolatile material in fog droplets
Ogren, J. A.; Noone, K. J.; Hallberg, A.; Heintzenberg, J.; Schell, D.; Berner, A.; Solly, I.; Kruisz, C.; Reischl, G.; Arends, B. G.; Wobrock, W.
1992-11-01
Measurements of the size dependence of the mass concentration of nonvolatile material dissolved and suspended in fog droplets were obtained with three complementary approaches, covering a size range from c. 1 50µm diameter: a counterflow virtual impactor, an eight-stage aerosol impactor, and a two-stage fogwater impactor. Concentrations were observed to decrease with size over the entire range, contrary to expectations of increasing concentrations at larger sizes. It is possible that the larger droplets had solute concentrations that increased with increasing size, but that the increase was too weak for the measurements to resolve. Future studies should consider the hypothesis that the droplets were coated with a surface-active substance that hindered their uptake of water.
Seasonal and particle size-dependent variations in gas/particle partitioning of PCDD/Fs
International Nuclear Information System (INIS)
Lee, Se-Jin; Ale, Debaki; Chang, Yoon-Seok; Oh, Jeong-Eun; Shin, Sun Kyoung
2008-01-01
This study monitored particle size-dependent variations in atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Two gas/particle partitioning models, the subcooled liquid vapor pressure (P L 0 ) and the octanol-air partition coefficient (K OA ) model, were applied to each particle sizes. The regression coefficients of each fraction against the gas/particle partition coefficient (K P ) were similar for separated particles within the same sample set but differed for particles collected during different periods. Gas/particle partitioning calculated from the integral of fractions was similar to that of size-segregated particles and previously measured bulk values. Despite the different behaviors and production mechanisms of atmospheric particles of different sizes, PCDD/F partitioning of each size range was controlled by meteorological conditions such as atmospheric temperature, O 3 and UV, which reflects no source related with certain particle size ranges but mixed urban sources within this city. Our observations emphasize that when assessing environmental and health effects, the movement of PCDD/Fs in air should be considered in conjunction with particle size in addition to the bulk aerosol. - Gas/particle partitioning of atmospheric PCDD/Fs for different particle sizes reflects the impacts of emitters of different size ranges
Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding
Vuković, Lidija D.; Jevtić, Predrag; Zhang, Zhaojie; Stohr, Bradley A.; Levy, Daniel L.
2016-01-01
ABSTRACT Altered nuclear size is associated with many cancers, and determining whether cancer-associated changes in nuclear size contribute to carcinogenesis necessitates an understanding of mechanisms of nuclear size regulation. Although nuclear import rates generally positively correlate with nuclear size, NTF2 levels negatively affect nuclear size, despite the role of NTF2 (also known as NUTF2) in nuclear recycling of the import factor Ran. We show that binding of Ran to NTF2 is required for NTF2 to inhibit nuclear expansion and import of large cargo molecules in Xenopus laevis egg and embryo extracts, consistent with our observation that NTF2 reduces the diameter of the nuclear pore complex (NPC) in a Ran-binding-dependent manner. Furthermore, we demonstrate that ectopic NTF2 expression in Xenopus embryos and mammalian tissue culture cells alters nuclear size. Finally, we show that increases in nuclear size during melanoma progression correlate with reduced NTF2 expression, and increasing NTF2 levels in melanoma cells is sufficient to reduce nuclear size. These results show a conserved capacity for NTF2 to impact on nuclear size, and we propose that NTF2 might be a new cancer biomarker. PMID:26823604
Continuous Size-Dependent Sorting of Ferromagnetic Nanoparticles in Laser-Ablated Microchannel
Directory of Open Access Journals (Sweden)
Yiqiang Fan
2016-01-01
Full Text Available This paper reports a low-cost method of continuous size-dependent sorting of magnetic nanoparticles in polymer-based microfluidic devices by magnetic force. A neodymium permanent magnet was used to generate a magnetic field perpendicular to the fluid flow direction. Firstly, FeNi3 magnetic nanoparticles were chemically synthesized with diameter ranges from 80 nm to 200 nm; then, the solution of magnetic nanoparticles and a buffer were passed through the microchannel in laminar flow; the magnetic nanoparticles were deflected from the flow direction under the applied magnetic field. Nanoparticles in the microchannel will move towards the direction of high-gradient magnetic fields, and the degree of deflection depends on their sizes; therefore, magnetic nanoparticles of different sizes can be separated and finally collected from different output ports. The proposed method offers a rapid and continuous approach of preparing magnetic nanoparticles with a narrow size distribution from an arbitrary particle size distribution. The proposed new method has many potential applications in bioanalysis field since magnetic nanoparticles are commonly used as solid support for biological entities such as DNA, RNA, virus, and protein. Other than the size sorting application of magnetic nanoparticles, this approach could also be used for the size sorting and separation of naturally magnetic cells, including blood cells and magnetotactic bacteria.
2010-09-01
Chaniotakis. The physical and mechanical properties of composite cements manufactured with cal- careous and clayey greek diatomite mixtures. Cement and...Hierarchical and size dependent mechanical properties of silica and silicon nanostructures inspired by diatom algae by Andre Phillipe Garcia B.S...dependent mechanical properties of silica and silicon nanostructures inspired by diatom algae 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM
Frictional behaviour of sandstone: A sample-size dependent triaxial investigation
Roshan, Hamid; Masoumi, Hossein; Regenauer-Lieb, Klaus
2017-01-01
Frictional behaviour of rocks from the initial stage of loading to final shear displacement along the formed shear plane has been widely investigated in the past. However the effect of sample size on such frictional behaviour has not attracted much attention. This is mainly related to the limitations in rock testing facilities as well as the complex mechanisms involved in sample-size dependent frictional behaviour of rocks. In this study, a suite of advanced triaxial experiments was performed on Gosford sandstone samples at different sizes and confining pressures. The post-peak response of the rock along the formed shear plane has been captured for the analysis with particular interest in sample-size dependency. Several important phenomena have been observed from the results of this study: a) the rate of transition from brittleness to ductility in rock is sample-size dependent where the relatively smaller samples showed faster transition toward ductility at any confining pressure; b) the sample size influences the angle of formed shear band and c) the friction coefficient of the formed shear plane is sample-size dependent where the relatively smaller sample exhibits lower friction coefficient compared to larger samples. We interpret our results in terms of a thermodynamics approach in which the frictional properties for finite deformation are viewed as encompassing a multitude of ephemeral slipping surfaces prior to the formation of the through going fracture. The final fracture itself is seen as a result of the self-organisation of a sufficiently large ensemble of micro-slip surfaces and therefore consistent in terms of the theory of thermodynamics. This assumption vindicates the use of classical rock mechanics experiments to constrain failure of pressure sensitive rocks and the future imaging of these micro-slips opens an exciting path for research in rock failure mechanisms.
Scale-Dependent Habitat Selection and Size-Based Dominance in Adult Male American Alligators.
Directory of Open Access Journals (Sweden)
Bradley A Strickland
Full Text Available Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17 on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their
Field size dependence of wedge factor: miniphantom vs full phantom measurements
International Nuclear Information System (INIS)
Allen Li, X.; Szanto, J.; Soubra, M.; Gerig, L. H.
1995-01-01
It is empirically known that the transmission factor for wedge in a high-energy photon beam is dependent upon field size and depth of measurement. The field-size dependence of wedge factors may be attributed to changes in (i) head scatter, (ii) phantom scatter, and (iii) backscatter from the wedge into the linac monitor chamber. In this work we present the results of studies designed to examine each of these factors in isolation. The wedge factors for wedges with nominal wedge angles of 15 deg. , 30 deg. , 45 deg. and 60 deg. were measured with a 3-g/cm 2 -diameter narrow cylindrical phantom (miniphantom), a brass cap with 1.5-g/cm 2 side-wall thickness and a full water phantom for 6-, 10- and 18-MV photon beams. The measurements were performed with and without flattening filter in place. The wedge factors measured with the miniphantom and the brass cap exclude the phantom scatter contribution. It has been found that the field-size behaviour of wedge factor measured with full water phantom is similar to that measured with the miniphantom and cap. This indicates that the head scatter radiation is the major contributor to the field size dependence of wedge factors. Wedge factors measured with water phantom are up to 5.0% smaller than those measured with miniphantom. This difference increases with wedge angle. When Measured with the flattening filter removed, the field size dependence of the wedge factor is reduced. This justify that the flattening filter is one of the major contributors to head scatters. The measurement results made with the brass cap agree well with those made by using the miniphantom. By measuring the monitor chamber output, it is found that the backscatters from the wedge into the linac ion chamber have little effect on the field size dependence of the wedge factor
Scale-dependent habitat selection and size-based dominance in adult male American alligators
Strickland, Bradley A.; Vilella, Francisco; Belant, Jerrold L.
2016-01-01
Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance
Directory of Open Access Journals (Sweden)
Flavio F Ribeiro
Full Text Available This study quantified size-dependent cannibalism in barramundi Lates calcarifer through coupling a range of prey-predator pairs in a different range of fish sizes. Predictive models were developed using morphological traits with the alterative assumption of cannibalistic polyphenism. Predictive models were validated with the data from trials where cannibals were challenged with progressing increments of prey sizes. The experimental observations showed that cannibals of 25-131 mm total length could ingest the conspecific prey of 78-72% cannibal length. In the validation test, all predictive models underestimate the maximum ingestible prey size for cannibals of a similar size range. However, the model based on the maximal mouth width at opening closely matched the empirical observations, suggesting a certain degree of phenotypic plasticity of mouth size among cannibalistic individuals. Mouth size showed allometric growth comparing with body depth, resulting in a decreasing trend on the maximum size of ingestible prey as cannibals grow larger, which in parts explains why cannibalism in barramundi is frequently observed in the early developmental stage. Any barramundi has the potential to become a cannibal when the initial prey size was 58% of their size, suggesting that 50% of size difference can be the threshold to initiate intracohort cannibalism in a barramundi population. Cannibalistic polyphenism was likely to occur in barramundi that had a cannibalistic history. An experienced cannibal would have a greater ability to stretch its mouth size to capture a much larger prey than the models predict. The awareness of cannibalistic polyphenism has important application in fish farming management to reduce cannibalism.
Bapat, Ravindra B
2014-01-01
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...
Directory of Open Access Journals (Sweden)
Zhi Yan
2017-01-01
Full Text Available Piezoelectric nanomaterials (PNs are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.
Yan, Zhi; Jiang, Liying
2017-01-26
Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.
Size-dependent mechanical properties of 2D random nanofibre networks
International Nuclear Information System (INIS)
Lu, Zixing; Zhu, Man; Liu, Qiang
2014-01-01
The mechanical properties of nanofibre networks (NFNs) are size dependent with respect to different fibre diameters. In this paper, a continuum model is developed to reveal the size-dependent mechanical properties of 2D random NFNs. Since such size-dependent behaviours are attributed to different micromechanical mechanisms, the surface effects and the strain gradient (SG) effects are, respectively, introduced into the mechanical analysis of NFNs. Meanwhile, a modified fibre network model is proposed, in which the axial, bending and shearing deformations are incorporated. The closed-form expressions of effective modulus and Poisson's ratio are obtained for NFNs. Different from the results predicted by conventional fibre network model, the present model predicts the size-dependent mechanical properties of NFNs. It is found that both surface effects and SG effects have significant influences on the effective mechanical properties. Moreover, the present results show that the shearing deformation of fibre segment is also crucial to precisely evaluate the effective mechanical properties of NFNs. This work mainly aims to provide an insight into the micromechanical mechanisms of NFNs. Besides, this work is also expected to provide a more accurate theoretical model for 2D fibre networks. (paper)
Age- and size-dependent mating performance and fertility in a pelagic copepod, Temora longicornis
DEFF Research Database (Denmark)
Sichlau, Mie Hylstofte; Kiørboe, Thomas
2011-01-01
Prepress abstract: In many species, size and age have been shown to be strong determinants of the reproductive success for both sexes. Here we examine age- and size dependent reproductive performance (egg- and sperm production, mating success) in a pelagic copepod. Compared to smaller males, larger...... males produce larger spermatophores containing more spermatozoa, and fertilize a larger fraction of available females. Females mating with large males produce more offspring than those mating with small males. Similarly, large females have higher egg production rates as well as a higher life-time egg...... fertilize females for only about eight days after they mature. The strong size- and age-dependent fertility observed in this species is conducive to the development of sexual selection via mate choice for young and large partners, as has been shown in one other copepod species...
Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis
Pichelstorfer, Lukas; Stolzenburg, Dominik; Ortega, John; Karl, Thomas; Kokkola, Harri; Laakso, Anton; Lehtinen, Kari E. J.; Smith, James N.; McMurry, Peter H.; Winkler, Paul M.
2018-01-01
Atmospheric new particle formation occurs frequently in the global atmosphere and may play a crucial role in climate by affecting cloud properties. The relevance of newly formed nanoparticles depends largely on the dynamics governing their initial formation and growth to sizes where they become important for cloud microphysics. One key to the proper understanding of nanoparticle effects on climate is therefore hidden in the growth mechanisms. In this study we have developed and successfully tested two independent methods based on the aerosol general dynamics equation, allowing detailed retrieval of time- and size-dependent nanoparticle growth rates. Both methods were used to analyze particle formation from two different biogenic precursor vapors in controlled chamber experiments. Our results suggest that growth rates below 10 nm show much more variation than is currently thought and pin down the decisive size range of growth at around 5 nm where in-depth studies of physical and chemical particle properties are needed.
An investigation of the general regularity of size dependence of reaction kinetics of nanoparticles
International Nuclear Information System (INIS)
Cui, Zixiang; Duan, Huijuan; Xue, Yongqiang; Li, Ping
2015-01-01
In the processes of preparation and application of nanomaterials, the chemical reactions of nanoparticles are often involved, and the size of nanoparticles has dramatic influence on the reaction kinetics. Nevertheless, there are many conflicts on regularities of size dependence of reaction kinetic parameters, and these conflicts have not been explained so far. In this paper, taking the reaction of nano-ZnO (average diameter is from 20.96 to 53.31 nm) with acrylic acid solution as a system, the influence regularities of the particle size on the kinetic parameters were researched. The regularities were consistent with that in most literatures, but inconsistent with that in a few of literatures, the reasons for the conflicts were interpreted. The reasons can be attributed to two factors: one is improper data processing for fewer data points, and the other is the difference between solid particles and porous particles. A general regularity of the size dependence of reaction kinetics for solid particles was obtained. The regularity shows that with the size of nanoparticles decreasing, the rate constant and the reaction order increase, while the apparent activation energy and the pre-exponential factor decrease; and the relationships of the logarithm of rate constant, the logarithm of pre-exponential factor, and the apparent activation energy to the reciprocal of the particle size are linear, respectively
Guo, Hongyu; Stan, Gheorghe; Liu, Yun
2018-02-21
Nanoparticles typically have an inherent wide size distribution that may affect the performance and reliability of many nanomaterials. Because the synthesis and purification of nanoparticles with desirable sizes are crucial to the applications of nanoparticles in various fields including medicine, biology, health care, and energy, there is a great need to search for more efficient and generic methods for size-selective nanoparticle purification/separation. Here we propose and conclusively demonstrate the effectiveness of a size-selective particle purification/separation method based on the critical Casimir force. The critical Casimir force is a generic interaction between colloidal particles near the solvent critical point and has been extensively studied in the past several decades due to its importance in reversibly controlling the aggregation and stability of colloidal particles. Combining multiple experimental techniques, we found that the critical Casimir force-induced aggregation depends on relative particle sizes in a system with larger ones aggregating first and the smaller ones remaining in solution. Based on this observation, a new size-dependent nanoparticle purification/separation method is proposed and demonstrated to be very efficient in purifying commercial silica nanoparticles in the lutidine/water binary solvent. Due to the ubiquity of the critical Casimir force for many colloidal particles in binary solvents, this method might be applicable to many types of colloidal particles.
Directory of Open Access Journals (Sweden)
C. Dalfo
2015-10-01
Full Text Available We study a family of graphs related to the $n$-cube. The middle cube graph of parameter k is the subgraph of $Q_{2k-1}$ induced by the set of vertices whose binary representation has either $k-1$ or $k$ number of ones. The middle cube graphs can be obtained from the well-known odd graphs by doubling their vertex set. Here we study some of the properties of the middle cube graphs in the light of the theory of distance-regular graphs. In particular, we completely determine their spectra (eigenvalues and their multiplicities, and associated eigenvectors.
The Dependence of Atomic Oxygen Undercutting of Protected Polyimide Kapton(tm) H upon Defect Size
Snyder, Aaron; deGroh, Kim K.
2001-01-01
Understanding the behavior of polymeric materials when exposed to the low-Earth-orbit (LEO) environment is important in predicting performance characteristics such as in-space durability. Atomic oxygen (AO) present in LEO is known to be the principal agent in causing undercutting erosion of SiO(x) protected polyimide Kapton(R) H film, which serves as a mechanically stable blanket material in solar arrays. The rate of undercutting is dependent on the rate of arrival, directionality and energy of the AO with respect to the film surface. The erosion rate also depends on the distribution of the size of defects existing in the protective coating. This paper presents results of experimental ground testing using low energy, isotropic AO flux together with numerical modeling to determine the dependence of undercutting erosion upon defect size.
Improving Control Efficiency of Dynamic Street Lighting by Utilizing the Dual Graph Grammar Concept
Directory of Open Access Journals (Sweden)
Igor Wojnicki
2018-02-01
Full Text Available The paper introduces a definition of dual graph grammar. It enables two graphs to share information in a synchronized way. A smart city example application, which is an outdoor lighting control system utilizing the dual graph grammar, is also demonstrated. The system controls dimming of street lights which is based on traffic intensity. Each luminaire’s light level is adjusted individually to comply with the lighting norms to ensure safety. Benefits of applying the dual graph grammar are twofold. First, it increases expressive power of the mathematical model that the system uses. It becomes possible to take into account complex geographical distribution of sensors and logical dependencies among them. Second, it increases the system’s efficiency by reducing the problem size during run-time. Experimental results show a reduction of the computation time by a factor of 2.8. The approach has been verified in practice.
Characterizing graphs of maximum matching width at most 2
DEFF Research Database (Denmark)
Jeong, Jisu; Ok, Seongmin; Suh, Geewon
2017-01-01
The maximum matching width is a width-parameter that is de ned on a branch-decomposition over the vertex set of a graph. The size of a maximum matching in the bipartite graph is used as a cut-function. In this paper, we characterize the graphs of maximum matching width at most 2 using the minor o...
Wang, Ting; Wang, Lu; Li, Xiaoming; Hu, Xingjie; Han, Yuping; Luo, Yao; Wang, Zejun; Li, Qian; Aldalbahi, Ali; Wang, Lihua; Song, Shiping; Fan, Chunhai; Zhao, Yun; Wang, Maolin; Chen, Nan
2017-06-07
Nanoparticles (NPs) have shown great promise as intracellular imaging probes or nanocarriers and are increasingly being used in biomedical applications. A detailed understanding of how NPs get "in and out" of cells is important for developing new nanomaterials with improved selectivity and less cytotoxicity. Both physical and chemical characteristics have been proven to regulate the cellular uptake of NPs. However, the exocytosis process and its regulation are less explored. Herein, we investigated the size-regulated endocytosis and exocytosis of carboxylated polystyrene (PS) NPs. PS NPs with a smaller size were endocytosed mainly through the clathrin-dependent pathway, whereas PS NPs with a larger size preferred caveolae-mediated endocytosis. Furthermore, our results revealed exocytosis of larger PS NPs and tracked the dynamic process at the single-particle level. These results indicate that particle size is a key factor for the regulation of intracellular trafficking of NPs and provide new insight into the development of more effective cellular nanocarriers.
New bound on MIS and MIN-CDS for a unit ball graph
Directory of Open Access Journals (Sweden)
D.A. Mojdeh
2017-09-01
Full Text Available The size of the maximum independent set (MIS in a graph G is called the independence number. The size of the minimum connected dominating set (MIN-CDS in G is called the connected domination number. The aim of this paper is to determine two better upper bounds of the independence number; dependent on the connected domination number for a unit ball graph. Further, we improve the upper bound to obtain the best bound with respect to the upper bounds obtained thus far.
Size dependence of adsorption kinetics of nano-MgO: a theoretical and experimental study
International Nuclear Information System (INIS)
Wang, Shuting; Wen, Yanzhen; Cui, Zixiang; Xue, Yongqiang
2016-01-01
Nanoparticles present tremendous differences in adsorption kinetics compared with corresponding bulk particles which have great influences on the applications of nanoparticles. A size-dependent adsorption kinetic theory was proposed, the relations between adsorption kinetic parameters, respectively, and particle size of nano-adsorbent were derived theoretically, and the influence mechanism of particle size on the adsorption kinetic parameters was discussed. In experiment, nanoscale magnesium oxide (nano-MgO) with different diameters between 11.5 and 41.4 nm with narrow size distribution and low agglomeration were prepared, and the kinetic parameters of adsorption of benzene on nano-MgO in aqueous solution were obtained. Then the influence regularities of the particle size on the adsorption kinetic parameters were obtained. The experimental results are consistent with the nano-adsorption kinetic theory. With particle size decreasing, the adsorption rate constant increases; the adsorption activation energy and the adsorption pre-exponential factor decrease. Furthermore, the logarithm of adsorption rate constant, the adsorption activation energy, and the logarithm of adsorption pre-exponential factor are linearly related to the reciprocal of particle diameter, respectively. The mechanism of particle size influence on the kinetic parameters is that the activation energy is influenced by the molar surface enthalpy of nano-adsorbent, the pre-exponential factor by the molar surface entropy, and the rate constant by both the molar surface enthalpy and the molar surface entropy
Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro
Energy Technology Data Exchange (ETDEWEB)
Zhou, Guoqiang, E-mail: zhougq1982@163.com; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying [Hebei University, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science (China)
2016-05-15
Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.
International Nuclear Information System (INIS)
Aktaa, J.; Klotz, M.; Schmitt, R.
2003-01-01
The investigation of the size dependence of the material behaviour and particularly of the failure strain is the main objective of the European research project LISSAC (Limit Strains for Severe Accident Conditions). Within our activities in LISSAC, tensile test series with specimens of similar geometry and different sizes are performed. The specimens, cut from the wall of a real reactor vessel, are flat with a central hole, flat with a double edge notch as well as round with a circumferential notch in order to obtain inhomogeneous deformation with high strain gradients, which will be higher in the smaller specimens and might be responsible for size effects. An additional variation of the strain gradient is obtained by varying the central hole radius of the flat specimens, with three different hole geometries being considered: round hole, increased round hole and slot. During the tests optical methods are used for measuring local deformations and partly local strain gradients. The results obtained show a size effect neither on the global nor on the local deformation behaviour, whereas the damage and failure behaviour is influenced significantly by the size of the specimen. On the basis of the surface deformation measurements, finite element calculations are performed to estimate the local failure strains as well as the corresponding strain gradients. A clear dependence of local failure strains on strain gradients is obtained. (author)
Angle dependent focal spot size of a conical X-ray target
International Nuclear Information System (INIS)
Saeed Raza, Hamid; Jin Kim, Hyun; Nam Kim, Hyun; Oh Cho, Sung
2015-01-01
Misaligned phantoms may severely affect the focal spot calculations. A method is proposed to determine the geometry of the X-ray target and the position of the image radiograph around the X-ray target to get a relatively smaller focal spot size. Results reveal that the focal spot size is not always isotropic around the target but it decreases as the point of observation shifts radially away from the center line of the conical X-ray target. This research will help in producing high quality X-ray images in multi-directions by properly aligning the phantoms and the radiograph tallies. - Highlights: • Misaligned phantoms may severely affect the focal spot calculations. • The aim of this research is to analyze systematically the angle dependent behavior of the focal spot size around a conical shaped X-ray target. • A general purpose Monte Carlo (MCNP5) computer code is used to achieve a relatively small focal spot size. • Angular distribution of the X-ray focal spot size mainly depends on the angular orientation of the phantom and its aligned FIR tally. • This research will help in producing high quality X-ray images in multi-directions
Cell Size and Growth Rate Are Modulated by TORC2-Dependent Signals.
Lucena, Rafael; Alcaide-Gavilán, Maria; Schubert, Katherine; He, Maybo; Domnauer, Matthew G; Marquer, Catherine; Klose, Christian; Surma, Michal A; Kellogg, Douglas R
2018-01-22
The size of all cells, from bacteria to vertebrates, is proportional to the growth rate set by nutrient availability, but the underlying mechanisms are unknown. Here, we show that nutrients modulate cell size and growth rate via the TORC2 signaling network in budding yeast. An important function of the TORC2 network is to modulate synthesis of ceramide lipids, which play roles in signaling. TORC2-dependent control of ceramide signaling strongly influences both cell size and growth rate. Thus, cells that cannot make ceramides fail to modulate their growth rate or size in response to changes in nutrients. PP2A associated with the Rts1 regulatory subunit (PP2A Rts1 ) is embedded in a feedback loop that controls TORC2 signaling and helps set the level of TORC2 signaling to match nutrient availability. Together, the data suggest a model in which growth rate and cell size are mechanistically linked by ceramide-dependent signals arising from the TORC2 network. Copyright © 2017 Elsevier Ltd. All rights reserved.
[C57BL/6 mice open field behaviour qualitatively depends on arena size].
Lebedev, I V; Pleskacheva, M G; Anokhin, K V
2012-01-01
Open field behavior is well known to depend on physical characteristics of the apparatus. However many of such effects are poorly described especially with using of modern methods of behavioral registration and analysis. The previous results of experiments on the effect of arena size on behavior are not numerous and contradictory. We compared the behavioral scores of four groups of C57BL/6 mice in round open field arenas of four different sizes (diameter 35, 75, 150 and 220 cm). The behavior was registered and analyzed using Noldus EthoVision, WinTrack and SegmentAnalyzer software. A significant effect of arena size was found. Traveled distance and velocity increased, but not in proportion to increase of arena size. Moreover a significant effect on segment characteristics of the trajectory was revealed. Detailed behavior analysis revealed drastic differences in trajectory structure and number of rears between smaller (35 and 75 cm) and bigger (150 and 220 cm) arenas. We conclude, that the character of exploration in smaller and bigger arenas depends on relative size of central open zone in arena. Apparently its extension increases the motivational heterogeneity of space, that requires another than in smaller arenas, strategy of exploration.
Energy Technology Data Exchange (ETDEWEB)
Zhao, Yuan; Luo, Yaodong; Yang, Xuan; Yang, Yaxin; Song, Qijun, E-mail: qsong@jiangnan.edu.cn
2017-06-15
Highlights: • A facile and efficient strategy is firstly developed for the synthesis of Ru NPs. • Ru NPs are stable and uniform with the controllable sizes from 2.6 to 51.5 nm. • Ru NPs exhibit size-dependent and superior catalytic hydrogenation activity. - Abstract: Ruthenium (Ru) featured with an unusual catalytic behavior is of great significance in several heterogeneous and electro-catalytic reactions. The preparation of tractable Ru nanocatalysts and the building of highly active catalytic system at ambient temperature remains a grand challenge. Herein, a facile strategy is developed for the controllable preparation of Ru nanoparticles (NPs) with the sizes ranging from 2.6 to 51.5 nm. Ru NPs show superior size-dependent catalytic performance with the best kinetic rate constant as high as −1.52 min{sup −1}, which could far surpass the other traditional noble metals. Ru NPs exert exceedingly efficient low-temperature catalytic activity and good recyclability in the catalytic reduction of nitroaromatic compounds (NACs) and azo dyes. The developed catalytic system provides a distinguishing insight for the artificial preparation of Ru NPs with desired sizes, and allows for the development of rational design rules for exploring catalysts with superior catalytic performances, potentially broadening the applications of metallic NP-enabled catalytic analysis.
Optical extinction dependence on wavelength and size distribution of airborne dust
Pangle, Garrett E.; Hook, D. A.; Long, Brandon J. N.; Philbrick, C. R.; Hallen, Hans D.
2013-05-01
The optical scattering from laser beams propagating through atmospheric aerosols has been shown to be very useful in describing air pollution aerosol properties. This research explores and extends that capability to particulate matter. The optical properties of Arizona Road Dust (ARD) samples are measured in a chamber that simulates the particle dispersal of dust aerosols in the atmospheric environment. Visible, near infrared, and long wave infrared lasers are used. Optical scattering measurements show the expected dependence of laser wavelength and particle size on the extinction of laser beams. The extinction at long wavelengths demonstrates reduced scattering, but chemical absorption of dust species must be considered. The extinction and depolarization of laser wavelengths interacting with several size cuts of ARD are examined. The measurements include studies of different size distributions, and their evolution over time is recorded by an Aerodynamic Particle Sizer. We analyze the size-dependent extinction and depolarization of ARD. We present a method of predicting extinction for an arbitrary ARD size distribution. These studies provide new insights for understanding the optical propagation of laser beams through airborne particulate matter.
International Nuclear Information System (INIS)
Assadi, Abbas; Salehi, Manouchehr; Akhlaghi, Mehdi
2015-01-01
In this work, size dependent behavior of single crystalline normal and auxetic anisotropic nanoplates is discussed with consideration of material surface stresses via a generalized model. Bending of pressurized nanoplates and their fundamental resonant frequency are discussed for different crystallographic directions and anisotropy degrees. It is explained that the orientation effects are considerable when the nanoplates' edges are pinned but for clamped nanoplates, the anisotropy effect may be ignored. The size effects are the highest when the simply supported nanoplates are parallel to [110] direction but as the anisotropy gets higher, the size effects are reduced. The orientation effect is also discussed for possibility of self-instability occurrence in nanoplates. The results in simpler cases are compared with previous experiments for nanowires but with a correction factor. There are still some open questions for future studies. - Highlights: • Size effects in single crystalline anisotropic nanoplates are discussed. • A generalized model is established containing some physical assumptions. • Orientation dependent size effects due to material anisotropy are explained. • Bending, instability and frequencies are studied at normal/auxetic domain
Size-Dependent Axonal Bouton Dynamics following Visual Deprivation In Vivo
Directory of Open Access Journals (Sweden)
Rosanna P. Sammons
2018-01-01
Full Text Available Persistent synapses are thought to underpin the storage of sensory experience, yet little is known about their structural plasticity in vivo. We investigated how persistent presynaptic structures respond to the loss of primary sensory input. Using in vivo two-photon (2P imaging, we measured fluctuations in the size of excitatory axonal boutons in L2/3 of adult mouse visual cortex after monocular enucleation. The average size of boutons did not change after deprivation, but the range of bouton sizes was reduced. Large boutons decreased, and small boutons increased. Reduced bouton variance was accompanied by a reduced range of correlated calcium-mediated neural activity in L2/3 of awake animals. Network simulations predicted that size-dependent plasticity may promote conditions of greater bidirectional plasticity. These predictions were supported by electrophysiological measures of short- and long-term plasticity. We propose size-dependent dynamics facilitate cortical reorganization by maximizing the potential for bidirectional plasticity.
Investigations of grain size dependent sediment transport phenomena on multiple scales
Thaxton, Christopher S.
Sediment transport processes in coastal and fluvial environments resulting from disturbances such as urbanization, mining, agriculture, military operations, and climatic change have significant impact on local, regional, and global environments. Primarily, these impacts include the erosion and deposition of sediment, channel network modification, reduction in downstream water quality, and the delivery of chemical contaminants. The scale and spatial distribution of these effects are largely attributable to the size distribution of the sediment grains that become eligible for transport. An improved understanding of advective and diffusive grain-size dependent sediment transport phenomena will lead to the development of more accurate predictive models and more effective control measures. To this end, three studies were performed that investigated grain-size dependent sediment transport on three different scales. Discrete particle computer simulations of sheet flow bedload transport on the scale of 0.1--100 millimeters were performed on a heterogeneous population of grains of various grain sizes. The relative transport rates and diffusivities of grains under both oscillatory and uniform, steady flow conditions were quantified. These findings suggest that boundary layer formalisms should describe surface roughness through a representative grain size that is functionally dependent on the applied flow parameters. On the scale of 1--10m, experiments were performed to quantify the hydrodynamics and sediment capture efficiency of various baffles installed in a sediment retention pond, a commonly used sedimentation control measure in watershed applications. Analysis indicates that an optimum sediment capture effectiveness may be achieved based on baffle permeability, pond geometry and flow rate. Finally, on the scale of 10--1,000m, a distributed, bivariate watershed terain evolution module was developed within GRASS GIS. Simulation results for variable grain sizes and for
Domain-size-dependent exchange bias in Co/LaFeO3
Energy Technology Data Exchange (ETDEWEB)
Scholl, A.; Nolting, F.; Seo, J.W.; Ohldag, H.; Stohr, J.; Raoux,S.; Locquet, J.-P.; Fompeyrine, J.
2004-09-22
X-ray microscopy using magnetic linear dichroism of a zero-field-grown, multi-domain Co/LaFeO{sub 3} ferromagnet/antiferromagnet sample shows a local exchange bias of random direction and magnitude. A statistical analysis of the local bias of individual, micron-size magnetic domains demonstrates an increasing bias field with decreasing domain size as expected for a random distribution of pinned, uncompensated spins, which are believed to mediate the interface coupling. A linear dependence with the inverse domain diameter is found.
Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters
Directory of Open Access Journals (Sweden)
Jiji Antony
2006-01-01
Full Text Available Nanoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7∘C. Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM. The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET process are size-dependent and compared with the calculated data.
Ghosh, Sujit Kumar; Pal, Anjali; Nath, Sudip; Kundu, Subrata; Panigrahi, Sudipa; Pal, Tarasankar
2005-08-01
Gold nanoparticles of variable sizes have been exploited to study their influence on the absorption and emission spectral characteristics of eosin, a fluorescent dye. It has been found that smaller particles of gold stimulate J-aggregation of eosin on the surface of metal particles whereas larger particles cannot induce any kind of aggregation amongst the dye molecules. The size regime dependence of the gold nanoparticles has been attributed to the intercluster interactions induced by the dye molecules for smaller gold nanoparticles and consequently, close packing of the dye molecules around the gold surface engenders intermolecular interactions amongst the dye molecules leading to dimerization.
On grain-size-dependent void swelling in pure copper irradiated with fission neutrons
DEFF Research Database (Denmark)
Singh, Bachu Narain; Eldrup, Morten Mostgaard; Zinkle, S.J.
2002-01-01
The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms. The phenomenon had already been investigated in the 1970s and it was demonstrated that the grain......-size-dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under...
Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family.
Teixido, A L; Guzmán, B; Staggemeier, V G; Valladares, F
2017-11-01
In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
[Size dependent SERS activity of gold nanoparticles studied by 3D-FDTD simulation].
Li, Li-mei; Fang, Ping-ping; Yang, Zhi-lin; Huang, Wen-da; Wu, De-yin; Ren, Bin; Tian, Zhong-qun
2009-05-01
By synthesizing Au nanoparticles with the controllable size from about 16 to 160 nm and measuring their SERS activity, the authors found that Au nanoparticles film with a size in the range of 120-135 nm showed the highest SERS activity with the 632.8 nm excitation, which is different from previous experimental results and theoretical predictions. The three dimensional finite difference time domain (3D-FDTD)method was employed to simulate the size dependent SERS activity. At the 632.8 nm excitation, the particles with a size of 110 nm shows the highest enhancement under coupling condition and presents an enhancement as high as 10(9) at the hot site. If the enhancement is averaged over the whole surface, the enhancement can still be as high as 10(7), in good agreement with our experimental data. For Au nanoparticles with a larger size such as 220 nm, the multipolar effect leads to the appearance of the second maximum enhancement with the increase in particles size. The averaged enhancement for the excitation line of 325 nm is only 10(2).
The Dependence of Tropical Cyclone Count and Size on Rotation Rate
Chavas, D. R.; Reed, K. A.
2017-12-01
Both theory and idealized equilibrium modeling studies indicate that tropical cyclone size decreases with background rotation rate. In contrast, in real-world observations size tends to increase with latitude. Here we seek to resolve this apparent contradiction via a set of reduced-complexity global aquaplanet simulations with varying planetary rotation rates using the NCAR Community Atmosphere Model 5. The latitudinal distribution of both storm count and size are found to vary markedly with rotation rate, yielding insight into the dynamical constraints on tropical cyclone activity on a rotating planet. Moreover, storm size is found to vary non-monotonically with latitude, indicating that non-equilibrium effects are crucial to the life-cycle evolution of size in nature. Results are then compared to experiments in idealized, time-dependent limited-area modeling simulations using CM1 in axisymmetric and three-dimensional geometry. Taken together, this hierarchy of models is used to quantify the role of equilibrium versus transient controls on storm size and the relevance of each to real storms in nature.
Particle size dependent confinement and lattice strain effects in LiFePO4.
Shahid, Raza; Murugavel, Sevi
2013-11-21
We report the intrinsic electronic properties of LiFePO4 (LFP) with different particle sizes measured by broad-band impedance spectroscopy and diffuse reflectance spectroscopy. The electronic properties show typical size-dependent effects with decreasing particle size (up to 150 nm). However, at the nanoscale level, we observed an enhancement in the polaronic conductivity about an order of magnitude. We found that the origin of the enhanced electronic conductivity in LFP is due to the significant lattice strain associated with the reduction of particle size. The observed lattice strain component corresponds to the compressive part which leads to a decrease in the hopping length of the polarons. We reproduce nonlinearities in the transport properties of LFP with particle size, to capture the interplay between confinement and lattice strain, and track the effects of strain on the electron-phonon interactions. These results could explain why nano-sized LFP has a better discharge capacity and higher rate capability than the bulk counterpart. We suggest that these new correlations will bring greater insight and better understanding for the optimization of LFP as a cathode material for advanced lithium ion batteries.
Soetevent, A.R.
2010-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial
Graphing Inequalities, Connecting Meaning
Switzer, J. Matt
2014-01-01
Students often have difficulty with graphing inequalities (see Filloy, Rojano, and Rubio 2002; Drijvers 2002), and J. Matt Switzer's students were no exception. Although students can produce graphs for simple inequalities, they often struggle when the format of the inequality is unfamiliar. Even when producing a correct graph of an…
Directory of Open Access Journals (Sweden)
Amine Labriji
2017-07-01
Full Text Available The topic of identifying the similarity of graphs was considered as highly recommended research field in the Web semantic, artificial intelligence, the shape recognition and information research. One of the fundamental problems of graph databases is finding similar graphs to a graph query. Existing approaches dealing with this problem are usually based on the nodes and arcs of the two graphs, regardless of parental semantic links. For instance, a common connection is not identified as being part of the similarity of two graphs in cases like two graphs without common concepts, the measure of similarity based on the union of two graphs, or the one based on the notion of maximum common sub-graph (SCM, or the distance of edition of graphs. This leads to an inadequate situation in the context of information research. To overcome this problem, we suggest a new measure of similarity between graphs, based on the similarity measure of Wu and Palmer. We have shown that this new measure satisfies the properties of a measure of similarities and we applied this new measure on examples. The results show that our measure provides a run time with a gain of time compared to existing approaches. In addition, we compared the relevance of the similarity values obtained, it appears that this new graphs measure is advantageous and offers a contribution to solving the problem mentioned above.
van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime
2016-01-01
This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,
Fuzzy Graph Language Recognizability
Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros
2012-01-01
Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.
Brouwer, A.E.; Haemers, W.H.
2012-01-01
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association
Dependence of ultrasound attenuation in rare earth metals on ratio of grain size and wavelength
International Nuclear Information System (INIS)
Kanevskij, I.N.; Nisnevich, M.M.; Spasskaya, A.A.; Kaz'mina, V.I.
1978-01-01
Results of investigation of dependences of ultrasound attenuation coefficient α on the ratio of grain average size D and wavelength lambda are presented. The investigations were carried out on rare earth metal samples produced by arc remelting in a vacuum furnace. It is shown that the way of α dependence curves of D/lambda for each of the rare earth metal is determined only by the D. This fact permits to use ultrasound measurement for control average diameter of the rare earth metal grain
Valence and atomic size dependent exchange barriers in vacancy-mediated dopant diffusion
International Nuclear Information System (INIS)
Nelson, J.S.; Schultz, P.A.; Wright, A.F.
1998-01-01
First-principles pseudopotential calculations of dopant-vacancy exchange barriers indicate a strong dependency on dopant valence and atomic size, in contrast to current models of vacancy-mediated dopant diffusion. First-row elements (B, C, N) are found to have exchange barriers which are an order of magnitude larger than the assumed value of 0.3 eV (the Si vacancy migration energy). copyright 1998 American Institute of Physics
Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds
Yavkin, Boris V; Mamin, Georgy V; Gafurov, Marat R.; Orlinskii, Sergei B.
2015-01-01
Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT) technique were studied by high-frequency W and conventional X band electron paramagnetic resonance (EPR) spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of str...
Desvillettes, Laurent
2010-01-01
We study a continuous coagulation-fragmentation model with constant kernels for reacting polymers (see [M. Aizenman and T. Bak, Comm. Math. Phys., 65 (1979), pp. 203-230]). The polymers are set to diffuse within a smooth bounded one-dimensional domain with no-flux boundary conditions. In particular, we consider size-dependent diffusion coefficients, which may degenerate for small and large cluster-sizes. We prove that the entropy-entropy dissipation method applies directly in this inhomogeneous setting. We first show the necessary basic a priori estimates in dimension one, and second we show faster-than-polynomial convergence toward global equilibria for diffusion coefficients which vanish not faster than linearly for large sizes. This extends the previous results of [J.A. Carrillo, L. Desvillettes, and K. Fellner, Comm. Math. Phys., 278 (2008), pp. 433-451], which assumes that the diffusion coefficients are bounded below. © 2009 Society for Industrial and Applied Mathematics.
Grain-size dependent accommodation due to intragranular distributions of dislocation loops
International Nuclear Information System (INIS)
Richeton, T.; Berbenni, S.; Berveiller, M.
2009-01-01
A grain-size dependent accommodation law for polycrystals is deduced from an inclusion/matrix problem (i.e., each grain is seen as embedded in a homogeneous equivalent medium) where plastic strain inside the inclusion is given as a discrete distribution of circular coaxial glide dislocation loops. The loops are assumed constrained at spherical grain boundaries. From thermodynamic considerations specific to a process of identical plastification in all the loops (considered as 'super-dislocations'), an average back-stress over the grain is derived. In order to compute the very early stages of plastic deformation in a face-centred cubic polycrystal, this back-stress is incorporated into a diluted model in terms of concentration of plastic grains. Contrary to conventional mean-field approaches, a grain-size effect is obtained for the initial overall strain-hardening behaviour. This size effect results from an intrinsic contribution of intragranular slip heterogeneities on the kinematical hardening
Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS
International Nuclear Information System (INIS)
Wang, Binglei; Zhou, Shenjie; Zhao, Junfeng; Chen, Xi
2011-01-01
We present a size-dependent model for electrostatically actuated microbeam-based MEMS using strain gradient elasticity theory. The normalized pull-in voltage is shown to increase nonlinearly with the decrease of the beam height, and the size effect becomes prominent if the beam thickness is on the order of microns or smaller (i.e. when the beam dimension is comparable to the material length scale parameter). Very good agreement is found between the present model and available experimental data. The study may be helpful to characterize the mechanical properties of small size MEMS, or guide the design of microbeam-based devices for a wide range of potential applications. (technical note)
Liu, Lifeng; Ding, Xiangdong; Li, Ju; Lookman, Turab; Sun, Jun
2014-02-21
Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ transmission electron microscopy (TEM), we directly observe the nucleation of the level-2 superstructure in a Cu-Al-Ni single crystal under compression, with critical super-nuclei size L2c around 500 nm. When the sample size D decreases below L2c, the superelasticity behavior changes from a flat stress plateau to a continuously rising stress-strain curve. Such size dependence definitely would impact the application of shape memory alloys in miniaturized MEMS/NEMS devices.
Size dependence of magnetization reversal of ring shaped magnetic tunnel junction
International Nuclear Information System (INIS)
Chen, C.C.; Kuo, C.Y.; Chang, Y.C.; Chang, C.C.; Horng, Lance; Wu, Teho; Chern, G.; Huang, C.Y.; Tsunoda, M.; Takahashi, M.; Wu, J.C.
2007-01-01
The size dependence of magnetization reversal of magnetic tunnel junction (MTJ) rings has been investigated. The MTJ rings, with outer diameter of 4, 2 and 1 μm and inner diameter of 1.5, 1 and 0.5 μm were fabricated by a top-down technique. The magnetoresistance curves manifest all of the magnetic domain configurations during magnetization reversal in different sized rings. Various transition processes were observed, such as four transition, three transition and two transition in the largest, middle and smallest MTJ ring, respectively. Furthermore, the biasing fields observed from major loops decrease with decreasing size, which may result from edge roughness produced in the ion-milling process
Influence of measuring temperature in size dependence of coercivity in nanostructured alloys
International Nuclear Information System (INIS)
Lopez, M.; Marin, P.; Kulik, T.; Hernando, A.
2005-01-01
An increase of coercive field with decreasing particle size has been observed in ball milled nanocomposite of Fe-rich nanocrystals embedded in an amorphous matrix. Previous works (J. Appl. Phys. 64 (1998) 6044) have concluded that for high lattice strain, , the increase of coercivity is due to the magnetoelastic anisotropy generated by . Even though other effects can also be involved, the experimental results seem to indicate that the influence of the particle size on the average structural anisotropy noticeably contributes to the hardening observed for low . The influence of measuring temperature in size dependence of coercivity in nanostructured alloys has been analyzed. Some analogies and differences in respect of that observed in partially nanocrystallized samples have been found
Balancing the dilution and oddity effects: decisions depend on body size.
Directory of Open Access Journals (Sweden)
Gwendolen M Rodgers
Full Text Available Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack. Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the 'oddity' effect. Thus, animals should choose group mates close in appearance to themselves (eg. similar size, whilst also choosing a large group.We used the Trinidadian guppy (Poecilia reticulata, a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity.Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling
Fractal and multifractal approaches for the analysis of crack-size dependent scaling laws in fatigue
Energy Technology Data Exchange (ETDEWEB)
Paggi, Marco [Politecnico di Torino, Department of Structural Engineering and Geotechnics, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)], E-mail: marco.paggi@polito.it; Carpinteri, Alberto [Politecnico di Torino, Department of Structural Engineering and Geotechnics, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
2009-05-15
The enhanced ability to detect and measure very short cracks, along with a great interest in applying fracture mechanics formulae to smaller and smaller crack sizes, has pointed out the so-called anomalous behavior of short cracks with respect to their longer counterparts. The crack-size dependencies of both the fatigue threshold and the Paris' constant C are only two notable examples of these anomalous scaling laws. In this framework, a unified theoretical model seems to be missing and the behavior of short cracks can still be considered as an open problem. In this paper, we propose a critical reexamination of the fractal models for the analysis of crack-size effects in fatigue. The limitations of each model are put into evidence and removed. At the end, a new generalized theory based on fractal geometry is proposed, which permits to consistently interpret the short crack-related anomalous scaling laws within a unified theoretical formulation. Finally, this approach is herein used to interpret relevant experimental data related to the crack-size dependence of the fatigue threshold in metals.
Fractal and multifractal approaches for the analysis of crack-size dependent scaling laws in fatigue
International Nuclear Information System (INIS)
Paggi, Marco; Carpinteri, Alberto
2009-01-01
The enhanced ability to detect and measure very short cracks, along with a great interest in applying fracture mechanics formulae to smaller and smaller crack sizes, has pointed out the so-called anomalous behavior of short cracks with respect to their longer counterparts. The crack-size dependencies of both the fatigue threshold and the Paris' constant C are only two notable examples of these anomalous scaling laws. In this framework, a unified theoretical model seems to be missing and the behavior of short cracks can still be considered as an open problem. In this paper, we propose a critical reexamination of the fractal models for the analysis of crack-size effects in fatigue. The limitations of each model are put into evidence and removed. At the end, a new generalized theory based on fractal geometry is proposed, which permits to consistently interpret the short crack-related anomalous scaling laws within a unified theoretical formulation. Finally, this approach is herein used to interpret relevant experimental data related to the crack-size dependence of the fatigue threshold in metals.
Size-dependent characteristics of ultra-fine oxygen-enriched nanoparticles in austenitic steels
Energy Technology Data Exchange (ETDEWEB)
Miao, Yinbin, E-mail: ymiao@anl.gov [Argonne National Laboratory, Lemont, IL 60439 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Mo, Kun [Argonne National Laboratory, Lemont, IL 60439 (United States); Zhou, Zhangjian [University of Science and Technology Beijing, Beijing 100082 (China); Liu, Xiang; Lan, Kuan-Che [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Zhang, Guangming [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); University of Science and Technology Beijing, Beijing 100082 (China); Miller, Michael K.; Powers, Kathy A. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Stubbins, James F. [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, Fukuoka 819-0395 (Japan)
2016-11-15
Here, a coordinated investigation of the elemental composition and morphology of ultra-fine-scale nanoparticles as a function of size within a variety of austenitic oxide dispersion-strengthened (ODS) steels is reported. Atom probe tomography was utilized to evaluate the elemental composition of these nanoparticles. Meanwhile, the crystal structures and orientation relationships were determined by high-resolution transmission electron microscopy. The nanoparticles with sufficient size (>4 nm) to maintain a Y{sub 2}Ti{sub 2−x}O{sub 7−2x} stoichiometry were found to have a pyrochlore structure, whereas smaller Y{sub x}Ti{sub y}O{sub z} nanoparticles lacked a well-defined structure. The size-dependent characteristics of the nanoparticles in austenitic ODS steels differ from those in ferritic/martensitic ODS steels. - Highlights: • The structural and chemical characteristics of nanoparticles are revealed. • Nanoparticles' crystal structure and elemental composition are size-dependent. • Characteristics of austenitic ODS steels are compared to that of an F/M ODS steel. • Hypothesis about the formation mechanism of nanoparticles is proposed accordingly.
Wang, Zhaojie; Alaniz, Joseph E; Jang, Wanyoung; Garay, Javier E; Dames, Chris
2011-06-08
The thermal conductivity reduction due to grain boundary scattering is widely interpreted using a scattering length assumed equal to the grain size and independent of the phonon frequency (gray). To assess these assumptions and decouple the contributions of porosity and grain size, five samples of undoped nanocrystalline silicon have been measured with average grain sizes ranging from 550 to 64 nm and porosities from 17% to less than 1%, at temperatures from 310 to 16 K. The samples were prepared using current activated, pressure assisted densification (CAPAD). At low temperature the thermal conductivities of all samples show a T(2) dependence which cannot be explained by any traditional gray model. The measurements are explained over the entire temperature range by a new frequency-dependent model in which the mean free path for grain boundary scattering is inversely proportional to the phonon frequency, which is shown to be consistent with asymptotic analysis of atomistic simulations from the literature. In all cases the recommended boundary scattering length is smaller than the average grain size. These results should prove useful for the integration of nanocrystalline materials in devices such as advanced thermoelectrics.
On grain size dependent void swelling in pure copper irradiated with fission neutrons
International Nuclear Information System (INIS)
Singh, B.N.; Eldrup, M.; Golubov, S.I.; Zinkle, S.J.
2001-03-01
The effect of grain size on void swelling has its origin in the intrinsic property of grain boundaries as neutral and unsaturable sinks for both vacancies and self-interstitial atoms (SIAs). The phenomenon was investigated already in the 1970s and it was demonstrated that the grain size dependent void swelling measured under irradiation producing only Frenkel pairs could be satisfactorily explained in terms of the standard rate theory (SRT) and dislocation bias. Experimental results reported in the 1980s demonstrated, on the other hand, that the effect of grain boundaries on void swelling under cascade damage conditions was radically different and could not be explained in terms of the SRT. In an effort to understand the source of this significant difference, the effect of grain size on void swelling under cascade damage conditions has been investigated both experimentally and theoretically in pure copper irradiated with fission neutrons at 623K to a dose level of ∼0.3 dpa (displacement per atom). The post-irradiation defect microstructure including voids was investigated using transmission electron microscopy and positron annihilation spectroscopy. The evolution of void swelling was calculated within the framework of the production bias model (PBM) and the SRT. The grain size dependent void swelling measured experimentally is in good accord with the theoretical results obtained using PMB. Implications of these results on modeling of void swelling under cascade damage conditions are discussed. (au)
Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles
Chen, Bin; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.
2016-12-01
Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations.
Origin of the Size-Dependent Stokes Shift in CsPbBr3 Perovskite Nanocrystals.
Brennan, Michael C; Herr, John E; Nguyen-Beck, Triet S; Zinna, Jessica; Draguta, Sergiu; Rouvimov, Sergei; Parkhill, John; Kuno, Masaru
2017-09-06
The origin of the size-dependent Stokes shift in CsPbBr 3 nanocrystals (NCs) is explained for the first time. Stokes shifts range from 82 to 20 meV for NCs with effective edge lengths varying from ∼4 to 13 nm. We show that the Stokes shift is intrinsic to the NC electronic structure and does not arise from extrinsic effects such as residual ensemble size distributions, impurities, or solvent-related effects. The origin of the Stokes shift is elucidated via first-principles calculations. Corresponding theoretical modeling of the CsPbBr 3 NC density of states and band structure reveals the existence of an intrinsic confined hole state 260 to 70 meV above the valence band edge state for NCs with edge lengths from ∼2 to 5 nm. A size-dependent Stokes shift is therefore predicted and is in quantitative agreement with the experimental data. Comparison between bulk and NC calculations shows that the confined hole state is exclusive to NCs. At a broader level, the distinction between absorbing and emitting states in CsPbBr 3 is likely a general feature of other halide perovskite NCs and can be tuned via NC size to enhance applications involving these materials.
Chen, Long; Ji, Tuo; Mu, Liwen; Shi, Yijun; Wang, Huaiyuan; Zhu, Jiahua
2017-07-01
Hierarchically porous carbon adsorbents were successfully fabricated from different biomass resources (softwood, hardwood, bamboo and cotton) by a facile two-step process, i.e. carbonization in nitrogen and thermal oxidation in air. Without involving any toxic/corrosive chemicals, large surface area of up to 890 m 2 /g was achieved, which is comparable to commercial activated carbon. The porous carbons with various surface area and pore size were used as adsorbents to investigate the pore size dependent adsorption phenomenon. Based on the density functional theory, effective (E-SSA) and ineffective surface area (InE-SSA) was calculated considering the geometry of used probing adsorbate. It was demonstrated that the adsorption capacity strongly depends on E-SSA instead of total surface area. Moreover, a regression model was developed to quantify the adsorption capacities contributed from E-SSA and InE-SSA, respectively. The applicability of this model has been verified by satisfactory prediction results on porous carbons prepared in this work as well as commercial activated carbon. Revealing the pore size dependent adsorption behavior in these biomass derived porous carbon adsorbents will help to design more effective materials (either from biomass or other carbon resources) targeting to specific adsorption applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hell, Pavol
2004-01-01
This is a book about graph homomorphisms. Graph theory is now an established discipline but the study of graph homomorphisms has only recently begun to gain wide acceptance and interest. The subject gives a useful perspective in areas such as graph reconstruction, products, fractional and circular colourings, and has applications in complexity theory, artificial intelligence, telecommunication, and, most recently, statistical physics.Based on the authors' lecture notes for graduate courses, this book can be used as a textbook for a second course in graph theory at 4th year or master's level an
Application of graph theory to the morphological analysis of settlements
Szmytkie Robert
2017-01-01
In the following paper, the analyses of morphology of settlements were conducted using graph methods. The intention of the author was to create a quantifiable and simple measure, which, in a quantitative way, would express the degree of development of a graph (the spatial pattern of settlement). When analysing examples of graphs assigned to a set of small towns and large villages, it was noticed that the graph development index should depend on: a relative number of edges in relation to the n...
High-performance analysis of filtered semantic graphs
Buluç, A; Fox, A; Gilbert, JR; Kamil, S; Lugowski, A; Oliker, L; Williams, S
2012-01-01
High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry \\attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices ...
OPEX: Optimized Eccentricity Computation in Graphs
Energy Technology Data Exchange (ETDEWEB)
Henderson, Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2011-11-14
Real-world graphs have many properties of interest, but often these properties are expensive to compute. We focus on eccentricity, radius and diameter in this work. These properties are useful measures of the global connectivity patterns in a graph. Unfortunately, computing eccentricity for all nodes is O(n2) for a graph with n nodes. We present OPEX, a novel combination of optimizations which improves computation time of these properties by orders of magnitude in real-world experiments on graphs of many different sizes. We run OPEX on graphs with up to millions of links. OPEX gives either exact results or bounded approximations, unlike its competitors which give probabilistic approximations or sacrifice node-level information (eccentricity) to compute graphlevel information (diameter).
A model of language inflection graphs
Fukś, Henryk; Farzad, Babak; Cao, Yi
2014-01-01
Inflection graphs are highly complex networks representing relationships between inflectional forms of words in human languages. For so-called synthetic languages, such as Latin or Polish, they have particularly interesting structure due to the abundance of inflectional forms. We construct the simplest form of inflection graphs, namely a bipartite graph in which one group of vertices corresponds to dictionary headwords and the other group to inflected forms encountered in a given text. We, then, study projection of this graph on the set of headwords. The projection decomposes into a large number of connected components, to be called word groups. Distribution of sizes of word group exhibits some remarkable properties, resembling cluster distribution in a lattice percolation near the critical point. We propose a simple model which produces graphs of this type, reproducing the desired component distribution and other topological features.
Size and shape dependent deprotonation potential and proton affinity of nanodiamond
International Nuclear Information System (INIS)
Barnard, Amanda S; Per, Manolo C
2014-01-01
Many important reactions in biology and medicine involve proton abstraction and transfer, and it is integral to applications such as drug delivery. Unlike electrons, which are quantum mechanically delocalized, protons are instantaneously localized on specific residues in these reactions, which can be a distinct advantage. However, the introduction of nanoparticles, such as non-toxic nanodiamonds, to this field complicates matters, as the number of possible sites increases as the inverse radius of the particle. In this paper we present >10 4 simulations that map the size- and shape-dependence of the deprotonation potential and proton affinity of nanodiamonds in the range 1.8–2.7 nm in average diameter. We find that while the average deprotonation potential and proton affinities decrease with size, the site-specific values are inhomogeneous over the surface of the particles, exhibiting strong shape-dependence. The proton affinity is strongly facet-dependent, whereas the deprotonation potential is edge/corner-dependent, which creates a type of spatial hysteresis in the transfer of protons to and from the nanodiamond, and provides new opportunities for selective functionalization. (paper)
Size and shape dependent deprotonation potential and proton affinity of nanodiamond
Barnard, Amanda S.; Per, Manolo C.
2014-11-01
Many important reactions in biology and medicine involve proton abstraction and transfer, and it is integral to applications such as drug delivery. Unlike electrons, which are quantum mechanically delocalized, protons are instantaneously localized on specific residues in these reactions, which can be a distinct advantage. However, the introduction of nanoparticles, such as non-toxic nanodiamonds, to this field complicates matters, as the number of possible sites increases as the inverse radius of the particle. In this paper we present \\gt {{10}4} simulations that map the size- and shape-dependence of the deprotonation potential and proton affinity of nanodiamonds in the range 1.8-2.7 nm in average diameter. We find that while the average deprotonation potential and proton affinities decrease with size, the site-specific values are inhomogeneous over the surface of the particles, exhibiting strong shape-dependence. The proton affinity is strongly facet-dependent, whereas the deprotonation potential is edge/corner-dependent, which creates a type of spatial hysteresis in the transfer of protons to and from the nanodiamond, and provides new opportunities for selective functionalization.
Size dependence investigations of hot electron cooling dynamics in metal/adsorbates nanoparticles
International Nuclear Information System (INIS)
Bauer, Christophe; Abid, Jean-Pierre; Girault, Hubert H.
2005-01-01
The size dependence of electron-phonon coupling rate has been investigated by femtosecond transient absorption spectroscopy for gold nanoparticles (NPs) wrapped in a shell of sulfate with diameter varying from 1.7 to 9.2 nm. Broad-band spectroscopy gives an overview of the complex dynamics of nonequilibrium electrons and permits the choice of an appropriate probe wavelength for studying the electron-phonon coupling dynamics. Ultrafast experiments were performed in the weak perturbation regime (less than one photon in average per nanoparticle), which allows the direct extraction of the hot electron cooling rates in order to compare different NPs sizes under the same conditions. Spectroscopic data reveals a decrease of hot electron energy loss rates with metal/adsorbates nanosystem sizes. Electron-phonon coupling time constants obtained for 9.2 nm NPs are similar to gold bulk materials (∼1 ps) whereas an increase of hot electron cooling time up to 1.9 ps is observed for sizes of 1.7 nm. This is rationalized by the domination of surface effects over size (bulk) effects. The slow hot electron cooling is attributed to the adsorbates-induced long-lived nonthermal regime, which significantly reduces the electron-phonon coupling strength (average rate of phonon emission)
Size-dependent production of radicals in catalyzed reduction of Eosin Y using gold nanorods
Energy Technology Data Exchange (ETDEWEB)
Weng, Guojun; Qi, Ying; Li, Jianjun; Zhao, Junwu, E-mail: nanoptzhao@163.com [Xi’an Jiaotong University, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology (China)
2015-09-15
Gold nanostructures have been widely used as catalysts for chemical processes, energy conversion, and pollution control. The size of gold nanocatalysts is thus paramount for their catalytic activity. In this paper, gold nanorods with different sizes were prepared by means of the improved seeding growth approach by adding aromatic additive. The sizes and aspect ratios of the obtained gold nanorods were calculated according to the TEM characterization. Then, we studied the catalytic activities of gold nanorods using a model reaction based on the reduction of Eosin Y by NaBH{sub 4}. By monitoring the absorption intensities of the radicals induced by gold nanorods in real time, we observed the clear size-dependent activity in the conversion of EY{sup 2−} to EY{sup 3−}. The conversion efficiency indicated that the gold nanorods with the smallest size were catalytically the most active probably due to their high number of coordinatively unsaturated surface atoms. In addition, a compensation effect dominated by the surface area of nanorods was observed in this catalytic reduction, which could be primarily attributed to the configuration of Eosin Y absorbed onto the surfaces of gold nanorods.
Size-dependent production of radicals in catalyzed reduction of Eosin Y using gold nanorods
International Nuclear Information System (INIS)
Weng, Guojun; Qi, Ying; Li, Jianjun; Zhao, Junwu
2015-01-01
Gold nanostructures have been widely used as catalysts for chemical processes, energy conversion, and pollution control. The size of gold nanocatalysts is thus paramount for their catalytic activity. In this paper, gold nanorods with different sizes were prepared by means of the improved seeding growth approach by adding aromatic additive. The sizes and aspect ratios of the obtained gold nanorods were calculated according to the TEM characterization. Then, we studied the catalytic activities of gold nanorods using a model reaction based on the reduction of Eosin Y by NaBH 4 . By monitoring the absorption intensities of the radicals induced by gold nanorods in real time, we observed the clear size-dependent activity in the conversion of EY 2− to EY 3− . The conversion efficiency indicated that the gold nanorods with the smallest size were catalytically the most active probably due to their high number of coordinatively unsaturated surface atoms. In addition, a compensation effect dominated by the surface area of nanorods was observed in this catalytic reduction, which could be primarily attributed to the configuration of Eosin Y absorbed onto the surfaces of gold nanorods
Size-dependent production of radicals in catalyzed reduction of Eosin Y using gold nanorods
Weng, Guojun; Qi, Ying; Li, Jianjun; Zhao, Junwu
2015-09-01
Gold nanostructures have been widely used as catalysts for chemical processes, energy conversion, and pollution control. The size of gold nanocatalysts is thus paramount for their catalytic activity. In this paper, gold nanorods with different sizes were prepared by means of the improved seeding growth approach by adding aromatic additive. The sizes and aspect ratios of the obtained gold nanorods were calculated according to the TEM characterization. Then, we studied the catalytic activities of gold nanorods using a model reaction based on the reduction of Eosin Y by NaBH4. By monitoring the absorption intensities of the radicals induced by gold nanorods in real time, we observed the clear size-dependent activity in the conversion of EY2- to EY3-. The conversion efficiency indicated that the gold nanorods with the smallest size were catalytically the most active probably due to their high number of coordinatively unsaturated surface atoms. In addition, a compensation effect dominated by the surface area of nanorods was observed in this catalytic reduction, which could be primarily attributed to the configuration of Eosin Y absorbed onto the surfaces of gold nanorods.
Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications.
Woźniak, Anna; Malankowska, Anna; Nowaczyk, Grzegorz; Grześkowiak, Bartosz F; Tuśnio, Karol; Słomski, Ryszard; Zaleska-Medynska, Adriana; Jurga, Stefan
2017-06-01
Metallic nanoparticles, in particular gold nanoparticles (AuNPs), offer a wide spectrum of applications in biomedicine. A crucial issue is their cytotoxicity, which depends greatly on various factors, including morphology of nanoparticles. Because metallic nanoparticles have an effect on cell membrane integrity, their shape and size may affect the viability of cells, due to their different geometries as well as physical and chemical interactions with cell membranes. Variations in the size and shape of gold nanoparticles may indicate particular nanoparticle morphologies that provide strong cytotoxicity effects. Synthesis of different sized and shaped bare AuNPs was performed with spherical (~ 10 nm), nanoflowers (~ 370 nm), nanorods (~ 41 nm), nanoprisms (~ 160 nm) and nanostars (~ 240 nm) morphologies. These nanostructures were characterized and interacting with cancer (HeLa) and normal (HEK293T) cell lines and cell viability tests were performed by WST-1 tests and fluorescent live/dead cell imaging experiments. It was shown that various shapes and sizes of gold nanostructures may affect the viability of the cells. Gold nanospheres and nanorods proved to be more toxic than star, flower and prism gold nanostructures. This may be attributed to their small size and aggregation process. This is the first report concerning a comparison of cytotoxic profile in vitro with a wide spectrum of bare AuNPs morphology. The findings show their possible use in biomedical applications.
Size dependent compressibility of nano-ceria: Minimum near 33 nm
International Nuclear Information System (INIS)
Rodenbough, Philip P.; Song, Junhua; Chan, Siu-Wai; Walker, David; Clark, Simon M.; Kalkan, Bora
2015-01-01
We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite size decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size
Zeng, Lei; He, Feng; Zhang, Yi; Liu, Biyun; Dai, Zhigang; Zhou, Qiaohong; Wu, Zhenbin
2018-03-01
To explore the size-dependent responses of zooplankton to submerged macrophyte restoration, we collected macrophyte, zooplankton and water quality samples seasonally from a subtropical shallow lake from 2010 to 2012. Special attention was given to changes in rotifers and crustaceans (cladocerans and copepods). The rotifers were grouped into three size classes (400 μm) to explore their size-related responses to macrophyte restoration. The results showed that during the restoration, the annual mean biomass and macrophyte coverage increased significantly from 0 to 637 g/m2 and 0 to 27%, respectively. In response, the density and biomass of crustaceans and the crustacean-to-rotifer ratio increased significantly, while the rotifer density decreased significantly. Moreover, rotifers showed significant sizedependent responses to macrophyte restoration. Specially, rotifers sized zooplankton tended to boom, while that of small rotifers was inhibited during macrophyte restoration. Redundancy analysis (RDA) revealed positive correlations between macrophytes and crustaceans, rotifers and COD or Chl- a, but negative correlations between macrophytes and COD or Chl- a, and between crustaceans and Chl- a. Moreover, the results indicate that increased predation on phytoplankton by large-sized zooplankton might be an important mechanism for macrophyte restoration during development of aquatic ecosystems, and that this mechanism played a very important role in promoting the formation of a clear-water state in subtropical shallow lakes.
Size dependent compressibility of nano-ceria: Minimum near 33 nm
Energy Technology Data Exchange (ETDEWEB)
Rodenbough, Philip P. [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, New York 10027 (United States); Chemistry Department, Columbia University, New York, New York 10027 (United States); Song, Junhua; Chan, Siu-Wai, E-mail: sc174@columbia.edu [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, New York 10027 (United States); Walker, David [Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964 (United States); Clark, Simon M. [ARC Center of Excellence for Core to Crust Fluid Systems and Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2019, Australia and The Bragg Institute, Australian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales 2232 (Australia); Kalkan, Bora [Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey)
2015-04-20
We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite size decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.
Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams
Energy Technology Data Exchange (ETDEWEB)
Kim, Ijung, E-mail: ijungkim@utexas.edu [The University of Texas at Austin, Department of Petroleum and Geosystems Engineering (United States); Worthen, Andrew J.; Johnston, Keith P. [The University of Texas at Austin, McKetta Department of Chemical Engineering (United States); DiCarlo, David A.; Huh, Chun [The University of Texas at Austin, Department of Petroleum and Geosystems Engineering (United States)
2016-04-15
Nanoparticles are a promising alternative to surfactants to stabilize emulsions or foams in enhanced oil recovery (EOR) processes due to their effectiveness in very harsh environments found in many of the oilfields around the world. While the size-dependent properties of nanoparticles have been extensively studied in the area of optics or cellular uptake, little is known on the effects of nanoparticle size on emulsion/foam generation, especially for EOR applications. In this study, silica nanoparticles with four different sizes (5, 12, 25, and 80 nm nominal diameter) but with the same surface treatment were employed to test their emulsion or foam generation behavior in high-salinity conditions. The decane-in-brine emulsion generated by sonication or flowing through sandpack showed smaller droplet size and higher apparent viscosity as the nanoparticle size decreased. Similarly, the CO{sub 2}-in-brine foam generation in sandstone or sandpacks was also significantly affected by the nanoparticle size, exhibiting higher apparent foam viscosity as the nanoparticle size decreased. In case of foam generation in sandstone cores with 5 nm nanoparticles, a noticeable hysteresis occurred when the flow velocity was initially increased and then decreased, implying a strong foam generation initially; and then the trapping of the generated foam in the rock pores, as the flow velocity decreased. On the other hand, weak foams stabilized with larger nanoparticles indicated a rapid coalescence of bubbles which prevented foam generation. Overall, stable emulsions/foams were achievable by the smaller particles as a result of greater diffusivity and/or higher number concentration, thus allowing more nanoparticles with higher surface area to volume ratio to be adsorbed at the fluid/fluid interfaces of the emulsion/foam dispersion.Graphical abstract.
Enabling Graph Appliance for Genome Assembly
Energy Technology Data Exchange (ETDEWEB)
Singh, Rina [ORNL; Graves, Jeffrey A [ORNL; Lee, Sangkeun (Matt) [ORNL; Sukumar, Sreenivas R [ORNL; Shankar, Mallikarjun [ORNL
2015-01-01
In recent years, there has been a huge growth in the amount of genomic data available as reads generated from various genome sequencers. The number of reads generated can be huge, ranging from hundreds to billions of nucleotide, each varying in size. Assembling such large amounts of data is one of the challenging computational problems for both biomedical and data scientists. Most of the genome assemblers developed have used de Bruijn graph techniques. A de Bruijn graph represents a collection of read sequences by billions of vertices and edges, which require large amounts of memory and computational power to store and process. This is the major drawback to de Bruijn graph assembly. Massively parallel, multi-threaded, shared memory systems can be leveraged to overcome some of these issues. The objective of our research is to investigate the feasibility and scalability issues of de Bruijn graph assembly on Cray s Urika-GD system; Urika-GD is a high performance graph appliance with a large shared memory and massively multithreaded custom processor designed for executing SPARQL queries over large-scale RDF data sets. However, to the best of our knowledge, there is no research on representing a de Bruijn graph as an RDF graph or finding Eulerian paths in RDF graphs using SPARQL for potential genome discovery. In this paper, we address the issues involved in representing a de Bruin graphs as RDF graphs and propose an iterative querying approach for finding Eulerian paths in large RDF graphs. We evaluate the performance of our implementation on real world ebola genome datasets and illustrate how genome assembly can be accomplished with Urika-GD using iterative SPARQL queries.
Simplicial complexes of graphs
Jonsson, Jakob
2008-01-01
A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.
Introduction to quantum graphs
Berkolaiko, Gregory
2012-01-01
A "quantum graph" is a graph considered as a one-dimensional complex and equipped with a differential operator ("Hamiltonian"). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., "meso-" or "nano-scale") system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on qu...
Size-Dependent Characterization of Atmospheric Particles during Winter in Beijing
Directory of Open Access Journals (Sweden)
Haiyan Li
2016-03-01
Full Text Available Two real-time instruments, NCSA (Nanoparticle Chemical Speciation Analyzer and ACSA (Aerosol Chemical Speciation Analyzer, were both deployed in Beijing, China to explore the sized-dependent characterization of atmospheric particles. The mass concentrations of PM1, PM2.5, PM10, and sulfate and nitrate in the three size fractions were hourly measured in situ from 13 December 2013 to 7 January 2014. Generally, “sawtooth cycles” are common during winter in Beijing, with the PM concentrations increasing slowly over a few days, then falling to a low level abruptly in only a few hours. The secondary species, sulfate and nitrate, play important roles in haze formation and account for 10.5% and 11.1% of total PM1 mass on average. Based on the variation of PM1 mass concentrations, we classify the study periods into three categories, clean, slightly polluted, and polluted. The oxidation ratios of sulfur and nitrogen both increase from clean to polluted periods, indicating the significant contribution of secondary transformation to haze evolution. While the PM2.5/PM10 ratio shows high dependence on PM pollution level, the ratio of PM1/PM2.5 remains almost stable during the entire study, with an average of 0.90. With respect to the mass-size distribution of chemical components, both sulfate and nitrate show dominant contributions in PM1 size fraction, accounting for 80.7% and 60.3% of total sulfate and nitrate, respectively. Our results also reveal that the elevated sulfate in PM1, and the enhanced nitrate in PM1 and PM2.5–1 size fraction, prompt the formation of haze pollution.
Size-dependent error of the density functional theory ionization potential in vacuum and solution.
Sosa Vazquez, Xochitl A; Isborn, Christine M
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.
Particle transport in breathing quantum graph
International Nuclear Information System (INIS)
Matrasulov, D.U.; Yusupov, J.R.; Sabirov, K.K.; Sobirov, Z.A.
2012-01-01
Full text: Particle transport in nanoscale networks and discrete structures is of fundamental and practical importance. Usually such systems are modeled by so-called quantum graphs, the systems attracting much attention in physics and mathematics during past two decades [1-5]. During last two decades quantum graphs found numerous applications in modeling different discrete structures and networks in nanoscale and mesoscopic physics (e.g., see reviews [1-3]). Despite considerable progress made in the study of particle dynamics most of the problems deal with unperturbed case and the case of time-dependent perturbation has not yet be explored. In this work we treat particle dynamics for quantum star graph with time-dependent bonds. In particular, we consider harmonically breathing quantum star graphs, the cases of monotonically contracting and expanding graphs. The latter can be solved exactly analytically. Edge boundaries are considered to be time-dependent, while branching point is assumed to be fixed. Quantum dynamics of a particle in such graphs is studied by solving Schrodinger equation with time-dependent boundary conditions given on a star graph. Time-dependence of the average kinetic energy is analyzed. Space-time evolution of the Gaussian wave packet is treated for harmonically breathing star graph. It is found that for certain frequencies energy is a periodic function of time, while for others it can be non-monotonically growing function of time. Such a feature can be caused by possible synchronization of the particles motion and the motions of the moving edges of graph bonds. (authors) References: [1] Tsampikos Kottos and Uzy Smilansky, Ann. Phys., 76, 274 (1999). [2] Sven Gnutzmann and Uzy Smilansky, Adv. Phys. 55, 527 (2006). [3] S. GnutzmannJ.P. Keating, F. Piotet, Ann. Phys., 325, 2595 (2010). [4] P.Exner, P.Seba, P.Stovicek, J. Phys. A: Math. Gen. 21, 4009 (1988). [5] J. Boman, P. Kurasov, Adv. Appl. Math., 35, 58 (2005)
Soetaert, K.; Heip, C.H.R.
1990-01-01
Diversity indices, although designed for comparative purposes, often cannot be used as such, due to their sample-size dependence. It is argued here that this dependence is more pronounced in high diversity than in low diversity assemblages and that indices more sensitive to rarer species require larger sample sizes to estimate diversity with reasonable precision than indices which put more weight on commoner species. This was tested for Hill's diversity number N sub(0) to N sub( proportional ...
Directory of Open Access Journals (Sweden)
Lin Zhao
2016-01-01
Full Text Available Recent studies have indicated that graphene and its derivative graphene oxide (GO engage in a wide range of antibacterial activities with limited toxicity to human cells. Here, we systematically evaluate the dependence of GO toxicity on the size of the nanoparticles used in treatments: we compare the cytotoxic effects of graphene quantum dots (GQDs, <15 nm, small GOs (SGOs, 50–200 nm, and large GOs (LGOs, 0.5–3 μm. We synthesize the results of bacterial colony count assays and SEM-based observations of morphological changes to assess the antibacterial properties that these GOs bring into effect against E. coli. We also use Live/Dead assays and morphological analysis to investigate changes to mammalian (Murine macrophage-like Raw 264.7 cells induced by the presence of the various GO particle types. Our results demonstrate that LGOs, SGOs, and GQDs possess antibacterial activities and cause mammalian cell cytotoxicity at descending levels of potency. Placing our observations in the context of previous simulation results, we suggest that both the lateral size and surface area of GO particles contribute to cytotoxic effects. We hope that the size dependence elucidated here provides a useful schematic for tuning GO-cell interactions in biomedical applications.
Size-dependent modification of asteroid family Yarkovsky V-shapes
Bolin, B. T.; Morbidelli, A.; Walsh, K. J.
2018-04-01
Context. The thermal properties of the surfaces of asteroids determine the magnitude of the drift rate cause by the Yarkovsky force. In the general case of Main Belt asteroids, the Yarkovsky force is indirectly proportional to the thermal inertia, Γ. Aim. Following the proposed relationship between Γ and asteroid diameter D, we find that asteroids' Yarkovsky drift rates might have a more complex size dependence than previous thought, leading to a curved family V-shape boundary in semi-major axis, a, vs. 1/D space. This implies that asteroids are drifting faster at larger sizes than previously considered decreasing on average the known ages of asteroid families. Methods: The V-Shape curvature is determined for >25 families located throughout the Main Belt to quantify the Yarkovsky size-dependent drift rate. Results: We find that there is no correlation between family age and V-shape curvature. In addition, the V-shape curvature decreases for asteroid families with larger heliocentric distances suggesting that the relationship between Γ and D is weaker in the outer MB possibly due to homogenous surface roughness among family members.
Grain size and burnup dependence of spent fuel oxidation: Geological repository impact
International Nuclear Information System (INIS)
Kansa, E.J.; Hanson, B.D.; Stout, R.B.
1999-01-01
Further refinements to the oxidation model of Stout et al. have been made. The present model incorporates the burnup dependence of the oxidation rate and an allowance for a distribution of grain sizes. The model was tested by comparing the model results with the oxidation histories of spent-fuel samples oxidized in thermogravimetric analysis (TGA) or oven dry-bath (ODB) experiments. The experimental and model results are remarkably close and confirm the assumption that grain-size distributions and activation energies are the important parameters to predicting oxidation behavior. The burnup dependence of the activation energy was shown to have a greater effect than decreasing the effective grain size in suppressing the rate of the reaction U 4 O 9 r↓U 3 O 8 . Model results predict that U 3 O 8 formation of spent fuels exposed to oxygen will be suppressed even for high burnup fuels that have undergone restructuring in the rim region, provided the repository temperature is kept sufficiently low
Size dependence study of the ordering temperature in the Fast Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Velasquez, E. A., E-mail: eavelas@gmail.com [Universidad de San Buenaventura Seccional Medellin, Grupo de Investigacion en Modelamiento y Simulacion Computacional, Facultad de Ingenierias (Colombia); Mazo-Zuluaga, J., E-mail: johanmazo@gmail.com [Universidad de Antioquia, Grupo de Estado Solido, Grupo de Instrumentacion Cientifica y Microelectronica, Instituto de Fisica-FCEN (Colombia); Mejia-Lopez, J., E-mail: jmejia@puc.cl [Universidad de Antioquia, Instituto de Fisica-FCEN (Colombia)
2013-02-15
Based on the framework of the Fast Monte Carlo approach, we study the diameter dependence of the ordering temperature in magnetic nanostructures of cylindrical shape. For the purposes of this study, Fe cylindrical-shaped samples of different sizes (20 nm height, 30-100 nm in diameter) have been chosen, and their magnetic properties have been computed as functions of the scaled temperature. Two main set of results are concluded: (a) the ordering temperature of nanostructures follows a linear scaling relationship as a function of the scaling factor x, for all the studied sizes. This finding rules out a scaling relation T Prime {sub c} = x{sup 3{eta}}T{sub c} (where {eta} is a scaling exponent, and T Prime {sub c} and T{sub c} are the scaled and true ordering temperatures) that has been proposed in the literature, and suggests that temperature should scale linearly with the scaling factor x. (b) For the nanostructures, there are three different order-disorder magnetic transition modes depending on the system's size, in very good agreement with previous experimental reports.
Nano rare-earth oxides induced size-dependent vacuolization: an independent pathway from autophagy.
Zhang, Ying; Yu, Chenguang; Huang, Guanyi; Wang, Changli; Wen, Longping
2010-09-07
Four rare earth oxides have been shown to induce autophagy. Interestingly, we often noticed plentiful vacuolization, which was not always involved in this autophagic process. In this study, we investigated three other rare-earth elements, including Yttrium (Y), Ytterbium (Yb), and Lanthanum (La). Autophagic effect could be induced by all of them but only Y(2)O(3) and Yb(2)O(3) could cause massive vacuolization. Y(2)O(3) and Yb(2)O(3) treated by sonication or centrifugation to reduce particle size were used to test vacuolization level in HeLa cell lines. The results showed that rare earth oxides-induced vacuolization is size-dependent and differs from autophagic pathway. To further clarify the characteristics of this autophagic process, we used MEF Atg-5 (autophagy associated gene 5) knockout cell line, and the result showed that the autophagic process induced by rare earth oxides is Atg-5-dependent and the observed vacuolization was independent from autophagy. Similar results could also be observed in our tests on 3-methyladenine(3-MA), a well-known autophagy inhibitor. In conclusion, for the first time, we clarified the relationship between massive vacuolization and autophagic process induced by rare earth oxides and pointed out the size effect of rare earth oxides on the formation of vacuoles, which give clues to further investigation on the mechanisms underlying their biological effects.
Browning, Lauren M.; Lee, Kerry J.; Nallathamby, Prakash D.; Xu, Xiao-Hong Nancy
2013-01-01
Nanomaterials possess distinctive physicochemical properties and promise a wide range of applications, from advanced technology to leading-edge medicine. However, their effects on living organisms remain largely unknown. Here we report that the purified silver nanoparticles (Ag NPs, 97 ± 13 nm) incite specific developmental stage embryonic phenotypes and nanotoxicity in a dose-dependent manner, upon acute exposure of given-stage embryos to the NPs (0–24 pM) for only 2 h. The critical concentrations of the NPs that cause 50% of embryos develop normally for cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stage zebrafish embryos are 3.5, 4, 6, 6, and 8 pM, respectively, showing that the earlier developmental stage embryos are much more sensitive to the effects of the NPs than the later stage. Interestingly, distinctive phenotypes (head abnormality and no eyes) are observed only in cleavage and early-gastrula stage embryos treated with the NPs, showing the stage-specific effects of the NPs. By comparing with our study of the smaller Ag NPs (13.1 ± 2.5 nm), we found that the embryonic phenotypes strikingly depend upon the sizes of Ag NPs and embryonic developmental stages. These notable findings suggest that the Ag NPs are unlike any conventional chemicals or ions. They can potentially enable target specific study and therapy for early embryonic development in size, stage, dose, and exposure-duration dependent manners. PMID:24024906
Browning, Lauren M; Lee, Kerry J; Nallathamby, Prakash D; Xu, Xiao-Hong Nancy
2013-10-21
Nanomaterials possess distinctive physicochemical properties and promise a wide range of applications, from advanced technology to leading-edge medicine. However, their effects on living organisms remain largely unknown. Here we report that the purified silver nanoparticles (Ag NPs) (97 ± 13 nm) incite specific developmental stage embryonic phenotypes and nanotoxicity in a dose-dependent manner, upon acute exposure of given stage embryos to the NPs (0-24 pM) for only 2 h. The critical concentrations of the NPs that cause 50% of embryos to develop normally for cleavage, early gastrula, early segmentation, late segmentation, and hatching stage zebrafish embryos are 3.5, 4, 6, 6, and 8 pM, respectively, showing that the earlier developmental stage embryos are much more sensitive to the effects of the NPs than the later stage embryos. Interestingly, distinctive phenotypes (head abnormality and no eyes) are observed only in cleavage and early gastrula stage embryos treated with the NPs, showing the stage-specific effects of the NPs. By comparing these Ag NPs with smaller Ag NPs (13.1 ± 2.5 nm), we found that the embryonic phenotypes strikingly depend upon the sizes of Ag NPs and embryonic developmental stages. These notable findings suggest that the Ag NPs are unlike any conventional chemicals or ions. They can potentially enable target-specific study and therapy for early embryonic development in size-, stage-, dose-, and exposure duration-dependent manners.
International Nuclear Information System (INIS)
Teuffer Z, C.; Cruz Z, E.; Calderon, T.; Chernov, V.; Barboza F, M.
2004-01-01
The influence of grain size on Tl was analysed in poly minerals extracted from Mexican spices as Origanum vulgare L. (oregano) y Capsicum annun (chile guajillo). The poly minerals size were selected by Zimmerman method up to 10 μm and exposed to 0.5-10 kGy range from 60 Co. The glow curves were centered at 166 C for Capsicum annun and at 126 C for Origanum vulgare l. In both cases was observed at 5 kGy a weak saturation for Tl response. This behaviour is attributed to feldspar and quartz are present in the samples and this results is in agreement with other european spices obtained. For >10 μm particle size the Tl response increased respect to the doses, and it is possible that increase the organic impurities quantities are present in the samples and contributed to the Tl when the samples were thermally excited. The aim of this work is provide more ideas with regard to the behaviour of luminescence emission as dependent of the size particle in the irradiated spices. The methodology might useful for quality control also in radiation processing. (Author)
New developments on size-dependent growth applied to the crystallization of sucrose
Martins, P. M.; Rocha, F.
2007-12-01
The effect of crystal size on the growth rate of sucrose (C 12H 22O 11) at 40 °C is investigated from a theoretical and an experimental point of view. Based on new perspectives resulting from the recently introduced spiral nucleation model [P.M. Martins, F. Rocha, Surf. Sci. 601 (2007) 3400], crystal growth rates are expressed in terms of mass deposition per time and crystal volume units. This alternative definition is demonstrated to be size-independent over the considered supersaturation range. The conventional overall growth rate expressed per surface area units is found to be linearly dependent on crystal size. The advantages of the "volumetric" growth rate concept are discussed. Sucrose dissolution rates were measured under reciprocal conditions of the growth experiments in order to investigate the two-way effect of crystal size on mass transfer rates and on the integration kinetics. Both effects are adequately described by combining a well-established diffusion-integration model and the spiral nucleation mechanism.
Energy Technology Data Exchange (ETDEWEB)
Sarkar, S.; Banerjee, D.; Ghorai, U.K.; Das, N.S. [School of Material Science and Nanotechnology Jadavpur University, Kolkata 700032 (India); Chattopadhyay, K.K., E-mail: kalyan_chattopadhyay@yahoo.com [School of Material Science and Nanotechnology Jadavpur University, Kolkata 700032 (India); Thin Film and NanoScience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India)
2016-10-15
In this work, simple hydrothermal synthesis of water soluble Carbon quantum dots (CQDs) of different sizes has been reported. The effect of synthesis temperature and synthesis time on the particle size has also been shown. The structures of all the as-prepared samples were studied by field emission scanning electron microscope and high resolution transmission electron microscope. Fourier transformed infrared spectrophotometer analyzes the different bonding present in the sample whereas Raman spectrophotometer quantifies the hybridization state of the prepared samples. UV–vis spectrophotometer gives the variation of absorbance of all the samples with wavelength. Dynamic light scattering study shows the variation of particle size with deposition condition and corresponding zeta potential gives the idea about the stability of the CQD solutions. The photoluminescence (PL) properties of the as prepared CQDs were also studied in detail. It is noticed that with the increase of excitation wavelength, the PL emissions for the different samples were red shifted. The results have been explained in terms of the excitation dependent emission, variations in size of the CQD and presence of different functional groups on the surface of CQDs.
International Nuclear Information System (INIS)
Sarkar, S.; Banerjee, D.; Ghorai, U.K.; Das, N.S.; Chattopadhyay, K.K.
2016-01-01
In this work, simple hydrothermal synthesis of water soluble Carbon quantum dots (CQDs) of different sizes has been reported. The effect of synthesis temperature and synthesis time on the particle size has also been shown. The structures of all the as-prepared samples were studied by field emission scanning electron microscope and high resolution transmission electron microscope. Fourier transformed infrared spectrophotometer analyzes the different bonding present in the sample whereas Raman spectrophotometer quantifies the hybridization state of the prepared samples. UV–vis spectrophotometer gives the variation of absorbance of all the samples with wavelength. Dynamic light scattering study shows the variation of particle size with deposition condition and corresponding zeta potential gives the idea about the stability of the CQD solutions. The photoluminescence (PL) properties of the as prepared CQDs were also studied in detail. It is noticed that with the increase of excitation wavelength, the PL emissions for the different samples were red shifted. The results have been explained in terms of the excitation dependent emission, variations in size of the CQD and presence of different functional groups on the surface of CQDs.
Size-dependent Fano Interaction in the Laser-etched Silicon Nanostructures
Directory of Open Access Journals (Sweden)
Kumar Rajesh
2008-01-01
Full Text Available AbstractPhoto-excitation and size-dependent Raman scattering studies on the silicon (Si nanostructures (NSs prepared by laser-induced etching are presented here. Asymmetric and red-shifted Raman line-shapes are observed due to photo-excited Fano interaction in the quantum confined nanoparticles. The Fano interaction is observed between photo-excited electronic transitions and discrete phonons in Si NSs. Photo-excited Fano studies on different Si NSs show that the Fano interaction is high for smaller size of Si NSs. Higher Fano interaction for smaller Si NSs is attributed to the enhanced interference between photo-excited electronic Raman scattering and phonon Raman scattering.
Giant Components in Biased Graph Processes
Amir, Gideon; Gurel-Gurevich, Ori; Lubetzky, Eyal; Singer, Amit
2005-01-01
A random graph process, $\\Gorg[1](n)$, is a sequence of graphs on $n$ vertices which begins with the edgeless graph, and where at each step a single edge is added according to a uniform distribution on the missing edges. It is well known that in such a process a giant component (of linear size) typically emerges after $(1+o(1))\\frac{n}{2}$ edges (a phenomenon known as ``the double jump''), i.e., at time $t=1$ when using a timescale of $n/2$ edges in each step. We consider a generalization of ...
Queen-worker caste ratio depends on colony size in the pharaoh ant (Monomorium pharaonis)
DEFF Research Database (Denmark)
Schmidt, Anna Mosegaard; Linksvayer, Timothy Arnold; Boomsma, Jacobus Jan
2011-01-01
The success of an ant colony depends on the simultaneous presence of reproducing queens and nonreproducing workers in a ratio that will maximize colony growth and reproduction. Despite its presumably crucial role, queen–worker caste ratios (the ratio of adult queens to workers) and the factors...... affecting this variable remain scarcely studied. Maintaining polygynous pharaoh ant (Monomorium pharaonis) colonies in the laboratory has provided us with the opportunity to experimentally manipulate colony size, one of the key factors that can be expected to affect colony level queen–worker caste ratios...... species with budding colonies may adaptively adjust caste ratios to ensure rapid growth....
Dependence of tracer diffusion on atomic size in amorphous Ni-Zr
International Nuclear Information System (INIS)
Hahn, H.; Averback, R.S.
1988-01-01
Tracer diffusion coefficients for several impurities and Ni self-atoms were measured in amorphous (a-) Ni/sub 50/Zr/sub 50/ at 573 K using secondary-ion-mass spectroscopy, Rutherford backscattering, and radioactive tracer methods. The results showed that atomic mobility in the a-Ni-Zr alloy depends strongly on atomic size, decreasing rapidly with increasing atomic radius. This diffusion behavior is similar to that in α-Zr and α-Ti and is suggestive of an interstitial-like mechanism of diffusion. The consequences of these results for solid-state amorphization transformations are discussed
Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds
Directory of Open Access Journals (Sweden)
B.V. Yavkin, G.V. Mamin, M.R. Gafurov, S.B. Orlinskii
2015-12-01
Full Text Available Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT technique were studied by high-frequency W- and conventional X-band electron paramagnetic resonance (EPR spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of structures in the nanodiamond shell.
Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins
Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim
2016-05-01
The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be
The effects of density dependent resource limitation on size of wild reindeer.
Skogland, Terje
1983-11-01
A density-dependent decrement in size for wild reindeer from 12 different Norwegian herds at 16 different densities was shown using lower jawbone-length as the criterion of size. This criterion was tested and found to adequately predict body size of both bucks and does. Lactation in does did not affect jaw length but significantly affected dressed weights.A decrement in the size of does as a result of gross density was found. This size decrement was further analysed in relation to the habitat densities in winter (R 2 =0.85) and in summer (R 2 =0.75) separately, in order to estimate the relative effects of each factor. For herds with adequate food in winter (no signs of overgrazing of lichens) density in relation to summer habitat and mires yielded the highest predictive power in a multiple regression. For herds with adequate summer pastures, densities per winter habitat and lichen volumes showed likewise a highly significant correlation. The inclusion of the lichen volume data in the regression increased its predictive power. The major effect of resource limitation was to delay the time of calving because a maternal carry-over effect allowed the calf a shorter period of growth to be completed during its first summer. Neonate size at birth was highly correlated with maternal size regardless of the mean calving date although the latter was significantly delayed for small-sized does in food resource-limited herds. Likewise the postnatal growth rate of all calves were not significantly different during 50 days postpartum regardless of maternal conditions in winter feeding. The summer growth rates of bucks ≧1 year did not vary significantly between herds. The age of maturity of food resource-limited does was delayed by one year and growth ceased after the initiation of reproduction. This shows that under conditions of limited resources the does with delayed births of calves allocated less energy to body growth simply because they had less time to replenish body
Measuring size dependent electrical properties from nanoneedle structures: Pt/ZnO Schottky diodes
International Nuclear Information System (INIS)
Mao, Shimin; Anderson, Daniel D.; Shang, Tao; Park, Byoungnam; Dillon, Shen J.
2014-01-01
This work reports the fabrication and testing of nanoneedle devices with well-defined interfaces that are amenable to a variety of structural and electrical characterization, including transmission electron microscopy. Single Pt/ZnO nanoneedle Schottky diodes were fabricated by a top down method using a combination of electro-polishing, sputtering, and focused ion beam milling. The resulting structures contained nanoscale planar heterojunctions with low ideality factors, the dimensions of which were tuned to study size-dependent electrical properties. The diameter dependence of the Pt/ZnO diode barrier height is explained by a joule heating effect and/or electronic inhomogeneity in the Pt/ZnO contact area
International Nuclear Information System (INIS)
Premuda, F.
1983-01-01
Two lines in improved neutron diffusion theory extending the efficiency of finite-difference diffusion codes to the field of optically small systems, are here reviewed. The firs involves the nodal solution for tensorial diffusion equation in slab geometry and tensorial formulation in parallelepiped and cylindrical gemometry; the dependence of critical eigenvalue from small slab thicknesses is also analitically investigated and finally a regularized tensorial diffusion equation is derived for slab. The other line refer to diffusion models formally unchanged with respect to the classical one, but where new size-dependent RTGB definitions for diffusion parameters are adopted, requiring that they allow to reproduce, in diffusion approach, the terms of neutron transport global balance; the trascendental equation for the buckling, arising in slab, sphere and parallelepiped geometry from the above requirement, are reported and the sizedependence of the new diffusion coefficient and extrapolated end point is investigated
Lalam, N.; Jacob, C.; Jagers, P.
2004-01-01
We propose a stochastic modelling of the PCR amplification process by a size-dependent branching process starting as a supercritical Bienaymé-Galton-Watson transient phase and then having a saturation near-critical size-dependent phase. This model allows us to estimate the probability of replication
Size-dependent standard deviation for growth rates: empirical results and theoretical modeling.
Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H Eugene; Grosse, I
2008-05-01
We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation sigma(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation sigma(R) on the average value of the wages with a scaling exponent beta approximately 0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation sigma(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of sigma(R) on the average payroll with a scaling exponent beta approximately -0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.
Size-dependent standard deviation for growth rates: Empirical results and theoretical modeling
Podobnik, Boris; Horvatic, Davor; Pammolli, Fabio; Wang, Fengzhong; Stanley, H. Eugene; Grosse, I.
2008-05-01
We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation σ(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation σ(R) on the average value of the wages with a scaling exponent β≈0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation σ(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of σ(R) on the average payroll with a scaling exponent β≈-0.08 . Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable.
Directory of Open Access Journals (Sweden)
Giuseppe Vecchio
Full Text Available The expected potential benefits promised by nanotechnology in various fields have led to a rapid increase of the presence of engineered nanomaterials in a high number of commercial goods. This is generating increasing questions about possible risks for human health and environment, due to the lack of an in-depth assessment of the physical/chemical factors responsible for their toxic effects. In this work, we evaluated the toxicity of monodisperse citrate-capped gold nanoparticles (AuNPs of different sizes (5, 15, 40, and 80 nm in the model organism Drosophila melanogaster, upon ingestion. To properly evaluate and distinguish the possible dose- and/or size-dependent toxicity of the AuNPs, we performed a thorough assessment of their biological effects, using two different dose-metrics. In the first approach, we kept constant the total surface area of the differently sized AuNPs (Total Exposed Surface area approach, TES, while, in the second approach, we used the same number concentration of the four different sizes of AuNPs (Total Number of Nanoparticles approach, TNN. We observed a significant AuNPs-induced toxicity in vivo, namely a strong reduction of Drosophila lifespan and fertility performance, presence of DNA fragmentation, as well as a significant modification in the expression levels of genes involved in stress responses, DNA damage recognition and apoptosis pathway. Interestingly, we found that, within the investigated experimental conditions, the toxic effects in the exposed organisms were directly related to the concentration of the AuNPs administered, irrespective of their size.
Outer-totalistic cellular automata on graphs
International Nuclear Information System (INIS)
Marr, Carsten; Huett, Marc-Thorsten
2009-01-01
We present an intuitive formalism for implementing cellular automata on arbitrary topologies. By that means, we identify a symmetry operation in the class of elementary cellular automata. Moreover, we determine the subset of topologically sensitive elementary cellular automata and find that the overall number of complex patterns decreases under increasing neighborhood size in regular graphs. As exemplary applications, we apply the formalism to complex networks and compare the potential of scale-free graphs and metabolic networks to generate complex dynamics
Uniform TiO2 nanoparticles induce apoptosis in epithelial cell lines in a size-dependent manner.
Sun, Qingqing; Ishii, Takayuki; Kanehira, Koki; Sato, Takeshi; Taniguchi, Akiyoshi
2017-05-02
The size of titanium dioxide (TiO 2 ) nanoparticles is a vital parameter that determines their cytotoxicity. However, most reported studies have employed irregular shapes and sizes of TiO 2 nanoparticles, as it is difficult to produce nanoparticles of suitable sizes for research. We produced good model TiO 2 nanoparticles of uniform shape and size for use in studying their cytotoxicity. In this work, spherical, uniform polyethylene glycol-modified TiO 2 (TiO 2 -PEG) nanoparticles of differing sizes (100, 200, and 300 nm) were prepared using the sol-gel method. A size-dependent decrease in cell viability was observed with increasing nanoparticle size. Furthermore, apoptosis was found to be positively associated with nanoparticle size, as evidenced by an increase in caspase-3 activity with increasing nanoparticle size. Larger nanoparticles exhibited higher cellular uptake, suggesting that larger nanoparticles more strongly induce apoptosis. In addition, the cellular uptake of different sizes of nanoparticles was energy dependent, suggesting that there are size-dependent uptake pathways. We found that 100 and 200 nm (but not 300 nm) nanoparticles were taken up via clathrin-mediated endocytosis. These results utilizing uniform nanoparticles suggest that the size-dependent cytotoxicity of nanoparticles involves active cellular uptake, caspase-3 activation, and apoptosis in the epithelial cell line (NCI-H292). These findings will hopefully aid in the future design and safe use of nanoparticles.
Zook, Justin M; Rastogi, Vinayak; Maccuspie, Robert I; Keene, Athena M; Fagan, Jeffrey
2011-10-25
Agglomeration of nanoparticles during measurements in relevant biological and environmental media is a frequent problem in nanomaterial property characterization. The primary problem is typically that any changes to the size distribution can dramatically affect the potential nanotoxicity or other size-determined properties, such as the absorbance signal in a biosensor measurement. Herein we demonstrate analytical ultracentrifugation (AUC) as a powerful method for measuring two critical characteristics of nanoparticle (NP) agglomerates in situ in biological media: the NP agglomerate size distribution, and the localized surface plasmon resonance (LSPR) absorbance spectrum of precise sizes of gold NP agglomerates. To characterize the size distribution, we present a theoretical framework for calculating the hydrodynamic diameter distribution of NP agglomerates from their sedimentation coefficient distribution. We measure sedimentation rates for monomers, dimers, and trimers, as well as for larger agglomerates with up to 600 NPs. The AUC size distributions were found generally to be broader than the size distributions estimated from dynamic light scattering and diffusion-limited colloidal aggregation theory, an alternative bulk measurement method that relies on several assumptions. In addition, the measured sedimentation coefficients can be used in nanotoxicity studies to predict how quickly the agglomerates sediment out of solution under normal gravitational forces, such as in the environment. We also calculate the absorbance spectra for monomer, dimer, trimer, and larger gold NP agglomerates up to 600 NPs, to enable a better understanding of LSPR biosensors. Finally, we validate a new method that uses these spectra to deconvolute the net absorbance spectrum of an unknown bulk sample and approximate the proportions of monomers, dimers, and trimers in a polydisperse sample of small agglomerates, so that every sample does not need to be measured by AUC. These results
Chartrand, Gary
1984-01-01
Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap
Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles.
Cui, Xiangshui; Cheng, Yao; Lin, Hang; Huang, Feng; Wu, Qingping; Wang, Yuansheng
2017-09-21
Thermal quenching above 300 K is widely expected in photoluminescence. Luminescence quenching is usually ascribed to the non-radiative relaxation of excited electrons to the ground state of the activators, during which a high temperature always plays a role in pushing the excited electrons towards the quenching channels, leading to thermal quenching. For the lanthanide-doped nanoparticles, however, there is a special luminescence quenching channel that does not exist in their bulk counterparts, i.e., energy migration-induced surface quenching. Herein, a size-dependent abnormal thermal enhancement of luminescence in the temperature range of 300 K to 423 K in the ytterbium-doped fluoride nanoparticles is presented for the first time. Importantly, in this work, we originally demonstrate that the energy migration-induced surface quenching can be suppressed by increasing temperature, which results in the abnormal thermal enhancement of luminescence. According to the temperature-dependent X-ray diffraction and lifetime analyses, an underlying mechanism based on the effect of thermal lattice expansion on ytterbium-mediated energy migration is proposed. This new finding adds new insights to the size effect on the luminescent characteristics of nanoparticles, which could be utilized to construct some unique nanostructures, especially for many important temperature-related purposes, such as thermal sensing technology.
Size-dependent impact of CNTs on dynamic properties of calmodulin.
Gao, Jian; Wang, Liming; Kang, Seung-gu; Zhao, Lina; Ji, Mingjuan; Chen, Chunying; Zhao, Yuliang; Zhou, Ruhong; Li, Jingyuan
2014-11-07
There are growing concerns about the biosafety of nanomaterials such as carbon nanotubes (CNTs) as their applications become more widespread. We report here a theoretical and experimental study of the binding of various sizes of CNTs [CNT (4,4), (5,5), (6,6) and (7,7)] to calmodulin (CaM) protein and, in particular, their impact on the Ca(2+)-dependent dynamic properties of CaM. Our simulations show that all the CNTs can plug into the hydrophobic binding pocket of Ca(2+)-bound CaM with binding affinities comparable with the native substrate M13 peptide. Even though CNT (4,4) shows a similar behavior to the M13 peptide in its dissociation from Ca(2+)-free CaM, wider CNTs still bind firmly to CaM, indicating a potential failure of Ca(2+) regulation. Such a size-dependent impact of CNTs on the dynamic properties of CaM is a result of the excessively strong hydrophobic interactions between the wider CNTs and CaM. These simulation results were confirmed by circular dichroism spectroscopy, which showed that the secondary structures of CaM become insensitive to Ca(2+) concentrations after the addition of CNTs. Our findings indicate that the cytotoxicity of nanoparticles to proteins arises not only from the inhibition of static protein structures (binding pockets), but also from impacts on their dynamic properties.
Adriaan R. Soetevent
2010-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial discontinuities in firm-level demand may occur. I show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs. I conjecture that this non-existence result holds...
Pim Heijnen; Adriaan Soetevent
2014-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. We derive an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. These graph models of price competition may lead to spatial discontinuities in firm-level demand. We show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs and conjecture that this non-existence result holds more general...
Directory of Open Access Journals (Sweden)
Aleks Kissinger
2014-03-01
Full Text Available String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. Dixon, Duncan and Kissinger introduced string graphs, which are a combinatoric representations of string diagrams, amenable to automated reasoning about diagrammatic theories via graph rewrite systems. In this extended abstract, we show how the power of such rewrite systems can be greatly extended by introducing pattern graphs, which provide a means of expressing infinite families of rewrite rules where certain marked subgraphs, called !-boxes ("bang boxes", on both sides of a rule can be copied any number of times or removed. After reviewing the string graph formalism, we show how string graphs can be extended to pattern graphs and how pattern graphs and pattern rewrite rules can be instantiated to concrete string graphs and rewrite rules. We then provide examples demonstrating the expressive power of pattern graphs and how they can be applied to study interacting algebraic structures that are central to categorical quantum mechanics.
Gelfand, I M; Shnol, E E
1969-01-01
The second in a series of systematic studies by a celebrated mathematician I. M. Gelfand and colleagues, this volume presents students with a well-illustrated sequence of problems and exercises designed to illuminate the properties of functions and graphs. Since readers do not have the benefit of a blackboard on which a teacher constructs a graph, the authors abandoned the customary use of diagrams in which only the final form of the graph appears; instead, the book's margins feature step-by-step diagrams for the complete construction of each graph. The first part of the book employs simple fu
Creating more effective graphs
Robbins, Naomi B
2012-01-01
A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr
Energy Technology Data Exchange (ETDEWEB)
Lothian, Joshua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sullivan, Blair D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baker, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schrock, Jonathan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poole, Stephen W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2013-10-01
The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of different application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.
DEFF Research Database (Denmark)
Mansutti, Alessio; Miculan, Marino; Peressotti, Marco
2017-01-01
We introduce loose graph simulations (LGS), a new notion about labelled graphs which subsumes in an intuitive and natural way subgraph isomorphism (SGI), regular language pattern matching (RLPM) and graph simulation (GS). Being a unification of all these notions, LGS allows us to express directly...... also problems which are “mixed” instances of previous ones, and hence which would not fit easily in any of them. After the definition and some examples, we show that the problem of finding loose graph simulations is NP-complete, we provide formal translation of SGI, RLPM, and GS into LGSs, and we give...
Directory of Open Access Journals (Sweden)
Alberto Apostolico
2009-08-01
Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.
Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals
Energy Technology Data Exchange (ETDEWEB)
Elimelech, Orian [The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904 Israel; Liu, Jing [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Plonka, Anna M. [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Frenkel, Anatoly I. [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Banin, Uri [The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904 Israel
2017-07-19
Doping of nanocrystals (NCs) is a key, yet underexplored, approach for tuning of the electronic properties of semiconductors. An important route for doping of NCs is by vacancy formation. The size and concentration dependence of doping was studied in copper(I) sulfide (Cu2S) NCs through a redox reaction with iodine molecules (I2), which formed vacancies accompanied by a localized surface plasmon response. X-ray spectroscopy and diffraction reveal transformation from Cu2S to Cu-depleted phases, along with CuI formation. Greater reaction efficiency was observed for larger NCs. This behavior is attributed to interplay of the vacancy formation energy, which decreases for smaller sized NCs, and the growth of CuI on the NC surface, which is favored on well-defined facets of larger NCs. This doping process allows tuning of the plasmonic properties of a semiconductor across a wide range of plasmonic frequencies by varying the size of NCs and the concentration of iodine. Controlled vacancy doping of NCs may be used to tune and tailor semiconductors for use in optoelectronic applications.
Thermoluminescent dependence with the particle size in ionized foods by radiation
International Nuclear Information System (INIS)
Teuffer Z, C.A.
2005-01-01
The influence of the particle size of poly minerals in the signals of the thermally stimulated luminescence (TL) is analysed. The poly minerals were extracted of Mexican spices such as Origanum vulgare L. (origanum) and Capsicum annum (Chilli guajillo), these underwent to an homogenization process to obtain four different particle sizes corresponding to 149, 74, 53 and 10 μ m, and later on to expose them to gamma radiation in an interval of 0.5- 45 kGy in the Gamma beam 651 PT of 60 Co irradiator of the Nuclear Sciences Institute, UNAM. The glow curves show a maximum of TL intensity for Capsicum annum to dose of 0.5- 10 kGy with particle size selected by means of a mesh of opening of 53 μ m, while for Origanum vulgare L., the more intense emission is observed with 149 μ m. In the interval of dose 12- 45 kGy the maximum in intensity emission it was presented in 53 μ m in both cases. For the case of 10 μ m, the TL emissions were of smaller intensity, and were achieved glow curves in a clear, defined way and an overlapping that allows to center the maximum of TL emission, in a defined temperature 126 C for Origanum vulgare L., and 166 C for Capsicum annum. The behavior before described is related with the composition of the samples. For Capsicum annum it was found Quartz (60%), Albite (30%) and Ortosa (10%), while Origanum vulgare stops L., Quartz (50%), Calcite (20%), Albite (20%) and Clay (10%). The homogenization of the samples is an important factor because exists high probability of avoiding as much as possible rests of organic matter traces that can contribute to the total signal of the glow curves. Likewise the defects that pollute from a natural way to each one of the minerals found in the samples, they play an outstanding role in the TL emissions. Although to the interacting the gamma radiation with the poly minerals of different particle sizes, there is a certain energy transfer that will be translated in the absorbed dose and this it will depend on the
SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL
Directory of Open Access Journals (Sweden)
I. A. Vakulenko
2015-08-01
Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound
Graph Theory. 1. Fragmentation of Structural Graphs
Directory of Open Access Journals (Sweden)
Lorentz JÄNTSCHI
2002-12-01
Full Text Available The investigation of structural graphs has many fields of applications in engineering, especially in applied sciences like as applied chemistry and physics, computer sciences and automation, electronics and telecommunication. The main subject of the paper is to express fragmentation criteria in graph using a new method of investigation: terminal paths. Using terminal paths are defined most of the fragmentation criteria that are in use in molecular topology, but the fields of applications are more generally than that, as I mentioned before. Graphical examples of fragmentation are given for every fragmentation criteria. Note that all fragmentation is made with a computer program that implements a routine for every criterion.[1] A web routine for tracing all terminal paths in graph can be found at the address: http://vl.academicdirect.ro/molecular_topology/tpaths/ [1] M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova Science, Commack, New York, 2001, 2002.
O the Size Dependence of the Chemical Properties of Cloud Droplets: Exploratory Studies by Aircraft
Twohy, Cynthia H.
1992-09-01
Clouds play an important role in the climate of the earth and in the transport and transformation of chemical species, but many questions about clouds remain unanswered. In particular, the chemical properties of droplets may vary with droplet size, with potentially important consequences. The counterflow virtual impactor (CVI) separates droplets from interstitial particles and gases in a cloud and also can collect droplets in discrete size ranges. As such, the CVI is a useful tool for investigating the chemical components present in droplets of different sizes and their potential interactions with cloud processes. The purpose of this work is twofold. First, the sampling characteristics of the airborne CVI are investigated, using data from a variety of experiments. A thorough understanding of CVI properties is necessary in order to utilize the acquired data judiciously and effectively. Although the impaction characteristics of the CVI seem to be predictable by theory, the airborne instrument is subject to influences that may result in a reduced transmission efficiency for droplets, particularly if the inlet is not properly aligned. Ways to alleviate this problem are being investigated, but currently the imperfect sampling efficiency must be taken into account during data interpretation. Relationships between the physical and chemical properties of residual particles from droplets collected by the CVI and droplet size are then explored in both stratiform and cumulus clouds. The effects of various cloud processes and measurement limitations upon these relationships are discussed. In one study, chemical analysis of different -sized droplets sampled in stratiform clouds showed a dependence of chemical composition on droplet size, with larger droplets containing higher proportions of sodium than non-sea-salt sulfate and ammonium. Larger droplets were also associated with larger residual particles, as expected from simple cloud nucleation theory. In a study of marine
Topological structure of dictionary graphs
International Nuclear Information System (INIS)
Fuks, Henryk; Krzeminski, Mark
2009-01-01
We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers-that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 10 3 and 10 4 . A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.
3-biplacement of bipartite graphs
Directory of Open Access Journals (Sweden)
Lech Adamus
2008-01-01
Full Text Available Let \\(G=(L,R;E\\ be a bipartite graph with color classes \\(L\\ and \\(R\\ and edge set \\(E\\. A set of two bijections \\(\\{\\varphi_1 , \\varphi_2\\}\\, \\(\\varphi_1 , \\varphi_2 :L \\cup R \\to L \\cup R\\, is said to be a \\(3\\-biplacement of \\(G\\ if \\(\\varphi_1(L= \\varphi_2(L = L\\ and \\(E \\cap \\varphi_1^*(E=\\emptyset\\, \\(E \\cap \\varphi_2^*(E=\\emptyset\\, \\(\\varphi_1^*(E \\cap \\varphi_2^*(E=\\emptyset\\, where \\(\\varphi_1^*\\, \\(\\varphi_2^*\\ are the maps defined on \\(E\\, induced by \\(\\varphi_1\\, \\(\\varphi_2\\, respectively. We prove that if \\(|L| = p\\, \\(|R| = q\\, \\(3 \\leq p \\leq q\\, then every graph \\(G=(L,R;E\\ of size at most \\(p\\ has a \\(3\\-biplacement.
A graph rewriting programming language for graph drawing
Rodgers, Peter
1998-01-01
This paper describes Grrr, a prototype visual graph drawing tool. Previously there were no visual languages for programming graph drawing algorithms despite the inherently visual nature of the process. The languages which gave a diagrammatic view of graphs were not computationally complete and so could not be used to implement complex graph drawing algorithms. Hence current graph drawing tools are all text based. Recent developments in graph rewriting systems have produced computationally com...
de Mol, M.J.; Rensink, Arend; Hunt, James J.
This paper introduces an approach for adding graph transformation-based functionality to existing JAVA programs. The approach relies on a set of annotations to identify the intended graph structure, as well as on user methods to manipulate that structure, within the user’s own JAVA class
Cohen, A.M.; Beineke, L.W.; Wilson, R.J.; Cameron, P.J.
2004-01-01
In this chapter we investigate the classification of distance-transitive graphs: these are graphs whose automorphism groups are transitive on each of the sets of pairs of vertices at distance i, for i = 0, 1,.... We provide an introduction into the field. By use of the classification of finite
Joyner, W David
2017-01-01
This textbook acts as a pathway to higher mathematics by seeking and illuminating the connections between graph theory and diverse fields of mathematics, such as calculus on manifolds, group theory, algebraic curves, Fourier analysis, cryptography and other areas of combinatorics. An overview of graph theory definitions and polynomial invariants for graphs prepares the reader for the subsequent dive into the applications of graph theory. To pique the reader’s interest in areas of possible exploration, recent results in mathematics appear throughout the book, accompanied with examples of related graphs, how they arise, and what their valuable uses are. The consequences of graph theory covered by the authors are complicated and far-reaching, so topics are always exhibited in a user-friendly manner with copious graphs, exercises, and Sage code for the computation of equations. Samples of the book’s source code can be found at github.com/springer-math/adventures-in-graph-theory. The text is geared towards ad...
Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM
1999-01-01
Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems
DEFF Research Database (Denmark)
Husfeldt, Thore
2015-01-01
This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...
Packing Degenerate Graphs Greedily
Czech Academy of Sciences Publication Activity Database
Allen, P.; Böttcher, J.; Hladký, J.; Piguet, Diana
2017-01-01
Roč. 61, August (2017), s. 45-51 ISSN 1571-0653 R&D Projects: GA ČR GJ16-07822Y Institutional support: RVO:67985807 Keywords : tree packing conjecture * graph packing * graph processes Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics
Labeled Embedding Of (n, n-2-Graphs In Their Complements
Directory of Open Access Journals (Sweden)
Tahraoui M.-A.
2017-11-01
Full Text Available Graph packing generally deals with unlabeled graphs. In [4], the authors have introduced a new variant of the graph packing problem, called the labeled packing of a graph. This problem has recently been studied on trees [M.A. Tahraoui, E. Duchêne and H. Kheddouci, Labeled 2-packings of trees, Discrete Math. 338 (2015 816-824] and cycles [E. Duchˆene, H. Kheddouci, R.J. Nowakowski and M.A. Tahraoui, Labeled packing of graphs, Australas. J. Combin. 57 (2013 109-126]. In this note, we present a lower bound on the labeled packing number of any (n, n − 2-graph into Kn. This result improves the bound given by Woźniak in [Embedding graphs of small size, Discrete Appl. Math. 51 (1994 233-241].
Generalized connectivity of graphs
Li, Xueliang
2016-01-01
Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.
Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires
Zheng, Y. G.; Zhao, Y. T.; Ye, H. F.; Zhang, H. W.
2014-08-01
Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent.
Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires
International Nuclear Information System (INIS)
Zheng, Y G; Zhao, Y T; Ye, H F; Zhang, H W
2014-01-01
Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent. (paper)
Dependence of exponents on text length versus finite-size scaling for word-frequency distributions
Corral, Álvaro; Font-Clos, Francesc
2017-08-01
Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.
International Nuclear Information System (INIS)
Huang, Ming-Juan; Fang, Xue-Qian; Liu, Jin-Xi; Feng, Wen-Jie; Zhao, Yong-Mao
2015-01-01
Based on the electro-elastic surface/interface theory, the size-dependent effective piezoelectric and dielectric coefficients of anisotropic piezoelectric composites that consist of spherically piezoelectric inclusions under a uniform electric field are investigated, and the analytical solutions for the elastic displacement and electric potentials are derived. With consideration of the coupling effects of elasticity, permittivity and piezoelectricity, the effective field method is introduced to derive the effective dielectric and piezoelectric responses in the dilute limit. The numerical examples show that the effective dielectric constant exhibits a significant variation due to the surface/interface effect. The dielectric property of the surface/interface displays greater effect than the piezoelectric property, and the elastic property shows little effect. A comparison with the existing results validates the present approach. (paper)
Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots
Tomasello, R.; Guslienko, K. Y.; Ricci, M.; Giordano, A.; Barker, J.; Carpentieri, M.; Chubykalo-Fesenko, O.; Finocchio, G.
2018-02-01
Understanding the physical properties of magnetic skyrmions is important for fundamental research with the aim to develop new spintronic device paradigms where both logic and memory can be integrated at the same level. Here, we show a universal model based on the micromagnetic formalism that can be used to study skyrmion stability as a function of magnetic field and temperature. We consider ultrathin, circular ferromagnetic magnetic dots. Our results show that magnetic skyrmions with a small radius—compared to the dot radius—are always metastable, while large radius skyrmions form a stable ground state. The change of energy profile determines the weak (strong) size dependence of the metastable (stable) skyrmion as a function of temperature and/or field.
DEFF Research Database (Denmark)
Poulios, Konstantinos; Niordson, Christian Frithiof
2016-01-01
The compressive strength of unidirectionally or layer-wise reinforced composite materials in direction parallel to their reinforcement is limited by micro-buckling instabilities. Although the inherent compressive strength of a given material micro-structure can easily be determined by assessing its...... compressive stress but also on spatial stress or strain gradients, rendering failure initiation size scale dependent. The present work demonstrates and investigates the aforementioned effect through numerical simulations of periodically layered structures withnotches and holes under bending and compressive...... loads, respectively. The presented results emphasize the importance of the reinforcing layer thickness on the load carrying capacity of the investigated structures, at a constant volumetric fraction of the reinforcement. The observed strengthening at higher values of the relative layer thickness...
Film size-dependent voltage-modulated magnetism in multiferroic heterostructures
Hu, J.-M.; Shu, L.; Li, Z.; Gao, Y.; Shen, Y.; Lin, Y. H.; Chen, L. Q.; Nan, C. W.
2014-01-01
The electric-voltage-modulated magnetism in multiferroic heterostructures, also known as the converse magnetoelectric (ME) coupling, has drawn increasing research interest recently owing to its great potential applications in future low-power, high-speed electronic and/or spintronic devices, such as magnetic memory and computer logic. In this article, based on combined theoretical analysis and experimental demonstration, we investigate the film size dependence of such converse ME coupling in multiferroic magnetic/ferroelectric heterostructures, as well as exploring the interaction between two relating coupling mechanisms that are the interfacial strain and possibly the charge effects. We also briefly discuss some issues for the next step and describe new device prototypes that can be enabled by this technology. PMID:24421375
Qiao, Lei; Rimoli, Julian J; Chen, Ying; Schuh, Christopher A; Radovitzky, Raul
2011-02-25
We propose a nonlocal continuum model to describe the size-dependent superelastic effect observed in recent experiments of single crystal Cu-Al-Ni shape memory alloys. The model introduces two length scales, one in the free energy and one in the dissipation, which account for the size-dependent hardening and dissipation in the loading and unloading response of micro- and nanopillars subject to compression tests. The information provided by the model suggests that the size dependence observed in the dissipation is likely to be associated with a nonuniform evolution of the distribution of the austenitic and martensitic phases during the loading cycle. © 2011 American Physical Society
Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles
International Nuclear Information System (INIS)
Chen, Yu-Shiun; Hong, Meng-Yeng; Huang, G Steve; Hung, Yao-Ching; Lin, Li-Wei; Liau, Ian
2010-01-01
We explored the size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles (GNPs). GNPs of 17 and 37 nm in diameter were injected intraperitoneally into BALB/c mice at doses ranging from 0.5 to 14.6 mg kg -1 . ICP-MS was performed on brain tissue collected 1, 14 and 21 days after the injection. A passive-avoidance test was performed on day 21. Monoamine levels were determined on day 21. The microscopic distribution of GNPs in the hippocampus was examined using coherent anti-Stokes Raman scattering (CARS) microscopy and transmission electron microscopy (TEM). The results indicated that 17 nm GNPs passed through the blood-brain barrier more rapidly than 37 nm GNPs. Treatment with 17 nm GNPs decreased the latency time, which was comparable to the effect of scopolamine treatment, while 37 nm GNPs showed no significant effect. Dopamine levels and serotonin levels in the brain were significantly altered by the injection of 17 and 37 nm GNPs. GNPs affected dopaminergic and serotonergic neurons. CARS microscopy indicated that 17 nm GNPs entered the Cornu Ammonis (CA) region of the hippocampus, while 37 nm GNPs were excluded from the CA region. TEM verified the presence of 17 nm GNPs in the cytoplasm of pyramidal cells. In this study, we showed that the ability of GNPs to damage cognition in mice was size-dependent and associated with the ability of the particles to invade the hippocampus. The dosage and duration of the treatment should be taken into account if GNPs are used in the future as vehicles to carry therapeutic agents into the brain.
Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Shiun; Hong, Meng-Yeng; Huang, G Steve [Institute of Nanotechnology, Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan (China); Hung, Yao-Ching [Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, China Medical University and Hospital, 91 Hsueh Shih Road, Taichung 404, Taiwan (China); Lin, Li-Wei [School of Chinese Medicine for Post-Baccalaureate, I-Shou University, 8 Yida Road, Yanchao Township, Kaohsiung Country 82445, Taiwan (China); Liau, Ian, E-mail: gstevehuang@mail.nctu.edu.tw [Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan (China)
2010-12-03
We explored the size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles (GNPs). GNPs of 17 and 37 nm in diameter were injected intraperitoneally into BALB/c mice at doses ranging from 0.5 to 14.6 mg kg{sup -1}. ICP-MS was performed on brain tissue collected 1, 14 and 21 days after the injection. A passive-avoidance test was performed on day 21. Monoamine levels were determined on day 21. The microscopic distribution of GNPs in the hippocampus was examined using coherent anti-Stokes Raman scattering (CARS) microscopy and transmission electron microscopy (TEM). The results indicated that 17 nm GNPs passed through the blood-brain barrier more rapidly than 37 nm GNPs. Treatment with 17 nm GNPs decreased the latency time, which was comparable to the effect of scopolamine treatment, while 37 nm GNPs showed no significant effect. Dopamine levels and serotonin levels in the brain were significantly altered by the injection of 17 and 37 nm GNPs. GNPs affected dopaminergic and serotonergic neurons. CARS microscopy indicated that 17 nm GNPs entered the Cornu Ammonis (CA) region of the hippocampus, while 37 nm GNPs were excluded from the CA region. TEM verified the presence of 17 nm GNPs in the cytoplasm of pyramidal cells. In this study, we showed that the ability of GNPs to damage cognition in mice was size-dependent and associated with the ability of the particles to invade the hippocampus. The dosage and duration of the treatment should be taken into account if GNPs are used in the future as vehicles to carry therapeutic agents into the brain.
Size dependence in tunneling spectra of PbSe quantum-dot arrays.
Ou, Y C; Cheng, S F; Jian, W B
2009-07-15
Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.
Big maggots dig deeper: size-dependent larval dispersal in flies.
Davis, Jeremy M; Coogan, Laura E; Papaj, Daniel R
2015-09-01
The ability of individual animals to select habitats optimal for development and survival can be constrained by the costs of moving through the environment. Animals that seek overwintering sites underground, for example, may be constrained by the energy required to burrow into the soil. We conducted field and laboratory studies to determine the relationship between individual size and overwintering site selection in the tephritid flies, Rhagoletis juglandis and Rhagoletis suavis. We also explored the effect of site selection on pupal mortality, parasitism, and the ability to emerge from overwintering sites after eclosion. In both species, and in both lab and field tests, larger pupae were found at deeper soil depths. In addition, marginally non-significant trends indicated pupae in deeper sites were 48% more likely to survive the overwintering period. Finally, larger individuals were more likely to eclose and emerge from the soil at a given depth, but flies in deep overwintering sites were less likely to emerge from those sites than flies in shallow sites. Our data indicate that overwintering site selection represents a trade-off between avoiding predators and parasites that occur at shallow sites, and the energetic and mortality costs of burrowing to, overwintering in, and emerging from, deeper sites. The size-dependent overwintering site selection demonstrated here has implications for population dynamics and pest control strategies. Some fly control measures, such as the introduction of parasites or predators, will be mitigated when the deepest and least accessible overwintering pupae represent a disproportionately large amount of the population's reproductive capacity.
Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals.
Bardhan, Rizia; Hedges, Lester O; Pint, Cary L; Javey, Ali; Whitelam, Stephen; Urban, Jeffrey J
2013-10-01
A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells.
The pressure-induced, lactose-dependent changes in the composition and size of casein micelles.
Wang, Pengjie; Jin, Shaoming; Guo, Huiyuan; Zhao, Liang; Ren, Fazheng
2015-04-15
The effects of lactose on the changes in the composition and size of casein micelles induced by high-pressure treatment and the related mechanism of action were investigated. Dispersions of ultracentrifuged casein micelle pellets with 0-10% (w/v) lactose were subjected to high pressure (400 MPa) at 20 °C for 40 min. The results indicated that the level of non-sedimentable caseins was positively related to the amount of lactose added prior to pressure treatment, and negatively correlated to the size. A mechanism for the pressure-induced, lactose-dependent changes in the casein micelles is proposed. Lactose inhibits the hydrophobic interactions between the micellar fragments during or after pressure release, through the hydrophilic layer formed by their hydrogen bonds around the micellar fragments. In addition, lactose does not favour the association between calcium and the casein aggregates after pressure release. Due to these two functions, lactose inhibited the formation of larger micelles after pressure treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten
Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.
2017-05-01
Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.
Size-dependent tissue kinetics of PEG-coated gold nanoparticles
International Nuclear Information System (INIS)
Cho, Wan-Seob; Cho, Minjung; Jeong, Jinyoung; Choi, Mina; Han, Beom Seok; Shin, Hyung-Seon; Hong, Jin; Chung, Bong Hyun; Jeong, Jayoung; Cho, Myung-Haing
2010-01-01
Gold nanoparticles (AuNPs) can be used in various biomedical applications, however, very little is known about their size-dependent in vivo kinetics. Here, we performed a kinetic study in mice with different sizes of PEG-coated AuNPs. Small AuNPs (4 or 13 nm) showed high levels in blood for 24 h and were cleared by 7 days, whereas large (100 nm) AuNPs were completely cleared by 24 h. All AuNPs in blood re-increased at 3 months, which correlated with organ levels. Levels of small AuNPs were peaked at 7 days in the liver and spleen and at 1 month in the mesenteric lymph node, and remained high until 6 months, with slow elimination. In contrast, large AuNPs were taken up rapidly (∼ 30 min) into the liver, spleen, and mesenteric lymph nodes with less elimination phase. TEM showed that AuNPs were entrapped in cytoplasmic vesicles and lysosomes of Kupffer cells and macrophages of spleen and mesenteric lymph node. Small AuNPs transiently activated CYP1A1 and 2B, phase I metabolic enzymes, in liver tissues from 24 h to 7 days, which mirrored with elevated gold levels in the liver. Large AuNPs did not affect the metabolic enzymes. Thus, propensity to accumulate in the reticuloendothelial organs and activation of phase I metabolic enzymes, suggest that extensive further studies are needed for practical in vivo applications.
Mukherjee, Siddhartha; Goswami, Prakash; Dhar, Jayabrata; Dasgupta, Sunando; Chakraborty, Suman
2017-07-01
We report a study on the ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip. Here, we derive an analytical solution for the potential distribution in a parallel plate microchannel, where the effects of finite sized ionic species are taken into account by invoking the free energy formalism. Following this, a purely electroosmotic flow of a simplified Phan-Thien-Tanner (sPTT) fluid is considered. For the sPTT model, linear, quadratic, and exponential kernels are chosen for the stress coefficient function describing its viscoelastic nature across various ranges of Deborah number. The theoretical framework presented in our analysis has been successfully compared with experimental results available in the literature. We believe that the implications of the considered effects on the net volumetric throughput will not only provide a deeper theoretical insight to interpret the electrokinetic data in the presence of ionic species but also serve as a fundamental design tool for novel electrokinetically driven lab-on-a-chip biofluidic devices.
Lu, Zhong; Rong, Kaifeng; Li, Ju; Yang, Hao; Chen, Rong
2013-06-01
Dental caries and periodontal disease are widespread diseases for which microorganism infections have been identified as the main etiology. Silver nanoparticles (Ag Nps) were considered as potential control oral bacteria infection agent due to its excellent antimicrobial activity and non acute toxic effects on human cells. In this work, stable Ag Nps with different sizes (~5, 15 and 55 nm mean values) were synthesized by using a simple reduction method or hydrothermal method. The Nps were characterized by powder X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. The antibacterial activities were evaluated by colony counting assay and growth inhibition curve method, and corresponding minimum inhibitory concentration (MIC) against five anaerobic oral pathogenic bacteria and aerobic bacteria E. coli were determined. The results showed that Ag Nps had apparent antibacterial effects against the anaerobic oral pathogenic bacteria and aerobic bacteria. The MIC values of 5-nm Ag against anaerobic oral pathogenic bacteria A. actinomycetemcomitans, F. nuceatum, S. mitis, S. mutans and S. sanguis were 25, 25, 25, 50 and 50 μg/mL, respectively. The aerobic bacteria were more susceptible to Ag NPs than the anaerobic oral pathogenic bacteria. In the mean time, Ag NPs displayed an obvious size-dependent antibacterial activity against the anaerobic bacteria. The 5-nm Ag presents the highest antibacterial activity. The results of this work indicated a potential application of Ag Nps in the inhibition of oral microorganism infections.
The reference frame for encoding and retention of motion depends on stimulus set size.
Huynh, Duong; Tripathy, Srimant P; Bedell, Harold E; Öğmen, Haluk
2017-04-01
The goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information.
Management of Anterior Skull Base Defect Depending on Its Size and Location
Bernal-Sprekelsen, Manuel; Rioja, Elena; Enseñat, Joaquim; Enriquez, Karla; Viscovich, Liza; Agredo-Lemos, Freddy Enrique; Alobid, Isam
2014-01-01
Introduction. We present our experience in the reconstruction of these leaks depending on their size and location. Material and Methods. Fifty-four patients who underwent advanced skull base surgery (large defects, >20 mm) and 62 patients with CSF leaks of different origin (small, 2–10 mm, and midsize, 11–20 mm, defects) were included in the retrospective study. Large defects were reconstructed with a nasoseptal pedicled flap positioned on fat and fascia lata. In small and midsized leaks. Fascia lata in an underlay position was used for its reconstruction covered with mucoperiosteum of either the middle or the inferior turbinate. Results. The most frequent etiology for small and midsized defects was spontaneous (48.4%), followed by trauma (24.2%), iatrogenic (5%). The success rate after the first surgical reconstruction was 91% and 98% in large skull base defects and small/midsized, respectively. Rescue surgery achieved 100%. Conclusions. Endoscopic surgery for any type of skull base defect is the gold standard. The size of the defects does not seem to play a significant role in the success rate. Fascia lata and mucoperiosteum of the turbinate allow a two-layer reconstruction of small and midsized defects. For larger skull base defects, a combination of fat, fascia lata, and nasoseptal pedicled flaps provides a successful reconstruction. PMID:24895567
Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells.
Passagne, Isabelle; Morille, Marie; Rousset, Marine; Pujalté, Igor; L'azou, Béatrice
2012-09-28
Silica nanoparticles (nano-SiO(2)) are one of the most popular nanomaterials used in industrial manufacturing, synthesis, engineering and medicine. While inhalation of nanoparticles causes pulmonary damage, nano-SiO(2) can be transported into the blood and deposit in target organs where they exert potential toxic effects. Kidney is considered as such a secondary target organ. However, toxicological information of their effect on renal cells and the mechanisms involved remain sparse. In the present study, the cytotoxicity of nano-SiO(2) of different sizes was investigated on two renal proximal tubular cell lines (human HK-2 and porcine LLC-PK(1)). The molecular pathways involved were studied with a focus on the involvement of oxidative stress. Nanoparticle characterization was performed (primary nanoparticle size, surface area, dispersion) in order to investigate a potential relationship between their physical properties and their toxic effects. Firstly, evidence of particle internalization was obtained by transmission electron microscopy and conventional flux cytometry techniques. The use of specific inhibitors of endocytosis pathways showed an internalization process by macropinocytosis and clathrin-mediated endocytosis for 100 nm nano-SiO(2) nanoparticles. These nanoparticles were localized in vesicles. Toxicity was size- and time-dependent (24h, 48 h, 72 h). Indeed, it increased as nanoparticles became smaller. Secondly, analysis of oxidative stress based on the assessment of ROS (reactive oxygen species) production (DHE, dihydroethidium) or lipid peroxidation (MDA, malondialdehyde) clearly demonstrated the involvement of oxidative stress in the toxicity of 20 nm nano-SiO(2). The induction of antioxidant enzymes (catalase, GSTpi, thioredoxin reductase) could explain their lesser toxicity with 100 nm nano-SiO(2). Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells
International Nuclear Information System (INIS)
Passagne, Isabelle; Morille, Marie; Rousset, Marine; Pujalté, Igor; L’Azou, Béatrice
2012-01-01
Silica nanoparticles (nano-SiO 2 ) are one of the most popular nanomaterials used in industrial manufacturing, synthesis, engineering and medicine. While inhalation of nanoparticles causes pulmonary damage, nano-SiO 2 can be transported into the blood and deposit in target organs where they exert potential toxic effects. Kidney is considered as such a secondary target organ. However, toxicological information of their effect on renal cells and the mechanisms involved remain sparse. In the present study, the cytotoxicity of nano-SiO 2 of different sizes was investigated on two renal proximal tubular cell lines (human HK-2 and porcine LLC-PK 1 ). The molecular pathways involved were studied with a focus on the involvement of oxidative stress. Nanoparticle characterization was performed (primary nanoparticle size, surface area, dispersion) in order to investigate a potential relationship between their physical properties and their toxic effects. Firstly, evidence of particle internalization was obtained by transmission electron microscopy and conventional flux cytometry techniques. The use of specific inhibitors of endocytosis pathways showed an internalization process by macropinocytosis and clathrin-mediated endocytosis for 100 nm nano-SiO 2 nanoparticles. These nanoparticles were localized in vesicles. Toxicity was size- and time-dependent (24 h, 48 h, 72 h). Indeed, it increased as nanoparticles became smaller. Secondly, analysis of oxidative stress based on the assessment of ROS (reactive oxygen species) production (DHE, dihydroethidium) or lipid peroxidation (MDA, malondialdehyde) clearly demonstrated the involvement of oxidative stress in the toxicity of 20 nm nano-SiO 2 . The induction of antioxidant enzymes (catalase, GSTpi, thioredoxin reductase) could explain their lesser toxicity with 100 nm nano-SiO 2 .
Directory of Open Access Journals (Sweden)
Dominic Docter
2014-08-01
Full Text Available Besides the lung and skin, the gastrointestinal (GI tract is one of the main targets for accidental exposure or biomedical applications of nanoparticles (NP. Biological responses to NP, including nanotoxicology, are caused by the interaction of the NP with cellular membranes and/or cellular entry. Here, the physico-chemical characteristics of NP are widely discussed as critical determinants, albeit the exact mechanisms remain to be resolved. Moreover, proteins associate with NP in physiological fluids, forming the protein corona potentially transforming the biological identity of the particle and thus, adding an additional level of complexity for the bio–nano responses.Here, we employed amorphous silica nanoparticles (ASP and epithelial GI tract Caco-2 cells as a model to study the biological impact of particle size as well as of the protein corona. Caco-2 or mucus-producing HT-29 cells were exposed to thoroughly characterized, negatively charged ASP of different size in the absence or presence of proteins. Comprehensive experimental approaches, such as quantifying cellular metabolic activity, microscopic observation of cell morphology, and high-throughput cell analysis revealed a dose- and time-dependent toxicity primarily upon exposure with ASP30 (Ø = 30 nm. Albeit smaller (ASP20, Ø = 20 nm or larger particles (ASP100; Ø = 100 nm showed a similar zeta potential, they both displayed only low toxicity. Importantly, the adverse effects triggered by ASP30/ASP30L were significantly ameliorated upon formation of the protein corona, which we found was efficiently established on all ASP studied. As a potential explanation, corona formation reduced ASP30 cellular uptake, which was however not significantly affected by ASP surface charge in our model. Collectively, our study uncovers an impact of ASP size as well as of the protein corona on cellular toxicity, which might be relevant for processes at the nano–bio interface in general.
The relationship between urban form and air pollution depends on seasonality and city size.
Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Ma, Qun
2018-06-01
Understanding how urban form is related to air pollution is important to urban planning and sustainability, but the urban form-air pollution relationship is currently muddled by inconsistent findings. In this study, we investigated how the compositional and configurational attributes of urban form were related to different air pollution measures (PM 2.5 , API, and exceedance) in 83 Chinese cities, with explicit consideration of city size and seasonality. Ten landscape metrics were selected to quantify urban form attributes, and Spearman's correlation was used to quantify the urban form-air pollution relationship. Our results show that the urban form and air pollution relationship was dominated by city size and moderated by seasonality. Specifically, urban air pollution levels increased consistently and substantially from small to medium, large, and megacities. The urban form-air pollution relationship depended greatly on seasonality and monsoons. That is, the relationship was more pronounced in spring and summer than fall and winter, as well as in cities affected by monsoons. Urban air pollution was correlated more strongly with landscape composition metrics than landscape configuration metrics which seemed to affect only PM 2.5 concentrations. Our study suggests that, to understand how air pollution levels are related to urban form, city size and seasonality must be explicitly considered (or controlled). Also, in order to mitigate urban air pollution problems, regional urban planning is needed to curb the spatial extent of built-up areas, reduce the degree of urban fragmentation, and increase urban compactness and contiguity, especially for large and megacities.
Autoregressive Moving Average Graph Filtering
Isufi, Elvin; Loukas, Andreas; Simonetto, Andrea; Leus, Geert
2016-01-01
One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogues of classical filters, but intended for signals defined on graphs. This work brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which (i) are able to approximate any desired graph frequency response, and (ii) give exact solutions for tasks such as graph signal denoising and interpolation. The design phi...
Size-dependent optical properties of colloidal PbS quantum dots.
Moreels, Iwan; Lambert, Karel; Smeets, Dries; De Muynck, David; Nollet, Tom; Martins, José C; Vanhaecke, Frank; Vantomme, André; Delerue, Christophe; Allan, Guy; Hens, Zeger
2009-10-27
We quantitatively investigate the size-dependent optical properties of colloidal PbS nanocrystals or quantum dots (Qdots), by combining the Qdot absorbance spectra with detailed elemental analysis of the Qdot suspensions. At high energies, the molar extinction coefficient epsilon increases with the Qdot volume d(3) and agrees with theoretical calculations using the Maxwell-Garnett effective medium theory and bulk values for the Qdot dielectric function. This demonstrates that quantum confinement has no influence on epsilon in this spectral range, and it provides an accurate method to calculate the Qdot concentration. Around the band gap, epsilon only increases with d(1.3), and values are comparable to the epsilon of PbSe Qdots. The data are related to the oscillator strength f(if) of the band gap transition and results agree well with theoretical tight-binding calculations, predicting a linear dependence of f(if) on d. For both PbS and PbSe Qdots, the exciton lifetime tau is calculated from f(if). We find values ranging between 1 and 3 mus, in agreement with experimental literature data from time-resolved luminescence spectroscopy. Our results provide a thorough general framework to calculate and understand the optical properties of suspended colloidal quantum dots. Most importantly, it highlights the significance of the local field factor in these systems.
Complexity Analysis of Precedence Terminating Infinite Graph Rewrite Systems
Directory of Open Access Journals (Sweden)
Naohi Eguchi
2015-05-01
Full Text Available The general form of safe recursion (or ramified recurrence can be expressed by an infinite graph rewrite system including unfolding graph rewrite rules introduced by Dal Lago, Martini and Zorzi, in which the size of every normal form by innermost rewriting is polynomially bounded. Every unfolding graph rewrite rule is precedence terminating in the sense of Middeldorp, Ohsaki and Zantema. Although precedence terminating infinite rewrite systems cover all the primitive recursive functions, in this paper we consider graph rewrite systems precedence terminating with argument separation, which form a subclass of precedence terminating graph rewrite systems. We show that for any precedence terminating infinite graph rewrite system G with a specific argument separation, both the runtime complexity of G and the size of every normal form in G can be polynomially bounded. As a corollary, we obtain an alternative proof of the original result by Dal Lago et al.
Subgraph detection using graph signals
Chepuri, Sundeep Prabhakar
2017-03-06
In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.
Subgraph detection using graph signals
Chepuri, Sundeep Prabhakar; Leus, Geert
2017-01-01
In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.
Flavivirus internalization is regulated by a size-dependent endocytic pathway.
Hackett, Brent A; Cherry, Sara
2018-04-17
Flaviviruses enter host cells through the process of clathrin-mediated endocytosis, and the spectrum of host factors required for this process are incompletely understood. Here we found that lymphocyte antigen 6 locus E (LY6E) promotes the internalization of multiple flaviviruses, including West Nile virus, Zika virus, and dengue virus. Perhaps surprisingly, LY6E is dispensable for the internalization of the endogenous cargo transferrin, which is also dependent on clathrin-mediated endocytosis for uptake. Since viruses are substantially larger than transferrin, we reasoned that LY6E may be required for uptake of larger cargoes and tested this using transferrin-coated beads of similar size as flaviviruses. LY6E was indeed required for the internalization of transferrin-coated beads, suggesting that LY6E is selectively required for large cargo. Cell biological studies found that LY6E forms tubules upon viral infection and bead internalization, and we found that tubule formation was dependent on RNASEK, which is also required for flavivirus internalization, but not transferrin uptake. Indeed, we found that RNASEK is also required for the internalization of transferrin-coated beads, suggesting it functions upstream of LY6E. These LY6E tubules resembled microtubules, and we found that microtubule assembly was required for their formation and flavivirus uptake. Since microtubule end-binding proteins link microtubules to downstream activities, we screened the three end-binding proteins and found that EB3 promotes virus uptake and LY6E tubularization. Taken together, these results highlight a specialized pathway required for the uptake of large clathrin-dependent endocytosis cargoes, including flaviviruses. Copyright © 2018 the Author(s). Published by PNAS.
Seo, J.; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, J.; Domen, K.
2013-01-01
The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine
Bollobas, Bela
2004-01-01
The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A
Huang, Xiaoke; Zhao, Ye; Yang, Jing; Zhang, Chong; Ma, Chao; Ye, Xinyue
2016-01-01
We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it using massive taxi trajectories of Shenzhen, China. TrajGraph's capability in revealing the importance of city streets was evaluated by comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.
Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles
Wu, Haohao; Liu, Yi; Li, Meng; Chong, Yu; Zeng, Mingyong; Lo, Y. Martin; Yin, Jun-Jie
2015-02-01
Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the α-helicity of the enzyme to extents inversely related to their size. Au-5 nm inhibited both HRP peroxidase activity toward 3,3',5,5'-tetramethylbenzidine and HRP compound I/II reactivity toward 5,5-dimethyl-1-pyrroline N-oxide. Au-5 nm enhanced the HRP peroxidase activity toward ascorbic acid and the HRP compound I/II reactivity toward redox-active residues in the HRP protein moiety. Further, Au-5 nm also decreased the catalase- and oxidase-like activities of HRP. Au-10 nm showed similar, but weaker effects, while Au-15 nm, Au-30 nm and Au-60 nm had no effect. Results suggest that AuNPs can size-dependently enhance or inhibit HRP bioreactivity toward substrates with different redox potentials via a mechanism involving extension of the HRP substrate access channel and decline in the redox potentials of HRP catalytic intermediates.Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the
Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study
Liang, Tianshou; Zhou, Dejian; Wu, Zhaohua; Shi, Pengpeng
2017-12-01
The size-dependent melting behaviors and mechanisms of Ag nanoparticles (NPs) with diameters of 3.5-16 nm were investigated by molecular dynamics (MD). Two distinct melting modes, non-premelting and premelting with transition ranges of about 7-8 nm, for Ag NPs were demonstrated via the evolution of distribution and transition of atomic physical states during annealing. The small Ag NPs (3.5-7 nm) melt abruptly without a stable liquid shell before the melting point, which is characterized as non-premelting. A solid-solid crystal transformation is conducted through the migration of adatoms on the surface of Ag NPs with diameters of 3.5-6 nm before the initial melting, which is mainly responsible for slightly increasing the melting point of Ag NPs. On the other hand, surface premelting of Ag NPs with diameters of 8-16 nm propagates from the outer shell to the inner core with initial anisotropy and late isotropy as the temperature increases, and the close-packed facets {111} melt by a side-consumed way which is responsible for facets {111} melting in advance relative to the crystallographic plane {111}. Once a stable liquid shell is formed, its size-independent minimum thickness is obtained, and a three-layer structure of atomic physical states is set up. Lastly, the theory of point defect-pair (vacancy-interstitial) severing as the mechanism of formation and movement of the solid-liquid interface was also confirmed. Our study provides a basic understanding and theoretical guidance for the research, production and application of Ag NPs.
Size-dependent cytotoxicity of europium doped NaYF4 nanoparticles in endothelial cells
International Nuclear Information System (INIS)
Chen, Shizhu; Zhang, Cuimiao; Jia, Guang; Duan, Jianlei; Wang, Shuxiang; Zhang, Jinchao
2014-01-01
Lanthanide-doped sodium yttrium fluoride (NaYF 4 ) nanoparticles exhibit novel optical properties which make them be widely used in various fields. The extensive applications increase the chance of human exposure to these nanoparticles and thus raise deep concerns regarding their riskiness. In the present study, we have synthesized europium doped NaYF 4 (NaYF 4 :Eu 3+ ) nanoparticles with three diameters and used endothelial cells (ECs) as a cell model to explore the potential toxic effect. The cell viability, cytomembrane integrity, cellular uptake, intracellular localization, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), apoptosis detection, caspase-3 activity and expression of inflammatory gene were studied. The results indicated that these nanoparticles could be uptaken into ECs and decrease the cell viability, induce the intracellular lactate dehydrogenase (LDH) release, increase the ROS level, and decrease the cell MMP in a size-dependent manner. Besides that, the cells were suffered to apoptosis with the caspase-3 activation, and the inflammation specific gene expressions (ICAM1 and VCAM1) were also increased. Our results suggest that the damage pathway may be related to the ROS generation and mitochondrial damage. The results provide novel evidence to elucidate their toxicity mechanisms and may be helpful for more rational applications of these compounds in the future. - Highlights: • NaYF 4 :Eu 3+ nanoparticles with three diameters have been synthesized. • NaYF 4 :Eu 3+ nanoparticles could be uptaken by endothelial cells (ECs). • NaYF 4 :Eu 3+ nanoparticles show a significant cytotoxicity on ECs. • The size of NaYF 4 :Eu 3+ nanoparticles may be important to their toxicology effect
The many faces of graph dynamics
Pignolet, Yvonne Anne; Roy, Matthieu; Schmid, Stefan; Tredan, Gilles
2017-06-01
The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a ‘one fits it all’ model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (non-anonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.
Graph processing platforms at scale: practices and experiences
Energy Technology Data Exchange (ETDEWEB)
Lim, Seung-Hwan [ORNL; Lee, Sangkeun (Matt) [ORNL; Brown, Tyler C [ORNL; Sukumar, Sreenivas R [ORNL; Ganesh, Gautam [ORNL
2015-01-01
Graph analysis unveils hidden associations of data in many phenomena and artifacts, such as road network, social networks, genomic information, and scientific collaboration. Unfortunately, a wide diversity in the characteristics of graphs and graph operations make it challenging to find a right combination of tools and implementation of algorithms to discover desired knowledge from the target data set. This study presents an extensive empirical study of three representative graph processing platforms: Pegasus, GraphX, and Urika. Each system represents a combination of options in data model, processing paradigm, and infrastructure. We benchmarked each platform using three popular graph operations, degree distribution, connected components, and PageRank over a variety of real-world graphs. Our experiments show that each graph processing platform shows different strength, depending the type of graph operations. While Urika performs the best in non-iterative operations like degree distribution, GraphX outputforms iterative operations like connected components and PageRank. In addition, we discuss challenges to optimize the performance of each platform over large scale real world graphs.
Ge, Yingbin; Jiang, Hao; Kato, Russell; Gummagatta, Prasuna
2016-12-01
This research focuses on optimizing transition metal nanocatalyst immobilization and activity to enhance ethane dehydrogenation. Ethane dehydrogenation, catalyzed by thermally stable Ir n (n = 8, 12, 18) atomic clusters that exhibit a cuboid structure, was studied using the B3LYP method with triple-ζ basis sets. Relativistic effects and dispersion corrections were included in the calculations. In the dehydrogenation reaction Ir n + C 2 H 6 → H-Ir n -C 2 H 5 → (H) 2 -Ir n -C 2 H 4 , the first H-elimination is the rate-limiting step, primarily because the reaction releases sufficient heat to facilitate the second H-elimination. The catalytic activity of the Ir clusters strongly depends on the Ir cluster size and the specific catalytic site. Cubic Ir 8 is the least reactive toward H-elimination in ethane: Ir 8 + C 2 H 6 → H-Ir 8 -C 2 H 5 has a large (65 kJ/mol) energy barrier, whereas Ir 12 (3 × 2 × 2 cuboid) and Ir 18 (3 × 3 × 2 cuboid) lower this energy barrier to 22 and 3 kJ/mol, respectively. The site dependence is as prominent as the size effect. For example, the energy barrier for the Ir 18 + C 2 H 6 → H-Ir 18 -C 2 H 5 reaction is 3, 48, and 71 kJ/mol at the corner, edge, or face-center sites of the Ir 18 cuboid, respectively. Energy release due to Ir cluster insertion into an ethane C-H bond facilitates hydrogen migration on the Ir cluster surface, and the second H-elimination of ethane. In an oxygen-rich environment, oxygen molecules may be absorbed on the Ir cluster surface. The oxygen atoms bonded to the Ir cluster surface may slightly increase the energy barrier for H-elimination in ethane. However, the adsorption of oxygen and its reaction with H atoms on the Ir cluster releases sufficient heat to yield an overall thermodynamically favored reaction: Ir n + C 2 H 6 + 1 / 2 O 2 → Ir n + C 2 H 4 + H 2 O. These results will be useful toward reducing the energy cost of ethane dehydrogenation in industry.
Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires
International Nuclear Information System (INIS)
Mamand, S.M.; Omar, M.S.; Muhammad, A.J.
2012-01-01
Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: ► A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. ► A direct method is used to calculate phonon group velocity for these nanowires. ► 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. ► Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2–300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10 14 m −2 the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10 14 m −2 , lattice thermal conductivity would be independent of that.
Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires
Energy Technology Data Exchange (ETDEWEB)
Mamand, S.M., E-mail: soran.mamand@univsul.net [Department of Physics, College of Science, University of Sulaimani, Sulaimanyah, Iraqi Kurdistan (Iraq); Omar, M.S. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Muhammad, A.J. [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq)
2012-05-15
Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.
The Dependence of Cloud Particle Size on Non-Aerosol-Loading Related Variables
Energy Technology Data Exchange (ETDEWEB)
Shao, H.; Liu, G.
2005-03-18
An enhanced concentration of aerosol may increase the number of cloud drops by providing more cloud condensation nuclei (CCN), which in turn results in a higher cloud albedo at a constant cloud liquid water path. This process is often referred to as the aerosol indirect effect (AIE). Many in situ and remote sensing observations support this hypothesis (Ramanathan et al. 2001). However, satellite observed relations between aerosol concentration and cloud drop size are not always in agreement with the AIE. Based on global analysis of cloud effective radius (r{sub e}) and aerosol number concentration (N{sub a}) derived from satellite data, Sekiguchi et al. (2003) found that the correlations between the two variables can be either negative, or positive, or none, depending on the location of the clouds. They discovered that significantly negative r{sub e} - N{sub a} correlation can only be identified along coastal regions of the continents where abundant continental aerosols inflow from land, whereas Feingold et al. (2001) found that the response of r{sub e} to aerosol loading is the greatest in the region where aerosol optical depth ({tau}{sub a}) is the smallest. The reason for the discrepancy is likely due to the variations in cloud macroscopic properties such as geometrical thickness (Brenguier et al. 2003). Since r{sub e} is modified not only by aerosol but also by cloud geometrical thickness (H), the correlation between re and {tau}{sub a} actually reflects both the aerosol indirect effect and dependence of H. Therefore, discussing AIE based on the r{sub e}-{tau}{sub a} correlation without taking into account variations in cloud geometrical thickness may be misleading. This paper is motivated to extract aerosols' effect from overall effects using the independent measurements of cloud geometrical thickness, {tau}{sub a} and r{sub e}.
Directory of Open Access Journals (Sweden)
Haynes Teresa W.
2014-08-01
Full Text Available A path π = (v1, v2, . . . , vk+1 in a graph G = (V,E is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi ≥ deg(vi+1, where deg(vi denotes the degree of vertex vi ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a graph is at most half its order, and that the downhill domination number of a tree is at most one third its order. We characterize the graphs obtaining each of these bounds
Alspach, BR
1985-01-01
This volume deals with a variety of problems involving cycles in graphs and circuits in digraphs. Leading researchers in this area present here 3 survey papers and 42 papers containing new results. There is also a collection of unsolved problems.
Wilson, Robin J
1985-01-01
Graph Theory has recently emerged as a subject in its own right, as well as being an important mathematical tool in such diverse subjects as operational research, chemistry, sociology and genetics. This book provides a comprehensive introduction to the subject.
Hyperbolicity in median graphs
Indian Academy of Sciences (India)
mic problems in hyperbolic spaces and hyperbolic graphs have been .... that in general the main obstacle is that we do not know the location of ...... [25] Jonckheere E and Lohsoonthorn P, A hyperbolic geometry approach to multipath routing,.
A Hybrid Task Graph Scheduler for High Performance Image Processing Workflows.
Blattner, Timothy; Keyrouz, Walid; Bhattacharyya, Shuvra S; Halem, Milton; Brady, Mary
2017-12-01
Designing applications for scalability is key to improving their performance in hybrid and cluster computing. Scheduling code to utilize parallelism is difficult, particularly when dealing with data dependencies, memory management, data motion, and processor occupancy. The Hybrid Task Graph Scheduler (HTGS) improves programmer productivity when implementing hybrid workflows for multi-core and multi-GPU systems. The Hybrid Task Graph Scheduler (HTGS) is an abstract execution model, framework, and API that increases programmer productivity when implementing hybrid workflows for such systems. HTGS manages dependencies between tasks, represents CPU and GPU memories independently, overlaps computations with disk I/O and memory transfers, keeps multiple GPUs occupied, and uses all available compute resources. Through these abstractions, data motion and memory are explicit; this makes data locality decisions more accessible. To demonstrate the HTGS application program interface (API), we present implementations of two example algorithms: (1) a matrix multiplication that shows how easily task graphs can be used; and (2) a hybrid implementation of microscopy image stitching that reduces code size by ≈ 43% compared to a manually coded hybrid workflow implementation and showcases the minimal overhead of task graphs in HTGS. Both of the HTGS-based implementations show good performance. In image stitching the HTGS implementation achieves similar performance to the hybrid workflow implementation. Matrix multiplication with HTGS achieves 1.3× and 1.8× speedup over the multi-threaded OpenBLAS library for 16k × 16k and 32k × 32k size matrices, respectively.
Directory of Open Access Journals (Sweden)
Patrick Claude
2011-12-01
Full Text Available Phenyl 3,4,6-tri-O-benzyl-2-O-(3-carboxypropionyl-1-thio-β-D-galactopyranoside (1 was condensed via its pentafluorophenyl ester 2 with 5-aminopentyl (4a, 4-aminobutyl (4b, 3-aminopropyl (4c and 2-aminoethyl 4,6-O-benzylidene-β-D-glucopyranoside (4d, prepared from the corresponding N-Cbz protected glucosides 3a–d, to give the corresponding 2-[3-(alkylcarbamoylpropionyl] tethered saccharides 5a–d. Intramolecular, ring closing glycosylation of the saccharides with NIS and TMSOTf afforded the tethered β(1→3 linked disaccharides 6a–c, the α(1→3 linked disaccharides 7a–d and the α(1→2 linked disaccharide 8d in ratios depending upon the ring size formed during glycosylation. No β(1→2 linked disaccharides were formed. Molecular modeling of saccharides 6–8 revealed that a strong aromatic stacking interaction between the aromatic parts of the benzyl and benzylidene protecting groups in the galactosyl and glucosyl moieties was mainly responsible for the observed regioselectivity and anomeric selectivity of the ring-closing glycosylation step.
Commodo, Mario; Sgro, Lee Anne; Minutolo, Patrizia; D'Anna, Andrea
2013-05-16
Photoelectric charging of particles is a powerful tool for online characterization of submicrometer aerosol particles. Indeed photoionization based techniques have high sensitivity and chemical selectivity. Moreover, they yield information on electronic properties of the material and are sensitive to the state of the surface. In the present study the photoionization charging efficiency, i.e., the ratio between the generated positive ions and the corresponding neutral ones, for different classes of flame-generated carbonaceous nanoparticles was measured. The fifth harmonics of a Nd:YAG laser, 213 nm (5.82 eV), was used as an ionization source for the combustion generated nanoparticles, whereas a differential mobility analyzer (DMA) coupled to a Faraday cup electrometer was used for particle classification and detection. Carbonaceous nanoparticles in the nucleation mode, i.e., sizes ranging from 1 to 10 nm, show a photoionization charging efficiency clearly dependent on the flame conditions. In particular, we observed that the richer the flame is, i.e., the higher the equivalent ratio is, the higher the photon charging efficiency is. We hypothesized that such an increase in the photoionization propensity of the carbonaceous nanoparticles from richer flame condition is associated to the presence within the particles of larger aromatic moieties. The results clearly show that photoionization is a powerful diagnostic tool for the physical-chemical characterization of combustion aerosol, and it may lead to further insights into the soot formation mechanism.
Length and temperature dependence of the mechanical properties of finite-size carbyne
Yang, Xueming; Huang, Yanhui; Cao, Bingyang; To, Albert C.
2017-09-01
Carbyne is an ideal one-dimensional conductor and the thinnest interconnection in an ultimate nano-device and it requires an understanding of the mechanical properties that affect device performance and reliability. Here, we report the mechanical properties of finite-size carbyne, obtained by a molecular dynamics simulation study based on the adaptive intermolecular reactive empirical bond order potential. To avoid confusion in assigning the effective cross-sectional area of carbyne, the value of the effective cross-sectional area of carbyne (4.148 Å2) was deduced via experiment and adopted in our study. Ends-constraints effects on the ultimate stress (maximum force) of the carbyne chains are investigated, revealing that the molecular dynamics simulation results agree very well with the experimental results. The ultimate strength, Young's Modulus and maximum strain of carbyne are rather sensitive to the temperature and all decrease with the temperature. Opposite tendencies of the length dependence of the overall ultimate strength and maximum strain of carbyne at room temperature and very low temperature have been found, and analyses show that this originates in the ends effect of carbyne.
Sadeghzadeh, Sadegh; Farshad Mir Saeed Ghazi, Seyyed
2018-03-01
Piezoelectric Nanogenerator (PENG) is one of the novel energy harvester systems that recently, has been a subject of interest for researchers. By the use of nanogenerators, it’s possible to harvest different forms of energy in the environment like mechanical vibrations and generate electricity. The structure of a PENG consists of vertical arrays of nanowires between two electrodes. In this paper, dynamic analysis of a PENG is studied numerically. The modified couple stress theory which includes one length scale material parameter is used to study the size-dependent behavior of PENGs. Then, by application of a complete form of linear hybrid piezoelectric—pyroelectric equations, and using the Euler-Bernoulli beam model, the equations of motion has been derived. Generalized Differential Quadrature (GDQ) method was employed to solve the equations of motion. The effect of damping ratio, temperature rise, excitation frequency and length scale parameter was studied. It was found that the PENG voltage maximizes at the resonant frequency of nanowire. The temperature rise has a significant effect on PENG’s efficiency. When temperature increases about 10 {{K}}, the maximum voltage increases about 26%. Increasing the damping ratio, the maximum voltage decreases gradually.
Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.
Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A
2010-03-01
The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.
Source size and time dependence of multifragmentation induced by GeV 3He beams
International Nuclear Information System (INIS)
Wang, G.; Kwiatkowski, K.; Bracken, D.S.; Renshaw Foxford, E.; Hsi, W.; Morley, K.B.; Viola, V.E.; Yoder, N.R.; Volant, C.; Legrain, R.; Pollacco, E.C.; Korteling, R.G.; Botvina, A.; Brzychczyk, J.; Breuer, H.
1999-01-01
To investigate the source size and time dependence of multifragmentation reactions, small- and large-angle relative velocity correlations between coincident complex fragments have been measured for the 1.8 - 4.8 GeV 3 He+ nat Ag, 197 Au systems. The results support an evolutionary scenario for the fragment emission process in which lighter IMFs (Z approx-lt 6) are emitted from a hot, more dense source prior to breakup of an expanded residue. For the most highly excited residues, for which there is a significant yield of fragments with very soft energy spectra (E/A≤3 MeV), comparisons with an N-body simulation suggest a breakup time of τ∼50 fm/c for the expanded residue. Comparison of these data with both the evolutionary expanding emitting source model and the Copenhagen statistical multifragmentation model shows good agreement for heavier IMF close-quote s formed in the final breakup stage, but only the evolutionary model is successful in accounting for the lighter IMFs. copyright 1999 The American Physical Society
Modeling the size dependent pull-in instability of beam-type NEMS using strain gradient theory
Directory of Open Access Journals (Sweden)
Ali Koochi
Full Text Available It is well recognized that size dependency of materials characteristics, i.e. size-effect, often plays a significant role in the performance of nano-structures. Herein, strain gradient continuum theory is employed to investigate the size dependent pull-in instability of beam-type nano-electromechanical systems (NEMS. Two most common types of NEMS i.e. nano-bridge and nano-cantilever are considered. Effects of electrostatic field and dispersion forces i.e. Casimir and van der Waals (vdW attractions have been considered in the nonlinear governing equations of the systems. Two different solution methods including numerical and Rayleigh-Ritz have been employed to solve the constitutive differential equations of the system. Effect of dispersion forces, the size dependency and the importance of coupling between them on the instability performance are discussed.
Energy Technology Data Exchange (ETDEWEB)
Dal Savio, C.
2006-02-20
literature, for III-V material systems. Despite the impossibility to obtain precise information about the dimensions of the particular QD under investigation, from the analysis of these data a general trend can be found in the dependency of the biexciton binding energy on the size of InAs QDs, parameterised with their emission energy. (orig.)
Uniform Single Valued Neutrosophic Graphs
Directory of Open Access Journals (Sweden)
S. Broumi
2017-09-01
Full Text Available In this paper, we propose a new concept named the uniform single valued neutrosophic graph. An illustrative example and some properties are examined. Next, we develop an algorithmic approach for computing the complement of the single valued neutrosophic graph. A numerical example is demonstrated for computing the complement of single valued neutrosophic graphs and uniform single valued neutrosophic graph.
Collective Rationality in Graph Aggregation
Endriss, U.; Grandi, U.; Schaub, T.; Friedrich, G.; O'Sullivan, B.
2014-01-01
Suppose a number of agents each provide us with a directed graph over a common set of vertices. Graph aggregation is the problem of computing a single “collective” graph that best represents the information inherent in this profile of individual graphs. We consider this aggregation problem from the
Bollobás, Béla
1998-01-01
The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed ...
Directory of Open Access Journals (Sweden)
Namhee Kim
Full Text Available Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2 corresponding to the second eigenvalues (λ2 associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2's components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2's components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼ 220 nucleotides. While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs
International Nuclear Information System (INIS)
Michael, G. J.; Henderson, C. J.
1999-01-01
Dual-energy x-ray absorptiometry (DXA) is a well established technique for measuring bone mineral density (BMD). However, in recent years DXA is increasingly being used to measure body composition in terms of fat and fat-free mass. DXA scanners must also determine the soft tissue baseline value from soft-tissue-only regions adjacent to bone. The aim of this work is to determine, using computer simulations, the optimum x- ray energies for a number of dose models, different tissues, i.e. bone mineral, average soft tissue, lean soft tissue and fat; and a range of anatomical sites and patient sizes. Three models for patient dose were evaluated total beam energy, entrance exposure and absorbed dose calculated by Monte Carlo modelling. A range of tissue compositions and thicknesses were chosen to cover typical patient variations for the three sites femoral neck, PA spine and lateral spine. In this work, the optimisation of the energies is based on (1) the uncertainty that arises from the quantum statistical nature of the number of x-rays recorded by the detector, and (2) the radiation dose received by the patient. This study has deliberately not considered other parameters such as detector response, electronic noise, x-ray tube heat load etc, because these are technology dependent parameters, not ones that are inherent to the measuring technique. Optimisation of the energies is achieved by minimisation of the product of variance of density measurement and dose which is independent of the absolute intensities of the x-ray beams. The results obtained indicate that if solving for bone density, then E-low in the range 34 to 42 keV, E-high in the range 100 to 200 keV and incident intensity ratio (low energy/high energy) in the range 3 to 10 is a reasonable compromise for the normal range of patient sizes. The choice of energies is complicated by the fact that the DXA unit must also solve for fat and lean soft tissue in soft- tissue-only regions adjacent to the bone. In this
Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff
Directory of Open Access Journals (Sweden)
Anwar MF
2016-01-01
Full Text Available Mohammad F Anwar,1 Deepak Yadav,2 Swati Jain,3 Sumeet Kapoor,4 Shweta Rastogi,5 Indu Arora,6 Mohammed Samim1 1Department of Chemistry, Faculty of Science, 2Faculty of Medicine, Jamia Hamdard University, New Delhi, 3Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, 4Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, 5Department of Chemistry, Hans Raj College, 6Department of Biomedical Sciences, Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India Abstract: Dandruff is a prominent scalp problem caused by the growth of fungus Malassezia furfur, potentially cascading into dermal inflammation, itching, and tissue damage. The present work outlines a detailed analysis of the treatment of scalp infection using silver nanomaterials (Ag NMs, and focuses on biocidal activity owing to manipulation of size, shape, and structure. Monodisperse silver spherical nanoparticles (NPs and nanorods (NRs were synthesized by chemical routes that were characterized using analytical and spectroscopic techniques. Ag NMs demonstrated enhanced biocidal tendencies compared to market available drugs, itracanozole and ketoconazole, showing greater zones of inhibition. The obtained 20 nm and 50 nm spherical-shaped NPs and 50 nm NRs showed concentration-, size-, and shape-dependent antifungal activity, with 20 nm spherical-shaped NPs exhibiting excellent potency. Minimum inhibitory concentration for 20 nm was lowest at 0.2 mg/mL in comparison to 0.3 mg/mL for NRs. Primary irritation index was 0.33 and 0.16 for 20 nm and 50 nm spherical-shaped NPs, respectively, while 50 nm rod-shaped NMs exhibited negligible redness. An in vivo model for M. furfur infection was generated by passing fungi subcutaneously in rats’ skin. Again, 20 nm particles showed best normalization of skin after 10 days on regular dosing, in comparison with bigger and rod-shaped particles. The statistical clinical score was
Probabilistic Graph Layout for Uncertain Network Visualization.
Schulz, Christoph; Nocaj, Arlind; Goertler, Jochen; Deussen, Oliver; Brandes, Ulrik; Weiskopf, Daniel
2017-01-01
We present a novel uncertain network visualization technique based on node-link diagrams. Nodes expand spatially in our probabilistic graph layout, depending on the underlying probability distributions of edges. The visualization is created by computing a two-dimensional graph embedding that combines samples from the probabilistic graph. A Monte Carlo process is used to decompose a probabilistic graph into its possible instances and to continue with our graph layout technique. Splatting and edge bundling are used to visualize point clouds and network topology. The results provide insights into probability distributions for the entire network-not only for individual nodes and edges. We validate our approach using three data sets that represent a wide range of network types: synthetic data, protein-protein interactions from the STRING database, and travel times extracted from Google Maps. Our approach reveals general limitations of the force-directed layout and allows the user to recognize that some nodes of the graph are at a specific position just by chance.
Dependence of radiotherapeutic results on tumor size in patients with cervix uteri carcinoma
International Nuclear Information System (INIS)
Gabelov, A.A.; Zharinov, G.M.
1981-01-01
A method is suggested that permits specifying the primary tumor size on the basis of clinical examination of patients with cervix uteri carcinoma. The values of tumor size have been correlated with long-term results of concomitant radiotherapy in 1358 patients with cervix uteri carcinoma. The data obtained have shown that the primary tumor size is a factor that determines to a large extent radiotherapeutic results in patients with cervix uteri carcinoma. The specification of tumor size values makes it possible to considerably lessen prognostic uncertainty of present-day staging classifications. The structure of radiotherapeutic failures also turned out to be closely associated with the primary tumor size
Parallel Algorithm for Incremental Betweenness Centrality on Large Graphs
Jamour, Fuad Tarek
2017-10-17
Betweenness centrality quantifies the importance of nodes in a graph in many applications, including network analysis, community detection and identification of influential users. Typically, graphs in such applications evolve over time. Thus, the computation of betweenness centrality should be performed incrementally. This is challenging because updating even a single edge may trigger the computation of all-pairs shortest paths in the entire graph. Existing approaches cannot scale to large graphs: they either require excessive memory (i.e., quadratic to the size of the input graph) or perform unnecessary computations rendering them prohibitively slow. We propose iCentral; a novel incremental algorithm for computing betweenness centrality in evolving graphs. We decompose the graph into biconnected components and prove that processing can be localized within the affected components. iCentral is the first algorithm to support incremental betweeness centrality computation within a graph component. This is done efficiently, in linear space; consequently, iCentral scales to large graphs. We demonstrate with real datasets that the serial implementation of iCentral is up to 3.7 times faster than existing serial methods. Our parallel implementation that scales to large graphs, is an order of magnitude faster than the state-of-the-art parallel algorithm, while using an order of magnitude less computational resources.
Percolator: Scalable Pattern Discovery in Dynamic Graphs
Energy Technology Data Exchange (ETDEWEB)
Choudhury, Sutanay; Purohit, Sumit; Lin, Peng; Wu, Yinghui; Holder, Lawrence B.; Agarwal, Khushbu
2018-02-06
We demonstrate Percolator, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of Percolator is to dynamically decide and verify a small fraction of patterns and their in- stances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a) the feasibility of incremental pattern mining by walking through each component of Percolator, b) the efficiency and scalability of Percolator over the sheer size of real-world dynamic graphs, and c) how the user-friendly GUI of Percolator inter- acts with users to support keyword-based queries that detect, browse and inspect trending patterns. We also demonstrate two user cases of Percolator, in social media trend analysis and academic collaboration analysis, respectively.
Optimizing graph algorithms on pregel-like systems
Salihoglu, Semih
2014-03-01
We study the problem of implementing graph algorithms efficiently on Pregel-like systems, which can be surprisingly challenging. Standard graph algorithms in this setting can incur unnecessary inefficiencies such as slow convergence or high communication or computation cost, typically due to structural properties of the input graphs such as large diameters or skew in component sizes. We describe several optimization techniques to address these inefficiencies. Our most general technique is based on the idea of performing some serial computation on a tiny fraction of the input graph, complementing Pregel\\'s vertex-centric parallelism. We base our study on thorough implementations of several fundamental graph algorithms, some of which have, to the best of our knowledge, not been implemented on Pregel-like systems before. The algorithms and optimizations we describe are fully implemented in our open-source Pregel implementation. We present detailed experiments showing that our optimization techniques improve runtime significantly on a variety of very large graph datasets.
Sahmani, S.; Aghdam, M. M.
2018-03-01
A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.
Size Dependent Male Reproductive Tactic in the Two-Spotted Goby (Gobiusculus flavescens).
Utne-Palm, A C; Eduard, K; Jensen, K H; Mayer, I; Jakobsen, P J
2015-01-01
Male investment in testes and sperm duct gland in the polygamous nest breeding two-spotted goby Gobiusculus flavescens (Fabricius) was investigated in relation to time in reproductive season and individual physical parameters. This small teleost fish is most likely the most abundant species found along the rocky shores of the North East Atlantic. The two-spotted goby has a single reproductive season, during which nest-caring males can raise several clutches of offspring. According to the literature the males are on average larger than the females. Here we report for the first time a population showing a reversal of this trend, with males on average being smaller than females, a difference likely caused by a large proportion of small males. Early in the breeding season these small males have typical sneaker characters, with relatively large testes and small seminal duct glands compared to the larger dominant territorial males. The presence of these two alternative male reproductive tactics is confirmed by histological studies, which shows the presence of sperm in the sperm duct glands (SDG) of smaller males, but not in the SDG of intermediate and larger males. To our knowledge, males with typical sneaker characters have not been reported in earlier studied populations of two-spotted goby. Interestingly we found that testes investment declined significantly over the course of the breeding season, and that this reduction was significantly more pronounced in small compared to the large males. Further, a significant increase in seminal duct gland (SDG) mass was observed for the smaller males over the breeding season. We propose that this indicates a possible shift in mating tactic by smaller males from a parasitic to a nest-holding tactic over the course of the breeding season. Thus, the observed size dependent plasticity in investment in SDG over time suggests that the reproductive tactic of G. flavescens is conditional, and possibly influenced by mate availability and
The oxidative costs of reproduction are group-size dependent in a wild cooperative breeder.
Cram, Dominic L; Blount, Jonathan D; Young, Andrew J
2015-11-22
Life-history theory assumes that reproduction entails a cost, and research on cooperatively breeding societies suggests that the cooperative sharing of workloads can reduce this cost. However, the physiological mechanisms that underpin both the costs of reproduction and the benefits of cooperation remain poorly understood. It has been hypothesized that reproductive costs may arise in part from oxidative stress, as reproductive investment may elevate exposure to reactive oxygen species, compromising survival and future reproduction and accelerating senescence. However, experimental evidence of oxidative costs of reproduction in the wild remains scarce. Here, we use a clutch-removal experiment to investigate the oxidative costs of reproduction in a wild cooperatively breeding bird, the white-browed sparrow weaver, Plocepasser mahali. Our results reveal costs of reproduction that are dependent on group size: relative to individuals in groups whose eggs were experimentally removed, individuals in groups that raised offspring experienced an associated cost (elevated oxidative damage and reduced body mass), but only if they were in small groups containing fewer or no helpers. Furthermore, during nestling provisioning, individuals that provisioned at higher rates showed greater within-individual declines in body mass and antioxidant protection. Our results provide rare experimental evidence that reproduction can negatively impact both oxidative status and body mass in the wild, and suggest that these costs can be mitigated in cooperative societies by the presence of additional helpers. These findings have implications for our understanding of the energetic and oxidative costs of reproduction, and the benefits of cooperation in animal societies. © 2015 The Authors.
Size Dependent Male Reproductive Tactic in the Two-Spotted Goby (Gobiusculus flavescens.
Directory of Open Access Journals (Sweden)
A C Utne-Palm
Full Text Available Male investment in testes and sperm duct gland in the polygamous nest breeding two-spotted goby Gobiusculus flavescens (Fabricius was investigated in relation to time in reproductive season and individual physical parameters. This small teleost fish is most likely the most abundant species found along the rocky shores of the North East Atlantic. The two-spotted goby has a single reproductive season, during which nest-caring males can raise several clutches of offspring. According to the literature the males are on average larger than the females. Here we report for the first time a population showing a reversal of this trend, with males on average being smaller than females, a difference likely caused by a large proportion of small males. Early in the breeding season these small males have typical sneaker characters, with relatively large testes and small seminal duct glands compared to the larger dominant territorial males. The presence of these two alternative male reproductive tactics is confirmed by histological studies, which shows the presence of sperm in the sperm duct glands (SDG of smaller males, but not in the SDG of intermediate and larger males. To our knowledge, males with typical sneaker characters have not been reported in earlier studied populations of two-spotted goby. Interestingly we found that testes investment declined significantly over the course of the breeding season, and that this reduction was significantly more pronounced in small compared to the large males. Further, a significant increase in seminal duct gland (SDG mass was observed for the smaller males over the breeding season. We propose that this indicates a possible shift in mating tactic by smaller males from a parasitic to a nest-holding tactic over the course of the breeding season. Thus, the observed size dependent plasticity in investment in SDG over time suggests that the reproductive tactic of G. flavescens is conditional, and possibly influenced by mate
Sysoeva, Olga V; Galuta, Ilia A; Davletshina, Maria S; Orekhova, Elena V; Stroganova, Tatiana A
2017-01-01
Excitation/Inhibition (E/I) imbalance in neural networks is now considered among the core neural underpinnings of autism psychopathology. In motion perception at least two phenomena critically depend on E/I balance in visual cortex: spatial suppression (SS), and spatial facilitation (SF) corresponding to impoverished or improved motion perception with increasing stimuli size, respectively. While SS is dominant at high contrast, SF is evident for low contrast stimuli, due to the prevalence of inhibitory contextual modulations in the former, and excitatory ones in the latter case. Only one previous study (Foss-Feig et al., 2013) investigated SS and SF in Autism Spectrum Disorder (ASD). Our study aimed to replicate previous findings, and to explore the putative contribution of deficient inhibitory influences into an enhanced SF index in ASD-a cornerstone for interpretation proposed by Foss-Feig et al. (2013). The SS and SF were examined in 40 boys with ASD, broad spectrum of intellectual abilities (63 ASD. The presence of abnormally enhanced SF in children with ASD was the only consistent finding between our study and that of Foss-Feig et al. While the SS and SF indexes were strongly interrelated in TD participants, this correlation was absent in their peers with ASD. In addition, the SF index but not the SS index correlated with the severity of autism and the poor registration abilities. The pattern of results is partially consistent with the idea of hypofunctional inhibitory transmission in visual areas in ASD. Nonetheless, the absence of correlation between SF and SS indexes paired with a strong direct link between abnormally enhanced SF and autism symptoms in our ASD sample emphasizes the role of the enhanced excitatory influences by themselves in the observed abnormalities in low-level visual phenomena found in ASD.
Implications of the bedform phase diagram for size-dependent changes of ooid cortical fabric
Anderson, N. T.; Cowan, C. A.
2017-12-01
Preliminary petrographic and electron microprobe analyses of well-preserved concentric and radial-concentric ooids in Late Cambrian carbonates of the Port au Port Group, western Newfoundland, Canada, show no Sr enrichment indicative of an aragonite precursor for ooid cortices. Dissolution features such as elephantine ooids, spalled cortices, and dropped nuclei reported by other authors in these and equivalent carbonates elsewhere were not analyzed in this study. It is likely that the pristine concentric and radial-concentric ooids studied here were originally calcite and may exhibit a "banded-radial" fabric (sensu Medwedeff and Wilkinson 1983). Thus, the change in petrographic fabric does not correspond to a change in mineralogy in these ooids. Furthermore, ooids in these rocks and in previous studies of similar rocks exhibit a change from radial to concentric fabric at locally consistent diameters. These two observations suggest that hydrodynamic conditions are the causal mechanism for shifts in ooid cortical fabric. Previous workers have taken this size-dependent shift in cortical fabric to represent increased abrasion that occurs with the transition from suspended load to bedload transport, but disregard bedform stability. We note that at a given flow velocity and depth, ooid growth can trigger a shift from the ripple stability field to the dune stability field. Observations of the rate of migration of modern meter-scale ooid tidal dunes in the Bahamas can be used to constrain ooid transport, and suggest that ooids in these settings may be transported for only minutes to hours twice per year. Therefore, the duration of ooid "sleep" (the time spent buried within the dune) may be 105 greater in dunes compared to ripples. This prolonged subsurface residence time may be a heretofore unconsidered control on the development of ooid cortices. It may dictate radial vs. concentric fabric; drastically diminish abrasion; sequester ooids chemically (and biochemically) from
Lattice Constant Dependence on Particle Size for Ceria prepared from a Citrate Sol-Gel
International Nuclear Information System (INIS)
Morris, V N; Farrell, R A; Sexton, A M; Morris, M A
2006-01-01
High surface area ceria nanoparticles have been prepared using a citrate solgel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures, and X-ray methods used to determine their lattice parameters. The particle sizes have been assessed using transmission electron microscopy (TEM) and the lattice parameter found to fall with decreasing particle size. The results are discussed in the light of the role played by surface tension effects
On some covering graphs of a graph
Directory of Open Access Journals (Sweden)
Shariefuddin Pirzada
2016-10-01
Full Text Available For a graph $G$ with vertex set $V(G=\\{v_1, v_2, \\dots, v_n\\}$, let $S$ be the covering set of $G$ having the maximum degree over all the minimum covering sets of $G$. Let $N_S[v]=\\{u\\in S : uv \\in E(G \\}\\cup \\{v\\}$ be the closed neighbourhood of the vertex $v$ with respect to $S.$ We define a square matrix $A_S(G= (a_{ij},$ by $a_{ij}=1,$ if $\\left |N_S[v_i]\\cap N_S[v_j] \\right| \\geq 1, i\
Fundamentals of algebraic graph transformation
Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele
2006-01-01
Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...
International Nuclear Information System (INIS)
Hagemann, G,; Kreczik, A.; Treichel, M.
1996-01-01
Following irradiation of the progenitor cells the clone growth of CHO cells decreases as a result of cell losses. Lethally acting expressions of micronuclei are produced by heritable lethal mutations. The dependency of the frequency of micronucleated binucleated clone cells and of the median clone sizes difference on the radiation dose was measured and compared to non-irradiated controls. Using the cytokinesis-block-micronucleus-method binucleated cells with micronuclei were counted as ratio of all binucleated cells within a clone size distribution. This ratio (shortened: micronucleus yield) was determined for all clone size distributions, which had been exposed to different irradiation doses and incubation times. The micronucleus yields were compared to the corresponding median clone sizes differences. The micronucleus yield is linearly dependent on the dose and is independent of the incubation time. The same holds true for the division related median clone sizes difference, which as a result is also linearly dependent on the micronucleus yield. Due to the inevitably errors of the cell count of micronucleated binucleated cells, an automatic measurement of the median clone sizes differences is the preferred method for evaluation of cellular radiation sensitivity for heritable lethal mutations. This value should always be determined in addition, if clone survival fractions are used as predictive test because it allows for an estimation of the remission probability of surviving cells. (orig.) [de
Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Hasan, Mehedi, E-mail: mhrizvi@gce.buet.ac.bd; Hakim, M. A.; Zubair, M. A.; Hussain, A.; Islam, Md. Fakhrul [Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Basith, M. A., E-mail: mabasith@phy.buet.ac.bd [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Hossain, Md. Sarowar [S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata, West Bengal 700098 (India); Ahmmad, Bashir [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)
2016-03-15
Improvement in magnetic and electrical properties of multiferroic BiFeO{sub 3} in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles of different sizes ranging from ∼ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe{sup 2+} state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO{sub 3} nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ∼ 49 nm Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO{sub 3}.
Energy Technology Data Exchange (ETDEWEB)
Lipatova, Zh. O., E-mail: zluka-yo@mail.ru; Kolobkova, E. V.; Babkina, A. N.; Nikonorov, N. V. [ITMO University (Russian Federation)
2017-03-15
The temperature and size dependences of the energy gap in CdSe quantum dots with diameters of 2.4, 4.0, and 5.2 nm embedded in fluorophosphate glasses are investigated. It is shown that the temperature coefficient of the band gap dE{sub g}/dT in the quantum dots differs from the bulk value and depends strictly on the dot size. It is found that, furthermore, the energy of each transition in these quantum dots is characterized by an individual temperature coefficient dE/dT.
Bochdanovits, Z. (Zoltán)
2003-01-01
Body size is one of the most obvious and most important characteristic of any organism. A thorough understanding of how and why a certain individual obtains a specific body size, given its evolutionary history and ecological context, is a fundamental question in biology. One special case of
Dependence of in-situ Bose condensate size on final frequency of ...
Indian Academy of Sciences (India)
2017-03-08
Mar 8, 2017 ... first time to the best of our knowledge, the measured variation in the sizes of the .... frequency shifting, switching or controlling power, expanding size, etc., of ... currents in anti-Helmholtz configuration is used. Each coil has 150 ...
Application- and patient size-dependent optimization of x-ray spectra for CT
International Nuclear Information System (INIS)
Kalender, Willi A.; Deak, Paul; Kellermeier, Markus; Straten, Marcel van; Vollmar, Sabrina V.
2009-01-01
Although x-ray computed tomography (CT) has been in clinical use for over 3 decades, spectral optimization has not been a topic of great concern; high voltages around 120 kV have been in use since the beginning of CT. It is the purpose of this study to analyze, in a rigorous manner, the energies at which the patient dose necessary to provide a given contrast-to-noise ratio (CNR) for various diagnostic tasks can be minimized. The authors used cylindrical water phantoms and quasianthropomorphic phantoms of the thorax and the abdomen with inserts of 13 mm diameter mimicking soft tissue, bone, and iodine for simulations and measurements. To provide clearly defined contrasts, these inserts were made of solid water with a 1% difference in density (DD) to represent an energy-independent soft-tissue contrast of 10 Hounsfield units (HU), calcium hydroxyapatite (Ca) representing bone, and iodine (I) representing the typical contrast medium. To evaluate CT of the thorax, an adult thorax phantom (300x200 mm 2 ) plus extension rings up to a size of 460x300 mm 2 to mimic different patient cross sections were used. For CT of the abdomen, we used a phantom of 360x200 mm 2 and an extension ring of 460x300 mm 2 . The CT scanner that the authors used was a SOMATOM Definition (Siemens Healthcare, Forchheim, Germany) at 80, 100, 120, and 140 kV. Further voltage settings of 60, 75, 90, and 105 kV were available in an experimental mode. The authors determined contrast for the density difference, calcium, and iodine, and noise and 3D dose distributions for the available voltages by measurements. Additional voltage values and monoenergetic sources were evaluated by simulations. The dose-weighted contrast-to-noise ratio (CNRD) was used as the parameter for optimization. Simulations and measurements were in good agreement with respect to absolute values and trends regarding the dependence on energy for the parameters investigated. For soft-tissue imaging, the standard settings of 120-140 k
Efficient Graph Computation for Node2Vec
Zhou, Dongyan; Niu, Songjie; Chen, Shimin
2018-01-01
Node2Vec is a state-of-the-art general-purpose feature learning method for network analysis. However, current solutions cannot run Node2Vec on large-scale graphs with billions of vertices and edges, which are common in real-world applications. The existing distributed Node2Vec on Spark incurs significant space and time overhead. It runs out of memory even for mid-sized graphs with millions of vertices. Moreover, it considers at most 30 edges for every vertex in generating random walks, causin...
Kwon, Oh-Hyun; Crnovrsanin, Tarik; Ma, Kwan-Liu
2018-01-01
Using different methods for laying out a graph can lead to very different visual appearances, with which the viewer perceives different information. Selecting a "good" layout method is thus important for visualizing a graph. The selection can be highly subjective and dependent on the given task. A common approach to selecting a good layout is to use aesthetic criteria and visual inspection. However, fully calculating various layouts and their associated aesthetic metrics is computationally expensive. In this paper, we present a machine learning approach to large graph visualization based on computing the topological similarity of graphs using graph kernels. For a given graph, our approach can show what the graph would look like in different layouts and estimate their corresponding aesthetic metrics. An important contribution of our work is the development of a new framework to design graph kernels. Our experimental study shows that our estimation calculation is considerably faster than computing the actual layouts and their aesthetic metrics. Also, our graph kernels outperform the state-of-the-art ones in both time and accuracy. In addition, we conducted a user study to demonstrate that the topological similarity computed with our graph kernel matches perceptual similarity assessed by human users.
White, AT
1985-01-01
The field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing.Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'''' and 9 as ``unsolved''''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''''.
Ribes, Luis
2017-01-01
This book offers a detailed introduction to graph theoretic methods in profinite groups and applications to abstract groups. It is the first to provide a comprehensive treatment of the subject. The author begins by carefully developing relevant notions in topology, profinite groups and homology, including free products of profinite groups, cohomological methods in profinite groups, and fixed points of automorphisms of free pro-p groups. The final part of the book is dedicated to applications of the profinite theory to abstract groups, with sections on finitely generated subgroups of free groups, separability conditions in free and amalgamated products, and algorithms in free groups and finite monoids. Profinite Graphs and Groups will appeal to students and researchers interested in profinite groups, geometric group theory, graphs and connections with the theory of formal languages. A complete reference on the subject, the book includes historical and bibliographical notes as well as a discussion of open quest...
Subdominant pseudoultrametric on graphs
Energy Technology Data Exchange (ETDEWEB)
Dovgoshei, A A; Petrov, E A [Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk (Ukraine)
2013-08-31
Let (G,w) be a weighted graph. We find necessary and sufficient conditions under which the weight w:E(G)→R{sup +} can be extended to a pseudoultrametric on V(G), and establish a criterion for the uniqueness of such an extension. We demonstrate that (G,w) is a complete k-partite graph, for k≥2, if and only if for any weight that can be extended to a pseudoultrametric, among all such extensions one can find the least pseudoultrametric consistent with w. We give a structural characterization of graphs for which the subdominant pseudoultrametric is an ultrametric for any strictly positive weight that can be extended to a pseudoultrametric. Bibliography: 14 titles.
Topacli, C
1997-01-01
The non-resonant magnetically modulated microwave response measurements of powdered Bi-Sr-Ca-Cu-O samples using the conventional EPR spectrometer are presented. After cooling in a near zero magnetic field, all samples exhibited a sharp (about 12-37 mu T) microwave absorption with applied magnetic field, superimposed on the widely observed and well explained broader minimum. The width of the absorption maximum is found to be dependent on the particle size. It becomes broader with decreasing particle size. The effects of particle size and field history on the peak are given in detail and some possible mechanisms to account for the observations are presented. (author)
International Nuclear Information System (INIS)
Ananthakumar, S.; Jayabalan, J.; Singh, Asha; Khan, Salahuddin; Babu, S. Moorthy; Chari, Rama
2016-01-01
The photoluminescence (PL) from semiconductor quantum dots can show a “PL bright point”, that is the PL from as prepared quantum dots is maximum at a particular size. In this work we show that, for CdTe quantum dots, upconversion photoluminescence (UCPL) originating from nonlinear absorption shows a similar “UCPL bright point”. The PL and UCPL bright points occur at nearly the same size. The existence of a UCPL bright point has important implications for upconversion microscopy applications. - Highlights: • The size dependence of the upconversion photoluminescence (UCPL) spectrum of CdTe quantum dots has been reported. • We show that the UCPL from the CdTe quantum dots is highest at a particular size. • Thus the occurrence of a "UCPL bright point" in CdTe quantum dots has been demonstrated. • It has been shown that the UCPL bright point occurs at nearly the same size as a normal bright point.
Quantitative graph theory mathematical foundations and applications
Dehmer, Matthias
2014-01-01
The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as:Comparative approaches (graph similarity or distance)Graph measures to characterize graphs quantitat
Condition-Dependent Trade-Off Between Weapon Size and Immunity in Males of the European Earwig.
Körner, Maximilian; Vogelweith, Fanny; Foitzik, Susanne; Meunier, Joël
2017-08-11
Investigating the expression of trade-offs between key life-history functions is central to our understanding of how these functions evolved and are maintained. However, detecting trade-offs can be challenging due to variation in resource availability, which masks trade-offs at the population level. Here, we investigated in the European earwig Forficula auricularia whether (1) weapon size trades off with three key immune parameters - hemocyte concentration, phenoloxidase and prophenoloxidase activity - and whether (2) expression and strength of these trade-offs depend on male body condition (body size) and/or change after an immune challenge. Our results partially confirmed condition dependent trade-offs between weapon size and immunity in male earwigs. Specifically, we found that after an immune challenge, weapon size trades off with hemocyte concentrations in low-condition, but not in good-condition males. Contrastingly, weapon size was independent of pre-challenge hemocyte concentration. We also found no trade-off between weapon size and phenoloxidase activity, independent of body condition and immune challenge. Overall, our study reveals that trade-offs with sexual traits may weaken or disappear in good-condition individuals. Given the importance of weapon size for male reproductive success, our results highlight how low-condition individuals may employ alternative life-history investment strategies to cope with resource limitation.
Zhao, Z-G; Meng, J-L; Fan, B-L; Du, G-Z
2008-11-01
Theory predicts size-dependent sex allocation (SDS): flowers on plants with a high-resource status should have larger investment in females than plants with a low-resource status. Through a pot experiment with Aconitum gymnandrum (Ranunculaceae) in the field, we examined the relationship between sex allocation of individual flowers and plant size for different maternal families under different environmental conditions. We also determined the physiological base of variations in plant size. Our results support the prediction of SDS, and show that female-biased allocation with plant size is consistent under different environmental conditions. Negative correlations within families showed a plastic response of sex allocation to plant size. Negative genetic correlations between sex allocation and plant size at the family level indicate a genetic cause of the SDS pattern, although genetic correlation was influenced by environmental factors. Hence, the size-dependency of sex allocation in this species had both plastic and genetic causes. Furthermore, genotypes that grew large also had higher assimilation ability, thus showing a physiological basis for SDS.
DEFF Research Database (Denmark)
Wijewardana, Y. N. S.; Kawamoto, Ken; Komatsu, Toshiko
2014-01-01
) mixed sands representing four different particle size fractions ranging from 0.105 to 0.84 mm. Initial soil-water contact angle (αi), and the time dependence of contact angle were measured by the sessile drop method. Results showed that the αi value for fine and middle sand fractions increased rapidly...... in contact angle (α), well captured the time dependence of α....
The dependence of halo mass on galaxy size at fixed stellar mass using weak lensing
Charlton, Paul J. L.; Hudson, Michael J.; Balogh, Michael L.; Khatri, Sumeet
2017-12-01
Stellar mass has been shown to correlate with halo mass, with non-negligible scatter. The stellar mass-size and luminosity-size relationships of galaxies also show significant scatter in galaxy size at fixed stellar mass. It is possible that, at fixed stellar mass and galaxy colour, the halo mass is correlated with galaxy size. Galaxy-galaxy lensing allows us to measure the mean masses of dark matter haloes for stacked samples of galaxies. We extend the analysis of the galaxies in the CFHTLenS catalogue by fitting single Sérsic surface brightness profiles to the lens galaxies in order to recover half-light radius values, allowing us to determine halo masses for lenses according to their size. Comparing our halo masses and sizes to baselines for that stellar mass yields a differential measurement of the halo mass-galaxy size relationship at fixed stellar mass, defined as Mh(M_{*}) ∝ r_{eff}^{η }(M_{*}). We find that, on average, our lens galaxies have an η = 0.42 ± 0.12, i.e. larger galaxies live in more massive dark matter haloes. The η is strongest for high-mass luminous red galaxies. Investigation of this relationship in hydrodynamical simulations suggests that, at a fixed M*, satellite galaxies have a larger η and greater scatter in the Mh and reff relationship compared to central galaxies.
The mean-size dependence of the exchange narrowing in molecular J-aggregates
International Nuclear Information System (INIS)
Chen Yulu; Zhao Jijun
2011-01-01
The effect of segment-size fluctuations on exchange narrowing in a molecular J-aggregate of site-energy disordered distributions is studied using a one-dimensional Frenkel-exciton model. It is found that the segment-size disorder leads to the width of the absorption spectra deviating from the scaling law, σ 4/3 of the site-energy disordered standard deviation σ, being suitable for the system only with the site-energy disorder. In larger σ, the segment-size disorder has little influence on the linear absorption spectra. With increasing segment mean-length, the absorption line width monotonically increases, and then approaches a saturated value. By comparing a system of larger mean-length segment with a smaller one, both with the same segment-size disorder, it is found that the absorption line width of the former is broadened, and the exchange narrowing effect is reduced. The present result shows that the correlation effect can be partially maintained for the system with larger mean-length segment. -- Research Highlights: → Segment fluctuations affect the exchange narrowing of molecular J-aggregates. → The width of the absorption spectra is found to deviate from the scaling law. → Increase in segment size causes increase in the width and then saturates. → Exchange narrowing is reduced for larger mean-size segment. → Correlation can be kept partly in the larger size segment.
The structured ancestral selection graph and the many-demes limit.
Slade, Paul F; Wakeley, John
2005-02-01
We show that the unstructured ancestral selection graph applies to part of the history of a sample from a population structured by restricted migration among subpopulations, or demes. The result holds in the limit as the number of demes tends to infinity with proportionately weak selection, and we have also made the assumptions of island-type migration and that demes are equivalent in size. After an instantaneous sample-size adjustment, this structured ancestral selection graph converges to an unstructured ancestral selection graph with a mutation parameter that depends inversely on the migration rate. In contrast, the selection parameter for the population is independent of the migration rate and is identical to the selection parameter in an unstructured population. We show analytically that estimators of the migration rate, based on pairwise sequence differences, derived under the assumption of neutrality should perform equally well in the presence of weak selection. We also modify an algorithm for simulating genealogies conditional on the frequencies of two selected alleles in a sample. This permits efficient simulation of stronger selection than was previously possible. Using this new algorithm, we simulate gene genealogies under the many-demes ancestral selection graph and identify some situations in which migration has a strong effect on the time to the most recent common ancestor of the sample. We find that a similar effect also increases the sensitivity of the genealogy to selection.
Cheung, King Sing
2014-01-01
Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume
Dayal, Amit; Brock, David
2018-01-01
Prashant Chandrasekar, a lead developer for the Social Interactome project, has tasked the team with creating a graph representation of the data collected from the social networks involved in that project. The data is currently stored in a MySQL database. The client requested that the graph database be Cayley, but after a literature review, Neo4j was chosen. The reasons for this shift will be explained in the design section. Secondarily, the team was tasked with coming up with three scena...
Stevanovic, Dragan
2015-01-01
Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the
International Nuclear Information System (INIS)
Xiong Shiyun; Qi Weihong; Huang Baiyun; Wang Mingpu; Li Yejun
2010-01-01
The Debye model of Helmholtz free energy for bulk material is generalized to Gibbs free energy (GFE) model for nanomaterial, while a shape factor is introduced to characterize the shape effect on GFE. The structural transitions of Ti and Zr nanoparticles are predicted based on GFE. It is further found that GFE decreases with the shape factor and increases with decreasing of the particle size. The critical size of structural transformation for nanoparticles goes up as temperature increases in the absence of change in shape factor. For specified temperature, the critical size climbs up with the increase of shape factor. The present predictions agree well with experiment values.
Graph embedding with rich information through heterogeneous graph
Sun, Guolei
2017-01-01
Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most
Directory of Open Access Journals (Sweden)
Marc-Thorsten Hütt
2012-06-01
Full Text Available Cellular automata (CA are a remarkably efficient tool for exploring general properties of complex systems and spatiotemporal patterns arising from local rules. Totalistic cellular automata, where the update rules depend only on the density of neighboring states, are at the same time a versatile tool for exploring dynamical processes on graphs. Here we briefly review our previous results on cellular automata on graphs, emphasizing some systematic relationships between network architecture and dynamics identified in this way. We then extend the investigation towards graphs obtained in a simulated-evolution procedure, starting from Erdő s–Rényi (ER graphs and selecting for low entropies of the CA dynamics. Our key result is a strong association of low Shannon entropies with a broadening of the graph’s degree distribution.
Using Graph and Vertex Entropy to Compare Empirical Graphs with Theoretical Graph Models
Directory of Open Access Journals (Sweden)
Tomasz Kajdanowicz
2016-09-01
Full Text Available Over the years, several theoretical graph generation models have been proposed. Among the most prominent are: the Erdős–Renyi random graph model, Watts–Strogatz small world model, Albert–Barabási preferential attachment model, Price citation model, and many more. Often, researchers working with real-world data are interested in understanding the generative phenomena underlying their empirical graphs. They want to know which of the theoretical graph generation models would most probably generate a particular empirical graph. In other words, they expect some similarity assessment between the empirical graph and graphs artificially created from theoretical graph generation models. Usually, in order to assess the similarity of two graphs, centrality measure distributions are compared. For a theoretical graph model this means comparing the empirical graph to a single realization of a theoretical graph model, where the realization is generated from the given model using an arbitrary set of parameters. The similarity between centrality measure distributions can be measured using standard statistical tests, e.g., the Kolmogorov–Smirnov test of distances between cumulative distributions. However, this approach is both error-prone and leads to incorrect conclusions, as we show in our experiments. Therefore, we propose a new method for graph comparison and type classification by comparing the entropies of centrality measure distributions (degree centrality, betweenness centrality, closeness centrality. We demonstrate that our approach can help assign the empirical graph to the most similar theoretical model using a simple unsupervised learning method.
Parallel Algorithm for Incremental Betweenness Centrality on Large Graphs
Jamour, Fuad Tarek; Skiadopoulos, Spiros; Kalnis, Panos
2017-01-01
: they either require excessive memory (i.e., quadratic to the size of the input graph) or perform unnecessary computations rendering them prohibitively slow. We propose iCentral; a novel incremental algorithm for computing betweenness centrality in evolving
Directory of Open Access Journals (Sweden)
Shigang Hu
2015-01-01
Full Text Available Upconversion nanoparticles (UCNPs based on NaYF4 nanocrystals with strong upconversion luminescence are synthesized by the solvothermal method. The emission color of these NaYF4 upconversion nanoparticles can be easily modulated by the doping. These NaYF4 upconversion nanocrystals can be employed as fluorescence donors to pump fluorescent organic molecules. For example, the efficient luminescence resonant energy transfer (LRET can be achieved by controlling the distance between NaYF4:Yb3+/Er3+ UCNPs and Rhodamine B (RB. NaYF4:Yb3+/Er3+ UCNPs can emit green light at the wavelength of ~540 nm while RB can efficiently absorb the green light of ~540 nm to emit red light of 610 nm. The LRET efficiency is highly dependent on the concentration of NaYF4 upconversion fluorescent donors. For the fixed concentration of 3.2 µg/mL RB, the optimal concentration of NaYF4:Yb3+/Er3+ UCNPs is equal to 4 mg/mL which generates the highest LRET signal ratio. In addition, it is addressed that the upconversion nanoparticles with diameter of 200 nm are suitable for imaging the cells larger than 10 µm with clear differentiation between cell walls and cytoplasm.
Handbook of graph grammars and computing by graph transformation
Engels, G; Kreowski, H J; Rozenberg, G
1999-01-01
Graph grammars originated in the late 60s, motivated by considerations about pattern recognition and compiler construction. Since then, the list of areas which have interacted with the development of graph grammars has grown quite impressively. Besides the aforementioned areas, it includes software specification and development, VLSI layout schemes, database design, modeling of concurrent systems, massively parallel computer architectures, logic programming, computer animation, developmental biology, music composition, visual languages, and many others.The area of graph grammars and graph tran
Topics in graph theory graphs and their Cartesian product
Imrich, Wilfried; Rall, Douglas F
2008-01-01
From specialists in the field, you will learn about interesting connections and recent developments in the field of graph theory by looking in particular at Cartesian products-arguably the most important of the four standard graph products. Many new results in this area appear for the first time in print in this book. Written in an accessible way, this book can be used for personal study in advanced applications of graph theory or for an advanced graph theory course.
Spot size dependence of laser accelerated protons in thin multi-ion foils
International Nuclear Information System (INIS)
Liu, Tung-Chang; Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung
2014-01-01
We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, a laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80 MeV quasi-monoenergetic proton beam containing more than 10 8 protons using a laser beam with power 250 TW and energy 10 J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen
Energy Technology Data Exchange (ETDEWEB)
Grammatikopoulos, S.; Pappas, S. D. [University of Patras, Laboratory of High-Tech Materials, School of Engineering (Greece); Dracopoulos, V. [Hellas-Institute of Chemical Engineering and High Temperature Chemical Processes, (FORTH/ICE-HT), Foundation for Research and Technology (Greece); Poulopoulos, P., E-mail: poulop@upatras.gr [University of Patras, Laboratory of High-Tech Materials, School of Engineering (Greece); Fumagalli, P. [Freie Universitaet Berlin, Institut fuer Experimentalphysik (Germany); Velgakis, M. J.; Politis, C. [University of Patras, Laboratory of High-Tech Materials, School of Engineering (Greece)
2013-02-15
We report on the growth of Au nanoparticles on Corning glass by direct current magnetron sputtering and on the optical absorption of the films. The substrate temperature was kept to relatively high temperatures of 100 or 450 Degree-Sign C. This lead to the growth of Au nanoparticles instead of smooth Au films as the surface energy of Au is much larger than the one of glass. The size of the particles depended on the substrate temperature and deposition time and was shown to follow a logarithmic normal distribution function. Both, the surface plasmon resonance position and bandwidth, were found to depend upon the average particle size. The surface plasmon resonance position showed a 75 nm continuous blue shift from 14 nm down to 2.5 nm average particle size. Thus, we have shown how to tune the nanoparticle size and surface plasmon resonance of Au by varying the substrate temperature and deposition time. The experimental results are reproduced reasonably using a method which is based on the size- and wavelength-dependent complex dielectric function of Au within the framework of the Mie theory for the optical properties of metallic nanospheres.
Sun, J. Z.; Trouilloud, P. L.; Gajek, M. J.; Nowak, J.; Robertazzi, R. P.; Hu, G.; Abraham, D. W.; Gaidis, M. C.; Brown, S. L.; O'Sullivan, E. J.; Gallagher, W. J.; Worledge, D. C.
2012-04-01
CoFeB-based magnetic tunnel junctions with perpendicular magnetic anisotropy are used as a model system for studies of size dependence in spin-torque-induced magnetic switching. For integrated solid-state memory applications, it is important to understand the magnetic and electrical characteristics of these magnetic tunnel junctions as they scale with tunnel junction size. Size-dependent magnetic anisotropy energy, switching voltage, apparent damping, and anisotropy field are systematically compared for devices with different materials and fabrication treatments. Results reveal the presence of sub-volume thermal fluctuation and reversal, with a characteristic length-scale of the order of approximately 40 nm, depending on the strength of the perpendicular magnetic anisotropy and exchange stiffness. To have the best spin-torque switching efficiency and best stability against thermal activation, it is desirable to optimize the perpendicular anisotropy strength with the junction size for intended use. It also is important to ensure strong exchange-stiffness across the magnetic thin film. These combine to give an exchange length that is comparable or larger than the lateral device size for efficient spin-torque switching.
Critical behavior in inhomogeneous random graphs
Hofstad, van der R.W.
2009-01-01
We study the critical behavior of inhomogeneous random graphs where edges are present independently but with unequal edge occupation probabilities. We show that the critical behavior depends sensitively on the properties of the asymptotic degrees. Indeed, when the proportion of vertices with degree
Seo, J.
2013-11-13
The size dependence of the oxygen reduction reaction activity was studied for TaOx nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine oxide nanoparticles exhibited a distinctively high onset potential different from that of the bulky oxide particles.
DEFF Research Database (Denmark)
Wettergren, Kristina; Hellman, Anders; Cavalca, Filippo Carlo
2015-01-01
We use a noninvasive nanoscale optical-temperature measurement method based on localized surface plasmon resonance to investigate the particle size-dependence of the hydrogen oxidation reaction kinetics on model supported Pt nanocatalysts at atmospheric pressure in operando. With decreasing average...
Tanner-Smith, Emily E.; Tipton, Elizabeth
2014-01-01
Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and SPSS (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding…
McKenzie, Erica R; Young, Thomas M
2013-01-01
Size exclusion chromatography (SEC), which separates molecules based on molecular volume, can be coupled with online inductively coupled plasma mass spectrometry (ICP-MS) to explore size-dependent metal-natural organic matter (NOM) complexation. To make effective use of this analytical dual detector system, the operator should be mindful of quality control measures. Al, Cr, Fe, Se, and Sn all exhibited columnless attenuation, which indicated unintended interactions with system components. Based on signal-to-noise ratio and peak reproducibility between duplicate analyses of environmental samples, consistent peak time and height were observed for Mg, Cl, Mn, Cu, Br, and Pb. Al, V, Fe, Co, Ni, Zn, Se, Cd, Sn, and Sb were less consistent overall, but produced consistent measurements in select samples. Ultrafiltering and centrifuging produced similar peak distributions, but glass fiber filtration produced more high molecular weight (MW) peaks. Storage in glass also produced more high MW peaks than did plastic bottles.
Energy Technology Data Exchange (ETDEWEB)
Masadeh, A S; Bozin, E S; Farrow, C L; Paglia, G; Juhas, P; Billinge, S J. L.; Karkamkar, A; Kanatzidis, M G [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1116 (United States); Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1116 (United States)
2007-09-15
The size-dependent structure of CdSe nanoparticles, with diameters ranging from 2 to 4 nm, has been studied using the atomic pair distribution function (PDF) method. The core structure of the measured CdSe nanoparticles can be described in terms of the wurtzite atomic structure with extensive stacking faults. The density of faults in the nanoparticles is {approx}50%. The diameter of the core region was extracted directly from the PDF data and is in good agreement with the diameter obtained from standard characterization methods, suggesting that there is little surface amorphous region. A compressive strain was measured in the Cd-Se bond length that increases with decreasing particle size being 0.5% with respect to bulk CdSe for the 2 nm diameter particles. This study demonstrates the size-dependent quantitative structural information that can be obtained even from very small nanoparticles using the PDF approach.
High Girth Column-Weight-Two LDPC Codes Based on Distance Graphs
Directory of Open Access Journals (Sweden)
Gabofetswe Malema
2007-01-01
Full Text Available LDPC codes of column weight of two are constructed from minimal distance graphs or cages. Distance graphs are used to represent LDPC code matrices such that graph vertices that represent rows and edges are columns. The conversion of a distance graph into matrix form produces an adjacency matrix with column weight of two and girth double that of the graph. The number of 1's in each row (row weight is equal to the degree of the corresponding vertex. By constructing graphs with different vertex degrees, we can vary the rate of corresponding LDPC code matrices. Cage graphs are used as examples of distance graphs to design codes with different girths and rates. Performance of obtained codes depends on girth and structure of the corresponding distance graphs.
Xu, Huacheng; Guo, Laodong
2017-06-15
Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bisseling, R.H.; Byrka, J.; Cerav-Erbas, S.; Gvozdenovic, N.; Lorenz, M.; Pendavingh, R.A.; Reeves, C.; Röger, M.; Verhoeven, A.; Berg, van den J.B.; Bhulai, S.; Hulshof, J.; Koole, G.; Quant, C.; Williams, J.F.
2006-01-01
Splitting a large software system into smaller and more manageable units has become an important problem for many organizations. The basic structure of a software system is given by a directed graph with vertices representing the programs of the system and arcs representing calls from one program to
Coloring geographical threshold graphs
Energy Technology Data Exchange (ETDEWEB)
Bradonjic, Milan [Los Alamos National Laboratory; Percus, Allon [Los Alamos National Laboratory; Muller, Tobias [EINDHOVEN UNIV. OF TECH
2008-01-01
We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.
Budhiraja, A.S.; Mukherjee, D.; Wu, R.
2017-01-01
We consider a variation of the supermarket model in which the servers can communicate with their neighbors and where the neighborhood relationships are described in terms of a suitable graph. Tasks with unit-exponential service time distributions arrive at each vertex as independent Poisson
DEFF Research Database (Denmark)
Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter
2014-01-01
of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...
Cuzzi, Jeffrey N.; Hartlep, Thomas; Weston, B.; Estremera, Shariff Kareem
2014-01-01
The initial accretion of primitive bodies (asteroids and TNOs) from freely-floating nebula particles remains problematic. Here we focus on the asteroids where constituent particle (read "chondrule") sizes are observationally known; similar arguments will hold for TNOs, but the constituent particles in those regions will be smaller, or will be fluffy aggregates, and are unobserved. Traditional growth-bysticking models encounter a formidable "meter-size barrier" [1] (or even a mm-cm-size barrier [2]) in turbulent nebulae, while nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids [3]. Even if growth by sticking could somehow breach the meter size barrier, other obstacles are encountered through the 1-10km size range [4]. Another clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids [5]; scenarios leading directly from independent nebula particulates to this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios [6-8]. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. The typical sizes of planetesimals and the rate of their formation [7,8] are determined by a statistical model with properties inferred from large numerical simulations of turbulence [9]. Nebula turbulence can be described by its Reynolds number Re = L/eta sup(4/3), where L = ETA alpha sup (1/2) the largest eddy scale, H is the nebula gas vertical scale height, and a the nebula turbulent viscosity parameter, and ? is the Kolmogorov or smallest scale in turbulence (typically about 1km), with eddy turnover time t?. In the nebula, Re is far larger than any numerical simulation can
Turbulent Concentration of mm-Size Particles in the Protoplanetary Nebula: Scale-Dependent Cascades
Cuzzi, J. N.; Hartlep, T.
2015-01-01
The initial accretion of primitive bodies (here, asteroids in particular) from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" (or even a mm-to-cm-size barrier) in turbulent nebulae, making the preconditions for so-called "streaming instabilities" difficult to achieve even for so-called "lucky" particles. Even if growth by sticking could somehow breach the meter size barrier, turbulent nebulae present further obstacles through the 1-10km size range. On the other hand, nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids. Theoretical understanding of nebula turbulence is itself in flux; recent models of MRI (magnetically-driven) turbulence favor low-or- no-turbulence environments, but purely hydrodynamic turbulence is making a comeback, with two recently discovered mechanisms generating robust turbulence which do not rely on magnetic fields at all. An important clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids; scenarios leading directly from independent nebula particulates to large objects of this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles. Thus, while they are arcane, turbulent concentration models acting directly on chondrule size particles are worthy of deeper study. The typical sizes of planetesimals and the rate of their formation can be
Size-dependent structure and magnetic properties of DyMnO{sub 3} nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Cai, Xuan; Shi, Lei, E-mail: shil@ustc.edu.cn; Zhou, Shiming; Zhao, Jiyin; Guo, Yuqiao; Wang, Cailin [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2014-09-14
The structure and magnetic properties of orthorhombic DyMnO{sub 3} nanoparticles with different particle sizes are investigated in this paper. With decreasing particle size, all the lattice parameters a, b, and c gradually decrease, whereas the orthorhombic distortion increases. Magnetic measurements reveal that the antiferromagnetic interaction of Mn ions is weakened due to the decrease in Mn-O-Mn bond angle. Above a critical field H*, DyMnO{sub 3} undergoes a field-induced metamagnetic transition at 4 K, which is related to the spin reversal of Dy moments. The critical field H* increases monotonically with size reduction, indicating an enhancement of the antiferromagnetic interaction of Dy ions due to the decreased distance between rare earth ions. The magnetization at 4 K and 5 T, i.e., M(4 K, 5 T) shows a non-monotonic variation with particle size d, i.e., M(4 K, 5 T) initially increases with size reduction but decreases again for d < 68 nm. A modified core-shell model, in which the ferromagnetic ordering (Dy magnetic structure) and antiferromagnetic ordering (Mn magnetic structure) coexist in the core, is proposed to explain this behavior.
International Nuclear Information System (INIS)
Zaki, S. S. O.; Ibrahim, M. N.; Katas, H.
2015-01-01
Chitosan nanoparticles (CSNPs) have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs). CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential). Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW)). Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.
Size-dependent structure and magnetic properties of DyMnO3 nanoparticles
International Nuclear Information System (INIS)
Cai, Xuan; Shi, Lei; Zhou, Shiming; Zhao, Jiyin; Guo, Yuqiao; Wang, Cailin
2014-01-01
The structure and magnetic properties of orthorhombic DyMnO 3 nanoparticles with different particle sizes are investigated in this paper. With decreasing particle size, all the lattice parameters a, b, and c gradually decrease, whereas the orthorhombic distortion increases. Magnetic measurements reveal that the antiferromagnetic interaction of Mn ions is weakened due to the decrease in Mn-O-Mn bond angle. Above a critical field H*, DyMnO 3 undergoes a field-induced metamagnetic transition at 4 K, which is related to the spin reversal of Dy moments. The critical field H* increases monotonically with size reduction, indicating an enhancement of the antiferromagnetic interaction of Dy ions due to the decreased distance between rare earth ions. The magnetization at 4 K and 5 T, i.e., M(4 K, 5 T) shows a non-monotonic variation with particle size d, i.e., M(4 K, 5 T) initially increases with size reduction but decreases again for d < 68 nm. A modified core-shell model, in which the ferromagnetic ordering (Dy magnetic structure) and antiferromagnetic ordering (Mn magnetic structure) coexist in the core, is proposed to explain this behavior.
The STAPL Parallel Graph Library
Harshvardhan,; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable
Energy Technology Data Exchange (ETDEWEB)
Askari, Amir R.; Tahani, Masoud [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)
2015-05-15
This paper presents an analytical and size-dependent model for vibrational analysis of fully clamped rectangular microplates. Modified couple stress theory (MCST) and the Kirchhoff plate model are considered, and Hamilton's principle is employed to derive the size dependent equation of motion that accounts for the effect of residual stresses. The natural frequencies of the microplate are extracted analytically by extended Kantorovich method. The present findings are validated with the available results in the literature, and an excellent agreement is observed between them. In addition, a parametric study is conducted to demonstrate the significant effects of couple stress components on the natural frequencies of fully clamped microplates. The ratio of MCST natural frequencies to those obtained with classical theory depends only on the Poisson's ratio of the plate and is independent of the aspect ratio of the plate for cases with no residual stresses.
International Nuclear Information System (INIS)
Askari, Amir R.; Tahani, Masoud
2015-01-01
This paper presents an analytical and size-dependent model for vibrational analysis of fully clamped rectangular microplates. Modified couple stress theory (MCST) and the Kirchhoff plate model are considered, and Hamilton's principle is employed to derive the size dependent equation of motion that accounts for the effect of residual stresses. The natural frequencies of the microplate are extracted analytically by extended Kantorovich method. The present findings are validated with the available results in the literature, and an excellent agreement is observed between them. In addition, a parametric study is conducted to demonstrate the significant effects of couple stress components on the natural frequencies of fully clamped microplates. The ratio of MCST natural frequencies to those obtained with classical theory depends only on the Poisson's ratio of the plate and is independent of the aspect ratio of the plate for cases with no residual stresses.
Energy Technology Data Exchange (ETDEWEB)
Winlaw, Manda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); De Sterck, Hans [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-26
In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.
Lefort, Stelly; Aumont, Olivier; Bopp, Laurent; Arsouze, Thomas; Gehlen, Marion; Maury, Olivier
2015-01-01
Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (~+3 °C), a de-oxygenation of the ocean's interior (~-3%) and a decrease in total marine net primary production (~-8%) under the 'business as usual' climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES)--ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL-CM Earth System Model. The APECOSM model is a size-structured bio-energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES-APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body-size of the simulated pelagic communities. Biomass and maximum body-size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low- and midlatitude, biomass and maximum body-size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body-size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body-size organisms might be
Groupies in multitype random graphs
Shang, Yilun
2016-01-01
A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erd?s-R?nyi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.
Groupies in multitype random graphs.
Shang, Yilun
2016-01-01
A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.
Temporal Representation in Semantic Graphs
Energy Technology Data Exchange (ETDEWEB)
Levandoski, J J; Abdulla, G M
2007-08-07
A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.
Quantum walks on quotient graphs
International Nuclear Information System (INIS)
Krovi, Hari; Brun, Todd A.
2007-01-01
A discrete-time quantum walk on a graph Γ is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup H of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup H used to construct it. The quotient graph is constructed by removing the symmetries of the subgroup H from the original graph. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A 74, 042334 (2006)] that the hitting time for certain initial states of a quantum walks can be infinite, in contrast to classical random walks. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with hitting times which are short compared to classical random walks correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speedup
DEFF Research Database (Denmark)
Larsen, Esben Kjær Unmack; Nielsen, T.; Wittenborn, T.
2009-01-01
following intravenous injection. Biocompatible iron oxide MNPs coated with PEG were prepared by replacing oleic acid with a biocompatible and commercially available silane-PEG to provide an easy and effective method for chemical coating. The colloidal stable PEGylated MNPs were magnetically separated...... into two distinct size subpopulations of 20 and 40 nm mean diameters with increased phagocytic uptake observed for the 40 nm size range in vitro. MRI detection revealed greater iron accumulation in murine tumors for 40 nm nanoparticles after intravenous injection. The enhanced MRI contrast of the larger...
GRAMI: Generalized Frequent Subgraph Mining in Large Graphs
El Saeedy, Mohammed El Sayed
2011-07-24
Mining frequent subgraphs is an important operation on graphs. Most existing work assumes a database of many small graphs, but modern applications, such as social networks, citation graphs or protein-protein interaction in bioinformatics, are modeled as a single large graph. Interesting interactions in such applications may be transitive (e.g., friend of a friend). Existing methods, however, search for frequent isomorphic (i.e., exact match) subgraphs and cannot discover many useful patterns. In this paper we propose GRAMI, a framework that generalizes frequent subgraph mining in a large single graph. GRAMI discovers frequent patterns. A pattern is a graph where edges are generalized to distance-constrained paths. Depending on the definition of the distance function, many instantiations of the framework are possible. Both directed and undirected graphs, as well as multiple labels per vertex, are supported. We developed an efficient implementation of the framework that models the frequency resolution phase as a constraint satisfaction problem, in order to avoid the costly enumeration of all instances of each pattern in the graph. We also implemented CGRAMI, a version that supports structural and semantic constraints; and AGRAMI, an approximate version that supports very large graphs. Our experiments on real data demonstrate that our framework is up to 3 orders of magnitude faster and discovers more interesting patterns than existing approaches.
A generalization of total graphs
Indian Academy of Sciences (India)
M Afkhami
2018-04-12
Apr 12, 2018 ... product of any lower triangular matrix with the transpose of any element of U belongs to U. The ... total graph of R, which is denoted by T( (R)), is a simple graph with all elements of R as vertices, and ...... [9] Badawi A, On dot-product graph of a commutative ring, Communications in Algebra 43 (2015). 43–50.
Graph transformation tool contest 2008
Rensink, Arend; van Gorp, Pieter
This special section is the outcome of the graph transformation tool contest organised during the Graph-Based Tools (GraBaTs) 2008 workshop, which took place as a satellite event of the International Conference on Graph Transformation (ICGT) 2008. The contest involved two parts: three “off-line case
On dominator colorings in graphs
Indian Academy of Sciences (India)
colors required for a dominator coloring of G is called the dominator .... Theorem 1.3 shows that the complete graph Kn is the only connected graph of order n ... Conversely, if a graph G satisfies condition (i) or (ii), it is easy to see that χd(G) =.
Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng
2015-12-01
Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.
International Nuclear Information System (INIS)
Li, Y J; Qi, W H; Wang, M P; Liu, J F; Xiong, S Y; Huang, B Y
2011-01-01
Considering the different effects of exterior atoms (face, edge and corner atoms), the Bragg-Williams model is generalized to account for the size, shape and composition-dependent order-disorder transition of bimetallic nanoparticles (NPs) with B 2 , L1 0 and L1 2 ordered structures. The results show that the order-disorder temperatures T C,p are different for different shapes even in the identical particle size. The order of order-disorder temperatures of different shapes varies for different sizes. The long-range order parameter decreases with the increase in temperature in all size ranges and decreases smoothly in large sizes, but drops dramatically in small sizes. Moreover, it is also found that the order-disorder temperature of bimetallic NPs rises with increasing particle sizes and decreases with a deviation from the ideal compositions. The present predictions are consistent with the available literature results, indicating its capability in predicting other order-disorder transition phenomena of bimetallic NPs.
Particle size dependence of the Young's modulus of filled polymers: 1. Preliminary experiments
Vollenberg, P.H.T.; Heikens, D.
1989-01-01
Experimental results are reported from which it appears that in the case of polymer filled with silane-treated glass beads the Young's modulus is, in accordance with present theory, independent of the particle size of the filler. However, if pure glass beads are used as filler, the Young's modulus
Simulation of size-dependent aerosol deposition in a realistic model of the upper human airways
Frederix, E.M.A.; Kuczaj, Arkadiusz K.; Nordlund, Markus; Belka, M.; Lizal, F.; Elcner, J.; Jicha, M.; Geurts, Bernardus J.
An Eulerian internally mixed aerosol model is used for predictions of deposition inside a realistic cast of the human upper airways. The model, formulated in the multi-species and compressible framework, is solved using the sectional discretization of the droplet size distribution function to
Dependency of annealing behaviour on grain size in Al–TiC ...
Indian Academy of Sciences (India)
This work investigates the effect of grain size on annealing behaviour in both coarse-grained and ultrafinegrained Al–TiC composite processed by accumulative roll bonding (ARB). Microstructural analysis indicates that annealingbehaviour of the specimens are essentially determined by the level of strain accumulation or ...
Compacted and Sintered Microstructure Depending on Uranium Powder Size in Zr-U Metallic Fuel
Energy Technology Data Exchange (ETDEWEB)
Yun, Chang Gun; Jun, Hyun-Joon; Ju, Jung Hwan; Lee, Ho Jin; Lee, Chong-Tak; Kim, Hyung Lae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2017-03-15
In case of the uranium (U) and zirconium (Zr) powders which have been utilized for the production of a metallic fuel in the various nuclear applications, the homogenous distribution of U powders in the Zr-U pellet has influenced significantly on the nuclear fuel performance. The inhomogeneity in a powder process was changed by various intricate factors, e.g. powder size, shape, distribution and so on. Particularly, the U inhomogeneity in the Zr-U pellets occurs by segregation derived from the great gaps of densities between Zr and U during compaction of the mixed powders. In this study, the relationship between powder size and homogeneity was investigated by using the different-sized U powders. The microstructure in Zr-U pellets reveals more homogeneity when the weight ration of Zr and U powders are close to 1. In addition, homogeneous pellets which were produced by fine U powders have higher density because the homogeneity affects the alloying reaction during sintering and the densification behavior of pore induced by powder size.
Particle size-dependent organ distribution of gold nanoparticles after intravenous administration
De Jong, Wim H.; Hagens, Werner I.; Krystek, Petra; Burger, Marina C.; Sips, Adriënne J A M; Geertsma, Robert E.
2008-01-01
A kinetic study was performed to determine the influence of particle size on the in vivo tissue distribution of spherical-shaped gold nanoparticles in the rat. Gold nanoparticles were chosen as model substances as they are used in several medical applications. In addition, the detection of the
Dependence of crystal size on the catalytic performance of a porous coordination polymer.
Kiyonaga, Tomokazu; Higuchi, Masakazu; Kajiwara, Takashi; Takashima, Yohei; Duan, Jingui; Nagashima, Kazuro; Kitagawa, Susumu
2015-02-14
Submicrosized MOF-76(Yb) exhibits a higher catalytic performance for esterification than microsized MOF-76(Yb). Control of the crystal size of porous heterogeneous catalysts, such as PCP/MOFs, offers a promising approach to fabricating high-performance catalysts based on accessibility to the internal catalytic sites.
Veld, M.A.J.; Fransson, L.; Palmans, A.R.A.; Meijer, E.W.; Hult, K.
2009-01-01
Size matters: Lactones have extensively been studied as monomers in enzymatic polymerization reactions. Large lactones showed an unexpectedly high reactivity in these reactions. A combination of docking and molecular dynamics studies have been used to explain this high reactivity in terms of
METHYLMERCURY BIOACCUMULATION DEPENDENCE ON NORTHERN PIKE AGE AND SIZE IN TWENTY MINNESOTA LAKES
Mercury accumulation in northern pike muscle tissue (fillets) was found to be directly related to fish age and size. Measurements were made on 173 individual northern pike specimens from twenty lakes across Minnesota. Best fit regressions of mercury fillet concentration (wet wt.)...
The Strain and Grain Size Dependence of the Flow Stress of Copper
DEFF Research Database (Denmark)
Hansen, Niels; Ralph, B.
1982-01-01
Tensile stress strain data for 99.999% copper at room and liquid nitrogen temperature as a function of grain size are presented together with some microstructural observations made by transmission electron microscopy. It is shown that the flow stress data, at constant strain may be expressed...
Modeling grain-size dependent bias in estimating forest area: a regional application
Daolan Zheng; Linda S. Heath; Mark J. Ducey
2008-01-01
A better understanding of scaling-up effects on estimating important landscape characteristics (e.g. forest percentage) is critical for improving ecological applications over large areas. This study illustrated effects of changing grain sizes on regional forest estimates in Minnesota, Wisconsin, and Michigan of the USA using 30-m land-cover maps (1992 and 2001)...
Nano-crystals of cerium–hafnium binary oxide: Their size-dependent structure
Energy Technology Data Exchange (ETDEWEB)
Raitano, Joan M. [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, NY 10027 (United States); Khalid, Syed [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 (United States); Marinkovic, Nebojsa [Chemical Engineering Department, Columbia University, 500 W 120th St, Mudd 801, New York, NY 10027 (United States); Chan, Siu-Wai, E-mail: sc174@columbia.edu [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, NY 10027 (United States)
2015-09-25
Highlights: • (1 − x)CeO{sub 2}–xHfO{sub 2} was precipitated (0 < x < 1) and calcined in air. • For x ⩽ 0.14, crystallites ⩽140 nm in size exhibit only the fluorite structure. • This low hafnia solubility is attributable to no auto-reduction (Ce{sup 3+} = 0). • The low solubility is also due to the high temperature required for homogenization. • Coarsening is lessened as Hf{sup 4+} ions slow cation diffusion in these crystallites. - Abstract: Cerium oxide (CeO{sub 2}, “ceria”) and hafnium oxide (HfO{sub 2}, “hafnia”) were aqueously co-precipitated and subsequently calcined to allow for homogenization. The size of the (1−x)CeO{sub 2}–xHfO{sub 2} crystallites, determined by the Scherrer equation, varied from 140 nm for x = 0 to 15 nm for x = 0.73. For x ⩽ 0.14, only cubic structures are visible in X-ray diffractograms, and the lattice parameters are consistent with the values expected for structurally cubic solid solutions of hafnia in ceria. At x = 0.26, tetragonal and monoclinic phases nucleated with the former not being observed in the bulk phase diagram for ceria–hafnia. Therefore, the solubility limit of the cubic structure is between x = 0.14 and x = 0.26 for 40–61 nm crystallites, the sizes of these respective compositions. More specifically, for the 40 nm crystallites of x = 0.26 (1 − x)CeO{sub 2}–xHfO{sub 2}, 15% of the hafnia remains in a structurally cubic solid solution with ceria based on the observed cubic lattice parameter. The compositional domain for the cubic fluorite structure in this study is narrower than other nanostructured (1 − x)CeO{sub 2}–xHfO{sub 2} studies, especially studies with crystallite sizes less than 10 nm, but wider than observed in the bulk and helps to expand the size regime over which the relationship between crystallite size and phase stability is known. The extent of this cubic-structure domain is mainly attributable to the intermediate crystallite size and the roughly zero Ce{sup 3
Directory of Open Access Journals (Sweden)
Elizabeth Aston
Full Text Available Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the
International Nuclear Information System (INIS)
Nguyen, C.T.; Desgranges, F.; Roy, G.; Galanis, N.; Mare, T.; Boucher, S.; Angue Mintsa, H.
2007-01-01
In the present paper, we have investigated experimentally the influence of both the temperature and the particle size on the dynamic viscosities of two particular water-based nanofluids, namely water-Al 2 O 3 and water-CuO mixtures. The measurement of nanofluid dynamic viscosities was accomplished using a 'piston-type' calibrated viscometer based on the Couette flow inside a cylindrical measurement chamber. Data were collected for temperatures ranging from ambient to 75 deg. C, for water-Al 2 O 3 mixtures with two different particle diameters, 36 nm and 47 nm, as well as for water-CuO nanofluid with 29 nm particle size. The results show that for particle volume fractions lower than 4%, viscosities corresponding to 36 nm and 47 nm particle-size alumina-water nanofluids are approximately identical. For higher particle fractions, viscosities of 47 nm particle-size are clearly higher than those of 36 nm size. Viscosities corresponding to water-oxide copper are the highest among the nanofluids tested. The temperature effect has been investigated thoroughly. A more complete viscosity data base is presented for the three nanofluids considered, with several experimental correlations proposed for low particle volume fractions. It has been found that the application of Einstein's formula and those derived from the linear fluid theory seems not to be appropriate for nanofluids. The hysteresis phenomenon on viscosity measurement, which is believed to be the first observed for nanofluids, has raised serious concerns regarding the use of nanofluids for heat transfer enhancement purposes
Directory of Open Access Journals (Sweden)
K. M. Sakamoto
2016-06-01
Full Text Available Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width
Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.
2016-06-01
Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The
Bálint, Anna; Faragó, Tamás; Miklósi, Ádám; Pongrácz, Péter
2016-11-01
Body size is an important feature that affects fighting ability; however, size-related parameters of agonistic vocalizations are difficult to manipulate because of anatomical constraints within the vocal production system. Rare examples of acoustic size modulation are due to specific features that enable the sender to steadily communicate exaggerated body size. However, one could argue that it would be more adaptive if senders could adjust their signaling behavior to the fighting potential of their actual opponent. So far there has been no experimental evidence for this possibility. We tested this hypothesis by exposing family dogs (Canis familiaris) to humans with potentially different fighting ability. In a within-subject experiment, 64 dogs of various breeds consecutively faced two threateningly approaching humans, either two men or two women of different stature, or a man and a woman of similar or different stature. We found that the dogs' vocal responses were affected by the gender of the threatening stranger and the dog owner's gender. Dogs with a female owner, or those dogs which came from a household where both genders were present, reacted with growls of lower values of the Pitch-Formant component (including deeper fundamental frequency and lower formant dispersion) to threatening men. Our results are the first to show that non-human animals react with dynamic alteration of acoustic parameters related to their individual indexical features (body size), depending on the level of threat in an agonistic encounter.
Algorithms for Planar Graphs and Graphs in Metric Spaces
DEFF Research Database (Denmark)
Wulff-Nilsen, Christian
structural properties that can be exploited. For instance, a road network or a wire layout on a microchip is typically (near-)planar and distances in the network are often defined w.r.t. the Euclidean or the rectilinear metric. Specialized algorithms that take advantage of such properties are often orders...... of magnitude faster than the corresponding algorithms for general graphs. The first and main part of this thesis focuses on the development of efficient planar graph algorithms. The most important contributions include a faster single-source shortest path algorithm, a distance oracle with subquadratic...... for geometric graphs and graphs embedded in metric spaces. Roughly speaking, the stretch factor is a real value expressing how well a (geo-)metric graph approximates the underlying complete graph w.r.t. distances. We give improved algorithms for computing the stretch factor of a given graph and for augmenting...
Liu, Jinxing
2012-11-27
Micro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes the influence of voids with a single parameter, namely the void-volume fraction, excluding any possible effects of the void-size distribution. We extend our newly proposed model including the multi-sized void (MSV) effect and the void-interaction effect for the capability of working for both moderate and high loading rate cases, where either rate dependence or microinertia becomes considerable or even dominant. Parametric studies show that the MSV-related competitive mechanism among void growth leads to the dependence of the void growth rate on void size, which directly influences the void\\'s contribution to the total energy composition. We finally show that the stress-strain constitutive behavior is also affected by this MSV-related competitive mechanism. The stabilizing effect due to rate sensitivity and microinertia is emphasized. © 2013 IOP Publishing Ltd.
Directory of Open Access Journals (Sweden)
Alex Robinson
2018-01-01
Full Text Available Over the past decade, a number of methods have been developed to estimate size-class primary production from either in situ phytoplankton pigment data or remotely-sensed data. In this context, the first objective of this study was to compare two methods of estimating size class specific (micro-, nano-, and pico-phytoplankton photosynthesis-irradiance (PE parameters from pigment data. The second objective was to analyse the relationship between environmental variables (temperature, nitrate and PAR and PE parameters in the different size-classes. A large dataset was used of simultaneous measurements of the PE parameters (n = 1,260 and phytoplankton pigment markers (n = 2,326, from 3 different institutes. There were no significant differences in mean PE parameters of the different size classes between the chemotaxonomic method of Uitz et al. (2008 and the pigment markers and carbon-to-Chl a ratios method of Sathyendranath et al. (2009. For both methods, mean maximum photosynthetic rates (PmB for micro-phytoplankton were significantly lower than those for pico-phytoplankton and nano-phytoplankton. The mean light limited slope (αB for nano-phytoplankton were significantly higher than for the other size taxa. For micro-phytoplankton dominated samples identified using the Sathyendranath et al. (2009 method, both PmB and αB exhibited a significant, positive linear relationship with temperature, whereas for pico-phytoplankton the correlation with temperature was negative. Nano-phytoplankton dominated samples showed a positive correlation between PmB and temperature, whereas for αB and the light saturation parameter (Ek the correlations were not significant. For the Uitz et al. (2008 method, only micro-phytoplankton PmB, pico-phytoplankton αB, nano- and pico-phytoplankton Ek exhibited significant relationships with temperature. The temperature ranges occupied by the size classes derived using these methods differed. The Uitz et al. (2008 method
Threshold-dependent sample sizes for selenium assessment with stream fish tissue
Hitt, Nathaniel P.; Smith, David R.
2015-01-01
Natural resource managers are developing assessments of selenium (Se) contamination in freshwater ecosystems based on fish tissue concentrations. We evaluated the effects of sample size (i.e., number of fish per site) on the probability of correctly detecting mean whole-body Se values above a range of potential management thresholds. We modeled Se concentrations as gamma distributions with shape and scale parameters fitting an empirical mean-to-variance relationship in data from southwestern West Virginia, USA (63 collections, 382 individuals). We used parametric bootstrapping techniques to calculate statistical power as the probability of detecting true mean concentrations up to 3 mg Se/kg above management thresholds ranging from 4 to 8 mg Se/kg. Sample sizes required to achieve 80% power varied as a function of management thresholds and Type I error tolerance (α). Higher thresholds required more samples than lower thresholds because populations were more heterogeneous at higher mean Se levels. For instance, to assess a management threshold of 4 mg Se/kg, a sample of eight fish could detect an increase of approximately 1 mg Se/kg with 80% power (given α = 0.05), but this sample size would be unable to detect such an increase from a management threshold of 8 mg Se/kg with more than a coin-flip probability. Increasing α decreased sample size requirements to detect above-threshold mean Se concentrations with 80% power. For instance, at an α-level of 0.05, an 8-fish sample could detect an increase of approximately 2 units above a threshold of 8 mg Se/kg with 80% power, but when α was relaxed to 0.2, this sample size was more sensitive to increasing mean Se concentrations, allowing detection of an increase of approximately 1.2 units with equivalent power. Combining individuals into 2- and 4-fish composite samples for laboratory analysis did not decrease power because the reduced number of laboratory samples was compensated for by increased
DEFF Research Database (Denmark)
Deckert, T; Kofoed-Enevoldsen, A; Vidal, P
1993-01-01
Albuminuria is the first clinical event in the development of diabetic nephropathy. We assessed glomerular charge- and size selectivity in 51 patients with Type 1 (insulin-dependent) diabetes mellitus of juvenile onset and 11 healthy individuals. Patients were allocated to five groups. The urinary...... techniques and tubular protein reabsorption by excretion of beta 2-microglobulin. Charge selectivity was estimated from the IgG/IgG4 selectivity index. Size selectivity was measured by dextran clearance. Dextran was measured by refractive index detection after fractionation (2 A fractions in the range 26...... macromolecular pathways in the development of diabetic nephropathy....
Polymorphism of fibrillar structures depending on the size of assembled Aβ17-42 peptides
Cheon, Mookyung; Kang, Mooseok; Chang, Iksoo
2016-01-01
The size of assembled Aβ17-42 peptides can determine polymorphism during oligomerization and fibrillization, but the mechanism of this effect is unknown. Starting from separate random monomers, various fibrillar oligomers with distinct structural characteristics were identified using discontinuous molecular dynamics simulations based on a coarse-grained protein model. From the structures observed in the simulations, two characteristic oligomer sizes emerged, trimer and paranuclei, which generated distinct structural patterns during fibrillization. A majority of the simulations for trimers and tetramers formed non-fibrillar oligomers, which primarily progress to off-pathway oligomers. Pentamers and hexamers were significantly converted into U-shape fibrillar structures, meaning that these oligomers, called paranuclei, might be potent on-pathway intermediates in fibril formation. Fibrillar oligomers larger than hexamers generated substantial polymorphism in which hybrid structures were readily formed and homogeneous fibrillar structures appeared infrequently. PMID:27901087
Crystallite size variation of TiO_2 samples depending time heat treatment
International Nuclear Information System (INIS)
Galante, A.G.M.; Paula, F.R. de; Montanhera, M.A.; Pereira, E.A.; Spada, E.R.
2016-01-01
Titanium dioxide (TiO_2) is an oxide semiconductor that may be found in mixed phase or in distinct phases: brookite, anatase and rutile. In this work was carried out the study of the residence time influence at a given temperature in the TiO_2 powder physical properties. After the powder synthesis, the samples were divided and heat treated at 650 °C with a ramp up to 3 °C/min and a residence time ranging from 0 to 20 hours and subsequently characterized by x-ray diffraction. Analyzing the obtained diffraction patterns, it was observed that, from 5-hour residence time, began the two-distinct phase coexistence: anatase and rutile. It also calculated the average crystallite size of each sample. The results showed an increase in average crystallite size with increasing residence time of the heat treatment. (author)
Structure of Hepatitis E Virion-Sized Particle Reveals an RNA-Dependent Viral Assembly Pathway
Energy Technology Data Exchange (ETDEWEB)
Xing, L.; Wall, J.; Li, T.-C.; Mayazaki, N.; Simon, M. N.; Moore, M.; Wang, C.-Y.; Takeda, N.; Wakita, T.; Miyamura, T.; Cheng, R. H.
2010-10-22
Hepatitis E virus (HEV) induces acute hepatitis in humans with a high fatality rate in pregnant women. There is a need for anti-HEV research to understand the assembly process of HEV native capsid. Here, we produced a large virion-sized and a small T=1 capsid by expressing the HEV capsid protein in insect cells with and without the N-terminal 111 residues, respectively, for comparative structural analysis. The virion-sized capsid demonstrates a T=3 icosahedral lattice and contains RNA fragment in contrast to the RNA-free T=1 capsid. However, both capsids shared common decameric organization. The in vitro assembly further demonstrated that HEV capsid protein had the intrinsic ability to form decameric intermediate. Our data suggest that RNA binding is the extrinsic factor essential for the assembly of HEV native capsids.
International Nuclear Information System (INIS)
Rao, S.I.; Dimiduk, D.M.; Parthasarathy, T.A.; Uchic, M.D.; Tang, M.; Woodward, C.
2008-01-01
Recent experimental studies have revealed that micrometer-scale face-centered cubic (fcc) crystals show strong strengthening effects, even at high initial dislocation densities. We use large-scale three-dimensional discrete dislocation simulations (DDS) to explicitly model the deformation behavior of fcc Ni microcrystals in the size range of 0.5-20 μm. This study shows that two size-sensitive athermal hardening processes, beyond forest hardening, are sufficient to develop the dimensional scaling of the flow stress, stochastic stress variation, flow intermittency and high initial strain-hardening rates, similar to experimental observations for various materials. One mechanism, source-truncation hardening, is especially potent in micrometer-scale volumes. A second mechanism, termed exhaustion hardening, results from a breakdown of the mean-field conditions for forest hardening in small volumes, thus biasing the statistics of ordinary dislocation processes
DEFF Research Database (Denmark)
Leirs, Herwig; Steneth, Nils Chr.; Nichols, James D.
1997-01-01
, but clear examples of both processes acting in the same population are rare(7,8). Key-factor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide...... no information on actual demographic rates(9,10). Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammute rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models, Both effects occur simultaneously, but we also demonstrate...
Identifying grain-size dependent errors on global forest area estimates and carbon studies
Daolan Zheng; Linda S. Heath; Mark J. Ducey
2008-01-01
Satellite-derived coarse-resolution data are typically used for conducting global analyses. But the forest areas estimated from coarse-resolution maps (e.g., 1 km) inevitably differ from a corresponding fine-resolution map (such as a 30-m map) that would be closer to ground truth. A better understanding of changes in grain size on area estimation will improve our...
Piatek, J. L.; Hapke, B. W.; Nelson, R. M.; Hale, A. S.; Smythe, W. D.
2003-01-01
The nature of the scattering of light is thought to be well understood when the medium is made up of independent scatterers that are much larger than the wavelength of that light. This is not the case when the size of the scattering objects is similar to or smaller than the wavelength or the scatterers are not independent. In an attempt to examine the applicability of independent particle scattering models, to planetary regoliths, a dataset of experimental results were compared with theoretical predictions.
Grain size dependent electrical studies on nanocrystalline SnO2
International Nuclear Information System (INIS)
Bose, A. Chandra; Thangadurai, P.; Ramasamy, S.
2006-01-01
Nanocrystalline tin oxide (n-SnO 2 ) with different grain sizes were synthesized by chemical precipitation method. Size variation was achieved by changing the hydrolysis processing time. Structural phases of the nanocrystalline SnO 2 were identified by X-ray diffraction (XRD). The grain sizes of the prepared n-SnO 2 were found to be in the range 5-20 nm which were estimated using the Scherrer formula and they were confirmed by transmission electron microscopy (TEM) measurements. The electrical properties of nanocrystalline SnO 2 were studied using impedance spectroscopy. The impedance spectroscopy results showed that, in the temperature range between 25 and 650 deg. C, the conductivity has contributions from two different mechanisms, which are attributed to different conduction mechanisms in the grain and the grain boundary regions. This is because of the different relaxation times available for the conduction species in those regions. However, for the temperatures above 300 deg. C, there is no much difference between these two different relaxation times. The Arrhenius plots gave the activation energies for the conduction process in all the samples
Size-dependent response of foraminiferal calcification to seawater carbonate chemistry
Henehan, Michael J.; Evans, David; Shankle, Madison; Burke, Janet E.; Foster, Gavin L.; Anagnostou, Eleni; Chalk, Thomas B.; Stewart, Joseph A.; Alt, Claudia H. S.; Durrant, Joseph; Hull, Pincelli M.
2017-07-01
The response of the marine carbon cycle to changes in atmospheric CO2 concentrations will be determined, in part, by the relative response of calcifying and non-calcifying organisms to global change. Planktonic foraminifera are responsible for a quarter or more of global carbonate production, therefore understanding the sensitivity of calcification in these organisms to environmental change is critical. Despite this, there remains little consensus as to whether, or to what extent, chemical and physical factors affect foraminiferal calcification. To address this, we directly test the effect of multiple controls on calcification in culture experiments and core-top measurements of Globigerinoides ruber. We find that two factors, body size and the carbonate system, strongly influence calcification intensity in life, but that exposure to corrosive bottom waters can overprint this signal post mortem. Using a simple model for the addition of calcite through ontogeny, we show that variable body size between and within datasets could complicate studies that examine environmental controls on foraminiferal shell weight. In addition, we suggest that size could ultimately play a role in determining whether calcification will increase or decrease with acidification. Our models highlight that knowledge of the specific morphological and physiological mechanisms driving ontogenetic change in calcification in different species will be critical in predicting the response of foraminiferal calcification to future change in atmospheric pCO2.
Hur, Chin; Tramontano, Angela C; Dowling, Emily C; Brooks, Gabriel A; Jeon, Alvin; Brugge, William R; Gazelle, G Scott; Kong, Chung Yin; Pandharipande, Pari V
2016-08-01
Pancreatic ductal adenocarcinoma (PDAC) has not experienced a meaningful mortality improvement for the past few decades. Successful screening is difficult to accomplish because most PDACs present late in their natural history, and current interventions have not provided significant benefit. Our goal was to identify determinants of survival for early PDAC to help inform future screening strategies. Early PDACs from the National Cancer Institute's Surveillance, Epidemiology, and End Results Program database (2000-2010) were analyzed. We stratified by size and included carcinomas in situ (Tis). Overall cancer-specific survival was calculated. A Cox proportional hazards model was developed and the significance of key covariates for survival prediction was evaluated. A Kaplan-Meier plot demonstrated significant differences in survival by size at diagnosis; these survival benefits persisted after adjustment for key covariates in the Cox proportional hazards analysis. In addition, relatively weaker predictors of worse survival included older age, male sex, black race, nodal involvement, tumor location within the head of the pancreas, and no surgery or radiotherapy. For early PDAC, we found tumor size to be the strongest predictor of survival, even after adjustment for other patient characteristics. Our findings suggest that early PDAC detection can have clinical benefit, which has positive implications for future screening strategies.
Prostheses size dependency of the mechanical response of the herniated human abdomen.
Simón-Allué, R; Hernández-Gascón, B; Lèoty, L; Bellón, J M; Peña, E; Calvo, B
2016-12-01
Hernia repairs still exhibit clinical complications, i.e. recurrence, discomfort and pain and mesh features are thought to be highly influent. The aim of this study is to evaluate the impact of the defect size and mesh type in an herniated abdominal wall using numerical models. To do so, we have started from a FE model based on a real human abdomen geometry obtained by MRI, where we have provoked an incisional hernia of three different sizes. The surgical procedure was simulated by covering the hernia with a prostheses, and three surgical meshes with distinct mechanical properties were used for the hernia repair: an isotropic heavy-weight mesh (Surgipro @ ), a slightly anisotropic light-weight mesh (Optilene @ ) and a highly anisotropic medium-weight mesh (Infinit @ ). The mechanical response of the wall to a high intraabdominal pressure (corresponding to a coughing motion) was analyzed here. Our findings suggest that the anisotropy of the mesh becomes more relevant with the increase of the defect size. Additionally, according to our results Optilene @ showed the closest deformation to the natural distensibility of the abdomen while Infinit @ should be carefully used due to its excessive compliance.
Lack of Dependence of the Sizes of the Mesoscopic Protein Clusters on Electrostatics.
Vorontsova, Maria A; Chan, Ho Yin; Lubchenko, Vassiliy; Vekilov, Peter G
2015-11-03
Protein-rich clusters of steady submicron size and narrow size distribution exist in protein solutions in apparent violation of the classical laws of phase equilibrium. Even though they contain a minor fraction of the total protein, evidence suggests that they may serve as essential precursors for the nucleation of ordered solids such as crystals, sickle-cell hemoglobin polymers, and amyloid fibrils. The cluster formation mechanism remains elusive. We use the highly basic protein lysozyme at nearly neutral and lower pH as a model and explore the response of the cluster population to the electrostatic forces, which govern numerous biophysical phenomena, including crystallization and fibrillization. We tune the strength of intermolecular electrostatic forces by varying the solution ionic strength I and pH and find that despite the weaker repulsion at higher I and pH, the cluster size remains constant. Cluster responses to the presence of urea and ethanol demonstrate that cluster formation is controlled by hydrophobic interactions between the peptide backbones, exposed to the solvent after partial protein unfolding that may lead to transient protein oligomers. These findings reveal that the mechanism of the mesoscopic clusters is fundamentally different from those underlying the two main classes of ordered protein solid phases, crystals and amyloid fibrils, and partial unfolding of the protein chain may play a significant role. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Muhammad Akram Raza
2016-04-01
Full Text Available Silver nanoparticles (AgNPs of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM, UV-visible spectroscopy (UV-VIS, and X-ray diffraction (XRD techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs.
International Nuclear Information System (INIS)
Echeveste, Pedro; Agusti, Susana; Dachs, Jordi
2011-01-01
Polycyclic Aromatic Hydrocarbons' (PAHs) toxicity is enhanced by the presence of ultraviolet radiation (UVR), which levels have arisen due to the thinning of the ozone layer. In this study, PAHs' phototoxicity for natural marine phytoplankton was tested. Different concentrations of a mixture of 16 PAHs were added to natural phytoplankton communities from the Mediterranean Sea, Atlantic, Arctic and Southern Oceans and exposed to natural sunlight received in situ, including treatments where the UVR bands were removed. PAHs' toxicity was observed for all the phytoplankton groups studied in all the waters and treatments tested, but only for the pico-sized group a synergetic effect of the mixture and UVR was observed (p = 0.009). When comparing phototoxicity in phytoplankton from oligotrophic and eutrophic waters, synergy was only observed at the oligotrophic communities (p = 0.02) where pico-sized phytoplankton dominated. The degree of sensitivity was related to the trophic degree, decreasing as Chlorophyll a concentration increased. - Highlights: → The smallest picocyanobacteria were the most sensitive to PAHs and UVR. → PAHs-UVR synergism for the picophytoplankton and the oligotrophic communities. → PAHs-UVR additivity for the nanophytoplankton and the eutrophic communities. → An irradiance threshold is suggested to determine the joint action of UVR and PAHs. - Cell size and UVR levels determine additive/synergetic effects of PAHs and UVR to oceanic phytoplankton.
Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size
Energy Technology Data Exchange (ETDEWEB)
Sabooni, Soheil; Rashtchi, Hamed; Eslami, Abdoulmajid; Karimzadeh, Fathallah; Enayati, Mohammad Hossein; Raeissi, Keyvan; Imani, Reihane Faghih [Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of). Dept. of Materials Engineering; Ngan, Alfonso Hing Wan [The Univ. of Hong Kong (China). Dept. of Mechanical Engineering
2017-07-15
The corrosion resistance of austenitic stainless steels is known to be hampered by the loss of chromium available for passive surface layer formation as a result of chromium carbide precipitation at austenite grain boundaries during annealing treatments. Although high-temperature annealing can promote carbide dissolution leading to better corrosion resistance, grain coarsening also results, which would lead to poorer mechanical properties. Processing methods to achieve both good corrosion resistance and mechanical properties are thus highly desirable for austenitic stainless steels. In the present study, we show that the corrosion resistance of AISI 304L stainless steel can be improved by grain refinement into the ultrafine-grained regime. Specifically, samples with different austenite grain sizes in the range of 0.65-12 μm were studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests in a 3.5 wt.% NaCl solution. All samples showed a typical passive behavior with similar corrosion potential, but the corrosion current density decreased significantly with decreasing grain size. The results show that the sample with the finest grain size had the best corrosion resistance due to a higher resistance of the passive layer to pitting attacks. This study indicates that grain refinement which improves mechanical properties can also significantly improve the corrosion resistance of AISI 304L stainless steel.
International Nuclear Information System (INIS)
Ahmed, Rasin; Will, Geoffrey; Bell, John; Wang Hongxia
2012-01-01
The particle size, size distribution and photostability of CdS nanoparticles incorporated onto mesoporous TiO 2 films by a successive ionic layer adsorption and reaction (SILAR) method were investigated by Raman spectroscopy, UV–Visible spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). High-resolution TEM indicated that the synthesized CdS particles were hexagonal phase and the particle sizes were less than 5 nm for up to nine SILAR deposition cycles. Quantum size effect was found with the CdS-sensitized TiO 2 films prepared with up to nine SILAR cycles. The band gap of CdS nanoparticles decreased from 2.65 to 2.37 eV with the increase of the SILAR cycles from 1 to 11. The investigation of the stability of the CdS/TiO 2 films in air under illumination (440.6 μW/cm 2 ) showed that the photodegradation rate was up to 85 % per day for the sample prepared with three SILAR cycles. XPS analysis indicated that the photodegradation was due to the oxidation of CdS, leading to the transformation from sulphide to sulphate (CdSO 4 ). Furthermore, the degradation rate was strongly dependent upon the particle size of CdS. Smaller particles showed faster degradation rate. The size-dependent photo-induced oxidization was rationalized with the variation of size-dependent distribution of surface atoms of CdS particles. Molecular dynamics-based theoretical calculation has indicated that the surface sulphide anion of a large CdS particle such as CdS made with 11 cycles (CdS × 11, average particle size = 5.6 nm) accounts for 9.6 % of the material whereas this value is increased to 19.2 % for (CdS × 3)-based smaller particles (average particle size = 2.7 nm). The photostability of CdS nanoparticles was significantly enhanced when coated with ZnS particles deposited with four SILAR cycles. The growth mechanism of ZnS upon CdS nanoparticles was discussed.
Harary, Frank
2015-01-01
Presented in 1962-63 by experts at University College, London, these lectures offer a variety of perspectives on graph theory. Although the opening chapters form a coherent body of graph theoretic concepts, this volume is not a text on the subject but rather an introduction to the extensive literature of graph theory. The seminar's topics are geared toward advanced undergraduate students of mathematics.Lectures by this volume's editor, Frank Harary, include ""Some Theorems and Concepts of Graph Theory,"" ""Topological Concepts in Graph Theory,"" ""Graphical Reconstruction,"" and other introduc
Dynamic Representations of Sparse Graphs
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Fagerberg, Rolf
1999-01-01
We present a linear space data structure for maintaining graphs with bounded arboricity—a large class of sparse graphs containing e.g. planar graphs and graphs of bounded treewidth—under edge insertions, edge deletions, and adjacency queries. The data structure supports adjacency queries in worst...... case O(c) time, and edge insertions and edge deletions in amortized O(1) and O(c+log n) time, respectively, where n is the number of nodes in the graph, and c is the bound on the arboricity....
Domination criticality in product graphs
Directory of Open Access Journals (Sweden)
M.R. Chithra
2015-07-01
Full Text Available A connected dominating set is an important notion and has many applications in routing and management of networks. Graph products have turned out to be a good model of interconnection networks. This motivated us to study the Cartesian product of graphs G with connected domination number, γc(G=2,3 and characterize such graphs. Also, we characterize the k−γ-vertex (edge critical graphs and k−γc-vertex (edge critical graphs for k=2,3 where γ denotes the domination number of G. We also discuss the vertex criticality in grids.
Graph Creation, Visualisation and Transformation
Directory of Open Access Journals (Sweden)
Maribel Fernández
2010-03-01
Full Text Available We describe a tool to create, edit, visualise and compute with interaction nets - a form of graph rewriting systems. The editor, called GraphPaper, allows users to create and edit graphs and their transformation rules using an intuitive user interface. The editor uses the functionalities of the TULIP system, which gives us access to a wealth of visualisation algorithms. Interaction nets are not only a formalism for the specification of graphs, but also a rewrite-based computation model. We discuss graph rewriting strategies and a language to express them in order to perform strategic interaction net rewriting.
A Graph Summarization Algorithm Based on RFID Logistics
Sun, Yan; Hu, Kongfa; Lu, Zhipeng; Zhao, Li; Chen, Ling
Radio Frequency Identification (RFID) applications are set to play an essential role in object tracking and supply chain management systems. The volume of data generated by a typical RFID application will be enormous as each item will generate a complete history of all the individual locations that it occupied at every point in time. The movement trails of such RFID data form gigantic commodity flowgraph representing the locations and durations of the path stages traversed by each item. In this paper, we use graph to construct a warehouse of RFID commodity flows, and introduce a database-style operation to summarize graphs, which produces a summary graph by grouping nodes based on user-selected node attributes, further allows users to control the hierarchy of summaries. It can cut down the size of graphs, and provide convenience for users to study just on the shrunk graph which they interested. Through extensive experiments, we demonstrate the effectiveness and efficiency of the proposed method.
Study of Chromatic parameters of Line, Total, Middle graphs and Graph operators of Bipartite graph
Nagarathinam, R.; Parvathi, N.
2018-04-01
Chromatic parameters have been explored on the basis of graph coloring process in which a couple of adjacent nodes receives different colors. But the Grundy and b-coloring executes maximum colors under certain restrictions. In this paper, Chromatic, b-chromatic and Grundy number of some graph operators of bipartite graph has been investigat
Energy Technology Data Exchange (ETDEWEB)
Grossman, Max [Rice Univ., Houston, TX (United States); Pritchard Jr., Howard Porter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Budimlic, Zoran [Rice Univ., Houston, TX (United States); Sarkar, Vivek [Rice Univ., Houston, TX (United States)
2016-12-22
Graph500 [14] is an effort to offer a standardized benchmark across large-scale distributed platforms which captures the behavior of common communicationbound graph algorithms. Graph500 differs from other large-scale benchmarking efforts (such as HPL [6] or HPGMG [7]) primarily in the irregularity of its computation and data access patterns. The core computational kernel of Graph500 is a breadth-first search (BFS) implemented on an undirected graph. The output of Graph500 is a spanning tree of the input graph, usually represented by a predecessor mapping for every node in the graph. The Graph500 benchmark defines several pre-defined input sizes for implementers to test against. This report summarizes investigation into implementing the Graph500 benchmark on OpenSHMEM, and focuses on first building a strong and practical understanding of the strengths and limitations of past work before proposing and developing novel extensions.
Grain size dependent optical band gap of CdI2 films
Indian Academy of Sciences (India)
Unknown
absorption data near band edge can be fitted to an indirect band gap of 3 eV. The dependence of band gap ... while to carry out the optical studies on CdI2 films in order to .... replotted as (αhν)1/2 vs hν to determine indirect gap as shown in the ...
A fourth gradient to overcome slice dependent phase effects of voxel-sized coils in planar arrays.
Bosshard, John C; Eigenbrodt, Edwin P; McDougall, Mary P; Wright, Steven M
2010-01-01
The signals from an array of densely spaced long and narrow receive coils for MRI are complicated when the voxel size is of comparable dimension to the coil size. The RF coil causes a phase gradient across each voxel, which is dependent on the distance from the coil, resulting in a slice dependent shift of k-space. A fourth gradient coil has been implemented and used with the system's gradient set to create a gradient field which varies with slice. The gradients are pulsed together to impart a slice dependent phase gradient to compensate for the slice dependent phase due to the RF coils. However the non-linearity in the fourth gradient which creates the desired slice dependency also results in a through-slice phase ramp, which disturbs normal slice refocusing and leads to additional signal cancelation and reduced field of view. This paper discusses the benefits and limitations of using a fourth gradient coil to compensate for the phase due to RF coils.
Graph Sampling for Covariance Estimation
Chepuri, Sundeep Prabhakar
2017-04-25
In this paper the focus is on subsampling as well as reconstructing the second-order statistics of signals residing on nodes of arbitrary undirected graphs. Second-order stationary graph signals may be obtained by graph filtering zero-mean white noise and they admit a well-defined power spectrum whose shape is determined by the frequency response of the graph filter. Estimating the graph power spectrum forms an important component of stationary graph signal processing and related inference tasks such as Wiener prediction or inpainting on graphs. The central result of this paper is that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the second-order statistics of the graph signal from the subsampled observations, and more importantly, without any spectral priors. To this end, both a nonparametric approach as well as parametric approaches including moving average and autoregressive models for the graph power spectrum are considered. The results specialize for undirected circulant graphs in that the graph nodes leading to the best compression rates are given by the so-called minimal sparse rulers. A near-optimal greedy algorithm is developed to design the subsampling scheme for the non-parametric and the moving average models, whereas a particular subsampling scheme that allows linear estimation for the autoregressive model is proposed. Numerical experiments on synthetic as well as real datasets related to climatology and processing handwritten digits are provided to demonstrate the developed theory.
DEFF Research Database (Denmark)
Johansen, Jeppe; Stobbe, Søren; Nikolaev, Ivan S.
2008-01-01
and a theoretical model, we determine the striking dependence of the overlap of the electron and hole wavefunctions on the quantum dot size. We conclude that the optical quality is best for large quantum dots, which is important in order to optimally tailor quantum dot emitters for, e.g., quantum electrodynamics......The radiative and nonradiative decay rates of InAs quantum dots are measured by controlling the local density of optical states near an interface. From time-resolved measurements, we extract the oscillator strength and the quantum efficiency and their dependence on emission energy. From our results...
Hendrix, William; Jenkins, John; Padmanabhan, Kanchana; Chakraborty, Arpan
2014-01-01
Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. De...
Canonical Labelling of Site Graphs
Directory of Open Access Journals (Sweden)
Nicolas Oury
2013-06-01
Full Text Available We investigate algorithms for canonical labelling of site graphs, i.e. graphs in which edges bind vertices on sites with locally unique names. We first show that the problem of canonical labelling of site graphs reduces to the problem of canonical labelling of graphs with edge colourings. We then present two canonical labelling algorithms based on edge enumeration, and a third based on an extension of Hopcroft's partition refinement algorithm. All run in quadratic worst case time individually. However, one of the edge enumeration algorithms runs in sub-quadratic time for graphs with "many" automorphisms, and the partition refinement algorithm runs in sub-quadratic time for graphs with "few" bisimulation equivalences. This suite of algorithms was chosen based on the expectation that graphs fall in one of those two categories. If that is the case, a combined algorithm runs in sub-quadratic worst case time. Whether this expectation is reasonable remains an interesting open problem.
Learning heat diffusion graphs
Thanou, Dorina; Dong, Xiaowen; Kressner, Daniel; Frossard, Pascal
2016-01-01
Effective information analysis generally boils down to properly identifying the structure or geometry of the data, which is often represented by a graph. In some applications, this structure may be partly determined by design constraints or pre-determined sensing arrangements, like in road transportation networks for example. In general though, the data structure is not readily available and becomes pretty difficult to define. In particular, the global smoothness assumptions, that most of the...
Syed, M. Qasim; Lovatt, Ian
2014-01-01
This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…
Understanding Charts and Graphs.
1987-07-28
Farenheit degrees, which have no Onaturalo zero ); finally, ratio scales have numbers that are ordered so that the magnitudes of differences are important and...system. They have to do with the very nature of how marks serve as meaningful symbols. In the ideal case, a chart or graph will be absolutely unambiguous...and these laws comprise this principle (see Stevens, 1974). Absolute discriminability: A minimal magnitude of a mark is necessary for it to be detected
Tutte sets in graphs I: Maximal tutte sets and D-graphs
Bauer, D.; Broersma, Haitze J.; Morgana, A.; Schmeichel, E.
A well-known formula of Tutte and Berge expresses the size of a maximum matching in a graph $G$ in terms of what is usually called the deficiency of $G$. A subset $X$ of $V(G)$ for which this deficiency is attained is called a Tutte set of $G$. While much is known about maximum matchings, less is
Intriguing centrality dependence of the Au-Au source size at the AGS
International Nuclear Information System (INIS)
Baker, M.D.
1996-01-01
One of the main goals of high energy heavy ion physics is to establish the existence of a deconfined phase of nuclear matter--the quark-gluon plasma--at high temperatures or densities. One possible signature of such a phase transition, especially if it were first order, would be a larger source size or lifetime than a similar hadronic system. At current AGS energies, we attempt to form a quark- gluon plasma by achieving a high baryon density for a period of time in the center of the collision region. For a given density threshold, the size of this high density region should be a strong function of the impact parameter: the more central the event, the larger the high density region. Therefore, one possible signature of a quark-gluon plasma would be a sudden change in system lifetime or size as a function of the centrality of the collision. In this talk we present an intriguing effect which was not predicted for simple hadronic systems: a rapid increase of the HBT-measured source radius parameter for pion pairs with increasing centrality for Au-Au collisions at a beam momentum of 11.45 A GeV/c on a fixed target. Experience has shown, however, that we must be cautious in our interpretation. A complete understanding of the collision dynamics at a given energy must be built up from several measurements and new, but conventional, hadronic explanations must be considered for such unexpected effects. More study is needed, therefore, before any strong conclusions can be reached
Feature-size dependent selective edge enhancement of x-ray images
International Nuclear Information System (INIS)
Herman, S.
1988-01-01
Morphological filters are nonlinear signal transformations that operate on a picture directly in the space domain. Such filters are based on the theory of mathematical morphology previously formulated. The filt4er being presented here features a ''mask'' operator (called a ''structuring element'' in some of the literature) which is a function of the two spatial coordinates x and y. The two basic mathematical operations are called ''masked erosion'' and ''masked dilation''. In the case of masked erosion the mask is passed over the input image in a raster pattern. At each position of the mask, the pixel values under the mask are multiplied by the mask pixel values. Then the output pixel value, located at the center position of the mask,is set equal to the minimum of the product of the mask and input values. Similarity, for masked dilation, the output pixel value is the maximum of the product of the input and the mask pixel values. The two basic processes of dilation and erosion can be used to construct the next level of operations the ''positive sieve'' (also called ''opening'') and the ''negative sieve'' (''closing''). The positive sieve modifies the peaks in the image whereas the negative sieve works on image valleys. The positive sieve is implemented by passing the output of the masked erosion step through the masked dilation function. The negative sieve reverses this procedure, using a dilation followed by an erosion. Each such sifting operator is characterized by a ''hole size''. It will be shown that the choice of hole size will select the range of pixel detail sizes which are to be enhanced. The shape of the mask will govern the shape of the enhancement. Finally positive sifting is used to enhance positive-going (peak) features, whereas negative enhances the negative-going (valley) landmarks
Adult lifetime reproductive value in fish depends on size and fecundity type
DEFF Research Database (Denmark)
Tsoukali, Stavroula; Olsson, Karin H.; Visser, André W.
2016-01-01
In a stable population, the adult lifetime reproductive value must be balanced against early life survival. Although delaying maturity may increase fecundity, it also reduces survival. Larger size at maturity therefore not only allows for higher fecundity, but requires it. Using simple arguments......, the expected proportionality falls off if mortality increases to include fishing. Furthermore, we find that the fecundity type (determinate or indeterminate) affects the predicted adult reproductive value, which is significantly (10-fold) higher for an indeterminate spawner than for a determinate spawner...
Size-Dependent Shifts of Plasmon Resonance in Silver Nanoparticle Films Using Controlled Dissolution
DEFF Research Database (Denmark)
Mogensen, Klaus Bo; Kneipp, Katrin
2014-01-01
to a transition from an extrinsic regime for the larger particles, where shifts of the plasmon frequency are related to changes in the dielectric environment, while the dielectric function of the metal is constant, to an intrinsic regime for the smaller particles. For this intrinsic regime, operative for small...... in a corrected electron density. The reported results have potential for developing nanosensors based on small nanoparticles below 5 nm in size by using their intrinsic response to adsorbed analytes. This detection scheme suggests a potential increase in the sensitivity of up to 3×, particularly when redox...
Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Desai, Tanvi; Cherukui, Pavan K.; Xu, Xiao-Hong Nancy
2012-01-01
Nanomaterials possess distinctive physicochemical properties (e.g., small sizes, high surface area-to-volume ratios) and promise a wide variety of applications, ranging from design of high quality consumer products to effective disease diagnosis and therapy. These properties can lead to toxic effects, potentially hindering advance in nanotechnology. In this study, we have synthesized and characterized purified and stable (non-aggregation) silver nanoparticles (Ag NPs, 41.6±9.1 nm in average diameters), and utilized early-developing (cleavage-stage) zebrafish embryos (critical aquatic and eco- species) as in vivo model organisms to probe diffusion and toxicity of Ag NPs. We found that single Ag NPs (30–72 nm diameters) passively diffused into the embryos through chorionic pores via random Brownian motion and stayed inside the embryos throughout their entire development (120 hours-post-fertilization, hpf). Dose and size dependent toxic effects of the NPs on embryonic development were observed, showing the possibility of tuning biocompatibility and toxicity of the NPs. At lower concentrations of the NPs (≤ 0.02 nM), 75–91% of embryos developed to normal zebrafish. At the higher concentrations of NPs (≥ 0.20 nM), 100% of embryos became dead. At the concentrations in between (0.02–0.2 nM), embryos developed to various deformed zebrafish. Number and sizes of individual Ag NPs embedded in tissues of normal and deformed zebrafish at 120 hpf were quantitatively analyzed, showing deformed zebrafish with higher number of larger NPs than normal zebrafish, and size-dependent nanotoxicity. By comparing with our previous studies of smaller Ag NPs (11.6±3.5 nm), the results further demonstrate striking size-dependent nanotoxicity that, at the same molar concentration, the larger Ag NPs (41.6±9.1 nm) are more toxic than the smaller Ag NPs (11.6±3.5 nm). PMID:22486336
CdSe quantum dots co-sensitized TiO2 photoelectrodes: particle size dependent properties
International Nuclear Information System (INIS)
Prabakar, K; Minkyu, S; Inyoung, S; Heeje, K
2010-01-01
Cadmium selenide (CdSe) quantum dots (QDs) with different particle sizes have been used as an inorganic co-sensitizer in addition to organic dye for large band gap mesoporous TiO 2 dye sensitized solar cells. The QDs co-sensitized solar cells exhibited overall highest conversion efficiency of 3.65% at 1 sun irradiation for 3.3 nm particle size corresponding to a visible light absorption wavelength of 528 nm. The photovoltaic characteristics of CdSe QDs co-sensitized cells depend on the particle sizes rather than broad spectral light absorption as compared with CdSe QDs alone sensitized and standard dye-sensitized solar cells. Correlation between CdSe QDs adsorption on mesoporous TiO 2 surfaces and photoelectron injection into TiO 2 has been demonstrated. (fast track communication)
Unsteady Helical Flows of a Size-Dependent Couple-Stress Fluid
Rubbab, Qammar; Mirza, Itrat Abbas; Siddique, Imran; Irshad, Saadia
2017-01-01
The helical flows of couple-stress fluids in a straight circular cylinder are studied in the framework of the newly developed, fully determinate linear couple-stress theory. The fluid flow is generated by the helical motion of the cylinder with time-dependent velocity. Also, the couple-stress vector is given on the cylindrical surface and the nonslip condition is considered. Using the integral transform method, analytical solutions to the axial velocity, azimuthal velocity, nonsymmetric force...
Dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size
International Nuclear Information System (INIS)
Tsang, Y.W.; Witherspoon, P.A.
1983-01-01
A parameter study has been carried out to investigate the interdependence of mechanical and fluid flow properties of fractures with fracture roughness and sample size. A rough fracture can be defined mathematically in terms of its aperture density distribution. Correlations were found between the shapes of the aperture density distribution function and the specific fractures of the stress-strain behavior and fluid flow characteristics. Well-matched fractures had peaked aperture distributions that resulted in very nonlinear stress-strain behavior. With an increasing degree of mismatching between the top and bottom of a fracture, the aperture density distribution broadened and the nonlinearity of the stress-strain behavior became less accentuated. The different aperture density distributions also gave rise to qualitatively different fluid flow behavior. Findings from this investigation make it possible to estimate the stress-strain and fluid flow behavior when the roughness characteristics of the fracture are known and, conversely, to estimate the fracture roughness from an examination of the hydraulic and mechanical data. Results from this study showed that both the mechanical and hydraulic properties of the fracture are controlled by the large-scale roughness of the joint surface. This suggests that when the stress-flow behavior of a fracture is being investigated, the size of the rock sample should be larger than the typical wave length of the roughness undulations