WorldWideScience

Sample records for deoxyribonucleic acid replication

  1. Effect of deoxyribonucleic acid replication inhibitors on bacterial recombination

    International Nuclear Information System (INIS)

    Canosi, U.; Siccardi, A.G.; Falaschi, A.; Mazza, G.

    1976-01-01

    Two inhibitors of replicative deoxyribonucleic acid (DNA) synthesis, nalidixic acid (NAL) and 6-(p-hydroxyphenylazo)-uracil (HPUra), showed different effects on genetic recombination and DNA repair in Bacillus subtilis. Previous work (Pedrini et al., 1972) showed that NAL does not interfere with the transformation process of B. subtilis. The results reported in this work demonstrated that the drug was also without effect on the transfection SPP1 or SPO-1 phage DNA (a process that requires a recombination event). The drug was also ineffective on the host cell reactivation of ultraviolet-irradiated SPP1 phage, as well as on transfection with ultraviolet-irradiated DNA of the same phage. HPUra instead markedly reduced the transformation process, as well as transfection, by SPO-1 DNA, but it did not affect the host cell reactivation of SPO-1 phage. In conclusion, whereas the NAL target seems to be specific for replicative DNA synthesis, the HPUra target (i.e., the DNA polymerase III of B. subtilis) seems to be involved also in recombination, but not in the excision repair process. The mutations conferring NAL and HPUra resistance used in this work were mapped by PBS-1 transduction

  2. Initiation points for cellular deoxyribonucleic acid replication in human lymphoid cells converted by Epstein-Barr virus

    International Nuclear Information System (INIS)

    Oppenheim, A.; Shlomai, Z.; Ben-Bassat, H.

    1981-01-01

    Replicon size was estimated in two Epstein-Barr virus (EBV)-negative human lymphoma lines, BJAB and Ramos, and four EBV-positive lines derived from the former ones by infection (conversion) with two viral strains, B95-8 and P3HR-1. Logarithmic cultures were pulse-labeled with [/sup -3/H]thymidine, and the deoxyribonucleic acid was spread on microscopic slides and autoradiographed by the method of Huberman and Riggs. Three of the four EBV-converted cell lines, BJAB/B95-8, Ra/B95-8, and Ra/HRIK, were found to have significantly shorter replicons (41, 21, 54% shorter, respectively), i.e., more initiation points, than their EBV-negative parents. BJAB/HRIK had replicons which were only slightly shorter (11%) than those of BJAB. However, analysis of track length demonstrated that extensive track fusion occurred during the labeling of BJAB/HRIK, implying that its true average replicon size is shorter than the observed value. The results indicate that in analogy to simian virus 40, EBV activates new initiation points for cellular DNA replication in EBV-transformed cells

  3. No activation of new initiation points for deoxyribonucleic acid replication in BALB/c 3T3 cells transformed by Kirsten sarcoma virus

    International Nuclear Information System (INIS)

    Oppenheim, A.; Horowitz, A.T.

    1981-01-01

    BALB/c 3T3 cells were transformed by Kirsten sarcoma virus, and five clones were isolated in soft agar. Average replicon sizes of the transformed cell lines were stimated by the method of fiber-autoradiography and found to be the same size as the nontransformed 3T3 cells, analyzed in parallel. The results indicate that, unlike simian virus 40 and Epstein-Barr virus, Kirsten sarcoma virus does not activate new initiation points for cellular deoxyribonucleic acid replication in murine sarcome virus-transformed BALB/c 3T3 cells

  4. Extrachromosomal deoxyribonucleic acid in R factor-harboring Enterobacteriaceae

    DEFF Research Database (Denmark)

    Møller, JK; Bak, AL; Christiansen, C

    1976-01-01

    Extrachromosomal deoxyribonucleic acid (DNA) from 24 different R factor-harboring Enterobacteriaceae was isolated and characterized by analytical ultracentrifugation and electron microscopy. The R factors represented 15 different patterns of transferable drug resistance found in enterobacteria from...

  5. Deoxyribonucleic acid-deficient strains of Candida albicans.

    OpenAIRE

    Olaiya, A F; Steed, J R; Sogin, S J

    1980-01-01

    We analyzed a series of germ tube-negative variants isolated from Candida albicans 3153A for deoxyribonucleic acid content. As analyzed by flow microfluorometry, the deoxyribonucleic acid level in these variant strains was 50% of that of the parental strain and equivalent to that of haploid Saccharomyces cerevisiae. This finding was confirmed by comparison of survival rates when exposed to the mutagens ultraviolet light, ethyl methane sulfonate, and methyl methane sulfonate. The diameter of t...

  6. Deoxyribonucleic acid-deficient strains of Candida albicans.

    Science.gov (United States)

    Olaiya, A F; Steed, J R; Sogin, S J

    1980-03-01

    We analyzed a series of germ tube-negative variants isolated from Candida albicans 3153A for deoxyribonucleic acid content. As analyzed by flow microfluorometry, the deoxyribonucleic acid level in these variant strains was 50% of that of the parental strain and equivalent to that of haploid Saccharomyces cerevisiae. This finding was confirmed by comparison of survival rates when exposed to the mutagens ultraviolet light, ethyl methane sulfonate, and methyl methane sulfonate. The diameter of the variant cells as compared to the diameter of the parental 3153A strain showed a relationship similar to that of the diameters of haploid versus diploid S. cerevisiae. These results indicate that those strains may be representative of the imperfect stage of C. albicans.

  7. Deoxyribonucleic Acid Probes Analyses for the Detection of Periodontal Pathogens.

    Science.gov (United States)

    Al Yahfoufi, Zoubeida; Hadchiti, Wahib; Berberi, Antoine

    2015-09-01

    In clinical microbiology several techniques have been used to identify bacteria. Recently, Deoxyribonucleic acid (DNA)-based techniques have been introduced to detect human microbial pathogens in periodontal diseases. Deoxyribonucleic acid probes can detect bacteria at a very low level if we compared with the culture methods. These probes have shown rapid and cost-effective microbial diagnosis, good sensitivity and specificity for some periodontal pathogens in cases of severe periodontitis. Eighty-five patients were recruited for the study. Twenty-one subjects ranging between 22 and 48 years of age fulfilled the inclusion and exclusion criteria. Seventy-eight samples became available for DNA probe analysis from the deepest pockets in each quadrant. All 21 patients showed positive results for Prevotella intermedia; also, Prevotella gingivalis was identified in 19 subjects, Aggregatibacter actinomycetemcomitans in 6 subjects. P. intermedia was diagnosed positive in 82% of the subgingival samples taken, 79% for P. gingivalis, and 23% for A. actinomycetemcomitans. This study shows a high frequency of putative periodontal pathogens by using DNA probe technology, which is semi-quantitative in this study. Deoxyribonucleic acid probes can detect bacteria at very low level about 10(3) which is below the detection level of culture methods. The detection threshold of cultural methods. The three types of bacteria can be detected rapidly with high sensitivity by using the DNA probe by general practitioners, and thus can help in the diagnosis process and the treatment.

  8. Extrachromosomal deoxyribonucleic acid in R factor-harboring Enterobacteriaceae

    DEFF Research Database (Denmark)

    Møller, JK; Bak, AL; Christiansen, C

    1976-01-01

    Extrachromosomal deoxyribonucleic acid (DNA) from 24 different R factor-harboring Enterobacteriaceae was isolated and characterized by analytical ultracentrifugation and electron microscopy. The R factors represented 15 different patterns of transferable drug resistance found in enterobacteria from...... from 1.700 to 1.720 g/cm3. The majority of the bacteria contained extrachromosomal DNAs of various densities. Three-fourths of the R factors were classified as fi+. The investigation illustrates the extensive variability in the physical characteristics of plasmid DNA from R factor-harboring strains....

  9. Nature of transforming deoxyribonucleic acid in calcium-treated Escherichia coli

    International Nuclear Information System (INIS)

    Strike, P.; Humphreys, G.O.; Roberts, R.J.

    1979-01-01

    A study of the reactivation of ultraviolet-irradiated plasmid and phage deoxyribonucleic acid molecules after transformation into Escherichia coli strains indicated that, when double-stranded deoxyribonucleic acid was used as the donor species, it was taken up without conversion to the single-stranded form

  10. Lidocaine and ropivacaine, but not bupivacaine, demethylate deoxyribonucleic acid in breast cancer cells in vitro

    NARCIS (Netherlands)

    Lirk, P.; Hollmann, M. W.; Fleischer, M.; Weber, N. C.; Fiegl, H.

    2014-01-01

    Lidocaine demethylates deoxyribonucleic acid (DNA) in breast cancer cells. This modification of epigenetic information may be of therapeutic relevance in the perioperative period, because a decrease in methylation can reactivate tumour suppressor genes and inhibit tumour growth. The objectives of

  11. Uracil in formic acid hydrolysates of deoxyribonucleic acid

    Science.gov (United States)

    Schein, Arnold H.

    1966-01-01

    1. When DNA is hydrolysed with formic acid for 30min. at 175° and the hydrolysate is chromatographed on paper with propan-2-ol–2n-hydrochloric acid, in addition to expected ultraviolet-absorbing spots corresponding to guanine, adenine, cytosine and thymine, an ultraviolet-absorbing region with RF similar to that of uracil can be detected. Uracil was separated from this region and identified by its spectra in acid and alkali, and by its RF in several solvent systems. 2. Cytosine, deoxyribocytidine and deoxyribocytidylic acid similarly treated with formic acid all yielded uracil, as did a mixture of deoxyribonucleotides. 3. Approx. 4% of deoxyribonucleotide cytosine was converted into uracil by the formic acid treatment. ImagesFig. 1. PMID:5949371

  12. Cell division in Escherichia coli BS-12 is hypersensitive to deoxyribonucleic acid damage by ultraviolet light

    International Nuclear Information System (INIS)

    Bridges, B.A.; Mottershead, R.P.; Green, M.H.

    1977-01-01

    Escherichia coli BS-12 uvrA lon is hypersensitive to ultraviolet light. On minimal agar plates at densities in excess of about 10(7) bacteria per plate, as few as one or two photoreversible pyrimidine dimers in the entire genome are sufficient to cause inhibition of cell division. Most of the resulting filaments are unable to divide or form a viable colony. Inhibition of cell division appears to be a rapid consequence of replication of deoxyribonucleic acid containing a pyrimidine dimer. Photoreversibility of the inhibition of cell division persists indefinitely, indicating that the continued presence of the pyrimidine dimers (or the continued generation of daughter strand gaps) is necessary to maintain the division-inhibited state. In view of the kinetics for the production of filamentation by ultraviolet light and the extremely low average inducing fluence (0.03 J/m2), it is concluded that the initiating signal is not the same as that causing other inducible phenomena such as prophage induction or Weigle reactivation

  13. Electrochemical sensing of tumor suppressor protein p53-deoxyribonucleic acid complex stability at an electrified interface

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Černocká, Hana; Ostatná, Veronika; Navrátilová, Lucie; Brázdová, Marie

    2014-01-01

    Roč. 828, MAY2014 (2014), s. 1-8 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GAP301/11/2055; GA ČR(CZ) GA13-00956S; GA ČR(CZ) GA13-36108S Institutional support: RVO:68081707 Keywords : Deoxyribonucleic acid-protein binding * Tumor suppressor protein p53 * Electrochemical sensing Subject RIV: BO - Biophysics Impact factor: 4.513, year: 2014

  14. Quantitative determination of deoxyribonucleic acid in rat brain

    Science.gov (United States)

    Penn, N. W.; Suwalski, R.

    1969-01-01

    1. A procedure is given for spectrophotometric analysis of rat brain DNA after its resolution into component bases. Amounts of tissue in the range 50–100mg. can be used. 2. The amount of DNA obtained by the present method is 80% greater than that reported for rat brain by a previous procedure specific for DNA thymine. Identity of the material is established by the base ratios of purines and pyrimidines. The features responsible for the higher yield are the presence of dioxan during alkaline hydrolysis of tissue, the determination of the optimum concentration of potassium hydroxide in this step and omission of organic washes of the initial acid-precipitated residues. 3. The requirement for dioxan during alkaline hydrolysis suggests a possible association of brain DNA with lipid. The concentration of potassium hydroxide that gives maximum yield is 0·1m, indicating that there may be internucleotide linkages in this DNA that are more sensitive to alkali than those of liver or thymus DNA. 4. This procedure gives low yields of DNA from liver. It is not suitable for analysis of the DNA from this tissue. PMID:5353529

  15. Ultraviolet electroluminescence from zinc oxide nanorods/deoxyribonucleic acid hybrid bio light-emitting diode

    Science.gov (United States)

    Gupta, Rohini Bhardwaj; Nagpal, Swati; Arora, Swati; Bhatnagar, Pramod Kumar; Mathur, Parmatma Chandra

    2011-01-01

    Ultraviolet (UV) light-emitting diode using salmon deoxyribonucleic acid (sDNA)-cetyltrimethylammonium complex as an electron blocking layer and zinc oxide (ZnO) nanorods as emissive material was fabricated. UV emission, which was blue shifted up to 335 nm with respect to the band edge emission of 390 nm, was observed. This blue shift was caused due to accumulation of electrons in the conduction band of ZnO because of a high potential barrier existing at the sDNA/ZnO interface.

  16. Genetic Control of the Secondary Modification of Deoxyribonucleic Acid in Escherichia coli1

    Science.gov (United States)

    Mamelak, Linda; Boyer, Herbert W.

    1970-01-01

    The wild-type restriction and modification alleles of Escherichia coli K-12 and B were found to have no measurable effect on the patterns of methylated bases in the deoxyribonucleic acid (DNA) of these strains. The genetic region controlling the methylation of cytosine in E. coli K-12 was mapped close to his, and the presence or absence of this gene in E. coli B or E. coli K had no effect on the restriction and modification properties of these strains. Thus, only a few of the methylated bases in the DNA of these strains are involved in host modification, and the biological role of the remainder remains obscure. PMID:4919756

  17. Breaks induced in the deoxyribonucleic acid of aerosolized Escherichia coli by ozonized cyclohexene.

    Science.gov (United States)

    De Mik, G; De Groot, I

    1978-01-01

    The inactivation of aerosolized Escherichia coli by ozone, cyclohexene, and ozonized cyclohexene was studied. The parameters for damage were loss of reproduction and introduction of breaks in the deoxyribonucleic acid (DNA). Aerosolization of E. coli in clean air at 80 percent relative humidity or in air containing either ozone or cyclohexene hardly affected survival; however, some breaks per DNA molecule were induced, as shown by sucrose gradient sedimentation of the DNA. Aerosolization of E. coli in air containing ozonized cyclohexene at 80 percent relative humidity decreased the survival by a factor of 10(3) or more after 1 h of exposure and induced many breaks in the DNA. PMID:341811

  18. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA.

    Science.gov (United States)

    SIGAL, N; SENEZ, J C; LEGALL, J; SEBALD, M

    1963-06-01

    Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315-1318. 1963-The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c(3) and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin ("nigrificans" and "orientis") are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively.

  19. Deoxyribonucleic Acid Damage and Repair: Capitalizing on Our Understanding of the Mechanisms of Maintaining Genomic Integrity for Therapeutic Purposes

    Directory of Open Access Journals (Sweden)

    Jolene Michelle Helena

    2018-04-01

    Full Text Available Deoxyribonucleic acid (DNA is the self-replicating hereditary material that provides a blueprint which, in collaboration with environmental influences, produces a structural and functional phenotype. As DNA coordinates and directs differentiation, growth, survival, and reproduction, it is responsible for life and the continuation of our species. Genome integrity requires the maintenance of DNA stability for the correct preservation of genetic information. This is facilitated by accurate DNA replication and precise DNA repair. DNA damage may arise from a wide range of both endogenous and exogenous sources but may be repaired through highly specific mechanisms. The most common mechanisms include mismatch, base excision, nucleotide excision, and double-strand DNA (dsDNA break repair. Concurrent with regulation of the cell cycle, these mechanisms are precisely executed to ensure full restoration of damaged DNA. Failure or inaccuracy in DNA repair contributes to genome instability and loss of genetic information which may lead to mutations resulting in disease or loss of life. A detailed understanding of the mechanisms of DNA damage and its repair provides insight into disease pathogeneses and may facilitate diagnosis and the development of targeted therapies.

  20. Deoxyribonucleic acid repair in Escherichia coli mutants deficient in the 5'----3' exonuclease activity of deoxyribonucleic acid polymerase I and exonuclease VII

    International Nuclear Information System (INIS)

    Chase, J.W.; Masker, W.E.

    1977-01-01

    A series of Escherichia coli strains deficient in the 5'----3' exonuclease activity associated with deoxyribonucleic acid (DNA) polymerase I (exonuclease VI) and exonuclease VII has been constructed. Both of these enzymes are capable of pyrimidine dimer excision in vitro. These strains were examined for conditional lethality, sensitivity to ultraviolet (UV) and X-irradiation, postirradiation DNA degradation, and ability to excise pyrimidine dimers. It was found that strains deficient in both exonuclease VI (polAex-) and exonuclease VII (xseA-) are significantly reduced in their ability to survive incubation at elevated temperature (43 degrees C) beyond the reduction previously observed for the polAex single mutants. The UV and X-ray sensitivity of the exonuclease VI-deficient strains was not increased by the addition of the xseA7 mutation. Mutants deficient in both enzymes are about as efficient as wild-type strains at excising dimers produced by up to 40 J/m2 UV. At higher doses strains containing only polAex- mutations show reduced ability to excise dimers; however, the interpretation of dimer excision data at these doses is complicated by extreme postirradiation DNA degradation in these strains. The additional deficiency in the polAex xseA7 double-mutant strains has no significant effect on either postirradiation DNA degradation or the apparent deficiency in dimer excision at high UV doses observed in polAex single mutants

  1. Role of deoxyribonucleic acid polymerases and deoxyribonucleic acid ligase in x-ray-induced repair synthesis in toluene-treated Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1976-01-01

    Toluene-treated Escherichia coli mutants have been used to study the roles of deoxyribonucleic acid (DNA) polymerases I, II, and III, and of DNA ligase in repair synthesis and strand rejoining following X-irradiation. In cells possessing all three DNA polymerases, both a greater amount of repair synthesis (''exaggerated'' repair synthesis) and failure of ligation are observed when DNA ligase activity is inhibited. In a mutant lacking the polymerizing activity of DNA polymerase I, exaggerated repair synthesis is not observed, and strand rejoining does not occur even if DNA ligase is fully activated. In a mutant possessing the polymerizing activity of DNA polymerase I but lacking its 5' → 3' exonuclease activity, exaggerated repair synthesis is minimal. After irradiation, DNA polymerases II and III are capable of carrying out an adenosine 5'-triphosphate-dependent repair synthesis, but rejoining of strand breaks does not occur and exaggerated synthesis is not seen whether DNA ligase is active or not. These results suggest that DNA polymerase I and DNA ligase act together to limit repair synthesis after X irradiation and that both are necessary in toluene-treated cells for strand rejoining. DNA polymerases II and III apparently cannot complete chain elongation and gap filling, and therefore repair carried out by these enzymes does not respond to ligase action

  2. Nucleolytic degradation of homologous and heterologous deoxyribonucleic acid molecules at the surface of competent pneumococci

    International Nuclear Information System (INIS)

    Seto, H.; Lopez, R.; Garrigan, O.; Tomasz, A.

    1975-01-01

    Competent pneumococci can catalyze the rapid and quantitative degradation of extracellular deoxyribonucleic acid (DNA) molecules through the activity of surface-located nucleases (endo- and, possibly, exonucleases as well). Both homologous and heterologous DNAs are degraded by a mechanism that seems to involve a cyclic process: (i) attachment of DNA to the cell surface followed by (ii) nucleolytic attack, and (iii) release to the medium. Processes (ii) and (iii) are both inhibited by ethylenediaminetetraacetate. Whereas surface nuclease activity is specific for competent cells, the bulk of this activity is not coupled to irreversible DNA uptake (deoxyribonuclease-resistant binding). Pneumococcal DNA treated with ultraviolet irradiation or nitrous acid (cross-linking) is selectively impaired in the ability to irreversibly bind to competent cells, whereas reversible binding is normal. (U.S.)

  3. Binding of T4 endonuclease V to deoxyribonucleic acid irradiated with ultraviolet light

    International Nuclear Information System (INIS)

    Seawell, P.C.; Simon, T.J.; Ganesan, A.K.

    1980-01-01

    Endonuclease V of bacteriophage T4 binds to uv-irradiated deoxyribonucleic acid (DNA) but not to unirradiated DNA. We have developed an assay to detect this binding, based on the retention of enzyme - DNA complexes on nitrocellulose filters. The amount of complex retained, ascertained by using radioactive DNA, is a measure of T4 endonuclease V activity. From our data we conclude that (1) T4 endonuclease V binds to uv-irradiated DNA but not to DNA that has been previously incised by the endonuclease, (2) equilibrium between the free and complexed form of the enzyme is attained under our reaction conditions, (3) dissociation of enzyme - DNA complexes is retarded by sodium cyanide, and (4) retention of enzyme - DNA complexes on nitrocellulose filters is enhanced by high concentrations of saline-citrate

  4. Tif-stimulated deoxyribonucleic acid repair in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Castellazzi, M.; Jacques, M.; George, J.

    1980-01-01

    Bacterial survival is significantly increased after ultraviolet irradiation in tif sfi cells, provided that the thermosensitive tif mutation has been expressed at 41 0 C before irradiation. This tif-mediated reactivation of ultraviolet irradiated bacteria needs de novo protein synthesis, as is the case for the tif-mediated reactivation of ultraviolet-irradiated phage lambda. However, in striking contrast to the phage reactivation process, this tif-mediated reactivation is no longer associated with mutagenesis. It also requires the presence of the uvrA + excision function. These results strongly suggest the existence in Escherichia coli K-12 of a repair pathway acting on bacterial deoxyribonucleic acid which is inducible, error free, and uvr dependent

  5. Study of the interaction of enzyme Heparanase 1 (HPSE1) active with deoxyribonucleic acids

    International Nuclear Information System (INIS)

    Cid, Gisele da Silva

    2016-01-01

    The human heparanase 1 (HPSE 1) is a protein with multiple functions and has emerged as a promising therapeutic target in the context of antitumor therapy. This fact is due to its clinical relevance in the tumor development and progression, as determined by their enzymatic ability to degrade heparan sulfate (HS), the main constituent of the extracellular matrix, providing a tumor microenvironment to tumor dissemination. In addition, this protein plays a significant role in the increase of tumor cells migration ionizing radiation dose delivery in radiotherapy from the increase in the expression levels of HPSE1. In order to evaluate in more detail the functions of active HPSE1, it has been proposed to characterize the interaction of human heparanase protein 1 with deoxyribonucleic acids. Our results are original and point to a new function of HPSE1 of the endonuclease type. (author)

  6. Integrity of nuclear genomic deoxyribonucleic acid in cooked meat: Implications for food traceability.

    Science.gov (United States)

    Aslan, O; Hamill, R M; Sweeney, T; Reardon, W; Mullen, A M

    2009-01-01

    It is essential to isolate high-quality DNA from muscle tissue for PCR-based applications in traceability of animal origin. We wished to examine the impact of cooking meat to a range of core temperatures on the quality and quantity of subsequently isolated genomic (specifically, nuclear) DNA. Triplicate steak samples were cooked in a water bath (100 degrees C) until their final internal temperature was 75, 80, 85, 90, 95, or 100 degrees C, and DNA was extracted. Deoxyribonucleic acid quantity was significantly reduced in cooked meat samples compared with raw (6.5 vs. 56.6 ng/microL; P 800 bp) were observed only when using DNA from raw meat and steak cooked to lower core temperatures. Small amplicons (food authentication, it is less abundant, and results suggest that analyses should be designed to use small amplicon sizes for meat cooked to high core temperatures.

  7. Dielectric behavior of irradiated and nonirradiadiated deoxyribonucleic acid (DNA)-crotonic acid interaction in 5% dextrose solution

    International Nuclear Information System (INIS)

    Erginun, M.

    1980-01-01

    Deoxyribonucleic acid (DNA), ex. thymus, dissolved in 5% dextrose, was exposed to gamma radiation at doses between 0-5000 Rads. Crotonic acid dissolved in 5% dextrose was added to this irradiated DNA at t=0 and t=24 hrs after irradiation, in concentrations between 0-1.000 mg/ml. The dielectric behavior of the DNA-irradiation-crotonic acid interaction was investigated at T=20 0 C by pH, permittivity (dielectric constant) and conductivity measurements. The pH, permittivity and conductivity measurements exhibit that the effective and critical conditions for the DNA-irradiation-crotonic acid interaction are; low doses of irradiation (350 Rad.), low concentrations of crotonic acid (0.05-0.100 mg/ml) and the addition of crotonic acid 24 hours after the irradiation. These results support and are in good agreement with those results observed with mammalian cells and laboratory animals when the chemical carcinogens are given in conjunction with radiation

  8. Effect of gyrB-mediated changes in chromosome structure on killing of Escherichia coli by ultraviolet light: experiments with strains differing in deoxyribonucleic acid repair capacity

    International Nuclear Information System (INIS)

    von Wright, A.; Bridges, B.A.

    1981-01-01

    Mutations at the gyrB locus were found to decrease the degree of supercoiling of the Escherichia coli chromosome. The effect of a gyrB mutation on the repair of ultraviolet-induced deoxyribonucleic acid damage was studied by following the killing of strains of E. coli K-12 proficient and deficient in deoxyribonucleic acid repair. The effectiveness of both excision and postreplication types of deoxyribonucleic acid repair was found to be altered by this mutation, the former being apparently enhanced and the latter impaired

  9. Optoelectronic studies on heterocyclic bases of deoxyribonucleic acid for DNA photonics.

    Science.gov (United States)

    El-Diasty, Fouad; Abdel-Wahab, Fathy

    2015-10-01

    The optoelectronics study of large molecules, particularly π-stacking molecules, such as DNA is really an extremely difficult task. We perform first electronic structure calculations on the heterocyclic bases of 2'-deoxyribonucleic acid based on Lorentz-Fresnel dispersion theory. In the UV-VIS range of spectrum, many of the optoelectronic parameters for DNA four bases namely adenine, guanine, cytosine and thymine are calculated and discussed. The results demonstrate that adenine has the highest hyperpolarizability, whereas thymine has the lowest hyperpolarizability. Cytosine has the lower average oscillator energy and the higher lattice energy. Thymine infers the most stable nucleic base with the lower phonon energy. Thymine also has the highest average oscillator energy and the lower lattice energy. Moreover, the four nucleic acid bases have large band gap energies less than 5 eV with a semiconducting behavior. Guanine shows the smallest band gap and the highest Fermi level energy, whereas adenine elucidates the highest band gap energy. Copyright © 2015. Published by Elsevier B.V.

  10. Photoreactions of ruthenium(II) and osmium(II) complexes with deoxyribonucleic acid (DNA).

    Science.gov (United States)

    Moucheron, C; Kirsch-De Mesmaeker, A; Kelly, J M

    1997-09-01

    The design of Ru(II) and Os(II) complexes which are photoreactive with deoxyribonucleic acid (DNA) represents one of the main targets for the development of novel molecular tools for the study of DNA and, in the future, for the production of new, metal-based, anti-tumor drugs. In this review, we explain how it is possible to make a complex photoreactive with nucleobases and nucleic acids. According to the photophysical behaviour of the Ru(II) compounds, two types of photochemistry are expected: (1) photosubstitution of a ligand by a nucleobase and another monodentate ligand, which takes place from the triplet, metal-centred (3MC) state; this state is populated thermally from the lowest lying triplet metal to ligand charge transfer (3MLCT) state; (2) photoreaction from the 3MLCT state, corresponding to photoredox processes with DNA bases. The two photoreactivities are in competition. By modulating appropriately the redox properties of the 3MLCT state, an electron transfer process from the base to the excited complex takes place, and is directly correlated with DNA cleavage or the formation of an adduct of the complex to DNA. In this adduct, guanine is linked by N2 to the alpha-position of a non-chelating nitrogen of the polyazaaromatic ligand without destruction of the complex. Different strategies are explained which increase the affinity of the complexes for DNA and direct the complex photoreactivity to sites of special DNA topology or targeted sequences of bases. Moreover, the replacement of the Ru(II) ion by the Os(II) ion in the photoreactive complexes leads to an increased specificity of photoreaction. Indeed, only one type of photoreactivity (from the 3MLCT state) is present for the Os(II) complexes because the 3MC state is too high in energy to be populated at room temperature.

  11. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes

    International Nuclear Information System (INIS)

    Wang Hui; Zhang Chengxiao; Li Yan; Qi Honglan

    2006-01-01

    A novel sensitive electrogenerated chemiluminescence (ECL) method for the detection deoxyribonucleic acid (DNA) hybridization based on gold nanoparticles carrying multiple probes was developed. Ruthenium bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)-N-hydroxysuccinimide ester (Ru(bpy) 2 (dcbpy)NHS) was used as a ECL label and gold nanoparticle as a carrier. Probe single strand DNA (ss-DNA) was self-assembled at the 3'-terminal with a thiol group to the surface of gold nanoparticle and covalently labeled at the 5'-terminal of a phosphate group with Ru(bpy) 2 (dcbpy)NHS and the resulting conjugate (Ru(bpy) 2 (dcbpy)NHS)-ss-DNA-Au, was taken as a ECL probe. When target analyte ss-DNA was immobilized on a gold electrode by self-assembled monolayer technique and then hybridized with the ECL probe to form a double-stranded DNA (ds-DNA), a strong ECL response was electrochemically generated. The ECL intensity was linearly related to the concentration of the complementary sequence (target ss-DNA) in the range from 1.0 x 10 -11 to 1.0 x 10 -8 mol L -1 , and the linear regression equation was S = 57301 + 4579.6 lg C (unit of C is mol L -1 ). A detection limit of 5.0 x 10 -12 mol L -1 for target ss-DNA was achieved. The ECL signal generated from many reporters of ECL probe prepared is greatly amplified, compared to the convention scheme which is based on one reporter per hybridization event

  12. Molecular dynamics simulations of deoxyribonucleic acids and repair enzyme T4 endonuclease V

    International Nuclear Information System (INIS)

    Pinak, Miroslav

    1999-01-01

    This report describes the results of molecular dynamics (MD) simulation of deoxyribonucleic acids (DNA) and specific repair enzyme T4 endonuclease V. Namely research described here is focused on the examination of specific recognition process, in which this repair enzyme recognizes the damaged site on the DNA molecule-thymine dimer (TD). TD is frequent DNA damage induced by UV radiation in sun light and unless properly repaired it may be mutagenic or lethal for cell, and is also considered among the major causes of skin cancer. T4 endonuclease V is a DNA specific repair enzyme from bacteriophage T4 that catalyzes the first reaction step of TD repair pathway. MD simulations of three molecules - native DNA dodecamer (12 base pairs), DNA of the same sequence of nucleotides as native one but with TD, and repair enzyme T4 endonuclease V - were performed for 1 ns individually for each molecule. Simulations were analyzed to determine the role of electrostatic interaction in the recognition process. It is found that electrostatic energies calculated for amino acids of the enzyme have positive values of around +15 kcal/mol. The electrostatic energy of TD site has negative value of approximately -9 kcal/mol, different from the nearly neutral value of the respective thymines site of the native DNA. The electrostatic interaction of TD site with surrounding water environment differs from the electrostatic interaction of other nucleotides. Differences found between TD site and respective thymines site of native DNA indicate that the electrostatic energy is an important factor contributing to proper recognition of TD site during scanning process in which enzyme scans the DNA. In addition to the electrostatic energy, the important factor in recognition process might be structural complementarity of enzyme and bent DNA with TD. There is significant kink formed around TD site, that is not observed in native DNA. (author)

  13. Oxygen-independent direct deoxyribonucleic acid backbone breakage caused by rose bengal and visible light

    Energy Technology Data Exchange (ETDEWEB)

    Peak, M J; Peak, J G; Foote, C S; Krinsky, N I

    1984-01-01

    An oxygen enhancement ratio of 10 for the induction of backbone single-strand breaks (SSBs) in purified deoxyribonucleic acid (DNA) by monochromatic 365 nm UV radiation was obtained. Similarly, a dose reduction factor of 10 was observed when the DNA was irradiated in the presence of 0.1 M diazabicyclo(2.2.2)octane (DABCO). To determine whether this breakage of DNA was due to the action of a reactive oxygen species such as singlet oxygen, we used the photosensitizing dye Rose Bengal and visible light as a system for generating singlet oxygen. Treatment of the DNA with Rose Bengal and 545 nm monochromatic light enhanced the rate of induction of SSBs six times, compared with the rate we obtained when the light was used alone. Elimination of oxygen or addition of 0.1 M DABCO during the 545 nm irradiation in the presence of Rose Bengal did not alter the enhancement of SSBs in the DNA caused by Rose Bengal and 545 nm radiation. The induction of SSBs in the DNA caused by irradiation of the DNA by 545 nm light in the presence of Rose Bengal was not enhanced by the use of D/sub 2/O instead of H/sub 2/O as a solvent. The results indicate that Rose Bengal plus visible light can cause biological damage without the intermediacy of reactive oxygen species, i.e. Rose Bengal and visible light can react directly with biological material, in reactions that appear to be type I photosensitized processes, independent of singlet oxygen as an intermediate.

  14. pH-responsive deoxyribonucleic acid capture/release by polydopamine functionalized magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Ma, Xiangdong; Ding, Chun; Jia, Li, E-mail: jiali@scnu.edu.cn

    2015-03-03

    Highlights: • PDA@Fe{sub 3}O{sub 4} were prepared and applied for efficient extraction of DNA from pathogens. • The DNA capture and release by PDA@Fe{sub 3}O{sub 4} was pH-induced. • The adsorption capacity of PDA@Fe{sub 3}O{sub 4} for DNA was 161 mg g{sup −1}. • PDA@Fe{sub 3}O{sub 4} based MSPE was combined with PCR and CE for rapid detection of pathogens. - Abstract: Polydopamine functionalized magnetic nanoparticles (PDA@Fe{sub 3}O{sub 4}) were prepared and characterized by transmission electron microscopy, scanning electron microscopy, zeta potential and vibrating sample magnetometry. They were found to enable highly efficient capture of genomic deoxyribonucleic acid (DNA). The adsorption capacity of PDA@Fe{sub 3}O{sub 4} for genomic DNA can reach 161 mg g{sup −1}. The extraction protocol used aqueous solutions for DNA binding to and releasing from the surface of the magnetic particles based on the pH inducing the charge switch of amino and phenolic hydroxyl groups on PDA@Fe{sub 3}O{sub 4}. The extracted DNA with high quality (A{sub 260}/A{sub 280} = 1.80) can be directly used as templates for polymerase chain reaction (PCR) followed by capillary electrophoresis (CE) analysis. None of the toxic chemical reagents and PCR inhibitors was used throughout the whole procedure. PDA@Fe{sub 3}O{sub 4} based magnetic solid phase extraction (MSPE) method was superior to those using commercial kit and traditional phenol–chloroform extraction methods in yield of DNA. The developed PDA@Fe{sub 3}O{sub 4} based MSPE-PCR-CE method was applied for simultaneous and fast detection of Listeria monocytogenes and Escherichia coli O157:H7 in milk.

  15. A MapReduce approach to diminish imbalance parameters for big deoxyribonucleic acid dataset.

    Science.gov (United States)

    Kamal, Sarwar; Ripon, Shamim Hasnat; Dey, Nilanjan; Ashour, Amira S; Santhi, V

    2016-07-01

    In the age of information superhighway, big data play a significant role in information processing, extractions, retrieving and management. In computational biology, the continuous challenge is to manage the biological data. Data mining techniques are sometimes imperfect for new space and time requirements. Thus, it is critical to process massive amounts of data to retrieve knowledge. The existing software and automated tools to handle big data sets are not sufficient. As a result, an expandable mining technique that enfolds the large storage and processing capability of distributed or parallel processing platforms is essential. In this analysis, a contemporary distributed clustering methodology for imbalance data reduction using k-nearest neighbor (K-NN) classification approach has been introduced. The pivotal objective of this work is to illustrate real training data sets with reduced amount of elements or instances. These reduced amounts of data sets will ensure faster data classification and standard storage management with less sensitivity. However, general data reduction methods cannot manage very big data sets. To minimize these difficulties, a MapReduce-oriented framework is designed using various clusters of automated contents, comprising multiple algorithmic approaches. To test the proposed approach, a real DNA (deoxyribonucleic acid) dataset that consists of 90 million pairs has been used. The proposed model reduces the imbalance data sets from large-scale data sets without loss of its accuracy. The obtained results depict that MapReduce based K-NN classifier provided accurate results for big data of DNA. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Identification of a Herbal Powder by Deoxyribonucleic Acid Barcoding and Structural Analyses.

    Science.gov (United States)

    Sheth, Bhavisha P; Thaker, Vrinda S

    2015-10-01

    Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. To identify a herbal powder obtained from a herbalist in the local vicinity of Rajkot, Gujarat, using deoxyribonucleic acid (DNA) barcoding and molecular tools. The DNA was extracted from a herbal powder and selected Cassia species, followed by the polymerase chain reaction (PCR) and sequencing of the rbcL barcode locus. Thereafter the sequences were subjected to National Center for Biotechnology Information (NCBI) basic local alignment search tool (BLAST) analysis, followed by the protein three-dimension structure determination of the rbcL protein from the herbal powder and Cassia species namely Cassia fistula, Cassia tora and Cassia javanica (sequences obtained in the present study), Cassia Roxburghii, and Cassia abbreviata (sequences retrieved from Genbank). Further, the multiple and pairwise structural alignment were carried out in order to identify the herbal powder. The nucleotide sequences obtained from the selected species of Cassia were submitted to Genbank (Accession No. JX141397, JX141405, JX141420). The NCBI BLAST analysis of the rbcL protein from the herbal powder showed an equal sequence similarity (with reference to different parameters like E value, maximum identity, total score, query coverage) to C. javanica and C. roxburghii. In order to solve the ambiguities of the BLAST result, a protein structural approach was implemented. The protein homology models obtained in the present study were submitted to the protein model database (PM0079748-PM0079753). The pairwise structural alignment of the herbal powder (as template) and C. javanica and C. roxburghii (as targets individually) revealed a close similarity of the herbal powder with C. javanica. A strategy as used here, incorporating the integrated use of DNA barcoding and protein structural analyses could be adopted, as a novel

  17. Evaluation of deoxyribonucleic acid (DNA) isolated from human bloodstains exposed to ultraviolet light, heat, humidity, and soil contamination

    International Nuclear Information System (INIS)

    McNally, L.; Shaler, R.C.; Baird, M.; Balazs, I.; De Forest, P.; Kobilinsky, L.

    1989-01-01

    This study was designed to analyze the effects of common environmental insults on the ability to obtain deoxyribonucleic acid (DNA) restriction fragment-length polymorphisms (RFLP) patterns from laboratory prepared specimens. The environmental conditions studied include the exposure of dried bloodstains to varying amounts of relative humidity (0, 33, 67, and 98%), heat (37 degree C), and ultraviolet light for periods of up to five days. In addition, the effect of drying over a four-day period in whole blood collected with and without ethylenediaminetetraacetate (EDTA) was examined. The results of the study showed that, under the conditions studied, the integrity of DNA is not altered such that false RFLP patterns are obtained. The only effect observed was that the overall RFLP pattern becomes weaker, but individual RFLP fragments are neither created nor destroyed

  18. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  19. Ability of Bacillus subtilis protoplasts to repair irradiated bacteriophage deoxyribonucleic acid via acquired and natural enzymatic systems

    International Nuclear Information System (INIS)

    Yasbin, R.E.; Andersen, B.J.; Sutherland, B.M.

    1981-01-01

    A novel form of enzyme therapy was achieved by utilizing protoplasts of Bacillus subtilis. Photoreactivating enzyme of Escherichia coli was successfully inserted into the protoplasts of B. subtilis treated with polyethylene glycol. This enzyme was used to photoreactivate ultraviolet-damaged bacteriophage deoxyribonucleic acid (DNA). Furthermore, in polyethylene glycol-treated protoplasts, ultraviolet-irradiated transfecting bacteriophage DNA was shown to be a functional substrate for the host DNA excision repair system. Previous results (R.E. Yasbin, J.D. Fernwalt, and P.I. Fields, J. Bacteriol.; 137: 391-396) showed that ultraviolet-irradiated bacteriophage DNA could not be repaired via the excision repair system of competent cells. Therefore, the processing of bacteriophage DNA by protoplasts and by competent cells must be different. This sensitive protoplast assay can be used to identify and to isolate various types of DNA repair enzymes

  20. Comparison of the Rate and Extent of Deoxyribonucleic Acid Repair and Semi-Conservative Synthesis in Bacteria Exposed to Ultra-Violet Light

    Energy Technology Data Exchange (ETDEWEB)

    Billen, D. [Radiation Biology Laboratory and Departments of Microbiology and Radiology, College of Medicine, University of Florida, Gainesville, FL (United States)

    1968-08-15

    Many bacterial strains possess the ability to repair genetic damage resulting from ultra-violet light (u.v. ) exposure. Of major importance is the occurrence of a 'repair' type of deoxyribonucleic acid (DNA) replication during 'dark repair', which presumably results in the replacement of the damaged portion of the genome. With deuterium, {sup 15}N and {sup 13}C as a density label, and buoyant density centrifugation in CsCl as a means of separating pre and post-irradiation synthesized DNA strands, the rate and extent of DNA repair synthesis in exponential - phase Escherichia coli strain B/r were determined. After u.v. exposure, {sup 3}H-thymine incorporation into the 'heavy' parental DNA strands was used to measure repair synthesis, while {sup 3}H-thymine incorporation into 'light' and newly synthesized DNA strands measured semi-conservative replication. The rate of bases incorporated by repair synthesis in the initial 15 minures of post-irradiation incubation at 37 Degree-Sign C appears to be saturated at a dose of approximately 100 ergs/mm{sup 2}. At higher doses (up to 600 ergs/mm{sup 2}) the increase observed was not proportional to dose. During this initial 15 minutes, less than 1% of the chromosomal DNA was replaced. The amount of DNA synthesized by semi-conservative replication during the initial 15 minutes was reduced with increasing u.v. dose. After exposure to 600 ergs/mm{sup 2}, repair and semiconservative DNA synthesis were nearly equivalent in the irradiated cells after 15 minutes of incubation. Repair synthesis was observed to be terminated by 45 minutes in bacteria exposed to 160 or 500 ergs/mm{sup 2} (64% and 10% survivors, respectively). The amount of genome replaced by repair synthesis at several doses was determined. Starvation for a required amino acid (resulting in an inhibition of protein and ribonucleic acid synthesis) did not prevent the repair synthesis nor grossly alter its extent. The restoration of the semi-conservative mo d e of DNA

  1. Preliminary individualized chemotherapy for malignant astrocytomas based on O6-methylguanine-deoxyribonucleic acid methyltransferase methylation analysis.

    Science.gov (United States)

    Watanabe, Takao; Katayama, Yoichi; Ogino, Akiyoshi; Ohta, Takashi; Yoshino, Atsuo; Fukushima, Takao

    2006-08-01

    O(6)-methylguanine-deoxyribonucleic acid methyltransferase gene (MGMT) methylation is apparently correlated with responsiveness to nitrosourea chemotherapy, suggesting this alkylating agent should be effective against MGMT-methylated tumors. MGMT appears not to be linked to platinum resistance, so platinum chemotherapy should be used for MGMT-unmethylated tumors. This study was a preliminary trial of individualized chemotherapy based on MGMT methylation status in a total of 20 patients with newly diagnosed malignant astrocytomas (9 anaplastic astrocytomas and 11 glioblastomas multiforme). The procarbazine, 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-2(2-chloroethyl)-3-nitrosourea, and vincristine (PAV) regimen was administered to seven patients with MGMT-methylated tumors, and the carboplatin and etoposide (CE) regimen was administered to 13 patients with MGMT-unmethylated tumors. Objective response to the PAV therapy was noted in all three patients with measurable residual tumor (2 complete responses and 1 partial response). Five of the seven patients continued to be disease-free after initiation of the PAV therapy. Objective response to the CE therapy was seen in only one of seven patients with measurable residual tumor (1 partial response). Three of the 13 patients were free from progression, whereas the remaining 10 patients showed early progression. The PAV regimen is effective against MGMT-methylated malignant astrocytomas, but the CE regimen is not useful at the given dose and schedule in MGMT-unmethylated tumors.

  2. The effect of swim-up and gradient sperm preparation techniques on deoxyribonucleic acid (DNA) fragmentation in subfertile patients.

    Science.gov (United States)

    Oguz, Yuksel; Guler, Ismail; Erdem, Ahmet; Mutlu, Mehmet Firat; Gumuslu, Seyhan; Oktem, Mesut; Bozkurt, Nuray; Erdem, Mehmet

    2018-03-23

    To compare the effect of two different sperm preparation techniques, including swim-up and gradient methods on sperm deoxyribonucleic acid (DNA) fragmentation status of semen samples from unexplained and mild male factor subfertile patients undergoing intrauterine insemination (IUI). A prospective randomized study was conducted in 65 subfertile patients, including 34 unexplained and 31 male factor infertility to compare basal and post-procedure DNA fragmentation rates in swim-up and gradient techniques. Sperm DNA fragmentation rates were evaluated by a sperm chromatin dispersion (SCD) test in two portions of each sample of semen that was prepared with either swim-up or gradient techniques. Sperm motility and morphology were also assessed based on WHO 2010 criteria. Swim-up but not gradient method yielded a statistically significant reduction in the DNA fragmented sperm rate after preparation as compared to basal rates, in the semen samples of both unexplained (41.85 ± 22.04 vs. 28.58 ± 21.93, p gradient) and mild male factor (46.61 ± 19.38 vs. 30.32 ± 18.20, p gradient) subgroups. Swim-up method significantly reduces sperm DNA fragmentation rates and may have some prognostic value on intrauterine insemination in patients with decreased sperm DNA integrity.

  3. Physical size of the donor locus and transmission of Haemophilus influenzae ampicillin resistance genes by deoxyribonucleic acid-mediated transformation

    International Nuclear Information System (INIS)

    Bendler, J.W. III

    1976-01-01

    The properties of donor deoxyribonucleic acid (DNA) from three clinical isolates and its ability to mediate the transformation of competent Rd strains to ampicillin resistance were examined. A quantitative technique for determining the resistance of individual Haemophilus influenzae cells to ampicillin was developed. When this technique was used, sensitive cells failed to tolerate levels of ampicillin greater than 0.1 to 0.2 μg/ml, whereas three resistant type b β-lactamase-producing strains could form colonies 1- to 3-μg/ml levels of the antibiotic. DNA extracted from the resistant strains elicited transformation of the auxotrophic genes in a multiply auxotrophic Rd strain. For two of the donors, transformation to ampicillin resistance occurred after the uptake of a single DNA molecule approximately 10 4 -fold less frequently than transformation of auxotrophic loci and was not observed to occur at all with the third. The frequency of transformation to ampicillin resistance was two- to fivefold higher in strain BC200 (Okinaka and Barnhart, 1974), which was cured of a defective prophage. All three clinical ampicillin-resistant strains were poor recipients, but the presence of the ampicillin resistant genes in strain BC200 did not reduce its competence

  4. Ionizing radiation damage to the folded chromosome of Escherichia coli K-12: repair of double-strand breaks in deoxyribonucleic acid

    International Nuclear Information System (INIS)

    Ulmer, M.K.; Gomez, R.F.; Sinskevy, A.J.

    1979-01-01

    The extremely gentle lysis and unfolding procedures that have been developed for the isolation of nucleoid deoxyribonucleic acid yield undamaged, replicating genomes, thus permitting direct measurement of the formation and repair of DNA double-strand breaks at biologically significant doses of ionizing radiation. Repair of ionizing radiation damage to folded chromosomes of Escherichia coli K-12 strain AB2497 was observed within 2 to 3 h of post-irradiation incubation in growth medium. Such behavior was not observed after post-irradiation incubation in growth medium of a recA13 strain (strain AB2487). A model based on recombinational repair is proposed to explain the formation of 2,200 to 2,300S material during early stages of incubation and to explain subsequent changes in the gradient profiles. Association of unrepaired DNA with the plasma membrane is proposed to explain the formation of a peak of rapidly sedimenting material (greater than 3,100S) during the later stage of repair. Direct evidence of repair of double-strand breaks during post-irradiation incubation in growth medium was obtained from gradient profiles of DNA from ribonuclease-digested chromosomes. The sedimentation coefficient of broken molecules was restored to the value of unirradiated DNA after 2 to 3 h of incubation, and the fraction of the DNA repaired in this fashion was equal to the fraction of cells that survived at the same dose. An average of 2.7 double-strand breaks per genome per lethal event was observed, suggesting that one to two double-strand breaks per genome are repairable in E. coli K-12 strain AB2497

  5. Characterization of deoxyribonucleic acid from cells infected with Aleutian disease virus

    International Nuclear Information System (INIS)

    Hahn, E.C.; Ramos, L.; Kenyon, A.J.

    1983-01-01

    Viral DNA was extracted from Crandell feline kidney (CRFK) cells infected with Aleutian disease virus (ADV) and labeled with [ 3 H]thymidine. The sedimentation coefficient in alkaline sucrose gradients was 16S corresponding to a molecular weight of 1.5 X 10(6). The buoyant densities of DNA from infected and control cells were determined by isopyknic sedimentation in CsCl and NaI gradients. Two additional peaks of [ 3 H]DNA were found in infected cells, but not in control cell extracts. Fractionation of this DNA on hydroxylapatite indicated that the new peaks represented a single-stranded component, density 1.728 g/cm3, and a double-stranded component, presumed to be a viral replicative intermediate, density 1.718 g/cm3. The target antigen formation in CRFK cells was measured by gamma-irradiation of ADV and assayed for focus formation. The calculated size of ADV based on these measurements was 1.1 X 10(6). The H-1 parvovirus also was shown to have a size of 1.5 X 10(6) daltons for both antigen and plaque formation. The data indicated similarities existed between ADV and other autonomously replicating parvoviruses in most properties, except that less-than-unit length genome of ADV may be transcribed

  6. Binding mechanisms for histamine and agmatine ligands in plasmid deoxyribonucleic acid purifications.

    Science.gov (United States)

    Sousa, Ângela; Pereira, Patrícia; Sousa, Fani; Queiroz, João A

    2014-10-31

    Histamine and agmatine amino acid derivatives were immobilized into monolithic disks, in order to combine the specificity and selectivity of the ligand with the high mass transfer and binding capacity offered by monolithic supports, to purify potential plasmid DNA biopharmaceuticals. Different elution strategies were explored by changing the type and salt concentration, as well as the pH, in order to understand the retention pattern of different plasmids isoforms The pVAX1-LacZ supercoiled isoform was isolated from a mixture of pDNA isoforms by using NaCl increasing stepwise gradient and also by ammonium sulfate decreasing stepwise gradient, in both histamine and agmatine monoliths. Acidic pH in the binding buffer mainly strengthened ionic interactions with both ligands in the presence of sodium chloride. Otherwise, for histamine ligand, pH values higher than 7 intensified hydrophobic interactions in the presence of ammonium sulfate. In addition, circular dichroism spectroscopy studies revealed that the binding and elution chromatographic conditions, such as the combination of high ionic strength with extreme pH values can reversibly influence the structural stability of the target nucleic acid. Therefore, ascending sodium chloride gradients with pH manipulation can be preferable chromatographic conditions to be explored in the purification of plasmid DNA biopharmaceuticals, in order to avoid the environmental impact of ammonium sulfate. Copyright © 2014. Published by Elsevier B.V.

  7. Superimposed Code Theoretic Analysis of Deoxyribonucleic Acid (DNA) Codes and DNA Computing

    Science.gov (United States)

    2010-01-01

    DNA strand and its Watson - Crick complement can be used to perform mathematical computation. This research addresses how the...Acid dsDNA double stranded DNA MOSAIC Mobile Stream Processing Cluster PCR Polymerase Chain Reaction RAM Random Access Memory ssDNA single stranded DNA WC Watson – Crick A Adenine C Cytosine G Guanine T Thymine ...are 5′→3′ and strands with strikethrough are 3′→5′. A dsDNA duplex formed between a strand and its reverse complement is called a

  8. In vitro antioxidant potential and deoxyribonucleic acid protecting activity of CNB-001, a novel pyrazole derivative of curcumin

    Directory of Open Access Journals (Sweden)

    Richard L Jayaraj

    2014-01-01

    Full Text Available Background: Free radicals are underpinned to initiate cascade of toxic events leading to oxidative stress and resultant cell death in many neurodegenerative disorders. Now-a-days antioxidants have become mandatory in the treatment of various diseases apart from the drug′s modes of action. CNB-001, a novel hybrid molecule synthesized by combining curcumin and cyclohexyl bisphenol A is known to possess various biological activities, but the antioxidative property of the compound has not yet been elucidated. Aim: The present study is aimed to analyze various free radicals scavenging by employing in vitro antioxidant assays and to evaluate the deoxyribonucleic acid (DNA protecting the ability of CNB-001 against hydroxyl radicals. Materials and methods: The in vitro antioxidant potential of CNB-001 was evaluated by analyzing its ability to scavenge DPPH, ABTS, nitric oxide, superoxide, hydrogen peroxide, superoxide anion, hydroxyl, hydrogen peroxide radicals and reducing power using spectroscopic method. The DNA protecting activity of CNB-001 was also evaluated on pUC19 plasmid DNA subjected to hydroxyl radicals using standard agarose gel electrophoresis. Results: From the assays, it was observed that CNB-001 scavenged free radicals effectively in a dose dependent manner. CNB-001 scavenged 2,2-diphenyl-1-picrylhydrazyl (IC50 = 44.99 μg/ml, 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid (IC50 = 17.99 μg/ml, nitric oxide (IC50 = 1.36 μg/ml, superoxide radical (IC50 = 77.17 μg/ml, hydrogen peroxide (IC50 = 492.7 μg/ml, superoxide (IC50 = 36.92 μg/ml and hydroxyl (IC50 = 456.5 μg/ml radicals effectively and the reducing power was found to be 11.53 μg/ml. CNB-001 showed considerable protecting activity against plasmid DNA (pUC19 strand scission by ·OH at dose dependent manner. Conclusion: Results from these assays concluded that CNB-001 has a good antioxidant potential by reducing reactive oxygen and reactive nitrogen radicals and it

  9. Interaction with Deoxyribonucleic Acid and Determination of Orientin in Lophatherum gracile Brongn by High-Performance Liquid Chromatography with Amperometric Detection

    International Nuclear Information System (INIS)

    Wang, Fang; Yan, Fangfang; Long, Yuling; Wang, Lili; Chen, Zilin

    2015-01-01

    The mechanisms of the electrochemical oxidation of orientin and its interaction with deoxyribonucleic acid have been investigated using glassy carbon electrode. The electrochemical response of orientin is due to oxidation of phenolic hydroxyl groups on orientin. The whole process is controlled by the adsorption step and concerned 4 electrons and 4 protons. Negative shift of potential and decrease of peak current for electrochemical oxidation of orientin can be observed at bare glassy carbon electrode and deoxyribonucleic acid modified electrode in 0.05 M Na_2HPO_4-KH_2PO_4 (pH 7.48), confirming the dominant electrostatic interaction between orientin and deoxyribonucleic acid. Moreover, a reliable and sensitive method of reversed-phase high-performance liquid chromatography-electrochemical detection has been developed for simultaneous determination of the isomer pair orientin/isoorientin. Chromatographic separation was carried out on a reversed-phase C_1_8 column and a mobile phase comprised of acetonitrile and acetate (0.5%, pH 2.97) by amperometric detection with a glassy carbon electrode at the working potential of +1.00 V. The method was validated for linearity, accuracy, precision, and limit of detection. Under the optimized conditions, linear regression analysis for the calibration curve showed a good linear relationship between peak area and their concentrations in the linear range of 89.2 nM to 59.5 μM for orientin with detection limit of 14.9 nM and 78.0 nM to 52.0 μM for isoorientin with a detection limit of 13.0 nM, respectively. Compared to the method using ultraviolet detection, the detection limits are greatly lowered. Finally, the proposed method has been successfully applied to the determination of orientin and isoorientin in Lophatherum gracile Brongn.

  10. An unusual mode of DNA duplex association: Watson-Crick interaction of all-purine deoxyribonucleic acids.

    Science.gov (United States)

    Battersby, Thomas R; Albalos, Maria; Friesenhahn, Michel J

    2007-05-01

    Nucleic acid duplexes associating through purine-purine base pairing have been constructed and characterized in a remarkable demonstration of nucleic acids with mixed sequence and a natural backbone in an alternative duplex structure. The antiparallel deoxyribose all-purine duplexes associate specifically through Watson-Crick pairing, violating the nucleobase size-complementarity pairing convention found in Nature. Sequence-specific recognition displayed by these structures makes the duplexes suitable, in principle, for information storage and replication fundamental to molecular evolution in all living organisms. All-purine duplexes can be formed through association of purines found in natural ribonucleosides. Key to the formation of these duplexes is the N(3)-H tautomer of isoguanine, preferred in the duplex, but not in aqueous solution. The duplexes have relevance to evolution of the modern genetic code and can be used for molecular recognition of natural nucleic acids.

  11. Effects of 5 Thio-D-Glucose on cellular adenosine triphosphate levels and deoxyribonucleic acid rejoining in hypoxic and aerobic Chinese hamster cells

    International Nuclear Information System (INIS)

    Nagle, W.A.; Moss, A.J. Jr.; Roberts, H.G. Jr.; Baker, M.L.

    1980-01-01

    Intracellular adenosine triphosphate (ATP) levels were measured in both hypoxic and aerobic cultures of V79 Chinese hamster cells treated with 5-thio-D-glucose (5-SH-D-Glc). This glucose analog, a known inhibitor of D-glucose transport and metabolism, reduced ATP in cell cultures allowed to become hypoxic by cell metabolism, but not in aerobic cultures treated similarly. Cells depleted of ATP were unable to rejoin x-ray induced deoxyribonucleic acid (DNA) strand breaks as measured by the alkaline sucrose gradient sedimentation technique. The inference for radiation therapy is that inhibition of glucose metabolism selectively depletes energy reserves in hypoxic cells, rendering these cells more radiosensitive and leading to a more effective tumor treatment

  12. Study of the interaction of enzyme Heparanase 1 (HPSE1) active with deoxyribonucleic acids; Estudo de interacao da enzima Heparanase 1 (HPSE 1) ativa com acido desoxirribonucleicos

    Energy Technology Data Exchange (ETDEWEB)

    Cid, Gisele da Silva

    2016-07-01

    The human heparanase 1 (HPSE 1) is a protein with multiple functions and has emerged as a promising therapeutic target in the context of antitumor therapy. This fact is due to its clinical relevance in the tumor development and progression, as determined by their enzymatic ability to degrade heparan sulfate (HS), the main constituent of the extracellular matrix, providing a tumor microenvironment to tumor dissemination. In addition, this protein plays a significant role in the increase of tumor cells migration ionizing radiation dose delivery in radiotherapy from the increase in the expression levels of HPSE1. In order to evaluate in more detail the functions of active HPSE1, it has been proposed to characterize the interaction of human heparanase protein 1 with deoxyribonucleic acids. Our results are original and point to a new function of HPSE1 of the endonuclease type. (author)

  13. Evaluation of Deoxyribonucleic Acid Toxicity Induced by the Radiopharmaceutical 99mTechnetium-Methylenediphosphonic Acid and by Stannous Chloride in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Adriano Caldeira-de-Araujo

    2012-11-01

    Full Text Available Radiopharmaceuticals are employed in patient diagnostics and disease treatments. Concerning the diagnosis aspect, technetium-99m (99mTc is utilized to label radiopharmaceuticals for single photon computed emission tomography (SPECT due to its physical and chemical characteristics. 99mTc fixation on pharmaceuticals depends on a reducing agent, stannous chloride (SnCl2 being the most widely-utilized. The genotoxic, clastogenic and anegenic properties of the 99mTc-MDP(methylene diphosphonate used for bone SPECT and SnCl2 were evaluated in Wistar rat blood cells using the Comet assay and micronucleus test. The experimental approach was to endovenously administer NaCl 0.9% (negative control, cyclophosphamide 50 mg/kg b.w. (positive control, SnCl2 500 μg/mL or 99mTc-MDP to animals and blood samples taken immediately before the injection, 3, and 24 h after (in the Comet assay and 36 h after, for micronucleus test. The data showed that both SnCl2 and 99mTc-MDP-induced deoxyribonucleic acid (DNA strand breaks in rat total blood cells, suggesting genotoxic potential. The 99mTc-MDP was not able to induce a significant DNA strand breaks increase in in vivo assays. Taken together, the data presented here points to the formation of a complex between SnCl2 in the radiopharmaceutical 99mTc-MDP, responsible for the decrease in cell damage, compared to both isolated chemical agents. These findings are important for the practice of nuclear medicine.

  14. Semi-conservative deoxyribonucleic acid synthesis in unirradiated and ultraviolet-irradiated xeroderma pigmentosum and normal human skin fibroblasts

    International Nuclear Information System (INIS)

    Rude, J.M.; Friedberg, E.C.

    1977-01-01

    Rates of semiconservative DNA synthesis have been investigated in asynchronous xeroderma pigmentosum (XP), XP variant, and normal human skin fibroblasts using the technique of cellular autoradiography. In unirradiated cells, no differences in DNA synthesis rates were detected among the three cell strains. Exposure to UV radiation caused the rate of DNA synthesis to decrease for at least three hours in all three cell strains. In the normal cell strain, recovery of the DNA synthetic rate occurred at later times following a UV fluence of 5 J/m 2 . At this same UV fluence, recovery was absent in classical XP cells during a 24 h post-irradiation period while it was slower than normal in XP variant cells. When the UV fluence to classical XP and XP variant cells was reduced so that survival in all three cell strains was approximately the same (25%), recovery of the DNA synthetic rate was similar in all three cell strains. These results are discussed in terms of current models of DNA replication in UV-irradiated cells and indicate: (1) that pyrimidine dimers are very effective blocks to DNA synthesis and (2) that there is no inherent defect in semiconservative DNA synthesis in either classical XP or XP variant cells which is independent of a defect in DNA repair capacity

  15. Semi-conservative deoxyribonucleic acid synthesis in unirradiated and ultraviolet-irradiated xeroderma pigmentosum and normal human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Rude' e, J.M.; Friedberg, E.C.

    1977-03-01

    Rates of semiconservative DNA synthesis have been investigated in asynchronous xeroderma pigmentosum (XP), XP variant, and normal human skin fibroblasts using the technique of cellular autoradiography. In unirradiated cells, no differences in DNA synthesis rates were detected among the three cell strains. Exposure to uv radiation caused the rate of DNA synthesis to decrease for at least three hours in all three cell strains. In the normal cell strain, recovery of the DNA synthetic rate occurred at later times following a uv fluence of 5 J/m2. At this same uv fluence, recovery was absent in classical XP cells during a 24 h post-irradiation period while it was slower than normal in XP variant cells. When the uv fluence to classical XP and XP variant cells was reduced so that survival in all three cell strains was approximately the same (25%), recovery of the DNA synthetic rate was similar in all three cell strains. These results are discussed in terms of current models of DNA replication in uv-irradiated cells and indicate: (1) that pyrimidine dimers are very effective blocks to DNA synthesis and (2) that there is no inherent defect in semi-conservative DNA synthesis in either classical XP or XP variant cells which is independent of a defect in DNA repair capacity.

  16. Modification and restriction of T-even bacteriophages. In vitro degradation of deoxyribonucleic acid containing 5-hydroxymethylctosine.

    Science.gov (United States)

    Fleischman, R A; Cambell, J L; Richardson, C C

    1976-03-25

    Using the single-stranded circular DNA of bacteriophage fd as template, double-stranded circular DNA has been prepared in vitro with either 5-hydroxymethylcytosine ([hmdC]DNA) or cytosine ([dC]DNA) in the product strand. Extracts prepared from Escherichia coli cells restrictive to T-even phage containing nonglucosylated DNA degrade [hmdC]DNA to acid-soluble material in vitro, but do not degrade [dC]dna. In contrast, extracts prepared from E. coli K12 rglA- rglB-, a strain permissive to T-even phage containing nonglucosylated DNA, do not degrade [hmdC]DNA or [dC]DNA. In addition, glucosylation of the [hmdC]DNA renders it resistant to degradation by extracts from restrictive strains. The conversion of [hmdC]DNA to acid-soluble material in vitro consists of an HmCyt-specific endonucleolytic cleavage requiring the presence of the RglB gene product to form a linear molecule, followed by a non-HmCyt-specific hydrolysis of the linear DNA to acid-soluble fragments, catalyzed in part by exonuclease V. The RglB protein present in extracts of E. coli K12 rglA- rglB+ has been purified 200-fold by complementation with extracts from E. coli K12 rglA- rglB-. The purified RglB protein does not contain detectable HmCyt-specific endonuclease or exonuclease activity. In vitro endonucleolytic cleavage of [hmdC]DNA thus requires additional factors present in cell extracts.

  17. Inhibition of rotavirus replication by downregulation of fatty acid synthesis.

    Science.gov (United States)

    Gaunt, Eleanor R; Cheung, Winsome; Richards, James E; Lever, Andrew; Desselberger, Ulrich

    2013-06-01

    Recently the recruitment of lipid droplets (LDs) to sites of rotavirus (RV) replication was reported. LDs are polymorphic organelles that store triacylglycerols, cholesterol and cholesterol esters. The neutral fats are derived from palmitoyl-CoA, synthesized via the fatty acid biosynthetic pathway. RV-infected cells were treated with chemical inhibitors of the fatty acid biosynthetic pathway, and the effects on viral replication kinetics were assessed. Treatment with compound C75, an inhibitor of the fatty acid synthase enzyme complex (FASN), reduced RV infectivity 3.2-fold (P = 0.07) and modestly reduced viral RNA synthesis (1.2-fold). Acting earlier in the fatty acid synthesis pathway, TOFA [5-(Tetradecyloxy)-2-furoic acid] inhibits the enzyme acetyl-CoA carboxylase 1 (ACC1). TOFA reduced the infectivity of progeny RV 31-fold and viral RNA production 6-fold. The effect of TOFA on RV infectivity and RNA replication was dose-dependent, and infectivity was reduced by administering TOFA up to 4 h post-infection. Co-treatment of RV-infected cells with C75 and TOFA synergistically reduced viral infectivity. Knockdown by siRNA of FASN and ACC1 produced findings similar to those observed by inhibiting these proteins with the chemical compounds. Inhibition of fatty acid synthesis using a range of approaches uniformly had a more marked impact on viral infectivity than on viral RNA yield, inferring a role for LDs in virus assembly and/or egress. Specific inhibitors of fatty acid metabolism may help pinpoint the critical structural and biochemical features of LDs that are essential for RV replication, and facilitate the development of antiviral therapies.

  18. 11beta-hydroxysteroid dehydrogenase complementary deoxyribonucleic acid in rainbow trout: cloning, sites of expression, and seasonal changes in gonads.

    Science.gov (United States)

    Kusakabe, Makoto; Nakamura, Ikumi; Young, Graham

    2003-06-01

    11beta-Hydroxysteroid dehydrogenases (11beta-HSDs) are important steroidogenic enzymes for catalyzing the interconversion of active glucocorticoid (cortisol and corticosterone) and inert 11-keto forms (cortisone and 11-dehydrocorticosterone) in mammals. In teleosts, 11beta-HSD also plays a role in the production of the predominant androgen, 11-ketotestosterone, in male fish. In this study we cloned cDNAs encoding rainbow trout 11beta-HSD (rt11beta-HSD) from testes and head kidney. The predicted amino acid sequence, hydrophobicity analysis, and transient transfection assays with rt11beta-HSD in HEK293 cells showed that rt11beta-HSD is a homolog of mammalian 11beta-HSD type 2. rt11beta-HSD transcripts are present in steroidogenic tissues and in a number of other tissues. Strong in situ hybridization signals for rt11beta-HSD transcripts were found in Leydig cells of testes, in thecal cells of the early vitellogenic ovarian follicles, and in thecal and granulosa cells of the midvitellogenic and postovulatory follicles. Weaker signals were also found in head kidney interrenal cells from juvenile rainbow trout. Seasonal changes in rt11beta-HSD transcripts in testes showed a pattern similar to that of stress-induced serum cortisol levels, but not to serum androgen levels. High levels of rt11beta-HSD transcripts were found in ovarian follicles from late vitellogenesis through ovulation. These results raise the possibility of a role for rt11beta-HSD in the protection of developing gonads from the inhibitory effects of stress-induced cortisol.

  19. Analysis of ribo- and deoxyribonucleic acids using ionpair-reversed-phase liquid-chromatography electrospray-mass spectrometry

    International Nuclear Information System (INIS)

    Hoelzl, G.

    2002-10-01

    The fast progress in natural sciences like biology, biochemistry, medicine or genetics make high demands on the analytical chemistry. The on-line coupling of ionpair-reversed phase-liquid chromatography (IP-RP-HPLC) to mass spectrometry (MS) becomes more and more the method of choice for the analysis of biomolecules. The success is based on the introduction of soft ionization methods, like electrospray ionization (ESI), which allows the transfer of intact biopolymers into the gasphase. This combination enables the on-line separation of complex biological mixtures with additional identification of the compounds by their molecular mass. The first part describes the development of a new ionsource, which combines the advantages of a micro-ESI- and a nanospray-source. In combination with additional optimization of the chromatographic conditions the new ionsource showed an improvement of the quality of the spectra by a factor of 5 and a stability of the ionspray by a factor of 2, which resulted in an overall improvement of sensitivity by a factor of 10 for the HPLC-MS system. The second part describes the quality control of synthetic RNA molecules. Using IP-RP-HPLC-ESI-MS it was possible to separate failure sequences and derivatives in raw products of short synthetic RNAs. The derivatives were formed of protecting groups, which were not removed during the deprotection step. The analysis of coupling products of the synthesis of aminoacylated transfer RNAs showed a derivative, which was formed by the addition of the used coupling reagent N-(3-dimethylaminopropyl)N'-ethylcarbodiimide (EDC). The identification of the derivatives led to the optimization of the reaction conditions which resulted in the synthesis of the wanted transfer RNA without any additional derivatives. Another experiment involved the fragmentation of RNA molecules. Tandem mass spectrometry provides the opportunity to determine the sequence of nucleic acids. Fragmentation experiments showed different

  20. Fluorescence quenching of graphene oxide combined with the site-specific cleavage of restriction endonuclease for deoxyribonucleic acid demethylase activity assay

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lijuan; Qian, Yingdan; Wu, Ping; Zhang, Hui; Cai, Chenxin, E-mail: cxcai@njnu.edu.cn

    2015-04-15

    Highlights: • An approach for sensitive and selective DNA demethylase activity assay is reported. • This assay is based on the fluorescence quenching of GO and site-specific cleavage of endonuclease. • It can determine as low as 0.05 ng mL{sup −1} of MBD2 with a linear range of 0.2–300 ng mL{sup −1}. • It has an ability to recognize MBD2 from other possibly coexisting proteins and cancer cell extracts. • It can avoid false signals, requiring no bisulfite conversion, PCR amplification, radioisotope-labeling. - Abstract: We report on the development of a sensitive and selective deoxyribonucleic acid (DNA) demethylase (using MBD2 as an example) activity assay by coupling the fluorescence quenching of graphene oxide (GO) with the site-specific cleavage of HpaII endonuclease to improve the selectivity. This approach was developed by designing a single-stranded probe (P1) that carries a binding region to facilitate the interaction with GO, which induces fluorescence quenching of the labeled fluorophore (FAM, 6-carboxyfluorescein), and a sensing region, which contains a hemi-methylated site of 5′-CmCGG-3′, to specifically recognize the target (T1, a 32-mer DNA from the promoter region of p53 gene) and hybridize with it to form a P1/T1 duplex. After demethylation with MBD2, the duplex can be specifically cleaved using HpaII, which releases the labeled FAM from the GO surface and results in the recovery of fluorescence. However, this cleavage is blocked by the hemi-methylation of this site. Thus, the magnitude of the recovered fluorescence signal is related to the MBD2 activity, which establishes the basis of the DNA demethylase activity assay. This assay can determine as low as ∼(0.05 ± 0.01) ng mL{sup −1} (at a signal/noise of 3) of MBD2 with a linear range of 0.2–300 ng mL{sup −1} and recognize MBD2 from other possibly coexisting proteins and cancer cell extracts. The advantage of this assay is its ability to avoid false signals and no

  1. First improvements in the detection and quantification of label-free nucleic acids by laser-induced breakdown spectroscopy: Application to the deoxyribonucleic acid micro-array technology

    International Nuclear Information System (INIS)

    Le Meur, Julien; Menut, Denis; Wodling, Pascal; Salmon, Laurent; Thro, Pierre-Yves; Chevillard, Sylvie; Ugolin, Nicolas

    2008-01-01

    The accurate quantification of nucleic acids is essential in many fields of modern biology and industry, and in some cases requires the use of fluorescence labeling. Yet, in addition to standardization problems and quantification reproducibility, labeling can modify the physicochemical properties of molecules or affect their stability. To address these limitations, we have developed a novel method to detect and quantify label-free nucleic acids. This method is based on stoichiometric proportioning of phosphorus in the nucleic acid skeleton, using laser-induced breakdown spectroscopy, and a specific statistical analysis, which indicates the error probability for each measurement. The results obtained appear to be quantitative, with a limit of detection of 10 5 nucleotides/μm 2 (i.e. 2 x 10 13 phosphorus atoms/cm 2 ). Initial micro-array analysis has given very encouraging results, which point to new ways of quantifying hybridized nucleic acids. This is essential when comparing molecules of different sequences, which is presently very difficult with fluorescence labeling

  2. First improvements in the detection and quantification of label-free nucleic acids by laser-induced breakdown spectroscopy: Application to the deoxyribonucleic acid micro-array technology

    Energy Technology Data Exchange (ETDEWEB)

    Le Meur, Julien [Laboratoire de Cancerologie Experimentale, Commissariat a l' Energie Atomique de Fontenay-aux-Roses, Direction des Sciences du Vivant, Departement de Radiobiologie et Radiopathologie, Fontenay-aux-Roses (France); Menut, Denis [Laboratoire de Reactivite des Surfaces et des Interfaces, Commissariat a l' Energie Atomique de Saclay, Direction de l' Energie Nucleaire, Departement de Physico-Chimie, Gif sur Yvette (France); Wodling, Pascal [Laboratoire d' Interaction Laser-Matiere, Commissariat a l' Energie Atomique de Saclay, Direction de l' Energie Nucleaire, Departement de Physico-Chimie, Gif sur Yvette (France); Salmon, Laurent [Laboratoire de Reactivite des Surfaces et des Interfaces, Commissariat a l' Energie Atomique de Saclay, Direction de l' Energie Nucleaire, Departement de Physico-Chimie, Gif sur Yvette (France); Thro, Pierre-Yves [Laboratoire d' Interaction Laser-Matiere, Commissariat a l' Energie Atomique de Saclay, Direction de l' Energie Nucleaire, Departement de Physico-Chimie, Gif sur Yvette (France); Chevillard, Sylvie [Laboratoire de Cancerologie Experimentale, Commissariat a l' Energie Atomique de Fontenay-aux-Roses, Direction des Sciences du Vivant, Departement de Radiobiologie et Radiopathologie, Fontenay-aux-Roses (France); Ugolin, Nicolas [Laboratoire de Cancerologie Experimentale, Commissariat a l' Energie Atomique de Fontenay-aux-Roses, Direction des Sciences du Vivant, Departement de Radiobiologie et Radiopathologie, Fontenay-aux-Roses (France)], E-mail: nugolin@cea.fr

    2008-04-15

    The accurate quantification of nucleic acids is essential in many fields of modern biology and industry, and in some cases requires the use of fluorescence labeling. Yet, in addition to standardization problems and quantification reproducibility, labeling can modify the physicochemical properties of molecules or affect their stability. To address these limitations, we have developed a novel method to detect and quantify label-free nucleic acids. This method is based on stoichiometric proportioning of phosphorus in the nucleic acid skeleton, using laser-induced breakdown spectroscopy, and a specific statistical analysis, which indicates the error probability for each measurement. The results obtained appear to be quantitative, with a limit of detection of 10{sup 5} nucleotides/{mu}m{sup 2} (i.e. 2 x 10{sup 13} phosphorus atoms/cm{sup 2}). Initial micro-array analysis has given very encouraging results, which point to new ways of quantifying hybridized nucleic acids. This is essential when comparing molecules of different sequences, which is presently very difficult with fluorescence labeling.

  3. Identification of Three Kinds of Citri Reticulatae Pericarpium Based on Deoxyribonucleic Acid Barcoding and High-performance Liquid Chromatography-diode Array Detection-electrospray Ionization/Mass Spectrometry/Mass Spectrometry Combined with Chemometric Analysis

    Science.gov (United States)

    Yu, Xiaoxue; Zhang, Yafeng; Wang, Dongmei; Jiang, Lin; Xu, Xinjun

    2018-01-01

    Background: Citri Reticulatae Pericarpium is the dried mature pericarp of Citrus reticulata Blanco which can be divided into “Chenpi” and “Guangchenpi.” “Guangchenpi” is the genuine Chinese medicinal material in Xinhui, Guangdong province; based on the greatest quality and least amount, it is most expensive among others. Hesperidin is used as the marker to identify Citri Reticulatae Pericarpium described in the Chinese Pharmacopoeia 2010. However, both “Chenpi” and “Guangchenpi” contain hesperidin so that it is impossible to differentiate them by measuring hesperidin. Objective: Our study aims to develop an efficient and accurate method to separate and identify “Guangchenpi” from other Citri Reticulatae Pericarpium. Materials and Methods: The genomic deoxyribonucleic acid (DNA) of all the materials was extracted and then the internal transcribed spacer 2 was amplified, sequenced, aligned, and analyzed. The secondary structures were created in terms of the database and website established by Jörg Schultz et al. High-performance liquid chromatography-diode array detection-electrospray Ionization/mass spectrometry (HPLC-DAD-ESI-MS)/MS coupled with chemometric analysis was applied to compare the differences in chemical profiles of the three kinds of Citri Reticulatae Pericarpium. Results: A total of 22 samples were classified into three groups. The results of DNA barcoding were in accordance with principal component analysis and hierarchical cluster analysis. Eight compounds were deduced from HPLC-DAD-ESI-MS/MS. Conclusions: This method is a reliable and effective tool to differentiate the three Citri Reticulatae Pericarpium. SUMMARY The internal transcribed spacer 2 regions and the secondary structure among three kinds of Citri Reticulatae Pericarpium varied considerablyAll the 22 samples were analyzed by high-performance liquid chromatography (HPLC) to obtain the chemical profilesPrincipal component analysis and hierarchical cluster analysis

  4. Time-resolved studies of energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)- porphyrin to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide along deoxyribonucleic acid Chain.

    Science.gov (United States)

    Kakiuchi, Toshifumi; Ito, Fuyuki; Nagamura, Toshihiko

    2008-04-03

    The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the Förster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.

  5. Bilateral lesions of suprachiasmatic nuclei affect circadian rhythms in [3H]-thymidine incorporation into deoxyribonucleic acid in mouse intestinal tract, mitotic index of corneal epithelium, and serum corticosterone

    International Nuclear Information System (INIS)

    Scheving, L.E.; Tsai, T.H.; Powell, E.W.; Pasley, J.N.; Halberg, F.; Dunn, J.

    1983-01-01

    Investigations into the role of the suprachiasmatic nuclei (SCN) in the coordination of circadian rhythms have presented differing results. Several reports have shown that ablation of the suprachiasmatic nuclei (SCNA) alters the phase and amplitude of rhythms but does not abolish them. The present study investigates the effect of SCNA on the rhythms in cell proliferation in various regions of the intestinal tract as measured by the incorporation of [ 3 H]-thymidine into deoxyribonucleic acid, in the mitotic activity of the corneal epithelium, and in serum corticosterone levels. The study involved mice with verified lesions of the SCN (six to 13 mice per time point) and control groups of both sham-operated and unoperated mice (seven of each per time point). The mice were killed in groups that represented seven time points over a single 24 hr span (3 hr intervals with the 0800 hr sampled both at start and end of the series). The tissues examined were the tongue, esophagus, gastric stomach, and colon for DNA synthesis, the corneal epithelium for mitotic index, and blood serum for corticosterone level. The most consistent result of SCNA was a phase advance in the rhythms in cell proliferation in the tongue, esophagus, gastric stomach, colon, and corneal epithelium. A reduction in rhythm amplitude occurred in the tongue, esophagus, and corneal epithelium; however, there was an amplitude increase for the stomach, colon, and serum corticosterone. The mesor (rhythm-adjusted mean) was increased by SCNA in all tissues except the corneal epithelium. These findings further support the role of the suprachiasmatic nuclear area in the control of rhythms in cell proliferation and corticosterone production, by acting as a ''phase-resetter'' and as a modulator of rhythm amplitude

  6. Deoxyribonucleic acid directed metallization of platinum nanoparticles on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells

    Science.gov (United States)

    Peera, S. Gouse; Sahu, A. K.; Arunchander, A.; Nath, Krishna; Bhat, S. D.

    2015-11-01

    Effective surface functionalization to the hydrophobic graphite nanofibers (GNF) is performed with the biomolecule, namely deoxy-ribo-nucleic-acid (DNA) via π-π interactions. Pt nanoparticles are impregnated on GNF-DNA composite by ethylene glycol reduction method (Pt/GNF-DNA) and its effect on electro catalytic activity for oxygen reduction reaction (ORR) is systemically studied. Excellent dispersion of Pt nanoparticles over GNF-DNA surfaces with no evidence on particle aggregation is a remarkable achievement in this study. This result in higher electro chemical surface area of the catalyst, enhanced ORR behavior with significant enhancement in mass activity. The catalyst is validated in H2-O2 polymer electrolyte fuel cell (PEFC) and a peak power density of 675 mW cm-2 is achieved at a load current density of 1320 mA cm-2 with a minimal catalyst loading of 0.1 mg cm-2 at a cell temperature of 70 °C and 2 bar absolute pressure. Repeated potential cycling up to 10000 cycles in acidic media is also performed for this catalyst and found excellent stability with only 60 mV drop in the ORR half wave potential. The superior behavior of Pt/GNF-DNA catalyst is credited to the robust fibrous structure of GNF and its effective surface functionalization process via π-π interaction.

  7. A comparative study on the interaction of phenazinium dyes with low pH induced protonated structure and B-form structure of naturally occurring deoxyribonucleic acid

    International Nuclear Information System (INIS)

    Pradhan, Ankur Bikash; Das, Shubhajit; Haque, Lucy; Bhuiya, Sutanwi; Das, Suman

    2016-01-01

    The interaction of two phenazinium dyes namely Phenosafranine (PSF) and Safranin T (ST) with right-handed B-form and left-handed protonated form of Calf Thymus (CT) DNA was investigated using different spectroscopic techniques. Both the dyes have been shown to bind strongly to the right-handed B-form of DNA by the mechanism intercalation as revealed from fluorescence quenching, circular dichroism (CD) and viscosity measurement. From circular dichroic studies it was evidenced that both of them convert the low pH induced left-handed protonated form of DNA back to the bound right-handed form. Scatchard analysis showed that both the dyes bound strongly to B-form of DNA in a non-cooperative manner. In case of protonated form, there was sequential conversion of the polynucleotide from left-handed to the bound right-handed conformation. Our results suggest that the binding environment of the dyes in the two forms of DNA is similar and our data predict that PSF is more effective in the conversion than ST. Experimental data enabled the calculation of the number of base pairs of protonated-form that adopted a right-handed conformation for each bound dye. Our data revealed that PSF is more effective in the conversion compard to that of ST. These results are attributed to greater steric crowd in ST compared to PSF which restricts the former to intercalate between DNA base pairs. The results of these studies allow a better understanding of dye-polymorphic nucleic acid interactions at a molecular level.

  8. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus.

    Directory of Open Access Journals (Sweden)

    Kiwamu Hyodo

    2015-05-01

    Full Text Available Eukaryotic positive-strand RNA [(+RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA, a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids, but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+RNA virus, Red clover necrotic mosaic virus (RCNMV. We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.

  9. Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus.

    Science.gov (United States)

    Soto-Acosta, Rubén; Bautista-Carbajal, Patricia; Syed, Gulam H; Siddiqui, Aleem; Del Angel, Rosa M

    2014-09-01

    Dengue is the most common mosquito borne viral disease in humans. The infection with any of the 4 dengue virus serotypes (DENV) can either be asymptomatic or manifest in two clinical forms, the mild dengue fever or the more severe dengue hemorrhagic fever that may progress into dengue shock syndrome. A DENV replicative cycle relies on host lipid metabolism; specifically, DENV infection modulates cholesterol and fatty acid synthesis, generating a lipid-enriched cellular environment necessary for viral replication. Thus, the aim of this work was to evaluate the anti-DENV effect of the Nordihydroguaiaretic acid (NDGA), a hypolipidemic agent with antioxidant and anti-inflammatory properties. A dose-dependent inhibition in viral yield and NS1 secretion was observed in supernatants of infected cells treated for 24 and 48 h with different concentrations of NDGA. To evaluate the effect of NDGA in DENV replication, a DENV4 replicon transfected Vero cells were treated with different concentrations of NDGA. NDGA treatment significantly reduced DENV replication, reiterating the importance of lipids in viral replication. NDGA treatment also led to reduction in number of lipid droplets (LDs), the neutral lipid storage organelles involved in DENV morphogenesis that are known to increase in number during DENV infection. Furthermore, NDGA treatment resulted in dissociation of the C protein from LDs. Overall our results suggest that NDGA inhibits DENV infection by targeting genome replication and viral assembly. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Protocol optimization for deoxyribonucleic acid (DNA) extraction ...

    African Journals Online (AJOL)

    MUNAWAR ROOMI

    2013-12-18

    Dec 18, 2013 ... research institutes, such as National Agricultural Research Centre. (NARC) .... and was experienced on soybean, chickpea seeds and wheat. When high ... suitable for molecular marker and transgenic analysis. Afr. J.

  11. Protocol optimization for deoxyribonucleic acid (DNA) extraction ...

    African Journals Online (AJOL)

    Arachis hypogaea L.) is particularly problematic due to the presence of phenolic compounds and polysaccharides. Inconsistencies in extraction results can be attributed to the age and growth stages of the plant material analyzed. Mature leaves ...

  12. Isolation of deoxyribonucleic acids (A Review)

    International Nuclear Information System (INIS)

    Garcia Pineda, M. de

    1974-01-01

    The criteria of choice in this Review have been to gather some of the last advances in the methodology of DNAs isolation; also the description of the generally accepted procedures has been emphasized. Only papers published before March 1974 are reviewed, because this work has been finished during this month. (Author) 109 refs

  13. The deoxyribonucleic acid of Micrococcus radiodurans

    Science.gov (United States)

    Schein, Arnold H.

    1966-01-01

    The DNA of Micrococcus radiodurans was prepared by three methods. Although the recovery of DNA varied considerably, the percentage molar base ratios of the DNA from the three preparations were essentially the same: guanine, 33±2; adenine, 18±1; cytosine, 33±2; thymine, 17±1. Base compositions calculated from Tm values and from density in caesium chloride gradients also yielded guanine+cytosine contents of 66 and 68% of total bases respectively. No unusual bases were observed. The S20,w values were characteristic of high-molecular-weight DNA. Electron microscopy showed the purified DNA in long strands; occasionally these were coiled. Images(a)(b)(c)(d)(e)Fig. 1. PMID:16742439

  14. Fatty acid translocase promoted hepatitis B virus replication by upregulating the levels of hepatic cytosolic calcium.

    Science.gov (United States)

    Huang, Jian; Zhao, Lei; Yang, Ping; Chen, Zhen; Ruan, Xiong Z; Huang, Ailong; Tang, Ni; Chen, Yaxi

    2017-09-15

    Hepatitis B virus (HBV) is designated a "metabolovirus" due to the intimate connection between the virus and host metabolism. The nutrition state of the host plays a relevant role in the severity of HBV infection. Metabolic syndrome (MS) is prone to increasing HBV DNA loads and accelerating the progression of liver disease in patients with chronic hepatitis B (CHB). Cluster of differentiation 36 (CD36), also named fatty acid translocase, is known to facilitate long-chain fatty acid uptake and contribute to the development of MS. We recently found that CD36 overexpression enhanced HBV replication. In this study, we further explored the mechanism by which CD36 overexpression promotes HBV replication. Our data showed that CD36 overexpression increased HBV replication, and CD36 knockdown inhibited HBV replication. RNA sequencing found some of the differentially expressed genes were involved in calcium ion homeostasis. CD36 overexpression elevated the cytosolic calcium level, and CD36 knockdown decreased the cytosolic calcium level. Calcium chelator BAPTA-AM could override the HBV replication increased by CD36 overexpression, and the calcium activator thapsigargin could improve the HBV replication reduced by CD36 knockdown. We further found that CD36 overexpression activated Src kinase, which plays an important role in the regulation of the store-operated Ca 2+ channel. An inhibitor of Src kinase (SU6656) significantly reduced the CD36-induced HBV replication. We identified a novel link between CD36 and HBV replication, which is associated with cytosolic calcium and the Src kinase pathway. CD36 may represent a potential therapeutic target for the treatment of CHB patients with MS. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. West Nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids.

    Directory of Open Access Journals (Sweden)

    Miguel A Martín-Acebes

    Full Text Available West Nile virus (WNV is a neurovirulent mosquito-borne flavivirus, which main natural hosts are birds but it also infects equines and humans, among other mammals. As in the case of other plus-stranded RNA viruses, WNV replication is associated to intracellular membrane rearrangements. Based on results obtained with a variety of viruses, different cellular processes have been shown to play important roles on these membrane rearrangements for efficient viral replication. As these processes are related to lipid metabolism, fatty acid synthesis, as well as generation of a specific lipid microenvironment enriched in phosphatidylinositol-4-phosphate (PI4P, has been associated to it in other viral models. In this study, intracellular membrane rearrangements following infection with a highly neurovirulent strain of WNV were addressed by means of electron and confocal microscopy. Infection of WNV, and specifically viral RNA replication, were dependent on fatty acid synthesis, as revealed by the inhibitory effect of cerulenin and C75, two pharmacological inhibitors of fatty acid synthase, a key enzyme of this process. However, WNV infection did not induce redistribution of PI4P lipids, and PI4P did not localize at viral replication complex. Even more, WNV multiplication was not inhibited by the use of the phosphatidylinositol-4-kinase inhibitor PIK93, while infection by the enterovirus Coxsackievirus B5 was reduced. Similar features were found when infection by other flavivirus, the Usutu virus (USUV, was analyzed. These features of WNV replication could help to design specific antiviral approaches against WNV and other related flaviviruses.

  16. Cross-catalytic peptide nucleic acid (PNA) replication based on templated ligation

    DEFF Research Database (Denmark)

    Singhal, Abhishek; Nielsen, Peter E

    2014-01-01

    We report the first PNA self-replicating system based on template directed cross-catalytic ligation, a process analogous to biological replication. Using two template PNAs and four pentameric precursor PNAs, all four possible carbodiimide assisted amide ligation products were detected...... precursors. Cross-catalytic product formation followed product inhibited kinetics, but approximately two replication rounds were observed. Analogous but less efficient replication was found for a similar tetrameric system. These results demonstrate that simpler nucleobase replication systems than natural...

  17. Cytotoxicity of alkylating agents towards sensitive and resistant strains of Escherichia coli in relation to extent and mode of alkylation of cellular macromolecules and repair of alkylation lesions in deoxyribonucleic acids.

    Science.gov (United States)

    Lawley, P D; Brookes, P

    1968-09-01

    . Effects of the sulphur mustards on nucleic acid synthesis in sensitive and resistant strains were studied. DNA synthesis was inhibited in both strains at low doses in a dose-dependent manner, but RNA and protein synthesis were not affected in this way. 9. DNA synthesis in E. coli B(s-1) was permanently inhibited by low doses of mustards. In the resistant strains 15T(-) and B/r a characteristic recovery in DNA synthesis was observed after a dose-dependent time-lag. This effect could be shown at low doses in the region of the mean lethal dose. 10. Cellular DNA was isotopically prelabelled and the effect of mustards on stability of DNA was investigated. With resistant strains a dose-dependent release of DNA nucleotide material into acid-soluble form was found; this was much more extensive with the difunctional mustard (about 400 nucleotides released per DNA alkylation) than with the monofunctional mustard (about 10 nucleotides per alkylation). With the sensitive strain no dose-dependent release was found, though the DNA was less stable independent of cellular alkylation. 11. The results are discussed in terms of the concepts that alkylation of cellular DNA induces lesions which interfere with DNA replication, but which can be enzymically ;repaired'. The possible nature of these lesions is discussed in terms of the known reactions of the alkylating agents with DNA.

  18. Human cytomegalovirus renders cells non-permissive for replication of herpes simplex viruses

    International Nuclear Information System (INIS)

    Cockley, K.D.

    1988-01-01

    The herpes simplex virus (HSV) genome during production infection in vitro may be subject to negative regulation which results in modification of the cascade of expression of herpes virus macromolecular synthesis leading to establishment of HSV latency. In the present study, human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of HSV type-1 (HSV-1). A delay in HSV replication of 15 hr as well as a consistent, almost 1000-fold inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 hr after superinfection were observed compared with controls infected with HSV alone. HSV type-2 (HSV-2) replication was similarly inhibited in HCMV-infected HEL cells. Prior ultraviolet-irradiation (UV) of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HCMV deoxyribonucleic acid (DNA) negative temperature-sensitive (ts) mutants inhibited HSV replications as efficiently as wild-type (wt) HCMV at the non-permissive temperature. Evidence for penetration and replication of superinfecting HSV into HCMV-infected cells was provided by blot hybridization of HSV DNA synthesized in HSV-superinfected cell cultures and by cesium chloride density gradient analysis of [ 3 H]-labeled HSV-1-superinfected cells

  19. Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery.

    Science.gov (United States)

    Murphy, Anar K; Fitzgerald, Michael; Ro, Teresa; Kim, Jee Hyun; Rabinowitsch, Ariana I; Chowdhury, Dipanjan; Schildkraut, Carl L; Borowiec, James A

    2014-08-18

    Phosphorylation of replication protein A (RPA) by Cdk2 and the checkpoint kinase ATR (ATM and Rad3 related) during replication fork stalling stabilizes the replisome, but how these modifications safeguard the fork is not understood. To address this question, we used single-molecule fiber analysis in cells expressing a phosphorylation-defective RPA2 subunit or lacking phosphatase activity toward RPA2. Deregulation of RPA phosphorylation reduced synthesis at forks both during replication stress and recovery from stress. The ability of phosphorylated RPA to stimulate fork recovery is mediated through the PALB2 tumor suppressor protein. RPA phosphorylation increased localization of PALB2 and BRCA2 to RPA-bound nuclear foci in cells experiencing replication stress. Phosphorylated RPA also stimulated recruitment of PALB2 to single-strand deoxyribonucleic acid (DNA) in a cell-free system. Expression of mutant RPA2 or loss of PALB2 expression led to significant DNA damage after replication stress, a defect accentuated by poly-ADP (adenosine diphosphate) ribose polymerase inhibitors. These data demonstrate that phosphorylated RPA recruits repair factors to stalled forks, thereby enhancing fork integrity during replication stress. © 2014 Murphy et al.

  20. The effect of different replications of humic acid fertilization on yield ...

    African Journals Online (AJOL)

    Jane

    2011-06-22

    Jun 22, 2011 ... herbage yield (3045 kg ha-1) and plant height (61 cm) was obtained from soil 100% ... Key words: Crude protein, fertilization, fulvic acid, humic acid and vetch. .... The treatment material used in this study is liquid humic acid.

  1. The Acid Test for Biological Science: STAP Cells, Trust, and Replication.

    Science.gov (United States)

    Lancaster, Cheryl

    2016-02-01

    In January 2014, a letter and original research article were published in Nature describing a process whereby somatic mouse cells could be converted into stem cells by subjecting them to stress. These "stimulus-triggered acquisition of pluripotency" (STAP) cells were shown to be capable of contributing to all cell types of a developing embryo, and extra-embryonic tissues. The lead author of the publications, Haruko Obokata, became an overnight celebrity in Japan, where she was dubbed the new face of Japanese science. However, in the weeks that followed publication of the research, issues arose. Other laboratories and researchers (including authors on the original papers) found that they were unable to replicate Obokata et al.'s work. Closer scrutiny of the papers by the scientific community also suggested that there was manipulation of images that had been published, and Obokata was accused of misconduct. Those who should have been supervising her work (also her co-authors on the publications) were also heavily criticised. The STAP cell saga of 2014 is used as an example to highlight the importance of trust and replication in twenty-first century biological science. The role of trust in the scientific community is highlighted, and the effects on interactions between science and the public examined. Similarly, this essay aims to highlight the importance of replication, and how this is understood by researchers, the media, and the public. The expected behaviour of scientists in the twenty-first century is now more closely scrutinised.

  2. Roles of three amino acids of capsid proteins in mink enteritis parvovirus replication.

    Science.gov (United States)

    Mao, Yaping; Su, Jun; Wang, Jigui; Zhang, Xiaomei; Hou, Qiang; Bian, Dawei; Liu, Weiquan

    2016-08-15

    Virulent mink enteritis parvovirus (MEV) strain MEV-LHV replicated to higher titers in feline F81 cells than attenuated strain MEV-L. Phylogenetic and sequence analyses of the VP2 gene of MEV-LHV, MEV-L and other strains in GenBank revealed two evolutionary branches separating virulent and attenuated strains. Three residues, 101, 232 and 411, differed between virulent and attenuated strains but were conserved within the two branches. Site-directed mutagenesis of the VP2 gene of infectious plasmids of attenuated strain MEV-L respectively replacing residues 101 Ile and 411 Ala with Thr and Glu of virulent strains (MEV-L I101T and MEV-L A411E) increased replication efficiency but still to lower levels than MEV-LHV. However, viruses with mutation of residue 232 (MEV-L I232V and MEV-L I101T/I232V/A411E) decreased viral transcription and replication levels. The three VP2 residues 101, 232 and 411, located on or near the capsid surface, played different roles in the infection processes of MEV. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Monitoring Replication Protein A (RPA) dynamics in homologous recombination through site-specific incorporation of non-canonical amino acids.

    Science.gov (United States)

    Pokhrel, Nilisha; Origanti, Sofia; Davenport, Eric Parker; Gandhi, Disha; Kaniecki, Kyle; Mehl, Ryan A; Greene, Eric C; Dockendorff, Chris; Antony, Edwin

    2017-09-19

    An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. The effects of ionizing radiation on deoxyribonucleic acid

    International Nuclear Information System (INIS)

    Cullis, P.M.; Jones, G.D.D.; Lea, J.; Symons, M.C.R.; Sweeney, M.

    1987-01-01

    Exposure of frozen, deoxygenated, aqueous solutions of DNA to 60 Co γ-rays at 77 K results in the formation of guanine-centred radical-cations (Gsup(radical +)) and thymine-centred radical-anions (Tsup(radical -)). Both these primary centres are thought to be capable of inducing DNA strand-breaks, both single (SSB) and double (DSB). When low concentrations of a range of water-soluble thiols were added, there was no change in the initial yield of Gsup(radical +) and Tsup(radical -) as judged from the e.s.r. spectra. However, on annealing, the normal pattern of radical reactions was abruptly modified at ca. 200 ± 5 K, with the DNA-centred radicals being dramatically reduced in concentration with the concomitant growth of e.s.r. signals characteristic of RSsup(radical) - SR - radical-anions. For example, for solutions containing one thiol molecule per 25 base-pairs, there was a loss of ca. 50% in the concentration of DNA radicals at this temperature. Using plasmid DNA, the change in the numbers of SSBs and DSBs was monitored when various thiols were present. There was a marked fall in the yields of both these events, in accord with the e.s.r. results. It is concluded that these thiols react by hydrogen-atom donation to various DNA radicals thereby forming RSsup(radical) radicals which rapidly form RSsup(radical)SR - radical-anions. It seems that, under our conditions, neither of these sulphur radicals is able to react with DNA. In the presence of oxygen, the results are less definitive, the degree of repair being a function of the relative concentrations of oxygen and thiol. E.s.r. evidence for the formation of DNA-centred peroxy radicals and their reaction with thiols is presented, and also there is evidence for the addition of oxygen to RSsup(radical) radicals to give RSOsup(anion radical) 2 radicals. The latter are probably able to react with DNA. (author)

  5. Amplification of deoxyribonucleic acid (DNA) fragment using two ...

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... polymerases on this method, whether different lengths of. DNA fragments could be amplified by two-step PCR and the difference of DNA product quality produced by the two methods. MATERIALS AND METHODS. PCR template and reagents. Enterobacteria phage lambda DNA (GenBank no: V00636) ...

  6. Reversible entrapment of plasmid deoxyribonucleic acid on different chromatographic supports.

    Science.gov (United States)

    Gabor, Boštjan; Černigoj, Urh; Barut, Miloš; Štrancar, Aleš

    2013-10-11

    HPLC based analytical assay is a powerful technique that can be used to efficiently monitor plasmid DNA (pDNA) purity and quantity throughout the entire purification process. Anion exchange monolithic and non-porous particle based stationary phases were used to study the recovery of the different pDNA isoforms from the analytical column. Three differently sized pDNA molecules of 3.0kbp, 5.2kbp and 14.0kbp were used. Plasmid DNA was injected onto columns under the binding conditions and the separation of the isoforms took place by increasing the ionic strength of the elution buffer. While there was no substantial decrease of the recovered supercoiled and linear isoforms of the pDNA with the increase of the plasmid size and with the increase of the flow rate (recoveries in all cases larger than 75%), a pronounced decrease of the oc isoform recovery was observed. The entrapment of the oc pDNA isoform occurred under non-binding conditions as well. The partial oc isoform elution from the column could be achieved by decreasing the flow rate of the elution mobile phase. The results suggested a reversible entrapment of the oc isoform in the restrictions within the pores of the monolithic material as well as within the intra-particle space of the non-porous particles. This phenomenon was observed on both types of the stationary phase morphologies and could only be connected to the size of a void space through which the pDNA needs to migrate. A prediction of reversible pDNA entrapment was successfully estimated with the calculation of Peclet numbers, Pe, which defines the ratio between a convective and diffusive mass transport. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    Science.gov (United States)

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  8. The nature of radiolesions in deoxyribonucleic acid and their repair

    International Nuclear Information System (INIS)

    Moustacchi, E.

    1976-01-01

    The nature of different damages induced by ionizing radiations in DNA is described. The main lesions are single strand breaks, double strands breaks and base modifications. The principal enzymatic repair systems are recalled [fr

  9. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice

    International Nuclear Information System (INIS)

    Shinya, Kyoko; Hamm, Stefan; Hatta, Masato; Ito, Hiroshi; Ito, Toshihiro; Kawaoka, Yoshihiro

    2004-01-01

    A single amino acid substitution, from glutamic acid to lysine at position 627 of the PB2 protein, converts a nonlethal H5N1 influenza A virus isolated from a human to a lethal virus in mice. In contrast to the nonlethal virus, which replicates only in respiratory organs, the lethal isolate replicates in a variety of organs, producing systemic infection. Despite a clear difference in virulence and organ tropism between the two viruses, it remains unknown whether the dissimilarity is a result of differences in cell tropism or the reduced replicative ability of the nonlethal virus in mouse cells in general. To determine how this single amino acid change affects virulence and organ tropism in mice, we investigated the growth kinetics of the two H5N1 viruses both in vitro and in vivo. The identity of the PB2 amino acid at position 627 did not appreciably affect viral replicative efficiency in chicken embryo fibroblasts and a quail cell line; however, viruses with lysine at this position instead of glutamic acid grew better in the different mouse cells tested. When the effect of this substitution was investigated in mice, all of the test viruses showed the same cell tropism, but infection by viruses containing lysine at position 627 spread more rapidly than those viruses containing glutamic acid at this position. Further analysis showed a difference in local immune responses: neutrophil infiltration in lungs infected with viruses containing lysine at position 627 persisted longer than that associated with viruses lacking a glutamic acid substitution. Our data indicate that the amino acid at position 627 of the PB2 protein determines the efficiency of viral replication in mouse (not avian) cells, but not tropism among cells in different mouse organs. The presence of lysine leads to more aggressive viral replication, overwhelming the host's defense mechanisms and resulting in high mortality rates in mice

  10. The value of repeating studies and multiple controls: replicated 28-day growth studies of rainbow trout exposed to clofibric acid.

    Science.gov (United States)

    Owen, Stewart F; Huggett, Duane B; Hutchinson, Thomas H; Hetheridge, Malcolm J; McCormack, Paul; Kinter, Lewis B; Ericson, Jon F; Constantine, Lisa A; Sumpter, John P

    2010-12-01

    Two studies to examine the effect of waterborne clofibric acid (CA) on growth-rate and condition of rainbow trout were conducted using accepted regulatory tests (Organisation for Economic Co-operation and Development [OECD] 215). The first study (in 2005) showed significant reductions after 21 d of exposure (21-d growth lowest-observed-effect concentration [LOEC] = 0.1 µg/L, 21-d condition LOEC = 0.1 µg/L) that continued to 28 d. Growth rate was reduced by approximately 50% (from 5.27 to 2.67% per day), while the condition of the fish reduced in a concentration-dependant manner. Additionally, in a concentration-dependent manner, significant changes in relative liver size were observed, such that increasing concentrations of CA resulted in smaller livers after 28-d exposure. A no-observed-effect concentration (NOEC) was not achieved in the 2005 study. An expanded second study (in 2006) that included a robust bridge to the 2005 study, with four replicate tanks of eight individual fish per concentration, did not repeat the 2005 findings. In the 2006 study, no significant effect on growth rate, condition, or liver biometry was observed after 21 or 28 d (28-d growth NOEC = 10 µg/L, 28-d condition NOEC = 10 µg/L), contrary to the 2005 findings. We do not dismiss either of these findings and suggest both are relevant and stand for comparison. However, the larger 2006 study carries more statistical power and multiple-tank replication, so probably produced the more robust findings. Despite sufficient statistical power in each study, interpretation of these and similar studies should be conducted with caution, because much significance is placed on the role of limited numbers of individual and tank replicates and the influence of control animals. Copyright © 2010 SETAC.

  11. Role of Cell-Penetrating Peptides in Intracellular Delivery of Peptide Nucleic Acids Targeting Hepadnaviral Replication

    DEFF Research Database (Denmark)

    Ndeboko, Benedicte; Ramamurthy, Narayan; Lemamy, Guy Joseph

    2017-01-01

    Peptide nucleic acids (PNAs) are potentially attractive antisense agents against hepatitis B virus (HBV), although poor cellular uptake limits their therapeutic application. In the duck HBV (DHBV) model, we evaluated different cell-penetrating peptides (CPPs) for delivery to hepatocytes of a PNA...

  12. Ebselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication

    OpenAIRE

    Mukherjee, Sourav; Weiner, Warren S.; Schroeder, Chad E.; Simpson, Denise S.; Hanson, Alicia M.; Sweeney, Noreena L.; Marvin, Rachel K.; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J.; Frick, David N.

    2014-01-01

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previousl...

  13. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication.

    Science.gov (United States)

    Mukherjee, Sourav; Weiner, Warren S; Schroeder, Chad E; Simpson, Denise S; Hanson, Alicia M; Sweeney, Noreena L; Marvin, Rachel K; Ndjomou, Jean; Kolli, Rajesh; Isailovic, Dragan; Schoenen, Frank J; Frick, David N

    2014-10-17

    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.

  14. Aspartic acid based nucleoside phosphoramidate prodrugs as potent inhibitors of hepatitis C virus replication.

    Science.gov (United States)

    Maiti, Munmun; Maiti, Mohitosh; Rozenski, Jef; De Jonghe, Steven; Herdewijn, Piet

    2015-05-14

    In view of a persistent threat to mankind, the development of nucleotide-based prodrugs against hepatitis C virus (HCV) is considered as a constant effort in many medicinal chemistry groups. In an attempt to identify novel nucleoside phosphoramidate analogues for improving the anti-HCV activity, we have explored, for the first time, aspartic acid (Asp) and iminodiacetic acid (IDA) esters as amidate counterparts by considering three 2'-C-methyl containing nucleosides, 2'-C-Me-cytidine, 2'-C-Me-uridine and 2'-C-Me-2'-fluoro-uridine. Synthesis of these analogues required protection for the vicinal diol functionality of the sugar moiety and the amino group of the cytidine nucleoside to regioselectively perform phosphorylation reaction at the 5'-hydroxyl group. Anti-HCV data demonstrate that the Asp-based phosphoramidates are ∼550 fold more potent than the parent nucleosides. The inhibitory activity of the Asp-ProTides was higher than the Ala-ProTides, suggesting that Asp would be a potential amino acid candidate to be considered for developing novel antiviral prodrugs.

  15. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution

    Directory of Open Access Journals (Sweden)

    Nauwynck Hans J

    2010-02-01

    Full Text Available Abstract Background Throughout the history of human influenza pandemics, pigs have been considered the most likely "mixing vessel" for reassortment between human and avian influenza viruses (AIVs. However, the replication efficiencies of influenza viruses from various hosts, as well as the expression of sialic acid (Sia receptor variants in the entire porcine respiratory tract have never been studied in detail. Therefore, we established porcine nasal, tracheal, bronchial and lung explants, which cover the entire porcine respiratory tract with maximal similarity to the in vivo situation. Subsequently, we assessed virus yields of three porcine, two human and six AIVs in these explants. Since our results on virus replication were in disagreement with the previously reported presence of putative avian virus receptors in the trachea, we additionally studied the distribution of sialic acid receptors by means of lectin histochemistry. Human (Siaα2-6Gal and avian virus receptors (Siaα2-3Gal were identified with Sambucus Nigra and Maackia amurensis lectins respectively. Results Compared to swine and human influenza viruses, replication of the AIVs was limited in all cultures but most strikingly in nasal and tracheal explants. Results of virus titrations were confirmed by quantification of infected cells using immunohistochemistry. By lectin histochemistry we found moderate to abundant expression of the human-like virus receptors in all explant systems but minimal binding of the lectins that identify avian-like receptors, especially in the nasal, tracheal and bronchial epithelium. Conclusions The species barrier that restricts the transmission of influenza viruses from one host to another remains preserved in our porcine respiratory explants. Therefore this system offers a valuable alternative to study virus and/or host properties required for adaptation or reassortment of influenza viruses. Our results indicate that, based on the expression of Sia

  16. Artificial domain duplication replicates evolutionary history of ketol-acid reductoisomerases.

    Science.gov (United States)

    Cahn, Jackson K B; Brinkmann-Chen, Sabine; Buller, Andrew R; Arnold, Frances H

    2016-07-01

    The duplication of protein structural domains has been proposed as a common mechanism for the generation of new protein folds. A particularly interesting case is the class II ketol-acid reductoisomerase (KARI), which putatively arose from an ancestral class I KARI by duplication of the C-terminal domain and corresponding loss of obligate dimerization. As a result, the class II enzymes acquired a deeply embedded figure-of-eight knot. To test this evolutionary hypothesis we constructed a novel class II KARI by duplicating the C-terminal domain of a hyperthermostable class I KARI. The new protein is monomeric, as confirmed by gel filtration and X-ray crystallography, and has the deeply knotted class II KARI fold. Surprisingly, its catalytic activity is nearly unchanged from the parent KARI. This provides strong evidence in support of domain duplication as the mechanism for the evolution of the class II KARI fold and demonstrates the ability of domain duplication to generate topological novelty in a function-neutral manner. © 2015 The Protein Society.

  17. Comparison of the effects of nafenopin, methyl clofenapate, WY-14,643 and clofibric acid on peroxisome proliferation and replicative DNA synthesis in rat liver

    International Nuclear Information System (INIS)

    Price, R.J.; Evans, J.G.; Lake, B.G.; Gangolli, S.D.

    1991-01-01

    A wide variety of chemicals have been shown to produce hepatic peroxisome proliferation (PP) in the rat and certain of these compounds are also hepatocarcinogens. In this study the authors have investigated the relationship between PP and cell replication in the rat liver. Male Sprague-Dawley rats were fed control diet or diet containing either 0.0125 and 0.05% nafenopin (NAF), 0.05% methyl clofenapate (MC), 0.025% Wy-14,643 (WY) or 0.5% clofibric acid (CA) for 1 and 15 wk. All four compounds produced marked liver enlargement and a sustained induction of peroxisomal (palmitoyl-CoA oxidation) and microsomal (lauric acid 12-hydroxylase) fatty acid oxidizing enzyme activities. Enzyme induction was less marked with 0.0125% NAF than with 0.05% NAF which was similar to that produced by the other three compounds. Replicative DNA synthesis was studied by implanting 7 day Alzet osmotic pumps containing [ 3 H]thymidine during wk 0-1 and 14-15. After 1 wk replicative DNA synthesis (assessed as radioactivity incorporated into homogenate DNA by scintillation counting) was increased in all treatment groups to 170-325% of control levels. Hepatocyte Labelling Index (determined by autoradiography of liver sections) was increased in all treated groups. After 15 wk hepatic DNA radioactivity levels were 155 and 200% of control in MC and WY treated rats, respectively, whereas NAF and CA had no effect. These results demonstrate that the relationship between the magnitude of PP and induction of cell replication depends on the compound being studied and that some peroxisome proliferators produce sustained stimulation of replicative DNA synthesis in the rat

  18. Docosahexaenoic acid for reading, working memory and behavior in UK children aged 7-9: A randomized controlled trial for replication (the DOLAB II study).

    Science.gov (United States)

    Montgomery, Paul; Spreckelsen, Thees F; Burton, Alice; Burton, Jennifer R; Richardson, Alexandra J

    2018-01-01

    Omega-3 fatty acids are central to brain-development of children. Evidence from clinical trials and systematic reviews demonstrates the potential of long-chain Omega-3 supplementation for learning and behavior. However, findings are inconclusive and in need of robust replication studies since such work is lacking. Replication of the 2012 DOLAB 1 study findings that a dietary supplementation with the long-chain omega-3 docosahexaenoic acid (DHA) had beneficial effects on the reading, working memory, and behavior of healthy schoolchildren. Parallel group, fixed-dose, randomized (minimization, 30% random element), double-blind, placebo-controlled trial (RCT). Mainstream primary schools (n = 84) from five counties in the UK in 2012-2015. Healthy children aged 7-9 underperforming in reading (reading, working memory, and behavior, parent-rated and as secondary outcome teacher-rated. 376 children were randomized. Reading, working memory, and behavior change scores showed no consistent differences between intervention and placebo group. Some behavioral subscales showed minor group differences. This RCT did not replicate results of the earlier DOLAB 1 study on the effectiveness of nutritional supplementation with DHA for learning and behavior. Possible reasons are discussed, particularly regarding the replication of complex interventions. www.controlled-trials.com (ISRCTN48803273) and protocols.io (https://dx.doi.org/10.17504/protocols.io.k8kczuw).

  19. Distributional Replication

    OpenAIRE

    Beare, Brendan K.

    2009-01-01

    Suppose that X and Y are random variables. We define a replicating function to be a function f such that f(X) and Y have the same distribution. In general, the set of replicating functions for a given pair of random variables may be infinite. Suppose we have some objective function, or cost function, defined over the set of replicating functions, and we seek to estimate the replicating function with the lowest cost. We develop an approach to estimating the cheapest replicating function that i...

  20. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    International Nuclear Information System (INIS)

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.; Fletcher, P.; O’Donnell, V.; Holinka, L.G.; Carey, L.B.; Lu, X.; Nieva, J.L.; Borca, M.V.

    2014-01-01

    E2, along with E rns and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, 818 CPIGWTGVIEC 828 , containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP 818 CPIGWTGVIEC 828 indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion

  1. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Sainz, I.J. [Plum Island Animal Disease Center, ARS, USDA (United States); Largo, E. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Gladue, D.P.; Fletcher, P. [Plum Island Animal Disease Center, ARS, USDA (United States); O’Donnell, V. [Plum Island Animal Disease Center, ARS, USDA (United States); Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Holinka, L.G. [Plum Island Animal Disease Center, ARS, USDA (United States); Carey, L.B. [Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), E-08003 Barcelona (Spain); Lu, X. [Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Nieva, J.L. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Borca, M.V., E-mail: manuel.borca@ars.usda.gov [Plum Island Animal Disease Center, ARS, USDA (United States)

    2014-05-15

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.

  2. Replication Catastrophe

    DEFF Research Database (Denmark)

    Toledo, Luis; Neelsen, Kai John; Lukas, Jiri

    2017-01-01

    Proliferating cells rely on the so-called DNA replication checkpoint to ensure orderly completion of genome duplication, and its malfunction may lead to catastrophic genome disruption, including unscheduled firing of replication origins, stalling and collapse of replication forks, massive DNA...... breakage, and, ultimately, cell death. Despite many years of intensive research into the molecular underpinnings of the eukaryotic replication checkpoint, the mechanisms underlying the dismal consequences of its failure remain enigmatic. A recent development offers a unifying model in which the replication...... checkpoint guards against global exhaustion of rate-limiting replication regulators. Here we discuss how such a mechanism can prevent catastrophic genome disruption and suggest how to harness this knowledge to advance therapeutic strategies to eliminate cancer cells that inherently proliferate under...

  3. The cholesterol, fatty acid and triglyceride synthesis pathways regulated by site 1 protease (S1P) are required for efficient replication of severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Urata, Shuzo; Uno, Yukiko; Kurosaki, Yohei; Yasuda, Jiro

    2018-06-12

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV), which has a high mortality rate. Currently, no licensed vaccines or therapeutic agents have been approved for use against SFTSV infection. Here, we report that the cholesterol, fatty acid, and triglyceride synthesis pathways regulated by S1P is involved in SFTSV replication, using CHO-K1 cell line (SRD-12B) that is deficient in site 1 protease (S1P) enzymatic activity, PF-429242, a small compound targeting S1P enzymatic activity, and Fenofibrate and Lovastatin, which inhibit triglyceride and cholesterol synthesis, respectively. These results enhance our understanding of the SFTSV replication mechanism and may contribute to the development of novel therapies for SFTSV infection. Copyright © 2018. Published by Elsevier Inc.

  4. Docosahexaenoic acid for reading, working memory and behavior in UK children aged 7-9: A randomized controlled trial for replication (the DOLAB II study.

    Directory of Open Access Journals (Sweden)

    Paul Montgomery

    Full Text Available Omega-3 fatty acids are central to brain-development of children. Evidence from clinical trials and systematic reviews demonstrates the potential of long-chain Omega-3 supplementation for learning and behavior. However, findings are inconclusive and in need of robust replication studies since such work is lacking.Replication of the 2012 DOLAB 1 study findings that a dietary supplementation with the long-chain omega-3 docosahexaenoic acid (DHA had beneficial effects on the reading, working memory, and behavior of healthy schoolchildren.Parallel group, fixed-dose, randomized (minimization, 30% random element, double-blind, placebo-controlled trial (RCT.Mainstream primary schools (n = 84 from five counties in the UK in 2012-2015.Healthy children aged 7-9 underperforming in reading (<20th centile. 1230 invited, 376 met study criteria.600 mg/day DHA (from algal oil, placebo: taste/color matched corn/soybean oil; for 16 weeks.Age-standardized measures of reading, working memory, and behavior, parent-rated and as secondary outcome teacher-rated.376 children were randomized. Reading, working memory, and behavior change scores showed no consistent differences between intervention and placebo group. Some behavioral subscales showed minor group differences.This RCT did not replicate results of the earlier DOLAB 1 study on the effectiveness of nutritional supplementation with DHA for learning and behavior. Possible reasons are discussed, particularly regarding the replication of complex interventions.www.controlled-trials.com (ISRCTN48803273 and protocols.io (https://dx.doi.org/10.17504/protocols.io.k8kczuw.

  5. Codon and amino acid usage in two major human pathogens of genus Bartonella--optimization between replicational-transcriptional selection, translational control and cost minimization.

    Science.gov (United States)

    Das, Sabyasachi; Paul, Sandip; Chatterjee, Sanjib; Dutta, Chitra

    2005-01-01

    Intra-genomic variation in synonymous codon and amino acid usage in two human pathogens Bartonella henselae and B. quintana has been carried out through multivariate analysis. Asymmetric mutational bias, coupled with replicational-transcriptional selection, has been identified as the prime selection force behind synonymous codon selection--a characteristic of the genus Bartonella, not exhibited by any other alpha-proteobacterial genome. Distinct codon usage patterns and low synonymous divergence values between orthologous sequences of highly expressed genes from the two Bartonella species indicate that there exists a residual intra-strand synonymous codon bias in the highly expressed genes, possibly operating at the level of translation. In the case of amino acid usage, the mean hydropathy level and aromaticity are the major sources of variation, both having nearly equal impact, while strand-specific mutational pressure and gene expressivity strongly influence the inter-strand variations. In both species under study, the highly expressed gene products tend not to contain heavy and/or aromatic residues, following the cost-minimization hypothesis in spite of their intracellular lifestyle. The codon and amino acid usage in these two human pathogens are, therefore, consequences of a complex balance between replicational-transcriptional selection, translational control, protein hydropathy and cost minimization.

  6. Database Replication

    CERN Document Server

    Kemme, Bettina

    2010-01-01

    Database replication is widely used for fault-tolerance, scalability and performance. The failure of one database replica does not stop the system from working as available replicas can take over the tasks of the failed replica. Scalability can be achieved by distributing the load across all replicas, and adding new replicas should the load increase. Finally, database replication can provide fast local access, even if clients are geographically distributed clients, if data copies are located close to clients. Despite its advantages, replication is not a straightforward technique to apply, and

  7. Short-Chain Fatty Acids from Periodontal Pathogens Suppress Histone Deacetylases, EZH2, and SUV39H1 To Promote Kaposi's Sarcoma-Associated Herpesvirus Replication

    Science.gov (United States)

    Yu, Xiaolan; Shahir, Abdel-Malek; Sha, Jingfeng; Feng, Zhimin; Eapen, Betty; Nithianantham, Stanley; Das, Biswajit; Karn, Jonathan; Weinberg, Aaron; Bissada, Nabil F.

    2014-01-01

    ABSTRACT Periodontal pathogens such as Porphyromonas gingivalis and Fusobacterium nucleatum produce five different short-chain fatty acids (SCFAs) as metabolic by-products. We detect significantly higher levels of SCFAs in the saliva of patients with severe periodontal disease. The different SCFAs stimulate lytic gene expression of Kaposi's sarcoma-associated herpesvirus (KSHV) dose dependently and synergistically. SCFAs inhibit class-1/2 histone deacetylases (HDACs) and downregulate expression of silent information regulator-1 (SIRT1). SCFAs also downregulate expression of enhancer of zeste homolog2 (EZH2) and suppressor of variegation 3-9 homolog1 (SUV39H1), which are two histone N-lysine methyltransferases (HLMTs). By suppressing the different components of host epigenetic regulatory machinery, SCFAs increase histone acetylation and decrease repressive histone trimethylations to transactivate the viral chromatin. These new findings provide mechanistic support that SCFAs from periodontal pathogens stimulate KSHV replication and infection in the oral cavity and are potential risk factors for development of oral Kaposi's sarcoma (KS). IMPORTANCE About 20% of KS patients develop KS lesions first in the oral cavity, while other patients never develop oral KS. It is not known if the oral microenvironment plays a role in oral KS tumor development. In this work, we demonstrate that a group of metabolic by-products, namely, short-chain fatty acids, from bacteria that cause periodontal disease promote lytic replication of KSHV, the etiological agent associated with KS. These new findings provide mechanistic support that periodontal pathogens create a unique microenvironment in the oral cavity that contributes to KSHV replication and development of oral KS. PMID:24501407

  8. Inhibitory effect of red ginseng acidic polysaccharide from Korean red ginseng on phagocytic activity and intracellular replication of Brucella abortus in RAW 264.7 cells.

    Science.gov (United States)

    Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon; Min, Won Gi; Lee, Hu Jang; Rhee, Man Hee; Chang, Hong Hee; Kim, Suk

    2016-09-30

    Korean red ginseng (KRG) has long been used in traditional Korean and Oriental medicine. However, the anti-bacterial mechanism and therapeutic efficiency of KGR for intracellular Brucella infection are still unclear. In this study, the bactericidal activity of Korean red ginseng acidic polysaccharide (RGAP) on Brucella (B.) abortus and its cytotoxic effects on RAW 264.7 cells were evaluated. In addition, B. abortus internalization and intracellular replication in macrophages were investigated after RGAP treatment. RGAP-incubated cells displayed a marked reduction in the adherence, internalization and intracellular growth of B. abortus in macrophages. Furthermore, decreased F-actin fluorescence was observed relative to untreated B. abortus-infected cells. Western blot analysis of intracellular signaling proteins revealed reduced ERK, JNK and p38α phosphorylation levels in B. abortus-infected RGAP-treated cells compared to the control. Moreover, elevated co-localization of B. abortus-containing phagosomes with lysosome-associated membrane protein 1 (LAMP-1) were observed in RGAP-treated cells compared with the control. Overall, the results of this study suggest that RGAP can disrupt phagocytic activity of B. abortus via suppression of mitogen-activated protein kinases (MAPKs) signaling proteins ERK, JNK and p38 levels and inhibit intracellular replication of B. abortus by enhancing phagolysosome fusion, which may provide an alternative control of brucellosis.

  9. Bioequivalence evaluation of two brands of amoxicillin/clavulanic acid 250/125 mg combination tablets in healthy human volunteers: use of replicate design approach.

    Science.gov (United States)

    Idkaidek, Nasir M; Al-Ghazawi, Ahmad; Najib, Naji M

    2004-12-01

    The purpose of this study was to apply a replicate design approach to a bioequivalence study of amoxicillin/clavulanic acid combination following a 250/125 mg oral dose to 23 subjects, and to compare the analysis of individual bioequivalence with average bioequivalence. This was conducted as a 2-treatment 2-sequence 4-period crossover study. Average bioequivalence was shown, while the results from the individual bioequivalence approach had no success in showing bioequivalence. In conclusion, the individual bioequivalence approach is a strong statistical tool to test for intra-subject variances and also subject-by-formulation interaction variance compared with the average bioequivalence approach. copyright (c) 2004 John Wiley & Sons, Ltd.

  10. Comparison of complete genome sequences of dog rabies viruses isolated from China and Mexico reveals key amino acid changes that may be associated with virus replication and virulence.

    Science.gov (United States)

    Yu, Fulai; Zhang, Guoqing; Zhong, Xiangfu; Han, Na; Song, Yunfeng; Zhao, Ling; Cui, Min; Rayner, Simon; Fu, Zhen F

    2014-07-01

    Rabies is a global problem, but its impact and prevalence vary across different regions. In some areas, such as parts of Africa and Asia, the virus is prevalent in the domestic dog population, leading to epidemic waves and large numbers of human fatalities. In other regions, such as the Americas, the virus predominates in wildlife and bat populations, with sporadic spillover into domestic animals. In this work, we attempted to investigate whether these distinct environments led to selective pressures that result in measurable changes within the genome at the amino acid level. To this end, we collected and sequenced the full genome of two isolates from divergent environments. The first isolate (DRV-AH08) was from China, where the virus is present in the dog population and the country is experiencing a serious epidemic. The second isolate (DRV-Mexico) was taken from Mexico, where the virus is present in both wildlife and domestic dog populations, but at low levels as a consequence of an effective vaccination program. We then combined and compared these with other full genome sequences to identify distinct amino acid changes that might be associated with environment. Phylogenetic analysis identified strain DRV-AH08 as belonging to the China-I lineage, which has emerged to become the dominant lineage in the current epidemic. The Mexico strain was placed in the D11 Mexico lineage, associated with the West USA-Mexico border clade. Amino acid sequence analysis identified only 17 amino acid differences in the N, G and L proteins. These differences may be associated with virus replication and virulence-for example, the short incubation period observed in the current epidemic in China.

  11. Noroviruses Co-opt the Function of Host Proteins VAPA and VAPB for Replication via a Phenylalanine-Phenylalanine-Acidic-Tract-Motif Mimic in Nonstructural Viral Protein NS1/2.

    Science.gov (United States)

    McCune, Broc T; Tang, Wei; Lu, Jia; Eaglesham, James B; Thorne, Lucy; Mayer, Anne E; Condiff, Emily; Nice, Timothy J; Goodfellow, Ian; Krezel, Andrzej M; Virgin, Herbert W

    2017-07-11

    The Norovirus genus contains important human pathogens, but the role of host pathways in norovirus replication is largely unknown. Murine noroviruses provide the opportunity to study norovirus replication in cell culture and in small animals. The human norovirus nonstructural protein NS1/2 interacts with the host protein VAMP-associated protein A (VAPA), but the significance of the NS1/2-VAPA interaction is unexplored. Here we report decreased murine norovirus replication in VAPA- and VAPB-deficient cells. We characterized the role of VAPA in detail. VAPA was required for the efficiency of a step(s) in the viral replication cycle after entry of viral RNA into the cytoplasm but before the synthesis of viral minus-sense RNA. The interaction of VAPA with viral NS1/2 proteins is conserved between murine and human noroviruses. Murine norovirus NS1/2 directly bound the major sperm protein (MSP) domain of VAPA through its NS1 domain. Mutations within NS1 that disrupted interaction with VAPA inhibited viral replication. Structural analysis revealed that the viral NS1 domain contains a mimic of the phenylalanine-phenylalanine-acidic-tract (FFAT) motif that enables host proteins to bind to the VAPA MSP domain. The NS1/2-FFAT mimic region interacted with the VAPA-MSP domain in a manner similar to that seen with bona fide host FFAT motifs. Amino acids in the FFAT mimic region of the NS1 domain that are important for viral replication are highly conserved across murine norovirus strains. Thus, VAPA interaction with a norovirus protein that functionally mimics host FFAT motifs is important for murine norovirus replication. IMPORTANCE Human noroviruses are a leading cause of gastroenteritis worldwide, but host factors involved in norovirus replication are incompletely understood. Murine noroviruses have been studied to define mechanisms of norovirus replication. Here we defined the importance of the interaction between the hitherto poorly studied NS1/2 norovirus protein and the

  12. Mutations of amino acids in the DNA-recognition domain of Epstein-Barr virus ZEBRA protein alter its sub-nuclear localization and affect formation of replication compartments

    International Nuclear Information System (INIS)

    Park, Richard; Heston, Lee; Shedd, Duane; Delecluse, Henri-Jacques; Miller, George

    2008-01-01

    ZEBRA, a transcription factor and DNA replication protein encoded by the Epstein-Barr virus (EBV) BZLF1 gene, plays indispensable roles in the EBV lytic cycle. We recently described the phenotypes of 46 single amino acid substitutions introduced into the DNA-recognition region of ZEBRA [Heston, L., El-Guindy, A., Countryman, J., Dela Cruz, C., Delecluse, H.J., and Miller, G. 2006]. The 27 DNA-binding-proficient mutants exhibited distinct defects in their ability to activate expression of the kinetic classes of viral genes. Four phenotypic variants could be discerned: wild-type, defective at activating Rta, defective at activating early genes, and defective at activating late genes. Here we analyze the distribution of ZEBRA within the nucleus and the localization of EA-D (the viral DNA polymerase processivity factor), an indicator of the development of replication compartments, in representatives of each phenotypic group. Plasmids encoding wild-type (WT) and mutant ZEBRA were transfected into 293 cells containing EBV-bacmids. WT ZEBRA protein was diffusely and smoothly distributed throughout the nucleus, sparing nucleoli, and partially recruited to globular replication compartments. EA-D induced by WT ZEBRA was present diffusely in some cells and concentrated in globular replication compartments in other cells. The distribution of ZEBRA and EA-D proteins was identical to WT following transfection of K188R, a mutant with a conservative change. The distribution of S186A mutant ZEBRA protein, defective for activation of Rta and EA-D, was identical to WT, except that the mutant ZEBRA was never found in globular compartments. Co-expression of Rta with S186A mutant rescued diffuse EA-D but not globular replication compartments. The most striking observation was that several mutant ZEBRA proteins defective in activating EA-D (R179A, K181A and A185V) and defective in activating lytic viral DNA replication and late genes (Y180E and K188A) were localized to numerous punctate

  13. Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA.

    Science.gov (United States)

    Prats, A C; Sarih, L; Gabus, C; Litvak, S; Keith, G; Darlix, J L

    1988-06-01

    Retrovirus virions carry a diploid genome associated with a large number of small viral finger protein molecules which are required for encapsidation. Our present results show that finger protein p12 of Rous sarcoma virus (RSV) and p10 of murine leukaemia virus (MuLV) positions replication primer tRNA on the replication initiation site (PBS) at the 5' end of the RNA genome. An RSV mutant with a Val-Pro insertion in the finger motif of p12 is able to partially encapsidate genomic RNA but is not infectious because mutated p12 is incapable of positioning the replication primer, tRNATrp. Since all known replication competent retroviruses, and the plant virus CaMV, code for finger proteins analogous to RSV p12 or MuLV p10, the initial stage of reverse transcription in avian, mammalian and human retroviruses and in CaMV is probably controlled in an analogous way.

  14. Conserved amino acids within the N-terminus of the West Nile virus NS4A protein contribute to virus replication, protein stability and membrane proliferation

    International Nuclear Information System (INIS)

    Ambrose, R.L.; Mackenzie, J.M.

    2015-01-01

    The West Nile virus strain Kunjin virus (WNV KUN ) NS4A protein is a multifunctional protein involved in many aspects of the virus life-cycle and is a major component of the WNV KUN replication complex (RC). Previously we identified a conserved region in the C-terminus of NS4A regulating proteolytic processing and RC assembly, and now investigate key conserved residues in the N-terminus of NS4A and their contribution to WNV KUN replication. Mutation of P13 completely ablated replication, whereas, mutation of P48 and D49, near the first transmembrane helix, and G66 within the helix, showed variable defects in replication, virion secretion and membrane proliferation. Intriguingly, the P48 and G66 NS4A mutants resulted in specific proteasome depletion of NS4A that could in part be rescued with a proteasome inhibitor. Our results suggest that the N-terminus of NS4A contributes to correct folding and stability, essential for facilitating the essential roles of NS4A during replication. - Highlights: • Mutation of Proline13 of the WNV NS4A protein is lethal to replication. • 1st TMB helix of NS4A contributes to protein stability and membrane remodelling. • Unstable mutants of NS4A can be rescued with a proteasome inhibitor. • This study (and of others) contributes to a functional mapping of the NS4A protein

  15. Database Replication Prototype

    OpenAIRE

    Vandewall, R.

    2000-01-01

    This report describes the design of a Replication Framework that facilitates the implementation and com-parison of database replication techniques. Furthermore, it discusses the implementation of a Database Replication Prototype and compares the performance measurements of two replication techniques based on the Atomic Broadcast communication primitive: pessimistic active replication and optimistic active replication. The main contributions of this report can be split into four parts....

  16. Four Proteins Synthesized in Response to Deoxyribonucleic Acid Damage in Micrococcus Radiodurans

    DEFF Research Database (Denmark)

    Hansen, M. T.

    1980-01-01

    Four proteins, alpha beta, gamma, and delta, preferentially synthesized in ultraviolet light-treated cells of Micrococcus radiodurans, were characterized in terms of their molecular weights and isoelectric points. Within the sublethal-dose range, the differential rate of synthesis for these prote......Four proteins, alpha beta, gamma, and delta, preferentially synthesized in ultraviolet light-treated cells of Micrococcus radiodurans, were characterized in terms of their molecular weights and isoelectric points. Within the sublethal-dose range, the differential rate of synthesis...

  17. Transport properties of poly(GACT)–poly(CTGA) deoxyribonucleic acid

    Indian Academy of Sciences (India)

    interface and the role of tube radius of nanotube contacts on the electronic transmission ... approaches, mostly use strictly one-dimensional tight-binding models [18–21] .... where ΣL(ΣR) is the self-energy matrix resulting from the coupling of the DNA .... where mα and mα run over the interfacial end-atoms of the SWNTs. gα.

  18. Spermine induced reversible collapse of deoxyribonucleic acid-bridged nanoparticle-based assemblies

    NARCIS (Netherlands)

    Göeken, Kristian L.; Schasfoort, Richardus B.M.; Subramaniam, Vinod; Gill, Ron

    DNA-linked 2D and 3D nano-assemblies find use in a diverse set of applications, ranging from DNA-origami in drug delivery and medical imaging, to DNA-linked nanoparticle structures for use in plasmonics and (bio)sensing. However, once these structures have been fully assembled, few options are

  19. Determination of mammalian deoxyribonucleic acid (DNA) in commercial vegetarian and vegan diets for dogs and cats.

    Science.gov (United States)

    Kanakubo, K; Fascetti, A J; Larsen, J A

    2017-02-01

    The determination of undeclared ingredients in pet food using different analytical methods has been reported in recent years, raising concerns regarding adequate quality control, dietary efficacy and the potential for purposeful adulteration. The objective of this study was to determine the presence or absence of mammalian DNA using multiplex polymerase chain reaction (PCR) on diets marketed as vegetarian or vegan for dogs and cats. The diets were tested in duplicate; two samples were purchased approximately 3 to 4 months apart with different lot numbers. Multiplex PCR-targeted mitochondrial DNA with two species-specific primers was used to amplify and sequence two sections of the cytochrome b gene for each of the 11 mammalian species. Half of the diets assessed (7/14) were positive for one or more undeclared mammalian DNA source (bovine, porcine, or ovine), and the result was repeatable for one or more species in six diets. While most of the detected DNA was found at both time points, in some cases, the result was positive only at one time point, suggesting the presence may have been due to unintentional cross-contact with animal-sourced ingredients. DNA from feline, cervine, canine, caprine, equine, murine (mouse and rat) and leporine was not identified in any samples. However, evidence of mammalian DNA does not confirm adulteration by the manufacturer nor elucidate its clinical significance when consumed by animals that may benefit from a vegetarian or vegan diet. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  20. Purification of influenza deoxyribonucleic acid-based vaccine using agmatine monolith.

    Science.gov (United States)

    Bicho, D; Caramelo-Nunes, C; Sousa, A; Sousa, F; Queiroz, J A; Tomaz, C T

    2016-02-15

    Lately, researchers have made several efforts to improve vaccine production to fight highly contagious respiratory diseases like influenza. One of the most promising options for reducing the impact of this virus is DNA vaccination. However, a large quantity of highly pure plasmid DNA (pDNA) is necessary to attain this goal. The present work describes the production and purification of the plasmid NTC7482-41H-VA2HA expressing influenza virus hemagglutinin using an agmatine monolith. This ligand was chosen to purify supercoiled (sc) pDNA from complex lysates because of its versatile multimodal character. Its natural intervention in several biological systems together with its similarity with the highly studied arginine ligand allowed the development of a simpler and more specific purification process. Agmatine works under two strategies: descending ammonium sulfate gradient and ascending sodium chloride gradient. Furthermore, pH manipulation revealed an important role in pDNA isoforms selectivity. Dynamic binding capacity (DBC) experiments were performed varying different parameters and showed an increase with pDNA concentration, while high flow rate and high pH had the opposite effect. Sc pDNA was purified with high yield and was efficient with respect to cell transfection and cell viability. This monolith showed to be appropriate to purify the plasmid NTC7482-41H-VA2HA, providing a valuable tool for pDNA influenza vaccines preparation. Copyright © 2016. Published by Elsevier B.V.

  1. Comprehensive preimplantation genetic screening and sperm deoxyribonucleic acid fragmentation from three males carrying balanced chromosome rearrangements.

    Science.gov (United States)

    Ramos, Laia; Daina, Gemma; Del Rey, Javier; Ribas-Maynou, Jordi; Fernández-Encinas, Alba; Martinez-Passarell, Olga; Boada, Montserrat; Benet, Jordi; Navarro, Joaquima

    2015-09-01

    To assess whether preimplantation genetic screening can successfully identify cytogenetically normal embryos in couples carrying balanced chromosome rearrangements in addition to increased sperm DNA fragmentation. Comprehensive preimplantation genetic screening was performed on three couples carrying chromosome rearrangements. Sperm DNA fragmentation was assessed for each patient. Academic center. One couple with the male partner carrying a chromosome 2 pericentric inversion and two couples with the male partners carrying a Robertsonian translocation (13:14 and 14:21, respectively). A single blastomere from each of the 18 cleavage-stage embryos obtained was analysed by metaphase comparative genomic hybridization. Single- and double-strand sperm DNA fragmentation was determined by the alkaline and neutral Comet assays. Single- and double-strand sperm DNA fragmentation values and incidence of chromosome imbalances in the blastomeres were analyzed. The obtained values of single-strand sperm DNA fragmentation were between 47% and 59%, and the double-strand sperm DNA fragmentation values were between 43% and 54%. No euploid embryos were observed in the couple showing the highest single-strand sperm DNA fragmentation. However, euploid embryos were observed in the other two couples: embryo transfer was performed, and pregnancy was achieved by the couple showing the lowest sperm DNA fragmentation values. Preimplantation genetic screening enables the detection of euploid embryos in couples affected by balanced chromosome rearrangements and increased sperm DNA fragmentation. Even though sperm DNA fragmentation may potentially have clinical consequences on fertility, comprehensive preimplantation genetic screening allows for the identification and transfer of euploid embryos. Copyright © 2015. Published by Elsevier Inc.

  2. Method for detection of a suspect viral deoxyribonucleic acid in an acellular biological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Berninger, M S

    1982-10-06

    A method for evaluating an acellular biological fluid for the presence of a suspect viral DNA, such as DNA of the Hepatitis-B virus, is described. The acellular biological fluid is treated to immobilize in denatured form the DNAs including the suspect viral DNA on a solid substrate. This substrate is contacted with a solution including radioisotopically-labelled suspect viral denatured DNA to renature the immobilized suspect viral native DNA. The solid substrate is then evaluated for radioisotopically-labelled suspect viral renatured DNA.

  3. Method for detection of a suspect viral deoxyribonucleic acid in an acellular biological fluid

    International Nuclear Information System (INIS)

    Berninger, M.S.

    1982-01-01

    A method for evaluating an acellular biological fluid for the presence of a suspect viral DNA, such as DNA of the Hepatitis-B virus, is described. The acellular biological fluid is treated to immobilize in denatured form the DNAs including the suspect viral DNA on a solid substrate. This substrate is contacted with a solution including radioisotopically-labelled suspect viral denatured DNA to renature the immobilized suspect viral native DNA. The solid substrate is then evaluated for radioisotopically-labelled suspect viral renatured DNA. (author)

  4. Isolation of deoxyribonucleic acids (A Review); Aislamiento de los acidos desoxiribonucleicos. Revision Bibliografica

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Pineda, M de

    1974-07-01

    The criteria of choice in this Review have been to gather some of the last advances in the methodology of DNAs isolation; also the description of the generally accepted procedures has been emphasized. Only papers published before March 1974 are reviewed, because this work has been finished during this month. (Author) 109 refs.

  5. R Factor-Controlled Restriction and Modification of Deoxyribonucleic Acid: Restriction Mutants

    Science.gov (United States)

    Yoshimori, Robert; Roulland-Dussoix, Daisy; Boyer, Herbert W.

    1972-01-01

    Restriction mutants of two different R factor-controlled host specificities (RI and RII) were isolated. All of the restriction mutants examined had a normal modification phenotype. No complementation was observed between the RI and RII host specificities. It is concluded that for each host specificity no protein subunit is shared by the restriction endonuclease and modification methylase. PMID:4565538

  6. Investigation of iron-containing complexes of deoxyribonucleic acid nucleosides by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Greguskova, M.; Novotny, J.; Cernohorsky, I.; Cirak, J.

    1975-01-01

    DNA and nucleoside complexes with ferric and ferrous ions were investigated for the concentration of iron ions, ionic strength, temperature, and the nature and spatial configuration of neighbouring atoms of the iron ions in the complexes. Moessbauer spectroscopy was used. The Moessbauer measurements were conducted on lyophilized samples at room temperature (300 K) and on frozen solutions at liquid nitrogen temperature (77 K). Quadrupole splitting was found in all spectra obtained by a Pd(Co) source, with the exception of thymidine, thus indicating that the formation of complexes had not affected the oxidation state of iron ions. A decrease in isomer shift and an increase in quadrupole splitting were found in all spectra obtained by an iron(III) chloride source as well as in all spectra obtained by an iron chloride tetrahydrate source. UV irradiation of the samples prior to the Moessbauer measurements was found to have no effect on the Moessbauer spectra but to result in changes in the oxidation state of iron ions, mainly their valency and the ferrous/ferric ion ratio. The results are shown in a table and in graphs. (L.O.)

  7. Subnucleosomes and their relationships to the arrangement of histone binding sites along nucleosome deoxyribonucleic acid

    International Nuclear Information System (INIS)

    Nelson, D.A.; Mencke, A.J.; Chambers, S.A.; Oosterhof, D.K.; Rill, R.L.

    1982-01-01

    Micrococcal nuclease cleaves within nucleosomes at sites spaced about 10.4 base pairs (bp) apart. Cleavages at sites equivalent to 30-35 bp from the ends of 146-bp cores cause spontaneous loss of an H2a-H2b pair associated with 30-40 bp length DNA. Cleavages at certain other sites do not affect the nucleosome integrity unless a solvent perturbant such as urea is added. Chromatin moderately digested with micrococcal nuclease, when fractionated by sedimentation or electrophoresis in the presence of 3 M urea, yielded four previously unobserved subnucleosomes with the following histone/DNA compositions: (H3) 2 (H4) 2 (H2a)(H2b)/95-115 bp; (H3)(H4)/70-80 bp DNA; (H2a)(H2b)/50-60 bp DNA; and (H1)/60-70 bp DNA. All but the latter subnucleosome were also obtained upon DNase I digestion of purified nucleosome cores labeled on the 5' ends with 32 P. Only subnucleosomes that retained H2a and H2b also retained labeled ends. These results show that H2a and H2b are paired on the terminal 30-40 bp of core DNA, as suggested from analyses of histone-DNA cross-link products by Mirzabekov and coworkers. Considerations of the orgins and compositions of subnucleosomes and of cross-linking data suggest an expanded model for the locations of histone binding sites along nucleosome core DNA. The principal features of this model are (i) strong electrostatic binding sites of H2a and H2b occur at positions approximately 20-30 bp from the core ends, (ii) strong electrostatic binding sites of H3 and H4 occur primarily on the central 40 bp of core DNA, (iii) strong nonelectrostatic, urea-sensitive binding sites of H3 and H4 occur at positions approximately 30-50 bp from the core ends, and (iv) urea-sensitive binding sites of H2a or H2b may occur on the terminal 10-20 bp of core DNA

  8. Induction of stable protein-deoxyribonucleic acid adducts in Chinese hamster cell chromatin by ultraviolet light

    International Nuclear Information System (INIS)

    Strniste, G.F.; Rall, S.C.

    1976-01-01

    Ultraviolet (uv)-light-mediated formation of protein-DNA adducts in Chinese hamster cell chromatin was investigated in an attempt to compare chromatin alterations induced in vitro with those observed in vivo. Three independent methods of analysis indicated stable protein-DNA associations: a membrane filter assay which retained DNA on the filter in the presence of high salt-detergent; a Sepharose 4B column assay in which protein eluted coincident with DNA; and a CsCl density gradient equilibrium assay which showed both protein and DNA banding at densities other than their respective native densities. Treatment of the irradiated chromatin with DNase provided further evidence that protein--DNA and not protein-protein adducts were being observed in the column assay. There is a fluence-dependent response of protein-DNA adduct formation when the chromatin is irradiated at low ionic strength and is linear for protein over the range studied. When the chromatin is exposed to differing conditions of pH, ionic strength, or divalent metal ion concentration, the quantity of adduct formed upon uv irradiation varies. Susceptibility to adduct formation can be partially explained in terms of the condensation state of the chromatin and other factors such as rearrangement, denaturation, and dissociation of the chromatin components. Besides providing information on the biological significance of these types of uv-induced lesions, this technique may be useful as a probe of chromatin structure

  9. Pellet pestle homogenization of agarose gel slices at 45 degrees C for deoxyribonucleic acid extraction.

    Science.gov (United States)

    Kurien, B T; Kaufman, K M; Harley, J B; Scofield, R H

    2001-09-15

    A simple method for extracting DNA from agarose gel slices is described. The extraction is rapid and does not involve harsh chemicals or sophisticated equipment. The method involves homogenization of the excised gel slice (in Tris-EDTA buffer), containing the DNA fragment of interest, at 45 degrees C in a microcentrifuge tube with a Kontes pellet pestle for 1 min. The "homogenate" is then centrifuged for 30 s and the supernatant is saved. The "homogenized" agarose is extracted one more time and the supernatant obtained is combined with the previous supernatant. The DNA extracted using this method lent itself to restriction enzyme analysis, ligation, transformation, and expression of functional protein in bacteria. This method was found to be applicable with 0.8, 1.0, and 2.0% agarose gels. DNA fragments varying from 23 to 0.4 kb were extracted using this procedure and a yield ranging from 40 to 90% was obtained. The yield was higher for fragments 2.0 kb and higher (70-90%). This range of efficiency was maintained when the starting material was kept between 10 and 300 ng. The heat step was found to be critical since homogenization at room temperature failed to yield any DNA. Extracting DNA with our method elicited an increased yield (up to twofold) compared with that extracted with a commercial kit. Also, the number of transformants obtained using the DNA extracted with our method was at least twice that obtained using the DNA extracted with the commercial kit. Copyright 2001 Academic Press.

  10. Identification of Biological Warfare (BW) Threat Agents Using Deoxyribonucleic Acid (DNA) Microarrays

    National Research Council Canada - National Science Library

    Schaudies, Paul R

    2005-01-01

    ...) antibiotic resistance genes, 4) virulence plasmid sequences and 5) ribosomal genes, we are in a unique position to develop a novel method for the identification and characterization of microorganism...

  11. Studies on the interaction of the food colorant tartrazine with double stranded deoxyribonucleic acid.

    Science.gov (United States)

    Basu, Anirban; Suresh Kumar, Gopinatha

    2016-05-01

    Interaction of the food additive tartrazine with double-stranded DNA was studied by spectroscopic and calorimetric techniques. Absorbance studies revealed that tartrazine exhibited hypochromism in the presence of DNA without any bathochromic effects. Minor groove displacement assay of DAPI and Hoechst 33258 suggested that tartrazine binds in the minor groove of DNA. The complexation was predominantly entropy driven with a smaller but favorable enthalpic contribution to the standard molar Gibbs energy. The equilibrium constant was evaluated to be (3.68 ± .08) × 10(4) M(-1) at 298.15 K. The negative standard molar heat capacity value along with an enthalpy-entropy compensation phenomenon proposed the involvement of dominant hydrophobic forces in the binding process. Tartrazine enhanced the thermal stability of DNA by 7.53 K under saturation conditions.

  12. Prelife catalysts and replicators

    OpenAIRE

    Ohtsuki, Hisashi; Nowak, Martin A.

    2009-01-01

    Life is based on replication and evolution. But replication cannot be taken for granted. We must ask what there was prior to replication and evolution. How does evolution begin? We have proposed prelife as a generative system that produces information and diversity in the absence of replication. We model prelife as a binary soup of active monomers that form random polymers. ‘Prevolutionary’ dynamics can have mutation and selection prior to replication. Some sequences might have catalytic acti...

  13. A Single Amino Acid Change in the Marburg Virus Matrix Protein VP40 Provides a Replicative Advantage in a Species-Specific Manner

    Science.gov (United States)

    Koehler, Alexander; Kolesnikova, Larissa; Welzel, Ulla; Schudt, Gordian; Herwig, Astrid

    2015-01-01

    ABSTRACT Marburg virus (MARV) induces severe hemorrhagic fever in humans and nonhuman primates but only transient nonlethal disease in rodents. However, sequential passages of MARV in rodents boosts infection leading to lethal disease. Guinea pig-adapted MARV contains one mutation in the viral matrix protein VP40 at position 184 (VP40D184N). The contribution of the D184N mutation to the efficacy of replication in a new host is unknown. In the present study, we demonstrated that recombinant MARV containing the D184N mutation in VP40 [rMARVVP40(D184N)] grew to higher titers than wild-type recombinant MARV (rMARVWT) in guinea pig cells. Moreover, rMARVVP40(D184N) displayed higher infectivity in guinea pig cells. Comparative analysis of VP40 functions indicated that neither the interferon (IFN)-antagonistic function nor the membrane binding capabilities of VP40 were affected by the D184N mutation. However, the production of VP40-induced virus-like particles (VLPs) and the recruitment of other viral proteins to the budding site was improved by the D184N mutation in guinea pig cells, which resulted in the higher infectivity of VP40D184N-induced infectious VLPs (iVLPs) compared to that of VP40-induced iVLPs. In addition, the function of VP40 in suppressing viral RNA synthesis was influenced by the D184N mutation specifically in guinea pig cells, thus allowing greater rates of transcription and replication. Our results showed that the improved viral fitness of rMARVVP40(D184N) in guinea pig cells was due to the better viral assembly function of VP40D184N and its lower inhibitory effect on viral transcription and replication rather than modulation of the VP40-mediated suppression of IFN signaling. IMPORTANCE The increased virulence achieved by virus passaging in a new host was accompanied by mutations in the viral genome. Analyzing how these mutations affect the functions of viral proteins and the ability of the virus to grow within new host cells helps in the understanding

  14. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  15. Crinivirus replication and host interactions

    Directory of Open Access Journals (Sweden)

    Zsofia A Kiss

    2013-05-01

    Full Text Available Criniviruses comprise one of the genera within the family Closteroviridae. Members in this family are restricted to the phloem and rely on whitefly vectors of the genera Bemisia and/or Trialeurodes for plant-to-plant transmission. All criniviruses have bipartite, positive-sense ssRNA genomes, although there is an unconfirmed report of one having a tripartite genome. Lettuce infectious yellows virus (LIYV is the type species of the genus, the best studied so far of the criniviruses and the first for which a reverse genetics system was available. LIYV RNA 1 encodes for proteins predicted to be involved in replication, and alone is competent for replication in protoplasts. Replication results in accumulation of cytoplasmic vesiculated membranous structures which are characteristic of most studied members of the Closteroviridae. These membranous structures, often referred to as BYV-type vesicles, are likely sites of RNA replication. LIYV RNA 2 is replicated in trans when co-infecting cells with RNA 1, but is temporally delayed relative to RNA1. Efficient RNA 2 replication also is dependent on the RNA 1-encoded RNA binding protein, P34. No LIYV RNA 2-encoded proteins have been shown to affect RNA replication, but at least four, CP, CPm, Hsp70h, and p59 are virion structural components and CPm is a determinant of whitefly transmissibility. Roles of other LIYV RNA 2-encoded proteins are largely as yet unknown, but P26 is a non-virion protein that accumulates in cells as characteristic plasmalemma deposits which in plants are localized within phloem parenchyma and companion cells over plasmodesmata connections to sieve elements. The two remaining crinivirus-conserved RNA 2-encoded proteins are P5 and P9. P5 is 39 amino acid protein and is encoded at the 5’ end of RNA 2 as ORF1 and is part of the hallmark closterovirus gene array. The orthologous gene in BYV has been shown to play a role in cell-to-cell movement and indicated to be localized to the

  16. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  17. Who Needs Replication?

    Science.gov (United States)

    Porte, Graeme

    2013-01-01

    In this paper, the editor of a recent Cambridge University Press book on research methods discusses replicating previous key studies to throw more light on their reliability and generalizability. Replication research is presented as an accepted method of validating previous research by providing comparability between the original and replicated…

  18. Karyotype and nucleic acid content in Zantedeschia aethiopica Spr ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-07-03

    Jul 3, 2012 ... Analysis of karyotype, nucleic deoxyribonucleic acid (DNA) content and sodium dodecyl sulfate polyacrylamide ... base pairs) for Z. aethiopica and 1144.26 ± 0.05 picograms (equivalent to 1144.26 mega base pairs) for Z. elliottiana. ... ml ice-cold nuclei-isolation buffer A of the Partec high resolution. DNA kit ...

  19. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants.

    Science.gov (United States)

    Xu, Kai; Nagy, Peter D

    2017-04-01

    Membranous structures derived from various organelles are important for replication of plus-stranded RNA viruses. Although the important roles of co-opted host proteins in RNA virus replication have been appreciated for a decade, the equally important functions of cellular lipids in virus replication have been gaining full attention only recently. Previous work with Tomato bushy stunt tombusvirus (TBSV) in model host yeast has revealed essential roles for phosphatidylethanolamine and sterols in viral replication. To further our understanding of the role of sterols in tombusvirus replication, in this work we showed that the TBSV p33 and p92 replication proteins could bind to sterols in vitro The sterol binding by p33 is supported by cholesterol recognition/interaction amino acid consensus (CRAC) and CARC-like sequences within the two transmembrane domains of p33. Mutagenesis of the critical Y amino acids within the CRAC and CARC sequences blocked TBSV replication in yeast and plant cells. We also showed the enrichment of sterols in the detergent-resistant membrane (DRM) fractions obtained from yeast and plant cells replicating TBSV. The DRMs could support viral RNA synthesis on both the endogenous and exogenous templates. A lipidomic approach showed the lack of enhancement of sterol levels in yeast and plant cells replicating TBSV. The data support the notion that the TBSV replication proteins are associated with sterol-rich detergent-resistant membranes in yeast and plant cells. Together, the results obtained in this study and the previously published results support the local enrichment of sterols around the viral replication proteins that is critical for TBSV replication. IMPORTANCE One intriguing aspect of viral infections is their dependence on efficient subcellular assembly platforms serving replication, virion assembly, or virus egress via budding out of infected cells. These assembly platforms might involve sterol-rich membrane microdomains, which are

  20. In vitro replication of poliovirus

    International Nuclear Information System (INIS)

    Lubinski, J.M.

    1986-01-01

    Poliovirus is a member of the Picornaviridae whose genome is a single stranded RNA molecule of positive polarity surrounded by a proteinaceous capsid. Replication of poliovirus occurs via negative strand intermediates in infected cells using a virally encoded RNA-dependent RNA polymerase and host cell proteins. The authors have exploited the fact that complete cDNA copies of the viral genome when transfected onto susceptible cells generate virus. Utilizing the bacteriophage SP6 DNA dependent RNA polymerase system to synthesize negative strands in vitro and using these in an in vitro reaction the authors have generated full length infectious plus strands. Mutagenesis of the 5' and 3' ends of the negative and positive strands demonstrated that replication could occur either de novo or be extensions of the templates from their 3' ends or from nicks occurring during replication. The appearance of dimeric RNA molecules generated in these reactions was not dependent upon the same protein required for de novo initiation. Full length dimeric RNA molecules using a 5' 32 P end-labelled oligo uridylic acid primer and positive strand template were demonstrated in vitro containing only the 35,000 Mr host protein and the viral RNA-dependent RNA polymerase. A model for generating positive strands without protein priming by cleavage of dimeric RNA molecules was proposed

  1. Registered Replication Report

    DEFF Research Database (Denmark)

    Bouwmeester, S.; Verkoeijen, P. P.J.L.; Aczel, B.

    2017-01-01

    and colleagues. The results of studies using time pressure have been mixed, with some replication attempts observing similar patterns (e.g., Rand et al., 2014) and others observing null effects (e.g., Tinghög et al., 2013; Verkoeijen & Bouwmeester, 2014). This Registered Replication Report (RRR) assessed...... the size and variability of the effect of time pressure on cooperative decisions by combining 21 separate, preregistered replications of the critical conditions from Study 7 of the original article (Rand et al., 2012). The primary planned analysis used data from all participants who were randomly assigned...

  2. The replication recipe : What makes for a convincing replication?

    NARCIS (Netherlands)

    Brandt, M.J.; IJzerman, H.; Dijksterhuis, Ap; Farach, Frank J.; Geller, Jason; Giner-Sorolla, Roger; Grange, James A.; Perugini, Marco; Spies, Jeffrey R.; van 't Veer, Anna

    Psychological scientists have recently started to reconsider the importance of close replications in building a cumulative knowledge base; however, there is no consensus about what constitutes a convincing close replication study. To facilitate convincing close replication attempts we have developed

  3. The Replication Recipe: What makes for a convincing replication?

    NARCIS (Netherlands)

    Brandt, M.J.; IJzerman, H.; Dijksterhuis, A.J.; Farach, F.J.; Geller, J.; Giner-Sorolla, R.; Grange, J.A.; Perugini, M.; Spies, J.R.; Veer, A. van 't

    2014-01-01

    Psychological scientists have recently started to reconsider the importance of close replications in building a cumulative knowledge base; however, there is no consensus about what constitutes a convincing close replication study. To facilitate convincing close replication attempts we have developed

  4. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  5. Modeling DNA Replication.

    Science.gov (United States)

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  6. Chromatin Immunoprecipitation of Replication Factors Moving with the Replication Fork

    OpenAIRE

    Rapp, Jordan B.; Ansbach, Alison B.; Noguchi, Chiaki; Noguchi, Eishi

    2009-01-01

    Replication of chromosomes involves a variety of replication proteins including DNA polymerases, DNA helicases, and other accessory factors. Many of these proteins are known to localize at replication forks and travel with them as components of the replisome complex. Other proteins do not move with replication forks but still play an essential role in DNA replication. Therefore, in order to understand the mechanisms of DNA replication and its controls, it is important to examine localization ...

  7. A Tat-conjugated Peptide Nucleic Acid Tat-PNA-DR Inhibits Hepatitis B Virus Replication In Vitro and In Vivo by Targeting LTR Direct Repeats of HBV RNA

    Science.gov (United States)

    Zeng, Zhengyang; Han, Shisong; Hong, Wei; Lang, Yange; Li, Fangfang; Liu, Yongxiang; Li, Zeyong; Wu, Yingliang; Li, Wenxin; Zhang, Xianzheng; Cao, Zhijian

    2016-01-01

    Hepatitis B virus (HBV) infection is a major cause of chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma, all of which are severe threats to human health. However, current clinical therapies for HBV are limited by potential side effects, toxicity, and drug-resistance. In this study, a cell-penetrating peptide-conjugated peptide nucleic acid (PNA), Tat-PNA-DR, was designed to target the direct repeat (DR) sequences of HBV. Tat-PNA-DR effectively inhibited HBV replication in HepG2.2.15 cells. Its anti-HBV effect relied on the binding of Tat-PNA-DR to the DR, whereby it suppressed the translation of hepatitis B e antigen (HBeAg), HBsAg, HBV core, hepatitis B virus x protein, and HBV reverse transcriptase (RT) and the reverse transcription of the HBV genome. Furthermore, Tat-PNA-DR administered by intravenous injection efficiently cleared HBeAg and HBsAg in an acute hepatitis B mouse model. Importantly, it induced an 80% decline in HBV DNA in mouse serum, which was similar to the effect of the widely used clinical drug Lamivudine (3TC). Additionally, a long-term hydrodynamics HBV mouse model also demonstrated Tat-PNA-DR's antiviral effect. Interestingly, Tat-PNA-DR displayed low cytotoxicity, low mouse acute toxicity, low immunogenicity, and high serum stability. These data indicate that Tat-PNA-DR is a unique PNA and a promising drug candidate against HBV. PMID:26978579

  8. A Tat-conjugated Peptide Nucleic Acid Tat-PNA-DR Inhibits Hepatitis B Virus Replication In Vitro and In Vivo by Targeting LTR Direct Repeats of HBV RNA

    Directory of Open Access Journals (Sweden)

    Zhengyang Zeng

    2016-01-01

    Full Text Available Hepatitis B virus (HBV infection is a major cause of chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma, all of which are severe threats to human health. However, current clinical therapies for HBV are limited by potential side effects, toxicity, and drug-resistance. In this study, a cell-penetrating peptide-conjugated peptide nucleic acid (PNA, Tat-PNA-DR, was designed to target the direct repeat (DR sequences of HBV. Tat-PNA-DR effectively inhibited HBV replication in HepG2.2.15 cells. Its anti-HBV effect relied on the binding of Tat-PNA-DR to the DR, whereby it suppressed the translation of hepatitis B e antigen (HBeAg, HBsAg, HBV core, hepatitis B virus x protein, and HBV reverse transcriptase (RT and the reverse transcription of the HBV genome. Furthermore, Tat-PNA-DR administered by intravenous injection efficiently cleared HBeAg and HBsAg in an acute hepatitis B mouse model. Importantly, it induced an 80% decline in HBV DNA in mouse serum, which was similar to the effect of the widely used clinical drug Lamivudine (3TC. Additionally, a long-term hydrodynamics HBV mouse model also demonstrated Tat-PNA-DR's antiviral effect. Interestingly, Tat-PNA-DR displayed low cytotoxicity, low mouse acute toxicity, low immunogenicity, and high serum stability. These data indicate that Tat-PNA-DR is a unique PNA and a promising drug candidate against HBV.

  9. Evolution of Replication Machines

    Science.gov (United States)

    Yao, Nina Y.; O'Donnell, Mike E.

    2016-01-01

    The machines that decode and regulate genetic information require the translation, transcription and replication pathways essential to all living cells. Thus, it might be expected that all cells share the same basic machinery for these pathways that were inherited from the primordial ancestor cell from which they evolved. A clear example of this is found in the translation machinery that converts RNA sequence to protein. The translation process requires numerous structural and catalytic RNAs and proteins, the central factors of which are homologous in all three domains of life, bacteria, archaea and eukarya. Likewise, the central actor in transcription, RNA polymerase, shows homology among the catalytic subunits in bacteria, archaea and eukarya. In contrast, while some “gears” of the genome replication machinery are homologous in all domains of life, most components of the replication machine appear to be unrelated between bacteria and those of archaea and eukarya. This review will compare and contrast the central proteins of the “replisome” machines that duplicate DNA in bacteria, archaea and eukarya, with an eye to understanding the issues surrounding the evolution of the DNA replication apparatus. PMID:27160337

  10. Replication studies in longevity

    DEFF Research Database (Denmark)

    Varcasia, O; Garasto, S; Rizza, T

    2001-01-01

    In Danes we replicated the 3'APOB-VNTR gene/longevity association study previously carried out in Italians, by which the Small alleles (less than 35 repeats) had been identified as frailty alleles for longevity. In Danes, neither genotype nor allele frequencies differed between centenarians and 20...

  11. Optical tweezers reveal how proteins alter replication

    Science.gov (United States)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  12. Induction of UV-resistant DNA replication in Escherichia coli: Induced stable DNA replication as an SOS function

    International Nuclear Information System (INIS)

    Kogoma, T.; Torrey, T.A.; Connaughton, M.J.

    1979-01-01

    The striking similarity between the treatments that induce SOS functions and those that result in stable DNA replication (continuous DNA replication in the absence of protein synthesis) prompted us to examine the possibility of stable DNA replication being a recA + lexA + -dependent SOS function. In addition to the treatments previously reported, ultraviolet (UV) irradiation or treatment with mitomycin C was also found to induce stable DNA replication. The thermal treatment of tif-1 strains did not result in detectable levels of stable DNA replication, but nalidixic acid readily induced the activity in these strains. The induction of stable DNA replication with nalidixic acid was severely suppressed in tif-1 lex A mutant strains. The inhibitory activity of lexA3 was negated by the presence of the spr-5l mutation, an intragenic suppressor of lexA3. Induced stable DNA replication was found to be considerably more resistant to UV irradiation than normal replication both in a uvr A6 strain and a uvr + strain. The UV-resistant replication occurred mostly in the semiconservative manner. The possible roles of stable DNA replication in repair of damaged DNA are discussed. (orig.)

  13. Impact of lymphoma treatments on spermatogenesis and sperm deoxyribonucleic acid: a multicenter prospective study from the CECOS network.

    Science.gov (United States)

    Bujan, Louis; Walschaerts, Marie; Brugnon, Florence; Daudin, Myriam; Berthaut, Isabelle; Auger, Jacques; Saias, Jacqueline; Szerman, Ethel; Moinard, Nathalie; Rives, Nathalie; Hennebicq, Sylvianne

    2014-09-01

    To determine consequences of lymphoma treatments on sperm characteristics and sperm DNA, and to evaluate predictors of sperm recovery. Multicenter prospective longitudinal study of patients analyzed before treatment and after 3, 6, 12, and 24 months. University hospitals. Seventy-five Hodgkin lymphoma and non-Hodgkin lymphoma patients and a control group of 257 fertile men. Semen analyses, and sperm DNA and chromatin assessments. Comparisons of sperm characteristics before and after treatment. Patients already had altered sperm characteristics before lymphoma treatment, with no identified risk factor. Sperm count, total sperm count, motility, and vitality decreased after treatment, with lowest values at 3 and 6 months. Twelve months after treatment, mean sperm count recovered to pretreatment values after doxorubicin, bleomycin, vinblastine, darcarbacine (ABVD) or ABVD+radiotherapy, but not after doxorubicin, cyclophosphamide, vincristine, prednisone (CHOP) or mechlorethamine, oncovin, procarbazine, prednisone (MOPP) chemotherapies. It was noteworthy that 7% of patients remained azoospermic at 24 months. After 24 months, Kaplan-Meier estimates showed that more than 90% of patients will recover normal sperm count after ABVD or ABVD+radiotherapy vs. 61% for CHOP chemotherapies. In multivariate analyses including diagnosis and treatment protocol, only pretreatment total sperm count was related to recovery. Compared with a control group, lymphoma patients had higher sperm chromatin alterations and DNA fragmentation before any treatment. After treatment, DNA fragmentation assessed by TUNEL assay and sperm chromatin structure assay decreased from 3 and 6 months, respectively, while remaining higher than in the control group during follow-up. Lymphoma patients had altered sperm DNA and chromatin before treatment. Lymphoma treatment had damaging effects on spermatogenesis. These data on both the recovery period according to treatment modalities and the pre- and post-treatment chromatin status of sperm are useful tools for counseling patients wishing to conceive. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Psoralen-deoxyribonucleic acid photoreaction. Characterization of the monoaddition products from 8-methoxypsoralen and 4,5',8-trimethylpsoralen

    International Nuclear Information System (INIS)

    Kanne, D.; Straub, K.; Rapoport, H.; Hearst, J.E.

    1982-01-01

    The isolation and structural characterization are described of the major monoaddition products formed in the photoreaction of two naturally occurring psoralens, 8-methoxypsoralen and 4,5',8-trimethylpsoralen, with high molecular weight, double-stranded DNA. Hydrolysis of the psoralen-modified DNA and subsequent chromatography resulted in the isolation of four modified nucleosides from each psoralen. Structural characterization was accomplished by mass spectrometry and 1 H NMR analysis. The major products, accounting for 44 to 52% of the covalently bound psoralen, are two diastereomeric thymidine adducts formed by cycloaddition between the 5,6 double bond of the pyrimidine and the 4',5' (furan) double bond of the psoralen. All of the isolated adducts have cis-syn stereochemistry. The stereochemistry and product distribution of the adducts are determined in part by the constraints imposed by the DNA helix on the geometry of the noncovalent intercalation complex formed by psoralen and DNA prior to irradiation

  15. Effects of polyamines and methylglyoxal bis(guanylhydrazone) on hepatic nuclear structure and deoxyribonucleic acid template activity.

    Science.gov (United States)

    Brown, K B; Nelson, N F; Brown, D G

    1975-12-01

    1. The interaction of polyamines and methylglyoxal bis(guanythydrazone) (1, 1'-[(methylethanediylidene)-dinitrilo]diguanidine) with isolated rat liver nuclei was investigated by electron microscopy. 2. At 4mM, putrescine was without effect; however, spermidine, spermine or methylglyoxal bis(guanythydrazone) resulted in dispersed chromatin and alterations in nucleolar structure. In addition, spermidine or methylglyoxal bis(guanylhydrazone) caused marked aggregation of interchromatin granules. 3. The DNA template property of calf thymus DNA was examined by using DNA polymerases from Escherichia coli, Micrococcus lysodeikticus and calf thymus in the presence of 0-5 mM-amine. 4. In the presence of DNA polymerase, spermine or methylglyoxal bis(guanylhydrazone) inhibited activity, whereas putrescine or spermidine had much less effect or in some cases stimulated [3H]dTMP incorporation. 5. Template activity which was inhibited by spermine or methylglyoxal bis(guanylhydrazone) could be partially restored by additional DNA or enzyme. 6. When mixed with calf thymus DNA, calf thymus histone inhibited template activity as measured with E. coli DNA polymerase. The template activity of such a 'histone-nucleate' could not be restored by putrescine, spermidine, spermine or methylglyoxal bis(guanylhydrazone). 7. DNA template activity of isolated rat liver nuclei was tested by using E. coli DNA polymerase. None of the amines was able to increase the template activity of the nuclear DNA in vitro.

  16. Anti-nucleosome antibodies in systemic lupus erythematosus patients: Relation to anti-double stranded deoxyribonucleic acid and disease activity

    Directory of Open Access Journals (Sweden)

    Mayada Ali Abdalla

    2018-01-01

    Conclusion: Anti-NCS antibodies could play a role in the pathogenesis of SLE and is related to disease activity. Its association with anti-dsDNA antibodies and its presence in those with negative anti-ds DNA may aid in the diagnosis of SLE.

  17. Binding of the water of primary hydration to the sodium and cesium salts of deoxyribonucleic acid and potassium hyaluronate

    Science.gov (United States)

    Whitson, K. B.; Lukan, A. M.; Marlowe, R. L.; Lee, S. A.; Anthony, L.; Rupprecht, A.

    1998-08-01

    Differential scanning calorimetry (DSC) has been used to evaluate the average enthalpy of desorption of the water of primary hydration bound to wet-spun films of potassium hyaluronate (KHA) and CsDNA. The enthalpies were measured to be 0.24+/-0.08 eV/H2O molecule for KHA and 0.32+/-0.10 eV/H2O molecule for CsDNA. A Kissinger analysis was used to extract the net activation energy (0.61+/-0.04 eV) for the desorption of this water from KHA by analyzing DSC data acquired at different heating rates. The average effective force constants at 295 K of this water bound to KHA (63+/-3 μdyn/Å) and NaDNA (17+/-4 μdyn/Å) are determined from Rayleigh scattering of Mossbauer radiation data [G. Albanese, A. Deriu, F. Cavatorta, and A. Rupprecht, Hyperfine Interact. 95, 97 (1995)] via a harmonic approximation.

  18. Inflammation but no DNA (deoxyribonucleic acid) damage in mice exposed to airborne dust from a biofuel plant

    DEFF Research Database (Denmark)

    Madsen, Anne Mette; Saber, Anne Thoustrup; Nordly, Pernille

    2008-01-01

    Objectives Particles in ambient air are associated with such health effects as lung diseases and cancer of the lung. Exposure to bioaerosols has been found to be associated with respiratory symptoms. The toxic properties of exposure to combustion and bioaerosol particles from biofuel plants have ...

  19. Different reparability of the chromosomal and cytoplasmic deoxyribonucleic acid in Escherichia coli damaged by γ and ultraviolet irradiation

    International Nuclear Information System (INIS)

    Petranovic, D.; Petranovic, M.; Nozinic, R.; Trgovcevic, Z.

    1978-01-01

    The relative efficiencies by which chromosomal and extrachromosomal DNAs are repaired in irradiated bacteria were assayed. Repair-proficient Escherichia coli C600 cells lysogenic for, or infected with, the thermoinducible phage lambdacI857 ind were exposed to γ or uv radiation and then tested for colony- and plaque-forming ability. The results show that the bacterial cell is about 5 times more sensitive to γ rays and about 1.5 times more sensitive to uv light, if compared to either (1) the prophage that is irradiated in the bacterial chromosome and, on heat induction, repaired in the cytoplasm or (2) the infecting phage that is irradiated and repaired in the cytoplasm. Since the bacterial DNA is about 80 times larger than the phage DNA, it is inferred that repair processes operating along the chromosomal DNA are one order of magnitude more efficient than those operating along the extrachromosomal DNA. This conclusion is reinforced by the fact that the absence of repair in the system Escherichia coli AB2480 uvrA recA-lambdacI857 ind red gives the expected ratio of 80/1 for the uv sensitivity of cells and that of intracellular phage

  20. Bio Organic-Semiconductor Field-Effect Transistor (BioFET) Based on Deoxyribonucleic Acid (DNA) Gate Dielectric

    Science.gov (United States)

    2010-03-31

    floating gate devices and metal-insulator-oxide-semiconductor (MIOS) devices. First attempts to use polarizable gate insulators in combination with...bulk of the semiconductor (ii) Due to the polarizable gate dielectric (iii) dipole polarization and (iv)electret effect due to mobile ions in the...characterization was carried out under an argon environment inside the glove box. An Agilent model E5273A with a two source-measurement unit instrument was

  1. Simulation model of converging-diverging (CD) nozzle to improve particle delivery system of deoxyribonucleic acid (DNA)

    Science.gov (United States)

    Sumarsono, Danardono A.; Ibrahim, Fera; Santoso, Satria P.; Sari, Gema P.

    2018-02-01

    Gene gun is a mechanical device which has been used to deliver DNA vaccine into the cells and tissues by increasing the uptake of DNA plasmid so it can generate a high immune response with less amount of DNA. Nozzle is an important part of the gene gun which used to accelerate DNA in particle form with a gas flow to reach adequate momentum to enter the epidermis of human skin and elicit immune response. We developed new designs of nozzle for gene gun to make DNA uptake more efficient in vaccination. We used Computational Fluid Dynamics (CFD) by Autodesk® Simulation 2015 to simulate static fluid pressure and velocity contour of supersonic wave and parametric distance to predict the accuracy of the new nozzle. The result showed that the nozzle could create a shockwave at the distance parametric to the object from 4 to 5 cm using fluid pressure varied between 0.8-1.2 MPa. This is indication a possibility that the DNA particle could penetrate under the mammalian skin. For the future research step, this new nozzle model could be considered for development the main component of the DNA delivery system in vaccination in vivo

  2. Mechanisms of DNA replication termination.

    Science.gov (United States)

    Dewar, James M; Walter, Johannes C

    2017-08-01

    Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.

  3. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication...... initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  4. Replication Research and Special Education

    Science.gov (United States)

    Travers, Jason C.; Cook, Bryan G.; Therrien, William J.; Coyne, Michael D.

    2016-01-01

    Replicating previously reported empirical research is a necessary aspect of an evidence-based field of special education, but little formal investigation into the prevalence of replication research in the special education research literature has been conducted. Various factors may explain the lack of attention to replication of special education…

  5. Potent Antioxidative Activity of Lycopene: A Potential Role in Scavenging Hypochlorous Acid

    OpenAIRE

    Pennathur, Subramaniam; Maitra, Dhiman; Byun, Jaeman; Sliskovic, Inga; Abdulhamid, Ibrahim; Saed, Ghassan M.; Diamond, Michael P.; Abu-Soud, Husam M.

    2010-01-01

    Lycopene, a carotenoid found in tomatoes, is a proven anti-oxidant that may lower the risk of certain disorders including heart disease and cancer. Hypochlorous acid (HOCl) is an oxidant linked to tissue oxidation in cardiovascular disease and other inflammatory disorders through its ability to modify proteins, deoxyribonucleic acid, ribonucleic acid and lipids. Here we show that lycopene can function as a potent scavenger of HOCl at a wide range of concentrations that span various pathophysi...

  6. International Expansion through Flexible Replication

    DEFF Research Database (Denmark)

    Jonsson, Anna; Foss, Nicolai Juul

    2011-01-01

    Business organizations may expand internationally by replicating a part of their value chain, such as a sales and marketing format, in other countries. However, little is known regarding how such “international replicators” build a format for replication, or how they can adjust it in order to ada......, etc.) are replicated in a uniform manner across stores, and change only very slowly (if at all) in response to learning (“flexible replication”). We conclude by discussing the factors that influence the approach to replication adopted by an international replicator.......Business organizations may expand internationally by replicating a part of their value chain, such as a sales and marketing format, in other countries. However, little is known regarding how such “international replicators” build a format for replication, or how they can adjust it in order to adapt...

  7. Modeling inhomogeneous DNA replication kinetics.

    Directory of Open Access Journals (Sweden)

    Michel G Gauthier

    Full Text Available In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.

  8. SUMO and KSHV Replication

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Pei-Ching [Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan (China); Kung, Hsing-Jien, E-mail: hkung@nhri.org.tw [Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan (China); Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 (United States); UC Davis Cancer Center, University of California, Davis, CA 95616 (United States); Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan (China)

    2014-09-29

    Small Ubiquitin-related MOdifier (SUMO) modification was initially identified as a reversible post-translational modification that affects the regulation of diverse cellular processes, including signal transduction, protein trafficking, chromosome segregation, and DNA repair. Increasing evidence suggests that the SUMO system also plays an important role in regulating chromatin organization and transcription. It is thus not surprising that double-stranded DNA viruses, such as Kaposi’s sarcoma-associated herpesvirus (KSHV), have exploited SUMO modification as a means of modulating viral chromatin remodeling during the latent-lytic switch. In addition, SUMO regulation allows the disassembly and assembly of promyelocytic leukemia protein-nuclear bodies (PML-NBs), an intrinsic antiviral host defense, during the viral replication cycle. Overcoming PML-NB-mediated cellular intrinsic immunity is essential to allow the initial transcription and replication of the herpesvirus genome after de novo infection. As a consequence, KSHV has evolved a way as to produce multiple SUMO regulatory viral proteins to modulate the cellular SUMO environment in a dynamic way during its life cycle. Remarkably, KSHV encodes one gene product (K-bZIP) with SUMO-ligase activities and one gene product (K-Rta) that exhibits SUMO-targeting ubiquitin ligase (STUbL) activity. In addition, at least two viral products are sumoylated that have functional importance. Furthermore, sumoylation can be modulated by other viral gene products, such as the viral protein kinase Orf36. Interference with the sumoylation of specific viral targets represents a potential therapeutic strategy when treating KSHV, as well as other oncogenic herpesviruses. Here, we summarize the different ways KSHV exploits and manipulates the cellular SUMO system and explore the multi-faceted functions of SUMO during KSHV’s life cycle and pathogenesis.

  9. Injury-induced inhibition of small intestinal protein and nucleic acid synthesis

    International Nuclear Information System (INIS)

    Carter, E.A.; Hatz, R.A.; Yarmush, M.L.; Tompkins, R.G.

    1990-01-01

    Small intestinal mucosal weight and nutrient absorption are significantly diminished early after cutaneous thermal injuries. Because these intestinal properties are highly dependent on rates of nucleic acid and protein synthesis, in vivo incorporation of thymidine, uridine, and leucine into small intestinal deoxyribonucleic acid, ribonucleic acid, and proteins were measured. Deoxyribonucleic acid synthesis was markedly decreased with the lowest thymidine incorporation in the jejunum (p less than 0.01); these findings were confirmed by autoradiographic identification of radiolabeled nuclei in the intestinal crypts. Protein synthesis was decreased by 6 h postinjury (p less than 0.01) but had returned to normal by 48 h. Consistent with a decreased rate of protein synthesis, ribonucleic acid synthesis was also decreased 18 h postinjury (p less than 0.01). These decreased deoxyribonucleic acid, ribonucleic acid, and protein synthesis rates are not likely a result of ischemia because in other studies of this injury model, intestinal blood flow was not significantly changed by the burn injury. Potentially, factors initiating the acute inflammatory reaction may directly inhibit nucleic acid and protein synthesis and lead to alterations in nutrient absorption and intestinal barrier function after injury

  10. DNA Replication Profiling Using Deep Sequencing.

    Science.gov (United States)

    Saayman, Xanita; Ramos-Pérez, Cristina; Brown, Grant W

    2018-01-01

    Profiling of DNA replication during progression through S phase allows a quantitative snap-shot of replication origin usage and DNA replication fork progression. We present a method for using deep sequencing data to profile DNA replication in S. cerevisiae.

  11. Hydroxyurea-Induced Replication Stress

    Directory of Open Access Journals (Sweden)

    Kenza Lahkim Bennani-Belhaj

    2010-01-01

    Full Text Available Bloom's syndrome (BS displays one of the strongest known correlations between chromosomal instability and a high risk of cancer at an early age. BS cells combine a reduced average fork velocity with constitutive endogenous replication stress. However, the response of BS cells to replication stress induced by hydroxyurea (HU, which strongly slows the progression of replication forks, remains unclear due to publication of conflicting results. Using two different cellular models of BS, we showed that BLM deficiency is not associated with sensitivity to HU, in terms of clonogenic survival, DSB generation, and SCE induction. We suggest that surviving BLM-deficient cells are selected on the basis of their ability to deal with an endogenous replication stress induced by replication fork slowing, resulting in insensitivity to HU-induced replication stress.

  12. DATABASE REPLICATION IN HETEROGENOUS PLATFORM

    OpenAIRE

    Hendro Nindito; Evaristus Didik Madyatmadja; Albert Verasius Dian Sano

    2014-01-01

    The application of diverse database technologies in enterprises today is increasingly a common practice. To provide high availability and survavibality of real-time information, a database replication technology that has capability to replicate databases under heterogenous platforms is required. The purpose of this research is to find the technology with such capability. In this research, the data source is stored in MSSQL database server running on Windows. The data will be replicated to MyS...

  13. The progression of replication forks at natural replication barriers in live bacteria.

    Science.gov (United States)

    Moolman, M Charl; Tiruvadi Krishnan, Sriram; Kerssemakers, Jacob W J; de Leeuw, Roy; Lorent, Vincent; Sherratt, David J; Dekker, Nynke H

    2016-07-27

    Protein-DNA complexes are one of the principal barriers the replisome encounters during replication. One such barrier is the Tus-ter complex, which is a direction dependent barrier for replication fork progression. The details concerning the dynamics of the replisome when encountering these Tus-ter barriers in the cell are poorly understood. By performing quantitative fluorescence microscopy with microfuidics, we investigate the effect on the replisome when encountering these barriers in live Escherichia coli cells. We make use of an E. coli variant that includes only an ectopic origin of replication that is positioned such that one of the two replisomes encounters a Tus-ter barrier before the other replisome. This enables us to single out the effect of encountering a Tus-ter roadblock on an individual replisome. We demonstrate that the replisome remains stably bound after encountering a Tus-ter complex from the non-permissive direction. Furthermore, the replisome is only transiently blocked, and continues replication beyond the barrier. Additionally, we demonstrate that these barriers affect sister chromosome segregation by visualizing specific chromosomal loci in the presence and absence of the Tus protein. These observations demonstrate the resilience of the replication fork to natural barriers and the sensitivity of chromosome alignment to fork progression. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Effect of Thymine Starvation on Messenger Ribonucleic Acid Synthesis in Escherichia coli

    Science.gov (United States)

    Luzzati, Denise

    1966-01-01

    Luzzati, Denise (Institut de Biologie Physico-Chimique, Paris, France). Effect of thymine starvation on messenger ribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 92:1435–1446. 1966.—During the course of thymine starvation, the rate of synthesis of messenger ribonucleic acid (mRNA, the rapidly labeled fraction of the RNA which decays in the presence of dinitrophenol or which hybridizes with deoxyribonucleic acid) decreases exponentially, in parallel with the viability of the thymine-starved bacteria. The ability of cell-free extracts of starved bacteria to incorporate ribonucleoside triphosphates into RNA was determined; it was found to be inferior to that of extracts from control cells. The analysis of the properties of cell-free extracts of starved cells shows that their decreased RNA polymerase activity is the consequence of a modification of their deoxyribonucleic acid, the ability of which to serve as a template for RNA polymerase decreases during starvation. PMID:5332402

  15. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid: re-examination of the Ustilago maydis glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.; Champ, D.R.; Young, J.L.; Grant, C.E.

    1980-01-01

    Holloman reported the isolation from Ustilago maydis of a glycoprotein which prevented the precipitation of nucleic acids in cold 5% trichloroacetic acid. Two glycoprotein fractions from U. maydis with this nucleic acid-solubilizing activity were isolated in our laboratory using improved purification procedures. The activity was not due to nuclease contamination. The glycoproteins are distinguished by: their ability to bind to concanavalin A-Sepharose; their differential binding to double- and single-stranded deoxyribonucleic acid, and to ribonucleic acid; their molecular weights (46,000 and 69,000); and the relative amounts present in growing versus nongrowing cells. Both fractions required sulfhydryl-reducing conditions for optimal yields, specific activity, and stability. Nucleic acid binding was cooperative, the minimum number of glycoproteins required to make a native T7 DNA molecule soluble in dilute acid being estimated at 2 and 15, respectively.

  16. Replication of bacteriophage lambda DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Matsubara, K.

    1983-01-01

    In this paper results of studies on the mechanism of bacteriophage lambda replication using molecular biological and biochemical approaches are reported. The purification of the initiator proteins, O and P, and the role of the O and P proteins in the initiation of lambda DNA replication through interactions with specific DNA sequences are described. 47 references, 15 figures

  17. Pattern replication by confined dewetting

    NARCIS (Netherlands)

    Harkema, S.; Schäffer, E.; Morariu, M.D.; Steiner, U

    2003-01-01

    The dewetting of a polymer film in a confined geometry was employed in a pattern-replication process. The instability of dewetting films is pinned by a structured confining surface, thereby replicating its topographic pattern. Depending on the surface energy of the confining surface, two different

  18. Charter School Replication. Policy Guide

    Science.gov (United States)

    Rhim, Lauren Morando

    2009-01-01

    "Replication" is the practice of a single charter school board or management organization opening several more schools that are each based on the same school model. The most rapid strategy to increase the number of new high-quality charter schools available to children is to encourage the replication of existing quality schools. This policy guide…

  19. LHCb experience with LFC replication

    International Nuclear Information System (INIS)

    Bonifazi, F; Carbone, A; D'Apice, A; Dell'Agnello, L; Re, G L; Martelli, B; Ricci, P P; Sapunenko, V; Vitlacil, D; Perez, E D; Duellmann, D; Girone, M; Peco, G; Vagnoni, V

    2008-01-01

    Database replication is a key topic in the framework of the LHC Computing Grid to allow processing of data in a distributed environment. In particular, the LHCb computing model relies on the LHC File Catalog, i.e. a database which stores information about files spread across the GRID, their logical names and the physical locations of all the replicas. The LHCb computing model requires the LFC to be replicated at Tier-1s. The LCG 3D project deals with the database replication issue and provides a replication service based on Oracle Streams technology. This paper describes the deployment of the LHC File Catalog replication to the INFN National Center for Telematics and Informatics (CNAF) and to other LHCb Tier-1 sites. We performed stress tests designed to evaluate any delay in the propagation of the streams and the scalability of the system. The tests show the robustness of the replica implementation with performance going much beyond the LHCb requirements

  20. LHCb experience with LFC replication

    CERN Document Server

    Bonifazi, F; Perez, E D; D'Apice, A; dell'Agnello, L; Düllmann, D; Girone, M; Re, G L; Martelli, B; Peco, G; Ricci, P P; Sapunenko, V; Vagnoni, V; Vitlacil, D

    2008-01-01

    Database replication is a key topic in the framework of the LHC Computing Grid to allow processing of data in a distributed environment. In particular, the LHCb computing model relies on the LHC File Catalog, i.e. a database which stores information about files spread across the GRID, their logical names and the physical locations of all the replicas. The LHCb computing model requires the LFC to be replicated at Tier-1s. The LCG 3D project deals with the database replication issue and provides a replication service based on Oracle Streams technology. This paper describes the deployment of the LHC File Catalog replication to the INFN National Center for Telematics and Informatics (CNAF) and to other LHCb Tier-1 sites. We performed stress tests designed to evaluate any delay in the propagation of the streams and the scalability of the system. The tests show the robustness of the replica implementation with performance going much beyond the LHCb requirements.

  1. NACSA Charter School Replication Guide: The Spectrum of Replication Options. Authorizing Matters. Replication Brief 1

    Science.gov (United States)

    O'Neill, Paul

    2010-01-01

    One of the most important and high-profile issues in public education reform today is the replication of successful public charter school programs. With more than 5,000 failing public schools in the United States, there is a tremendous need for strong alternatives for parents and students. Replicating successful charter school models is an…

  2. CRISPR-mediated control of the bacterial initiation of replication.

    Science.gov (United States)

    Wiktor, Jakub; Lesterlin, Christian; Sherratt, David J; Dekker, Cees

    2016-05-05

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. REPLICATION TOOL AND METHOD OF PROVIDING A REPLICATION TOOL

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a replication tool (1, 1a, 1b) for producing a part (4) with a microscale textured replica surface (5a, 5b, 5c, 5d). The replication tool (1, 1a, 1b) comprises a tool surface (2a, 2b) defining a general shape of the item. The tool surface (2a, 2b) comprises a microscale...... energy directors on flange portions thereof uses the replication tool (1, 1a, 1b) to form an item (4) with a general shape as defined by the tool surface (2a, 2b). The formed item (4) comprises a microscale textured replica surface (5a, 5b, 5c, 5d) with a lateral arrangement of polydisperse microscale...

  4. Biomarkers of replicative senescence revisited

    DEFF Research Database (Denmark)

    Nehlin, Jan

    2016-01-01

    Biomarkers of replicative senescence can be defined as those ultrastructural and physiological variations as well as molecules whose changes in expression, activity or function correlate with aging, as a result of the gradual exhaustion of replicative potential and a state of permanent cell cycle...... arrest. The biomarkers that characterize the path to an irreversible state of cell cycle arrest due to proliferative exhaustion may also be shared by other forms of senescence-inducing mechanisms. Validation of senescence markers is crucial in circumstances where quiescence or temporary growth arrest may...... be triggered or is thought to be induced. Pre-senescence biomarkers are also important to consider as their presence indicate that induction of aging processes is taking place. The bona fide pathway leading to replicative senescence that has been extensively characterized is a consequence of gradual reduction...

  5. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  6. Personality and Academic Motivation: Replication, Extension, and Replication

    Science.gov (United States)

    Jones, Martin H.; McMichael, Stephanie N.

    2015-01-01

    Previous work examines the relationships between personality traits and intrinsic/extrinsic motivation. We replicate and extend previous work to examine how personality may relate to achievement goals, efficacious beliefs, and mindset about intelligence. Approximately 200 undergraduates responded to the survey with a 150 participants replicating…

  7. Chameleon Chasing II: A Replication.

    Science.gov (United States)

    Newsom, Doug A.; And Others

    1993-01-01

    Replicates a 1972 survey of students, educators, and Public Relations Society of America members regarding who the public relations counselor really serves. Finds that, in 1992, most respondents thought primary responsibility was to the client, then to the client's relevant publics, then to self, then to society, and finally to media. Compares…

  8. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  9. Adressing Replication and Model Uncertainty

    DEFF Research Database (Denmark)

    Ebersberger, Bernd; Galia, Fabrice; Laursen, Keld

    innovation survey data for France, Germany and the UK, we conduct a ‘large-scale’ replication using the Bayesian averaging approach of classical estimators. Our method tests a wide range of determinants of innovation suggested in the prior literature, and establishes a robust set of findings on the variables...

  10. Replication of kinetoplast minicircle DNA

    International Nuclear Information System (INIS)

    Sheline, C.T.

    1989-01-01

    These studies describe the isolation and characterization of early minicircle replication intermediates from Crithidia fasciculata, and Leishmania tarentolae, the mitochondrial localization of a type II topoisomerase (TIImt) in C. fasciculata, and the implication of the aforementioned TIImt in minicircle replication in L. tarentolae. Early minicircle replication intermediates from C. fasciculata were identified and characterized using isolated kinetoplasts to incorporate radiolabeled nucleotides into its DNA. The pulse-label in an apparent theta-type intermediate chase into two daughter molecules. A uniquely gapped, ribonucleotide primed, knotted molecule represents the leading strand in the model proposed, and a highly gapped molecule represents the lagging strand. This theta intermediate is repaired in vitro to a doubly nicked catenated dimer which was shown to result from the replication of a single parental molecule. Very similar intermediates were found in the heterogeneous population of minicircles of L. tarentolae. The sites of the Leishmania specific discontinuities were mapped and shown to lie within the universally conserved sequence blocks in identical positions as compared to C. fasciculata and Trypanosoma equiperdum

  11. Manual of Cupule Replication Technology

    Directory of Open Access Journals (Sweden)

    Giriraj Kumar

    2015-09-01

    Full Text Available Throughout the world, iconic rock art is preceded by non-iconic rock art. Cupules (manmade, roughly semi-hemispherical depressions on rocks form the major bulk of the early non-iconic rock art globally. The antiquity of cupules extends back to the Lower Paleolithic in Asia and Africa, hundreds of thousand years ago. When one observes these cupules, the inquisitive mind poses so many questions with regard to understanding their technology, reasons for selecting the site, which rocks were used to make the hammer stones used, the skill and cognitive abilities employed to create the different types of cupules, the objective of their creation, their age, and so on. Replication of the cupules can provide satisfactory answers to some of these questions. Comparison of the hammer stones and cupules produced by the replication process with those obtained from excavation can provide support to observations. This paper presents a manual of cupule replication technology based on our experience of cupule replication on hard quartzite rock near Daraki-Chattan in the Chambal Basin, India.

  12. Mechanisms of bacterial DNA replication restart

    Science.gov (United States)

    Windgassen, Tricia A; Wessel, Sarah R; Bhattacharyya, Basudeb

    2018-01-01

    Abstract Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA. Such events produce incompletely replicated chromosomes that, if left unrepaired, prevent the segregation of full genomes to daughter cells. To mitigate this threat, cells have evolved ‘DNA replication restart’ pathways that have been best defined in bacteria. Replication restart requires recognition and remodeling of abandoned replication forks by DNA replication restart proteins followed by reloading of the replicative DNA helicase, which subsequently directs assembly of the remaining replisome subunits. This review summarizes our current understanding of the mechanisms underlying replication restart and the proteins that drive the process in Escherichia coli (PriA, PriB, PriC and DnaT). PMID:29202195

  13. The yeast replicative aging model.

    Science.gov (United States)

    He, Chong; Zhou, Chuankai; Kennedy, Brian K

    2018-03-08

    It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast. Copyright © 2018. Published by Elsevier B.V.

  14. Replicator dynamics in value chains

    DEFF Research Database (Denmark)

    Cantner, Uwe; Savin, Ivan; Vannuccini, Simone

    2016-01-01

    The pure model of replicator dynamics though providing important insights in the evolution of markets has not found much of empirical support. This paper extends the model to the case of firms vertically integrated in value chains. We show that i) by taking value chains into account, the replicator...... dynamics may revert its effect. In these regressive developments of market selection, firms with low fitness expand because of being integrated with highly fit partners, and the other way around; ii) allowing partner's switching within a value chain illustrates that periods of instability in the early...... stage of industry life-cycle may be the result of an 'optimization' of partners within a value chain providing a novel and simple explanation to the evidence discussed by Mazzucato (1998); iii) there are distinct differences in the contribution to market selection between the layers of a value chain...

  15. Replication confers β cell immaturity.

    Science.gov (United States)

    Puri, Sapna; Roy, Nilotpal; Russ, Holger A; Leonhardt, Laura; French, Esra K; Roy, Ritu; Bengtsson, Henrik; Scott, Donald K; Stewart, Andrew F; Hebrok, Matthias

    2018-02-02

    Pancreatic β cells are highly specialized to regulate systemic glucose levels by secreting insulin. In adults, increase in β-cell mass is limited due to brakes on cell replication. In contrast, proliferation is robust in neonatal β cells that are functionally immature as defined by a lower set point for glucose-stimulated insulin secretion. Here we show that β-cell proliferation and immaturity are linked by tuning expression of physiologically relevant, non-oncogenic levels of c-Myc. Adult β cells induced to replicate adopt gene expression and metabolic profiles resembling those of immature neonatal β that proliferate readily. We directly demonstrate that priming insulin-producing cells to enter the cell cycle promotes a functionally immature phenotype. We suggest that there exists a balance between mature functionality and the ability to expand, as the phenotypic state of the β cell reverts to a less functional one in response to proliferative cues.

  16. Chromatin replication and histone dynamics

    DEFF Research Database (Denmark)

    Alabert, Constance; Jasencakova, Zuzana; Groth, Anja

    2017-01-01

    Inheritance of the DNA sequence and its proper organization into chromatin is fundamental for genome stability and function. Therefore, how specific chromatin structures are restored on newly synthesized DNA and transmitted through cell division remains a central question to understand cell fate...... choices and self-renewal. Propagation of genetic information and chromatin-based information in cycling cells entails genome-wide disruption and restoration of chromatin, coupled with faithful replication of DNA. In this chapter, we describe how cells duplicate the genome while maintaining its proper...... organization into chromatin. We reveal how specialized replication-coupled mechanisms rapidly assemble newly synthesized DNA into nucleosomes, while the complete restoration of chromatin organization including histone marks is a continuous process taking place throughout the cell cycle. Because failure...

  17. Live Replication of Paravirtual Machines

    OpenAIRE

    Stodden, Daniel

    2009-01-01

    Virtual machines offer a fair degree of system state encapsulation, which promotes practical advances in fault tolerance, system debugging, profiling and security applications. This work investigates deterministic replay and semi-active replication for system paravirtualization, a software discipline trading guest kernel binar compatibility for reduced dependency on costly trap-and-emulate techniques. A primary contribution is evidence that trace capturing under a piecewise deterministic exec...

  18. RAD51 interconnects between DNA replication, DNA repair and immunity.

    Science.gov (United States)

    Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame

    2017-05-05

    RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Replication of micro and nano surface geometries

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Hocken, R.J.; Tosello, Guido

    2011-01-01

    The paper describes the state-of-the-art in replication of surface texture and topography at micro and nano scale. The description includes replication of surfaces in polymers, metals and glass. Three different main technological areas enabled by surface replication processes are presented......: manufacture of net-shape micro/nano surfaces, tooling (i.e. master making), and surface quality control (metrology, inspection). Replication processes and methods as well as the metrology of surfaces to determine the degree of replication are presented and classified. Examples from various application areas...... are given including replication for surface texture measurements, surface roughness standards, manufacture of micro and nano structured functional surfaces, replicated surfaces for optical applications (e.g. optical gratings), and process chains based on combinations of repeated surface replication steps....

  20. Adenovirus sequences required for replication in vivo.

    OpenAIRE

    Wang, K; Pearson, G D

    1985-01-01

    We have studied the in vivo replication properties of plasmids carrying deletion mutations within cloned adenovirus terminal sequences. Deletion mapping located the adenovirus DNA replication origin entirely within the first 67 bp of the adenovirus inverted terminal repeat. This region could be further subdivided into two functional domains: a minimal replication origin and an adjacent auxillary region which boosted the efficiency of replication by more than 100-fold. The minimal origin occup...

  1. Parametrised Constants and Replication for Spatial Mobility

    DEFF Research Database (Denmark)

    Hüttel, Hans; Haagensen, Bjørn

    2009-01-01

    Parametrised replication and replication are common ways of expressing infinite computation in process calculi. While parametrised constants can be encoded using replication in the π-calculus, this changes in the presence of spatial mobility as found in e.g. the distributed π- calculus...... of the distributed π-calculus with parametrised constants and replication are incomparable. On the other hand, we shall see that there exists a simple encoding of recursion in mobile ambients....

  2. Nanotechnology: Threats and Deterrent Opportunities by 2035

    Science.gov (United States)

    2010-02-17

    22. 17 James Watson and Francis Crick discovered the structure of Deoxyribonucleic acid ( DNA ) in 1953. 18 Self-replication is when nanoscale machine...which then improves researchers’ understanding of critical, computationally intensive fields of study like DNA .17 These complementary scientific and...researchers’ clarity on critical medical issues like Deoxyribonucleic acid ( DNA ). 102 Omar Khayyam, Rubaiyat of Omar Khayyam (NY: Random House, 1947

  3. 36 CFR 910.64 - Replication.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Replication. 910.64 Section 910.64 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL... DEVELOPMENT AREA Glossary of Terms § 910.64 Replication. Replication means the process of using modern methods...

  4. Exploiting replicative stress to treat cancer

    DEFF Research Database (Denmark)

    Dobbelstein, Matthias; Sørensen, Claus Storgaard

    2015-01-01

    DNA replication in cancer cells is accompanied by stalling and collapse of the replication fork and signalling in response to DNA damage and/or premature mitosis; these processes are collectively known as 'replicative stress'. Progress is being made to increase our understanding of the mechanisms...

  5. Variance Swap Replication: Discrete or Continuous?

    Directory of Open Access Journals (Sweden)

    Fabien Le Floc’h

    2018-02-01

    Full Text Available The popular replication formula to price variance swaps assumes continuity of traded option strikes. In practice, however, there is only a discrete set of option strikes traded on the market. We present here different discrete replication strategies and explain why the continuous replication price is more relevant.

  6. Replication dynamics of the yeast genome.

    Science.gov (United States)

    Raghuraman, M K; Winzeler, E A; Collingwood, D; Hunt, S; Wodicka, L; Conway, A; Lockhart, D J; Davis, R W; Brewer, B J; Fangman, W L

    2001-10-05

    Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.

  7. Chromosomal DNA replication of Vicia faba cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1976-01-01

    The chromosomal DNA replication of higher plant cells has been investigated by DNA fiber autoradiography. The nuclear DNA fibers of Vicia root meristematic cells are organized into many tandem arrays of replication units or replicons which exist as clusters with respect to replication. DNA is replicated bidirectionally from the initiation points at the average rate of 0.15 μm/min at 20 0 C, and the average interinitiation interval is about 16 μm. The manner of chromosomal DNA replication in this higher plant is similar to that found in other eukaryotic cells at a subchromosomal level. (auth.)

  8. Inferential misconceptions and replication crisis

    Directory of Open Access Journals (Sweden)

    Norbert Hirschauer

    2016-12-01

    Full Text Available Misinterpretations of the p value and the introduction of bias through arbitrary analytical choices have been discussed in the literature for decades. Nonetheless, they seem to have persisted in empirical research, and criticisms of p value misuses have increased in the recent past due to the non-replicability of many studies. Unfortunately, the critical concerns that have been raised in the literature are scattered over many disciplines, often linguistically confusing, and differing in their main reasons for criticisms. Misuses and misinterpretations of the p value are currently being discussed intensely under the label “replication crisis” in many academic disciplines and journals, ranging from specialized scientific journals to Nature and Science. In a drastic response to the crisis, the editors of the journal Basic and Applied Social Psychology even decided to ban the use of p values from future publications at the beginning of 2015, a fact that has certainly added fuel to the discussions in the relevant scientific forums. Finally, in early March, the American Statistical Association released a brief formal statement on p values that explicitly addresses misuses and misinterpretations. In this context, we systematize the most serious flaws related to the p value and discuss suggestions of how to prevent them and reduce the rate of false discoveries in the future.

  9. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks

    DEFF Research Database (Denmark)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia

    2016-01-01

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose...... RAD52 facilitates repair of collapsed DNA replication forks in cancer cells....

  10. Repair replication in replicating and nonreplicating DNA after irradiation with uv light

    Energy Technology Data Exchange (ETDEWEB)

    Slor, H.; Cleaver, J.E.

    1978-06-01

    Ultraviolet light induces more pyrimidine dimers and more repair replication in DNA that replicates within 2 to 3 h of irradiation than in DNA that does not replicate during this period. This difference may be due to special conformational changes in DNA and chromatin that might be associated with semiconservative DNA replication.

  11. Overcoming natural replication barriers: differential helicase requirements.

    Science.gov (United States)

    Anand, Ranjith P; Shah, Kartik A; Niu, Hengyao; Sung, Patrick; Mirkin, Sergei M; Freudenreich, Catherine H

    2012-02-01

    DNA sequences that form secondary structures or bind protein complexes are known barriers to replication and potential inducers of genome instability. In order to determine which helicases facilitate DNA replication across these barriers, we analyzed fork progression through them in wild-type and mutant yeast cells, using 2-dimensional gel-electrophoretic analysis of the replication intermediates. We show that the Srs2 protein facilitates replication of hairpin-forming CGG/CCG repeats and prevents chromosome fragility at the repeat, whereas it does not affect replication of G-quadruplex forming sequences or a protein-bound repeat. Srs2 helicase activity is required for hairpin unwinding and fork progression. Also, the PCNA binding domain of Srs2 is required for its in vivo role of replication through hairpins. In contrast, the absence of Sgs1 or Pif1 helicases did not inhibit replication through structural barriers, though Pif1 did facilitate replication of a telomeric protein barrier. Interestingly, replication through a protein barrier but not a DNA structure barrier was modulated by nucleotide pool levels, illuminating a different mechanism by which cells can regulate fork progression through protein-mediated stall sites. Our analyses reveal fundamental differences in the replication of DNA structural versus protein barriers, with Srs2 helicase activity exclusively required for fork progression through hairpin structures.

  12. Monkey Viperin Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication.

    Science.gov (United States)

    Fang, Jianyu; Wang, Haiyan; Bai, Juan; Zhang, Qiaoya; Li, Yufeng; Liu, Fei; Jiang, Ping

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen which causes huge economic damage globally in the swine industry. Current vaccination strategies provide only limited protection against PRRSV infection. Viperin is an interferon (IFN) stimulated protein that inhibits some virus infections via IFN-dependent or IFN-independent pathways. However, the role of viperin in PRRSV infection is not well understood. In this study, we cloned the full-length monkey viperin (mViperin) complementary DNA (cDNA) from IFN-α-treated African green monkey Marc-145 cells. It was found that the mViperin is up-regulated following PRRSV infection in Marc-145 cells along with elevated IRF-1 gene levels. IFN-α induced mViperin expression in a dose- and time-dependent manner and strongly inhibits PRRSV replication in Marc-145 cells. Overexpression of mViperin suppresses PRRSV replication by blocking the early steps of PRRSV entry and genome replication and translation but not inhibiting assembly and release. And mViperin co-localized with PRRSV GP5 and N protein, but only interacted with N protein in distinct cytoplasmic loci. Furthermore, it was found that the 13-16 amino acids of mViperin were essential for inhibiting PRRSV replication, by disrupting the distribution of mViperin protein from the granular distribution to a homogeneous distribution in the cytoplasm. These results could be helpful in the future development of novel antiviral therapies against PRRSV infection.

  13. Metronomic Adjuvant Chemotherapy Improves Treatment Outcome in Nasopharyngeal Carcinoma Patients With Postradiation Persistently Detectable Plasma Epstein-Barr Virus Deoxyribonucleic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Twu, Chih-Wen [Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Department of Otorhinolaryngology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, Wen-Yi [Section of Basic Medicine, Department of Nursing, Hung Kuang University, Taichung, Taiwan (China); Chen, Chien-Chih [Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Liang, Kai-Li; Jiang, Rong-San [Department of Otorhinolaryngology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wu, Ching-Te [Department of Radiation Oncology, Taichung Veterans General Hospital–Chiayi Branch, Chiayi, Taiwan (China); Shih, Yi-Ting [Department of Radiation Oncology, St. Martin De Porres Hospital, Chiayi, Taiwan (China); Lin, Po-Ju; Liu, Yi-Chun [Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Lin, Jin-Ching, E-mail: jclin@vghtc.gov.tw [Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine, China Medical University, Taichung, Taiwan (China)

    2014-05-01

    Purpose: To investigate the effects of adjuvant chemotherapy in nasopharyngeal carcinoma (NPC) patients with persistently detectable plasma Epstein-Barr virus DNA (pEBV DNA) after curative radiation therapy plus induction/concurrent chemotherapy. Methods and Materials: The study population consisted of 625 NPC patients with available pEBV DNA levels before and after treatment. Eighty-five patients with persistently detectable pEBV DNA after 1 week of completing radiation therapy were eligible for this retrospective study. Of the 85 patients, 33 were administered adjuvant chemotherapy consisting of oral tegafur-uracil (2 capsules twice daily) for 12 months with (n=4) or without (n=29) preceding intravenous chemotherapy of mitomycin-C, epirubicin, and cisplatin. The remaining 52 patients who did not receive adjuvant chemotherapy served as the control group. Results: Baseline patient characteristics at diagnosis (age, sex, pathologic type, performance status, T classification, N classification, and overall stage), as well as previous treatment modality, were comparable in both arms. After a median follow-up of 70 months for surviving patients, 45.5% (15 of 33 patients) with adjuvant chemotherapy and 71.2% (37 of 52 patients) without adjuvant chemotherapy experienced tumor relapses (P=.0323). There were a significant reduction in distant failure (P=.0034) but not in local or regional recurrence. The 5-year overall survival rate was 71.6% for patients with adjuvant chemotherapy and 28.7% for patients without adjuvant chemotherapy (hazard ratio 0.27; 95% confidence interval 0.17-0.55; P<.0001). Conclusions: Our retrospective data showed that adjuvant chemotherapy can reduce distant failure and improve overall survival in NPC patients with persistently detectable pEBV DNA after curative radiation therapy plus induction/concurrent chemotherapy.

  14. Analysis of three variable number terminal repeat loci is sufficient to characterize the deoxyribonucleic acid fingerprints of a panel of human tumor cell lines.

    Science.gov (United States)

    Anding, Allyson L; Reiss, Tanika; Germain, Glen S

    2003-01-01

    Using primers for the MCT118, YNZ22, and COL2A1 loci in polymerase chain reaction analysis we could distinguish among the approximately 20 cell lines routinely maintained in our laboratory. We also demonstrated that the cell line NB-1691 (a neuroblastoma) and its xenograft had an identical number of repeats at two loci. Rh30 (a rhabdomyosarcoma) made resistant to rapamycin was identical to its parent line and to a subline that had reverted to sensitivity after it was cultured without rapamycin in the medium.

  15. Deoxyribonucleic acid telomere length shortening can predict the incidence of non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Ping, Fan; Li, Zeng-Yi; Lv, Ke; Zhou, Mei-Cen; Dong, Ya-Xiu; Sun, Qi; Li, Yu-Xiu

    2017-03-01

    To investigate the effect of telomere shortening and other predictive factors of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes mellitus patients in a 6-year prospective cohort study. A total of 70 type 2 diabetes mellitus (mean age 57.8 ± 6.7 years) patients without NAFLD were included in the study, and 64 of them were successfully followed up 6 years later, excluding four cases with significant alcohol consumption. NAFLD was diagnosed by the hepatorenal ratio obtained by a quantitative ultrasound method using NIH image analysis software. The 39 individuals that developed NAFLD were allocated to group A, and the 21 individuals that did not develop NAFLD were allocated to group B. Fluorescent real-time quantitative polymerase chain reaction was used to measure telomere length. There was no significant difference between the two groups in baseline telomere length; however, at the end of the 6th year, telomere length had become shorter in group A compared with group B. There were significant differences between these two groups in baseline body mass index, waistline, systolic blood pressure, glycated hemoglobin and fasting C-peptide level. In addition, the estimated indices of baseline insulin resistance increased in group A. Fasting insulin level, body mass index, systolic blood pressure at baseline and the shortening of telomere length were independent risk factors of NAFLD in type 2 diabetes mellitus patients. Telomere length became shorter in type 2 diabetes mellitus patients who developed NAFLD over the course of 6 years. Type 2 diabetes mellitus patients who developed NAFLD had more serious insulin resistance compared with those who did not develop NAFLD a long time ago. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  16. Alkylation of deoxyribonucleic acid by carcinogens dimethyl sulphate, ethyl methanesulphonate, N-ethyl-N-nitrosourea and N-methyl-N-nitrosourea

    International Nuclear Information System (INIS)

    Swenson, D.H.; Lawley, P.D.

    1978-01-01

    The ethyl phosphotriester of thymidylyl(3'-5')thymidine, dTp((Et) dT, was identified as a product from the reaction of DNA with N-ethyl-N-nitrosourea. Enzymic degradation to yield alkyl phosphotriesters from DNA alkylated by this carcinogen, and by N-methyl-N-nitrosourea, dimethyl sulphate and ethyl methanesulphonate was studied quantitatively, and the relative yields of the triesters dTp(Alk)dT were determined. The relative reactivity of the phosphodiester group dTpdT to each of the four carcinogens was thus obtained, and compared with that of DNA overall, or with that of the N-7 atom of guanine in DNA. The results are related to steric factors, and the electrophilic character of each carcinogen. (author)

  17. Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: base specificity and the associated energetics of the interaction.

    Directory of Open Access Journals (Sweden)

    Ayesha Kabir

    Full Text Available BACKGROUND: The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results. METHODOLOGY/PRINCIPAL FINDINGS: Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines. CONCLUSION/SIGNIFICANCE: From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies.

  18. Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: base specificity and the associated energetics of the interaction.

    Science.gov (United States)

    Kabir, Ayesha; Suresh Kumar, Gopinatha

    2013-01-01

    The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results. Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines. From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies.

  19. Metronomic Adjuvant Chemotherapy Improves Treatment Outcome in Nasopharyngeal Carcinoma Patients With Postradiation Persistently Detectable Plasma Epstein-Barr Virus Deoxyribonucleic Acid

    International Nuclear Information System (INIS)

    Twu, Chih-Wen; Wang, Wen-Yi; Chen, Chien-Chih; Liang, Kai-Li; Jiang, Rong-San; Wu, Ching-Te; Shih, Yi-Ting; Lin, Po-Ju; Liu, Yi-Chun; Lin, Jin-Ching

    2014-01-01

    Purpose: To investigate the effects of adjuvant chemotherapy in nasopharyngeal carcinoma (NPC) patients with persistently detectable plasma Epstein-Barr virus DNA (pEBV DNA) after curative radiation therapy plus induction/concurrent chemotherapy. Methods and Materials: The study population consisted of 625 NPC patients with available pEBV DNA levels before and after treatment. Eighty-five patients with persistently detectable pEBV DNA after 1 week of completing radiation therapy were eligible for this retrospective study. Of the 85 patients, 33 were administered adjuvant chemotherapy consisting of oral tegafur-uracil (2 capsules twice daily) for 12 months with (n=4) or without (n=29) preceding intravenous chemotherapy of mitomycin-C, epirubicin, and cisplatin. The remaining 52 patients who did not receive adjuvant chemotherapy served as the control group. Results: Baseline patient characteristics at diagnosis (age, sex, pathologic type, performance status, T classification, N classification, and overall stage), as well as previous treatment modality, were comparable in both arms. After a median follow-up of 70 months for surviving patients, 45.5% (15 of 33 patients) with adjuvant chemotherapy and 71.2% (37 of 52 patients) without adjuvant chemotherapy experienced tumor relapses (P=.0323). There were a significant reduction in distant failure (P=.0034) but not in local or regional recurrence. The 5-year overall survival rate was 71.6% for patients with adjuvant chemotherapy and 28.7% for patients without adjuvant chemotherapy (hazard ratio 0.27; 95% confidence interval 0.17-0.55; P<.0001). Conclusions: Our retrospective data showed that adjuvant chemotherapy can reduce distant failure and improve overall survival in NPC patients with persistently detectable pEBV DNA after curative radiation therapy plus induction/concurrent chemotherapy

  20. High-Sensitivity C-Reactive Protein Complements Plasma Epstein-Barr Virus Deoxyribonucleic Acid Prognostication in Nasopharyngeal Carcinoma: A Large-Scale Retrospective and Prospective Cohort Study

    International Nuclear Information System (INIS)

    Tang, Lin-Quan; Li, Chao-Feng; Chen, Qiu-Yan; Zhang, Lu; Lai, Xiao-Ping; He, Yun; Xu, Yun-Xiu-Xiu; Hu, Dong-Peng; Wen, Shi-Hua; Peng, Yu-Tuan; Chen, Wen-Hui; Liu, Huai; Guo, Shan-Shan; Liu, Li-Ting; Li, Jing; Zhang, Jing-Ping

    2015-01-01

    Purpose: To evaluate the effects of combining the assessment of circulating high-sensitivity C-reactive protein (hs-CRP) with that of Epstein-Barr virus DNA (EBV DNA) in the pretherapy prognostication of nasopharyngeal carcinoma (NPC). Patients and Methods: Three independent cohorts of NPC patients (training set of n=3113, internal validation set of n=1556, and prospective validation set of n=1668) were studied. Determinants of disease-free survival, distant metastasis–free survival, and overall survival were assessed by multivariate analysis. Hazard ratios and survival probabilities of the patient groups, segregated by clinical stage (T1-2N0-1M0, T3-4N0-1M0, T1-2N2-3M0, and T3-4N2-3M0) and EBV DNA load (low or high) alone, and also according to hs-CRP level (low or high), were compared. Results: Elevated hs-CRP and EBV DNA levels were significantly correlated with poor disease-free survival, distant metastasis–free survival, and overall survival in both the training and validation sets. Associations were similar and remained significant after excluding patients with cardiovascular disease, diabetes, and chronic hepatitis B. Patients with advanced-stage disease were segregated by high EBV DNA levels and high hs-CRP level into a poorest-risk group, and participants with either high EBV DNA but low hs-CRP level or high hs-CRP but low EBV DNA values had poorer survival compared with the bottom values for both biomarkers. These findings demonstrate a significant improvement in the prognostic ability of conventional advanced NPC staging. Conclusion: Baseline plasma EBV DNA and serum hs-CRP levels were significantly correlated with survival in NPC patients. The combined interpretation of EBV DNA with hs-CRP levels led to refinement of the risks for the patient subsets, with improved risk discrimination in patients with advanced-stage disease

  1. High-Sensitivity C-Reactive Protein Complements Plasma Epstein-Barr Virus Deoxyribonucleic Acid Prognostication in Nasopharyngeal Carcinoma: A Large-Scale Retrospective and Prospective Cohort Study

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lin-Quan [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Department of Nasopharyngeal Carcinoma, Sun Yat-sen University, Guangzhou (China); Li, Chao-Feng [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Department of Information Technology, Sun Yat-sen University, Guangzhou (China); Chen, Qiu-Yan; Zhang, Lu [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Department of Nasopharyngeal Carcinoma, Sun Yat-sen University, Guangzhou (China); Lai, Xiao-Ping; He, Yun; Xu, Yun-Xiu-Xiu; Hu, Dong-Peng; Wen, Shi-Hua; Peng, Yu-Tuan [ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou (China); Chen, Wen-Hui [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Liu, Huai; Guo, Shan-Shan; Liu, Li-Ting [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Department of Nasopharyngeal Carcinoma, Sun Yat-sen University, Guangzhou (China); Li, Jing [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Zhang, Jing-Ping [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou (China); Department of Clinical Laboratory, Sun Yat-sen University, Guangzhou (China); and others

    2015-02-01

    Purpose: To evaluate the effects of combining the assessment of circulating high-sensitivity C-reactive protein (hs-CRP) with that of Epstein-Barr virus DNA (EBV DNA) in the pretherapy prognostication of nasopharyngeal carcinoma (NPC). Patients and Methods: Three independent cohorts of NPC patients (training set of n=3113, internal validation set of n=1556, and prospective validation set of n=1668) were studied. Determinants of disease-free survival, distant metastasis–free survival, and overall survival were assessed by multivariate analysis. Hazard ratios and survival probabilities of the patient groups, segregated by clinical stage (T1-2N0-1M0, T3-4N0-1M0, T1-2N2-3M0, and T3-4N2-3M0) and EBV DNA load (low or high) alone, and also according to hs-CRP level (low or high), were compared. Results: Elevated hs-CRP and EBV DNA levels were significantly correlated with poor disease-free survival, distant metastasis–free survival, and overall survival in both the training and validation sets. Associations were similar and remained significant after excluding patients with cardiovascular disease, diabetes, and chronic hepatitis B. Patients with advanced-stage disease were segregated by high EBV DNA levels and high hs-CRP level into a poorest-risk group, and participants with either high EBV DNA but low hs-CRP level or high hs-CRP but low EBV DNA values had poorer survival compared with the bottom values for both biomarkers. These findings demonstrate a significant improvement in the prognostic ability of conventional advanced NPC staging. Conclusion: Baseline plasma EBV DNA and serum hs-CRP levels were significantly correlated with survival in NPC patients. The combined interpretation of EBV DNA with hs-CRP levels led to refinement of the risks for the patient subsets, with improved risk discrimination in patients with advanced-stage disease.

  2. Deoxyribonucleic Acid and Other Words Students Avoid Speaking Aloud: Evaluating the Role of Pronunciation on Participation in Secondary School Science Classroom Conversations

    Science.gov (United States)

    Beck, Stacie Elizabeth

    Student's verbal participation in science classrooms is an essential element in building the skills necessary for proficiency in scientific literacy and discourse. The myriad of new, multisyllabic vocabulary terms introduced in one year of secondary school biology instruction can overwhelm students and further impede the self-efficacy needed for concise constructions of scientific explanations and arguments. Factors inhibiting students' inclination to answer questions, share ideas and respond to peers in biology classrooms include confidence and self-perceived competence in appropriately speaking the language of science. Providing students with explicit, engaging instruction in methods to develop vocabulary for use in expressing conclusions is critical for expanding comprehension of science concepts. This study fused the recommended strategies for engaging vocabulary instruction with linguistic practices for teaching pronunciation to examine the relationship between a student's ability to pronounce challenging bio-terminology and their propensity to speak in teacher-led, guided classroom discussions. Interviews, surveys, and measurements quantifying and qualifying students' participation in class discussions before and after explicit instruction in pronunciation were used to evaluate the potential of this strategy as an appropriate tool for increasing students' self-efficacy and willingness to engage in biology classroom conversations. The findings of this study showed a significant increase in student verbal participation in classroom discussions after explicit instruction in pronunciation combined with vocabulary literacy strategies. This research also showed an increase in the use of vocabulary words in student comments after the intervention.

  3. Existing and emerging detection technologies for DNA (Deoxyribonucleic Acid) finger printing, sequencing, bio- and analytical chips: a multidisciplinary development unifying molecular biology, chemical and electronics engineering.

    Science.gov (United States)

    Kumar Khanna, Vinod

    2007-01-01

    The current status and research trends of detection techniques for DNA-based analysis such as DNA finger printing, sequencing, biochips and allied fields are examined. An overview of main detectors is presented vis-à-vis these DNA operations. The biochip method is explained, the role of micro- and nanoelectronic technologies in biochip realization is highlighted, various optical and electrical detection principles employed in biochips are indicated, and the operational mechanisms of these detection devices are described. Although a diversity of biochips for diagnostic and therapeutic applications has been demonstrated in research laboratories worldwide, only some of these chips have entered the clinical market, and more chips are awaiting commercialization. The necessity of tagging is eliminated in refractive-index change based devices, but the basic flaw of indirect nature of most detection methodologies can only be overcome by generic and/or reagentless DNA sensors such as the conductance-based approach and the DNA-single electron transistor (DNA-SET) structure. Devices of the electrical detection-based category are expected to pave the pathway for the next-generation DNA chips. The review provides a comprehensive coverage of the detection technologies for DNA finger printing, sequencing and related techniques, encompassing a variety of methods from the primitive art to the state-of-the-art scenario as well as promising methods for the future.

  4. Familial partial lipodystrophy phenotype resulting from a single-base mutation in deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-gamma

    NARCIS (Netherlands)

    Monajemi, Houshang; Zhang, Lin; Li, Gang; Jeninga, Ellen H.; Cao, Henian; Maas, Mario; Brouwer, C. B.; Kalkhoven, Eric; Stroes, Erik; Hegele, Robert A.; Leff, Todd

    2007-01-01

    CONTEXT: Familial partial lipodystrophy (FPLD) results from coding sequence mutations either in LMNA, encoding nuclear lamin A/C, or in PPARG, encoding peroxisome proliferator-activated receptor-gamma (PPARgamma). The LMNA form is called FPLD2 (MIM 151660) and the PPARG form is called FPLD3 (MIM

  5. Chromosomal aberrations and deoxyribonucleic acid single-strand breaks in adipose-derived stem cells during long-term expansion in vitro.

    Science.gov (United States)

    Froelich, Katrin; Mickler, Johannes; Steusloff, Gudrun; Technau, Antje; Ramos Tirado, Mario; Scherzed, Agmal; Hackenberg, Stephan; Radeloff, Andreas; Hagen, Rudolf; Kleinsasser, Norbert

    2013-07-01

    Adipose-derived stem cells (ASCs) are a promising mesenchymal cell source for tissue engineering approaches. To obtain an adequate cell amount, in vitro expansion of the cells may be required in some cases. To monitor potential contraindications for therapeutic applications in humans, DNA strand breaks and chromosomal aberrations in ASCs during in vitro expansion were examined. After isolation of ASC from human lipoaspirates of seven patients, in vitro expansion over 10 passages was performed. Cells from passages 1, 2, 3, 5 and 10 were used for the alkaline single-cell microgel electrophoresis (comet) assay to detect DNA single-strand breaks and alkali labile as well as incomplete excision repair sites. Chromosomal changes were examined by means of the chromosomal aberration test. During in vitro expansion, ASC showed no DNA single-strand breaks in the comet assay. With the chromosomal aberration test, however, a significant increase in chromosomal aberrations were detected. The study showed that although no DNA fragmentation could be determined, the safety of ASC cannot be ensured with respect to chromosome stability during in vitro expansion. Thus, reliable analyses for detecting ASC populations, which accumulate chromosomal aberrations or even undergo malignant transformation during extensive in vitro expansion, must be implemented as part of the safety evaluation of these cells for stem cell-based therapy. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Chemical carcinogenesis in the nervous system. Preferential accumulation of O6-methylguanine in rat brain deoxyribonucleic acid during repetitive administration of N-methyl-N-nitrosourea.

    Science.gov (United States)

    Margison, G P; Kleihues, P

    1975-01-01

    The alkylation of purine bases in DNA of several rat tissues was determined during weekly injections (10 mg/kg) of N-[3H]methyl-N-nitrosourea, a dose schedule known to selectively induce tumours of the nervous system. Each group of animals was killed 1 week after the final injection, and the DNA hydrolysates were analysed by chromatography on Sephadex G-10. After five weekly applications, O6-methylguanine had accumulated in brain DNA to an extent which greatly exceeded that in kidney, spleen and intestine. In the liver, the final O6-methylguanine concentration was less than 1% of that in brain. Between the first and the fifth injection, the O6-methylguanine/7-methylguanine ratio in cerebral DNA increased from 0.28 to 0.68. In addition, 3-methylguanine was found to accumulate in brain DNA whereas in the other organs no significant quantities of this base were detectable. The results are compatible with the hypothesis that O6-alkylation of guanine in DNA plays a major role in the induction of tumours by N-methyl-N-nitrosourea and related carcinogens. The kinetics of the increase of O6-methylguanine in cerebral DNA suggest that there is no major cell fraction in the brain which is capable of excising chemically methylated bases from DNA. This repair deficiency could be a determining factor in the selective induction of nervous-system tumours by N-methyl-N-nitrosourea and other neuro-oncogenic compounds. PMID:1200992

  7. Reaction products from N-methyl-N-nitrosourea and deoxyribonucleic acid containing thymidine residues. Synthesis and identification of a new methylation product, O4-methyl-thymidine

    Science.gov (United States)

    Lawley, P. D.; Orr, D. J.; Shah, S. A.; Farmer, P. B.; Jarman, M.

    1973-01-01

    1. DNA was treated with N-methyl-N-nitrosourea at pH7–8, 37°C, degraded to yield 3- and 7-methylpurines and deoxyribonucleosides and the reaction products were separated by chromatography on ion-exchange resins. The following methods for identification and determination of products were used: with unlabelled N-methyl-N-nitrosourea, u.v. absorption; use of methyl-14C-labelled N-methyl-N-nitrosourea and use of [14C]thymine-labelled DNA. 2. The synthesis of O4-methylthymidine and its identification by u.v. and mass spectroscopy are reported. 3. 3-Methylthymidine and O4-methylthymidine were found as methylation products from N-methyl-N-nitrosourea with thymidine and with DNA, in relatively small yields. Unidentified products containing thymine were found in enzymic digests of N-methyl-N-nitrosourea-treated DNA, which may be phosphotriesters. 4. The possible role of formation of methylthymines in mutagenesis by N-methyl-N-nitrosourea is discussed. PMID:4798180

  8. Exponential Increase in Relative Biological Effectiveness Along Distal Edge of a Proton Bragg Peak as Measured by Deoxyribonucleic Acid Double-Strand Breaks

    Energy Technology Data Exchange (ETDEWEB)

    Cuaron, John J., E-mail: cuaronj@mskcc.org [Memorial Sloan Kettering Cancer Center, New York, New York (United States); Chang, Chang [Texas Center for Proton Therapy, Irving, Texas (United States); Lovelock, Michael; Higginson, Daniel S. [Memorial Sloan Kettering Cancer Center, New York, New York (United States); Mah, Dennis [Procure Proton Therapy Center, Somerset, New Jersey (United States); Cahlon, Oren; Powell, Simon [Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2016-05-01

    Purpose: To quantify the relative biological effectiveness (RBE) of the distal edge of the proton Bragg peak, using an in vitro assay of DNA double-strand breaks (DSBs). Methods and Materials: U2OS cells were irradiated within the plateau of a spread-out Bragg peak and at each millimeter position along the distal edge using a custom slide holder, allowing for simultaneous measurement of physical dose. A reference radiation signal was generated using photons. The DNA DSBs at 3 hours (to assess for early damage) and at 24 hours (to assess for residual damage and repair) after irradiation were measured using the γH2AX assay and quantified via flow cytometry. Results were confirmed with clonogenic survival assays. A detailed map of the RBE as a function of depth along the Bragg peak was generated using γH2AX measurements as a biological endpoint. Results: At 3 hours after irradiation, DNA DSBs were higher with protons at every point along the distal edge compared with samples irradiated with photons to similar doses. This effect was even more pronounced after 24 hours, indicating that the impact of DNA repair is less after proton irradiation relative to photons. The RBE demonstrated an exponential increase as a function of depth and was measured to be as high as 4.0 after 3 hours and as high as 6.0 after 24 hours. When the RBE-corrected dose was plotted as a function of depth, the peak effective dose was extended 2-3 mm beyond what would be expected with physical measurement. Conclusions: We generated a highly comprehensive map of the RBE of the distal edge of the Bragg peak, using a direct assay of DNA DSBs in vitro. Our data show that the RBE of the distal edge increases with depth and is significantly higher than previously reported estimates.

  9. Surface micro topography replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf

    Thermoplastic injection moulding is a widely used industrial process that involves surface generation by replication. The surface topography of injection moulded plastic parts can be important for aesthetical or technical reasons. With the emergence of microengineering and nanotechnology additional...... importance of surface topography follows. In general the replication is not perfect and the topography of the plastic part differs from the inverse topography of the mould cavity. It is desirable to be able to control the degree of replication perfection or replication quality. This requires an understanding...... of the physical mechanisms of replication. Such understanding can lead to improved process design and facilitate in-line process quality control with respect to surface properties. The purpose of the project is to identify critical factors that affect topography replication quality and to obtain an understanding...

  10. Replicating chromatin: a tale of histones

    DEFF Research Database (Denmark)

    Groth, Anja

    2009-01-01

    Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural...... framework of chromatin and carry information to specify higher-order organization and gene expression. When replication forks traverse the chromosomes, nucleosomes are transiently disrupted, allowing the replication machinery to gain access to DNA. Histone recycling, together with new deposition, ensures...

  11. Enzymatic recognition of DNA replication origins

    International Nuclear Information System (INIS)

    Stayton, M.M.; Bertsch, L.; Biswas, S.

    1983-01-01

    In this paper we discuss the process of recognition of the complementary-strand origin with emphasis on RNA polymerase action in priming M13 DNA replication, the role of primase in G4 DNA replication, and the function of protein n, a priming protein, during primosome assembly. These phage systems do not require several of the bacterial DNA replication enzymes, particularly those involved in the regulation of chromosome copy number of the initiatiion of replication of duplex DNA. 51 references, 13 figures, 1 table

  12. Replicative Intermediates of Human Papillomavirus Type 11 in Laryngeal Papillomas: Site of Replication Initiation and Direction of Replication

    Science.gov (United States)

    Auborn, K. J.; Little, R. D.; Platt, T. H. K.; Vaccariello, M. A.; Schildkraut, C. L.

    1994-07-01

    We have examined the structures of replication intermediates from the human papillomavirus type 11 genome in DNA extracted from papilloma lesions (laryngeal papillomas). The sites of replication initiation and termination utilized in vivo were mapped by using neutral/neutral and neutral/alkaline two-dimensional agarose gel electrophoresis methods. Initiation of replication was detected in or very close to the upstream regulatory region (URR; the noncoding, regulatory sequences upstream of the open reading frames in the papillomavirus genome). We also show that replication forks proceed bidirectionally from the origin and converge 180circ opposite the URR. These results demonstrate the feasibility of analysis of replication of viral genomes directly from infected tissue.

  13. Activation of human herpesvirus replication by apoptosis.

    Science.gov (United States)

    Prasad, Alka; Remick, Jill; Zeichner, Steven L

    2013-10-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance.

  14. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast.

    Directory of Open Access Journals (Sweden)

    Joseph C Sanchez

    2017-10-01

    Full Text Available A form of dwarfism known as Meier-Gorlin syndrome (MGS is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5. These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45. The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C. We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.

  15. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast.

    Science.gov (United States)

    Sanchez, Joseph C; Kwan, Elizabeth X; Pohl, Thomas J; Amemiya, Haley M; Raghuraman, M K; Brewer, Bonita J

    2017-10-01

    A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.

  16. DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities.

    Science.gov (United States)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-06-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways to promote genome integrity during DNA replication. This includes suppressing new replication origin firing, stabilization of replicating forks, and the safe restart of forks to prevent any loss of genetic information. Here, we describe mechanisms by which oncogenes can interfere with DNA replication thereby causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The DNA replication checkpoint directly regulates MBF-dependent G1/S transcription.

    Science.gov (United States)

    Dutta, Chaitali; Patel, Prasanta K; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-10-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G(1)/S transcriptional program by directly regulating MBF, the G(1)/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G(1)/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G(1)/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes.

  18. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Heath Murray

    2014-10-01

    Full Text Available In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  19. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  20. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  1. The DNA Replication Checkpoint Directly Regulates MBF-Dependent G1/S Transcription▿

    Science.gov (United States)

    Dutta, Chaitali; Patel, Prasanta K.; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-01-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF, the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G1/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes. PMID:18662996

  2. Replication and Robustness in Developmental Research

    Science.gov (United States)

    Duncan, Greg J.; Engel, Mimi; Claessens, Amy; Dowsett, Chantelle J.

    2014-01-01

    Replications and robustness checks are key elements of the scientific method and a staple in many disciplines. However, leading journals in developmental psychology rarely include explicit replications of prior research conducted by different investigators, and few require authors to establish in their articles or online appendices that their key…

  3. Three Conceptual Replication Studies in Group Theory

    Science.gov (United States)

    Melhuish, Kathleen

    2018-01-01

    Many studies in mathematics education research occur with a nonrepresentative sample and are never replicated. To challenge this paradigm, I designed a large-scale study evaluating student conceptions in group theory that surveyed a national, representative sample of students. By replicating questions previously used to build theory around student…

  4. Using Replication Projects in Teaching Research Methods

    Science.gov (United States)

    Standing, Lionel G.; Grenier, Manuel; Lane, Erica A.; Roberts, Meigan S.; Sykes, Sarah J.

    2014-01-01

    It is suggested that replication projects may be valuable in teaching research methods, and also address the current need in psychology for more independent verification of published studies. Their use in an undergraduate methods course is described, involving student teams who performed direct replications of four well-known experiments, yielding…

  5. Dynamic behavior of DNA replication domains

    NARCIS (Netherlands)

    Manders, E. M.; Stap, J.; Strackee, J.; van Driel, R.; Aten, J. A.

    1996-01-01

    Like many nuclear processes, DNA replication takes place in distinct domains that are scattered throughout the S-phase nucleus. Recently we have developed a fluorescent double-labeling procedure that allows us to visualize nascent DNA simultaneously with "newborn" DNA that had replicated earlier in

  6. A Replication by Any Other Name: A Systematic Review of Replicative Intervention Studies

    Science.gov (United States)

    Cook, Bryan G.; Collins, Lauren W.; Cook, Sara C.; Cook, Lysandra

    2016-01-01

    Replication research is essential to scientific knowledge. Reviews of replication studies often electronically search for "replicat*" as a textword, which does not identify studies that replicate previous research but do not self-identify as such. We examined whether the 83 intervention studies published in six non-categorical research…

  7. Recommendations for Replication Research in Special Education: A Framework of Systematic, Conceptual Replications

    Science.gov (United States)

    Coyne, Michael D.; Cook, Bryan G.; Therrien, William J.

    2016-01-01

    Special education researchers conduct studies that can be considered replications. However, they do not often refer to them as replication studies. The purpose of this article is to consider the potential benefits of conceptualizing special education intervention research within a framework of systematic, conceptual replication. Specifically, we…

  8. Surface Microstructure Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Arlø, Uffe Rolf

    2005-01-01

    topography is transcribed onto the plastic part through complex mechanisms. This replication however, is not perfect, and the replication quality depends on the plastic material properties, the topography itself, and the process conditions. This paper describes and discusses an investigation of injection...... moulding of surface microstructures. Emphasis is put on the ability to replicate surface microstructures under normal injection moulding conditions, notably with low cost materials at low mould temperatures. The replication of surface microstructures in injection moulding has been explored...... for Polypropylene at low mould temperatures. The process conditions were varied over the recommended process window for the material. The geometry of the obtained structures was analyzed. Evidence suggests that step height replication quality depends linearly on structure width in a certain range. Further...

  9. Surface microstructure replication in injection molding

    DEFF Research Database (Denmark)

    Theilade, Uffe Arlø; Hansen, Hans Nørgaard

    2006-01-01

    topography is transcribed onto the plastic part through complex mechanisms. This replication, however, is not perfect, and the replication quality depends on the plastic material properties, the topography itself, and the process conditions. This paper describes and discusses an investigation of injection...... molding of surface microstructures. The fundamental problem of surface microstructure replication has been studied. The research is based on specific microstructures as found in lab-on-a-chip products and on rough surfaces generated from EDM (electro discharge machining) mold cavities. Emphasis is put...... on the ability to replicate surface microstructures under normal injection-molding conditions, i.e., with commodity materials within typical process windows. It was found that within typical process windows the replication quality depends significantly on several process parameters, and especially the mold...

  10. Rescue from replication stress during mitosis.

    Science.gov (United States)

    Fragkos, Michalis; Naim, Valeria

    2017-04-03

    Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.

  11. Suppression of Poxvirus Replication by Resveratrol.

    Science.gov (United States)

    Cao, Shuai; Realegeno, Susan; Pant, Anil; Satheshkumar, Panayampalli S; Yang, Zhilong

    2017-01-01

    Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV), the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  12. Suppression of Poxvirus Replication by Resveratrol

    Directory of Open Access Journals (Sweden)

    Shuai Cao

    2017-11-01

    Full Text Available Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV, the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  13. A New Replication Norm for Psychology

    Directory of Open Access Journals (Sweden)

    Etienne P LeBel

    2015-10-01

    Full Text Available In recent years, there has been a growing concern regarding the replicability of findings in psychology, including a mounting number of prominent findings that have failed to replicate via high-powered independent replication attempts. In the face of this replicability “crisis of confidence”, several initiatives have been implemented to increase the reliability of empirical findings. In the current article, I propose a new replication norm that aims to further boost the dependability of findings in psychology. Paralleling the extant social norm that researchers should peer review about three times as many articles that they themselves publish per year, the new replication norm states that researchers should aim to independently replicate important findings in their own research areas in proportion to the number of original studies they themselves publish per year (e.g., a 4:1 original-to-replication studies ratio. I argue this simple approach could significantly advance our science by increasing the reliability and cumulative nature of our empirical knowledge base, accelerating our theoretical understanding of psychological phenomena, instilling a focus on quality rather than quantity, and by facilitating our transformation toward a research culture where executing and reporting independent direct replications is viewed as an ordinary part of the research process. To help promote the new norm, I delineate (1 how each of the major constituencies of the research process (i.e., funders, journals, professional societies, departments, and individual researchers can incentivize replications and promote the new norm and (2 any obstacles each constituency faces in supporting the new norm.

  14. Data from Investigating Variation in Replicability: A “Many Labs” Replication Project

    Directory of Open Access Journals (Sweden)

    Richard A. Klein

    2014-04-01

    Full Text Available This dataset is from the Many Labs Replication Project in which 13 effects were replicated across 36 samples and over 6,000 participants. Data from the replications are included, along with demographic variables about the participants and contextual information about the environment in which the replication was conducted. Data were collected in-lab and online through a standardized procedure administered via an online link. The dataset is stored on the Open Science Framework website. These data could be used to further investigate the results of the included 13 effects or to study replication and generalizability more broadly.

  15. Targeting DNA Replication Stress for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-08-01

    Full Text Available The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress.

  16. Factors influencing microinjection molding replication quality

    Science.gov (United States)

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane

    2018-01-01

    In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.

  17. The Inherent Asymmetry of DNA Replication.

    Science.gov (United States)

    Snedeker, Jonathan; Wooten, Matthew; Chen, Xin

    2017-10-06

    Semiconservative DNA replication has provided an elegant solution to the fundamental problem of how life is able to proliferate in a way that allows cells, organisms, and populations to survive and replicate many times over. Somewhat lost, however, in our admiration for this mechanism is an appreciation for the asymmetries that occur in the process of DNA replication. As we discuss in this review, these asymmetries arise as a consequence of the structure of the DNA molecule and the enzymatic mechanism of DNA synthesis. Increasing evidence suggests that asymmetries in DNA replication are able to play a central role in the processes of adaptation and evolution by shaping the mutagenic landscape of cells. Additionally, in eukaryotes, recent work has demonstrated that the inherent asymmetries in DNA replication may play an important role in the process of chromatin replication. As chromatin plays an essential role in defining cell identity, asymmetries generated during the process of DNA replication may play critical roles in cell fate decisions related to patterning and development.

  18. Ultrastructural Characterization of Zika Virus Replication Factories

    Directory of Open Access Journals (Sweden)

    Mirko Cortese

    2017-02-01

    Full Text Available Summary: A global concern has emerged with the pandemic spread of Zika virus (ZIKV infections that can cause severe neurological symptoms in adults and newborns. ZIKV is a positive-strand RNA virus replicating in virus-induced membranous replication factories (RFs. Here we used various imaging techniques to investigate the ultrastructural details of ZIKV RFs and their relationship with host cell organelles. Analyses of human hepatic cells and neural progenitor cells infected with ZIKV revealed endoplasmic reticulum (ER membrane invaginations containing pore-like openings toward the cytosol, reminiscent to RFs in Dengue virus-infected cells. Both the MR766 African strain and the H/PF/2013 Asian strain, the latter linked to neurological diseases, induce RFs of similar architecture. Importantly, ZIKV infection causes a drastic reorganization of microtubules and intermediate filaments forming cage-like structures surrounding the viral RF. Consistently, ZIKV replication is suppressed by cytoskeleton-targeting drugs. Thus, ZIKV RFs are tightly linked to rearrangements of the host cell cytoskeleton. : Cortese et al. show that ZIKV infection in both human hepatoma and neuronal progenitor cells induces drastic structural modification of the cellular architecture. Microtubules and intermediate filaments surround the viral replication factory composed of vesicles corresponding to ER membrane invagination toward the ER lumen. Importantly, alteration of microtubule flexibility impairs ZIKV replication. Keywords: Zika virus, flavivirus, human neural progenitor cells, replication factories, replication organelles, microtubules, intermediate filaments, electron microscopy, electron tomography, live-cell imaging

  19. MYC and the Control of DNA Replication

    Science.gov (United States)

    Dominguez-Sola, David; Gautier, Jean

    2014-01-01

    The MYC oncogene is a multifunctional protein that is aberrantly expressed in a significant fraction of tumors from diverse tissue origins. Because of its multifunctional nature, it has been difficult to delineate the exact contributions of MYC’s diverse roles to tumorigenesis. Here, we review the normal role of MYC in regulating DNA replication as well as its ability to generate DNA replication stress when overexpressed. Finally, we discuss the possible mechanisms by which replication stress induced by aberrant MYC expression could contribute to genomic instability and cancer. PMID:24890833

  20. Replicated Data Management for Mobile Computing

    CERN Document Server

    Douglas, Terry

    2008-01-01

    Managing data in a mobile computing environment invariably involves caching or replication. In many cases, a mobile device has access only to data that is stored locally, and much of that data arrives via replication from other devices, PCs, and services. Given portable devices with limited resources, weak or intermittent connectivity, and security vulnerabilities, data replication serves to increase availability, reduce communication costs, foster sharing, and enhance survivability of critical information. Mobile systems have employed a variety of distributed architectures from client-server

  1. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation.

    Science.gov (United States)

    Martínez-Soto, Juan Carlos; Domingo, Joan Carles; Cordobilla, Begoña; Nicolás, María; Fernández, Laura; Albero, Pilar; Gadea, Joaquín; Landeras, José

    2016-12-01

    The purpose of this study was to evaluate the effect of docosahexaenoic acid (DHA) dietary supplementation on semen quality, fatty acid composition, antioxidant capacity, and DNA fragmentation. In this randomized, double blind, placebo-controlled, parallel-group study, 74 subjects were recruited and randomly assigned to either the placebo group (n=32) or to the DHA group (n=42) to consume three 500-mg capsules of oil per day over 10 weeks. The placebo group received 1,500 mg/day of sunflower oil and the DHA group 1,500 mg/day of DHA-enriched oil. Seminal parameters (semen volume, sperm concentration, motility, morphology, and vitality), total antioxidant capacity, deoxyribonucleic acid fragmentation, and lipid composition were evaluated prior to the treatment and after 10 weeks. Finally, 57 subjects were included in the study with 25 in the placebo group and 32 in the DHA group. No differences were found in traditional sperm parameters or lipid composition of the sperm membrane after treatment. However, an increase in DHA and Omega-3 fatty acid content in seminal plasma, an improvement in antioxidant status, and a reduction in the percentage of spermatozoa with deoxyribonucleic acid damage were observed in the DHA group after 10 weeks of treatment.

  2. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.

    Science.gov (United States)

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-06-02

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. What Should Researchers Expect When They Replicate Studies? A Statistical View of Replicability in Psychological Science.

    Science.gov (United States)

    Patil, Prasad; Peng, Roger D; Leek, Jeffrey T

    2016-07-01

    A recent study of the replicability of key psychological findings is a major contribution toward understanding the human side of the scientific process. Despite the careful and nuanced analysis reported, the simple narrative disseminated by the mass, social, and scientific media was that in only 36% of the studies were the original results replicated. In the current study, however, we showed that 77% of the replication effect sizes reported were within a 95% prediction interval calculated using the original effect size. Our analysis suggests two critical issues in understanding replication of psychological studies. First, researchers' intuitive expectations for what a replication should show do not always match with statistical estimates of replication. Second, when the results of original studies are very imprecise, they create wide prediction intervals-and a broad range of replication effects that are consistent with the original estimates. This may lead to effects that replicate successfully, in that replication results are consistent with statistical expectations, but do not provide much information about the size (or existence) of the true effect. In this light, the results of the Reproducibility Project: Psychology can be viewed as statistically consistent with what one might expect when performing a large-scale replication experiment. © The Author(s) 2016.

  4. Mapping replication origins in yeast chromosomes.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1991-07-01

    The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms.

  5. Advancing Polymerase Ribozymes Towards Self-Replication

    Science.gov (United States)

    Tjhung, K. F.; Joyce, G. F.

    2017-07-01

    Autocatalytic replication and evolution in vitro by (i) a cross-chiral RNA polymerase catalyzing polymerization of mononucleotides of the opposite handedness; (ii) non-covalent assembly of component fragments of an existing RNA polymerase ribozyme.

  6. Initiation of Replication in Escherichia coli

    DEFF Research Database (Denmark)

    Frimodt-Møller, Jakob

    The circular chromosome of Escherichia coli is replicated by two replisomes assembled at the unique origin and moving in the opposite direction until they meet in the less well defined terminus. The key protein in initiation of replication, DnaA, facilitates the unwinding of double-stranded DNA...... to single-stranded DNA in oriC. Although DnaA is able to bind both ADP and ATP, DnaA is only active in initiation when bound to ATP. Although initiation of replication, and the regulation of this, is thoroughly investigated it is still not fully understood. The overall aim of the thesis was to investigate...... the regulation of initiation, the effect on the cell when regulation fails, and if regulation was interlinked to chromosomal organization. This thesis uncovers that there exists a subtle balance between chromosome replication and reactive oxygen species (ROS) inflicted DNA damage. Thus, failure in regulation...

  7. LHCb Data Replication During SC3

    CERN Multimedia

    Smith, A

    2006-01-01

    LHCb's participation in LCG's Service Challenge 3 involves testing the bulk data transfer infrastructure developed to allow high bandwidth distribution of data across the grid in accordance with the computing model. To enable reliable bulk replication of data, LHCb's DIRAC system has been integrated with gLite's File Transfer Service middleware component to make use of dedicated network links between LHCb computing centres. DIRAC's Data Management tools previously allowed the replication, registration and deletion of files on the grid. For SC3 supplementary functionality has been added to allow bulk replication of data (using FTS) and efficient mass registration to the LFC replica catalog.Provisional performance results have shown that the system developed can meet the expected data replication rate required by the computing model in 2007. This paper details the experience and results of integration and utilisation of DIRAC with the SC3 transfer machinery.

  8. Molecular Mechanisms of DNA Replication Checkpoint Activation

    Directory of Open Access Journals (Sweden)

    Bénédicte Recolin

    2014-03-01

    Full Text Available The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability.

  9. Locating Nearby Copies of Replicated Internet Servers

    National Research Council Canada - National Science Library

    Guyton, James D; Schwartz, Michael F

    1995-01-01

    In this paper we consider the problem of choosing among a collection of replicated servers focusing on the question of how to make choices that segregate client/server traffic according to network topology...

  10. Surface Micro Topography Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2005-01-01

    The surface micro topography of injection moulded plastic parts can be important for aesthetical and technical reasons. The quality of replication of mould surface topography onto the plastic surface depends among other factors on the process conditions. A study of this relationship has been...... carried out with rough EDM (electrical discharge machining) mould surfaces, a PS grade, and by applying established three-dimensional topography parameters. Significant quantitative relationships between process parameters and topography parameters were established. It further appeared that replication...

  11. The Legal Road To Replicating Silicon Valley

    OpenAIRE

    John Armour; Douglas Cumming

    2004-01-01

    Must policymakers seeking to replicate the success of Silicon Valley’s venture capital market first replicate other US institutions, such as deep and liquid stock markets? Or can legal reforms alone make a significant difference? In this paper, we compare the economic and legal determinants of venture capital investment, fundraising and exits. We introduce a cross-sectional and time series empirical analysis across 15 countries and 13 years of data spanning an entire business cycle. We show t...

  12. Evolution of Database Replication Technologies for WLCG

    OpenAIRE

    Baranowski, Zbigniew; Pardavila, Lorena Lobato; Blaszczyk, Marcin; Dimitrov, Gancho; Canali, Luca

    2015-01-01

    In this article we summarize several years of experience on database replication technologies used at WLCG and we provide a short review of the available Oracle technologies and their key characteristics. One of the notable changes and improvement in this area in recent past has been the introduction of Oracle GoldenGate as a replacement of Oracle Streams. We report in this article on the preparation and later upgrades for remote replication done in collaboration with ATLAS and Tier 1 databas...

  13. Modes of DNA repair and replication

    International Nuclear Information System (INIS)

    Hanawalt, P.; Kondo, S.

    1979-01-01

    Modes of DNA repair and replication require close coordination as well as some overlap of enzyme functions. Some classes of recovery deficient mutants may have defects in replication rather than repair modes. Lesions such as the pyrimidine dimers produced by ultraviolet light irradiation are the blocks to normal DNA replication in vivo and in vitro. The DNA synthesis by the DNA polymerase 1 of E. coli is blocked at one nucleotide away from the dimerized pyrimidines in template strands. Thus, some DNA polymerases seem to be unable to incorporate nucleotides opposite to the non-pairing lesions in template DNA strands. The lesions in template DNA strands may block the sequential addition of nucleotides in the synthesis of daughter strands. Normal replication utilizes a constitutive ''error-free'' mode that copies DNA templates with high fidelity, but which may be totally blocked at a lesion that obscures the appropriate base pairing specificity. It might be expected that modified replication system exhibits generally high error frequency. The error rate of DNA polymerases may be controlled by the degree of phosphorylation of the enzyme. Inducible SOS system is controlled by recA genes that also control the pathways for recombination. It is possible that SOS system involves some process other than the modification of a blocked replication apparatus to permit error-prone transdimer synthesis. (Yamashita, S.)

  14. Replication and robustness in developmental research.

    Science.gov (United States)

    Duncan, Greg J; Engel, Mimi; Claessens, Amy; Dowsett, Chantelle J

    2014-11-01

    Replications and robustness checks are key elements of the scientific method and a staple in many disciplines. However, leading journals in developmental psychology rarely include explicit replications of prior research conducted by different investigators, and few require authors to establish in their articles or online appendices that their key results are robust across estimation methods, data sets, and demographic subgroups. This article makes the case for prioritizing both explicit replications and, especially, within-study robustness checks in developmental psychology. It provides evidence on variation in effect sizes in developmental studies and documents strikingly different replication and robustness-checking practices in a sample of journals in developmental psychology and a sister behavioral science-applied economics. Our goal is not to show that any one behavioral science has a monopoly on best practices, but rather to show how journals from a related discipline address vital concerns of replication and generalizability shared by all social and behavioral sciences. We provide recommendations for promoting graduate training in replication and robustness-checking methods and for editorial policies that encourage these practices. Although some of our recommendations may shift the form and substance of developmental research articles, we argue that they would generate considerable scientific benefits for the field. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  15. Nonequilibrium Entropic Bounds for Darwinian Replicators

    Directory of Open Access Journals (Sweden)

    Jordi Piñero

    2018-01-01

    Full Text Available Life evolved on our planet by means of a combination of Darwinian selection and innovations leading to higher levels of complexity. The emergence and selection of replicating entities is a central problem in prebiotic evolution. Theoretical models have shown how populations of different types of replicating entities exclude or coexist with other classes of replicators. Models are typically kinetic, based on standard replicator equations. On the other hand, the presence of thermodynamical constraints for these systems remain an open question. This is largely due to the lack of a general theory of statistical methods for systems far from equilibrium. Nonetheless, a first approach to this problem has been put forward in a series of novel developements falling under the rubric of the extended second law of thermodynamics. The work presented here is twofold: firstly, we review this theoretical framework and provide a brief description of the three fundamental replicator types in prebiotic evolution: parabolic, malthusian and hyperbolic. Secondly, we employ these previously mentioned techinques to explore how replicators are constrained by thermodynamics. Finally, we comment and discuss where further research should be focused on.

  16. Commercial Building Partnerships Replication and Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  17. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    Science.gov (United States)

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  18. Coxsackievirus B3 2A protease promotes encephalomyocarditis virus replication.

    Science.gov (United States)

    Song, Qin-Qin; Lu, Ming-Zhi; Song, Juan; Chi, Miao-Miao; Sheng, Lin-Jun; Yu, Jie; Luo, Xiao-Nuan; Zhang, Lu; Yao, Hai-Lan; Han, Jun

    2015-10-02

    To determine whether 2A protease of the enterovirus genus with type I internal ribosome entry site (IRES) effect on the viral replication of type II IRES, coxsackievirus B3(CVB3)-encoded protease 2A and encephalomyocarditis virus (EMCV) IRES (Type II)-dependent or cap-dependent report gene were transiently co-expressed in eukaryotic cells. We found that CVB3 2A protease not only inhibited translation of cap-dependent reporter genes through the cleavage of eIF4GI, but also conferred high EMCV IRES-dependent translation ability and promoted EMCV replication. Moreover, deletions of short motif (aa13-18 RVVNRH, aa65-70 KNKHYP, or aa88-93 PRRYQSH) resembling the nuclear localization signals (NLS) or COOH-terminal acidic amino acid motif (aa133-147 DIRDLLWLEDDAMEQ) of CVB3 2A protease decreased both its EMCV IRES-dependent translation efficiency and destroy its cleavage on eukaryotic initiation factor 4G (eIF4G) I. Our results may provide better understanding into more effective interventions and treatments for co-infection of viral diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Organization of Replication of Ribosomal DNA in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Linskens, Maarten H.K.; Huberman, Joel A.

    1988-01-01

    Using recently developed replicon mapping techniques, we have analyzed the replication of the ribosomal DNA in Saccharomyces cerevisiae. The results show that (i) the functional origin of replication colocalizes with an autonomously replicating sequence element previously mapped to the

  20. How many bootstrap replicates are necessary?

    Science.gov (United States)

    Pattengale, Nicholas D; Alipour, Masoud; Bininda-Emonds, Olaf R P; Moret, Bernard M E; Stamatakis, Alexandros

    2010-03-01

    Phylogenetic bootstrapping (BS) is a standard technique for inferring confidence values on phylogenetic trees that is based on reconstructing many trees from minor variations of the input data, trees called replicates. BS is used with all phylogenetic reconstruction approaches, but we focus here on one of the most popular, maximum likelihood (ML). Because ML inference is so computationally demanding, it has proved too expensive to date to assess the impact of the number of replicates used in BS on the relative accuracy of the support values. For the same reason, a rather small number (typically 100) of BS replicates are computed in real-world studies. Stamatakis et al. recently introduced a BS algorithm that is 1 to 2 orders of magnitude faster than previous techniques, while yielding qualitatively comparable support values, making an experimental study possible. In this article, we propose stopping criteria--that is, thresholds computed at runtime to determine when enough replicates have been generated--and we report on the first large-scale experimental study to assess the effect of the number of replicates on the quality of support values, including the performance of our proposed criteria. We run our tests on 17 diverse real-world DNA--single-gene as well as multi-gene--datasets, which include 125-2,554 taxa. We find that our stopping criteria typically stop computations after 100-500 replicates (although the most conservative criterion may continue for several thousand replicates) while producing support values that correlate at better than 99.5% with the reference values on the best ML trees. Significantly, we also find that the stopping criteria can recommend very different numbers of replicates for different datasets of comparable sizes. Our results are thus twofold: (i) they give the first experimental assessment of the effect of the number of BS replicates on the quality of support values returned through BS, and (ii) they validate our proposals for

  1. MOF Suppresses Replication Stress and Contributes to Resolution of Stalled Replication Forks.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Pandita, Raj K; Singh, Mayank; Chakraborty, Sharmistha; Hambarde, Shashank; Ramnarain, Deepti; Charaka, Vijaya; Ahmed, Kazi Mokim; Hunt, Clayton R; Pandita, Tej K

    2018-03-15

    The human MOF (hMOF) protein belongs to the MYST family of histone acetyltransferases and plays a critical role in transcription and the DNA damage response. MOF is essential for cell proliferation; however, its role during replication and replicative stress is unknown. Here we demonstrate that cells depleted of MOF and under replicative stress induced by cisplatin, hydroxyurea, or camptothecin have reduced survival, a higher frequency of S-phase-specific chromosome damage, and increased R-loop formation. MOF depletion decreased replication fork speed and, when combined with replicative stress, also increased stalled replication forks as well as new origin firing. MOF interacted with PCNA, a key coordinator of replication and repair machinery at replication forks, and affected its ubiquitination and recruitment to the DNA damage site. Depletion of MOF, therefore, compromised the DNA damage repair response as evidenced by decreased Mre11, RPA70, Rad51, and PCNA focus formation, reduced DNA end resection, and decreased CHK1 phosphorylation in cells after exposure to hydroxyurea or cisplatin. These results support the argument that MOF plays an important role in suppressing replication stress induced by genotoxic agents at several stages during the DNA damage response. Copyright © 2018 American Society for Microbiology.

  2. X-irradiation affects all DNA replication intermediates when inhibiting replication initiation

    International Nuclear Information System (INIS)

    Loenn, U.; Karolinska Hospital, Stockholm

    1982-01-01

    When a human melanoma line was irradiated with 10 Gy, there was, after 30 to 60 min, a gradual reduction in the DNA replication rate. Ten to twelve hours after the irradiation, the DNA replication had returned to near normal rate. The results showed tht low dose-rate X-irradiation inhibits preferentially the formation of small DNA replication intermediates. There is no difference between the inhibition of these replication intermediates formed only in the irradiated cells and those formed also in untreated cells. (U.K.)

  3. Herpes simplex virus replication compartments can form by coalescence of smaller compartments

    International Nuclear Information System (INIS)

    Taylor, Travis J; McNamee, Elizabeth E.; Day, Cheryl; Knipe, David M.

    2003-01-01

    Herpes simplex virus (HSV) uses intranuclear compartmentalization to concentrate the viral and cellular factors required for the progression of the viral life cycle. Processes as varied as viral DNA replication, late gene expression, and capsid assembly take place within discrete structures within the nucleus called replication compartments. Replication compartments are hypothesized to mature from a few distinct structures, called prereplicative sites, that form adjacent to cellular nuclear matrix-associated ND10 sites. During productive infection, the HSV single-stranded DNA-binding protein ICP8 localizes to replication compartments. To further the understanding of replication compartment maturation, we have constructed and characterized a recombinant HSV-1 strain that expresses an ICP8 molecule with green fluorescent protein (GFP) fused to its C terminus. In transfected Vero cells that were infected with HSV, the ICP8-GFP protein localized to prereplicative sites in the presence of the viral DNA synthesis inhibitor phosphonoacetic acid (PAA) or to replication compartments in the absence of PAA. A recombinant HSV-1 strain expressing the ICP8-GFP virus replicated in Vero cells, but the yield was increased by 150-fold in an ICP8-complementing cell line. Using the ICP8-GFP protein as a marker for replication compartments, we show here that these structures start as punctate structures early in infection and grow into large, globular structures that eventually fill the nucleus. Large replication compartments were formed by small structures that either moved through the nucleus to merge with adjacent compartments or remained relatively stationary within the nucleus and grew by accretion and fused with neighboring structures

  4. Realistic Vascular Replicator for TAVR Procedures.

    Science.gov (United States)

    Rotman, Oren M; Kovarovic, Brandon; Sadasivan, Chander; Gruberg, Luis; Lieber, Baruch B; Bluestein, Danny

    2018-04-13

    Transcatheter aortic valve replacement (TAVR) is an over-the-wire procedure for treatment of severe aortic stenosis (AS). TAVR valves are conventionally tested using simplified left heart simulators (LHS). While those provide baseline performance reliably, their aortic root geometries are far from the anatomical in situ configuration, often overestimating the valves' performance. We report on a novel benchtop patient-specific arterial replicator designed for testing TAVR and training interventional cardiologists in the procedure. The Replicator is an accurate model of the human upper body vasculature for training physicians in percutaneous interventions. It comprises of fully-automated Windkessel mechanism to recreate physiological flow conditions. Calcified aortic valve models were fabricated and incorporated into the Replicator, then tested for performing TAVR procedure by an experienced cardiologist using the Inovare valve. EOA, pressures, and angiograms were monitored pre- and post-TAVR. A St. Jude mechanical valve was tested as a reference that is less affected by the AS anatomy. Results in the Replicator of both valves were compared to the performance in a commercial ISO-compliant LHS. The AS anatomy in the Replicator resulted in a significant decrease of the TAVR valve performance relative to the simplified LHS, with EOA and transvalvular pressures comparable to clinical data. Minor change was seen in the mechanical valve performance. The Replicator showed to be an effective platform for TAVR testing. Unlike a simplified geometric anatomy LHS, it conservatively provides clinically-relevant outcomes and complement it. The Replicator can be most valuable for testing new valves under challenging patient anatomies, physicians training, and procedural planning.

  5. Striking similarities are exhibited by two small Epstein-Barr virus-encoded ribonucleic acids and the adenovirus-associated ribonucleic acids VAI and VAII

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, M.D.; Gottlieb, E.; Lerner, M.R.; Steitz, J.A.

    1981-09-01

    The nucleotide sequence of the region of the Epstein-Barr virus genome that specified two small ribonucleic acids (RNAs), EBER 1 and EBER 2, has been determined. Both of these RNAs are encoded by the right-hand 1,000 base pairs of the EcoRI J fragment of EBV deoxyribonucleic acid. EBER 1 is 166 (167) nucleotides long and EBER 2 is 172 +- 1 nucleotides long; the heterogeneity resides at the 3' termini. The EBER genes are separated by 161 base pairs and are transcribed from the same deoxyribonucleic acid strand. In vitro, both EBER genes can be transcribed by RNA polymerase III; sequences homologous to previously identified RNA polymerase III intragenic transcription control regions are present. Striking similarities are therefore apparent both between the EBERs and the two adenovirus-associated RNAs, VAI and VAII, and between the regions of the two viral genomes that specify these small RNAs. We have shown that VAII RNA as well as VAI RNA and the EBERs exist in ribonucleoprotein complexes which are precipitable by anti-La antibodies associated with systemic lupus erythematosus. Finally the authors have demonstrated that the binding of protein(s) from uninfected cells confers antigenicity on each of the four virus-encoded small RNAs.

  6. Mutant analysis of Cdt1's function in suppressing nascent strand elongation during DNA replication in Xenopus egg extracts.

    Science.gov (United States)

    Nakazaki, Yuta; Tsuyama, Takashi; Azuma, Yutaro; Takahashi, Mikiko; Tada, Shusuke

    2017-09-02

    The initiation of DNA replication is strictly regulated by multiple mechanisms to ensure precise duplication of chromosomes. In higher eukaryotes, activity of the Cdt1 protein is temporally regulated during the cell cycle, and deregulation of Cdt1 induces DNA re-replication. In previous studies, we showed that excess Cdt1 inhibits DNA replication by suppressing progression of replication forks in Xenopus egg extracts. Here, we investigated the functional regions of Cdt1 that are required for the inhibition of DNA replication. We constructed a series of N-terminally or C-terminally deleted mutants of Cdt1 and examined their inhibitory effects on DNA replication in Xenopus egg extracts. Our results showed that the region spanning amino acids (a. a.) 255-620 is required for efficient inhibition of DNA replication, and that, within this region, a. a. 255-289 have a critical role in inhibition. Moreover, one of the Cdt1 mutants, Cdt1 R285A, was compromised with respect to the licensing activity but still inhibited DNA replication. This result suggests that Cdt1 has an unforeseen function in the negative regulation of DNA replication, and that this function is located within a molecular region that is distinct from those required for the licensing activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Spacetime replication of continuous variable quantum information

    International Nuclear Information System (INIS)

    Hayden, Patrick; Nezami, Sepehr; Salton, Grant; Sanders, Barry C

    2016-01-01

    The theory of relativity requires that no information travel faster than light, whereas the unitarity of quantum mechanics ensures that quantum information cannot be cloned. These conditions provide the basic constraints that appear in information replication tasks, which formalize aspects of the behavior of information in relativistic quantum mechanics. In this article, we provide continuous variable (CV) strategies for spacetime quantum information replication that are directly amenable to optical or mechanical implementation. We use a new class of homologically constructed CV quantum error correcting codes to provide efficient solutions for the general case of information replication. As compared to schemes encoding qubits, our CV solution requires half as many shares per encoded system. We also provide an optimized five-mode strategy for replicating quantum information in a particular configuration of four spacetime regions designed not to be reducible to previously performed experiments. For this optimized strategy, we provide detailed encoding and decoding procedures using standard optical apparatus and calculate the recovery fidelity when finite squeezing is used. As such we provide a scheme for experimentally realizing quantum information replication using quantum optics. (paper)

  8. COPI is required for enterovirus 71 replication.

    Directory of Open Access Journals (Sweden)

    Jianmin Wang

    Full Text Available Enterovirus 71 (EV71, a member of the Picornaviridae family, is found in Asian countries where it causes a wide range of human diseases. No effective therapy is available for the treatment of these infections. Picornaviruses undergo RNA replication in association with membranes of infected cells. COPI and COPII have been shown to be involved in the formation of picornavirus-induced vesicles. Replication of several picornaviruses, including poliovirus and Echovirus 11 (EV11, is dependent on COPI or COPII. Here, we report that COPI, but not COPII, is required for EV71 replication. Replication of EV71 was inhibited by brefeldin A and golgicide A, inhibitors of COPI activity. Furthermore, we found EV71 2C protein interacted with COPI subunits by co-immunoprecipitation and GST pull-down assay, indicating that COPI coatomer might be directed to the viral replication complex through viral 2C protein. Additionally, because the pathway is conserved among different species of enteroviruses, it may represent a novel target for antiviral therapies.

  9. Extremal dynamics in random replicator ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kärenlampi, Petri P., E-mail: petri.karenlampi@uef.fi

    2015-10-02

    The seminal numerical experiment by Bak and Sneppen (BS) is repeated, along with computations with replicator models, including a greater amount of features. Both types of models do self-organize, and do obey power-law scaling for the size distribution of activity cycles. However species extinction within the replicator models interferes with the BS self-organized critical (SOC) activity. Speciation–extinction dynamics ruins any stationary state which might contain a steady size distribution of activity cycles. The BS-type activity appears as a dissimilar phenomenon in comparison to speciation–extinction dynamics in the replicator system. No criticality is found from the speciation–extinction dynamics. Neither are speciations and extinctions in real biological macroevolution known to contain any diverging distributions, or self-organization towards any critical state. Consequently, biological macroevolution probably is not a self-organized critical phenomenon. - Highlights: • Extremal Dynamics organizes random replicator ecosystems to two phases in fitness space. • Replicator systems show power-law scaling of activity. • Species extinction interferes with Bak–Sneppen type mutation activity. • Speciation–extinction dynamics does not show any critical phase transition. • Biological macroevolution probably is not a self-organized critical phenomenon.

  10. Replication of cultured lung epithelial cells

    International Nuclear Information System (INIS)

    Guzowski, D.; Bienkowski, R.

    1986-01-01

    The authors have investigated the conditions necessary to support replication of lung type 2 epithelial cells in culture. Cells were isolated from mature fetal rabbit lungs (29d gestation) and cultured on feeder layers of mitotically inactivated 3T3 fibroblasts. The epithelial nature of the cells was demonstrated by indirect immunofluorescent staining for keratin and by polyacid dichrome stain. Ultrastructural examination during the first week showed that the cells contained myofilaments, microvilli and lamellar bodies (markers for type 2 cells). The following changes were observed after the first week: increase in cell size; loss of lamellar bodies and appearance of multivesicular bodies; increase in rough endoplasmic reticulum and golgi; increase in tonafilaments and well-defined junctions. General cell morphology was good for up to 10 wk. Cells cultured on plastic surface degenerated after 1 wk. Cell replication was assayed by autoradiography of cultures exposed to ( 3 H)-thymidine and by direct cell counts. The cells did not replicate during the first week; however, between 2-10 wk the cells incorporated the label and went through approximately 6 population doublings. They have demonstrated that lung alveolar epithelial cells can replicate in culture if they are maintained on an appropriate substrate. The coincidence of ability to replicate and loss of markers for differentiation may reflect the dichotomy between growth and differentiation commonly observed in developing systems

  11. The evolutionary ecology of molecular replicators.

    Science.gov (United States)

    Nee, Sean

    2016-08-01

    By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.

  12. Chromatin Structure and Replication Origins: Determinants Of Chromosome Replication And Nuclear Organization

    Science.gov (United States)

    Smith, Owen K.; Aladjem, Mirit I.

    2014-01-01

    The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome’s three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication. PMID:24905010

  13. The progression of replication forks at natural replication barriers in live bacteria

    NARCIS (Netherlands)

    Moolman, M.C.; Tiruvadi Krishnan, S; Kerssemakers, J.W.J.; de Leeuw, R.; Lorent, V.J.F.; Sherratt, David J.; Dekker, N.H.

    2016-01-01

    Protein-DNA complexes are one of the principal barriers the replisome encounters during replication. One such barrier is the Tus-ter complex, which is a direction dependent barrier for replication fork progression. The details concerning the dynamics of the replisome when encountering these

  14. Using Replicates in Information Retrieval Evaluation.

    Science.gov (United States)

    Voorhees, Ellen M; Samarov, Daniel; Soboroff, Ian

    2017-09-01

    This article explores a method for more accurately estimating the main effect of the system in a typical test-collection-based evaluation of information retrieval systems, thus increasing the sensitivity of system comparisons. Randomly partitioning the test document collection allows for multiple tests of a given system and topic (replicates). Bootstrap ANOVA can use these replicates to extract system-topic interactions-something not possible without replicates-yielding a more precise value for the system effect and a narrower confidence interval around that value. Experiments using multiple TREC collections demonstrate that removing the topic-system interactions substantially reduces the confidence intervals around the system effect as well as increases the number of significant pairwise differences found. Further, the method is robust against small changes in the number of partitions used, against variability in the documents that constitute the partitions, and the measure of effectiveness used to quantify system effectiveness.

  15. DNA replication stress and cancer chemotherapy.

    Science.gov (United States)

    Kitao, Hiroyuki; Iimori, Makoto; Kataoka, Yuki; Wakasa, Takeshi; Tokunaga, Eriko; Saeki, Hiroshi; Oki, Eiji; Maehara, Yoshihiko

    2018-02-01

    DNA replication is one of the fundamental biological processes in which dysregulation can cause genome instability. This instability is one of the hallmarks of cancer and confers genetic diversity during tumorigenesis. Numerous experimental and clinical studies have indicated that most tumors have experienced and overcome the stresses caused by the perturbation of DNA replication, which is also referred to as DNA replication stress (DRS). When we consider therapeutic approaches for tumors, it is important to exploit the differences in DRS between tumor and normal cells. In this review, we introduce the current understanding of DRS in tumors and discuss the underlying mechanism of cancer therapy from the aspect of DRS. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. Evolution of Database Replication Technologies for WLCG

    CERN Document Server

    Baranowski, Zbigniew; Blaszczyk, Marcin; Dimitrov, Gancho; Canali, Luca

    2015-01-01

    In this article we summarize several years of experience on database replication technologies used at WLCG and we provide a short review of the available Oracle technologies and their key characteristics. One of the notable changes and improvement in this area in recent past has been the introduction of Oracle GoldenGate as a replacement of Oracle Streams. We report in this article on the preparation and later upgrades for remote replication done in collaboration with ATLAS and Tier 1 database administrators, including the experience from running Oracle GoldenGate in production. Moreover, we report on another key technology in this area: Oracle Active Data Guard which has been adopted in several of the mission critical use cases for database replication between online and offline databases for the LHC experiments.

  17. Synchronization of DNA array replication kinetics

    Science.gov (United States)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2016-04-01

    In the present work we discuss the features of the DNA replication kinetics at the case of multiplicity of simultaneously elongated DNA fragments. The interaction between replicated DNA fragments is carried out by free protons that appears at the every nucleotide attachment at the free end of elongated DNA fragment. So there is feedback between free protons concentration and DNA-polymerase activity that appears as elongation rate dependence. We develop the numerical model based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) for DNA elongation process with conditions pointed above and we study the possibility of the DNA polymerases movement synchronization. The results obtained numerically can be useful for DNA polymerase movement detection and visualization of the elongation process in the case of massive DNA replication, eg, under PCR condition or for DNA "sequencing by synthesis" sequencing devices evaluation.

  18. The scenario on the origin of translation in the RNA world: in principle of replication parsimony

    Directory of Open Access Journals (Sweden)

    Ma Wentao

    2010-11-01

    Full Text Available Abstract Background It is now believed that in the origin of life, proteins should have been "invented" in an RNA world. However, due to the complexity of a possible RNA-based proto-translation system, this evolving process seems quite complicated and the associated scenario remains very blurry. Considering that RNA can bind amino acids with specificity, it has been reasonably supposed that initial peptides might have been synthesized on "RNA templates" containing multiple amino acid binding sites. This "Direct RNA Template (DRT" mechanism is attractive because it should be the simplest mechanism for RNA to synthesize peptides, thus very likely to have been adopted initially in the RNA world. Then, how this mechanism could develop into a proto-translation system mechanism is an interesting problem. Presentation of the hypothesis Here an explanation to this problem is shown considering the principle of "replication parsimony" --- genetic information tends to be utilized in a parsimonious way under selection pressure, due to its replication cost (e.g., in the RNA world, nucleotides and ribozymes for RNA replication. Because a DRT would be quite long even for a short peptide, its replication cost would be great. Thus the diversity and the length of functional peptides synthesized by the DRT mechanism would be seriously limited. Adaptors (proto-tRNAs would arise to allow a DRT's complementary strand (called "C-DRT" here to direct the synthesis of the same peptide synthesized by the DRT itself. Because the C-DRT is a necessary part in the DRT's replication, fewer turns of the DRT's replication would be needed to synthesize definite copies of the functional peptide, thus saving the replication cost. Acting through adaptors, C-DRTs could transform into much shorter templates (called "proto-mRNAs" here and substitute the role of DRTs, thus significantly saving the replication cost. A proto-rRNA corresponding to the small subunit rRNA would then emerge

  19. Peretinoin, an Acyclic Retinoid, Inhibits Hepatitis B Virus Replication by Suppressing Sphingosine Metabolic Pathway In Vitro

    Directory of Open Access Journals (Sweden)

    Kazuhisa Murai

    2018-01-01

    Full Text Available Hepatocellular carcinoma (HCC frequently develops from hepatitis C virus (HCV and hepatitis B virus (HBV infection. We previously reported that peretinoin, an acyclic retinoid, inhibits HCV replication. This study aimed to examine the influence of peretinoin on the HBV lifecycle. HBV-DNA and covalently closed circular DNA (cccDNA were evaluated by a qPCR method in HepG2.2.15 cells. Peretinoin significantly reduced the levels of intracellular HBV-DNA, nuclear cccDNA, and HBV transcript at a concentration that did not induce cytotoxicity. Conversely, other retinoids, such as 9-cis, 13-cis retinoic acid (RA, and all-trans-retinoic acid (ATRA, had no effect or rather increased HBV replication. Mechanistically, although peretinoin increased the expression of HBV-related transcription factors, as observed for other retinoids, peretinoin enhanced the binding of histone deacetylase 1 (HDAC1 to cccDNA in the nucleus and negatively regulated HBV transcription. Moreover, peretinoin significantly inhibited the expression of SPHK1, a potential inhibitor of HDAC activity, and might be involved in hepatic inflammation, fibrosis, and HCC. SPHK1 overexpression in cells cancelled the inhibition of HBV replication induced by peretinoin. This indicates that peretinoin activates HDAC1 and thereby suppresses HBV replication by inhibiting the sphingosine metabolic pathway. Therefore, peretinoin may be a novel therapeutic agent for HBV replication and chemoprevention against HCC.

  20. Signal replication in a DNA nanostructure

    Science.gov (United States)

    Mendoza, Oscar; Houmadi, Said; Aimé, Jean-Pierre; Elezgaray, Juan

    2017-01-01

    Logic circuits based on DNA strand displacement reaction are the basic building blocks of future nanorobotic systems. The circuits tethered to DNA origami platforms present several advantages over solution-phase versions where couplings are always diffusion-limited. Here we consider a possible implementation of one of the basic operations needed in the design of these circuits, namely, signal replication. We show that with an appropriate preparation of the initial state, signal replication performs in a reproducible way. We also show the existence of side effects concomitant to the high effective concentrations in tethered circuits, such as slow leaky reactions and cross-activation.

  1. Temporal organization of cellular self-replication

    Science.gov (United States)

    Alexandrov, Victor; Pugatch, Rami

    Recent experiments demonstrate that single cells grow exponentially in time. A coarse grained model of cellular self-replication is presented based on a novel concept - the cell is viewed as a self-replicating queue. This allows to have a more fundamental look into various temporal organizations and, importantly, the inherent non-Markovianity of noise distributions. As an example, the distribution of doubling times can be inferred and compared to single cell experiments in bacteria. We observe data collapse upon scaling by the average doubling time for different environments and present an inherent task allocation trade-off. Support from the Simons Center for Systems Biology, IAS, Princeon.

  2. Chromatin challenges during DNA replication and repair

    DEFF Research Database (Denmark)

    Groth, Anja; Rocha, Walter; Verreault, Alain

    2007-01-01

    Inheritance and maintenance of the DNA sequence and its organization into chromatin are central for eukaryotic life. To orchestrate DNA-replication and -repair processes in the context of chromatin is a challenge, both in terms of accessibility and maintenance of chromatin organization. To meet...... the challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic...... landscape may be stably maintained even in the face of dramatic changes in chromatin structure....

  3. Iterated function systems for DNA replication

    Science.gov (United States)

    Gaspard, Pierre

    2017-10-01

    The kinetic equations of DNA replication are shown to be exactly solved in terms of iterated function systems, running along the template sequence and giving the statistical properties of the copy sequences, as well as the kinetic and thermodynamic properties of the replication process. With this method, different effects due to sequence heterogeneity can be studied, in particular, a transition between linear and sublinear growths in time of the copies, and a transition between continuous and fractal distributions of the local velocities of the DNA polymerase along the template. The method is applied to the human mitochondrial DNA polymerase γ without and with exonuclease proofreading.

  4. Involvement of Autophagy in Coronavirus Replication

    Directory of Open Access Journals (Sweden)

    Paul Britton

    2012-11-01

    Full Text Available Coronaviruses are single stranded, positive sense RNA viruses, which induce the rearrangement of cellular membranes upon infection of a host cell. This provides the virus with a platform for the assembly of viral replication complexes, improving efficiency of RNA synthesis. The membranes observed in coronavirus infected cells include double membrane vesicles. By nature of their double membrane, these vesicles resemble cellular autophagosomes, generated during the cellular autophagy pathway. In addition, coronavirus infection has been demonstrated to induce autophagy. Here we review current knowledge of coronavirus induced membrane rearrangements and the involvement of autophagy or autophagy protein microtubule associated protein 1B light chain 3 (LC3 in coronavirus replication.

  5. The replication of expansive production knowledge

    DEFF Research Database (Denmark)

    Wæhrens, Brian Vejrum; Yang, Cheng; Madsen, Erik Skov

    2012-01-01

    Purpose – With the aim to support offshore production line replication, this paper specifically aims to explore the use of templates and principles to transfer expansive productive knowledge embedded in a production line and understand the contingencies that influence the mix of these approaches......; and (2) rather than being viewed as alternative approaches, templates and principles should be seen as complementary once the transfer motive moves beyond pure replication. Research limitations – The concepts introduced in this paper were derived from two Danish cases. While acceptable for theory...

  6. In Vivo Regulation of Hepatitis B Virus Replication by Peroxisome Proliferators†

    Science.gov (United States)

    Guidotti, Luca G.; Eggers, Carrie M.; Raney, Anneke K.; Chi, Susan Y.; Peters, Jeffrey M.; Gonzalez, Frank J.; McLachlan, Alan

    1999-01-01

    The role of the peroxisome proliferator-activated receptor α (PPARα) in regulating hepatitis B virus (HBV) transcription and replication in vivo was investigated in an HBV transgenic mouse model. Treatment of HBV transgenic mice with the peroxisome proliferators Wy-14,643 and clofibric acid resulted in a less than twofold increase in HBV transcription rates and steady-state levels of HBV RNAs in the livers of these mice. In male mice, this increase in transcription was associated with a 2- to 3-fold increase in replication intermediates, whereas in female mice it was associated with a 7- to 14-fold increase in replication intermediates. The observed increases in transcription and replication were dependent on PPARα. HBV transgenic mice lacking this nuclear hormone receptor showed similar levels of HBV transcripts and replication intermediates as untreated HBV transgenic mice expressing PPARα but failed to demonstrate alterations in either RNA or DNA synthesis in response to peroxisome proliferators. Therefore, it appears that very modest alterations in transcription can, under certain circumstances, result in relatively large increases in HBV replication in HBV transgenic mice. PMID:10559356

  7. The Genomic Replication of the Crenarchaeal Virus SIRV2

    DEFF Research Database (Denmark)

    Martinez Alvarez, Laura

    reinitiation events may partially explain the branched topology of the viral replication intermediates. We also analyzed the intracellular location of viral replication, showing the formation of viral peripheral replication centers in SIRV2-infected cells, where viral DNA synthesis and replication...

  8. Bayesian tests to quantify the result of a replication attempt

    NARCIS (Netherlands)

    Verhagen, J.; Wagenmakers, E.-J.

    2014-01-01

    Replication attempts are essential to the empirical sciences. Successful replication attempts increase researchers’ confidence in the presence of an effect, whereas failed replication attempts induce skepticism and doubt. However, it is often unclear to what extent a replication attempt results in

  9. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Science.gov (United States)

    Ke, Po-Yuan; Chen, Steve S-L

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  10. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Directory of Open Access Journals (Sweden)

    Po-Yuan Ke

    Full Text Available So far how hepatitis C virus (HCV replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp infection and downregulated cell surface level of CD81, a critical HCV entry (coreceptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  11. Optical replication techniques for image slicers

    Czech Academy of Sciences Publication Activity Database

    Schmoll, J.; Robertson, D.J.; Dubbeldam, C.M.; Bortoletto, F.; Pína, L.; Hudec, René; Prieto, E.; Norrie, C.; Ramsay- Howat, S.

    2006-01-01

    Roč. 50, 4-5 (2006), s. 263-266 ISSN 1387-6473 Institutional research plan: CEZ:AV0Z10030501 Keywords : smart focal planes * image slicers * replication Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.914, year: 2006

  12. Inhibition of DNA replication by ultraviolet light

    International Nuclear Information System (INIS)

    Edenberg, H.J.

    1976-01-01

    DNA replication in ultraviolet-irradiated HeLa cells was studied by two different techniques: measurements of the kinetics of semiconservative DNA synthesis, and DNA fiber autoradiography. In examining the kinetics of semiconservative DNA synthesis, density label was used to avoid measuring the incorporation due to repair replication. The extent of inhibition varied with time. After doses of less than 10 J/m 2 the rate was initially depressed but later showed some recovery. After higher doses, a constant, low rate of synthesis was seen for at least the initial 6 h. An analysis of these data indicated that the inhibition of DNA synthesis could be explained by replication forks halting at pyrimidine dimers. DNA fiber autoradiography was used to further characterize replication after ultraviolet irradiation. The average length of labeled segments in irradiated cells increased in the time immediately after irradiation, and then leveled off. This is the predicted pattern if DNA synthesis in each replicon continued at its previous rate until a lesion is reached, and then halted. The frequency of lesions that block synthesis is approximately the same as the frequency of pyrimidine dimers

  13. Replication and Inhibitors of Enteroviruses and Parechoviruses

    Directory of Open Access Journals (Sweden)

    Lonneke van der Linden

    2015-08-01

    Full Text Available The Enterovirus (EV and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV. They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors.

  14. Chaotic interactions of self-replicating RNA.

    Science.gov (United States)

    Forst, C V

    1996-03-01

    A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the same chaotic regime. Also a fractal torus in a generalized three-dimensional Lotka-Volterra Model has been linked to one of the chaotic attractors. The strange attractors are studied in the equivalent four-dimensional catalytic replicator network. The fractal torus has been examined in adapted Lotka-Volterra equations. Analytic expressions are derived for the Lyapunov exponents of the flow in the replicator system. Lyapunov spectra for different pathways into chaos has been calculated. In the generalized Lotka-Volterra system a second inner rest point--coexisting with (quasi)-periodic orbits--can be observed; with an abundance of different bifurcations. Pathways from chaotic tori, via quasi-periodic tori, via limit cycles, via multi-periodic orbits--emerging out of periodic doubling bifurcations--to "simple" chaotic attractors can be found.

  15. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  16. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.

    Science.gov (United States)

    Kurat, Christoph F; Yeeles, Joseph T P; Patel, Harshil; Early, Anne; Diffley, John F X

    2017-01-05

    The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Titanium nitride stamps replicating nanoporous anodic alumina films

    International Nuclear Information System (INIS)

    Navas, D; Sanchez, O; Asenjo, A; Jaafar, M; Baldonedo, J L; Vazquez, M; Hernandez-Velez, M

    2007-01-01

    Fabrication of nanostructured TiN films by magnetron sputtering using nanoporous anodic alumina films (NAAF) as substrates is reported. These hard nanostructured films could be used for pre-patterning aluminium foils and to obtain nanoporous films replicating the starting NAAF over a wide range of pore diameters and spacings. Pre-patterned Al foils are obtained by compression with pressures lower than those previously reported, then a new NAAF can be fabricated by means of only one anodization process. As an example, one of the TiN stamps was used for pre-patterning an Al foil at a pressure of 200 kg cm -2 and then it was anodized in oxalic acid solution obtaining the corresponding replica of the starting NAAF

  18. Helicase-dependent amplification of nucleic acids.

    Science.gov (United States)

    Cao, Yun; Kim, Hyun-Jin; Li, Ying; Kong, Huimin; Lemieux, Bertrand

    2013-10-11

    Helicase-dependent amplification (HDA) is a novel method for the isothermal in vitro amplification of nucleic acids. The HDA reaction selectively amplifies a target sequence by extension of two oligonucleotide primers. Unlike the polymerase chain reaction (PCR), HDA uses a helicase enzyme to separate the deoxyribonucleic acid (DNA) strands, rather than heat denaturation. This allows DNA amplification without the need for thermal cycling. The helicase used in HDA is a helicase super family II protein obtained from a thermophilic organism, Thermoanaerobacter tengcongensis (TteUvrD). This thermostable helicase is capable of unwinding blunt-end nucleic acid substrates at elevated temperatures (60° to 65°C). The HDA reaction can also be coupled with reverse transcription for ribonucleic acid (RNA) amplification. The products of this reaction can be detected during the reaction using fluorescent probes when incubations are conducted in a fluorimeter. Alternatively, products can be detected after amplification using a disposable amplicon containment device that contains an embedded lateral flow strip. Copyright © 2013 John Wiley & Sons, Inc.

  19. T135I substitution in the nonstructural protein 2C enhances foot-and-mouth disease virus replication.

    Science.gov (United States)

    Yuan, Tiangang; Wang, Haiwei; Li, Chen; Yang, Decheng; Zhou, Guohui; Yu, Li

    2017-12-01

    The foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays an important role in viral replication, virulence, and host range. It has been shown that deletions of 10 or 19-20 amino acids in the C-terminal half of 3A attenuate serotype O and C FMDVs, which replicate poorly in bovine cells but normally in porcine-derived cells, and the C-terminal half of 3A is not essential for serotype Asia1 FMDV replication in BHK-21 cells. In this study, we constructed a 3A deletion FMDV mutant based on a serotype O FMDV, the wild-type virus O/YS/CHA/05, with a 60-amino acid deletion in the 3A protein sequence, between residues 84 and 143. The rescued virus O/YS/CHA/05-Δ3A exhibited slower growth kinetics and formed smaller plaques compared to O/YS/CHA/05 in both BHK-21 and IBRS-2 cells, indicating that the 60-amino acid deletion in the 3A protein impaired FMDV replication. After 14 passages in BHK-21 cells, the replication capacity of the passaged virus O/YS/CHA/05-Δ3A-P14 returned to a level similar to the wild-type virus, suggesting that amino acid substitutions responsible for the enhanced replication capacity occurred in the genome of O/YS/CHA/05-Δ3A-P14. By sequence analysis, two amino acid substitutions, P153L in VP1 and T135I in 2C, were found in the O/YS/CHA/05-Δ3A-P14 genome compared to the O/YS/CHA/05-Δ3A genome. Subsequently, the amino acid substitutions VP1 P153L and 2C T135I were separately introduced into O/YS/CHA/05-Δ3A to rescue mutant viruses for examining their growth kinetics. Results showed that the 2C T135I instead of the VP1 P153L enhanced the virus replication capacity. The 2C T135I substitution also improved the replication of the wild-type virus, indicating that the effect of 2C T135I substitution on FMDV replication is not associated with the 3A deletion. Furthermore, our results showed that the T135I substitution in the nonstructural protein 2C enhanced O/YS/CHA/05 replication through promoting viral RNA synthesis.

  20. Short hairpin-loop-structured oligodeoxynucleotides reduce HSV-1 replication

    Directory of Open Access Journals (Sweden)

    Heinrich Jochen

    2009-04-01

    Full Text Available Abstract The Herpes simplex virus (HSV is known as an infectious agent and widespread in the human population. The symptoms of HSV infections can range from mild to life threatening, especially in immune-compromised individuals. HSV infections are commonly treated with the guanosine analogue Aciclovir, but reports of resistance are increasing. Efforts are made to establish single-stranded antisense oligodeoxynucleotides (as and small interfering ribonucleic acids (siRNAs for antiviral treatment. Recently, another class of short interfering nucleic acids, partially double-stranded hairpin loop-structured 54 mer oligodeoxynucleotides (ODNs, was shown to allow hydrolysis of HIV RNA by binding to the viral RNA. This leads to a substrate for the viral RNase H. To assess the potential of such ODNs for inhibition of HSV-1 replication, five partially double-stranded ODNs were designed based on the sequences of known siRNAs against HSV-1 with antiviral activity. Three of them are directed against early and two against leaky late genes. Primary human lung fibroblasts, MRC-5, and African green monkey kidney cells, Vero, were transfected with ODNs and subsequently infected. The effect on HSV-1 replication was determined by analyzing the virus titer in cell culture supernatants by quantitative PCR and plaque assays. An inhibitory effect was observed with all five selected ODNs, with two cases showing statistical significance in both cell types. The observed effect was sequence-specific and dose dependent. In one case the ODN was more efficient than a previously described siRNA directed against the same target site in the mRNA of UL5, a component of the helicase/primase complex. HSV-1 virions and ODNs can be applied simultaneously without transfection reagent, but at a 50-fold higher concentration to Vero cells with similar efficiencies. The results underline the potential of partially double-stranded hairpin loop-structured ODNs as antiviral agents.

  1. High-Resolution Replication Profiles Define the Stochastic Nature of Genome Replication Initiation and Termination

    Directory of Open Access Journals (Sweden)

    Michelle Hawkins

    2013-11-01

    Full Text Available Eukaryotic genome replication is stochastic, and each cell uses a different cohort of replication origins. We demonstrate that interpreting high-resolution Saccharomyces cerevisiae genome replication data with a mathematical model allows quantification of the stochastic nature of genome replication, including the efficiency of each origin and the distribution of termination events. Single-cell measurements support the inferred values for stochastic origin activation time. A strain, in which three origins were inactivated, confirmed that the distribution of termination events is primarily dictated by the stochastic activation time of origins. Cell-to-cell variability in origin activity ensures that termination events are widely distributed across virtually the whole genome. We propose that the heterogeneity in origin usage contributes to genome stability by limiting potentially deleterious events from accumulating at particular loci.

  2. DNA replication and post-replication repair in U.V.-sensitive mouse neuroblastoma cells

    International Nuclear Information System (INIS)

    Lavin, M.F.; McCombe, P.; Kidson, C.

    1976-01-01

    Mouse neuroblastoma cells differentiated when grown in the absence of serum; differentiation was reversed on the addition of serum. Differentiated cells were more sensitive to U.V.-radiation than proliferating cells. Whereas addition of serum to differentiated neuroblastoma cells normally resulted in immediate, synchronous entry into S phase, irradiation just before the addition of serum resulted in a long delay in the onset of DNA replication. During this lag period, incorporated 3 H-thymidine appeared in the light density region of CsCl gradients, reflecting either repair synthesis or abortive replication. Post-replication repair (gap-filling) was found to be present in proliferating cells and at certain times in differentiated cells. It is suggested that the sensitivity of differentiated neuroblastoma cells to U.V.-radiation may have been due to ineffective post-replication repair or to deficiencies in more than one repair mechanism, with reduction in repair capacity beyond a critical threshold. (author)

  3. The Role of the Transcriptional Response to DNA Replication Stress.

    Science.gov (United States)

    Herlihy, Anna E; de Bruin, Robertus A M

    2017-03-02

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.

  4. The Role of the Transcriptional Response to DNA Replication Stress

    Science.gov (United States)

    Herlihy, Anna E.; de Bruin, Robertus A.M.

    2017-01-01

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage. PMID:28257104

  5. Replication Protein A (RPA) Phosphorylation Prevents RPA Association with Replication Centers

    OpenAIRE

    Vassin, Vitaly M.; Wold, Marc S.; Borowiec, James A.

    2004-01-01

    Mammalian replication protein A (RPA) undergoes DNA damage-dependent phosphorylation at numerous sites on the N terminus of the RPA2 subunit. To understand the functional significance of RPA phosphorylation, we expressed RPA2 variants in which the phosphorylation sites were converted to aspartate (RPA2D) or alanine (RPA2A). Although RPA2D was incorporated into RPA heterotrimers and supported simian virus 40 DNA replication in vitro, the RPA2D mutant was selectively unable to associate with re...

  6. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress

    Science.gov (United States)

    García-Rodríguez, Néstor; Wong, Ronald P.; Ulrich, Helle D.

    2016-01-01

    Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse. PMID:27242895

  7. DNA Replication in Engineered Escherichia coli Genomes with Extra Replication Origins.

    Science.gov (United States)

    Milbredt, Sarah; Farmani, Neda; Sobetzko, Patrick; Waldminghaus, Torsten

    2016-10-21

    The standard outline of bacterial genomes is a single circular chromosome with a single replication origin. From the bioengineering perspective, it appears attractive to extend this basic setup. Bacteria with split chromosomes or multiple replication origins have been successfully constructed in the last few years. The characteristics of these engineered strains will largely depend on the respective DNA replication patterns. However, the DNA replication has not been investigated systematically in engineered bacteria with multiple origins or split replicons. Here we fill this gap by studying a set of strains consisting of (i) E. coli strains with an extra copy of the native replication origin (oriC), (ii) E. coli strains with an extra copy of the replication origin from the secondary chromosome of Vibrio cholerae (oriII), and (iii) a strain in which the E. coli chromosome is split into two linear replicons. A combination of flow cytometry, microarray-based comparative genomic hybridization (CGH), and modeling revealed silencing of extra oriC copies and differential timing of ectopic oriII copies compared to the native oriC. The results were used to derive construction rules for future multiorigin and multireplicon projects.

  8. Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase.

    Science.gov (United States)

    Lõoke, Marko; Maloney, Michael F; Bell, Stephen P

    2017-02-01

    Activation of the Mcm2-7 replicative DNA helicase is the committed step in eukaryotic DNA replication initiation. Although Mcm2-7 activation requires binding of the helicase-activating proteins Cdc45 and GINS (forming the CMG complex), an additional protein, Mcm10, drives initial origin DNA unwinding by an unknown mechanism. We show that Mcm10 binds a conserved motif located between the oligonucleotide/oligosaccharide fold (OB-fold) and A subdomain of Mcm2. Although buried in the interface between these domains in Mcm2-7 structures, mutations predicted to separate the domains and expose this motif restore growth to conditional-lethal MCM10 mutant cells. We found that, in addition to stimulating initial DNA unwinding, Mcm10 stabilizes Cdc45 and GINS association with Mcm2-7 and stimulates replication elongation in vivo and in vitro. Furthermore, we identified a lethal allele of MCM10 that stimulates initial DNA unwinding but is defective in replication elongation and CMG binding. Our findings expand the roles of Mcm10 during DNA replication and suggest a new model for Mcm10 function as an activator of the CMG complex throughout DNA replication. © 2017 Lõoke et al.; Published by Cold Spring Harbor Laboratory Press.

  9. DNA replication and repair in Tilapia cells

    International Nuclear Information System (INIS)

    Yew, F.H.; Chang, L.M.

    1984-01-01

    The effect of ultraviolet radiation on a cell line established from the warm water fish Tilapia has been assessed by measuring the rate of DNA synthesis, excision repair, post-replication repair and cell survival. The cells tolerate ultraviolet radiation better than mammalian cells with respect to DNA synthesis, post-replication repair and cell survival. They are also efficient in excision repair, which in other fish cell lines has been found to be at a low level or absent. Their response to the inhibitors hydroxyurea and 1-β-D-arabinofuranosylcytosine is less sensitive than that of other cell lines, yet the cells seem to have very small pools of DNA precursor. (author)

  10. Circus: A Replicated Procedure Call Facility

    Science.gov (United States)

    1984-08-01

    298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 client client stubs ...... ...... ..... ..... runtime libary stub compiler binding agent...runtime libary Figure 1: Structure of the Circus system replicated procedure call paired message protocol unreliable datagrams Figure 2: Circus...114-121. [11) Digit &! Equipment Corporation, Intel Corporation, a.nd Xerox Corporation. The Ethernet: A Local Area Networlc. September 1080. [12

  11. Nonequilibrium Phase Transitions Associated with DNA Replication

    Science.gov (United States)

    2011-02-11

    polymerases) catalyzing the growth of a DNA primer strand (the nascent chain of nucleotides complementary to the template strand) based on the Watson ...the fraction (error rate) of monomers for which y, where y is the correct Watson - Crick complementary base of , can be obtained by ¼ X...Nonequilibrium Phase Transitions Associated with DNA Replication Hyung-June Woo* and Anders Wallqvist Biotechnology High Performance Computing

  12. Recursion vs. Replication in Simple Cryptographic Protocols

    DEFF Research Database (Denmark)

    Huttel, Hans; Srba, Jiri

    2005-01-01

    We use some recent techniques from process algebra to draw several conclusions about the well studied class of ping-pong protocols introduced by Dolev and Yao. In particular we show that all nontrivial properties, including reachability and equivalence checking wrt. the whole van Glabbeek's spect...... of messages in the sense of Amadio, Lugiez and Vanackere. We conclude by showing that reachability analysis for a replicative variant of the protocol becomes decidable....

  13. Registered Replication Report: Strack, Martin, & Stepper (1988).

    Science.gov (United States)

    Acosta, Alberto; Adams, Reginald B; Albohn, Daniel N; Allard, Eric S; Beek, Titia; Benning, Stephen D; Blouin- Hudon, Eve-Marie; Bulnes, Luis Carlo; Caldwell, Tracy L; Calin-Jageman, Robert J; Capaldi, Colin A; Carfagno, Nicholas S; Chasten, Kelsie T; Cleeremans, Axel; Connell, Louise; DeCicco, Jennifer M.; Dijkhoff, Laura; Dijkstra, Katinka; Fischer, Agneta H; Foroni, Francesco; Gronau, Quentin F; Hess, Ursula; Holmes, Kevin J; Jones, Jacob L H; Klein, Olivier; Koch, Christopher; Korb, Sebastian; Lewinski, Peter; Liao, Julia D; Lund, Sophie; Lupiáñez, Juan; Lynott, Dermot; Nance, Christin N; Oosterwijk, Suzanne; Özdog˘ru, Asil Ali; Pacheco-Unguetti, Antonia Pilar; Pearson, Bethany; Powis, Christina; Riding, Sarah; Roberts, Tomi-Ann; Rumiati, Raffaella I; Senden, Morgane; Shea-Shumsky, Noah B; Sobocko, Karin; Soto, Jose A; Steiner, Troy G; Talarico, Jennifer M; vanAllen, Zack M; Wagenmakers, E-J; Vandekerckhove, Marie; Wainwright, Bethany; Wayand, Joseph F; Zeelenberg, Rene; Zetzer, Emily E; Zwaan, Rolf A

    2016-11-01

    According to the facial feedback hypothesis, people's affective responses can be influenced by their own facial expression (e.g., smiling, pouting), even when their expression did not result from their emotional experiences. For example, Strack, Martin, and Stepper (1988) instructed participants to rate the funniness of cartoons using a pen that they held in their mouth. In line with the facial feedback hypothesis, when participants held the pen with their teeth (inducing a "smile"), they rated the cartoons as funnier than when they held the pen with their lips (inducing a "pout"). This seminal study of the facial feedback hypothesis has not been replicated directly. This Registered Replication Report describes the results of 17 independent direct replications of Study 1 from Strack et al. (1988), all of which followed the same vetted protocol. A meta-analysis of these studies examined the difference in funniness ratings between the "smile" and "pout" conditions. The original Strack et al. (1988) study reported a rating difference of 0.82 units on a 10-point Likert scale. Our meta-analysis revealed a rating difference of 0.03 units with a 95% confidence interval ranging from -0.11 to 0.16. © The Author(s) 2016.

  14. The Anisotropy of Replicated Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Eugeny L. Furman

    2014-01-01

    Full Text Available The replication casting process gives the open-cell aluminum foams that can be used in many industrial applications as well as in filtering technology. The essential requirement for filters is the uniformity of filtering degree which is defined by the minimal pore size. However the structure of replication castings is often inhomogeneous and the minimal pore radius is decreasing in the direction of melt infiltration. The objective of this investigation is to study the dynamics of melt impregnation of the porous medium by vacuum suction to identify the possibility of reducing the anisotropy. Theoretical data illustrate the processes at the boundary between melt and gas medium. The experiments were carried out using the replication aluminum samples produced according to commercial technology. It was found that the permeability coefficient varies throughout the height of castings. A method for estimation of pressure on the line of melt movement was proposed. The resistance of NaCl layer and circular vents of the mold causes the inhomogeneity of castings. Finally the ways of minimizing the anisotropy were offered.

  15. The molecular biology of Bluetongue virus replication.

    Science.gov (United States)

    Patel, Avnish; Roy, Polly

    2014-03-01

    The members of Orbivirus genus within the Reoviridae family are arthropod-borne viruses which are responsible for high morbidity and mortality in ruminants. Bluetongue virus (BTV) which causes disease in livestock (sheep, goat, cattle) has been in the forefront of molecular studies for the last three decades and now represents the best understood orbivirus at a molecular and structural level. The complex nature of the virion structure has been well characterised at high resolution along with the definition of the virus encoded enzymes required for RNA replication; the ordered assembly of the capsid shell as well as the protein and genome sequestration required for it; and the role of host proteins in virus entry and virus release. More recent developments of Reverse Genetics and Cell-Free Assembly systems have allowed integration of the accumulated structural and molecular knowledge to be tested at meticulous level, yielding higher insight into basic molecular virology, from which the rational design of safe efficacious vaccines has been possible. This article is centred on the molecular dissection of BTV with a view to understanding the role of each protein in the virus replication cycle. These areas are important in themselves for BTV replication but they also indicate the pathways that related viruses, which includes viruses that are pathogenic to man and animals, might also use providing an informed starting point for intervention or prevention. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. DNA Replication Control During Drosophila Development: Insights into the Onset of S Phase, Replication Initiation, and Fork Progression

    Science.gov (United States)

    Hua, Brian L.; Orr-Weaver, Terry L.

    2017-01-01

    Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation. PMID:28874453

  17. Interplay between Selenium Levels and Replicative Senescence in WI-38 Human Fibroblasts: A Proteomic Approach.

    Science.gov (United States)

    Hammad, Ghania; Legrain, Yona; Touat-Hamici, Zahia; Duhieu, Stéphane; Cornu, David; Bulteau, Anne-Laure; Chavatte, Laurent

    2018-01-20

    Selenoproteins are essential components of antioxidant defense, redox homeostasis, and cell signaling in mammals, where selenium is found in the form of a rare amino acid, selenocysteine. Selenium, which is often limited both in food intake and cell culture media, is a strong regulator of selenoprotein expression and selenoenzyme activity. Aging is a slow, complex, and multifactorial process, resulting in a gradual and irreversible decline of various functions of the body. Several cellular aspects of organismal aging are recapitulated in the replicative senescence of cultured human diploid fibroblasts, such as embryonic lung fibroblast WI-38 cells. We previously reported that the long-term growth of young WI-38 cells with high (supplemented), moderate (control), or low (depleted) concentrations of selenium in the culture medium impacts their replicative lifespan, due to rapid changes in replicative senescence-associated markers and signaling pathways. In order to gain insight into the molecular link between selenium levels and replicative senescence, in the present work, we have applied a quantitative proteomic approach based on 2-Dimensional Differential in-Gel Electrophoresis (2D-DIGE) to the study of young and presenescent cells grown in selenium-supplemented, control, or depleted media. Applying a restrictive cut-off (spot intensity ±50% and a p value iii) spots varying in response to selenium concentration in presenescent cells. Interestingly, a 72% overlap between the impact of senescence and selenium was observed in our proteomic results, demonstrating a strong interplay between selenium, selenoproteins, and replicative senescence.

  18. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication.

    Directory of Open Access Journals (Sweden)

    Dany Graindorge

    Full Text Available UVA radiation (320-400 nm is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS, such as singlet oxygen (1O2 and hydrogen peroxide (H2O2, which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1 to several hours (replication fork velocity and origin firing. The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.

  19. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication

    Science.gov (United States)

    Graindorge, Dany; Martineau, Sylvain; Machon, Christelle; Arnoux, Philippe; Guitton, Jérôme; Francesconi, Stefania; Frochot, Céline; Sage, Evelyne; Girard, Pierre-Marie

    2015-01-01

    UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen. PMID:26485711

  20. Dynamics of Escherichia coli Chromosome Segregation during Multifork Replication

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2007-01-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chro......Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division......, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple......-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive...

  1. Plum Pox Virus 6K1 Protein Is Required for Viral Replication and Targets the Viral Replication Complex at the Early Stage of Infection.

    Science.gov (United States)

    Cui, Hongguang; Wang, Aiming

    2016-05-15

    The potyviral RNA genome encodes two polyproteins that are proteolytically processed by three viral protease domains into 11 mature proteins. Extensive molecular studies have identified functions for the majority of the viral proteins. For example, 6K2, one of the two smallest potyviral proteins, is an integral membrane protein and induces the endoplasmic reticulum (ER)-originated replication vesicles that target the chloroplast for robust viral replication. However, the functional role of 6K1, the other smallest protein, remains uncharacterized. In this study, we developed a series of recombinant full-length viral cDNA clones derived from a Canadian Plum pox virus (PPV) isolate. We found that deletion of any of the short motifs of 6K1 (each of which ranged from 5 to 13 amino acids), most of the 6K1 sequence (but with the conserved sequence of the cleavage sites being retained), or all of the 6K1 sequence in the PPV infectious clone abolished viral replication. The trans expression of 6K1 or the cis expression of a dislocated 6K1 failed to rescue the loss-of-replication phenotype, suggesting the temporal and spatial requirement of 6K1 for viral replication. Disruption of the N- or C-terminal cleavage site of 6K1, which prevented the release of 6K1 from the polyprotein, either partially or completely inhibited viral replication, suggesting the functional importance of the mature 6K1. We further found that green fluorescent protein-tagged 6K1 formed punctate inclusions at the viral early infection stage and colocalized with chloroplast-bound viral replicase elements 6K2 and NIb. Taken together, our results suggest that 6K1 is required for viral replication and is an important viral element of the viral replication complex at the early infection stage. Potyviruses account for more than 30% of known plant viruses and consist of many agriculturally important viruses. The genomes of potyviruses encode two polyproteins that are proteolytically processed into 11 mature

  2. Darwinian Evolution of Mutualistic RNA Replicators with Different Genes

    Science.gov (United States)

    Mizuuchi, R.; Ichihashi, N.

    2017-07-01

    We report a sustainable long-term replication and evolution of two distinct cooperative RNA replicators encoding different genes. One of the RNAs evolved to maintain or increase the cooperativity, despite selective advantage of selfish mutations.

  3. Replication assessment of surface texture at sub-micrometre scale

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Tosello, Guido; Hansen, Hans Nørgaard

    2017-01-01

    [2]. A replication process requires reproducing a master geometry by conveying it to a substrate material. It is typically induced by means of different energy sources (usually heat and force) and a direct physical contact between the master and the substrate. Furthermore, concepts of advanced......, because of the replication nature of molding processes, the required specifications for the manufacture of micro molded components must be ensured by means of a metrological approach to surface replication and dimensional control of both master geometry and replicated substrate [3]-[4]. Therefore...... replication was assessed by the replication fidelity, i.e., comparing the produced parts with the tool used to replicate the geometry. Furthermore, the uncertainty of the replication fidelity was achieved by propagating the uncertainties evaluated for both masters and replicas. Finally, despite the specimens...

  4. The Design of Finite State Machine for Asynchronous Replication Protocol

    Science.gov (United States)

    Wang, Yanlong; Li, Zhanhuai; Lin, Wei; Hei, Minglei; Hao, Jianhua

    Data replication is a key way to design a disaster tolerance system and to achieve reliability and availability. It is difficult for a replication protocol to deal with the diverse and complex environment. This means that data is less well replicated than it ought to be. To reduce data loss and to optimize replication protocols, we (1) present a finite state machine, (2) run it to manage an asynchronous replication protocol and (3) report a simple evaluation of the asynchronous replication protocol based on our state machine. It's proved that our state machine is applicable to guarantee the asynchronous replication protocol running in the proper state to the largest extent in the event of various possible events. It also can helpful to build up replication-based disaster tolerance systems to ensure the business continuity.

  5. Chromosome biology: conflict management for replication and transcription.

    Science.gov (United States)

    Dewar, James M; Walter, Johannes C

    2013-03-04

    A recent study has uncovered a new mechanism that attenuates DNA replication during periods of heightened gene expression to avoid collisions between replication and transcription. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Topology of a Membrane Associated Regulator of Prokaryotic DNA Replication

    National Research Council Canada - National Science Library

    Firshein, William

    1998-01-01

    This proposal has focused on a broad host range plasmid, RK2, as a model system to study how a pair of initiation proteins encoded by the plasmid for DNA replication function when replication occurs...

  7. Dynamic and nucleolin-dependent localization of human cytomegalovirus UL84 to the periphery of viral replication compartments and nucleoli.

    Science.gov (United States)

    Bender, Brian J; Coen, Donald M; Strang, Blair L

    2014-10-01

    Protein-protein and protein-nucleic acid interactions within subcellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG-tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments, with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44. Early in infection, UL84FLAG colocalized with the viral single-stranded DNA binding protein UL57, but colocalization became less prominent as infection progressed. A portion of UL84FLAG also colocalized with the host nucleolar protein nucleolin at the peripheries of both replication compartments and nucleoli. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a dramatic elimination of UL84FLAG from replication compartments and other parts of the nucleus and its accumulation in the cytoplasm. Reciprocal coimmunoprecipitation of viral proteins from infected cell lysates revealed association of UL84, UL44, and nucleolin. These results indicate that UL84 localization during infection is dynamic, which is likely relevant to its functions, and suggest that its nuclear and subnuclear localization is highly dependent on direct or indirect interactions with nucleolin. Importance: The protein-protein interactions among viral and cellular proteins required for replication of the human cytomegalovirus (HCMV) DNA genome are poorly understood. We sought to understand how an enigmatic HCMV protein critical for virus replication, UL84, localizes relative to other viral and cellular

  8. Addressing the "Replication Crisis": Using Original Studies to Design Replication Studies with Appropriate Statistical Power.

    Science.gov (United States)

    Anderson, Samantha F; Maxwell, Scott E

    2017-01-01

    Psychology is undergoing a replication crisis. The discussion surrounding this crisis has centered on mistrust of previous findings. Researchers planning replication studies often use the original study sample effect size as the basis for sample size planning. However, this strategy ignores uncertainty and publication bias in estimated effect sizes, resulting in overly optimistic calculations. A psychologist who intends to obtain power of .80 in the replication study, and performs calculations accordingly, may have an actual power lower than .80. We performed simulations to reveal the magnitude of the difference between actual and intended power based on common sample size planning strategies and assessed the performance of methods that aim to correct for effect size uncertainty and/or bias. Our results imply that even if original studies reflect actual phenomena and were conducted in the absence of questionable research practices, popular approaches to designing replication studies may result in a low success rate, especially if the original study is underpowered. Methods correcting for bias and/or uncertainty generally had higher actual power, but were not a panacea for an underpowered original study. Thus, it becomes imperative that 1) original studies are adequately powered and 2) replication studies are designed with methods that are more likely to yield the intended level of power.

  9. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Mihoko; Wang, Teresa S.-F

    2003-11-27

    Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Pol{kappa}). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.

  10. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis

    International Nuclear Information System (INIS)

    Kai, Mihoko; Wang, Teresa S.-F.

    2003-01-01

    Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polκ). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development

  11. Checkpoint independence of most DNA replication origins in fission yeast

    OpenAIRE

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Abstract Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleo...

  12. Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Nirmal [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Arora, Kavita [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Singh, Surinder P. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Pandey, Manoj K. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Singh, Harpal [Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Malhotra, Bansi D. [Biomolecular Electronics and Conducting Polymer Research Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India)]. E-mail: bansi.malhotra@gmail.com

    2007-04-18

    Double stranded calf thymus deoxyribonucleic acid entrapped polypyrrole-polyvinyl sulphonate (dsCT-DNA-PPy-PVS) films fabricated onto indium-tin-oxide (ITO) coated glass plates have been used to detect organophosphates such as chlorpyrifos and malathion. These disposable dsCT-DNA-PPy-PVS/ITO bioelectrodes have been characterized using cyclic voltammetry, Fourier-transform-infra-red (FTIR) spectroscopy and atomic force microscopy (AFM), respectively. These biosensing electrodes have a response time of 30 s, are stable for about 5 months when stored in desiccated conditions at 25 deg. C and can be used to amperometrically detect chlorpyrifos (0.0016-0.025 ppm) and malathion (0.17-5.0), respectively. The additive effect of these pesticides on the amperometric response of the disposable dsCT-DNA-PPy-PVS/ITO bioelectrodes has also been investigated.

  13. The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available Reovirus replication and assembly occurs within viral inclusion bodies that formed in specific intracellular compartments of cytoplasm in infected cells. Previous study indicated that aquareovirus NS80 is able to form inclusion bodies, and also can retain viral proteins within its inclusions. To better understand how NS80 performed in viral replication and assembly, the functional regions of NS80 associated with other viral proteins in aquareovirus replication were investigated in this study. Deletion mutational analysis and rotavirus NSP5-based protein association platform were used to detect association regions. Immunofluorescence images indicated that different N-terminal regions of NS80 could associate with viral proteins VP1, VP4, VP6 and NS38. Further co-immunoprecipitation analysis confirmed the interaction between VP1, VP4, VP6 or NS38 with different regions covering the N-terminal amino acid (aa, 1-471 of NS80, respectively. Moreover, removal of NS80 N-terminal sequences required for interaction with proteins VP1, VP4, VP6 or NS38 not only prevented the capacity of NS80 to support viral replication in NS80 shRNA-based replication complementation assays, but also inhibited the expression of aquareovirus proteins, suggesting that N-terminal regions of NS80 are necessary for viral replication. These results provided a foundational basis for further understanding the role of NS80 in viral replication and assembly during aquareovirus infection.

  14. Laying a Solid Foundation: Strategies for Effective Program Replication

    Science.gov (United States)

    Summerville, Geri

    2009-01-01

    The replication of proven social programs is a cost-effective and efficient way to achieve large-scale, positive social change. Yet there has been little guidance available about how to approach program replication and limited development of systems--at local, state or federal levels--to support replication efforts. "Laying a Solid Foundation:…

  15. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  16. Anaphase onset before complete DNA replication with intact checkpoint responses

    DEFF Research Database (Denmark)

    Torres-Rosell, Jordi; De Piccoli, Giacomo; Cordon-Preciado, Violeta

    2007-01-01

    Cellular checkpoints prevent mitosis in the presence of stalled replication forks. Whether checkpoints also ensure the completion of DNA replication before mitosis is unknown. Here, we show that in yeast smc5-smc6 mutants, which are related to cohesin and condensin, replication is delayed, most...

  17. Uncoupling of Sister Replisomes during Eukaryotic DNA Replication

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; Habuchi, Satoshi; van Oijen, Antoine M.; Walter, Johannes C.

    2010-01-01

    The duplication of eukaryotic genomes involves the replication of DNA from multiple origins of replication. In S phase, two sister replisomes assemble at each active origin, and they replicate DNA in opposite directions. Little is known about the functional relationship between sister replisomes.

  18. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The

  19. Mapping autonomously replicating sequence elements in a 73-kb ...

    Indian Academy of Sciences (India)

    Autonomously replicating sequence (ARS) elements are the genetic determinants of replication origin function in yeasts. They can be easily identified as the plasmids containing them transform yeast cells at a high frequency. As the first step towards identifying all potential replication origins in a 73-kb region of the long arm ...

  20. Lattice gas simulations of replicating domains

    International Nuclear Information System (INIS)

    Dawson, S.P.; Hasslacher, B.; Pearson, J.E.

    1993-01-01

    We use the lattice gas cellular automation (LGCA) developed to simulate a process of pattern-formation recently observed in reaction-diffusion systems. We study the reaction mechanism, which is an extension of the Selkov model for glycolytic oscillations. We are able to reproduce the self-replicating domains observed in this work. We use the LGCA simulation to estimate the smallest length-scale on which this process can occur under conditions encountered in the cell. These estimates are similar to those obtained for Turing patterns in the same setting

  1. Lattice gas simulations of replicating domains

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, S.P.; Hasslacher, B.; Pearson, J.E.

    1993-12-31

    We use the lattice gas cellular automation (LGCA) developed to simulate a process of pattern-formation recently observed in reaction-diffusion systems. We study the reaction mechanism, which is an extension of the Selkov model for glycolytic oscillations. We are able to reproduce the self-replicating domains observed in this work. We use the LGCA simulation to estimate the smallest length-scale on which this process can occur under conditions encountered in the cell. These estimates are similar to those obtained for Turing patterns in the same setting.

  2. Physically Embedded Minimal Self-Replicating Systems

    DEFF Research Database (Denmark)

    Fellermann, Harold

    Self-replication is a fundamental property of all living organisms, yet has only been accomplished to limited extend in manmade systems. This thesis is part of the ongoing research endeavor to bridge the two sides of this gap. In particular, we present simulation results of a minimal life...... for any model above the atomistic scale. This is achieved by deriving an alternative scaling procedure for interaction parameters in the model. We perform system-level simulations of the design which attempt to account for theoretical, and experimental knowledge, as well as results from other...

  3. Replication of DNA during barley endosperm development

    DEFF Research Database (Denmark)

    Giese, H.

    1992-01-01

    The incorporation of [6-H-3]-thymidine into DNA of developing barley end sperm was examined by autoradiography of cross sections of seeds and DNA analysis. The majority of nuclear divisions took place in the very young endosperm, but as late as 25 days after anthesis there was evidence for DNA...... replication. The DNA content of the endosperm increases during development and in response to nitrogen application in parallel to the storage protein synthesis profile. The hordein genes were hypersensitive to DNase I treatment throughout development....

  4. The Nature of Stability in Replicating Systems

    Directory of Open Access Journals (Sweden)

    Addy Pross

    2011-02-01

    Full Text Available We review the concept of dynamic kinetic stability, a type of stability associated specifically with replicating entities, and show how it differs from the well-known and established (static kinetic and thermodynamic stabilities associated with regular chemical systems. In the process we demonstrate how the concept can help bridge the conceptual chasm that continues to separate the physical and biological sciences by relating the nature of stability in the animate and inanimate worlds, and by providing additional insights into the physicochemical nature of abiogenesis.

  5. The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast

    DEFF Research Database (Denmark)

    Larsen, Nicolai B; Sass, Ehud; Suski, Catherine

    2014-01-01

    Replication fork (RF) pausing occurs at both 'programmed' sites and non-physiological barriers (for example, DNA adducts). Programmed RF pausing is required for site-specific DNA replication termination in Escherichia coli, and this process requires the binding of the polar terminator protein, Tus...... as a versatile, site-specific, heterologous DNA replication-perturbing system, with a variety of potential applications....

  6. Molecular analysis of the replication program in unicellular model organisms.

    Science.gov (United States)

    Raghuraman, M K; Brewer, Bonita J

    2010-01-01

    Eukaryotes have long been reported to show temporal programs of replication, different portions of the genome being replicated at different times in S phase, with the added possibility of developmentally regulated changes in this pattern depending on species and cell type. Unicellular model organisms, primarily the budding yeast Saccharomyces cerevisiae, have been central to our current understanding of the mechanisms underlying the regulation of replication origins and the temporal program of replication in particular. But what exactly is a temporal program of replication, and how might it arise? In this article, we explore this question, drawing again on the wealth of experimental information in unicellular model organisms.

  7. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    Energy Technology Data Exchange (ETDEWEB)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

    2014-11-01

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

  8. Regulation of replication fork progression through histone supply and demand

    DEFF Research Database (Denmark)

    Groth, Anja; Corpet, Armelle; Cook, Adam J L

    2007-01-01

    DNA replication in eukaryotes requires nucleosome disruption ahead of the replication fork and reassembly behind. An unresolved issue concerns how histone dynamics are coordinated with fork progression to maintain chromosomal stability. Here, we characterize a complex in which the human histone c...... progression and histone supply and demand.......1 chaperone function, histone supply, and replicative unwinding of DNA in chromatin. We propose that Asf1, as a histone acceptor and donor, handles parental and new histones at the replication fork via an Asf1-(H3-H4)-MCM2-7 intermediate and thus provides a means to fine-tune replication fork...

  9. From structure to mechanism—understanding initiation of DNA replication

    Science.gov (United States)

    Riera, Alberto; Barbon, Marta; Noguchi, Yasunori; Reuter, L. Maximilian; Schneider, Sarah; Speck, Christian

    2017-01-01

    DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2–7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability. PMID:28717046

  10. Replicative DNA polymerase mutations in cancer☆

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-01-01

    Three DNA polymerases — Pol α, Pol δ and Pol ɛ — are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson–Crick base pairing and 3′exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to ‘polymerase proofreading associated polyposis’ (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an ‘ultramutator’ phenotype, with a dramatic increase in base substitutions. PMID:24583393

  11. Replicative DNA polymerase mutations in cancer.

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-02-01

    Three DNA polymerases - Pol α, Pol δ and Pol ɛ - are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson-Crick base pairing and 3'exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to 'polymerase proofreading associated polyposis' (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an 'ultramutator' phenotype, with a dramatic increase in base substitutions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Education: DNA replication using microscale natural convection.

    Science.gov (United States)

    Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M

    2012-12-07

    There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.

  13. Le Chatelier's principle in replicator dynamics

    Science.gov (United States)

    Allahverdyan, Armen E.; Galstyan, Aram

    2011-10-01

    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both types of equilibria satisfy the detailed balance condition.

  14. Why threefold-replication of families?

    Science.gov (United States)

    Fitzpatrick, Gerald L.

    1998-04-01

    In spite of the many successes of the standard model of particle physics, the observed proliferation of matter-fields, in the form of ``replicated'' generations or families, is a major unsolved problem. In this paper, I explore some of the algebraic, geometric and physical consequences of a new organizing principle for fundamental fermions (quarks and leptons)(Gerald L. Fitzpatrick, phThe Family Problem--New Internal Algebraic and Geometric Regularities), Nova Scientific Press, Issaquah, Washington, 1997. Read more about this book (ISBN 0--9655695--0--0) and its subject matter at: http://www.tp.umu.se/TIPTOP and/or amazon.com>http://www.amazon.com.. The essence of the new organizing principle is the idea that the standard-model concept of scalar fermion numbers f can be generalized. In particular, a ``generalized fermion number,'' which consists of a 2× 2 matrix F that ``acts'' on an internal 2-space, instead of spacetime, is taken to describe certain internal properties of fundamental fermions. This generalization automatically introduces internal degrees of freedom that ``explain,'' among other things, family replication and the number (three) of families observed in nature.

  15. Endoplasmic reticulum stress causes EBV lytic replication.

    Science.gov (United States)

    Taylor, Gwen Marie; Raghuwanshi, Sandeep K; Rowe, David T; Wadowsky, Robert M; Rosendorff, Adam

    2011-11-17

    Endoplasmic reticulum (ER) stress triggers a homeostatic cellular response in mammalian cells to ensure efficient folding, sorting, and processing of client proteins. In lytic-permissive lymphoblastoid cell lines (LCLs), pulse exposure to the chemical ER-stress inducer thapsigargin (TG) followed by recovery resulted in the activation of the EBV immediate-early (BRLF1, BZLF1), early (BMRF1), and late (gp350) genes, gp350 surface expression, and virus release. The protein phosphatase 1 a (PP1a)-specific phosphatase inhibitor Salubrinal (SAL) synergized with TG to induce EBV lytic genes; however, TG treatment alone was sufficient to activate EBV lytic replication. SAL showed ER-stress-dependent and -independent antiviral effects, preventing virus release in human LCLs and abrogating gp350 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated B95-8 cells. TG resulted in sustained BCL6 but not BLIMP1 or CD138 expression, which is consistent with maintenance of a germinal center B-cell, rather than plasma-cell, phenotype. Microarray analysis identified candidate genes governing lytic replication in LCLs undergoing ER stress.

  16. How to securely replicate services (preliminary version)

    Science.gov (United States)

    Reiter, Michael; Birman, Kenneth

    1992-01-01

    A method is presented for constructing replicated services that retain their availability and integrity despite several servers and clients being corrupted by an intruder, in addition to others failing benignly. More precisely, a service is replicated by 'n' servers in such a way that a correct client will accept a correct server's response if, for some prespecified parameter, k, at least k servers are correct and fewer than k servers are correct. The issue of maintaining causality among client requests is also addressed. A security breach resulting from an intruder's ability to effect a violation of causality in the sequence of requests processed by the service is illustrated. An approach to counter this problem is proposed that requires that fewer than k servers are corrupt and, to ensure liveness, that k is less than or = n - 2t, where t is the assumed maximum total number of both corruptions and benign failures suffered by servers in any system run. An important and novel feature of these schemes is that the client need not be able to identify or authenticate even a single server. Instead, the client is required only to possess at most two public keys for the service.

  17. A new MCM modification cycle regulates DNA replication initiation.

    Science.gov (United States)

    Wei, Lei; Zhao, Xiaolan

    2016-03-01

    The MCM DNA helicase is a central regulatory target during genome replication. MCM is kept inactive during G1, and it initiates replication after being activated in S phase. During this transition, the only known chemical change to MCM is the gain of multisite phosphorylation that promotes cofactor recruitment. Because replication initiation is intimately linked to multiple biological cues, additional changes to MCM can provide further regulatory points. Here, we describe a yeast MCM SUMOylation cycle that regulates replication. MCM subunits undergo SUMOylation upon loading at origins in G1 before MCM phosphorylation. MCM SUMOylation levels then decline as MCM phosphorylation levels rise, thus suggesting an inhibitory role of MCM SUMOylation during replication. Indeed, increasing MCM SUMOylation impairs replication initiation, partly through promoting the recruitment of a phosphatase that decreases MCM phosphorylation and activation. We propose that MCM SUMOylation counterbalances kinase-based regulation, thus ensuring accurate control of replication initiation.

  18. Replication, falsification, and the crisis of confidence in social psychology.

    Science.gov (United States)

    Earp, Brian D; Trafimow, David

    2015-01-01

    The (latest) crisis in confidence in social psychology has generated much heated discussion about the importance of replication, including how it should be carried out as well as interpreted by scholars in the field. For example, what does it mean if a replication attempt "fails"-does it mean that the original results, or the theory that predicted them, have been falsified? And how should "failed" replications affect our belief in the validity of the original research? In this paper, we consider the replication debate from a historical and philosophical perspective, and provide a conceptual analysis of both replication and falsification as they pertain to this important discussion. Along the way, we highlight the importance of auxiliary assumptions (for both testing theories and attempting replications), and introduce a Bayesian framework for assessing "failed" replications in terms of how they should affect our confidence in original findings.

  19. Replication, falsification, and the crisis of confidence in social psychology

    Science.gov (United States)

    Earp, Brian D.; Trafimow, David

    2015-01-01

    The (latest) crisis in confidence in social psychology has generated much heated discussion about the importance of replication, including how it should be carried out as well as interpreted by scholars in the field. For example, what does it mean if a replication attempt “fails”—does it mean that the original results, or the theory that predicted them, have been falsified? And how should “failed” replications affect our belief in the validity of the original research? In this paper, we consider the replication debate from a historical and philosophical perspective, and provide a conceptual analysis of both replication and falsification as they pertain to this important discussion. Along the way, we highlight the importance of auxiliary assumptions (for both testing theories and attempting replications), and introduce a Bayesian framework for assessing “failed” replications in terms of how they should affect our confidence in original findings. PMID:26042061

  20. Studies on the mechanism of replication of adenovirus DNA. III. Electron microscopy of replicating DNA

    NARCIS (Netherlands)

    Ellens, D.J.; Sussenbach, J.S.; Jansz, H.S.

    1974-01-01

    Replicating Ad5 DNA was isolated from nuclei of infected KB cells and studied by electron microscopy. Branched as well as unbranched linear intermediates were observed containing extended regions of single-stranded DNA. The relationship between the branched and unbranched structures was studied

  1. Late-replicating X-chromosome: replication patterns in mammalian females

    Directory of Open Access Journals (Sweden)

    Tunin Karen

    2002-01-01

    Full Text Available The GTG-banding and 5-BrdU incorporation patterns of the late-replicating X-chromosome were studied in female dogs and cattle, and compared to human female patterns. The replication patterns of the short arm of the X-chromosomes did not show any difference between human, dog and cattle females. As to the long arm, some bands showed differences among the three studied species regarding the replication kinetics pattern. These differences were observed in a restricted region of the X-chromosome, delimited by Xq11 -> q25 in humans, by Xq1 -> q8 in dogs, and by Xq12 -> q32 in cattle. In an attempt to find out if these differences in the replication kinetics could be a reflection of differences in the localization of genes in that region of the X-chromosome, we used the probe for the human androgen receptor gene (AR localized at Xq12, which is in the region where we observed differences among the three studied species. We did not, however, observe hybridization signals. Our study goes on, using other human probes for genes located in the region Xq11 -> Xq25.

  2. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks.

    Science.gov (United States)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia; Evangelou, Konstantinos; Da-Ré, Caterina; Huber, Florian; Padayachy, Laura; Tardy, Sebastien; Nicati, Noemie L; Barriot, Samia; Ochs, Fena; Lukas, Claudia; Lukas, Jiri; Gorgoulis, Vassilis G; Scapozza, Leonardo; Halazonetis, Thanos D

    2016-12-15

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. A CI-Independent Form of Replicative Inhibition: Turn Off of Early Replication of Bacteriophage Lambda

    Science.gov (United States)

    Hayes, Sidney; Horbay, Monique A.; Hayes, Connie

    2012-01-01

    Several earlier studies have described an unusual exclusion phenotype exhibited by cells with plasmids carrying a portion of the replication region of phage lambda. Cells exhibiting this inhibition phenotype (IP) prevent the plating of homo-immune and hybrid hetero-immune lambdoid phages. We have attempted to define aspects of IP, and show that it is directed to repλ phages. IP was observed in cells with plasmids containing a λ DNA fragment including oop, encoding a short OOP micro RNA, and part of the lambda origin of replication, oriλ, defined by iteron sequences ITN1-4 and an adjacent high AT-rich sequence. Transcription of the intact oop sequence from its promoter, pO is required for IP, as are iterons ITN3–4, but not the high AT-rich portion of oriλ. The results suggest that IP silencing is directed to theta mode replication initiation from an infecting repλ genome, or an induced repλ prophage. Phage mutations suppressing IP, i.e., Sip, map within, or adjacent to cro or in O, or both. Our results for plasmid based IP suggest the hypothesis that there is a natural mechanism for silencing early theta-mode replication initiation, i.e. the buildup of λ genomes with oop + oriλ+ sequence. PMID:22590552

  4. Plasmids replicatable in Bacillus subtilis, E. coli and lactic acid streptococcus bacteria

    NARCIS (Netherlands)

    Kok, Jan; Maat, Jan; van der Vossen, Josephus Mauritius; Venema, Gerard

    1997-01-01

    The claimed invention is drawn to a recombinant plasmid which can replicate in Bacillus subtilis, Escherichia coli, and lactic acid Streptococcus bacteria comprising the replication of origin from Streptococcus cremoris plasmid pWV01 as its origin of replication, in addition to coding marker genes

  5. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication.

    Science.gov (United States)

    Wu, Rentian; Wang, Zhiquan; Zhang, Honglian; Gan, Haiyun; Zhang, Zhiguo

    2017-01-09

    DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides

    International Nuclear Information System (INIS)

    Takegami, T.; Semler, B.L.; Anderson, C.W.; Wimmer, E.

    1983-01-01

    The poliovirus specific polypeptide P3-9 is of special interest for studies of viral RNA replication because it contains a hydrophobic region and, separated by only seven amino acids from that region, the amino acid sequence of the genome-linked protein VPg. Membraneous complexes of poliovirus-infected HeLa cells that contain poliovirus RNA replicating proteins have been analyzed for the presence of P3-9 by immunoprecipitation. Incubation of a membrane fraction rich in P3-9 with proteinase leaves the C-terminal 69 amino acids of P3-9 intact, an observation suggesting that this portion is protected by its association with the cellular membrane. These studies have also revealed two hitherto undescribed viral polypeptides consisting of amino acid sequences of the P2 andf P3 regions of the polyprotein. Sequence analysis by stepwise Edman degradation show that these proteins are 3b/9 (M/sub r/77,000) and X/9 (M/sub r/50,000). 3b/9 and X/9 are membrane bound and are turned over rapidly and may be direct precursors to proteins P2-X and P3-9 of the RNA replication complex. P2-X, a polypeptide void of hydrophobic amino acid sequences but also found associated with membranes, is rapidly degraded when the membraneous complex is treated with trypsin. It is speculated that P2-X is associated with membranes by its affinity to the N-terminus of P3-9

  7. Replicability and generalizability of PTSD networks

    DEFF Research Database (Denmark)

    Eiko I., Fried; Eidhof, Marloes B.; Palic, Sabina

    2018-01-01

    The growing literature conceptualizing mental disorders like Posttraumatic Stress Disorder (PTSD) as networks of interacting symptoms faces three key challenges. Prior studies predominantly used (a) small samples with low power for precise estimation, (b) non-clinical samples, and (c) single...... samples. This renders network structures in clinical data, and the extent to which networks replicate across datasets, unknown. To overcome these limitations, the present cross-cultural multisite study estimated regularized partial correlation networks of 16 PTSD symptoms across four datasets...... of traumatized patients receiving treatment for PTSD (total N=2,782). Despite differences in culture, trauma-type and severity of the samples, considerable similarities emerged, with moderate to high correlations between symptom profiles (0.43-0.82), network structures (0.62-0.74), and centrality estimates (0...

  8. Archaeal Viruses: Diversity, Replication, and Structure.

    Science.gov (United States)

    Dellas, Nikki; Snyder, Jamie C; Bolduc, Benjamin; Young, Mark J

    2014-11-01

    The Archaea-and their viruses-remain the most enigmatic of life's three domains. Once thought to inhabit only extreme environments, archaea are now known to inhabit diverse environments. Even though the first archaeal virus was described over 40 years ago, only 117 archaeal viruses have been discovered to date. Despite this small number, these viruses have painted a portrait of enormous morphological and genetic diversity. For example, research centered around the various steps of the archaeal virus life cycle has led to the discovery of unique mechanisms employed by archaeal viruses during replication, maturation, and virion release. In many instances, archaeal virus proteins display very low levels of sequence homology to other proteins listed in the public database, and therefore, structural characterization of these proteins has played an integral role in functional assignment. These structural studies have not only provided insights into structure-function relationships but have also identified links between viruses across all three domains of life.

  9. Data Service: Distributed Data Capture and Replication

    Science.gov (United States)

    Warner, P. B.; Pietrowicz, S. R.

    2007-10-01

    Data Service is a critical component of the NOAO Data Management and Science Support (DMaSS) Solutions Platform, which is based on a service-oriented architecture, and is to replace the current NOAO Data Transport System. Its responsibilities include capturing data from NOAO and partner telescopes and instruments and replicating the data across multiple (currently six) storage sites. Java 5 was chosen as the implementation language, and Java EE as the underlying enterprise framework. Application metadata persistence is performed using EJB and Hibernate on the JBoss Application Server, with PostgreSQL as the persistence back-end. Although potentially any underlying mass storage system may be used as the Data Service file persistence technology, DTS deployments and Data Service test deployments currently use the Storage Resource Broker from SDSC. This paper presents an overview and high-level design of the Data Service, including aspects of deployment, e.g., for the LSST Data Challenge at the NCSA computing facilities.

  10. Security in a Replicated Metadata Catalogue

    CERN Document Server

    Koblitz, B

    2007-01-01

    The gLite-AMGA metadata has been developed by NA4 to provide simple relational metadata access for the EGEE user community. As advanced features, which will be the focus of this presentation, AMGA provides very fine-grained security also in connection with the built-in support for replication and federation of metadata. AMGA is extensively used by the biomedical community to store medical images metadata, digital libraries, in HEP for logging and bookkeeping data and in the climate community. The biomedical community intends to deploy a distributed metadata system for medical images consisting of various sites, which range from hospitals to computing centres. Only safe sharing of the highly sensitive metadata as provided in AMGA makes such a scenario possible. Other scenarios are digital libraries, which federate copyright protected (meta-) data into a common catalogue. The biomedical and digital libraries have been deployed using a centralized structure already for some time. They now intend to decentralize ...

  11. Suggestibility and negative priming: two replication studies.

    Science.gov (United States)

    David, Daniel; Brown, Richard J

    2002-07-01

    Research suggests that inhibiting the effect of irrelevant stimuli on subsequent thought and action (cognitive inhibition) may be an important component of suggestibility. Two small correlation studies were conducted to address the relationship between different aspects of suggestibility and individual differences in cognitive inhibition, operationalized as the degree of negative priming generated by to-be-ignored stimuli in a semantic categorization task. The first study found significant positive correlations between negative priming, hypnotic suggestibility, and creative imagination; a significant negative correlation was obtained between negative priming and interrogative suggestibility, demonstrating the discriminant validity of the study results. The second study replicated the correlation between negative priming and hypnotic suggestibility, using a different suggestibility measurement procedure that assessed subjective experience and hypnotic involuntariness as well as objective responses to suggestions. These studies support the notion that the ability to engage in cognitive inhibition may be an important component of hypnotic responsivity and maybe of other forms of suggestibility.

  12. Experimenter gender and replicability in science.

    Science.gov (United States)

    Chapman, Colin D; Benedict, Christian; Schiöth, Helgi B

    2018-01-01

    There is a replication crisis spreading through the annals of scientific inquiry. Although some work has been carried out to uncover the roots of this issue, much remains unanswered. With this in mind, this paper investigates how the gender of the experimenter may affect experimental findings. Clinical trials are regularly carried out without any report of the experimenter's gender and with dubious knowledge of its influence. Consequently, significant biases caused by the experimenter's gender may lead researchers to conclude that therapeutics or other interventions are either overtreating or undertreating a variety of conditions. Bearing this in mind, this policy paper emphasizes the importance of reporting and controlling for experimenter gender in future research. As backdrop, it explores what we know about the role of experimenter gender in influencing laboratory results, suggests possible mechanisms, and suggests future areas of inquiry.

  13. Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells.

    Science.gov (United States)

    Murillo, Andrea; Vera-Estrella, Rosario; Barkla, Bronwyn J; Méndez, Ernesto; Arias, Carlos F

    2015-10-01

    Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. Astroviruses are common etiological agents of acute gastroenteritis in children and immunocompromised patients

  14. Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells

    Science.gov (United States)

    Murillo, Andrea; Vera-Estrella, Rosario; Barkla, Bronwyn J.; Méndez, Ernesto

    2015-01-01

    ABSTRACT Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. IMPORTANCE Astroviruses are common etiological agents of acute gastroenteritis in children and

  15. Inhibition of Zika Virus Replication by Silvestrol

    Directory of Open Access Journals (Sweden)

    Fabian Elgner

    2018-03-01

    Full Text Available The Zika virus (ZIKV outbreak in 2016 in South America with specific pathogenic outcomes highlighted the need for new antiviral substances with broad-spectrum activities to react quickly to unexpected outbreaks of emerging viral pathogens. Very recently, the natural compound silvestrol isolated from the plant Aglaia foveolata was found to have very potent antiviral effects against the (−-strand RNA-virus Ebola virus as well as against Corona- and Picornaviruses with a (+-strand RNA-genome. This antiviral activity is based on the impaired translation of viral RNA by the inhibition of the DEAD-box RNA helicase eukaryotic initiation factor-4A (eIF4A which is required to unwind structured 5´-untranslated regions (5′-UTRs of several proto-oncogenes and thereby facilitate their translation. Zika virus is a flavivirus with a positive-stranded RNA-genome harboring a 5′-capped UTR with distinct secondary structure elements. Therefore, we investigated the effects of silvestrol on ZIKV replication in A549 cells and primary human hepatocytes. Two different ZIKV strains were used. In both infected A549 cells and primary human hepatocytes, silvestrol has the potential to exert a significant inhibition of ZIKV replication for both analyzed strains, even though the ancestor strain from Uganda is less sensitive to silvestrol. Our data might contribute to identify host factors involved in the control of ZIKV infection and help to develop antiviral concepts that can be used to treat a variety of viral infections without the risk of resistances because a host protein is targeted.

  16. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    Science.gov (United States)

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  17. Assembly of Slx4 signaling complexes behind DNA replication forks.

    Science.gov (United States)

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-08-13

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress. © 2015 The Authors.

  18. The V protein of canine distemper virus is required for virus replication in human epithelial cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Otsuki

    Full Text Available Canine distemper virus (CDV becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at position 267 of the V protein caused this growth defect. Analyses using H358 cells constitutively expressing the CDV V protein showed that the V protein with a cysteine, but not that with a tyrosine, at this position effectively blocked the interferon-stimulated signal transduction pathway, and supported virus replication of 007Lm in H358 cells. Thus, the V protein as well as the C protein appears to be functional and essential for CDV replication in human epithelial cells.

  19. Brucella abortus nicotinamidase (PncA) contributes to its intracellular replication and infectivity in mice.

    Science.gov (United States)

    Kim, Suk; Kurokawa, Daisuke; Watanabe, Kenta; Makino, Sou-Ichi; Shirahata, Toshikazu; Watarai, Masahisa

    2004-05-15

    Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and non-professional phagocytes, and cause abortion in domestic animals and undulant fever in humans. The mechanism and factors of virulence are not fully understood. Nicotinamidase/pyrazinamidase mutant (pncA mutant) of Brucella abortus failed to replicate in HeLa cells, and showed a lower rate of intracellular replication than that of wild-type strain in macrophages. Addition of nicotinic acid, but not nicotinamide, into medium supported intracellular replication of pncA mutant in HeLa cells and macrophages. The pncA mutant was not co-localizing with either late endosomes or lysosomes. The B. abortus virB4 mutant was completely cleared from the spleens of mice after 4 weeks, while the pncA mutant showed a 1.5-log reduction of the number of bacteria isolated from spleens after 10 weeks. Although pncA mutant showed reduced virulence in mice and defective intracellular replication, its ability to confer protection against the virulent B. abortus strain 544 was fully retained. These results suggest that PncA does not contribute to intracellular trafficking of B. abortus, but contributes to utilization of nutrients required for intracellular growth. Our results indicate that detailed characterizations of the pncA mutant may help the improvement of currently available live vaccines. Copyright 2004 Federation of European Microbiological Societies

  20. Inhibition of influenza virus replication by targeting broad host cell pathways.

    Directory of Open Access Journals (Sweden)

    Isabelle Marois

    Full Text Available Antivirals that are currently used to treat influenza virus infections target components of the virus which can mutate rapidly. Consequently, there has been an increase in the number of resistant strains to one or many antivirals in recent years. Here we compared the antiviral effects of lysosomotropic alkalinizing agents (LAAs and calcium modulators (CMs, which interfere with crucial events in the influenza virus replication cycle, against avian, swine, and human viruses of different subtypes in MDCK cells. We observed that treatment with LAAs, CMs, or a combination of both, significantly inhibited viral replication. Moreover, the drugs were effective even when they were administered 8 h after infection. Finally, analysis of the expression of viral acidic polymerase (PA revealed that both drugs classes interfered with early events in the viral replication cycle. This study demonstrates that targeting broad host cellular pathways can be an efficient strategy to inhibit influenza replication. Furthermore, it provides an interesting avenue for drug development where resistance by the virus might be reduced since the virus is not targeted directly.

  1. Repurposing Lesogaberan to Promote Human Islet Cell Survival and β-Cell Replication

    Directory of Open Access Journals (Sweden)

    Jide Tian

    2017-01-01

    Full Text Available The activation of β-cell’s A- and B-type gamma-aminobutyric acid receptors (GABAA-Rs and GABAB-Rs can promote their survival and replication, and the activation of α-cell GABAA-Rs promotes their conversion into β-cells. However, GABA and the most clinically applicable GABA-R ligands may be suboptimal for the long-term treatment of diabetes due to their pharmacological properties or potential side-effects on the central nervous system (CNS. Lesogaberan (AZD3355 is a peripherally restricted high-affinity GABAB-R-specific agonist, originally developed for the treatment of gastroesophageal reflux disease (GERD that appears to be safe for human use. This study tested the hypothesis that lesogaberan could be repurposed to promote human islet cell survival and β-cell replication. Treatment with lesogaberan significantly enhanced replication of human islet cells in vitro, which was abrogated by a GABAB-R antagonist. Immunohistochemical analysis of human islets that were grafted into immune-deficient mice revealed that oral treatment with lesogaberan promoted human β-cell replication and islet cell survival in vivo as effectively as GABA (which activates both GABAA-Rs and GABAB-Rs, perhaps because of its more favorable pharmacokinetics. Lesogaberan may be a promising drug candidate for clinical studies of diabetes intervention and islet transplantation.

  2. Self-assembled monolayer based electrochemical nucleic acid sensor for Vibrio cholerae detection

    International Nuclear Information System (INIS)

    Patel, Manoj K; Solanki, Pratima R; Agrawal, Ved V; Khandelwal, Sachin; Ansari, S G; Malhotra, B D

    2012-01-01

    Nucleic acid sensor has been fabricated by immobilization of thiolated (5' end) single stranded deoxyribonucleic acid probe (ssDNA-SH) onto gold (Au) coated glass electrode for Vibriocholerae detection. This ssDNA-SH/Au bioelectrode characterized using atomic force microscopy (AFM),Fourier transforms infrared spectroscopy (FT-IR) and electrochemical technique, has been used for hybridization detection of genomic DNA (dsDNA/Au). This ssDNA-SH/Au bioelectrode can specifically detect up to 100- 500 ng/μL genomic DNA of Vibriocholeare within 60 s of hybridization time at 25°C by cyclic voltammetry (CV) using methylene blue (MB) as electro-active DNA hybridization indicator. The value of sensitivity of the dsDNA/Au electrode has been determined as 0.027μA/ng cm −2 with regression coefficient as 0.978. This DNA bioelectrode is stable for about 4 months when stored at 4°C.

  3. Small molecule inhibitors of HCV replication from Pomegranate

    Science.gov (United States)

    Reddy, B. Uma; Mullick, Ranajoy; Kumar, Anuj; Sudha, Govindarajan; Srinivasan, Narayanaswamy; Das, Saumitra

    2014-06-01

    Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and`no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications.

  4. Effector-Triggered Self-Replication in Coupled Subsystems.

    Science.gov (United States)

    Komáromy, Dávid; Tezcan, Meniz; Schaeffer, Gaël; Marić, Ivana; Otto, Sijbren

    2017-11-13

    In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Causation and the origin of life. Metabolism or replication first?

    Science.gov (United States)

    Pross, Addy

    2004-06-01

    The conceptual gulf that separates the 'metabolism first' and 'replication first' mechanisms for the emergence of life continues to cloud the origin of life debate. In the present paper we analyze this aspect of the origin of life problem and offer arguments in favor of the 'replication first' school. Utilizing Wicken's two-tier approach to causation we argue that a causal connection between replication and metabolism can only be demonstrated if replication would have preceded metabolism. In conjunction with existing empirical evidence and theoretical reasoning, our analysis concludes that there is no substantive evidence for a 'metabolism first' mechanism for life's emergence, while a coherent case can be made for the 'replication first' group of mechanisms. The analysis reaffirms our conviction that life is an extreme expression of kinetic control, and that the emergence of metabolic pathways can be understood by considering life as a manifestation of 'replicative chemistry'.

  6. Regulated eukaryotic DNA replication origin firing with purified proteins.

    Science.gov (United States)

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  7. Regulation of adeno-associated virus DNA replication by the cellular TAF-I/set complex.

    Science.gov (United States)

    Pegoraro, Gianluca; Marcello, Alessandro; Myers, Michael P; Giacca, Mauro

    2006-07-01

    The Rep proteins of the adeno-associated virus (AAV) are required for viral replication in the presence of adenovirus helper functions and as yet poorly characterized cellular factors. In an attempt to identify such factors, we purified Flag-Rep68-interacting proteins from human cell lysates. Several polypeptides were identified by mass spectrometry, among which was ANP32B, a member of the acidic nuclear protein 32 family which takes part in the formation of the template-activating factor I/Set oncoprotein (TAF-I/Set) complex. The N terminus of Rep was found to specifically bind the acidic domain of ANP32B; through this interaction, Rep was also able to recruit other members of the TAF-I/Set complex, including the ANP32A protein and the histone chaperone TAF-I/Set. Further experiments revealed that silencing of ANP32A and ANP32B inhibited AAV replication, while overexpression of all of the components of the TAF-I/Set complex increased de novo AAV DNA synthesis in permissive cells. Besides being the first indication that the TAF-I/Set complex participates in wild-type AAV replication, these findings have important implications for the generation of recombinant AAV vectors since overexpression of the TAF-I/Set components was found to markedly increase viral vector production.

  8. Silencing of the pentose phosphate pathway genes influences DNA replication in human fibroblasts.

    Science.gov (United States)

    Fornalewicz, Karolina; Wieczorek, Aneta; Węgrzyn, Grzegorz; Łyżeń, Robert

    2017-11-30

    Previous reports and our recently published data indicated that some enzymes of glycolysis and the tricarboxylic acid cycle can affect the genome replication process by changing either the efficiency or timing of DNA synthesis in human normal cells. Both these pathways are connected with the pentose phosphate pathway (PPP pathway). The PPP pathway supports cell growth by generating energy and precursors for nucleotides and amino acids. Therefore, we asked if silencing of genes coding for enzymes involved in the pentose phosphate pathway may also affect the control of DNA replication in human fibroblasts. Particular genes coding for PPP pathway enzymes were partially silenced with specific siRNAs. Such cells remained viable. We found that silencing of the H6PD, PRPS1, RPE genes caused less efficient enterance to the S phase and decrease in efficiency of DNA synthesis. On the other hand, in cells treated with siRNA against G6PD, RBKS and TALDO genes, the fraction of cells entering the S phase was increased. However, only in the case of G6PD and TALDO, the ratio of BrdU incorporation to DNA was significantly changed. The presented results together with our previously published studies illustrate the complexity of the influence of genes coding for central carbon metabolism on the control of DNA replication in human fibroblasts, and indicate which of them are especially important in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Experimental toxicology: Issues of statistics, experimental design, and replication.

    Science.gov (United States)

    Briner, Wayne; Kirwan, Jeral

    2017-01-01

    The difficulty of replicating experiments has drawn considerable attention. Issues with replication occur for a variety of reasons ranging from experimental design to laboratory errors to inappropriate statistical analysis. Here we review a variety of guidelines for statistical analysis, design, and execution of experiments in toxicology. In general, replication can be improved by using hypothesis driven experiments with adequate sample sizes, randomization, and blind data collection techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Identification of the determinants of efficient Pestivirus replication

    OpenAIRE

    Risager, Peter Christian; Belsham, Graham; Rasmussen, Thomas Bruun

    2013-01-01

    The key for the survival of a virus is to copy its own genome into progeny genomes that allows continued reproduction. The mechanism behind this "copy function" or "replication" is a wellorganized process that involves the formation of a replication complex in the cell and interactions between the viral proteins. The replication process in single-stranded RNA viruses of positive polarity requires a particular enzyme, an RNA dependent RNA polymerase, that has no direct counterpart elsewhere in...

  11. Intracellular Detection of Viral Transcription and Replication Using RNA FISH

    Science.gov (United States)

    2016-05-26

    Chapter 14. Intracellular detection of viral transcription and replication using RNA FISH i. Summary/Abstract Many hemorrhagic fever viruses...only allow entirely new investigations into the replication of these viruses, but also how this method can be applied to any virus with a known...localization, TurboFISH, hemorrhagic fever virus replication 1. Introduction RNA FISH was developed as a method to visualize cellular RNA by binding a

  12. Molecular analysis of the replication program in unicellular model organisms

    OpenAIRE

    Raghuraman, M. K.; Brewer, Bonita J.

    2010-01-01

    Eukaryotes have long been reported to show temporal programs of replication, different portions of the genome being replicated at different times in S phase, with the added possibility of developmentally regulated changes in this pattern depending on species and cell type. Unicellular model organisms, primarily the budding yeast Saccharomyces cerevisiae, have been central to our current understanding of the mechanisms underlying the regulation of replication origins and the temporal program o...

  13. Specificity and function of Archaeal DNA replication initiator proteins

    DEFF Research Database (Denmark)

    Samson, Rachel Y.; Xu, Yanqun; Gadelha, Catarina

    2013-01-01

    Chromosomes with multiple DNA replication origins are a hallmark of Eukaryotes and some Archaea. All eukaryal nuclear replication origins are defined by the origin recognition complex (ORC) that recruits the replicative helicase MCM(2-7) via Cdc6 and Cdt1. We find that the three origins...... to investigate the role of ATP binding and hydrolysis in initiator function in vivo and in vitro. We find that the ATP-bound form of Orc1-1 is proficient for replication and implicates hydrolysis of ATP in downregulation of origin activity. Finally, we reveal that ATP and DNA binding by Orc1-1 remodels...

  14. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays

    International Nuclear Information System (INIS)

    Biring, Sajal; Tsai, K-T; Sur, Ujjal Kumar; Wang, Y-L

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment

  15. RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress

    DEFF Research Database (Denmark)

    Bhowmick, Rahul; Minocherhomji, Sheroy; Hickson, Ian D

    2016-01-01

    Homologous recombination (HR) is necessary to counteract DNA replication stress. Common fragile site (CFS) loci are particularly sensitive to replication stress and undergo pathological rearrangements in tumors. At these loci, replication stress frequently activates DNA repair synthesis in mitosis...... replication stress at CFS loci during S-phase. In contrast, MiDAS is RAD52 dependent, and RAD52 is required for the timely recruitment of MUS81 and POLD3 to CFSs in early mitosis. Our results provide further mechanistic insight into MiDAS and define a specific function for human RAD52. Furthermore, selective...

  16. Structure of replicating intermediates of human herpesvirus type 6

    International Nuclear Information System (INIS)

    Severini, Alberto; Sevenhuysen, Claire; Garbutt, Michael; Tipples, Graham A.

    2003-01-01

    We have studied the structure of the replicative intermediates of human herpesvirus 6 (HHV-6) using pulsed-field gel electrophoresis, partial digestion, two-dimensional gel electrophoresis, and sedimentation centrifugation. The results show that DNA replication of HHV-6 produces head-to-tail concatemeric intermediates as well as approximately equal amounts of circular monomers or oligomers. Unlike the situation in herpes simplex virus, the intermediates of human herpesvirus 6 replication are not highly branched, suggesting a difference in the mechanism of replication or a lower frequency of homologous recombination in human herpesvirus 6 compared to herpes simplex virus

  17. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    Science.gov (United States)

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  18. Au-HKUST-1 Composite Nanocapsules: Synthesis with a Coordination Replication Strategy and Catalysis on CO Oxidation.

    Science.gov (United States)

    Liu, Yongxin; Zhang, Jiali; Song, Lingxiao; Xu, Wenyuan; Guo, Zanru; Yang, Xiaomin; Wu, Xiaoxin; Chen, Xi

    2016-09-07

    A novel coordination replication of Cu2O redox-template strategy is reported to efficiently fabricate Au-HKUST-1 composite nanocapsule, with a HKUST-1 sandwich shell and an embedded Au nanoparticles layer. The novel synthesis procedure involves forming Au nanoparticles on the surface of Cu2O, transforming partial Cu2O into HKUST-1 shell via coordination replication, and removing the residual Cu2O by acid. The as-prepared Au-HKUST-1 composite nanocapsules displayed high catalytic activity on CO oxidation.

  19. Post-irradiation replication and repair in UV-irradiated cells of Proteus mirabilis depends on protein synthesis and a functioning rec+ gene

    International Nuclear Information System (INIS)

    Hofemeister, J.

    1977-01-01

    The amount of and the molecular weight of newly synthesized DNA (piDNA) as well as its repair after UV irradiation in excision-proficient strains of P.mirabilis and E.coli K12 have been compared. A fraction of post-replication repair (PRR) in P.mirabilis is found to be dependent on de novo protein synthesis after UV irradiation. Pre-irradiation by UV and pre-treatment with nalidixic acid increase the efficiency of post-irradiation replication and PRR even in the presence of chloramphenicol. An inducible repair function in P.mirabilis is supposed to stimulate post-irradiation replication and repair. (author)

  20. Post-irradiation replication and repair in uv-irradiated cells of Proteus mirabilis depends on protein synthesis and a functioning rec/sup +/ gene

    Energy Technology Data Exchange (ETDEWEB)

    Hofemeister, J [Akademie der Wissenschaften der DDR, Gatersleben. Zentralinstitut fuer Genetik und Kulturpflanzenforschung

    1977-02-28

    The amount of and the molecular weight of newly synthesized DNA (piDNA) as well as its repair after uv irradiation in excision-proficient strains of P.mirabilis and E.coli K12 have been compared. A fraction of post-replication repair (PRR) in P.mirabilis is found to be dependent on de novo protein synthesis after uv irradiation. Pre-irradiation by uv and pre-treatment with nalidixic acid increase the efficiency of post-irradiation replication and PRR even in the presence of chloramphenicol. An inducible repair function in P.mirabilis is supposed to stimulate post-irradiation replication and repair.

  1. Amplification of Chirality through Self-Replication of Micellar Aggregates in Water

    KAUST Repository

    Bukhriakov, Konstantin

    2015-03-17

    We describe a system in which the self-replication of micellar aggregates results in a spontaneous amplification of chirality in the reaction products. In this system, amphiphiles are synthesized from two "clickable" fragments: a water-soluble "head" and a hydrophobic "tail". Under biphasic conditions, the reaction is autocatalytic, as aggregates facilitate the transfer of hydrophobic molecules to the aqueous phase. When chiral, partially enantioenriched surfactant heads are used, a strong nonlinear induction of chirality in the reaction products is observed. Preseeding the reaction mixture with an amphiphile of one chirality results in the amplification of this product and therefore information transfer between generations of self-replicating aggregates. Because our amphiphiles are capable of catalysis, information transfer, and self-assembly into bounded structures, they present a plausible model for prenucleic acid "lipid world" entities. © 2015 American Chemical Society.

  2. Synaptic theory of Replicator-like melioration

    Directory of Open Access Journals (Sweden)

    Yonatan Loewenstein

    2010-06-01

    Full Text Available According to the theory of Melioration, organisms in repeated choice settings shift their choice preference in favor of the alternative that provides the highest return. The goal of this paper is to explain how this learning behavior can emerge from microscopic changes in the efficacies of synapses, in the context of two-alternative repeated-choice experiment. I consider a large family of synaptic plasticity rules in which changes in synaptic efficacies are driven by the covariance between reward and neural activity. I construct a general framework that predicts the learning dynamics of any decision-making neural network that implements this synaptic plasticity rule and show that melioration naturally emerges in such networks. Moreover, the resultant learning dynamics follows the Replicator equation which is commonly used to phenomenologically describe changes in behavior in operant conditioning experiments. Several examples demonstrate how the learning rate of the network is affected by its properties and by the specifics of the plasticity rule. These results help bridge the gap between cellular physiology and learning behavior.

  3. Factor Copula Models for Replicated Spatial Data

    KAUST Repository

    Krupskii, Pavel

    2016-12-19

    We propose a new copula model that can be used with replicated spatial data. Unlike the multivariate normal copula, the proposed copula is based on the assumption that a common factor exists and affects the joint dependence of all measurements of the process. Moreover, the proposed copula can model tail dependence and tail asymmetry. The model is parameterized in terms of a covariance function that may be chosen from the many models proposed in the literature, such as the Matérn model. For some choice of common factors, the joint copula density is given in closed form and therefore likelihood estimation is very fast. In the general case, one-dimensional numerical integration is needed to calculate the likelihood, but estimation is still reasonably fast even with large data sets. We use simulation studies to show the wide range of dependence structures that can be generated by the proposed model with different choices of common factors. We apply the proposed model to spatial temperature data and compare its performance with some popular geostatistics models.

  4. Cellular Aspects of Prion Replication In Vitro

    Science.gov (United States)

    Grassmann, Andrea; Wolf, Hanna; Hofmann, Julia; Graham, James; Vorberg, Ina

    2013-01-01

    Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders in mammals that are caused by unconventional agents predominantly composed of aggregated misfolded prion protein (PrP). Prions self-propagate by recruitment of host-encoded PrP into highly ordered β-sheet rich aggregates. Prion strains differ in their clinical, pathological and biochemical characteristics and are likely to be the consequence of distinct abnormal prion protein conformers that stably replicate their alternate states in the host cell. Understanding prion cell biology is fundamental for identifying potential drug targets for disease intervention. The development of permissive cell culture models has greatly enhanced our knowledge on entry, propagation and dissemination of TSE agents. However, despite extensive research, the precise mechanism of prion infection and potential strain effects remain enigmatic. This review summarizes our current knowledge of the cell biology and propagation of prions derived from cell culture experiments. We discuss recent findings on the trafficking of cellular and pathologic PrP, the potential sites of abnormal prion protein synthesis and potential co-factors involved in prion entry and propagation. PMID:23340381

  5. Factor Copula Models for Replicated Spatial Data

    KAUST Repository

    Krupskii, Pavel; Huser, Raphaë l; Genton, Marc G.

    2016-01-01

    We propose a new copula model that can be used with replicated spatial data. Unlike the multivariate normal copula, the proposed copula is based on the assumption that a common factor exists and affects the joint dependence of all measurements of the process. Moreover, the proposed copula can model tail dependence and tail asymmetry. The model is parameterized in terms of a covariance function that may be chosen from the many models proposed in the literature, such as the Matérn model. For some choice of common factors, the joint copula density is given in closed form and therefore likelihood estimation is very fast. In the general case, one-dimensional numerical integration is needed to calculate the likelihood, but estimation is still reasonably fast even with large data sets. We use simulation studies to show the wide range of dependence structures that can be generated by the proposed model with different choices of common factors. We apply the proposed model to spatial temperature data and compare its performance with some popular geostatistics models.

  6. Nicotinamide extends replicative lifespan of human cells.

    Science.gov (United States)

    Kang, Hyun Tae; Lee, Hyung Il; Hwang, Eun Seong

    2006-10-01

    We found that an ongoing application of nicotinamide to normal human fibroblasts not only attenuated expression of the aging phenotype but also increased their replicative lifespan, causing a greater than 1.6-fold increase in the number of population doublings. Although nicotinamide by itself does not act as an antioxidant, the cells cultured in the presence of nicotinamide exhibited reduced levels of reactive oxygen species (ROS) and oxidative damage products associated with cellular senescence, and a decelerated telomere shortening rate without a detectable increase in telomerase activity. Furthermore, in the treated cells growing beyond the original Hayflick limit, the levels of p53, p21WAF1, and phospho-Rb proteins were similar to those in actively proliferating cells. The nicotinamide treatment caused a decrease in ATP levels, which was stably maintained until the delayed senescence point. Nicotinamide-treated cells also maintained high mitochondrial membrane potential but a lower respiration rate and superoxide anion level. Taken together, in contrast to its demonstrated pro-aging effect in yeast, nicotinamide extends the lifespan of human fibroblasts, possibly through reduction in mitochondrial activity and ROS production.

  7. Minority games, evolving capitals and replicator dynamics

    International Nuclear Information System (INIS)

    Galla, Tobias; Zhang, Yi-Cheng

    2009-01-01

    We discuss a simple version of the minority game (MG) in which agents hold only one strategy each, but in which their capitals evolve dynamically according to their success and in which the total trading volume varies in time accordingly. This feature is known to be crucial for MGs to reproduce stylized facts of real market data. The stationary states and phase diagram of the model can be computed, and we show that the ergodicity breaking phase transition common for MGs, and marked by a divergence of the integrated response, is present also in this simplified model. An analogous majority game turns out to be relatively void of interesting features, and the total capital is found to diverge in time. Introducing a restraining force leads to a model akin to the replicator dynamics of evolutionary game theory, and we demonstrate that here a different type of phase transition is observed. Finally we briefly discuss the relation of this model with one strategy per player to more sophisticated minority games with dynamical capitals and several trading strategies per agent

  8. Modelling the Replication Management in Information Systems

    Directory of Open Access Journals (Sweden)

    Cezar TOADER

    2017-01-01

    Full Text Available In the modern economy, the benefits of Web services are significant because they facilitates the activities automation in the framework of Internet distributed businesses as well as the cooperation between organizations through interconnection process running in the computer systems. This paper presents the development stages of a model for a reliable information system. This paper describes the communication between the processes within the distributed system, based on the message exchange, and also presents the problem of distributed agreement among processes. A list of objectives for the fault-tolerant systems is defined and a framework model for distributed systems is proposed. This framework makes distinction between management operations and execution operations. The proposed model promotes the use of a central process especially designed for the coordination and control of other application processes. The execution phases and the protocols for the management and the execution components are presented. This model of a reliable system could be a foundation for an entire class of distributed systems models based on the management of replication process.

  9. Interplay between Selenium Levels and Replicative Senescence in WI-38 Human Fibroblasts: A Proteomic Approach

    Directory of Open Access Journals (Sweden)

    Ghania Hammad

    2018-01-01

    Full Text Available Selenoproteins are essential components of antioxidant defense, redox homeostasis, and cell signaling in mammals, where selenium is found in the form of a rare amino acid, selenocysteine. Selenium, which is often limited both in food intake and cell culture media, is a strong regulator of selenoprotein expression and selenoenzyme activity. Aging is a slow, complex, and multifactorial process, resulting in a gradual and irreversible decline of various functions of the body. Several cellular aspects of organismal aging are recapitulated in the replicative senescence of cultured human diploid fibroblasts, such as embryonic lung fibroblast WI-38 cells. We previously reported that the long-term growth of young WI-38 cells with high (supplemented, moderate (control, or low (depleted concentrations of selenium in the culture medium impacts their replicative lifespan, due to rapid changes in replicative senescence-associated markers and signaling pathways. In order to gain insight into the molecular link between selenium levels and replicative senescence, in the present work, we have applied a quantitative proteomic approach based on 2-Dimensional Differential in-Gel Electrophoresis (2D-DIGE to the study of young and presenescent cells grown in selenium-supplemented, control, or depleted media. Applying a restrictive cut-off (spot intensity ±50% and a p value < 0.05 to the 2D-DIGE analyses revealed 81 differentially expressed protein spots, from which 123 proteins of interest were identified by mass spectrometry. We compared the changes in protein abundance for three different conditions: (i spots varying between young and presenescent cells, (ii spots varying in response to selenium concentration in young cells, and (iii spots varying in response to selenium concentration in presenescent cells. Interestingly, a 72% overlap between the impact of senescence and selenium was observed in our proteomic results, demonstrating a strong interplay between

  10. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.

    Science.gov (United States)

    Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J

    2009-12-01

    Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.

  11. Monitoring of the spatial and temporal dynamics of BER/SSBR pathway proteins, including MYH, UNG2, MPG, NTH1 and NEIL1-3, during DNA replication.

    Science.gov (United States)

    Bj Rås, Karine Ø; Sousa, Mirta M L; Sharma, Animesh; Fonseca, Davi M; S Gaard, Caroline K; Bj Rås, Magnar; Otterlei, Marit

    2017-08-21

    Base lesions in DNA can stall the replication machinery or induce mutations if bypassed. Consequently, lesions must be repaired before replication or in a post-replicative process to maintain genomic stability. Base excision repair (BER) is the main pathway for repair of base lesions and is known to be associated with DNA replication, but how BER is organized during replication is unclear. Here we coupled the iPOND (isolation of proteins on nascent DNA) technique with targeted mass-spectrometry analysis, which enabled us to detect all proteins required for BER on nascent DNA and to monitor their spatiotemporal orchestration at replication forks. We demonstrate that XRCC1 and other BER/single-strand break repair (SSBR) proteins are enriched in replisomes in unstressed cells, supporting a cellular capacity of post-replicative BER/SSBR. Importantly, we identify for the first time the DNA glycosylases MYH, UNG2, MPG, NTH1, NEIL1, 2 and 3 on nascent DNA. Our findings suggest that a broad spectrum of DNA base lesions are recognized and repaired by BER in a post-replicative process. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Rolling replication of UV-irradiated duplex DNA in the phi X174 replicative-form----single-strand replication system in vitro

    International Nuclear Information System (INIS)

    Shavitt, O.; Livneh, Z.

    1989-01-01

    Cloning of the phi X174 viral origin of replication into phage M13mp8 produced an M13-phi X174 chimera, the DNA of which directed efficient replicative-form----single-strand rolling replication in vitro. This replication assay was performed with purified phi X174-encoded gene A protein, Escherichia coli rep helicase, single-stranded DNA-binding protein, and DNA polymerase III holoenzyme. The nicking of replicative-form I (RFI) DNA by gene A protein was essentially unaffected by the presence of UV lesions in the DNA. However, unwinding of UV-irradiated DNA by the rep helicase was inhibited twofold as compared with unwinding of the unirradiated substrate. UV irradiation of the substrate DNA caused a strong inhibition in its ability to direct DNA synthesis. However, even DNA preparations that contained as many as 10 photodimers per molecule still supported the synthesis of progeny full-length single-stranded DNA. The appearance of full-length radiolabeled products implied at least two full rounds of replication, since the first round released the unlabeled plus viral strand of the duplex DNA. Pretreatment of the UV-irradiated DNA substrate with purified pyrimidine dimer endonuclease from Micrococcus luteus, which converted photodimer-containing supercoiled RFI DNA into relaxed, nicked RFII DNA and thus prevented its replication, reduced DNA synthesis by 70%. Analysis of radiolabeled replication products by agarose gel electrophoresis followed by autoradiography revealed that this decrease was due to a reduction in the synthesis of progeny full-length single-stranded DNA. This implies that 70 to 80% of the full-length DNA products produced in this system were synthesized on molecules that carried photodimers

  13. Parallelizing Federated SPARQL Queries in Presence of Replicated Data

    DEFF Research Database (Denmark)

    Minier, Thomas; Montoya, Gabriela; Skaf-Molli, Hala

    2017-01-01

    Federated query engines have been enhanced to exploit new data localities created by replicated data, e.g., Fedra. However, existing replication aware federated query engines mainly focus on pruning sources during the source selection and query decomposition in order to reduce intermediate result...

  14. Murine leukemia virus (MLV replication monitored with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Bittner Alexandra

    2004-12-01

    Full Text Available Abstract Background Cancer gene therapy will benefit from vectors that are able to replicate in tumor tissue and cause a bystander effect. Replication-competent murine leukemia virus (MLV has been described to have potential as cancer therapeutics, however, MLV infection does not cause a cytopathic effect in the infected cell and viral replication can only be studied by immunostaining or measurement of reverse transcriptase activity. Results We inserted the coding sequences for green fluorescent protein (GFP into the proline-rich region (PRR of the ecotropic envelope protein (Env and were able to fluorescently label MLV. This allowed us to directly monitor viral replication and attachment to target cells by flow cytometry. We used this method to study viral replication of recombinant MLVs and split viral genomes, which were generated by replacement of the MLV env gene with the red fluorescent protein (RFP and separately cloning GFP-Env into a retroviral vector. Co-transfection of both plasmids into target cells resulted in the generation of semi-replicative vectors, and the two color labeling allowed to determine the distribution of the individual genomes in the target cells and was indicative for the occurrence of recombination events. Conclusions Fluorescently labeled MLVs are excellent tools for the study of factors that influence viral replication and can be used to optimize MLV-based replication-competent viruses or vectors for gene therapy.

  15. Three attempts to replicate the moral licensing effect

    NARCIS (Netherlands)

    Blanken, I.; van de Ven, N.; Zeelenberg, M.; Meijers, Marijn H. C.

    2014-01-01

    The present work includes three attempts to replicate the moral licensing effect by Sachdeva, Iliev, and Medin (2009). The original authors found that writing about positive traits led to lower donations to charity and decreased cooperative behavior. The first two replication attempts (student

  16. CRISPR-mediated control of the bacterial initiation of replication

    NARCIS (Netherlands)

    Wiktor, J.M.; Lesterlin, Christian; Sherratt, David J.; Dekker, C.

    2016-01-01

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is

  17. The Alleged Crisis and the Illusion of Exact Replication

    NARCIS (Netherlands)

    Stroebe, Wolfgang; Strack, Fritz

    There has been increasing criticism of the way psychologists conduct and analyze studies. These critiques as well as failures to replicate several high-profile studies have been used as justification to proclaim a replication crisis in psychology. Psychologists are encouraged to conduct more exact

  18. An Inadvertent Concurrent Replication: Same Roadmap, Different Journey

    Science.gov (United States)

    Lemons, Christopher J.; King, Seth A.; Davidson, Kimberly A.; Berryessa, Teresa L.; Gajjar, Shimul A.; Sacks, Lia H.

    2016-01-01

    Replication is a critical aspect of scientific inquiry that presents a variety of challenges to researchers, even under the best of conditions. We conducted a review of replication rates in special education journals similar to the review conducted by Makel et al. in this issue. Unknowingly conducting independent reviews allowed for an unexpected…

  19. Replication of Psycholinguistic Experiments and the Resolution of Inconsistencies

    Science.gov (United States)

    Rákosi, Csilla

    2017-01-01

    Non-exact replications are regarded as effective tools of problem solving in psycholinguistic research because they lead to more plausible experimental results; however, they are also ineffective tools of problem solving because they trigger cumulative contradictions among different replications of an experiment. This paper intends to resolve this…

  20. Focus Article: Replication in Second Language Writing Research

    Science.gov (United States)

    Porte, Graeme; Richards, Keith

    2012-01-01

    This paper discusses the meaning and range of replication in L2 research from both quantitative and qualitative perspectives. In the first half of the paper, it will be argued that key quantitative studies need to be replicated to have their robustness and generalizability tested and that this is a requirement of scientific inquiry. Such research…

  1. Chromatin maturation depends on continued DNA-replication

    International Nuclear Information System (INIS)

    Schlaeger, E.J.; Puelm, W.; Knippers, R.

    1983-01-01

    The structure of [ 3 H]thymidine pulse-labeled chromatin in lymphocytes differs from that of non-replicating chromatin by several operational criteria which are related to the higher nuclease sensitivity of replicating chromatin. These structural features of replicating chromatin rapidly disappear when the [ 3 H]thymidine pulse is followed by a chase in the presence of an excess of non-radioactive thymidine. However, when the rate of DNA replication is reduced, as in cycloheximide-treated lymphocytes, chromatin maturation is retarded. No chromatin maturation is observed when nuclei from pulse-labeled lymphocytes are incubated in vitro in the absence of DNA precursors. In contrast, when these nuclei are incubated under conditions known to be optimal for DNA replication, the structure of replicating chromatin is efficiently converted to that of 'mature', non-replicating chromatin. The authors conclude that the properties of nascent DNA and/or the distance from the replication fork are important factors in chromatin maturation. (Auth.)

  2. Perfectionism in Gifted Adolescents: A Replication and Extension

    Science.gov (United States)

    Margot, Kelly C.; Rinn, Anne N.

    2016-01-01

    To provide further generalizability for the results garnered by two previous studies, the authors conducted a methodological replication. In addition to adding to the body of replication research done with gifted students, the purpose of this study was to examine perfectionism differences among gifted adolescents in regards to gender, birth order,…

  3. Replication of Special Education Research: Necessary but Far Too Rare

    Science.gov (United States)

    Makel, Matthew C.; Plucker, Jonathan A.; Freeman, Jennifer; Lombardi, Allison; Simonsen, Brandi; Coyne, Michael

    2016-01-01

    Increased calls for rigor in special education have often revolved around the use of experimental research design. However, the replicability of research results is also a central tenet to the scientific research process. To assess the prevalence, success rate, and authorship history of replications in special education, we investigated the…

  4. Oblique roughness replication in strained SiGe/Si multilayers

    NARCIS (Netherlands)

    Holy, V.; Darhuber, A.A.; Stangl, J.; Bauer, G.; Nützel, J.-F.; Abstreiter, G.

    1998-01-01

    The replication of the interface roughness in SiGe/Si multilayers grown on miscut Si(001) substrates has been studied by means of x-ray reflectivity reciprocal space mapping. The interface profiles were found to be highly correlated and the direction of the maximal replication was inclined with

  5. Bayesian evaluation of effect size after replicating an original study

    NARCIS (Netherlands)

    Van Aert, Robbie C M; Van Assen, Marcel A.L.M.

    2017-01-01

    The vast majority of published results in the literature is statistically significant, which raises concerns about their reliability. The Reproducibility Project Psychology (RPP) and Experimental Economics Replication Project (EE-RP) both replicated a large number of published studies in psychology

  6. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes.

    Science.gov (United States)

    Moriyama, Takashi; Sato, Naoki

    2014-01-01

    Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  7. Universal Temporal Profile of Replication Origin Activation in Eukaryotes

    Science.gov (United States)

    Goldar, Arach

    2011-03-01

    The complete and faithful transmission of eukaryotic genome to daughter cells involves the timely duplication of mother cell's DNA. DNA replication starts at multiple chromosomal positions called replication origin. From each activated replication origin two replication forks progress in opposite direction and duplicate the mother cell's DNA. While it is widely accepted that in eukaryotic organisms replication origins are activated in a stochastic manner, little is known on the sources of the observed stochasticity. It is often associated to the population variability to enter S phase. We extract from a growing Saccharomyces cerevisiae population the average rate of origin activation in a single cell by combining single molecule measurements and a numerical deconvolution technique. We show that the temporal profile of the rate of origin activation in a single cell is similar to the one extracted from a replicating cell population. Taking into account this observation we exclude the population variability as the origin of observed stochasticity in origin activation. We confirm that the rate of origin activation increases in the early stage of S phase and decreases at the latter stage. The population average activation rate extracted from single molecule analysis is in prefect accordance with the activation rate extracted from published micro-array data, confirming therefore the homogeneity and genome scale invariance of dynamic of replication process. All these observations point toward a possible role of replication fork to control the rate of origin activation.

  8. Reconsidering Replication: New Perspectives on Large-Scale School Improvement

    Science.gov (United States)

    Peurach, Donald J.; Glazer, Joshua L.

    2012-01-01

    The purpose of this analysis is to reconsider organizational replication as a strategy for large-scale school improvement: a strategy that features a "hub" organization collaborating with "outlet" schools to enact school-wide designs for improvement. To do so, we synthesize a leading line of research on commercial replication to construct a…

  9. Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe.

    Science.gov (United States)

    Margalef, Pol; Kotsantis, Panagiotis; Borel, Valerie; Bellelli, Roberto; Panier, Stephanie; Boulton, Simon J

    2018-01-25

    Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1 -/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    Science.gov (United States)

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  11. Diversity of the DNA Replication System in the Archaea Domain

    Directory of Open Access Journals (Sweden)

    Felipe Sarmiento

    2014-01-01

    Full Text Available The precise and timely duplication of the genome is essential for cellular life. It is achieved by DNA replication, a complex process that is conserved among the three domains of life. Even though the cellular structure of archaea closely resembles that of bacteria, the information processing machinery of archaea is evolutionarily more closely related to the eukaryotic system, especially for the proteins involved in the DNA replication process. While the general DNA replication mechanism is conserved among the different domains of life, modifications in functionality and in some of the specialized replication proteins are observed. Indeed, Archaea possess specific features unique to this domain. Moreover, even though the general pattern of the replicative system is the same in all archaea, a great deal of variation exists between specific groups.

  12. Cytoplasmic ATR Activation Promotes Vaccinia Virus Genome Replication

    Directory of Open Access Journals (Sweden)

    Antonio Postigo

    2017-05-01

    Full Text Available In contrast to most DNA viruses, poxviruses replicate their genomes in the cytoplasm without host involvement. We find that vaccinia virus induces cytoplasmic activation of ATR early during infection, before genome uncoating, which is unexpected because ATR plays a fundamental nuclear role in maintaining host genome integrity. ATR, RPA, INTS7, and Chk1 are recruited to cytoplasmic DNA viral factories, suggesting canonical ATR pathway activation. Consistent with this, pharmacological and RNAi-mediated inhibition of canonical ATR signaling suppresses genome replication. RPA and the sliding clamp PCNA interact with the viral polymerase E9 and are required for DNA replication. Moreover, the ATR activator TOPBP1 promotes genome replication and associates with the viral replisome component H5. Our study suggests that, in contrast to long-held beliefs, vaccinia recruits conserved components of the eukaryote DNA replication and repair machinery to amplify its genome in the host cytoplasm.

  13. ATR prohibits replication catastrophe by preventing global exhaustion of RPA.

    Science.gov (United States)

    Toledo, Luis Ignacio; Altmeyer, Matthias; Rask, Maj-Britt; Lukas, Claudia; Larsen, Dorthe Helena; Povlsen, Lou Klitgaard; Bekker-Jensen, Simon; Mailand, Niels; Bartek, Jiri; Lukas, Jiri

    2013-11-21

    ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Initiation of DNA replication requires actin dynamics and formin activity.

    Science.gov (United States)

    Parisis, Nikolaos; Krasinska, Liliana; Harker, Bethany; Urbach, Serge; Rossignol, Michel; Camasses, Alain; Dewar, James; Morin, Nathalie; Fisher, Daniel

    2017-11-02

    Nuclear actin regulates transcriptional programmes in a manner dependent on its levels and polymerisation state. This dynamics is determined by the balance of nucleocytoplasmic shuttling, formin- and redox-dependent filament polymerisation. Here, using Xenopus egg extracts and human somatic cells, we show that actin dynamics and formins are essential for DNA replication. In proliferating cells, formin inhibition abolishes nuclear transport and initiation of DNA replication, as well as general transcription. In replicating nuclei from transcriptionally silent Xenopus egg extracts, we identified numerous actin regulators, and disruption of actin dynamics abrogates nuclear transport, preventing NLS (nuclear localisation signal)-cargo release from RanGTP-importin complexes. Nuclear formin activity is further required to promote loading of cyclin-dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) onto chromatin, as well as initiation and elongation of DNA replication. Therefore, actin dynamics and formins control DNA replication by multiple direct and indirect mechanisms. © 2017 The Authors.

  15. Autophagy Facilitates Salmonella Replication in HeLa Cells

    Science.gov (United States)

    Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett

    2014-01-01

    ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251

  16. USP7 is a SUMO deubiquitinase essential for DNA replication

    DEFF Research Database (Denmark)

    Lecona, Emilio; Rodriguez-Acebes, Sara; Specks, Julia

    2016-01-01

    Post-translational modification of proteins by ubiquitin (Ub) and Ub-like modifiers regulates DNA replication. We have previously shown that chromatin around replisomes is rich in SUMO and poor in Ub, whereas mature chromatin exhibits an opposite pattern. How this SUMO-rich, Ub-poor environment...... is maintained at sites of DNA replication in mammalian cells remains unexplored. Here we identify USP7 as a replisome-enriched SUMO deubiquitinase that is essential for DNA replication. By acting on SUMO and SUMOylated proteins, USP7 counteracts their ubiquitination. Inhibition or genetic deletion of USP7 leads...... to the accumulation of Ub on SUMOylated proteins, which are displaced away from replisomes. Our findings provide a model explaining the differential accumulation of SUMO and Ub at replication forks and identify an essential role of USP7 in DNA replication that should be considered in the development of USP7...

  17. Chromatin Constrains the Initiation and Elongation of DNA Replication.

    Science.gov (United States)

    Devbhandari, Sujan; Jiang, Jieqing; Kumar, Charanya; Whitehouse, Iestyn; Remus, Dirk

    2017-01-05

    Eukaryotic chromosomal DNA is faithfully replicated in a complex series of cell-cycle-regulated events that are incompletely understood. Here we report the reconstitution of DNA replication free in solution with purified proteins from the budding yeast Saccharomyces cerevisiae. The system recapitulates regulated bidirectional origin activation; synthesis of leading and lagging strands by the three replicative DNA polymerases Pol α, Pol δ, and Pol ε; and canonical maturation of Okazaki fragments into continuous daughter strands. We uncover a dual regulatory role for chromatin during DNA replication: promoting origin dependence and determining Okazaki fragment length by restricting Pol δ progression. This system thus provides a functional platform for the detailed mechanistic analysis of eukaryotic chromosome replication. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. From structure to mechanism-understanding initiation of DNA replication.

    Science.gov (United States)

    Riera, Alberto; Barbon, Marta; Noguchi, Yasunori; Reuter, L Maximilian; Schneider, Sarah; Speck, Christian

    2017-06-01

    DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2-7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability. © 2017 Riera et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    Science.gov (United States)

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  20. An Alternative Form of Replication Protein A Prevents Viral Replication in Vitro*

    OpenAIRE

    Mason, Aaron C.; Haring, Stuart J.; Pryor, John M.; Staloch, Cathy A.; Gan, Tze Fei; Wold, Marc S.

    2009-01-01

    Replication protein A (RPA), the eukaryotic single-stranded DNA-binding complex, is essential for multiple processes in cellular DNA metabolism. The “canonical” RPA is composed of three subunits (RPA1, RPA2, and RPA3); however, there is a human homolog to the RPA2 subunit, called RPA4, that can substitute for RPA2 in complex formation. We demonstrate that the resulting “alternative” RPA (aRPA) complex has solution and DNA binding properties indistinguishable from the c...

  1. DNA replication in ultraviolet light irradiated Chinese hamster cells: the nature of replicon inhibition and post-replication repair

    International Nuclear Information System (INIS)

    Doniger, J.

    1978-01-01

    DNA replication in ultraviolet light irradiated Chinese hamster cells was studied using techniques of DNA fiber autoradiography and alkaline sucrose sedimentation. Bidirectionally growing replicons were observed in the autoradiograms independent of the irradiation conditions. After a dose of 5 J/m 2 at 254 nm the rate of fork progression was the same as in unirradiated cells, while the rate of replication was reduced by 50%. After a dose of 10J/m 2 the rate of fork progression was reduced 40%, while the replication rate was only 25% of normal. Therefore, at low doses of ultraviolet light irradiation, the inhibition of DNA replication is due to reduction in the number of functioning replicons, while at higher doses the rate of fork progression is also slowed. Those replicons which no longer function after irradiation are blocked in fork movement rather than replicon initiation. After irradiation, pulse label was first incorporated into short nascent strands, the average size of which was approximately equal to the distance between pyrimidine dimers. Under conditions where post-replication repair occurs these short strands were eventually joined into larger pieces. Finally, the data show that slowing post-replication repair with caffeine does not slow fork movement. The results presented here support the post-replication repair model of 'gapped synthesis' and rule out a major role for 'replicative bypass'. (author)

  2. Flock House virus subgenomic RNA3 is replicated and its replication correlates with transactivation of RNA2

    International Nuclear Information System (INIS)

    Eckerle, Lance D.; Albarino, Cesar G.; Ball, L. Andrew.

    2003-01-01

    The nodavirus Flock House virus has a bipartite genome composed of RNAs 1 and 2, which encode the catalytic component of the RNA-dependent RNA polymerase (RdRp) and the capsid protein precursor, respectively. In addition to catalyzing replication of the viral genome, the RdRp also transcribes from RNA1 a subgenomic RNA3, which is both required for and suppressed by RNA2 replication. Here, we show that in the absence of RNA1 replication, FHV RdRp replicated positive-sense RNA3 transcripts fully and copied negative-sense RNA3 transcripts into positive strands. The two nonstructural proteins encoded by RNA3 were dispensable for replication, but sequences in the 3'-terminal 58 nucleotides were required. RNA3 variants that failed to replicate also failed to transactivate RNA2. These results imply that RNA3 is naturally produced both by transcription from RNA1 and by subsequent RNA1-independent replication and that RNA3 replication may be necessary for transactivation of RNA2

  3. Phosphorylation of NS5A Serine-235 is essential to hepatitis C virus RNA replication and normal replication compartment formation

    Energy Technology Data Exchange (ETDEWEB)

    Eyre, Nicholas S., E-mail: nicholas.eyre@adelaide.edu.au [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia); Hampton-Smith, Rachel J.; Aloia, Amanda L. [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia); Eddes, James S. [Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide (Australia); Simpson, Kaylene J. [Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville (Australia); Hoffmann, Peter [Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide (Australia); Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide (Australia); Beard, Michael R. [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia)

    2016-04-15

    Hepatitis C virus (HCV) NS5A protein is essential for HCV RNA replication and virus assembly. Here we report the identification of NS5A phosphorylation sites Ser-222, Ser-235 and Thr-348 during an infectious HCV replication cycle and demonstrate that Ser-235 phosphorylation is essential for HCV RNA replication. Confocal microscopy revealed that both phosphoablatant (S235A) and phosphomimetic (S235D) mutants redistribute NS5A to large juxta-nuclear foci that display altered colocalization with known replication complex components. Using electron microscopy (EM) we found that S235D alters virus-induced membrane rearrangements while EM using ‘APEX2’-tagged viruses demonstrated S235D-mediated enrichment of NS5A in irregular membranous foci. Finally, using a customized siRNA screen of candidate NS5A kinases and subsequent analysis using a phospho-specific antibody, we show that phosphatidylinositol-4 kinase III alpha (PI4KIIIα) is important for Ser-235 phosphorylation. We conclude that Ser-235 phosphorylation of NS5A is essential for HCV RNA replication and normal replication complex formation and is regulated by PI4KIIIα. - Highlights: • NS5A residues Ser-222, Ser-235 and Thr-348 are phosphorylated during HCV infection. • Phosphorylation of Ser-235 is essential to HCV RNA replication. • Mutation of Ser-235 alters replication compartment localization and morphology. • Phosphatidylinositol-4 kinase III alpha is important for Ser-235 phosphorylation.

  4. De novo and salvage pathway precursor incorporation during DNA replication at the nuclear matrix

    International Nuclear Information System (INIS)

    Panzeter, P.L.

    1988-01-01

    Total nuclear DNA can be empirically subdivided into low salt-soluble (LS) DNA (75-80%), high salt-soluble (HS) DNA (18-23%), and nuclear matrix-associated (NM) DNA which remains tightly bound to the nuclear matrix (∼2%). The most-newly replicated DNA is that associated with the nuclear matrix in regenerating rat liver. Analyses of the DNA fractions after various pulse times revealed that the salvage and de novo pathway DNA precursors investigated were incorporated preferentially into NM-DNA at early pulse times, after which the radioactivity became progressively incorporated into HS- and LS-DNA, respectively. These results support two models of nuclear matrix-associated DNA replication, proposed previously, and a third model presented in this dissertation. In addition, the incorporation of de novo pathway precursors lagged significantly (> 10 minutes) behind the incorporation of precursors entering through the salvage pathway. Channeling of salvage pathway precursors to DNA replication sites would explain the more rapid uptake of salvage precursors into NM-DNA than de novo precursors. To investigate the possibility of this heretofore in vitro phenomenon, the incorporation of the salvage precursor, ( 3 H)deoxythymidine, and the de novo precursor, ( 14 C)orotic acid, into NM-DNA and dTTP was examined in regenerating rat liver. There was no significant difference between the incorporation pattern of ( 14 C)orotic acid into NM-DNA thymine and that of ( 14 C)orotic acid into soluble dTTP. Contrastingly, the salvage pathway precursor, ( 3 H)deoxythymidine, labeled NM-DNA before labeling the dTTP pool

  5. Checkpoint independence of most DNA replication origins in fission yeast.

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-12-19

    In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (approximately 3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint

  6. Checkpoint independence of most DNA replication origins in fission yeast

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in

  7. Checkpoint independence of most DNA replication origins in fission yeast

    Directory of Open Access Journals (Sweden)

    Scott Donna

    2007-12-01

    Full Text Available Abstract Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU, which limits the pool of deoxyribonucleoside triphosphates (dNTPs and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR or cds1 (which encodes the fission yeast homologue of Chk2. Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3% behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild

  8. The transcription elongation factor Bur1-Bur2 interacts with replication protein A and maintains genome stability during replication stress

    DEFF Research Database (Denmark)

    Clausing, Emanuel; Mayer, Andreas; Chanarat, Sittinan

    2010-01-01

    Multiple DNA-associated processes such as DNA repair, replication, and recombination are crucial for the maintenance of genome integrity. Here, we show a novel interaction between the transcription elongation factor Bur1-Bur2 and replication protein A (RPA), the eukaryotic single-stranded DNA......-binding protein with functions in DNA repair, recombination, and replication. Bur1 interacted via its C-terminal domain with RPA, and bur1-¿C mutants showed a deregulated DNA damage response accompanied by increased sensitivity to DNA damage and replication stress as well as increased levels of persisting Rad52...... foci. Interestingly, the DNA damage sensitivity of an rfa1 mutant was suppressed by bur1 mutation, further underscoring a functional link between these two protein complexes. The transcription elongation factor Bur1-Bur2 interacts with RPA and maintains genome integrity during DNA replication stress....

  9. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase.

    Science.gov (United States)

    Appleby, Todd C; Perry, Jason K; Murakami, Eisuke; Barauskas, Ona; Feng, Joy; Cho, Aesop; Fox, David; Wetmore, Diana R; McGrath, Mary E; Ray, Adrian S; Sofia, Michael J; Swaminathan, S; Edwards, Thomas E

    2015-02-13

    Nucleotide analog inhibitors have shown clinical success in the treatment of hepatitis C virus (HCV) infection, despite an incomplete mechanistic understanding of NS5B, the viral RNA-dependent RNA polymerase. Here we study the details of HCV RNA replication by determining crystal structures of stalled polymerase ternary complexes with enzymes, RNA templates, RNA primers, incoming nucleotides, and catalytic metal ions during both primed initiation and elongation of RNA synthesis. Our analysis revealed that highly conserved active-site residues in NS5B position the primer for in-line attack on the incoming nucleotide. A β loop and a C-terminal membrane-anchoring linker occlude the active-site cavity in the apo state, retract in the primed initiation assembly to enforce replication of the HCV genome from the 3' terminus, and vacate the active-site cavity during elongation. We investigated the incorporation of nucleotide analog inhibitors, including the clinically active metabolite formed by sofosbuvir, to elucidate key molecular interactions in the active site. Copyright © 2015, American Association for the Advancement of Science.

  10. Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq).

    Science.gov (United States)

    Langley, Alexander R; Gräf, Stefan; Smith, James C; Krude, Torsten

    2016-12-01

    Next-generation sequencing has enabled the genome-wide identification of human DNA replication origins. However, different approaches to mapping replication origins, namely (i) sequencing isolated small nascent DNA strands (SNS-seq); (ii) sequencing replication bubbles (bubble-seq) and (iii) sequencing Okazaki fragments (OK-seq), show only limited concordance. To address this controversy, we describe here an independent high-resolution origin mapping technique that we call initiation site sequencing (ini-seq). In this approach, newly replicated DNA is directly labelled with digoxigenin-dUTP near the sites of its initiation in a cell-free system. The labelled DNA is then immunoprecipitated and genomic locations are determined by DNA sequencing. Using this technique we identify >25,000 discrete origin sites at sub-kilobase resolution on the human genome, with high concordance between biological replicates. Most activated origins identified by ini-seq are found at transcriptional start sites and contain G-quadruplex (G4) motifs. They tend to cluster in early-replicating domains, providing a correlation between early replication timing and local density of activated origins. Origins identified by ini-seq show highest concordance with sites identified by SNS-seq, followed by OK-seq and bubble-seq. Furthermore, germline origins identified by positive nucleotide distribution skew jumps overlap with origins identified by ini-seq and OK-seq more frequently and more specifically than do sites identified by either SNS-seq or bubble-seq. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Inactivation of the host lipin gene accelerates RNA virus replication through viral exploitation of the expanded endoplasmic reticulum membrane.

    Directory of Open Access Journals (Sweden)

    Chingkai Chuang

    2014-02-01

    Full Text Available RNA viruses take advantage of cellular resources, such as membranes and lipids, to assemble viral replicase complexes (VRCs that drive viral replication. The host lipins (phosphatidate phosphatases are particularly interesting because these proteins play key roles in cellular decisions about membrane biogenesis versus lipid storage. Therefore, we examined the relationship between host lipins and tombusviruses, based on yeast model host. We show that deletion of PAH1 (phosphatidic acid phosphohydrolase, which is the single yeast homolog of the lipin gene family of phosphatidate phosphatases, whose inactivation is responsible for proliferation and expansion of the endoplasmic reticulum (ER membrane, facilitates robust RNA virus replication in yeast. We document increased tombusvirus replicase activity in pah1Δ yeast due to the efficient assembly of VRCs. We show that the ER membranes generated in pah1Δ yeast is efficiently subverted by this RNA virus, thus emphasizing the connection between host lipins and RNA viruses. Thus, instead of utilizing the peroxisomal membranes as observed in wt yeast and plants, TBSV readily switches to the vastly expanded ER membranes in lipin-deficient cells to build VRCs and support increased level of viral replication. Over-expression of the Arabidopsis Pah2p in Nicotiana benthamiana decreased tombusvirus accumulation, validating that our findings are also relevant in a plant host. Over-expression of AtPah2p also inhibited the ER-based replication of another plant RNA virus, suggesting that the role of lipins in RNA virus replication might include several more eukaryotic viruses.

  12. The DNA Replication Stress Hypothesis of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Yuri B. Yurov

    2011-01-01

    Full Text Available A well-recognized theory of Alzheimer’s disease (AD pathogenesis suggests ectopic cell cycle events to mediate neurodegeneration. Vulnerable neurons of the AD brain exhibit biomarkers of cell cycle progression and DNA replication suggesting a reentry into the cell cycle. Chromosome reduplication without proper cell cycle completion and mitotic division probably causes neuronal cell dysfunction and death. However, this theory seems to require some inputs in accordance with the generally recognized amyloid cascade theory as well as to explain causes and consequences of genomic instability (aneuploidy in the AD brain. We propose that unscheduled and incomplete DNA replication (replication stress destabilizes (epigenomic landscape in the brain and leads to DNA replication “catastrophe” causing cell death during the S phase (replicative cell death. DNA replication stress can be a key element of the pathogenetic cascade explaining the interplay between ectopic cell cycle events and genetic instabilities in the AD brain. Abnormal cell cycle reentry and somatic genome variations can be used for updating the cell cycle theory introducing replication stress as a missing link between cell genetics and neurobiology of AD.

  13. Initiation preference at a yeast origin of replication.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1994-04-12

    Replication origins in the yeast Saccharomyces cerevisiae are identified as autonomous replication sequence (ARS) elements. To examine the effect of origin density on replication initiation, we have analyzed the replication of a plasmid that contains two copies of the same origin, ARS1. The activation of origins and the direction that replication forks move through flanking sequences can be physically determined by analyzing replication intermediates on two-dimensional agarose gels. We find that only one of the two identical ARSs on the plasmid initiates replication on any given plasmid molecule; that is, this close spacing of ARSs results in an apparent interference between the potential origins. Moreover, in the particular plasmid that we constructed, one of the two identical copies of ARS1 is used four times more frequently than the other one. These results show that the plasmid context is critical for determining the preferred origin. This origin preference is also exhibited when the tandem copies of ARS1 are introduced into a yeast chromosome. The sequences responsible for establishing the origin preference have been identified by deletion analysis and are found to reside in a portion of the yeast URA3 gene.

  14. The Alleged Crisis and the Illusion of Exact Replication.

    Science.gov (United States)

    Stroebe, Wolfgang; Strack, Fritz

    2014-01-01

    There has been increasing criticism of the way psychologists conduct and analyze studies. These critiques as well as failures to replicate several high-profile studies have been used as justification to proclaim a "replication crisis" in psychology. Psychologists are encouraged to conduct more "exact" replications of published studies to assess the reproducibility of psychological research. This article argues that the alleged "crisis of replicability" is primarily due to an epistemological misunderstanding that emphasizes the phenomenon instead of its underlying mechanisms. As a consequence, a replicated phenomenon may not serve as a rigorous test of a theoretical hypothesis because identical operationalizations of variables in studies conducted at different times and with different subject populations might test different theoretical constructs. Therefore, we propose that for meaningful replications, attempts at reinstating the original circumstances are not sufficient. Instead, replicators must ascertain that conditions are realized that reflect the theoretical variable(s) manipulated (and/or measured) in the original study. © The Author(s) 2013.

  15. DNA replication origins-where do we begin?

    Science.gov (United States)

    Prioleau, Marie-Noëlle; MacAlpine, David M

    2016-08-01

    For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. © 2016 Prioleau and MacAlpine; Published by Cold Spring Harbor Laboratory Press.

  16. DNA replication after mutagenic treatment in Hordeum vulgare.

    Science.gov (United States)

    Kwasniewska, Jolanta; Kus, Arita; Swoboda, Monika; Braszewska-Zalewska, Agnieszka

    2016-12-01

    The temporal and spatial properties of DNA replication in plants related to DNA damage and mutagenesis is poorly understood. Experiments were carried out to explore the relationships between DNA replication, chromatin structure and DNA damage in nuclei from barley root tips. We quantitavely analysed the topological organisation of replication foci using pulse EdU labelling during the S phase and its relationship with the DNA damage induced by mutagenic treatment with maleic hydrazide (MH), nitroso-N-methyl-urea (MNU) and gamma ray. Treatment with mutagens did not change the characteristic S-phase patterns in the nuclei; however, the frequencies of the S-phase-labelled cells after treatment differed from those observed in the control cells. The analyses of DNA replication in barley nuclei were extended to the micronuclei induced by mutagens. Replication in the chromatin of the micronuclei was rare. The results of simultanous TUNEL reaction to identify cells with DNA strand breaks and the labelling of the S-phase cells with EdU revealed the possibility of DNA replication occurring in damaged nuclei. For the first time, the intensity of EdU fluorescence to study the rate of DNA replication was analysed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Pyrimidine dimers block simian virus 40 replication forks

    International Nuclear Information System (INIS)

    Berger, C.A.; Edenberg, H.J.

    1986-01-01

    UV light produces lesions, predominantly pyrimidine dimers, which inhibit DNA replication in mammalian cells. The mechanism of inhibition is controversial: is synthesis of a daughter strand halted at a lesion while the replication fork moves on and reinitiates downstream, or is fork progression itself blocked for some time at the site of a lesion? We directly addressed this question by using electron microscopy to examine the distances of replication forks from the origin in unirradiated and UV-irradiated simian virus 40 chromosomes. If UV lesions block replication fork progression, the forks should be asymmetrically located in a large fraction of the irradiated molecules; if replication forks move rapidly past lesions, the forks should be symmetrically located. A large fraction of the simian virus 40 replication forks in irradiated molecules were asymmetrically located, demonstrating that UV lesions present at the frequency of pyrimidine dimers block replication forks. As a mechanism for this fork blockage, we propose that polymerization of the leading strand makes a significant contribution to the energetics of fork movement, so any lesion in the template for the leading strand which blocks polymerization should also block fork movement

  18. DNA replication origins—where do we begin?

    Science.gov (United States)

    Prioleau, Marie-Noëlle; MacAlpine, David M.

    2016-01-01

    For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. PMID:27542827

  19. Dynamics of picornavirus RNA replication within infected cells

    DEFF Research Database (Denmark)

    Belsham, Graham; Normann, Preben

    2008-01-01

    Replication of many picornaviruses is inhibited by low concentrations of guanidine. Guanidine-resistant mutants are readily isolated and the mutations map to the coding region for the 2C protein. Using in vitro replication assays it has been determined previously that guanidine blocks the initiat......Replication of many picornaviruses is inhibited by low concentrations of guanidine. Guanidine-resistant mutants are readily isolated and the mutations map to the coding region for the 2C protein. Using in vitro replication assays it has been determined previously that guanidine blocks...... the initiation of negative-strand synthesis. We have now examined the dynamics of RNA replication, measured by quantitative RT-PCR, within cells infected with either swine vesicular disease virus (an enterovirus) or foot-and-mouth disease virus as regulated by the presence or absence of guanidine. Following...... the removal of guanidine from the infected cells, RNA replication occurs after a significant lag phase. This restoration of RNA synthesis requires de novo protein synthesis. Viral RNA can be maintained for at least 72 h within cells in the absence of apparent replication but guanidine-resistant virus can...

  20. Autonomous model protocell division driven by molecular replication.

    Science.gov (United States)

    Taylor, J W; Eghtesadi, S A; Points, L J; Liu, T; Cronin, L

    2017-08-10

    The coupling of compartmentalisation with molecular replication is thought to be crucial for the emergence of the first evolvable chemical systems. Minimal artificial replicators have been designed based on molecular recognition, inspired by the template copying of DNA, but none yet have been coupled to compartmentalisation. Here, we present an oil-in-water droplet system comprising an amphiphilic imine dissolved in chloroform that catalyses its own formation by bringing together a hydrophilic and a hydrophobic precursor, which leads to repeated droplet division. We demonstrate that the presence of the amphiphilic replicator, by lowering the interfacial tension between droplets of the reaction mixture and the aqueous phase, causes them to divide. Periodic sampling by a droplet-robot demonstrates that the extent of fission is increased as the reaction progresses, producing more compartments with increased self-replication. This bridges a divide, showing how replication at the molecular level can be used to drive macroscale droplet fission.Coupling compartmentalisation and molecular replication is essential for the development of evolving chemical systems. Here the authors show an oil-in-water droplet containing a self-replicating amphiphilic imine that can undergo repeated droplet division.

  1. Non‐Canonical Replication Initiation: You’re Fired!

    Directory of Open Access Journals (Sweden)

    Bazilė Ravoitytė

    2017-01-01

    Full Text Available The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis‐acting DNA sequences, the so‐called origins of replication (ori, with trans‐acting factors involved in the onset of DNA synthesis. The interplay of cis‐acting elements and trans‐acting factors ensures that cells initiate replication at sequence‐specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause breakinduced (BIR or transcription‐initiated replication (TIR, respectively. These non‐canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non‐canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.

  2. Cell lethality after selective irradiation of the DNA replication fork

    International Nuclear Information System (INIS)

    Hofer, K.G.; Warters, R.L.

    1985-01-01

    It has been suggested that nascent DNA located at the DNA replication fork may exhibit enhanced sensitivity to radiation damage. To evaluate this hypothesis, Chinese hamster ovary cells (CHO) were labeled with 125 I-iododeoxyuridine ( 125 IUdR) either in the presence or absence of aphidicolin. Aphidicolin (5 μg/ml) reduced cellular 125 IUdR incorporation to 3-5% of the control value. The residual 125 I incorporation appeared to be restricted to low molecular weight (sub-replicon sized) fragments of DNA which were more sensitive to micrococcal nuclease attack and less sensitive to high salt DNase I digestion than randomly labeled DNA. These findings suggest that DNA replicated in the presence of aphidicolin remains localized at the replication fork adjacent to the nuclear matrix. Based on these observations an attempt was made to compare the lethal consequences of 125 I decays at the replication fork to that of 125 I decays randomly distributed over the entire genome. Regardless of the distribution of decay events, all treatment groups exhibited identical dose-response curves (D 0 : 101 125 I decays/cell). Since differential irradiation of the replication complex did not result in enhanced cell lethality, it can be concluded that neither the nascent DNA nor the protein components (replicative enzymes, nuclear protein matrix) associated with the DNA replication site constitute key radiosensitive targets within the cellular genome. (orig.)

  3. Gene organization inside replication domains in mammalian genomes

    Science.gov (United States)

    Zaghloul, Lamia; Baker, Antoine; Audit, Benjamin; Arneodo, Alain

    2012-11-01

    We investigate the large-scale organization of human genes with respect to "master" replication origins that were previously identified as bordering nucleotide compositional skew domains. We separate genes in two categories depending on their CpG enrichment at the promoter which can be considered as a marker of germline DNA methylation. Using expression data in mouse, we confirm that CpG-rich genes are highly expressed in germline whereas CpG-poor genes are in a silent state. We further show that, whether tissue-specific or broadly expressed (housekeeping genes), the CpG-rich genes are over-represented close to the replication skew domain borders suggesting some coordination of replication and transcription. We also reveal that the transcription of the longest CpG-rich genes is co-oriented with replication fork progression so that the promoter of these transcriptionally active genes be located into the accessible open chromatin environment surrounding the master replication origins that border the replication skew domains. The observation of a similar gene organization in the mouse genome confirms the interplay of replication, transcription and chromatin structure as the cornerstone of mammalian genome architecture.

  4. Structural properties of replication origins in yeast DNA sequences

    International Nuclear Information System (INIS)

    Cao Xiaoqin; Zeng Jia; Yan Hong

    2008-01-01

    Sequence-dependent DNA flexibility is an important structural property originating from the DNA 3D structure. In this paper, we investigate the DNA flexibility of the budding yeast (S. Cerevisiae) replication origins on a genome-wide scale using flexibility parameters from two different models, the trinucleotide and the tetranucleotide models. Based on analyzing average flexibility profiles of 270 replication origins, we find that yeast replication origins are significantly rigid compared with their surrounding genomic regions. To further understand the highly distinctive property of replication origins, we compare the flexibility patterns between yeast replication origins and promoters, and find that they both contain significantly rigid DNAs. Our results suggest that DNA flexibility is an important factor that helps proteins recognize and bind the target sites in order to initiate DNA replication. Inspired by the role of the rigid region in promoters, we speculate that the rigid replication origins may facilitate binding of proteins, including the origin recognition complex (ORC), Cdc6, Cdt1 and the MCM2-7 complex

  5. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  6. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  7. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  8. The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication.

    Science.gov (United States)

    Duan, Zhiqiang; Chen, Jian; Xu, Haixu; Zhu, Jie; Li, Qunhui; He, Liang; Liu, Huimou; Hu, Shunlin; Liu, Xiufan

    2014-03-01

    The cellular nucleolar proteins are reported to facilitate the replication cycles of some human and animal viruses by interaction with viral proteins. In this study, a nucleolar phosphoprotein B23 was identified to interact with Newcastle disease virus (NDV) matrix (M) protein. We found that NDV M protein accumulated in the nucleolus by binding B23 early in infection, but resulted in the redistribution of B23 from the nucleoli to the nucleoplasm later in infection. In vitro binding studies utilizing deletion mutants indicated that amino acids 30-60 of M and amino acids 188-245 of B23 were required for binding. Furthermore, knockdown of B23 by siRNA or overexpression of B23 or M-binding B23-derived polypeptides remarkably reduced cytopathic effect and inhibited NDV replication. Collectively, we show that B23 facilitates NDV replication by targeting M to the nucleolus, demonstrating for the first time a direct role for nucleolar protein B23 in a paramyxovirus replication process. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. An amphipathic alpha-helix controls multiple roles of brome mosaic virus protein 1a in RNA replication complex assembly and function.

    Directory of Open Access Journals (Sweden)

    Ling Liu

    2009-03-01

    Full Text Available Brome mosaic virus (BMV protein 1a has multiple key roles in viral RNA replication. 1a localizes to perinuclear endoplasmic reticulum (ER membranes as a peripheral membrane protein, induces ER membrane invaginations in which RNA replication complexes form, and recruits and stabilizes BMV 2a polymerase (2a(Pol and RNA replication templates at these sites to establish active replication complexes. During replication, 1a provides RNA capping, NTPase and possibly RNA helicase functions. Here we identify in BMV 1a an amphipathic alpha-helix, helix A, and use NMR analysis to define its structure and propensity to insert in hydrophobic membrane-mimicking micelles. We show that helix A is essential for efficient 1a-ER membrane association and normal perinuclear ER localization, and that deletion or mutation of helix A abolishes RNA replication. Strikingly, mutations in helix A give rise to two dramatically opposite 1a function phenotypes, implying that helix A acts as a molecular switch regulating the intricate balance between separable 1a functions. One class of helix A deletions and amino acid substitutions markedly inhibits 1a-membrane association and abolishes ER membrane invagination, viral RNA template recruitment, and replication, but doubles the 1a-mediated increase in 2a(Pol accumulation. The second class of helix A mutations not only maintains efficient 1a-membrane association but also amplifies the number of 1a-induced membrane invaginations 5- to 8-fold and enhances viral RNA template recruitment, while failing to stimulate 2a(Pol accumulation. The results provide new insights into the pathways of RNA replication complex assembly and show that helix A is critical for assembly and function of the viral RNA replication complex, including its central role in targeting replication components and controlling modes of 1a action.

  10. Calorie Restriction-Mediated Replicative Lifespan Extension in Yeast Is Non-Cell Autonomous

    Science.gov (United States)

    Mei, Szu-Chieh; Brenner, Charles

    2015-01-01

    In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell. PMID:25633578

  11. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    Directory of Open Access Journals (Sweden)

    Szu-Chieh Mei

    2015-01-01

    Full Text Available In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA, are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.

  12. Effects of ionizing radiations on DNA replication in cultured mammalian cells

    International Nuclear Information System (INIS)

    Makino, F.; Okada, S.

    1975-01-01

    The dose-response curve of [ 3 H] thymidine incorporation into the acid-insoluble fraction of cultured mammalian cells, grown in the presence of 10 -4 M cold thymidine, is different from that of incorporation in the absence of cold thymidine. For quantitative estimation of net DNA synthesis in nonirradiated and irradiated cells, two methods were used: isolation of newly synthesized BUdR-labeled DNA by CsCl gradient centrifugation and a fluorometric estimation of DNA content in the synchronized population. Both methods showed that the depression of [ 3 H]thymidine incorporation in the presence of cold thymidine reflected a depression of net DNA synthesis. Radiosensitive steps in DNA synthesis were examined by the use of alkaline sucrose gradient centrifugation. The rate of replication along the DNA strands was inhibited to a lesser extent than that of over-all DNA synthesis. The labeling patterns of DNA exposed to [ 3 H]thymidine for 20 min indicated that ionizing radiation preferentially interfered with the formation of small-size 3 H-labeled DNA pieces. These results suggest that the initiation of DNA replication is more radiosensitive than the elongation of DNA strands whose replication has already been initiated. (U.S.)

  13. Initiation at closely spaced replication origins in a yeast chromosome.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1993-12-10

    Replication of eukaryotic chromosomes involves initiation at origins spaced an average of 50 to 100 kilobase pairs. In yeast, potential origins can be recognized as autonomous replication sequences (ARSs) that allow maintenance of plasmids. However, there are more ARS elements than active chromosomal origins. The possibility was examined that close spacing of ARSs can lead to inactive origins. Two ARSs located 6.5 kilobase pairs apart can indeed interfere with each other. Replication is initiated from one or the other ARS with equal probability, but rarely (< 5%) from both ARSs on the same DNA molecule.

  14. The Replication Mechanism in a Romanian ERP System Environment

    Directory of Open Access Journals (Sweden)

    Iuliana SCORTA

    2008-01-01

    Full Text Available Modern Relational Database Management Systems have Replication technology. Large enterprises are often spread around the country, and although WANs can be very fast and reliable these days, it is often better for each location to have a local copy of data rather than have a single database at a central location. This usually means that replication is a requirement in order for each location to have the most up-to-date data. This paper reveals a replication mechanism implemented in a Romanian ERP system environment.

  15. Evolution of complexity in RNA-like replicator systems

    Directory of Open Access Journals (Sweden)

    Hogeweg Paulien

    2008-03-01

    Full Text Available Abstract Background The evolution of complexity is among the most important questions in biology. The evolution of complexity is often observed as the increase of genetic information or that of the organizational complexity of a system. It is well recognized that the formation of biological organization – be it of molecules or ecosystems – is ultimately instructed by the genetic information, whereas it is also true that the genetic information is functional only in the context of the organization. Therefore, to obtain a more complete picture of the evolution of complexity, we must study the evolution of both information and organization. Results Here we investigate the evolution of complexity in a simulated RNA-like replicator system. The simplicity of the system allows us to explicitly model the genotype-phenotype-interaction mapping of individual replicators, whereby we avoid preconceiving the functionality of genotypes (information or the ecological organization of replicators in the model. In particular, the model assumes that interactions among replicators – to replicate or to be replicated – depend on their secondary structures and base-pair matching. The results showed that a population of replicators, originally consisting of one genotype, evolves to form a complex ecosystem of up to four species. During this diversification, the species evolve through acquiring unique genotypes with distinct ecological functionality. The analysis of this diversification reveals that parasitic replicators, which have been thought to destabilize the replicator's diversity, actually promote the evolution of diversity through generating a novel "niche" for catalytic replicators. This also makes the current replicator system extremely stable upon the evolution of parasites. The results also show that the stability of the system crucially depends on the spatial pattern formation of replicators. Finally, the evolutionary dynamics is shown to

  16. Identification of a New Ribonucleoside Inhibitor of Ebola Virus Replication

    Directory of Open Access Journals (Sweden)

    Olivier Reynard

    2015-12-01

    Full Text Available The current outbreak of Ebola virus (EBOV in West Africa has claimed the lives of more than 15,000 people and highlights an urgent need for therapeutics capable of preventing virus replication. In this study we screened known nucleoside analogues for their ability to interfere with EBOV replication. Among them, the cytidine analogue β-d-N4-hydroxycytidine (NHC demonstrated potent inhibitory activities against EBOV replication and spread at non-cytotoxic concentrations. Thus, NHC constitutes an interesting candidate for the development of a suitable drug treatment against EBOV.

  17. Culture in the cockpit: do Hofstede's dimensions replicate?

    Science.gov (United States)

    Merritt, A.; Helmreich, R. L. (Principal Investigator)

    2000-01-01

    Survey data collected from 9,400 male commercial airline pilots in 19 countries were used in a replication study of Hofstede's indexes of national culture. The analysis that removed the constraint of item equivalence proved superior, both conceptually and empirically, to the analysis using Hofstede's items and formulae as prescribed, and rendered significant replication correlations for all indexes (Individualism-Collectivism .96, Power Distance .87, Masculinity-Femininity .75, and Uncertainty Avoidance .68). The successful replication confirms that national culture exerts an influence on cockpit behavior over and above the professional culture of pilots, and that "one size fits all" training is inappropriate.

  18. Biphasic action of cyclic adenosine 3',5'- monophosphate in gonadotropin-releasing hormone (GnRH) analog-stimulated hormone release from GH3 cells stably transfected with GnRH receptor complementary deoxyribonucleic acid.

    Science.gov (United States)

    Stanislaus, D; Arora, V; Awara, W M; Conn, P M

    1996-03-01

    GH3 cells are a PRL-secreting adenoma cell line derived from pituitary lactotropes. These cells have been stably transfected with rat GnRH receptor complementary DNA to produce four cell lines: GGH(3)1', GGH(3)2', GGH(3)6', and GGH(3)12'. In response to either GnRH or Buserelin (a metabolically stable GnRH agonist), these cell lines synthesize PRL in a cAMP-dependent manner. Only GGH(3)6' cells desensitize in response to persistent treatment with 10(-7) g/ml Buserelin. GGH(3)1', GGH(3)2', and GGH(3)12' cells, however, can be made refractory to Buserelin stimulation by raising cAMP levels either by the addition of (Bu)2cAMP to the medium or by treatment with cholera toxin. In GGH(3) cells, low levels of cAMP fulfill the requirements for a second messenger, whereas higher levels appear to mediate the development of desensitization. The observation that in GGH(3)6' cells, cAMP production persists after the onset of desensitization is consistent with the view that the mechanism responsible for desensitization is distal to the production of cAMP. Moreover, the absence of any significant difference in the amount of cAMP produced per cell in GGH(3)2', GGH(3)6', or GGH(3)12' cells suggests that elevated cAMP production per cell does not explain the development of desensitization in GGH(3)6' cells. We suggest that Buserelin-stimulated PRL synthesis in GGH(3)6' cells is mediated by a different cAMP-dependent protein kinase pool(s) than that in nondesensitizing GGH(3) cells. Such a protein kinase A pool(s) may be more susceptible to degradation via cAMP-mediated mechanisms than the protein kinase pools mediating the Buserelin response in nondesensitizing GGH(3) cells. A similar mechanism has been reported in other systems.

  19. Alkylation of deoxyribonucleic acid by carcinogens dimethyl sulphate, ethyl methanesulphonate, N-ethyl-N-nitrosourea and N-methyl-N-nitrosourea. Relative reactivity of the phosphodiester site thymidylyl(3'-5')thymidine.

    Science.gov (United States)

    Swenson, D H; Lawley, P D

    1978-01-01

    1. The ethyl phosphotriester of thymidylyl(3'-5')thymidine, dTp(Et)dT, was identified as a product from reaction of DNA with N-ethyl-N-nitrosourea, by procedures parallel to those reported previously for the methyl homologue produced by N-methyl-N-nitrosourea. 2. Enzymic degradation to yield alkyl phosphotriesters from DNA alkylated by these carcinogens and by dimethyl sulphate and ethyl methanesulphonate was studied quantitatively, and the relative yields of the triesters dTp(Alk)dT were determined. The relative reactivity of the phosphodiester group dTpdT to each of the four carcinogens was thus obtained, and compared with that of DNA overall, or with that of the N-7 atom of guanine in DNA. Relative reactivity of the phosphodiester group was lowest towards dimethyl sulphate, the least electrophilic of the reagents used, and was highest towards N-ethyl-N-nitrosourea, the most electrophilic reagent. 3. The nature of the alkyl group transferred also influenced reactivity of the phosphodiester site, since this site was relatively more reactive towards ethylation than would be predicted simply from the known Swain-Scott s values of the alkylating agents. It was therefore suggested that the steric accessibility of the weakly nucleophilic phosphodiester group on the outside of the DNA macromolecule favours its reaction with ethylating, as opposed to methylating, reagents. 4. Taking a value of the Swain-Scott nucleophilicity (n) of 2.5 for an average DNA nucleotide unit [Walles & Ehrenberg (1969) Acta Chem. Scand. 23, 1080-1084], a value of n of about 1 for the phosphodiester group was deduced, and this value was found to be 2-3 units less than that for the N-7 atom of guanine in DNA. 5. The reactivity of DNA overall was markedly high towards the alkylnitrosoureas, despite their relatively low s values. This was ascribed to an electrostatic factor that favoured reaction of the negatively charged polymer with alkyldiazonium cation intermediates. PMID:208508

  20. Method for determining transcriptional linkage by means of inhibition of deoxyribonucleic acid transcription by ultraviolet irradiation: evaluation in application to the investigation of in vivo transcription in bacteriophage T7

    International Nuclear Information System (INIS)

    Brautigam, A.R.

    1975-01-01

    A technique is presented for mapping promotor sites that utilizes the introduction of transcription-terminating lesions in DNA through uv irradiation which prevents transcription of genes in proportion to their distance from the promotor. This technique was applied to and evaluated in investigations of the transcriptional linkage of bacteriophage T7. All results substantiate the hypothesis that transcription in vivo does not proceed beyond the first uv lesion encountered in the template DNA and that such premature termination of transcription is the principal effect of the uv irradiation on the transcriptional template function of DNA. UV-induced inhibition of the initiation of transcription is insignificant by comparison. Uv inactivation of expression of individual T7 genes was found to follow pseudo first-order kinetics, allowing a gene-specific uv inactivation cross section to be evaluated for each gene. Promotor locations were inferred from the discontinuity in the numerical values of inactivation cross sections arising at the start of each new unit. By such analysis the bacteriophage T7 genome was found to consist of seven transcription units. In vivo E. coli RNA polymerase transcribes the T7 early region as a single unit from a pomotor region located at the left end of the genome. The T7 late region was found to consist of six transcription units, with promotors located just ahead of genes 1.7, 7, 9, 11, 13 and 17