WorldWideScience

Sample records for denver west quadrangle

  1. Uranium hydrogeochemical and stream sediment reconnaissance of the Denver and Greeley NTMS Quadrangles, Colorado

    International Nuclear Information System (INIS)

    Bolivar, S.L.; Broxton, D.E.; Olsen, C.E.

    1978-03-01

    Although this report covers two National Topographic Map Series 2 0 quadrangles, the data for each quadrangle are presented separately. Evaluation of the data by quadrangle resulted in the delineation of areas in which water and/or sediment uranium concentrations are notably higher than surrounding background concentrations. The major clusters of anomalous water samples were found in areas of the Denver Basin underlain by the Pierre, Laramie, Fox Hills, Denver, and Arapahoe formations. Most of the anomalous sediment samples were collected in areas of the Front Range underlain by Precambrian crystalline rocks, particularly granites of the Silver Plume-Sherman group. Many of the anomalous sediment samples are from sites located near fault zones. The data in this report are also presented by geologic/physiographic province because background uranium concentrations in Front Range samples differ significantly from those in the Denver Basin. Denver Basin waters have higher mean uranium concentrations (mean 14.4 ppB) than Front Range waters (mean 3.3 ppB). Conversely, Front Range sediments are more uraniferous (mean 14.7 ppM) than those in the Denver Basin (mean 6.1 ppM). These differences in background uranium concentrations between Front Range and Denver Basin samples can be attributed to differences in regional geology, physiography, and (in the case of water) the ratio of surface water to ground water sites sampled. There is a significant northward increase in uranium concentrations in water samples from the Denver Basin. The higher uranium concentrations in water samples from the northern part of the basin are probably due to leaching of uraniferous strata in the Pierre and Laramie formations which crop out in that area

  2. Uranium hydrogeochemical and stream sediment reconnaissance of the Denver NTMS quadrangle, Colorado

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance of the Denver NTMS quadrangle, Colorado. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A through E describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment, lake-sediment, stream-water, lake-water, and ground-water samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses

  3. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, South West Region: Volume 9

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the South West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the South West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  4. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, Mid West Region: Volume 8

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the Mid West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the Mid West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  5. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, North West Region: Volume 11

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the North West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the North West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  6. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, West Region: Volume 10

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the West Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the West Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  7. Geologic map of the Vail West quadrangle, Eagle County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Lidke, David J.; Grunwald, Daniel J.

    2002-01-01

    This new 1:24,000-scale geologic map of the Vail West 7.5' quadrangle, as part of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area on the southwest flank of the Gore Range. Bedrock strata include Miocene tuffaceous sedimentary rocks, Mesozoic and upper Paleozoic sedimentary rocks, and undivided Early(?) Proterozoic metasedimentary and igneous rocks. Tuffaceous rocks are found in fault-tilted blocks. Only small outliers of the Dakota Sandstone, Morrison Formation, Entrada Sandstone, and Chinle Formation exist above the redbeds of the Permian-Pennsylvanian Maroon Formation and Pennsylvanian Minturn Formation, which were derived during erosion of the Ancestral Front Range east of the Gore fault zone. In the southwestern area of the map, the proximal Minturn facies change to distal Eagle Valley Formation and the Eagle Valley Evaporite basin facies. The Jacque Mountain Limestone Member, previously defined as the top of the Minturn Formation, cannot be traced to the facies change to the southwest. Abundant surficial deposits include Pinedale and Bull Lake Tills, periglacial deposits, earth-flow deposits, common diamicton deposits, common Quaternary landslide deposits, and an extensive, possibly late Pliocene landslide deposit. Landscaping has so extensively modified the land surface in the town of Vail that a modified land-surface unit was created to represent the surface unit. Laramide movement renewed activity along the Gore fault zone, producing a series of northwest-trending open anticlines and synclines in Paleozoic and Mesozoic strata, parallel to the trend of the fault zone. Tertiary down-to-the-northeast normal faults are evident and are parallel to similar faults in both the Gore Range and the Blue River valley to the northeast; presumably these are related to extensional deformation that occurred during formation of the northern end of the

  8. Aerial gamma ray and magnetic survey, Huntington quadrangle: Ohio, West Virginia and Kentucky. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    The Huntington quadrangle of Kentucky, Ohio, and West Virginia covers 7250 square miles of the easternmost Midwestern Physiographic Province. Paleozoic exposures dominate the surface. These Paleozoics deepen toward the east from approximately 500 feet to a maximum depth of 8000 feet. Precambrian basement is thought to underlie the entire area. No known uranium deposits exist in the area. One hundred anomalies were found using the standard statistical analysis. Some high uranium concentration anomalies that may overlie the stratigraphic equivalent of the Devonian-Mississippian New Albany or Chattanooga Shales may represent significant levels of naturally occurring uranium. Future studies should concentrate on this unit. Magnetic data are largely in concurrence with existing structural interpretations but suggest some complexities in the underlying Precambrian

  9. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    Science.gov (United States)

    Paschke, Suzanne S.; Walton-Day, Katherine; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    Toll Gate Creek, in the west-central part of the Denver Basin, is a perennial stream in which concentrations of dissolved selenium have consistently exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter. Recent studies of selenium in Toll Gate Creek identified the Denver lignite zone of the non-marine Cretaceous to Tertiary-aged (Paleocene) Denver Formation underlying the watershed as the geologic source of dissolved selenium to shallow ground-water and surface water. Previous work led to this study by the U.S. Geological Survey, in cooperation with the City of Aurora Utilities Department, which investigated geologic sources of selenium and selenium concentrations in the watershed. This report documents the occurrence of selenium-bearing rocks and groundwater within the Cretaceous- to Tertiary-aged Denver Formation in the west-central part of the Denver Basin, including the Toll Gate Creek watershed. The report presents background information on geochemical processes controlling selenium concentrations in the aquatic environment and possible geologic sources of selenium; the hydrogeologic setting of the watershed; selenium results from groundwater-sampling programs; and chemical analyses of solids samples as evidence that weathering of the Denver Formation is a geologic source of selenium to groundwater and surface water in the west-central part of the Denver Basin, including Toll Gate Creek. Analyses of water samples collected from 61 water-table wells in 2003 and from 19 water-table wells in 2007 indicate dissolved selenium concentrations in groundwater in the west-central Denver Basin frequently exceeded the Colorado aquatic-life standard and in some locations exceeded the primary drinking-water standard of 50 micrograms per liter. The greatest selenium concentrations were associated with oxidized groundwater samples from wells completed in bedrock materials. Selenium analysis of geologic core samples indicates that total selenium

  10. Surface gamma-ray survey of the Barre West quadrangle, Washington and Orange Counties, Vermont

    Science.gov (United States)

    Walsh, Gregory J.; Satkoski, Aaron M.

    2005-01-01

    This study was designed to determine the levels of naturally occurring radioactivity in bedrock from surface measurements at outcrops during the course of 1:24,000-scale geologic mapping and to determine which rock types were potential sources of radionuclides. Elevated levels of total alpha particle radiation (gross alpha) occur in a public water system in Montpelier, Vermont. Measured gross alpha levels in the Murray Hill water system (Vermont Dept. of Environmental Conservation, unpub. data, 2005) have exceeded the maximum contaminant level of 15 picocuries per liter (pCi/l) set by the Environmental Protection Agency (EPA) (EPA, 2000). The Murray Hill system began treatment for radium in 1999. Although this treatment was successful, annual monitoring for gross alpha, radium, and uranium continues as required (Jon Kim, written communication, 2005). The water system utilizes a drilled bedrock well located in the Silurian-Devonian Waits River Formation. Kim (2002) summarized radioactivity data for Vermont, and aside from a statewide assessment of radon in public water systems (Manning and Ladue, 1986) and a single flight line from the National Uranium Resource Evaluation (NURE) (Texas Instruments, 1976) (fig. 1), no data are available to identify the potential sources of naturally occurring radioactivity in the local bedrock. Airborne gamma-ray surveys are typically used for large areas (Duval, 2001, 2002), and ground-based surveys are more commonly used for local site assessments. For example, ground-based surveys have been used for fault mapping (Iwata and others, 2001), soil mapping (Roberts and others, 2003), environmental assessments (Stromswold and Arthur, 1996), and mineral exploration (Jubeli and others, 1998). Duval (1980) summarized the methods and applications of gamma- ray spectrometry. In this study, we present the results from a ground-based gamma-ray survey of bedrock outcrops in the 7.5-minute Barre West quadrangle, Vermont. Other related and

  11. Geologic map of the Washington West 30’ × 60’ quadrangle, Maryland, Virginia, and Washington D.C.

    Science.gov (United States)

    Lyttle, Peter T.; Aleinikoff, John N.; Burton, William C.; Crider, E. Allen; Drake, Avery A.; Froelich, Albert J.; Horton, J. Wright; Kasselas, Gregorios; Mixon, Robert B.; McCartan, Lucy; Nelson, Arthur E.; Newell, Wayne L.; Pavlides, Louis; Powars, David S.; Southworth, C. Scott; Weems, Robert E.

    2018-01-02

    The Washington West 30’ × 60’ quadrangle covers an area of approximately 4,884 square kilometers (1,343 square miles) in and west of the Washington, D.C., metropolitan area. The eastern part of the area is highly urbanized, and more rural areas to the west are rapidly being developed. The area lies entirely within the Chesapeake Bay drainage basin and mostly within the Potomac River watershed. It contains part of the Nation's main north-south transportation corridor east of the Blue Ridge Mountains, consisting of Interstate Highway 95, U.S. Highway 1, and railroads, as well as parts of the Capital Beltway and Interstate Highway 66. Extensive Federal land holdings in addition to those in Washington, D.C., include the Marine Corps Development and Education Command at Quantico, Fort Belvoir, Vint Hill Farms Station, the Naval Ordnance Station at Indian Head, the Chesapeake and Ohio Canal National Historic Park, Great Falls Park, and Manassas National Battlefield Park. The quadrangle contains most of Washington, D.C.; part or all of Arlington, Culpeper, Fairfax, Fauquier, Loudoun, Prince William, Rappahannock, and Stafford Counties in northern Virginia; and parts of Charles, Montgomery, and Prince Georges Counties in Maryland.The Washington West quadrangle spans four geologic provinces. From west to east these provinces are the Blue Ridge province, the early Mesozoic Culpeper basin, the Piedmont province, and the Coastal Plain province. There is some overlap in ages of rocks in the Blue Ridge and Piedmont provinces. The Blue Ridge province, which occupies the western part of the quadrangle, contains metamorphic and igneous rocks of Mesoproterozoic to Early Cambrian age. Mesoproterozoic (Grenville-age) rocks are mostly granitic gneisses, although older metaigneous rocks are found as xenoliths. Small areas of Neoproterozoic metasedimentary rocks nonconformably overlie Mesoproterozoic rocks. Neoproterozoic granitic rocks of the Robertson River Igneous Suite intruded

  12. Mineralogy of the Tertiary Clay Deposits in Makkah and Rabigh Quadrangles, West Central Arabian Shield, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    M.H. Basyoni

    2002-06-01

    Full Text Available The mineralogy of the Tertiary clay deposits in Makkah and Rabigh quadrangles was thoroughly investigated by X-ray diffraction and differential thermal and thermogravimetric analyses in addition to other techniques. Results show that the investigated samples are predominantly composed of montmorillonite (Ca++ and/or Mg++ rich variety and kaolinite, associated with subordinate illite and minor chlorite. Mixed layer montmorillonite-illite is recorded only in two samples. The relative abundance of these minerals by X-ray diffraction analysis showed that the studied clay deposits are of three types. The first, which is the most common, is highly montmorillonitic, the second is made up of a mixture of montmorillonite followed by kaolinite and illite and the third is highly kaolinitic with some montmorillonite. Generally, kaolinite shows a southward increase in Makkah quadrangle while chlorite, as a minor component, shows a northward increase in Rabigh quadrangle.

  13. Surficial geologic map of the Heath-Northfield-Southwick-Hampden 24-quadrangle area in the Connecticut Valley region, west-central Massachusetts

    Science.gov (United States)

    Stone, Janet R.; DiGiacomo-Cohen, Mary L.

    2010-01-01

    The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (1,238 mi2 total) in west-central Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text, quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  14. Geologic map of the west half of the Blythe 30' by 60' quadrangle, Riverside County, California and La Paz County, Arizona

    Science.gov (United States)

    Stone, Paul

    2006-01-01

    The Blythe 30' by 60' quadrangle is located along the Colorado River between southeastern California and western Arizona. This map depicts the geology of the west half of the Blythe quadrangle, which is mostly in California. The map area is a desert terrain consisting of mountain ranges surrounded by extensive alluvial fans and plains, including the flood plain of the Colorado River which covers the easternmost part of the area. Mountainous parts of the area, including the Big Maria, Little Maria, Riverside, McCoy, and Mule Mountains, consist of structurally complex rocks that range in age from Proterozoic to Miocene. Proterozoic gneiss and granite are overlain by Paleozoic to Early Jurassic metasedimentary rocks (mostly marble, quartzite, and schist) that are lithostratigraphically similar to coeval formations of the Colorado Plateau region to the east. The Paleozoic to Jurassic strata were deposited on the tectonically stable North American craton. These rocks are overlain by metamorphosed Jurassic volcanic rocks and are intruded by Jurassic plutonic rocks that represent part of a regionally extensive, northwest-trending magmatic arc. The overlying McCoy Mountains Formation, a very thick sequence of weakly metamorphosed sandstone and conglomerate of Jurassic(?) and Cretaceous age, accumulated in a rapidly subsiding depositional basin south of an east-trending belt of deformation and east of the north-trending Cretaceous Cordilleran magmatic arc. The McCoy Mountains Formation and older rocks were deformed, metamorphosed, and locally intruded by plutonic rocks in the Late Cretaceous. In Oligocene(?) to Miocene time, sedimentary and minor volcanic deposits accumulated locally, and the area was deformed by faulting. Tertiary rocks and their Proterozoic basement in the Riverside and northeastern Big Maria Mountains are in the upper plate of a low-angle normal (detachment) fault that lies within a region of major Early to Middle Miocene crustal extension. Surficial

  15. Geology of the Huntsville quadrangle, Alabama

    Science.gov (United States)

    Sanford, T.H.; Malmberg, G.T.; West, L.R.

    1961-01-01

    The 7 1/2-minute Huntsville quadrangle is in south-central Madison County, Ala., and includes part of the city of Hunstville. The south, north, east, and west boundaries of the quadrangle are about 3 miles north of the Tennessee River, 15 1/2 miles south of the Tennessee line, 8 miles west of the Jackson County line, and 9 miles east of the Limestone County line. The bedrock geology of the Huntsville quadrangle was mapped by the U.S. Geological Survey in cooperation with the city of Hunstville and the Geological Survey of Alabama as part of a detailed study of the geology and ground-water resources of Madison County, with special reference to the Huntsville area. G. T. Malmberg began the geologic mapping of the county in July 1953, and completed it in April 1954. T. H. Sanford, Jr., assisted Malmberg in the final phases of the county mapping, which included measuring geologic sections with hand level and steel tape. In November 1958 Sanford, assisted by L. R. West, checked contacts and elevations in the Hunstville quadrangle; made revisions in the contact lines; and wrote the text for this report. The fieldwork for this report was completed in April 1959.

  16. Denver radium site's - Case history

    International Nuclear Information System (INIS)

    Topolski, T.T.

    1985-01-01

    In developing this case history of the Denver radium sites, an attempt is made to establish the Colorado carnotite connection from the point of discovery to early development and its eventual role in the inception of the National Radium Institute and Denver's radium legacy. Early exploitive mining activities and the exportation of the highest grades of uranium ore to Europe greatly disturbed key officials at the U.S. Bureau of Mines. With its proximity to known carnotite deposits and industrial capacity, Denver's destiny as one of America's early radium production centers became a reality by 1914. With African pitchblend discoveries, Belgium competition spelled the beginning of the end of Denver's romance with radium by 1920. The sites where Denver made or used its radium were lost in obscurity for 60 years and rediscovered in 1979. Thirty one sites and a characterization of their radioactive impact are now a part of the Superfund National Priorities listing for eventual cleanup

  17. 78 FR 45962 - Notice of Inventory Completion: University of Denver Museum of Anthropology, Denver, CO

    Science.gov (United States)

    2013-07-30

    ....R50000] Notice of Inventory Completion: University of Denver Museum of Anthropology, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The University of Denver Museum of Anthropology... funerary objects should submit a written request to the University of Denver Museum of Anthropology. If no...

  18. Geologic map of the Lada Terra quadrangle (V-56), Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W.

    2013-01-01

    This publication provides a geological map of Lada Terra quadrangle (V–56), a portion of the southern hemisphere of Venus that extends from lat 50° S. to 70° S. and from long 0° E. to 60° E. V–56 is bordered by Kaiwan Fluctus (V–44) and Agnesi (V–45) quadrangles in the north and by Mylitta Fluctus (V–61), Fredegonde (V–57), and Hurston (V–62) quadrangles in the west, east, and south, respectively. The geological map of V–56 quadrangle reveals evidence for tectonic, volcanic, and impact processes in Lada Terra in the form of tesserae, regional extensional belts, coronae, and volcanic plains. In addition, the map also shows relative age relations such as overlapping or cross-cutting relations between the mapped geologic units. The geology observed within this quadrangle addresses (1) how coronae evolved in association with regional extensional belts and (2) how tesserae, regional plains, and impact craters, which are also significant geological units observed in Lada Terra quadrangle, were formed.

  19. National uranium resource evaluation, Montrose Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Goodknight, C.S.; Ludlam, J.R.

    1981-06-01

    The Montrose Quadrangle in west-central Colorado was evaluated to identify and delineate areas favorable for the occurrence of uranium deposits according to National Uranium Resource Evaluation program criteria. General surface reconnaissance and geochemical sampling were conducted in all geologic environments in the quadrangle. Preliminary data from aerial radiometric and hydrogeochemical and stream-sediment reconnaissance were analyzed and brief followup studies were performed. Twelve favorable areas were delineated in the quadrangle. Five favorable areas contain environments for magmatic-hydrothermal uranium deposits along fault zones in the Colorado mineral belt. Five areas in parts of the Harding and Entrada Sandstones and Wasatch and Ohio Creek Formations are favorable environments for sandstone-type uranium deposits. The area of late-stage rhyolite bodies related to the Lake City caldera is a favorable environment for hydroauthigenic uranium deposits. One small area is favorable for uranium deposits of uncertain genesis. All near-surface Phanerozoic sedimentary rocks are unfavorable for uranium deposits, except parts of four formations. All near-surface plutonic igneous rocks are unfavorable for uranium deposits, except five areas of vein-type deposits along Tertiary fault zones. All near-surface volcanic rocks, except one area of rhyolite bodies and several unevaluated areas, are unfavorable for uranium. All near-surface Precambrian metamorphic rocks are unfavorable for uranium deposits. Parts of two wilderness areas, two primitive areas, and most of the subsurface environment are unevaluated

  20. 78 FR 45961 - Notice of Inventory Completion: University of Denver Museum of Anthropology, Denver, CO

    Science.gov (United States)

    2013-07-30

    ....R50000] Notice of Inventory Completion: University of Denver Museum of Anthropology, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The University of Denver Museum of Anthropology... Anthropology. If no additional requestors come forward, transfer of control of the human remains to the Indian...

  1. 78 FR 72710 - Notice of Intent To Repatriate Cultural Items: Denver Art Museum, Denver, CO

    Science.gov (United States)

    2013-12-03

    ....R50000] Notice of Intent To Repatriate Cultural Items: Denver Art Museum, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Denver Art Museum, in consultation with the appropriate Indian tribes or Native Hawaiian organizations, has determined that the cultural items listed in...

  2. 76 FR 58032 - Notice of Intent To Repatriate a Cultural Item: Denver Museum of Nature and Science, Denver, CO

    Science.gov (United States)

    2011-09-19

    ... Denver Museum of Nature & Science, Denver, CO, that meets the definition of an object of cultural... Cultural Item: Denver Museum of Nature and Science, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Denver Museum of Nature & Science, in consultation with the appropriate...

  3. Geologic map of the Agnesi quadrangle (V-45), Venus

    Science.gov (United States)

    Hansen, Vicki L.; Tharalson, Erik R.

    2014-01-01

    The Agnesi quadrangle (V–45), named for centrally located Agnesi crater, encompasses approximately 6,500,000 km2 extending from lat 25° to 50° S. and from long 30° to 60° E. The V–45 quadrangle lies within Venus’ lowland broadly between highlands Ovda Regio to the northeast and Alpha Regio to the west. The region ranges in altitude from 6,051 to 6,054 km, with an average of ~6,052 km, which is essentially mean planetary radius. The quadrangle displays a wide range of features including large to small arcuate exposures of ribbon-tessera terrain (Hansen and Willis, 1998), ten lowland coronae, two montes, 13 pristine impact craters, and long but localized volcanic flows sourced to the west in V–44. Shield terrain (Hansen, 2005) occurs across much of the V–45 quadrangle. Although V–45 lies topographically within the lowland, it includes only one planitia (Fonueha Planitia), perhaps because the features mentioned decorate it.

  4. Astronomy in Denver: Centenary of the 1918 total solar eclipse across Denver

    Science.gov (United States)

    Stencel, Robert E.

    2018-06-01

    Totality during the 2017 August 21 solar eclipse (Saros 145) traveled along a path across the United States similar to that which occurred for the eclipse on 1918 June 8 (Saros 126), but with a less west-northerly track. This placed Denver and its then new Chamberlin Observatory in the path of totality. Denver University astronomy Professor Herbert Howe offered use of the Chamberlin Observatory 20-inch f/15 refractor, with its Clark doublet lens and Saegmueller mounting, in service of eclipse-related research. In preparation for the eclipse, Professor Howe and assistants had spent the last three months of 1917, refurbishing mechanical aspects of the telescope. Edwin Frost, then Director of Yerkes Observatory expressed interest and made a reconnaissance visit to the area in September 1917, reporting results in the Feb. 1918 issue of Popular Astronomy ( http://adsabs.harvard.edu/abs/1918PA.....26R.103F ). Frank Schlesinger, then director of Allegheny Observatory, asked if he might attach a special camera for star photography to the telescope at the eclipse, to test displacement of stars, in order to test a prediction of relativity theory. Among the additional visiting astronomical luminaries present on that June day in 1918 were Annie J. Cannon (Harvard), John Duncan (Wellesley), Herbert R. Morgan (U.S. Naval Observatory) and Robert Trumpler (Berkeley). To learn the results of all this eclipse preparedness, you will need to attend my talk in order to get “the rest of the story” or visit our twitter feed at: https://twitter.com/Chamberlin_Obs .

  5. Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2010-01-01

    The Fredegonde quadrangle (V-57; 50-75degS, 60-120degE, Fig. 1) corresponds to the northeastern edge of Lada Terra and covers a broad area of the topographic province of midlands (0-2 km above MPR [1,2]). This province is most abundant on Venus and displays a wide variety of units and structures [3-11]. The sequence of events that formed the characteristic features of the midlands is crucially important in understanding of the timing and modes of evolution of this topographic province. Topographically, the Fredegonde quadrangle is within a transition zone between the elevated portion of Lada Terra to the west (Quetzalpetlatl-Boala Coronae rise, approx.3.5 km) and the lowland of Aino Planitia to the north and northeast (approx.-0.5 km). This transition is one of the key features of the V-57 quadrangle. In this respect the quadrangle resembles the region of V-4 quadrangle [12] that shows transition between the midlands and the lowlands of Atalanta Planitia. One of the main goals of our mapping within the V-57 quadrangle is comparison of this region with the other transitional topographic zones such as quadrangles V-4 and V-3 [13]. The most prominent features in the V-57 quadrangle are linear deformational zones of grooves and large coronae. The zones characterize the central and NW portions of the map area and represent broad (up to 100s of km wide) ridges that are 100s of m high. Morphologically and topographically, these zones are almost identical to the groove belt/corona complexes at the western edge of Atalanta Planitia [12]. Within the Fredegonde area, however, the zones are oriented at high angles to the general trend of elongated Aino Planitia, whereas within the V-4 quadrangle they are parallel to the edge of Atalanta Planitia. Relatively small (100s of km across, 100s of m deep) equidimensional basins occur between the corona-groove-chains in the area of V-57 quadrangle. These basins are similar to those that populate the area of the V-3 quadrangle [13

  6. Geological mapping of the Kuiper quadrangle (H06) of Mercury

    Science.gov (United States)

    Giacomini, Lorenza; Massironi, Matteo; Galluzzi, Valentina

    2017-04-01

    Kuiper quadrangle (H06) is located at the equatorial zone of Mercury and encompasses the area between longitudes 288°E - 360°E and latitudes 22.5°N - 22.5°S. The quadrangle was previously mapped for its most part by De Hon et al. (1981) that, using Mariner10 data, produced a final 1:5M scale map of the area. In this work we present the preliminary results of a more detailed geological map (1:3M scale) of the Kuiper quadrangle that we compiled using the higher resolution of MESSENGER data. The main basemap used for the mapping is the MDIS (Mercury Dual Imaging System) 166 m/pixel BDR (map-projected Basemap reduced Data Record) mosaic. Additional datasets were also taken into account, such as DLR stereo-DEM of the region (Preusker et al., 2016), global mosaics with high-incidence illumination from the east and west (Chabot et al., 2016) and MDIS global color mosaic (Denevi et al., 2016). The preliminary geological map shows that the western part of the quadrangle is characterized by a prevalence of crater materials (i.e. crater floor, crater ejecta) which were distinguished into three classes on the basis of their degradation degree (Galluzzi et al., 2016). Different plain units were also identified and classified as: (i) intercrater plains, represented by densely cratered terrains, (ii) intermediate plains, which are terrains with a moderate density of superposed craters, and (iii) smooth plains, which are poorly cratered volcanic deposits emplaced mainly on the larger crater floors. Finally, several structures were mapped all over the quadrangle. Most of these features are represented by thrusts, some of which appear to form systematic alignments. In particular, two main thrust systems have been identified: i) the "Thakur" system, a 1500 km-long system including several scarps with a NNE-SSW orientation, located at the edge between the Kuiper and Beethoven (H07) quadrangles; ii) the "Santa Maria" system, located at the centre of the quadrangle. It is a 1700 km

  7. Uranium deposits: northern Denver Julesburg basin, Colorado

    International Nuclear Information System (INIS)

    Reade, H.L.

    1978-01-01

    The Fox Hills Sandstone and the Laramie Formation (Upper Cretaceous) are the host rocks for uranium deposits in Weld County, northern Denver Julesburg basin, Colorado. The uranium deposits discovered in the Grover and Sand Creek areas occur in well-defined north--south trending channel sandstones of the Laramie Formation whereas the sandstone channel in the upper part of the Fox Hills Sandstone trends east--west. Mineralization was localized where the lithology was favorable for uranium accumulation. Exploration was guided by log interpretation methods similar to those proposed by Bruce Rubin for the Powder River basin, Wyoming, because alteration could not be readily identified in drilling samples. The uranium host rocks consist of medium- to fine-grained carbonaceous, feldspathic fluvial channel sandstones. The uranium deposits consist of simple to stacked roll fronts. Reserve estimates for the deposits are: (1) Grover 1,007,000 lbs with an average grade of 0.14 percent eU 3 O 8 ,2) Sand Creek 154,000 lbs with an average grade of 0.08 percent eU 3 O 8 , and 3) The Pawnee deposit 1,060,000 lbs with an average grade of 0.07 percent eU 3 O 8 . The configuration of the geochemical cells in the Grover and Sand Creek sandstones indicate that uraniferous fluids moved northward whereas in the Pawnee sandstone of the Fox Hills uraniferous fluids moved southward. Precipitation of uranium in the frontal zone probably was caused by downdip migration of oxygcnated groundwater high in uranium content moving through a favorable highly carbonaceous and pyritic host sandstone

  8. Cleaning up the Streets of Denver

    International Nuclear Information System (INIS)

    Stegen, R.L.; Wood, T.R.; Hackett, J.R.; Sogue, A.

    2006-01-01

    Between 1913 and 1924, several Denver area facilities extracted radium from carnotite ore mined from the Paradox basin region of Colorado. Tailings or abandoned ores from these facilities were apparently incorporated into asphalt used to pave approximately 7.2 kilometers (4.5 miles) of streets in Denver. A majority of the streets are located in residential areas. The radionuclides are bound within the asphalt matrix and pose minimal risk unless they are disturbed. The City and County of Denver (CCoD) is responsible for controlling repairs and maintenance on these impacted streets. Since 2002, the CCoD has embarked on a significant capital improvement project to remove the impacted asphalt for secure disposal followed by street reconstruction. To date, Parsons has removed approximately 55 percent of the impacted asphalt. This paper discusses the history of the Denver Radium Streets and summarizes on-going project efforts. (authors)

  9. Bouguer gravity anomaly and isostatic residual gravity maps of the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    Science.gov (United States)

    Plouff, Donald

    1992-01-01

    These gravity maps are part of a folio of maps of the Tonopah 1 degree by 2 degrees quadrangle, Nevada, prepared under the Conterminous United States Mineral Assessment Program. Each product of the folio is designated by a different letter symbol, starting with A, in the MF-1877 folio. The quadrangle encompasses an area of about 19,500 km2  in the west central part of Nevada.

  10. 75 FR 23807 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. Notice is here given in accordance with the Native American Graves Protection and Repatriation Act (NAGPRA), 25 U.S.C. 3003, of the completion of an inventory of...

  11. 75 FR 55823 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO; Correction

    Science.gov (United States)

    2010-09-14

    ... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO; Correction AGENCY: National Park Service, Interior. ACTION: Notice; correction. Notice is here given in accordance with the Native American Graves Protection and Repatriation Act (NAGPRA), 25 U.S.C. 3003, of the...

  12. 75 FR 5627 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Science.gov (United States)

    2010-02-03

    ... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. Notice is here given in accordance with the Native American Graves Protection and Repatriation Act (NAGPRA), 25 U.S.C. 3003, of the completion of an inventory of...

  13. 75 FR 42770 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Science.gov (United States)

    2010-07-22

    ... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. Notice is here given in accordance with the Native American Graves Protection and Repatriation Act (NAGPRA), 25 U.S.C. 3003, of the completion of an inventory of...

  14. 75 FR 70027 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Science.gov (United States)

    2010-11-16

    ... DEPARTMENT OF THE INTERIOR National Park Service [2253-665] Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. Notice is here given in accordance with the Native American Graves Protection and Repatriation Act (NAGPRA), 25 U.S.C. 3003, of the completion of an...

  15. Geologic Map of the Greenaway Quadrangle (V-24), Venus

    Science.gov (United States)

    Lang, Nicholas P.; Hansen, Vicki L.

    2010-01-01

    The Greenaway quadrangle (V-24; lat 0 degrees -25 degrees N., long 120 degrees -150 degrees E.), Venus, derives its name from the impact crater Greenaway, centered at lat 22.9 degrees N., long 145.1 degrees E., in the northeastern part of the quadrangle. Greenaway was a well-noted writer and illustrator of children`s books in Britain during the nineteenth century. In Greenaway`s honor, the Library Association of Great Britain presents the annual Kate Greenaway Medal to an illustrator living and publishing in Britain who has produced the most distinguished children`s book illustrations for that year. The Greenaway quadrangle occupies an 8,400,000 km2 equatorial swath of lowlands and highlands. The map area is bounded by the crustal plateau, Thetis Regio, to the south and Gegute Tessera to the west. The rest of the quadrangle consists of part of Llorona Planitia, which is part of the vast lowlands that cover about 80 percent of Venus` surface. The southern map area marks the north edge of Aphrodite Terra, including Thetis Regio, that includes the highest topography in the quadrangle with elevations reaching >1 km above the Mean Planetary Radius (MPR; 6,051.84 km). Northern Aphrodite Terra abruptly slopes north to Llorona Planitia. A broad northeast-trending topographic arch pocked with coronae separates two northeast-trending elongate basins, Llorona Planitia on the east, that form depositional centers for shield and coronae-sourced materials; both basins drop to elevations of history for this region, which in turn provides insights into volcanic and tectonic processes that shaped the Venusian surface. Map relations illustrate that aerially expansive shield terrain (unit st) played a primary role and coronae played a secondary role in volcanic resurfacing across the map area.

  16. National Uranium Resource Evaluation, Tonopah quadrangle, Nevada

    International Nuclear Information System (INIS)

    Hurley, B.W.; Parker, D.P.

    1982-04-01

    The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas

  17. Geologic map of the Lower Valley quadrangle, Caribou County, Idaho

    Science.gov (United States)

    Oberlindacher, H. Peter; Hovland, R. David; Miller, Susan T.; Evans, James G.; Miller, Robert J.

    2018-04-05

    The Lower Valley 7.5-minute quadrangle, located in the core of the Southeast Idaho Phosphate Resource Area, includes Mississippian to Triassic marine sedimentary rocks, Pliocene to Pleistocene basalt, and Tertiary to Holocene surficial deposits. The Mississippian to Triassic marine sedimentary sequence was deposited on a shallow shelf between an emergent craton to the east and the Antler orogenic belt to the west. The Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation hosts high-grade deposits of phosphate that were the subject of geologic studies through much of the 20th century. Open-pit mining of the phosphate has been underway within and near the Lower Valley quadrangle for several decades.

  18. Geologic Map of the Weaverville 15' Quadrangle, Trinity County, California

    Science.gov (United States)

    Irwin, William P.

    2009-01-01

    The Weaverville 15' quadrangle spans parts of five generally north-northwest-trending accreted terranes. From east to west, these are the Eastern Klamath, Central Metamorphic, North Fork, Eastern Hayfork, and Western Hayfork terranes. The Eastern Klamath terrane was thrust westward over the Central Metamorphic terrane during early Paleozoic (Devonian?) time and, in Early Cretaceous time (approx. 136 Ma), was intruded along its length by the massive Shasta Bally batholith. Remnants of overlap assemblages of the Early Cretaceous (Hauterivian) Great Valley sequence and the Tertiary Weaverville Formation cover nearly 10 percent of the quadrangle. The base of the Eastern Klamath terrane in the Weaverville quadrangle is a peridotite-gabbro complex that probably is correlative to the Trinity ophiolite (Ordovician), which is widely exposed farther north beyond the quadrangle. In the northeast part of the Weaverville quadrangle, the peridotite-gabbro complex is overlain by the Devonian Copley Greenstone and the Mississippian Bragdon Formation. Where these formations were intruded by the Shasta Bally batholith, they formed an aureole of gneissic and other metamorphic rocks around the batholith. Westward thrusting of the Eastern Klamath terrane over an adjacent body of mafic volcanic and overlying quartzose sedimentary rocks during Devonian time formed the Salmon Hornblende Schist and the Abrams Mica Schist of the Central Metamorphic terrane. Substantial beds of limestone in the quartzose sedimentary unit, generally found near the underlying volcanic rock, are too metamorphosed for fossils to have survived. Rb-Sr analysis of the Abrams Mica Schist indicates a metamorphic age of approx. 380 Ma. West of Weavervillle, the Oregon Mountain outlier of the Eastern Klamath terrane consists mainly of Bragdon Formation(?) and is largely separated from the underlying Central Metamorphic terrane by serpentinized peridotite that may be a remnant of the Trinity ophiolite. The North Fork

  19. National uranium resource evaluation: Clifton Quadrangle, Arizona and New Mexico

    International Nuclear Information System (INIS)

    White, D.L.; Foster, M.

    1982-05-01

    The Clifton Quadrangle, Arizona and New Mexico, was evaluated to identify environments and delineate areas favorable for uranium deposits. The evaluation used criteria formulated for the National Uranium Resource Evaluation program. Evidence for the evaluation was based on surface studies, hydrogeochemical and stream-sediment reconnaissance, and aerial radiometric surveys. The quadrangle encompasses parts of three physiographic provinces: the Colorado Plateau, the transition zone, and the Basin and Range. The one environment determined, during the present study, to be favorable for uranium deposits is the Whitewater Creek member of the Cooney tuff, which is favorable for magmatic-hydrothermal uranium deposits on the west side of the Bursum caldera. No other areas were favorable for uranium deposits in sandstone, limestone, volcanogenic, igneous, or metamorphic environments. The subsurface is unevaluated because of lack of information, as are areas where access is a constraint

  20. Geologic map of the Leadville North 7.5’ quadrangle, Eagle and Lake Counties, Colorado

    Science.gov (United States)

    Ruleman, Chester A.; Brandt, Theodore R.; Caffee, Marc W.; Goehring, Brent M.

    2018-04-24

    The Leadville North 7.5’ quadrangle lies at the northern end of the Upper Arkansas Valley, where the Continental Divide at Tennessee Pass creates a low drainage divide between the Colorado and Arkansas River watersheds. In the eastern half of the quadrangle, the Paleozoic sedimentary section dips generally 20–30 degrees east. At Tennessee Pass and Missouri Hill, the core of the Sawatch anticlinorium is mapped as displaying a tight hanging-wall syncline and foot-wall anticline within the basement-cored structure. High-angle, west-dipping, Neogene normal faults cut the eastern margin of the broad, Sawatch anticlinorium. Minor displacements along high-angle, east- and west-dipping Laramide reverse faults occurred in the core of the north-plunging anticlinorium along the western and eastern flanks of Missouri Hill. Within the western half of the quadrangle, Meso- and Paleoproterozoic metamorphic and igneous rocks are uplifted along the generally east-dipping, high-angle Sawatch fault system and are overlain by at least three generations of glacial deposits in the western part of the quadrangle. 10Be and 26Al cosmogenic nuclide ages of the youngest glacial deposits indicate a last glacial maximum age of about 21–22 kilo-annum and complete deglaciation by about 14 kilo-annum, supported by chronologic studies in adjacent drainages. No late Pleistocene tectonic activity is apparent within the quadrangle.

  1. Geologic map of the Stephens City quadrangle, Clark, Frederick, and Warren Counties, Virginia

    Science.gov (United States)

    Weary, D.J.; Orndorff, R.C.; Aleman-Gonzalez, W.

    2006-01-01

    The Stephens City 1:24,000-scale quadrangle is one of several quadrangles in Frederick County, Virginia being mapped by geologists from the U.S. Geological Survey in Reston, VA with funding from the National Cooperative Geologic Mapping Program. This work is part of a project being lead by the U.S. Geological Survey Water Resources Discipline, Virginia District, to investigate the geologic framework and groundwater resources of Frederick County as well as other areas in the northern Shenandoah Valley of Virginia and West Virginia.

  2. 76 FR 9599 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Science.gov (United States)

    2011-02-18

    ... representing a minimum of one individual from Kohlberg's Antiques and Indian Arts, in Denver, CO. In 1972, the... Kohlberg's Antiques and Indian Arts. The remains were reportedly a part of the George A. Cuneo Collection...

  3. Early Start DENVER Model: A Meta - analysis

    Directory of Open Access Journals (Sweden)

    Jane P. Canoy

    2015-11-01

    Full Text Available Each child with Autism Spectrum Disorder has different symptoms, skills and types of impairment or disorder with other children. This is why the word “spectrum” is included in this disorder. Eapen, Crncec, and Walter, 2013 claimed that there was an emerging evidence that early interventions gives the greatest capacity of child’s development during their first years of life as “brain plasticity” are high during this period. With this, the only intervention program model for children as young as 18 months that has been validated in a randomized clinical trial is “Early Start Denver Model” (ESDM. This study aimed to determine the effectiveness of the outcome of “Early Start Denver Model” (ESDM towards young children with Autism Spectrum Disorders. This study made use of meta-analysis method. In this study, the researcher utilized studies related to “Early Start Denver Model (ESDM” which is published in a refereed journal which are all available online. There were five studies included which totals 149 children exposed to ESDM. To examine the “pooled effects” of ESDM in a variety of outcomes, a meta-analytic procedure was performed after the extraction of data of the concrete outcomes. Comprehensive Meta Analysis Version 3.3.070 was used to analyze the data.  The effectiveness of the outcome of “Early Start Denver Model” towards young children with Autism Spectrum Disorders (ASD highly depends on the intensity of intervention and the younger child age. This study would provide the basis in effectively implementing an early intervention to children with autism such as the “Early Start Denver Model” (ESDM that would show great outcome effects to those children that has “Autism Spectrum Disorder”.

  4. Reconnaissance geologic map of the Hyampom 15' quadrangle, Trinity County, California

    Science.gov (United States)

    Irwin, William P.

    2010-01-01

    The Hyampom 15' quadrangle lies west of the Hayfork 15' quadrangle in the southern part of the Klamath Mountains geologic province of northern California. It spans parts of four generally northwest-trending tectono- stratigraphic terranes of the Klamath Mountains, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, a small part of the Pickett Peak terrane of the Coast Range province. Remnants of the Cretaceous Great Valley overlap sequence that once covered much of the pre-Cretaceous bedrock of the quadrangle are now found only as a few small patches in the northeast corner of the quadrangle. Fluvial and lacustrine deposits of the mid-Tertiary Weaverville Formation crop out in the vicinity of the village of Hyampom. The Eastern Hayfork terrane is a broken formation and m-lange of volcanic and sedimentary rocks that include blocks of chert and limestone. The chert has not been sampled; however, chert from the same terrane in the Hayfork quadrangle contains radiolarians of Permian and Triassic ages, but none clearly of Jurassic age. Limestone at two localities contains late Paleozoic foraminifers. Some of the limestone from the Eastern Klamath terrane in the Hayfork quadrangle contains faunas of Tethyan affinity. The Western Hayfork terrane is part of an andesitic volcanic arc that was accreted to the western edge of the Eastern Hayfork terrane. It consists mainly of metavolcaniclastic andesitic agglomerate and tuff, as well as argillite and chert, and it includes the dioritic Ironside Mountain batholith that intruded during Middle Jurassic time (about 170 Ma). This intrusive body provides the principal constraint on the age of the terrane. The Rattlesnake Creek terrane is a melange consisting mostly of highly dismembered ophiolite. It includes slabs of serpentinized ultramafic rock, basaltic volcanic rocks, radiolarian chert of Triassic and Jurassic ages, limestone containing

  5. Geologic Map of the Diana Chasma Quadrangle (V-37), Venus

    Science.gov (United States)

    Hansen, V.L.; DeShon, H.R.

    2002-01-01

    Introduction The Diana Chasma quadrangle (V-37), an equatorial region between 0° to 25° S. and 150° to 180° E. that encompasses ~8,400,000 km2, is broadly divided into southern Rusalka Planitia in the north, eastern Aphrodite Terra in the central region, and unnamed regions to the south. Geologic mapping constrains the temporal and spatial relations of the major features, which include a tessera inlier, Markham crater, six large coronae (300-675 km diameter), four smaller coronae (150-225 km diameter), Diana and Dali chasmata, a large fracture zone, and southern Rusalka Planitia. Eastern Aphrodite Terra, marked here by large coronae, deep chasmata, and an extensive northeast-trending fracture zone, extends from Atla Regio to Thetis Regio. The large coronae are part of a chain of such features that includes Inari Corona to the west-southwest and Zemina Corona to the northeast. V-37 quadrangle is bounded on the north by Rusalka Planitia and on the south by Zhibek Planitia. International Astronomical Union (IAU) approved and provisional nomenclature and positions for geographic features within Diana Chasma quadrangle are shown on the geologic map. [Note: Atahensik Corona was referred to as Latona Corona in much previously published literature.

  6. Geological Map of the Fredegonde (V-57) Quadrangle, Venus

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The area of V-57, the Fredegonde quadrangle (50-75degS, 60-120degE, Fig.1), is located within the eastern portion of Lada Terra within the topographic province of midlands (0-2 km above MPR [1,2]). Midlands form the most abundant portion of the surface of Venus and are characterized by diverse sets of units and structures [3-11]. The area of the Fredegonde quadrangle is in contact with the elevated portion of Lada Terra to the W and with the lowland of Aino Planitia to the NE. The transitions of the mid-lands to the lowlands and highlands are, thus, one of the main themes of the geology within the V-57 quadrangle. The character of the transitions and distribution and sequence of units/structures in the midlands are crucially important in understanding the time and modes of formation of this topographic province. The most prominent features in the map area are linear deformational zones consisting of swarms of grooves and graben and large coronae. The zones characterize the central and NW portions of the map area and represent regionally important, broad (up to 100s km wide) ridges that are 100s m high. Relatively small (100s km across, 100s m deep) equidimensional basins occur between the corona-groove-chains in the west and border the central chain from the east. Here we describe units that make up the surface within the V-57 quadrangle and present a summary of our geological map that shows the areal distribution of the major groups of units.

  7. Reconnaissance geologic map of the Dubakella Mountain 15 quadrangle, Trinity, Shasta, and Tehama Counties, California

    Science.gov (United States)

    Irwin, William P.; Yule, J. Douglas; Court, Bradford L.; Snoke, Arthur W.; Stern, Laura A.; Copeland, William B.

    2011-01-01

    The Dubakella Mountain 15' quadrangle is located just south of the Hayfork quadrangle and just east of the Pickett Peak quadrangle. It spans a sequence of four northwest-trending tectonostratigraphic terranes of the Klamath Mountains geologic province that includes, from east to west, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, part of a fifth terrane, the Pickett Peak terrane of the Coast Ranges geologic province. The Eastern Hayfork terrane is a broken formation and melange of volcanic and sedimentary rocks that include blocks of limestone and chert. The limestone contains late Permian microfossils of Tethyan faunal affinity. The chert contains radiolarians of Mesozoic age, mostly Triassic, but none clearly Jurassic. The Western Hayfork terrane is an andesitic volcanic arc that consists mainly of agglomerate, tuff, argillite, and chert, and includes the Wildwood pluton. That pluton is related to the Middle Jurassic (about 170 Ma) Ironside Mountain batholith that is widely exposed farther north beyond the Dubakella Mountain quadrangle. The Rattlesnake Creek terrane is a highly disrupted ophiolitic melange of probable Late Triassic or Early Jurassic age. Although mainly ophiolitic, the melange includes blocks of plutonic rocks (about 200 Ma) of uncertain genetic relation. Some scattered areas of well-bedded mildly slaty detrital rocks of the melange appear similar to Galice Formation (unit Jg) and may be inliers of the nearby Western Jurassic terrane. The Western Jurassic terrane consists mainly of slaty to phyllitic argillite, graywacke, and stretched-pebble conglomerate and is correlative with the Late Jurassic Galice Formation of southwestern Oregon. The Pickett Peak terrane, the most westerly of the succession of terranes of the Dubakella Mountain quadrangle, is mostly fine-grained schist that includes the blueschist facies mineral lawsonite and is of Early

  8. 77 FR 23504 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Science.gov (United States)

    2012-04-19

    ...The Denver Museum of Nature & Science has completed an inventory of human remains and associated funerary objects, in consultation with the appropriate Indian tribes, and has determined that there is a cultural affiliation between the human remains and associated funerary objects and present- day Indian tribes. Representatives of any Indian tribe that believes itself to be culturally affiliated with the human remains and associated funerary objects may contact the Denver Museum of Nature & Science. Repatriation of the human remains and associated funerary objects to the Indian tribes stated below may occur if no additional claimants come forward.

  9. Geology of the Cupsuptic quadrangle, Maine

    Science.gov (United States)

    Harwood, David S.

    1966-01-01

    The Cupsuptic quadrangle, in west-central Maine, lies in a relatively narrow belt of pre-Silurian rocks extending from the Connecticut River valley across northern New Hampshire to north-central Maine. The Albee Formation, composed of green, purple, and black phyllite with interbedded-quartzite, is exposed in the core of a regional anticlinorium overlain to the southeast by greenstone of the Oquossoc Formation which in turn is overlain by black slate of the Kamankeag Formation. In the northern part of the quadrangle the Albee Formation is overlain by black slate, feldspathic graywacke, and minor greenstone of the Dixville Formation. The Kamankeag Formation is dated as 1-ate Middle Ordovician by graptolites (zone 12) found near the base of the unit. The Dixville Formation is correlated with the Kamankeag Formation and Oquossoc Formation and is considered to be Middle Ordovician. The Albee Formation is considered to be Middle to Lower Ordovician from correlations with similar rocks in northeastern and southwestern Vermont. The Oquossoc and Kamankeag Formations are correlated with the Amonoosuc and Partridge Formations of northern New Hampshire. The pre-Silurian rocks are unconformably overlain by unnamed rocks of Silurian age in the southeast, west-central, and northwest ninths of the quadrangle. The basal Silurian units are boulder to cobble polymict conglomerate and quartz-pebble conglomerate of late Lower Silurian (Upper Llandovery) age. The overlying rocks are either well-bedded slate and quartzite, silty limestone, or arenaceous limestone. Thearenaceous limestone contains Upper Silurian (Lower Ludlow) brachiopods. The stratified rocks have been intruded by three stocks of biotite-muscovite quartz monzonite, a large body of metadiorite and associated serpentinite, smaller bodies of gabbro, granodiorite, and intrusive felsite, as well as numerous diabase and quartz monzonite dikes. The metadiorite and serpentinite, and possibly the gabbro and granodiorite are Late

  10. Geologic map of the Yacolt quadrangle, Clark County, Washington

    Science.gov (United States)

    Evarts, R.C.

    2006-01-01

    The Yacolt 7.5' quadrangle is situated in the foothills of the western Cascade Range of southwestern Washington approximately 35 km northeast of Portland, Oregon. Since late Eocene time, the Cascade Range has been the locus of an active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Volcanic and shallow-level intrusive rocks emplaced early in the history of the arc underlie most of the Yacolt quadrangle, forming a dissected and partly glaciated terrain with elevations between 250 and 2180 ft (75 and 665 m). The bedrock surface slopes irregularly but steeply to the southwest, forming the eastern margin of the Portland Basin, and weakly consolidated Miocene and younger basin-fill sediments lap up against the bedrock terrain in the southern part of the map area. A deep canyon, carved by the East Fork Lewis River that flows westward out of the Cascade Range, separates Yacolt and Bells Mountains, the two highest points in the quadrangle. Just west of the quadrangle, the river departs from its narrow bedrock channel and enters a wide alluvial floodplain. Bedrock of the Yacolt quadrangle consists of near-horizontal strata of Oligocene volcanic and volcaniclastic rocks that comprise early products of the Cascade volcanic arc. Basalt and basaltic andesite flows predominate. Most were emplaced on the flanks of a large mafic shield volcano and are interfingered with crudely bedded sections of volcanic breccia of probable lahar origin and a variety of well bedded epiclastic sedimentary rocks. At Yacolt Mountain, the volcanogenic rocks are intruded by a body of Miocene quartz diorite that is compositionally distinct from any volcanic rocks in the map area. The town of Yacolt sits in a north-northwest-trending valley apparently formed within a major fault zone. Several times during the Pleistocene, mountain glaciers moved down the Lewis River valley and spread southward into the map area

  11. Hydrogeochemical and stream sediment reconnaissance basic data for Grand Island NTMS Quadrangle, Nebraska/Kansas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Grand Island Quadrangle, Nebraska/Kansas are reported. Statistical data and areal distributions for uranium and uranium-related variables are presented for 564 groundwater and 532 stream sediment samples. Also included is a brief discussion on location and geologic setting. Groundwater data indicate that uranium concentrations above the 85th percentile occur primarily in shallow wells (0 to 20 m) along or near the Platte and Republican Rivers, which flow west to east along the northern and southern portions of the quadrangle, respectively. Waters containing high concentration of uranium in the northern portion of the quadrangle occur in recent alluvium and nearby glacial deposits. In the southern portion of the quadrangle, waters containing high uranium concentrations occur in Recent alluvium and the Niobrara Chalk in the southeast. Stream sediment data indicate that uranium concentrations above the 85th percentile occur in sediments along the Platte River in the northern portion of the quadrangle and paralleling the Republican River in the southeastern portion. Sediments with high uranium values along the Platte River are derived from glacial and alluvial deposits. High uranium values paralleling the Republican River in the southeast are derived from the Niobrara Chalk, the Carlile Shale, and glacial and alluvial deposits. High U-NT and thorium values, and high values for cerium, niobium, scandium, titanium, vanadium, yttrium, and zirconium suggest the presence of clays and/or residual minerals in the southeast. Sediment derivation and the leaching of possible ash-rich loess and alluvial deposits and/or uranium-rich alkaline evaporite deposits could account for high uranium concentrations in sediment and groundwaters within the quadrangle

  12. Reconnaissance geology of the Jibal Matalli Quadrangle, sheet 27/40 D, Kingdom of Saudi Arabia

    Science.gov (United States)

    Ekren, E.B.

    1984-01-01

    The Jibal Matalli quadrangle lies along the northern boundary of the Arabian Shield about 90 km west-southwest of Ha'il. The quadrangle consists of about 45 percent Precambrian bedrock, 50 percent Quaternary deposits, and 5 percent sedimentary cover rocks. The Precambrian rocks include volcaniclastic and volcanic rocks that are slightly metamorphosed and various granitic plutons. The volcaniclastic and volcanic rocks are correlated with the Hulayfah group and the Hadn formation. The older Hulayfah is principally basalt of probably submarine origin that has locally been metamorphosed to greenschist facies. The Hadn is composed of submarine and subaerial deposits. These consist of volcanic-derived sandstone and siltstone and lesser amounts of chiefly rhyolite volcanic rocks. In most areas, the Hadn shows little in the way of metamorphic effects, but locally it too has been metamorphosed to greenschist facies. The volcanic rocks of the Hadn include ash-flow tuffs; some appear to be water-laid, but others are subaerial. The oldest pluton is diorite, those of intermediate age are monzogranite and syenogranite, and the youngest are alkali feldspar granites. The largest pluton, a metaluminous, low-calcium, biotite monzogranite, occupies much of the southern part of the quadrangle. The alkali feldspar granites are mostly peralkaline; the two youngest are particularly so. The latter two are located in the southwest and southeast corners of the quadrangle, and both contain arfvedsonite and kataphorite. The pluton in the southeast grades outward from a peraluminous core to a peralkaline, comenditic peripheral zone and is inferred to be genetically related to a spectacular, west-trending comendite dike swarm in the southern half of the quadrangle.

  13. Lower Paleozoic carbonate rocks of Baird Mountains Quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Dumoulin, J.A.; Harris, A.G.

    1985-04-01

    Lower Paleozoic carbonate rocks in the Baird Mountains quadrangle form a relatively thin (about 550 m), chiefly shallow-water succession that has been imbricately thrust and metamorphosed to lower greenschist facies. Middle and Upper Cambrian rocks - the first reported from the western Brooks Range - occur in the northeastern quarter of the quadrangle, south of Angayukaqsraq (formerly Hub) Mountain. They consist of marble grading upward into thin-bedded marble/dolostone couplets and contain pelagiellid mollusks, acetretid brachiopods, and agnostid trilobites. Sedimentologic features and the Pelagiellas indicate a shallow-water depositional environment. Overlying these rocks are Lower and Middle Ordovician marble and phyllite containing graptolites and conodonts of midshelf to basinal aspect. Upper Ordovician rocks in this area are bioturbated to laminated dolostone containing warm, shallow-water conodonts. In the Omar and Squirrel Rivers areas to the west, the Lower Ordovician carbonate rocks show striking differences in lithofacies, biofacies, and thickness. Here they are mainly dolostone with locally well-developed fenestral fabric and evaporite molds, and bioturbated to laminated orange- and gray-weathering dolomitic marble. Upper Silurian dolostone, found near Angayukaqsraq Mountain and on the central Squirrel River, contains locally abundant corals and stronmatoporoids. Devonian carbonate rocks are widely distributed in the Baird Mountains quadrangle; at least two distinct sequences have been identified. In the Omar area, Lower and Middle Devonian dolostone and marble are locally cherty and rich in megafossils. In the north-central (Nakolik River) area, Middle and Upper Devonian marble is interlayered with planar to cross-laminated quartz-carbonate metasandstone and phyllite.

  14. Geologic map of the Strawberry Butte 7.5’ quadrangle, Meagher County, Montana

    Science.gov (United States)

    Reynolds, Mitchell W.; Brandt, Theodore R.

    2017-06-19

    The 7.5′ Strawberry Butte quadrangle in Meagher County, Montana near the southwest margin of the Little Belt Mountains, encompasses two sharply different geologic terranes.  The northern three-quarters of the quadrangle are underlain mainly by Paleoproterozoic granite gneiss, across which Middle Cambrian sedimentary rocks rest unconformably.  An ancestral valley of probable late Eocene age, eroded northwest across the granite gneiss terrane, is filled with Oligocene basalt and overlying Miocene and Oligocene sandstone, siltstone, tuffaceous siltstone, and conglomerate.  The southern quarter of the quadrangle is underlain principally by deformed Mesoproterozoic sedimentary rocks of the Newland Formation, which are intruded by Eocene biotite hornblende dacite dikes.  In this southern terrane, Tertiary strata are exposed only in a limited area near the southeast margin of the quadrangle.  The distinct terranes are juxtaposed along the Volcano Valley fault zone—a zone of recurrent crustal movement beginning possibly in Mesoproterozoic time and certainly established from Neoproterozoic–Early Cambrian to late Tertiary time.  Movement along the fault zone has included normal faulting, the southern terrane faulted down relative to the northern terrane, some reverse faulting as the southern terrane later moved up against the northern terrane, and lateral movement during which the southern terrane likely moved west relative to the northern terrane.  Near the eastern margin of the quadrangle, the Newland Formation is locally the host of stratabound sulfide mineralization adjacent to the fault zone; west along the fault zone across the remainder of the quadrangle are significant areas and bands of hematite and iron-silicate mineral concentrations related to apparent alteration of iron sulfides.  The map defines the distribution of a variety of surficial deposits, including the distribution of hematite-rich colluvium and iron-silicate boulders.  The southeast

  15. Airborne gamma-ray spectrometer and magnetometer survey, Mitchell Quadrangle, South Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Mitchell map area. The purpose of this program is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1479 line miles are in this quadrangle

  16. Airborne gamma-ray spectrometer and magnetometer survey, New Rockford Quadrangle, North Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the New Rockford map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1397 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  17. Airborne gamma-ray spectrometer and magnetometer survey: Huron quadrangle, South Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Huron map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1459 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  18. Single-edition quadrangle maps

    Science.gov (United States)

    ,

    1998-01-01

    In August 1993, the U.S. Geological Survey's (USGS) National Mapping Division and the U.S. Department of Agriculture's Forest Service signed an Interagency Agreement to begin a single-edition joint mapping program. This agreement established the coordination for producing and maintaining single-edition primary series topographic maps for quadrangles containing National Forest System lands. The joint mapping program saves money by eliminating duplication of effort by the agencies and results in a more frequent revision cycle for quadrangles containing national forests. Maps are revised on the basis of jointly developed standards and contain normal features mapped by the USGS, as well as additional features required for efficient management of National Forest System lands. Single-edition maps look slightly different but meet the content, accuracy, and quality criteria of other USGS products. The Forest Service is responsible for the land management of more than 191 million acres of land throughout the continental United States, Alaska, and Puerto Rico, including 155 national forests and 20 national grasslands. These areas make up the National Forest System lands and comprise more than 10,600 of the 56,000 primary series 7.5-minute quadrangle maps (15-minute in Alaska) covering the United States. The Forest Service has assumed responsibility for maintaining these maps, and the USGS remains responsible for printing and distributing them. Before the agreement, both agencies published similar maps of the same areas. The maps were used for different purposes, but had comparable types of features that were revised at different times. Now, the two products have been combined into one so that the revision cycle is stabilized and only one agency revises the maps, thus increasing the number of current maps available for National Forest System lands. This agreement has improved service to the public by requiring that the agencies share the same maps and that the maps meet a

  19. 76 FR 9606 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Science.gov (United States)

    2011-02-18

    ...The Denver Museum of Nature & Science has completed an inventory of human remains, in consultation with the appropriate Indian Tribes, and has determined that there is no cultural affiliation between the remains and any present-day Tribe. Representatives of any Indian Tribe that believes itself to be culturally affiliated with the human remains may contact the museum. Disposition of the human remains to the Tribes stated below may occur if no additional requestors come forward.

  20. 76 FR 9598 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Science.gov (United States)

    2011-02-18

    ...The Denver Museum of Nature & Science has completed an inventory of human remains, in consultation with the appropriate Indian Tribes, and has determined that there is no cultural affiliation between the remains and any present-day Tribe. Representatives of any Indian Tribe that believes itself to be culturally affiliated with the human remains may contact the museum. Disposition of the human remains to the Tribes stated below may occur if no additional requestors come forward.

  1. 76 FR 9597 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Science.gov (United States)

    2011-02-18

    ...The Denver Museum of Nature & Science has completed an inventory of human remains, in consultation with the appropriate Indian Tribes, and has determined that there is no cultural affiliation between the remains and any present-day Tribe. Representatives of any Indian Tribe that believes itself to be culturally affiliated with the human remains may contact the museum. Disposition of the human remains to the Tribes stated below may occur if no additional requestors come forward.

  2. 76 FR 9604 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Science.gov (United States)

    2011-02-18

    ...The Denver Museum of Nature & Science has completed an inventory of human remains, in consultation with the appropriate Indian Tribes, and has determined that there is no cultural affiliation between the remains and any present-day Tribe. Representatives of any Indian Tribe that believes itself to be culturally affiliated with the human remains may contact the museum. Disposition of the human remains to the Tribes stated below may occur if no additional requestors come forward.

  3. Aerial gamma ray and magnetic survey: Raton Basin Project. The Raton and Santa Fe Quadrangles of New Mexico. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    In 1978, EG and G geoMetrics collected 4955 line miles of high sensitivity airborne radiometric and magnetic data in New Mexico within the Raton and Santa Fe quadrangles. These quadrangles represent part of the Raton Basin Project. All radiometric and magnetic data for the two quadrangles were fully reduced and interpreted by geoMetrics, and are presented as three volumes; one Volume I covering both quadrangles and separate Volume II's for the individual quadrangles. Over 50% of the survey area is covered by flat lying Mesozoic and Cenozoic deposits of the southern Great Plains Province. The western and southern portions of the area contain a combination of Precambrian and Paleozoic igneous and metamorphic rocks. These rocks occur primarily within and in close proximity to the Sangre de Cristo Mountains and late Cenozoic volcanic deposits occur to the west of the mountains and in the Las Vegas Volcanic region. Uranium deposits are scattered throughout the region, but none are known to be economic at the time of this report

  4. National Uranium Resource Evaluation: Harrisburg Quadrangle, Pennsylvania

    International Nuclear Information System (INIS)

    Popper, G.H.P.

    1982-08-01

    The Harrisburg Quadrangle, Pennsylvania, was evaluated to identify geologic environments and delineate areas favorable for uranium deposits. The evaluation, based primarily on surface reconnaissance, was carried out for all geologic environments within the quadrangle. Aerial radiometric and hydrogeochemical and stream-sediment reconnaissance surveys provided the supplementary data used in field-work followup studies. Results of the investigation indicate that environments favorable for peneconcordant sandstone uranium deposits exist in the Devonian Catskill Formation. Near the western border of the quadrangle, this environment is characterized by channel-controlled uranium occurrences in basal Catskill strata of the Broad Top syncline. In the east-central portion of the quadrangle, the favorable environment contains non-channel-controlled uranium occurrences adjacent to the Clarks Ferry-Duncannon Members contact. All other geologic environments are considered unfavorable for uranium deposits

  5. Geologic map of the Rusalka Planitia Quadrangle (V-25), Venus

    Science.gov (United States)

    Young, Duncan A.; Hansen, Vicki L.

    2003-01-01

    The Rusalka Planitia quadrangle (herein referred to as V-25) occupies an 8.1 million square kilometer swath of lowlands nestled within the eastern highlands of Aphrodite Terra on Venus. The region (25?-0? N., 150?-180? E.) is framed by the crustal plateau Thetis Regio to the southwest, the coronae of the Diana-Dali chasmata complex to the south, and volcanic rise Atla Regio to the west. Regions to the north, and the quadrangle itself, are part of the vast lowlands, which cover four-fifths of the surface of Venus. The often-unspectacular lowlands of Venus are typically lumped together as ridged or regional plains. However, detailed mapping reveals the mode of resurfacing in V-25's lowlands: a mix of corona-related flow fields and local edifice clusters within planitia superimposed on a background of less clearly interpretable extended flow fields, large volcanoes, probable corona fragments, and edifice-flow complexes. The history detailed within the Rusalka Planitia quadrangle is that of the extended evolution of long-wavelength topographic basins in the presence of episodes of extensive corona-related volcanism, pervasive low-intensity small-scale eruptions, and an early phase of regional circumferential shortening centered on central Aphrodite Terra. Structural reactivation both obscures and illuminates the tectonic development of the region. The data are consistent with progressive lithospheric thickening, although the critical lack of an independent temporal marker on Venus severely hampers our ability to test this claim and correlate between localities. Two broad circular basins dominate V-25 geology: northern Rusalka Planitia lies in the southern half of the quadrangle, whereas the smaller Llorona Planitia sits along the northwestern corner of V-25. Similar large topographic basins occur throughout the lowlands of Venus, and gravity data suggest that some basins may represent dynamic topography over mantle downwellings. Both planitiae include coronae and

  6. 77 FR 23502 - Notice of Inventory Completion: University of Denver Department of Anthropology and Museum of...

    Science.gov (United States)

    2012-04-19

    ...: University of Denver Department of Anthropology and Museum of Anthropology, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The University of Denver Department of Anthropology and Museum of Anthropology, Denver, CO, has completed an inventory of human [[Page 23503

  7. Reconnaissance Geologic Map of the Hayfork 15' Quadrangle, Trinity County, California

    Science.gov (United States)

    Irwin, William P.

    2010-01-01

    The Hayfork 15' quadrangle is located just west of the Weaverville 15' quadrangle in the southern part of the Klamath Mountains geologic province of northern California. It spans parts of six generally north-northwest-trending tectonostratigraphic terranes that are, from east to west, the Eastern Klamath, Central Metamorphic, North Fork, Eastern Hayfork, Western Hayfork, and Rattlesnake Creek terranes. Remnants of a once-widespread postaccretionary overlap assemblage, the Cretaceous Great Valley sequence, crop out at three localities in the southern part of the Hayfork quadrangle. The Tertiary fluvial and lacustrine Weaverville Formation occupies a large, shallow, east-northeast-trending graben in the south half of the quadrangle. The small area of Eastern Klamath terrane is part of the Oregon Mountain outlier, which is more widely exposed to the east in the Weaverville 15' quadrangle. It was originally mapped as a thrust plate of Bragdon(?) Formation, but it is now thought by some to be part of an outlier of Yreka terrane that has been dislocated 60 km southward by the La Grange Fault. The Central Metamorphic terrane, which forms the footwall of the La Grange Fault, was formed by the eastward subduction of oceanic crustal basalt (the Salmon Hornblende Schist) and its overlying siliceous sediments with interbedded limestone (the Abrams Mica Schist) beneath the Eastern Klamath terrane. Rb-Sr analysis of the Abrams Mica Schist indicates a Middle Devonian metamorphic age of approximately 380 Ma, which probably represents the age of subduction. The North Fork terrane, which is faulted against the western boundary of the Central Metamorphic terrane, consists of the Permian(?) North Fork ophiolite and overlying broken formation and melange of Permian to Early Jurassic (Pliensbachian) marine metasedimentary and metavolcanic rocks. The ophiolite, which crops out along the western border of the terrane, is thrust westward over the Eastern Hayfork terrane. The Eastern

  8. Aerial gamma-ray and magnetic survey, Columbus Quadrangle, Ohio. Final report

    International Nuclear Information System (INIS)

    1981-07-01

    The Columbus quadrangle covers a 7100 square mile area of south central Ohio which is located within the Midwestern Physiographic Province. Up to 6000 feet of Paleozoic strata overlie the east dipping Precambrian basement. Flat lying Quaternary glacial sediments cover a large part of the surface in the north and west regions of the quadrangle. A search of available literature revealed no known uranium deposits. Ninety-nine uranium anomalies were detected and are disussed briefly. Radiometric data reflect the presence of two zones of higher than average uranium anomaly occurrences. One zone is the northerly continuation of a trend observed in a contiguous quadrangle and occurs over undifferentiated Devonian and Mississippian sediments. Some anomalies appear to be culturally induced such as those in the vicinity of the city of Columbus. The outlined area in Figure 3 (indicated by a dashed contour line) should be considered for further investigation. The magnetic data indicate more structural complexity in underlying rocks than inferred by the structural interpretation of the area. The broad zones with long wavelength magnetic signatures on the east are interrupted further west by many small magnetic features whose sources may be attributed to undefined lithologic and/or structural elements in the Precambrian basement

  9. Geologic map of the Tuba City 30' x 60' quadrangle, Coconino County, northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Stoffer, Philip W.; Priest, Susan S.

    2012-01-01

    The Tuba City 30’ x 60’ quadrangle encompasses approximately 5,018 km² (1,920 mi²) within Coconino County, northern Arizona. It is characterized by nearly flat lying to gently dipping sequences of Paleozoic and Mesozoic strata that overly tilted Precambrian strata or metasedimentary and igneous rocks that are exposed at the bottom of Grand Canyon. The Paleozoic rock sequences from Cambrian to Permian age are exposed in the walls of Grand Canyon, Marble Canyon, and Little Colorado River Gorge. Mesozoic sedimentary rocks are exposed in the eastern half of the quadrangle where resistant sandstone units form cliffs, escarpments, mesas, and local plateaus. A few Miocene volcanic dikes intrude Mesozoic rocks southwest, northwest, and northeast of Tuba City, and Pleistocene volcanic rocks representing the northernmost extent of the San Francisco Volcanic Field are present at the south-central edge of the quadrangle. Quaternary deposits mantle much of the Mesozoic rocks in the eastern half of the quadrangle and are sparsely scattered in the western half. Principal folds are the north-south-trending, east-dipping Echo Cliffs Monocline and the East Kaibab Monocline. The East Kaibab Monocline elevates the Kaibab, Walhalla, and Coconino Plateaus and parts of Grand Canyon. Grand Canyon erosion has exposed the Butte Fault beneath the east Kaibab Monocline, providing a window into the structural complexity of monoclines in this part of the Colorado Plateau. Rocks of Permian and Triassic age form the surface bedrock of Marble Plateau and House Rock Valley between the East Kaibab and Echo Cliffs Monoclines. The Echo Cliffs Monocline forms a structural boundary between the Marble Plateau to the west and the Kaibito and Moenkopi Plateaus to the east. Jurassic rocks of the Kaibito and Moenkopi Plateaus are largely mantled by extensive eolian sand deposits. A small part of the northeast-dipping Red Lake Monocline is present in the northeast corner of the quadrangle. A broad and

  10. A laundry's reincarnation. Hospital Cooperative Laundry, Denver, CO.

    Science.gov (United States)

    1993-12-15

    It started out as an off-site hospital laundry, then was leased to a commercial operator, now it is a cooperative plant that serves several accounts in the Denver area. See what makes Hospital Cooperative Laundry tick.

  11. Aerial gamma ray and magnetic survey: Marion quadrangle, Ohio. Final report

    International Nuclear Information System (INIS)

    1981-06-01

    The Marion quadrangle covers a 7200 square mile area of central Ohio located within the Midwestern Physiographic Province. Up to 5000 feet of Paleozoic strata overlie the east dipping Precambrian basement. Flat lying Quaternary glacial sediments cover most of the surface within the quadrangle. A search of available literature revealed no known uranium deposits. Ninety-nine uranium anomalies were detected and are duscussed briefly. Radiometric data appear to reflect a preference for uranium occurrences in glacial moraine tills, and a minimum likelihood of occurrence in Paleozoic bedrock. Some of the largest anomalies appear to be culturally induced and no anomaly was considered to represent a significant amount of naturally occurring uranium. The magnetic data contrast somewhat with the existing structural interpretation of the area. The generally increasng magnetic gradient from west to east is interrupted by many features whose sources may be attributed to undefined lithologic and/or structural elements in the Precambrian basement

  12. 76 FR 14061 - Notice of Inventory Completion: Denver Museum of Nature & Science, Denver, CO

    Science.gov (United States)

    2011-03-15

    ...The Denver Museum of Nature & Science has completed an inventory of human remains and associated funerary objects, in consultation with the appropriate Indian tribes, and has determined that there is no cultural affiliation between the remains and associated funerary objects and any present-day Indian tribe. Representatives of any Indian tribe that believes itself to be culturally affiliated with the human remains and associated funerary objects may contact the museum. Disposition of the human remains and associated funerary objects to the Indian tribes stated below may occur if no additional requestors come forward.

  13. Orphan radon daughters at Denver Radium site

    International Nuclear Information System (INIS)

    Holub, R.F.; Droullard, R.F.; Davis, T.H.

    1992-01-01

    During 18 mo of sampling airborne radioactively at a National Priority List (open-quotes Superfundclose quotes) site in metroPOlitan Denver, Bureau of mines personnel discovered radon daughters that are not supported by the parent radon gas. We refer to them as open-quotes orphanclose quotes daughters because the parent, radon, is not present in sufficient concentration to support the measured daughter products. Measurements of the open-quotes orphanclose quotes daughters were made continuously, using the Bureau-developed radon and working-level (radon-daughter) monitors. The data showed high equilibrium ratios, ranging from 0.7 to 3.5, for long periods of time. Repeated, high-volume, 15-min grab samples were made, using the modified Tsivoglou method, to measure radon daughters, to which thoron daughters contributed 26 ± 12%. On average 28 ± 6% of the particulate activity was contributed by thoron daughters. Most samples were mixtures in which the 218 Po concentration was lower than that of 214 Pb and 214 Bi, in agreement with the high-equilibrium factors obtained from the continuous sampling data. In view of the short half-life of radon progeny, we conclude that the source of the orphan daughters is not far from the Superfund sites. The mechanism of this phenomenon is not understood at this time, but we will discuss its possible significance in evaluating population doses

  14. Denver Radium Site -- Operable Unit I closeout report for the US Environmental Protection Agency

    International Nuclear Information System (INIS)

    1992-08-01

    The Denver Radium Site consists of properties in the Denver, Colorado, area having radioactive contamination left from radium processing in the early 1900s. The properties are divided into 11 gaps or operable units to facilitate remedial action of the Site. Operable Unit I is an 8-acre block bounded by Quivas Street to the east, Shoshone Street to the west, West 12th Avenue to the south, and West 13th Avenue to the north. The primary focus of interest concerning investigations of radiological contamination was a radium, vanadium, and uranium processing facility at 1201 Quivas Street owned by the Pittsburgh Radium Company (PRC) from 1925 until 1926. The Radium Ores Company, which was associated with PRC, operated the facility until 1927. A Remedial investigation (RI) of Operable Unit I was prepared by Jacobs Engineering Group and CH 2 M Hill on behalf of EPA in April 1986. The draft Feasibility Study (FS), prepared by Jacobs Engineering Group and CH 2 M Hill, was issued in July 1987 (the final FS is the Community Relations Responsiveness Summary with an errata to the draft, issued September 1987). The RI focused on radium uranium processing residues discarded in the early 1900s. These residues contained uranium, radium, and thorium. EPA s Community Relations Plan involved the community in the decision-making process relating to the remedy to be implemented at Operable Unit X, and promoted communications among interested parties throughout the course of the project. The remedial action alternative preferred by EPA for Operable Unit I was Off-Site Permanent Disposal. Because a permanent disposal facility was not available at the time the Record of Decision was issued in September 1987, EPA selected the On-Site Temporary Containment (capping) with the Off-Site Permanent Disposal alternative

  15. Airborne gamma-ray spectrometer and magnetometer survey: Crescent Quadrangle, Burns Quadrangle, Canyon City Quadrangle, Bend Quadrangle, Salem Quadrangle (Oregon). Final report

    International Nuclear Information System (INIS)

    1981-01-01

    An airborne combining radiometric and magnetic survey was performed for the Department of Energy over the area covered by the Burns, Crescent, Canyon City, Bend, and Salem, Washington 1:250,000 National Topographic Map Series, 1 0 x 2 0 quadrangle maps. The survey was a part of DOE's National Aerial Radiometric Reconnaissance program, which is in turn a part of the National Uranium Resource Evaluation program. Data were collected by a helicopter equipped with a gamma-ray spectrometer having a large crystal volume, and a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test range. Data quality was ensured throughout the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. These maps were interpreted and an anomaly interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data processing procedures, the data display format, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  16. Effects of the May 5-6, 1973, storm in the Greater Denver area, Colorado

    Science.gov (United States)

    Hansen, Wallace R.

    1973-01-01

    Rain began falling on the Greater Denver area the evening of Saturday, May 5, 1973, and continued through most of Sunday, May 6. Below about 7,000 feet altitude, the precipitation was mostly rain; above that altitude, it was mostly snow. Although the rate of fall was moderate, at least 4 inches of rain or as much as 4 feet of snow accumulated in some places. Sustained precipitation falling at a moderate rate thoroughly saturated the ground and by midday Sunday sent most of the smaller streams into flood stage. The South Platte River and its major tributaries began to flood by late Sunday evening and early Monday morning. Geologic and hydrologic processes activated by the May 5-6 storm caused extensive damage to lands and to manmade structures in the Greater Denver area. Damage was generally most intense in areas where man had modified the landscape--by channel constrictions, paving, stripping of vegetation and topsoil, and oversteepening of hillslopes. Roads, bridges, culverts, dams, canals, and the like were damaged or destroyed by erosion and sedimentation. Streambanks and structures along them were scoured. Thousands of acres of croplands, pasture, and developed urban lands were coated with mud and sand. Flooding was intensified by inadequate storm sewers, blocked drains, and obstructed drainage courses. Saturation of hillslopes along the Front Range caused rockfalls, landslides, and mudflows as far west as Berthoud Pass. Greater attention to geologic conditions in land-use planning, design, and construction would minimize storm damage in the future.

  17. Dubois Quadrangle, Idaho and Montana

    International Nuclear Information System (INIS)

    Wodzicki, A.; Krason, J.

    1981-06-01

    Within the Dubois Quadrangle (Idaho and Montana), environments favorable for uranium deposits, based on National Uranium Resource Evaluation criteria, occur in the McGowan Creek Formation and within some Tertiary sedimentary basins. The Mississippian McGowan Creek Formation consists of uraniferous, black, siliceous mudstone and chert with minor porous sedimentary channels. In the southern Beaverhead Mountains it has been fractured by a bedding-plane fault, and uranium has been further concentrated by circulating groundwater in the porous channels and brecciated zones, both of which contain about 200 ppM uranium. The northern parts of the Pahsimeroi River, Lemhi River, Medicine Lodge Creek, Horse Prairie, and Sage Creek Basins are considered favorable for sandstone-type uranium deposits. Evidence present includes suitable source rocks such as rhyolitic flow breccia, laharic deposits, or strongly welded tuffs; permeable sediments, including most sandstones and conglomerates, providing they do not contain devitrified glass; suitable reductants such as lignite, pyrite, or low-Eh geothermal water; and uranium occurrences

  18. Dillon quadrangle, Montana and Idaho

    International Nuclear Information System (INIS)

    Wodzicki, A.; Krason, J.

    1981-04-01

    All geologic conditions in the Dillon quadrangle (Montana and Idaho) have been thoroughly examined, and, using National Uranium Resource Evaluation criteria, environments are favorable for uranium deposits along fractured zones of Precambrian Y metasediments, in the McGowan Creek Formation, and in some Tertiary sedimentary basins. A 9-m-wide quartz-bearing fractured zone in Precambrian Y quartzites near Gibbonsville contains 175 ppM uranium, probably derived from formerly overlying Challis Volcanics by supergene processes. The Mississippian McGowan Creek Formation consists of uraniferous, black, siliceous mudstone and chert. In the Melrose district it has been fractured by a low-angle fault, and uranium has been further concentrated by circulating ground water in the 2- to 6-m-thick brecciated zones that in outcrop contain 90 to 170 ppM uranium. The Wise River, northern Divide Creek, Jefferson River, Salmon River, Horse Prairie, Beaverhead River, and upper Ruby River Basins are considered favorable for uranium deposits in sandstone. Present are suitable uraniferous source rocks such as the Boulder batholith, rhyolitic flow breccia, laharic deposits, or strongly welded tuffs; permeable sediments, including most sandstones and conglomerates, providing they do not contain devitrified glass; suitable reductants such as lignite, pyrite, or low-Eh geothermal water; and uranium occurrences

  19. Airborne gamma-ray spectrometer and magnetometer survey: Alturas quadrangle, California. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2 0 x 1 0 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1 0 x 2 0 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Alturas, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1631.6 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  20. Hydrogeochemical and stream sediment reconnaissance basic data for Dodge City NTMS Quadrangle, Kansas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Dodge City Quadrangle are reported. Field and laboratory data are presented for 756 groundwater and 321 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that the most promising areas for uranium mineralization are as follows: (1) in the north central area of the quadrangle within close proximity to the Arkansas River, mostly from waters of the Ogallala Formation; (2) in the west central area, from groundwater samples of the Dakota and the Ogallala Formations; and (3) between the North Fork of the Cimarron River and the main Cimarron River, mostly in waters from the Ogallala Formation. Associated with the high uranium values are high concentrations for magnesium, strontium, and sulfate. Of the groundwater samples taken 81% were collected from the Ogallala Formation. Stream sediment data indicate high uranium concentrations in scattered samples in the northwestern, central, and southwestern areas of the quadrangle. Most of the samples with high uranium values were collected from the Quaternary alluvium. Associated with the high uranium values are high concentrations of barium, cerium, iron, manganese, titanium, vanadium, yttrium, and zirconium

  1. Airborne gamma-ray spectrometer and magnetometer survey: Susanville quadrangle, California. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2 0 x 1 0 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1 0 x 2 0 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  2. A brownfield to greenfield success story: Denver Radium Superfund Site

    International Nuclear Information System (INIS)

    Baracani, E.; Bruskin, L.J.

    1996-01-01

    The Denver Radium Site consists of forty-nine separate sites divided into 11 operable units throughout the city of Denver, Colorado. The sites contained radioactive soils and residues (310,000 tons) from processing of radium in the early 1900s. The majority of the radioactive material was removed, transported by rail, and disposed offsite in Utah. During radiologic cleanup at the former Robinson Brick Company Site (ROBCO), (OU No. 4/5), metal contaminated soils from previous smelting operations were encountered. The Denver Radium Site was placed on the National Priorities List (NPL), and through cooperation of private parties, the state and federal governments, the land was cleaned up and restored to productive use

  3. Geology of the Harper Quadrangle, Liberia

    Science.gov (United States)

    Brock, M.R.; Chidester, A.H.; Baker, M.G.W.

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The first systematic mapping in the Harper quadrangle was by Baker, S. P. Srivastava, and W. E. Stewart (LGS) at a scale of 1:500,000 in the vicinity of Harper in the southeastern, and of Karloke in the northeastern part of the quadrangle in 1960-61. Brock and Chidester carried out systematic mapping of the quadrangle at a scale of 1:250,000 in the period September 1971-May 1972; the geologic map was compiled from field data gathered by project geologists and private companies as indicated in the source diagram, photogeologic maps, interpretation of airborne magnetic and radiometric surveys, field mapping, and ground-based radiometric surveys in which hand-held scintillators were used. R. W. Bromery, C. S. Wotorson, and J. C. Behrendt contributed to the interpretation of geophysical data. Total-intensity aeromagnetic and total-count gamma radiation maps (Behrendt and Wotorson, in press a, b), and unpublished data derived from those maps, including the near-surface and the regional magnetic components and aeromagnetic/radiometric correlations, were used in the interpretation.

  4. 78 FR 64007 - Notice of Inventory Completion: University of Denver Department of Anthropology and Museum of...

    Science.gov (United States)

    2013-10-25

    ....R50000] Notice of Inventory Completion: University of Denver Department of Anthropology and Museum of Anthropology, Denver, CO; Correction AGENCY: National Park Service, Interior. ACTION: Notice; correction. SUMMARY: The University of Denver Museum of Anthropology has corrected an inventory of human remains and...

  5. 76 FR 17444 - Notice of Inventory Completion: Colorado Historical Society (History Colorado), Denver, CO

    Science.gov (United States)

    2011-03-29

    ... Culture, Colorado Historical Society (History Colorado), 1560 Broadway, Suite 400, Denver, CO 80202...: Colorado Historical Society (History Colorado), Denver, CO AGENCY: National Park Service, Interior. ACTION... control of the Colorado Historical Society (History Colorado), Denver, CO. The human remains were removed...

  6. The history of aggregate development in the denver, Co area

    Science.gov (United States)

    Langer, W.H.

    2009-01-01

    At the start of the 20th century Denver's population was 203,795. Most streets were unpaved. Buildings were constructed of wood frame or masonry. Transport was by horse-drawn-wagon or rail. Statewide, aggregate consumption was less than 0.25 metric tons per person per year. One hundred years later Denver had a population of 2,365,345. Today Denver is a major metropolitan area at the crossroads of two interstates, home to a new international airport, and in the process of expanding its light rail transit system. The skyline is punctuated with skyscrapers. The urban center is surrounded with edge cities. These changes required huge amounts of aggregate. Statewide, aggregate consumption increased 50 fold to over 13 metric tons per person per year. Denver has a large potential supply of aggregate, but sand and gravel quality decreases downstream from the mountain front and potential sources of crushed stone occur in areas prized for their scenic beauty. These issues, along with urban encroachment and citizen opposition, have complicated aggregate development and have paved a new path for future aggregate development including sustainable resource management and reclamation techniques.

  7. Electronic Book Usage: A Survey at the University of Denver

    Science.gov (United States)

    Levine-Clark, Michael

    2006-01-01

    In the spring of 2005, the University of Denver's Penrose Library conducted a survey of its users to determine their degree of awareness of electronic books, how and why they use them, and their level of satisfaction with the format. It is clear from vendor-supplied usage statistics that electronic books are used, but it is not clear how or why…

  8. Experience in Collaboration: McDenver at McDonald's.

    Science.gov (United States)

    Combs, Clarice Sue

    2002-01-01

    The McDenver at McDonald's project provided a nontraditional, community-based teaching and learning environment for faculty and students in a health, physical education, and recreation (HPER) department and a school of nursing. Children and parents come to McDonald's, children received developmental screenings, and parents completed conferences…

  9. Mineralogical Analysis of the Oppia Quadrangle of Asteroid (4) Vesta: Evidence for Occurrence of Moderate-Reflectance Hydrated Minerals

    Science.gov (United States)

    Tosi, F.; Frigeri, A.; Combe, J.-Ph.; Zambon, F.; De Sanctis, M. C.; Ammannito, E.; Longobardo, A.; Hoffmann, M.; Nathues, A.; Garry, W. B.; hide

    2015-01-01

    Quadrangle Av-10 'Oppia' is one of five quadrangles that cover the equatorial region of asteroid (4) Vesta. This quadrangle is notable for the broad, spectrally distinct ejecta that extend south of the Oppia crater. These ejecta exhibit the steepest ('reddest') visible spectral slope observed across the asteroid and have distinct color properties as seen in multispectral composite images. Compared to previous works that focused on the composition and nature of unusual ('orange') ejecta found on Vesta, here we take into account a broader area that includes several features of interest, with an emphasis on mineralogy as inferred from data obtained by Dawn's Visible InfraRed mapping spectrometer (VIR). Our analysis shows that the older northern and northeastern part of Av-10 is dominated by howardite-like material, while the younger southwestern part, including Oppia and its ejecta blanket, has a markedly eucritic mineralogy. The association of the mineralogical information with the geologic and topographic contexts allows for the establishment of relationships between the age of the main formations observed in this quadrangle and their composition. A major point of interest in the Oppia quadrangle is the spectral signature of hydrous material seen at the local scale. This material can be mapped by using high-resolution VIR data, combined with multispectral image products from the Dawn Framing Camera (FC) so as to enable a clear correlation with specific geologic features. Hydrated mineral phases studied previously on Vesta generally correlate with low-albedo material delivered by carbonaceous asteroids. However, our analysis shows that the strongest OH signature in Av-10 is found in a unit west of Oppia, previously mapped as 'light mantle material' and showing moderate reflectance and a red visible slope. With the available data we cannot yet assess the presence of water in this material. However, we offer a possible explanation for its origin.

  10. Map showing the distribution and characteristics of plutonic rocks in the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    Science.gov (United States)

    John, D.A.

    1987-01-01

    Plutonic rocks, mostly granite and granodiorite, are widely distributed in the west two-thirds of the Tonopah 1 degree by 2 degree quadrangle, Nevada. These rocks were systematically studied as part of the Tonopah CUSMAP project. Studies included field mapping, petrographic and modal analyses, geochemical studies of both fresh and altered plutonic rocks and altered wallrocks, and K-Ar and Rb-Sr radiometric dating. Data collected during this study were combined with previously published data to produce a 1:250,000-scale map of the Tonopah quadrangle showing the distribution of individual plutons and an accompanying table summarizing composition, texture, age, and any noted hydrothermal alteration and mineralization effects for each pluton.

  11. Geologic map of the Frisco quadrangle, Summit County, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Bartos, Paul J.; Williams, Cindy L.

    2002-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Frisco quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, K.S., 1999, Neogene basins of the northern Rio Grande rift?partitioning and asymmetry inherited from Laramide and older uplifts: Tectonophysics, v. 305, p. 141-152.), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts the northeastern corner of the quadrangle. The oldest rocks in the quadrangle underlie the Tenmile Range and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, Ogden, 1987, Rock units of the Precambrian- basement in Colorado: U.S. Geological Survey Professional Paper 1321-A, 54 p.). The oldest sedimentary unit is the Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. The sedimentary rocks are intruded by sills and dikes of dacite porphyry sills of Swan Mountain, dated at 44 Ma (Marvin, R.F., Mehnert, H.H., Naeser, C.W., and Zartman, R.E., 1989, U.S. Geological Survey radiometric ages, compilation ?C??Part five?Colorado, Montana, Utah, and Wyoming: Isochron/West, no. 53, p. 14-19. Simmons, E.C., and Hedge, C.E., 1978, Minor-element and Sr-isotope geochemistry of Tertiary stocks, Colorado mineral belt

  12. Geologic map of the Harvard Lakes 7.5' quadrangle, Park and Chaffee Counties, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Lee, Keenan; Premo, Wayne R.; Cosca, Michael A.

    2013-01-01

    The Harvard Lakes 1:24,000-scale quadrangle spans the Arkansas River Valley in central Colorado, and includes the foothills of the Sawatch Range on the west and Mosquito Range on the east. The Arkansas River valley lies in the northern end of the Rio Grande rift and is structurally controlled by Oligocene and younger normal faults mostly along the west side of the valley. Five separate pediment surfaces were mapped, and distinctions were made between terraces formed by the Arkansas River and surfaces that formed from erosion and alluviation that emanated from the Sawatch Range. Three flood deposits containing boulders as long as 15 m were deposited from glacial breakouts just north of the quadrangle. Miocene and Pliocene basin-fill deposits of the Dry Union Formation are exposed beneath terrace or pediment deposits in several places. The southwestern part of the late Eocene Buffalo Peaks volcanic center, mostly andesitic breccias and flows and ash-flow tuffs, occupy the northeastern corner of the map. Dated Tertiary intrusive rocks include Late Cretaceous or early Paleocene hornblende gabbro and hornblende monzonite. Numerous rhyolite and dacite dikes of inferred early Tertiary or Late Cretaceous age also intrude the basement rocks. Basement rocks are predominantly Mesoproterozoic granites, and subordinately Paleoproterozoic biotite gneiss and granitic gneiss.

  13. National Uranium Resource Evaluation, Llano Quadrangle, Texas

    International Nuclear Information System (INIS)

    Droddy, M.J.; Hovorka, S.D.

    1982-04-01

    The Llano 2 0 quadrangle was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The areas were delineated according to criteria established for the National Uranium Resource Evaluation program. Surface studies included investigations of uranium occurrences described in the literature, location of aerial radiometric anomalies, carborne scintillometer surveys, outcrop investigations, and followup of hydrogeochemical and stream-sediment reconnaissance data. A radon emanometry survey and investigations of electric and gamma-ray well logs, drillers' logs, and well core samples were performed to evaluate the subsurface potential of the Llano Quadrangle. An environment favorable for pegmatitic deposits is identified in the Town Mountain Granite

  14. Geology of the V28 Quadrangle: Hecate Chasma, Venus

    Science.gov (United States)

    Stofan, E. R.; Guest, J. E.; Brian, A. W.

    2000-01-01

    The Hecate Chasma Quadrangle (V28), mapped at 1:5,000,000 scale, extends from 0-25 N and 240-270 Longitude. The quadrangle has thirteen impact craters, several large volcanoes, many coronae, three chasmata, and northern Hinemoa Planitia.

  15. National Uranium Resource Evaluation: Bozeman Quadrangle, Montana

    International Nuclear Information System (INIS)

    Lange, I.M.; Fields, R.W.; Fountain, D.M.; Moore, J.N.; Qamar, A.I.; Silverman, A.J.; Thompson, G.R.; Chadwick, R.A.; Custer, S.G.; Smith, D.L.

    1982-08-01

    The Bozeman Quadrangle, Montana, was evaluated to identify and delineate areas containing environments favorable for uranium deposits. This evaluation was conducted using methods and criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, mapping, radiometric traverses, and geochemical sampling were performed in all geologic environments within the quadrangle. Aerial radiometric and HSSR data were evaluated and followup studies of these anomalies and most of the previously known uranium occurrences were conducted. Detailed gravity profiling was done in the Tertiary Three Forks-Gallatin Basin and the Madison and Paradise Valleys. Also, selected well waters were analyzed. Eight areas are considered favorable for sandstone uranium deposits. They include the Tertiary Three Forks-Gallatin basin, the Madison and Paradise Valleys, and five areas underlain by Cretaceous fluvial and marginal-marine sandstones. Other environments within the quadrangle are considered unfavorable for uranium deposits when judged by the program criteria. A few environments were not evaluated due to inaccessibility and/or prior knowledge of unfavorable criteria

  16. National Uranium Resource Evaluation: Bozeman Quadrangle, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Lange, I.M.; Fields, R.W.; Fountain, D.M.; Moore, J.N.; Qamar, A.I.; Silverman, A.J.; Thompson, G.R.; Chadwick, R.A.; Custer, S.G.; Smith, D.L.

    1982-08-01

    The Bozeman Quadrangle, Montana, was evaluated to identify and delineate areas containing environments favorable for uranium deposits. This evaluation was conducted using methods and criteria developed for the National Uranium Resource Evaluation program. General surface reconnaissance, mapping, radiometric traverses, and geochemical sampling were performed in all geologic environments within the quadrangle. Aerial radiometric and HSSR data were evaluated and followup studies of these anomalies and most of the previously known uranium occurrences were conducted. Detailed gravity profiling was done in the Tertiary Three Forks-Gallatin Basin and the Madison and Paradise Valleys. Also, selected well waters were analyzed. Eight areas are considered favorable for sandstone uranium deposits. They include the Tertiary Three Forks-Gallatin basin, the Madison and Paradise Valleys, and five areas underlain by Cretaceous fluvial and marginal-marine sandstones. Other environments within the quadrangle are considered unfavorable for uranium deposits when judged by the program criteria. A few environments were not evaluated due to inaccessibility and/or prior knowledge of unfavorable criteria.

  17. Analysis of stream sediment reconnaissance data for mineral resources from the Montrose NTMS Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Beyth, M.; Broxton, D.; McInteer, C.; Averett, W.R.; Stablein, N.K.

    1980-06-01

    Multivariate statistical analysis to support the National Uranium Resource Evaluation and to evaluate strategic and other commercially important mineral resources was carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Montrose quadrangle, Colorado. The analysis suggests that: (1) the southern Colorado Mineral Belt is an area favorable for uranium mineral occurrences; (2) carnotite-type occurrences are likely in the nose of the Gunnison Uplift; (3) uranium mineral occurrences may be present along the western and northern margins of the West Elk crater; (4) a base-metal mineralized area is associated with the Uncompahgre Uplift; and (5) uranium and base metals are associated in some areas, and both are often controlled by faults trending west-northwest and north

  18. Denver Radium Boom and the Colorado School of Mines

    International Nuclear Information System (INIS)

    Hart, S.S.

    1986-01-01

    The November 7, 1985, Rocky Mountain News, proclaimed Radiation hot spot detected at Mines. This hot spot discovery was the result of investigative reports by a local television station, with follow-up radiation monitoring by the Colorado Department of Health. Not an isolated occurrence of alpha and gamma radiation contamination, the School of Mines discovery is only the latest in a five-year series of discoveries of radioactive waste disposal sites in the Denver metropolitan area. These discoveries have involved not only the Colorado Department of Health, but also the Environmental Protection Agency, at least five consulting firms, and numerous businessmen and homeowners. In 1982, the sites were combined into a single project called the Denver Radium Site and selected for clean-up under the Federal Superfund program. This paper reviews the historical aspects of these hot spots by describing the history of radium processing in Denver; early work of the Colorado School of Mines, National Radium Institute, the Golden Experiment Station, and other institutional research; and the commercial production of radium. 20 references

  19. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    Science.gov (United States)

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  20. Index Grids - QUADRANGLES_24K_USGS_IN: Boundaries of 7.5-Minute Quadrangles in Indiana, (United States Geological Survey, 1:24,000 Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — QUADRANGLES_24K_USGS_IN is a polygon shapefile defining the boundaries of the USGS 7.5-minute (1:24,000-scale) quadrangles which cover the state of Indiana. Dates of...

  1. Aerial gamma ray and magnetic survey: Powder River R and D Project. Portions of the: Forsyth, Hardin, Montana Quadrangles; Sheridan, Arminto, Wyoming Quadrangles. Final report

    International Nuclear Information System (INIS)

    1979-05-01

    Thick Phaneorozoic sediments (greater than 17,000 feet) fill the northwest-trending Powder River Basin, which is the dominant tectonic structure in the study area. Lower Tertiary sediments comprise over 90% of the exposed units at the surface of the Basin. Small portions of the Bighorn Uplift, Casper Arch, and Porcupine Dome occupy the western edge of the study area. Numerous small claims and prospects are found in the Pumpkin Buttes - Turnercrest District at the south end of the study area (northeastern Arminto quadrangle). No economic deposits of uranium are known to exist in the area, according to available literature. Interpretation of the radiometric data resulted in 62 statistical uranium anomalies listed for this area. Most anomalies are found in the southern half of the study area within the Tertiary Fort Union and Wasatch Formations. Some are found in Cretaceous sediments in the adjoining uplifts to the west of the Basin

  2. National Uranium Resource Evaluation: Lewistown Quadrangle, Montana

    International Nuclear Information System (INIS)

    Culver, J.C.

    1982-09-01

    Uranium resources in the Lewistown Quadrangle, Montana, were evaluated to a depth of 1500 m (5000 ft). All existing geologic data were considered, including geologic surveys, literature, theses, radiometric surveys, oil- and water-well logs. Additional data were generated during the course of two field seasons, including the collection of more than 350 water, rock, crude oil and panned concentrate samples for analyses, sedimentary facies maps, structural geology and isopach maps, and field examination of reported areas of anomalous radioactivity. Three environments with potential for the occurrence of a minimum of 100 t of 0.01% U 3 O 8 were delineated. The most favorable environment is located in the southeastern portion of the quadrangle; here, Tertiary felsic dikes intrude four potential sandstone host rocks in the Kootenai Formation and the Colorado Shale. Structural-chemical traps for allogenic uranium are provided by the juxtaposition of oil-bearing domes. A second potential environment is located in the Eagle Sandstone in the northwestern and western portions of the quadrangle; here, anomalous water samples were obtained downtip from oxidized outcrops that are structurally related to Tertiary intrusive rocks of the Bearpaw and Highwood Mountains. Lignitic lenses and carbonaceous sandstones deposited in a near-shore lagoonal and deltaic environment provide potential reductants for hexavalent uranium in this environment. A third environment, in the Judith River Formation, was selected as favorable on the basis of water-well and gamma-ray log anomalies and their structural relationship with the Bearpaw Mountains. Organic materials are present in the Judith River Formation as potential reductants. They were deposited in a near-shore fluvial and lagoonal system similar to the depositional environment of the Jackson Group of the Texas Gulf Coast

  3. Geology of the Shakespeare quadrangle (H03), Mercury

    Science.gov (United States)

    Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.

    2017-09-01

    A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the remotely sensed images of the NASA MESSENGER mission. This quadrangle is characterized by the occurrence of three main types of plains materials and four basin materials, pertaining to the Caloris basin, the largest impact crater on Mercury's surface. The geologic boundaries have been redefined compared to the previous 1:5M map of the quadrangle and the craters have been classified privileging their stratigraphic order rather than morphological appearance. The abundant tectonic landforms have been interpreted and mapped as thrusts or wrinkle ridges.

  4. National uranium resource evaluation: Nogales Quadrangle, Arizona

    International Nuclear Information System (INIS)

    Luning, R.H.; Brouillard, L.A.

    1982-04-01

    Literature research, surface geologic investigations, rock sampling, and radiometric surveys were conducted in the Nogales Quadrangle, Arizona, to identify environments and to delineate areas favorable for uranium deposits according to criteria formulated during the National Uranium Resource Evaluation program. The studies were augmented by aerial radiometric and hydrogeochemical and stream-sediment surveys. No favorable environments were identified. Environments that do display favorable characteristics include magmatic-hydrothermal and authigenic environments in Precambrian and Jurassic intrusives, as well as in certain Mesozoic and Cenozoic igneous and sedimentary rocks

  5. Denver's Pioneer Astronomer: Herbert Alonso Howe (1858-1926)

    Science.gov (United States)

    Howe, H. J.; Stencel, R. E.; Fisher, S.

    1999-05-01

    Herbert A. Howe arrived at Denver University (DU) to teach autumn 1880 classes, in math, astronomy and surveying. Howe established himself with clever solutions to the Kepler problem for orbit determinations in thesis work at Cincinnati Observatory. Riding the economic expansion of Colorado gold and silver mining in 1888, the University accepted a proposed gift of a major observatory, offered by Denver real estate baron, Humphrey Chamberlin. The result features a 20 inch aperture Alvan Clark refractor, which still ranks among the largest telescopes of the era. With the observatory building ready, the Silver Panic of 1893 -- when the US Congress dropped silver reserves from the currency basis -- burst the Denver economic bubble. Chamberlin was unable to complete payments on the balances due. Clark and G.N.Saegmuller (Fauth and Co.) at personal expense, delivered on the optics and telescope assemblies in 1894, but would wait for repayment. Sadly, this fiscal crisis affected DU for over a decade. Professor Howe, while observatory director, found himself consumed as Dean and Acting Chancellor for a young, struggling university, at the expense of the astronomy future that had looked so bright in 1892. Absent the Silver Panic, Howe would have probably been given an endowed chair in astronomy, as promised by Chamberlin. The complexion of American astronomy at the time of the birth of the American Astronomical Society in 1899 might have been different, in terms of US observing sites, etc. We are fortunate to have extensive Prof.Howe's daily diaries now in the University archives. These describe Howe's view of progress on the observatory, meetings with astronomy notables, plus vignettes of the life and times of Denver and the nation. Grandson, Herbert Julian Howe rediscovered their existence and is summarizing them in the form of a biography entitled: The Pioneer Astronomer. DU archival records contain numerous original letters from late 19th century astronomy luminaries

  6. Surficial geologic map of the Framingham quadrangle, Middlesex and Worcester Counties, Massachusetts

    Science.gov (United States)

    Nelson, Arthur E.

    1974-01-01

    The Framingham quadrangle covers about 55 square miles and is centered approximately 18 miles west of Boston.  Even though the major topographic features are controlled by the lithology and structure of the bedrock, glacial features, such as drumlins, kames and kettles, kame terraces, eskers, gently sloping deltas, and flat-lying lake-bottom deposits, have modified the preglacial topography.  Some bedrock plucking occurred, especially on the south or southeast sides of some hills, and some valleys probably were deepened.  A thin veneer of till overlies much of the bedrock and is most extensive in the hills in the western half of the map area.  These deposits, which are mostly gently sloping kame deltas or flat-lying lake-bottom deposits, were laid down in or graded to glacial Lakes Charles (Clapp, 1904, p. 198) and Sudbury (Goldthwait, 1905, p. 274), which formed during deglaciation when melt waters were temporarily impounded.  Some glacial-lake deposits were laid down in three smaller higher level lakes in the western part of the quadrangle.

  7. Geologic map of the Big Delta B-2 quadrangle, east-central Alaska

    Science.gov (United States)

    Day, Warren C.; Aleinikoff, John N.; Roberts, Paul; Smith, Moira; Gamble, Bruce M.; Henning, Mitchell W.; Gough, Larry P.; Morath, Laurie C.

    2003-01-01

    New 1:63,360-scale geologic mapping of the Big Delta B-2 quadrangle provides important data on the structural setting and age of geologic units, as well as on the timing of gold mineralization plutonism within the Yukon-Tanana Upland of east-central Alaska. Gold exploration has remained active throughout the region in response to the discovery of the Pogo gold deposit, which lies within the northwestern part of the quadrangle near the south bank of the Goodpaster River. Geologic mapping and associated geochronological and geochemical studies by the U.S. Geological Survey (USGS) and the Alaska Department of Natural Resources, Division of Mining and Water Management, provide baseline data to help understand the regional geologic framework. Teck Cominco Limited geologists have provided the geologic mapping for the area that overlies the Pogo gold deposit as well as logistical support, which has lead to a much improved and informative product. The Yukon-Tanana Upland lies within the Tintina province in Alaska and consists of Paleozoic and possibly older(?) supracrustal rocks intruded by Paleozoic (Devonian to Mississippian) and Cretaceous plutons. The oldest rocks in the Big Delta B-2 quadrangle are Paleozoic gneisses of both plutonic and sedimentary origin. Paleozoic deformation, potentially associated with plutonism, was obscured by intense Mesozoic deformation and metamorphism. At least some of the rocks in the quadrangle underwent tectonism during the Middle Jurassic (about 188 Ma), and were subsequently deformed in an Early Cretaceous contractional event between about 130 and 116 Ma. New U-Pb SHRIMP data presented here on zircons from the Paleozoic biotite gneisses record inherited cores that range from 363 Ma to about 2,130 Ma and have rims of euhedral Early Cretaceous metamorphic overgrowths (116 +/- 4 Ma), interpreted to record recrystallization during Cretaceous west-northwest-directed thrusting and folding. U-Pb SHRIMP dating of monazite from a Paleozoic

  8. Airborne gamma-ray spectrometer and magnetometer survey: Forsyth quadrangle, Round Up quadrangle, Hardin quadrangle (Montana), Sheridan quadrangle, (Wyoming). Final report

    International Nuclear Information System (INIS)

    1981-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Forsyth, Hardin, and Sheridan, and Roundup, 1:250,000 National Topographic Map Series (NTMS), quadrangle maps. The survey was part of DOE's National Uranium Resource Evaluation (NURE) program. Data were collected by a helicopter equipped with a gamma-ray spectrometer with a large crystal volume, and with a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration Pads and the Lake Mead Dynamic Test Range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The anomalies were interpreted and an interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data collection procedures, the data processing procedures, the data presentation, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  9. National Uranium Resource Evaluation: Marfa Quadrangle, Texas

    International Nuclear Information System (INIS)

    Henry, C.D.; Duex, T.W.; Wilbert, W.P.

    1982-09-01

    The uranium favorability of the Marfa 1 0 by 2 0 Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones. Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits. The Tertiary Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable

  10. National Uranium Resource Evaluation: Durango Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Theis, N.J.; Madson, M.E.; Rosenlund, G.C.; Reinhart, W.R.; Gardner, H.A.

    1981-06-01

    The Durango Quadrangle (2 0 ), Colorado, was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for uranium deposits. General reconnaissance, geologic and radiometric investigations, was augmented by detailed surface examination and radiometric and geochemical studies in selected areas. Eight areas favorable for uranium deposits were delineated. Favorable geologic environments include roscoelite-type vanadium-uranium deposits in the Placerville and Barlow Creek-Hermosa Creek districts, sandstone uranium deposits along Hermosa Creek, and vein uranium deposits in the Precambrian rocks of the Needle Mountains area and in the Paleozoic rocks of the Tuckerville and Piedra River Canyon areas. The major portions of the San Juan volcanic field, the San Juan Basin, and the San Luis Basin within the quadrangle were judged unfavorable. Due to lack of information, the roscoelite belt below 1000 ft (300 m), the Eolus Granite below 0.5 mi (0.8 km), and the Lake City caldera are unevaluated. The Precambrian Y melasyenite of Ute Creek and the Animas Formation within the Southern Ute Indian Reservation are unevaluated due to lack of access

  11. Geologic evolution of iron quadrangle on archean and early proterozoic

    International Nuclear Information System (INIS)

    Machado, N.; Noce, C.M.; Ladeira, E.A.

    1989-01-01

    The preliminary results of U-Pb geochronology of iron quadrangle. Brazil are presented, using the Davis linear regression program for determining of intersection concordance-discord and for estimation the associate mistakes. (C.G.C.)

  12. Colour mapping of the Shakespeare (H-03) quadrangle of Mercury

    Science.gov (United States)

    Bott, N.; Doressoundiram, A.; Perna, D.; Zambon, F.; Carli, C.; Capaccioni, F.

    2017-09-01

    We will present a colour mapping of the Shakespeare (H-03) quadrangle of Mercury, as well as the spectral analysis and a preliminary correlation between the spectral properties and the geological units.

  13. Geologic Map of the Shakespeare Quadrangle (H03), Mercury

    Science.gov (United States)

    Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.

    2018-05-01

    A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the MESSENGER images. The most prominent geomorphological feature is the Caloris basin, the largest impact crater on Mercury.

  14. Surficial geologic map of the Dillingham quadrangle, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.

    2018-05-14

    The geologic map of the Dillingham quadrangle in southwestern Alaska shows surficial unconsolidated deposits, many of which are alluvial or glacial in nature. The map area, part of Alaska that was largely not glaciated during the late Wisconsin glaciation, has a long history reflecting local and more distant glaciations. Late Wisconsin glacial deposits have limited extent in the eastern part of the quadrangle, but are quite extensive in the western part of the quadrangle. This map and accompanying digital files are the result of the interpretation of black and white aerial photographs from the 1950s as well as more modern imagery. Limited new field mapping in the area was conducted as part of a bedrock mapping project in the northeastern part of the quadrangle; however, extensive aerial photographic interpretation represents the bulk of the mapping effort.

  15. Digital bedrock geologic map of the Saxtons River quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-52A Ratcliffe, NM�and Armstrong, TR, 1996, Digital bedrock geologic map of the Saxtons River quadrangle, Vermont, USGS Open-File Report...

  16. Bedrock Geologic Map of the Essex Junction Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG12-3, Gale, M., Kim. J., and Ruksznis, A., 2012, Bedrock Geologic Map of the essex Junction Quadrangle: Vermont Geological Survey Open File...

  17. Digital bedrock geologic map of the Cavendish quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-203A Ratcliffe, NM, 1995,�Digital bedrock geologic map of the Cavendish quadrangle, Vermont: USGS Open-File Report 95-203, 2 plates, scale...

  18. Bedrock Geologic Map of the Hinesburg Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from Thompson, P., Thompson, T.B., and Doolan, B., 2004, Bedrock Geology of the Hinesburg quadrangle, Vermont. The bedrock geologic map data at a scale...

  19. Bedrock Geologic Map of the Bristol, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG13-1 Kim, J, Weber, E, and Klepeis, K, 2013, Bedrock Geologic Map of the Bristol, VT Quadrangle: Vermont Geological Survey Open File Report...

  20. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie

    2011-01-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse

  1. Bedrock Geologic Map of the Jay Peak, VT Quadrangle

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG99-1 Compilation bedrock geologic map of the Jay Peak quadrangle, Compiled by B. Doolan, 1999: VGS Open-File Report VG99-1, 1 plate, scale...

  2. [Models for intervention in autism spectrum disorders: Denver and SCERTS].

    Science.gov (United States)

    Forment-Dasca, C

    2017-02-24

    Given the increased prevalence of diagnoses of autism in recent years, the growing amount of research on models with which to work with people with autism spectrum disorders (ASD) has led to the development of different techniques and methods enabling better results to be obtained. As a result, it has become possible to help improve many of the symptoms that prevent people with this diagnosis and their families from leading a normal life. To review two intervention models specifically designed for working with persons with ASD. The review first examines an early intervention model, the Early Start Denver Model, which consists in a checklist for children with ASD aged from 12 to 48 months, based on their progress. The SCERTS model is also reviewed. Unlike the Denver, this model presents goals that must be worked on throughout the entire lifespan of those with ASD. In the absence of further results from scientific evidence-based practice regarding the two models reviewed here, it can be concluded that there is no single standardised model and that children with difficulties in joint attention and imitation need to be referred at an early stage, as well as working together with the families. Thus, to perform a correct intervention it is necessary to take into account evidence-based practice and for the therapist to have a deep knowledge, respect and understanding of children with ASD and of their families.

  3. 40 CFR 81.16 - Metropolitan Denver Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.16 Section 81.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.16 Metropolitan Denver Intrastate Air Quality Control Region. The Metropolitan Denver Intrastate Air Quality Control Region (Colorado) consists of the territorial area...

  4. 77 FR 5837 - Notice of Intent To Repatriate Cultural Items: University of Denver Department of Anthropology...

    Science.gov (United States)

    2012-02-06

    ... Cultural Items: University of Denver Department of Anthropology and Museum of Anthropology, Denver, CO... Anthropology and Museum of Anthropology, in consultation with the appropriate Indian tribes, has determined... Department of Anthropology and Museum of Anthropology. DATES: Representatives of any Indian tribe that...

  5. 76 FR 5432 - United Western Bank Denver, Colorado; Notice of Appointment of Receiver

    Science.gov (United States)

    2011-01-31

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision United Western Bank Denver, Colorado... section 5(d)(2) of the Home Owners' Loan Act, the Office of Thrift Supervision has duly appointed the Federal Deposit Insurance Corporation as sole Receiver for United Western Bank, Denver, Colorado, (OTS No...

  6. Great Expectations, Mixed Results: Standards and Performance in Denver's New Public Schools, 2007-2011

    Science.gov (United States)

    Ooms, Alexander

    2012-01-01

    In conjunction with the Denver Plan instituted in 2005, Denver Public Schools (DPS) has embarked upon a consistent strategy of opening new schools in an effort to improve overall academic performance. DPS has pursued this strategy under several different paths: an annual request for proposals from charter school applicants; allowing current…

  7. USGS 1:24000 (7 1/2 Minute) Quadrangle Index

    Data.gov (United States)

    Minnesota Department of Natural Resources — Mathematically generated grid representing USGS 7 1/2 Minute Quadrangle Map outlines. Quadrangle names and standard identifiers are included with the data set.

  8. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Tonsina area, Valdez Quadrangle, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 128 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Tonsina area in the Chugach Mountains, Valdez quadrangle, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies

  9. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential.The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska.For this report, DGGS funded reanalysis of 105 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Zane Hills area in the Hughes and Shungnak quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.

  10. Patterns of facial trauma before and after legalization of marijuana in Denver, Colorado: A joint study between two Denver hospitals.

    Science.gov (United States)

    Sokoya, Mofiyinfolu; Eagles, Justin; Okland, Tyler; Coughlin, Dylan; Dauber, Hannah; Greenlee, Christopher; Winkler, Andrew A

    2018-05-01

    The effect of marijuana on human health has been studied extensively. Marijuana intoxication has been shown to affect performance, attention span, and reaction time. The public health relationship between trauma and cannabis use has also been studied, with mixed conclusions. In this report, the effect of marijuana legalization on many aspects of facial trauma at two hospitals in Denver, Colorado is examined. A retrospective review of the electronic medical records was undertaken. Mann-Whitney U tests were used to compare age of patients before and after legalization, and chi squared analyses were used to compare mechanism of injury, and fracture types before and after recreational marijuana legalization in Denver, Colorado. Geographical location of patients was also considered. No significant increase was found in race before and after marijuana legalization (p=0.19). A significant increase in age was found before (M=39.54,SD=16.37), and after (M=41.38,SD=16.66) legalization (p0.05). Public health efforts should be directed towards educating residents and visitors of Colorado on the effects and toxicology of marijuana. More epidemiologic studies are needed for further assessment of the long-term effects of the legalization of marijuana on the population. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Topographic Map of Quadrangle 3468, Chak Wardak Syahgerd (509) and Kabul (510) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  12. Topographic Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  13. Topographic Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  14. Topographic Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  15. Topographic Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  16. Topographic Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  17. Topographic Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  18. Topographic Map of Quadrangle 3466, Lal-Sarjangal (507) and Bamyan (508) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  19. Topographic Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  20. Topographic Map of Quadrangle 3670, Jam-Kashem (223) and Zebak (224) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  1. Topographic Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  2. Topographic Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  3. Topographic Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  4. Topographic Map of Quadrangle 3264, Nawzad-Musa-Qala (423) and Dehrawat (424) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  5. Topographic Map of Quadrangle 3462, Herat (409) and Chesht-Sharif (410) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  6. Topographic Map of Quadrangle 3262, Farah (421) and Hokumat-E-Pur-Chaman (422) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  7. 77 FR 23501 - Notice of Intent To Repatriate Cultural Item: University of Denver Department of Anthropology and...

    Science.gov (United States)

    2012-04-19

    ... Cultural Item: University of Denver Department of Anthropology and Museum of Anthropology, Denver, CO... Anthropology and Museum of Anthropology, in consultation with the appropriate Indian tribes, has determined... University of Denver Department of Anthropology and Museum of Anthropology. DATES: Representatives of any...

  8. National uranium resource evaluation Prescott Quadrangle Arizona

    International Nuclear Information System (INIS)

    May, R.T.; White, D.L.; Nystrom, R.J.

    1982-01-01

    The Prescott Quadrangle was evaluated for uranium favorability by means of a literature search, examination of uranium occurrences, regional geochemical sampling of Precambrian rocks, limited rubidium-strontium studies, scintillometer traverses, measurement of stratigraphic sections, subsurface studies, and an aerial radiometric survey. A limited well-water sampling program for Cenozoic basins was also conducted. Favorability criteria used were those developed for the National Uranium Resource Evaluation. Five geologic environments are favorable for uranium. Three are in Tertiary rocks of the Date Creek-Artillery Basin, Big Sandy Valley, and Walnut Grove Basin. Two are in Precambrian rocks in the Bagdad and Wickenburg areas. Unfavorable areas include the southwestern crystalline terrane, the Paleozoic and Mesozoic beds, and metamorphic and plutonic Precambrian rocks of the Bradshaw and Weaver Mountains. Unevaluated areas are the basalt-covered mesas, alluvium-mantled Cenozoic basins, the Hualapai Mountains, and the Kellwebb Mine

  9. National Uranium Resource Evaluation: Okanogan Quadrangle, Washington

    International Nuclear Information System (INIS)

    Bernardi, M.L.; Powell, L.K.; Wicklund, M.A.

    1982-06-01

    The Okanogan Quadrangle, Washington, was evaluated to identify and delineate areas containing environments favorable for the occurrence of uranium deposits using criteria developed for the National Uranium Resource Evaluation program. Reconnaissance and detailed surface studies were augmented by aerial radiometric surveys and hydrogeochemical and stream-sediment reconnaissance studies. The results of the investigations indicate six environments favorable for uranium deposits. They are unclassified, anatectic, allogenic, and contact-metasomatic deposits in Late Precambrian and (or) Early Paleozoic mantling metamorphic core-complex rocks of the Kettle gneiss dome; magmatic-hydrothermal deposits in the Gold Creek pluton, the Magee Creek pluton, the Wellington Peak pluton, and the Midnite Mine pluton, all located in the southeast quadrant of the quadrangle; magmatic-hydrothermal allogenic deposits in Late Paleozoic and (or) Early Mesozoic black shales in the Castle Mountain area; allogenic deposits in Early Paleozoic metasedimentary rocks in the Harvey Creek area and in Late Precambrian metasedimentary rocks in the Blue Mountain area; and sandstone deposits in Eocene sedimentary rocks possibly present in the Enterprise Valley. Seven geologic units are considered unfavorable for uranium deposits. They are all the remaining metamorphic core-complex rocks, Precambrian metasedimentary rocks,Tertiary sedimentary and volcanic rocks, and all Pleistocene and Recent deposits; and, excluding those rocks in the unevaluated areas, include all the remaining plutonic rocks, Paleozoic miogeoclinical rocks, and Upper Paleozoic and Mesozoic eugeosynclinal rocks. Three areas, the Cobey Creek-Frosty Creek area, the Oregon City Ridge-Wilmont Creek area, and the area underlain by the Middle Cambrian Metaline Formation and its stratigraphic equivalents may possibly be favorable but are unevaluated due to lack of data

  10. Database for the Geologic Map of the Skykomish River 30-Minute by 60-Minute Quadrangle, Washington (I-1963)

    Science.gov (United States)

    Tabor, R.W.; Frizzell, V.A.; Booth, D.B.; Waitt, R.B.; Whetten, J.T.; Zartman, R.E.

    2006-01-01

    This digital map database has been prepared from the published geologic map of the Skykomish River 30- by 60-minute quadrangle by the senior author. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The Straight Creek Fault, a major Pacific Northwest structure which almost bisects the quadrangle, mostly separates unmetamorphosed and low-grade metamorphic Paleozoic and Mesozoic oceanic rocks on the west from medium- to high-grade metamorphic rocks on the east. Within the quadrangle the lower grade rocks are mostly Mesozoic melange units. To the east, the higher-grade terrane is mostly the Chiwaukum Schist and related gneisses of the Nason terrane and invading mid-Cretaceous stitching plutons. The Early Cretaceous Easton Metamorphic Suite crops out on both sides of the Straight Creek fault and records it's dextral displacement. On the south margin of the quadrangle, the fault separates the lower Eocene Swauk Formation on the east from the upper Eocene and Oligocene(?) Naches Formation and, farther north, its correlative Barlow Pass Volcanics the west. Stratigraphically equivalent rocks of the Puget Group crop out farther to the west. Rocks of

  11. Geologic Map of the Lavinia Planitia Quadrangle (V-55), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2001-01-01

    Introduction The Lavinia Planitia quadrangle (V-55) is in the southern hemisphere of Venus and extends from 25 to 50 south latitude and from 330 to 360 longitude. It covers the central and northern part of Lavinia Planitia and parts of its margins. Lavinia Planitia consists of a centralized, deformed lowland flooded by volcanic deposits and surrounded by Dione Regio to the west (Keddie and Head, 1995), Alpha Regio tessera (Bindschadler and others, 1992a) and Eve Corona (Stofan and others, 1992) to the northeast, itself an extensive rift zone and coronae belt to the east and south (Baer and others, 1994; Magee and Head, 1995), Mylitta Fluctus to the south (Magee Roberts and others, 1992), and Helen Planitia to the southwest (Senske and others, 1991). In contrast to other areas on Venus, the Lavinia Planitia area is one of several large, relatively equidimensional lowlands (basins) and as such is an important region for the analysis of processes of basin formation and volcanic flooding. Before the Magellan mission, Lavinia Planitia was known on the basis of Pioneer-Venus altimetry to be a lowland area (Pettengill and others, 1980);. Arecibo radar images showed that Lavinia Plaitia was surrounded by several corona-like features and rift-like fractures parallel to the basin margin to the east and south (Senske and others, 1991; Campbell and others, 1990). Arecibo data further revealed that the interior contained complex patterns of deformational features in the form of belts and volcanic plains, and several regions along the margins were seen to be the sources of extensive outpourings of digitate lava flows into the interior (Senske and others, 1991; Campbell and others, 1990). Early Magellan results showed that the ridge belts are composed of complex structures of both extensional and contractional origin (Squyres and others, 1992; Solomon and others, 1992) and that the complex lava flows (fluctus) along the margins (Magee Roberts and others, 1992) emanated from a

  12. National Uranium Resource Evaluation: Greensboro Quadrangle, North Carolina and Virginia

    International Nuclear Information System (INIS)

    Dribus, J.R.; Hurley, B.W.; Lawton, D.E.; Lee, C.H.

    1982-07-01

    The Greensboro Quadrangle, North Carolina and Virginia, was evaluated to identify and delineate areas favorable for the occurrence of uranium deposits. General surface reconnaissance and geochemical sampling were carried out in all geologic environments within the quadrangle. Aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data were analyzed, and ground-truth followup studies of anomalies were conducted. Detailed surface investigations, log and core studies, and a radon emanometry survey were conducted in selected environments. The results of this investigation suggest environments favorable for allogenic uranium deposits in metamorphic rocks adjacent to the intrusive margins of the Rolesville, Castalia, Redoak, and Shelton granite plutons, and sandstone-type deposits in the sediments of the Durham and Dan River Triassic basin systems. Environments in the quadrangle considered unfavorable for uranium deposits are pegmatites and metamorphic rocks and their included veins associated with fault and shear zones

  13. 78 FR 50095 - Notice of Inventory Completion: History Colorado, Formerly Colorado Historical Society, Denver, CO

    Science.gov (United States)

    2013-08-16

    ... Mountain Reservation, Colorado, New Mexico & Utah may proceed. History Colorado is responsible for....R50000] Notice of Inventory Completion: History Colorado, Formerly Colorado Historical Society, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. [[Page 50096

  14. South Platte Watershed from the Headwaters to the Denver Metropolitan Area (Colorado) Systems Thinking

    Science.gov (United States)

    South Platte Watershed from the Headwaters to the Denver Metropolitan Area (Colorado) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating

  15. The Denver region traffic signal system improvement program : planning for management and operations

    Science.gov (United States)

    2009-04-01

    The Denver Regional Council of Governments (DRCOG) works with over 30 local jurisdictions on the Traffic Signal System Improvement Program (TSSIP), a combination of management and operations strategies designed to time and coordinate traffic signals ...

  16. Superfund Record of Decision (EPA Region 8): Denver Radium Site Streets, Colorado, March 1986. Final report

    International Nuclear Information System (INIS)

    1986-01-01

    Denver Radium Site Streets is located in Denver, Colorado. The operable unit is comprised of eight street segments in the Cheesman Park area and one segment in the upper downtown area. The nine contaminated street segments are owned by the City and County of Denver and extend approximately 4.5 miles through largely residential areas. The Denver Radium Site Streets contain a 4- to 6-inch layer of radium-contaminated asphalt. The contaminated layer is underlain by compacted gravel road base and is usually overlain by 4 to 12 inches of uncontaminated asphalt pavement. There is an estimated 38,500 cubic yards of contaminated material covering approximately 832,000 square feet. The selected remedial action for the site includes: leaving the contaminated material in place; improving institutional controls; and removing any contaminated material excavated during routine maintenance, repair, or construction activities in the affected streets to a facility approved for storage or disposal of contaminated material

  17. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  18. Geology of the Lachesis Tessera Quadrangle (V-18), Venus

    Science.gov (United States)

    McGowan, Eileen M.; McGill, George G.

    2010-01-01

    The Lachesis Tessera Quadrangle (V-18) lies between 25deg and 50deg north, 300deg and 330deg east. Most of the quadrangle consists of "regional plains" (1) of Sedna and Guinevere Planitiae. A first draft of the geology has been completed, and the tentative number of mapped units by terrain type is: tesserae - 2; plains - 4; ridge belts - 1; fracture belts - 1 (plus embayed fragments of possible additional belts); coronae - 5; central volcanoes - 2; shield flows - 2; paterae - 1; impact craters - 13; undifferentiated flows - 1; bright materials - 1.

  19. Geologic map of the Bateman Spring Quadrangle, Lander County, Nevada

    Science.gov (United States)

    Ramelli, Alan R.; Wrucke, Chester T.; House, P. Kyle

    2017-01-01

    This 1:24,000-scale geologic map of the Bateman Spring 7.5-minute quadrangle in Lander County, Nevada contains descriptions of 24 geologic units and one cross section. Accompanying text includes full unit descriptions and references. This quadrangle includes lower Paleozoic siliciclastic sedimentary rocks of the Roberts Mountain allochthon, Miocene intrusive dikes, alluvial deposits of the northern Shoshone Range piedmont, and riverine deposits of the Reese and Humboldt rivers.Significant findings include: refined age estimates for the Ordovician-Cambrian Valmy Formation and Devonian Slaven Chert, based on new fossil information; and detailed mapping of late Quaternary fault traces along the Shoshone Range fault system.

  20. Surficial geologic map of the Elizabethtown 30' x 60' quadrangle, North Carolina

    Science.gov (United States)

    Weems, Robert E.; Lewis, William C.; Crider, E. Allen

    2011-01-01

    The Elizabethtown 30' x 60' quadrangle is located in southeastern North Carolina between Fayetteville and Wilmington. Most of the area is flat to gently rolling, although steep slopes occur locally along some of the larger streams. Total relief in the area is slightly over 210 feet (ft), with elevations ranging from slightly less than 10 ft above sea level along the Black River (east of Rowan in the southeastern corner of the map) to slightly over 220 ft in the northwestern corner northeast of Hope Mills. The principal streams in the area are the Cape Fear, Black, South, and Lumber Rivers, which on average flow from northwest to southeast across the map area. The principal north-south roads are Interstate Route 95, Interstate Route 40, U.S. Route 117, U.S. Route 301, U.S. Route 421, and U.S. Route 701, and the principal east-west roads are N.C. State Route 241 and N.C. State Route 41. This part of North Carolina is primarily rural and agricultural. The largest communities in and adjacent to the area are Elizabethtown, Hope Mills, Clinton, Warsaw, and Lumberton. The map lies entirely within the Atlantic Coastal Plain physiographic province. Outstanding features of this area are the large number of sand-rimmed Carolina bays, five of which contain enough water to constitute natural lakes: Bay Tree Lake, Salter Lake, Little Singletary Lake, Singletary Lake, and White Lake. These are associated with widespread windblown sand deposits on which are grown abundant crops of blueberries. The extent and distribution of these deposits have been estimated based on a combination of augerhole, outcrop, and light-detection and ranging (LIDAR) data. The geology of the Elizabethtown 30' x 60' quadrangle was originally mapped on 32 7.5-minute quadrangles at 1:24,000 scale and then compiled on this 1:100,000-scale base. The base-map topographic contours on this compilation are shown in meters; the cross sections, structure contours, and well and corehole basement elevations have been

  1. National Uranium Resource Evaluation: Hutchinson Quadrangle, Kansas

    International Nuclear Information System (INIS)

    Fair, C.L.; Smit, D.E.; Gundersen, J.N.

    1982-08-01

    Surface reconnaissance and detailed subsurface studies were done within the Hutchinson Quadrangle, Kansas, to evaluate uranium favorability in accordance with National Uranium Resource Evaluation criteria. These studies were designed in part to follow up prior airborne radiometric, hydrogeochemical, and stream-sediment surveys. Over 4305 well records were examined in the subsurface phase of this study. The results of these investigations indicate environments favorable for channel-controlled peneconcordant sandstone deposits in rocks of Cretaceous age and for Wyoming and Texas roll-type deposits in sandstones of Pennsylvanian age. The Cretaceous sandstone environments exhibit favorable characteristics such as a bottom unconformity; high bedload; braided, fluvial channels; large-scale cross-bedding; and an anomalous outcrop. The Pennsylvanian sandstone environments exhibit favorable characteristics such as arkosic cross-bedded sandstones, included pyrite and organic debris, interbedded shales, and gamma-ray log anomalies. Environments considered unfavorable for uranium deposits are limestone and dolomite environments, marine black shale environments, evaporative precipitate environments, and some fluvial sandstone environments. Environments considered unevaluated due to insufficient data include Precambrian plutonic, metamorphic, and sedimentary rocks, even though a large number of thin sections were available for study

  2. National Uranium Resource Evaluation: Manhattan Quadrangle, Kansas

    International Nuclear Information System (INIS)

    Fair, C.L.; Smit, D.E.

    1982-08-01

    Surface reconnaissance and detailed subsurface studies were conducted in the Manhattan Quadrangle, Kansas, to evaluate uranium favorability using National Uranium Resource Evaluation criteria. These studies were designed in part to follow up airborne radiometric and hydrogeochemical and stream-sediment surveys. More than 600 well records were examined in the subsurface phase of the study. Results of these investigations indicate environments favorable for channel-controlled peneconcordant sandstone uranium deposits in Cretaceous rocks and for Wyoming roll-type deposits in Pennsylvanian sandstones. The Cretaceous sandstone environments exhibit such favorable characteristics as a bottom unconformity, high bed load, braided fluvial channels, large-scale cross-bedding, and one anomalous outcrop. The Pennsylvanian sandstone environments exhibit such favorable characteristics as arkosic cross-bedded sandstones, included pyrite and organic debris, interbedded shales, and gamma-ray log anomalies. Environments considered unfavorable for uranium deposits are limestone and dolomite environments, marine black shale environments, evaporative precipitate environments, and some fluvial sandstone environments. Environments considered unevaluated because not enough data were available include Precambrian plutonic, metamorphic, and sedimentary rocks, even though a large number of thin sections were available for study

  3. National uranium resource evaluation: Williams quadrangle, Arizona

    International Nuclear Information System (INIS)

    O'Neill, A.J.; Nystrom, R.J.; Thiede, D.S.

    1981-03-01

    Geologic environments of the Williams Quadrangle, Arizona, were evaluated for uranium favorability by means of literature research, uranium-occurrence investigation and other surface studies, subsurface studies, aerial radiometric data, hydrogeochemical data, and rock-sample analytic data. Favorability criteria are those of the National Uranium Resource Evaluation program. Three geologic environments are favorable for uranium: the Tertiary fluvial rocks of the Colorado Plateau where they unconformably overlie impermeable bed rock (for channel-controlled peneconcordant deposits); collapse breccia pipes in Paleozoic strata of the Colorado Plateau (for vein-type deposits in sedimentary rocks); and Precambrian crystalline rocks of the Hualapai, Peacock, and Aquarius Mountains, and Cottonwood and Grand Wash Cliffs (for magmatic-hydrothermal deposits). Unfavorable geologic environments are: Tertiary and Quaternary volcanic rocks, Tertiary and Quaternary sedimentary rocks of the Colorado Plateau, nearly all Paleozoic and Mesozoic sedimentary rocks, and the Precambrian-Cambrian unconformity of the Grand Wash Cliffs area. Tertiary rocks in Cenozoic basins and Precambrian crystalline rocks in the Grand Canyon region and in parts of the Aquarius Mountains and Cottonwood and Grand Wash Cliffs are unevaluated

  4. National Uranium Resource Evaluation: Salina Quadrangle, Utah

    International Nuclear Information System (INIS)

    Lupe, R.D.; Campbell, J.A.; Franczyk, K.J.; Luft, S.J.; Peterson, F.; Robinson, K.

    1982-09-01

    Two stratigraphic units, the Late Jurassic Salt Wash Member of the Morrison Formation and the Triassic Chinle Formation, were determined to be favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the US Department of Energy in the Salina 1 x 2 0 Quadrangle, Utah. Three areas judged favorable for the Salt Wash Member are the Tidwell and Notom districts, and the Henry Mountains mineral belt. The criteria used to establish favorability were the presence of: (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Four favorable areas have been outlined for the Chinle Formation. These are the San Rafael Swell, Inter River, and the Orange Cliffs subareas and the Capitol Reef area. The criteria used to establish these areas are: the sandstone-to-mudstone ratios and the geographic distribution of the Petrified Forest Member of the Chinle Formation which is considered as the probable source for the uranium

  5. Photochemistry in the Atmospheres of Denver and Mexico City

    Science.gov (United States)

    Cantrell, C. A.

    2016-12-01

    The composition of atmospheres in and downwind of urban centers has been the subject of study for decades. While early campaigns involved measurements exclusively from the ground, more recent studies have included airborne-based observations. Improved understanding has hinged critically on the development of instrumentation for better qualitifcation of pollutants, and measurement of previously unobserved species in the gas and particulate phases. Comprehensive, well-planned studies have, over time, led to more detailed understanding of chemical transformations and thus improved model representations and directions for further research. This presentation focuses on findings from two case studies of urban atmospheres, namely the MILAGRO study in the Mexico City metropolitan area and the FRAPPE study in the Denver metropolitan region. Both studies made use of extensive ground-based networks and multiple aircraft platforms. The data collected during these studies have been combined with numerical models to derive assessments of the evolution of atmospheric composition due to photochemistry, mixing, and surface processes. Here, analysis of MILAGRO data focuses on the evolution of outflow downwind of the urban region. In FRAPPE, the focus is the possible role of oil and gas exploration on urban air quality. These findings are used to assess the accuracy of current numerical models to reproduce observations, and to point toward areas possibly needing further study.

  6. Digital geologic map of the Thirsty Canyon NW quadrangle, Nye County, Nevada

    Science.gov (United States)

    Minor, S.A.; Orkild, P.P.; Sargent, K.A.; Warren, R.G.; Sawyer, D.A.; Workman, J.B.

    1998-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, dike, and caldera wall), and point (i.e., structural attitude) vector data for the Thirsty Canyon NW 7 1/2' quadrangle in southern Nevada. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic and tectonic interest. The Thirsty Canyon NW quadrangle is located in southern Nye County about 20 km west of the Nevada Test Site (NTS) and 30 km north of the town of Beatty. The map area is underlain by extensive layers of Neogene (about 14 to 4.5 million years old [Ma]) mafic and silicic volcanic rocks that are temporally and spatially associated with transtensional tectonic deformation. Mapped volcanic features include part of a late Miocene (about 9.2 Ma) collapse caldera, a Pliocene (about 4.5 Ma) shield volcano, and two Pleistocene (about 0.3 Ma) cinder cones. Also documented are numerous normal, oblique-slip, and strike-slip faults that reflect regional transtensional deformation along the southern part of the Walker Lane belt. The Thirsty Canyon NW map provides new geologic information for modeling groundwater flow paths that may enter the map area from underground nuclear testing areas located in the NTS about 25 km to the east. The geologic map database comprises six component ArcINFO map coverages that can be accessed after decompressing and unbundling the data archive file (tcnw.tar.gz). These six coverages (tcnwpoly, tcnwflt, tcnwfold, tcnwdike, tcnwcald, and tcnwatt) are formatted here in ArcINFO EXPORT format. Bundled with this database are two PDF files for readily viewing and printing the map, accessory graphics, and a description of map units and compilation methods.

  7. NURE aerial gamma-ray and magnetic reconnaissance survey: NE Washington area, Okanogan NM 11-10, Sandpoint NM 11-11 Quadrangles. Volume I. Narrative report

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    As part of the Department of Energy (DOE) National Uranium Resource Evaluation (NURE) Program, LKB Resources, Inc. has performed a rotary-wing, reconnaissance high sensitivity radiometric and magnetic survey in north-east Washington. Three 1:250,000 scale NTMS quadrangles (Spokane, Sandpoint, and Okanogan) were surveyed. A total of 14,421 line miles (23,203 kilometers) of data were collected utilizing a Sikorsky S58T helicopter. Traverse lines were flown in an east-west direction at 1.0 and 3.0 mile (1.6 and 4.8 kilometers) spacing, with tie lines flown in a north-south direction at 12 mile (20 kilometer) spacing. The data were digitally recorded at 1.0 second intervals. The NaI terrestrial detectors used in this survey had a total volume of 2,154 cubic inches. The magnetometer employed was a modified ASQ-10 fluxgate system. This report covers only the Okanogan and Sandpoint 1:250,000 scale NTMS quadrangles. Spokane 1:250,000 scale NTMS quadrangle is covered in a separate report. The radiometric data were normalized to 400 feet terrain clearance. The data are presented in the form of computer listings on microfiche and as stacked profile plots. Profile plots are contained in Volume II of this report. A geologic interpretation of the radiometric and magnetic data is included as part of this report.

  8. NURE aerial gamma-ray and magnetic reconnaissance survey: NE Washington area, Okanogan NM 11-10, Sandpoint NM 11-11 Quadrangles. Volume I. Narrative report

    International Nuclear Information System (INIS)

    1979-08-01

    As part of the Department of Energy (DOE) National Uranium Resource Evaluation (NURE) Program, LKB Resources, Inc. has performed a rotary-wing, reconnaissance high sensitivity radiometric and magnetic survey in north-east Washington. Three 1:250,000 scale NTMS quadrangles (Spokane, Sandpoint, and Okanogan) were surveyed. A total of 14,421 line miles (23,203 kilometers) of data were collected utilizing a Sikorsky S58T helicopter. Traverse lines were flown in an east-west direction at 1.0 and 3.0 mile (1.6 and 4.8 kilometers) spacing, with tie lines flown in a north-south direction at 12 mile (20 kilometer) spacing. The data were digitally recorded at 1.0 second intervals. The NaI terrestrial detectors used in this survey had a total volume of 2,154 cubic inches. The magnetometer employed was a modified ASQ-10 fluxgate system. This report covers only the Okanogan and Sandpoint 1:250,000 scale NTMS quadrangles. Spokane 1:250,000 scale NTMS quadrangle is covered in a separate report. The radiometric data were normalized to 400 feet terrain clearance. The data are presented in the form of computer listings on microfiche and as stacked profile plots. Profile plots are contained in Volume II of this report. A geologic interpretation of the radiometric and magnetic data is included as part of this report

  9. Geologic map of the Ganiki Planitia quadrangle (V-14), Venus

    Science.gov (United States)

    Grosfils, Eric B.; Long, Sylvan M.; Venechuk, Elizabeth M.; Hurwitz, Debra M.; Richards, Joseph W.; Drury, Dorothy E.; Hardin, Johanna

    2011-01-01

    The Ganiki Planitia (V-14) quadrangle on Venus, which extends from 25° N. to 50° N. and from 180° E. to 210° E., derives its name from the extensive suite of plains that dominates the geology of the northern part of the region. With a surface area of nearly 6.5 x 106 km2 (roughly two-thirds that of the United States), the quadrangle is located northwest of the Beta-Atla-Themis volcanic zone and southeast of the Atalanta Planitia lowlands, areas proposed to be the result of large scale mantle upwelling and downwelling, respectively. The region immediately south of Ganiki Planitia is dominated by Atla Regio, a major volcanic rise beneath which localized upwelling appears to be ongoing, whereas the area just to the north is dominated by the orderly system of north-trending deformation belts that characterize Vinmara Planitia. The Ganiki Planitia quadrangle thus lies at the intersection between several physiographic regions where extensive mantle flow-induced tectonic and volcanic processes are thought to have occurred. The geology of the V-14 quadrangle is characterized by a complex array of volcanic, tectonic, and impact-derived features. There are eleven impact craters with diameters from 4 to 64 km, as well as four diffuse 'splotch' features interpreted to be the product of near-surface bolide explosions. Tectonic activity has produced heavily deformed tesserae, belts of complex deformation and rifts as well as a distributed system of fractures and wrinkle ridges. Volcanic activity has produced extensive regional plains deposits, and in the northwest corner of the quadrangle these plains host the initial (or terminal) 700 km of the Baltis Vallis canali, an enigmatic volcanic feature with a net length of ~7,000 km that is the longest channel on Venus. Major volcanic centers in V-14 include eight large volcanoes and eight coronae; all but one of these sixteen features was noted during a previous global survey. The V-14 quadrangle contains an abundance of minor

  10. Geologic map of the Sunshine 7.5' quadrangle, Taos County, New Mexico

    Science.gov (United States)

    Thompson, Ren A.; Turner, Kenzie J.; Shroba, Ralph R.; Cosca, Michael A.; Ruleman, Chester A.; Lee, John P.; Brandt, Theodore R.

    2014-01-01

    The Sunshine 7.5' quadrangle is located in the south-central part of the San Luis Basin of northern New Mexico, in the Rio Grande del Norte National Monument, and contains deposits that record volcanic, tectonic, and associated alluvial and colluvial processes over the past four million years. Sunshine Valley, named for the small locale of Sunshine, is incised by a series of northeast-trending drainages cut into Tertiary and Quaternary alluvial deposits forming an extensive alluvial apron between the east flank of the Sangre de Cristo Mountains and the Rio Grande. These deposits predominantly overlie gently eastward-dipping lava flows of Pliocene Servilleta Basalt erupted from centers west of the map area. Servilleta Basalt lava flows terminate to the south against the elevated topography of three volcanic centers of the Taos Plateau volcanic field. From west to east these are Cerro de la Olla, Cerro Chiflo, and Guadalupe Mountain that are exposed in the southern part of the map area. Remnants of Miocene volcanic rocks are exposed near the southwestern edge of the map area and record evidence of an eroded volcanic terrain underlying deposits of the Taos Plateau volcanic field. These deposits are likely fault bounded to the east, roughly coincident with north to northwest trending, down-to-east faults in the southwestern quarter of the map area. The down-to-east normal faults reflect the basinward migration of the western margin of the Sunshine Valley sub-basin of the southern San Luis Basin.

  11. Geologic and geophysical maps and volcanic history of the Kelton Pass SE and Monument Peak SW Quadrangles, Box Elder County, Utah

    Science.gov (United States)

    Felger, Tracey J.; Miller, David; Langenheim, Victoria; Fleck, Robert J.

    2016-01-01

    The Kelton Pass SE and Monument Peak SW 7.5' quadrangles are located in Box Elder County, northwestern Utah (figure 1; plate 1). The northern boundary of the map area is 8.5 miles (13.7 km) south of the Utah-Idaho border, and the southern boundary reaches the edge of mud flats at the north end of Great Salt Lake. Elevations range from 4218 feet (1286 m) along the mud flats to 5078 feet (1548 m) in the Wildcat Hills. Deep Creek forms a prominent drainage between the Wildcat Hills and Cedar Hill. The closest towns are the ranching communities of Snowville, Utah (10 miles [16 km] to the northeast) (figure 1), and Park Valley, Utah (10 miles [16 km] to the west).The Kelton Pass SE and Monument Peak SW 7.5' quadrangles are located entirely within southern Curlew Valley, which drains south into Great Salt Lake, and extends north of the area shown on figure 1 into Idaho. Curlew Valley is bounded on the west by the Raft River Mountains and on the east by the Hansel Mountains (figure 1). Sedimentary and volcanic bedrock exposures within the quadrangles form the Wildcat Hills, Cedar Hill, and informally named Middle Shield (figure 1). Exposed rocks and deposits are Permian to Holocene in age, and include the Permian quartz sandstone and orthoquartzite of the Oquirrh Formation (Pos), tuffaceous sedimentary rocks of the Miocene Salt Lake Formation (Ts), Pliocene basaltic lava flows (Tb) and dacite (Tdw), Pleistocene rhyolite (Qrw) and basalt (Qb), and Pleistocene and Holocene surficial deposits of alluvial, lacustrine, and eolian origin. Structurally, the map area is situated in the northeastern Basin and Range Province, and is inferred to lie within the hanging wall of the late Miocene detachment faults exposed in the Raft River Mountains to the northwest (e.g., Wells, 1992, 2009; figure 1).This mapping project was undertaken to produce a comprehensive, large-scale geologic map of the Wildcat Hills, as well as to improve understanding of the volcanic and tectonic evolution of

  12. Geologic map of the Providence Mountains in parts of the Fountain Peak and adjacent 7.5' quadrangles, San Bernardino County, California

    Science.gov (United States)

    Stone, Paul; Miller, David M.; Stevens, Calvin H.; Rosario, Jose J.; Vazquez, Jorge A.; Wan, Elmira; Priest, Susan S.; Valin, Zenon C.

    2017-03-22

    IntroductionThe Providence Mountains are in the eastern Mojave Desert about 60 km southeast of Baker, San Bernardino County, California. This range, which is noted for its prominent cliffs of Paleozoic limestone, is part of a northeast-trending belt of mountainous terrain more than 100 km long that also includes the Granite Mountains, Mid Hills, and New York Mountains. Providence Mountains State Recreation Area encompasses part of the range, the remainder of which is within Mojave National Preserve, a large parcel of land administered by the National Park Service. Access to the Providence Mountains is by secondary roads leading south and north from Interstate Highways 15 and 40, respectively, which bound the main part of Mojave National Preserve.The geologic map presented here includes most of Providence Mountains State Recreation Area and land that surrounds it on the north, west, and south. This area covers most of the Fountain Peak 7.5′ quadrangle and small adjacent parts of the Hayden quadrangle to the north, the Columbia Mountain quadrangle to the northeast, and the Colton Well quadrangle to the east. The map area includes representative outcrops of most of the major geologic elements of the Providence Mountains, including gneissic Paleoproterozoic basement rocks, a thick overlying sequence of Neoproterozoic to Triassic sedimentary rocks, Jurassic rhyolite that intrudes and overlies the sedimentary rocks, Jurassic plutons and associated dikes, Miocene volcanic rocks, and a variety of Quaternary surficial deposits derived from local bedrock units. The purpose of the project was to map the area in detail, with primary emphasis on the pre-Quaternary units, to provide an improved stratigraphic, structural, and geochronologic framework for use in land management applications and scientific research.

  13. Denver Reengineers: By Relying More on Vendors and Technology, Jo Sarling Explains How the Denver Public Library Shifted Resources to the Public

    Science.gov (United States)

    Sarling, Jo

    2005-01-01

    This article gives details of the developments and changes in the Denver Public Library (DPL). Through a review of advancements in technology, vendor capabilities, staffing levels and talent, as well as outsourcing opportunities, DPL reinvented its workflow and processing. The result? The once giant stacks of books, CDs, videos, and DVDs waiting…

  14. Digital bedrock geologic map of the Andover quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-31A Ratcliffe, N.M., 1996,�Digital bedrock geologic map of the Andover quadrangle, Vermont: USGS Open-File Report 96-31-A, 2 plates, scale...

  15. National Uranium Resource Evaluation: Iron River Quadrangle, Michigan and Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Frishman, D

    1982-09-01

    No area within the Iron River 1/sup 0/ x 2/sup 0/ Quadrangle, Michigan and Wisconsin, appears to be favorable for the existence of a minimum of 100 tons of U/sub 3/O/sub 8/ at a grade of 0.01 percent or better.

  16. Geology of the Horse Range Mesa quadrangle, Colorado

    Science.gov (United States)

    Cater, Fred W.; Bush, A.L.; Bell, Henry; Withington, C.F.

    1953-01-01

    The Horse Range Mesa quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary strictures in sandstones of favorable composition.

  17. Geological Mapping of the Debussy Quadrangle (H-14) Preliminary Results

    Science.gov (United States)

    Pegg, D. L.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-05-01

    We present the current status of geological mapping of the Debussy quadrangle. Mapping underway as part of a program to map the entire planet at a scale of 1:3M using MESSENGER data in preparation for the BepiColombo mission.

  18. Surficial geology of Panther Lake Quadrangle, Oswego County, New York

    Science.gov (United States)

    Miller, Todd S.

    1981-01-01

    The location and extent of eight kinds of surficial deposits in Panther Lake quadrangle, Oswego County, N.Y., are mapped on a 7.5-minute U.S. Geological Survey topographic map. The map was compiled to indicate the lithology and potential for groundwater development at any specific location. (USGS)

  19. Digital bedrock geologic map of the Weston quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-526A Ratcliffe, NM�and Burton, WC, 1996,�Digital bedrock geologic map of the Weston quadrangle, Vermont: USGS Open-File Report 96-526, 2...

  20. Digital bedrock geologic map of the Chester quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-576A Ratcliffe, N.M., 1995,�Digital bedrock geologic map of the Chester quadrangle, Vermont: USGS Open-File Report 95-576, 2 plates, scale...

  1. Digital bedrock geologic map of the Plymouth quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG94-654A Walsh, G.J., and Ratcliffe, N.M., 1994,�Digital bedrock geologic map of the Plymouth quadrangle, Vermont: USGS Open-File Report 94-654, 2...

  2. Digital bedrock geologic map of the Johnson quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-2 Thompson, PJ�and Thompson, TB, 1998,�Digital bedrock geologic map of the Johnson quadrangle, Vermont: VGS Open-File Report VG98-2, 2 plates,...

  3. Digital bedrock geologic map of the Rochester quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-33A Walsh, GJ�and Falta, CK, 1996, Digital bedrock geologic map of the Rochester quadrangle, Vermont: USGS Open-File Report 96-33-A, 2 plates,...

  4. Digital bedrock geologic map of the Eden quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-3 Kim, J, Springston, G, and Gale, M, 1998,�Digital bedrock geologic map of the Eden quadrangle, Vermont: VGS Open-File Report VG98-3, 2...

  5. THE JAMES MADISON WOOD QUADRANGLE, STEPHENS COLLEGE, COLUMBIA, MISSOURI.

    Science.gov (United States)

    MCBRIDE, WILMA

    THE JAMES MADISON WOOD QUADRANGLE AT STEPHENS COLLEGE IS A COMPLEX OF BUILDINGS DESIGNED TO MAKE POSSIBLE A FLEXIBLE EDUCATIONAL ENVIRONMENT. A LIBRARY HOUSES A GREAT VARIETY OF AUDIO-VISUAL RESOURCES AND BOOKS. A COMMUNICATION CENTER INCORPORATES TELEVISION AND RADIO FACILITIES, A FILM PRODUCTION STUDIO, AND AUDIO-VISUAL FACILITIES. THE LEARNING…

  6. Surficial geology of Hannibal Quadrangle, Oswego County, New York

    Science.gov (United States)

    Miller, Todd S.

    1981-01-01

    The location and extent of 10 kinds of surficial deposits in part of Hannibal quadrangle, Oswego County, N.Y., are mapped on a 7.5-minute U.S. Geological Survey topographic map. The map was compiled to indicate the lithology and potential for ground-water development at any specific location. (USGS)

  7. Modern shelf ice, equatorial Aeolis Quadrangle, Mars

    Science.gov (United States)

    Brakenridge, G. R.

    1993-01-01

    As part of a detailed study of the geological and geomorphological evolution of Aeolis Quadrangle, I have encountered evidence suggesting that near surface ice exists at low latitudes and was formed by partial or complete freezing of an inland sea. The area of interest is centered at approximately -2 deg, 196 deg. As seen in a suite of Viking Orbiter frames obtained at a range of approximately 600 km, the plains surface at this location is very lightly cratered or uncratered, and it is thus of late Amazonian age. Extant topographic data indicate that the Amazonian plains at this location occupy a trough whose surface lies at least 1000 m below the Mars datum. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. In either case, the thin (a few meters at most) high albedo, low thermal inertia cover of aeolian materials was instrumental in allowing ice preservation, and at least the lower portions of this dust cover may be cemented by water ice. Detailed mapping using Viking stereopairs and quantitative comparisons to terrestrial shelf ice geometries are underway.

  8. Denver Public Library Western History/Genealogy Digital Collections

    Science.gov (United States)

    box. Results will be a list of records that contain those words anywhere in the record. Refine your Henry Jackson Photos William Henry Jackson: American West Mining Photos Mining Louis Charles McClure Photos Louis Charles McClure: Colorado Otto Perry Photos Otto Perry: Railroads Robert W. Richardson

  9. Digital bedrock geologic map of the Arlington quadrangle and a Vermont portion of the Shushan quadrangle, Vermont: USGS Open-File Report 95-483, 2 plates, scale 1:24000

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-483A Lyttle, PT,�Digital bedrock geologic map of the Arlington quadrangle and a Vermont portion of the Shushan quadrangle, Vermont: USGS...

  10. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Haines area, Juneau and Skagway quadrangles, southeast Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 212 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Chilkat, Klehini, Tsirku, and Takhin river drainages, as well as smaller drainages flowing into Chilkat and Chilkoot Inlets near Haines, Skagway Quadrangle, Southeast Alaska. Additionally some samples were also chosen from the Juneau gold belt, Juneau Quadrangle, Southeast Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical

  11. Bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire

    Science.gov (United States)

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire, covers an area of approximately 73 square miles (189 square kilometers) in west-central New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic Suite, and extends from Maine, through western New Hampshire (down the eastern side of the Connecticut River), through southern New England to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (lower and upper sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of slate, phyllite, ironstone, chert, sandstone, and pelite. The Albee Formation underlies the Ammonoosuc Volcanics and is predominantly composed of interbedded metamorphosed sandstone

  12. Topographic Map of Quadrangle 3368 and Part of Quadrangle 3370, Ghazni (515), Gardez (516), and Jaji-Maydan (517) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  13. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Range, Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 670 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the northeastern Alaska Range, in the Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical

  14. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Kougarok area, Bendeleben and Teller quadrangles, Seward Peninsula, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 302 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Kougarok River drainage as well as smaller adjacent drainages in the Bendeleben and Teller quadrangles, Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated

  15. Bedrock geology and mineral resources of the Knoxville 1° x 2° quadrangle, Tennessee, North Carolina, and South Carolina

    Science.gov (United States)

    Robinson, Gilpin R.; Lesure, Frank G.; Marlowe, J. I.; Foley, Nora K.; Clark, S.H.

    2004-01-01

    The Knoxville 1°x 2° quadrangle spans the Southern Blue Ridge physiographic province at its widest point from eastern Tennessee across western North Carolina to the northwest corner of South Carolina. The quadrangle also contains small parts of the Valley and Ridge province in Tennessee and the Piedmont province in North and South Carolina. Bedrock in the Valley and Ridge consists of unmetamorphosed, folded and thrust-faulted Paleozoic miogeoclinal sedimentary rocks ranging in age from Cambrian to Mississippian. The Blue Ridge is a complex of stacked thrust sheets divided into three parts: (1) a west flank underlain by rocks of the Late Proterozoic and Early Cambrian Chilhowee Group and slightly metamorphosed Late Proterozoic Ocoee Supergroup west of the Greenbrier fault; (2) a central part containing crystalline basement of Middle Proterozoic age (Grenville), Ocoee Supergroup rocks east of the Greenbrier fault, and rocks of the Murphy belt; and (3) an east flank containing the Helen, Tallulah Falls, and Richard Russell thrust sheets and the amphibolitic basement complex. All of the east flank thrust sheets contain polydeformed and metamorphosed sedimentary and igneous rocks of mostly Proterozoic age. The Blue Ridge is separated by the Brevard fault zone from a large area of rocks of the Inner Piedmont to the east, which contains the Six Mile thrust sheet and the ChaugaWalhalla thrust complex. All of these rocks are also polydeformed and metamorphosed sedimentary and igneous rocks. The Inner Piedmont rocks in this area occupy both the Piedmont and part of the Blue Ridge physiographic provinces.

  16. Quality of groundwater in the Denver Basin aquifer system, Colorado, 2003-5

    Science.gov (United States)

    Musgrove, MaryLynn; Beck, Jennifer A.; Paschke, Suzanne; Bauch, Nancy J.; Mashburn, Shana L.

    2014-01-01

    Groundwater resources from alluvial and bedrock aquifers of the Denver Basin are critical for municipal, domestic, and agricultural uses in Colorado along the eastern front of the Rocky Mountains. Rapid and widespread urban development, primarily along the western boundary of the Denver Basin, has approximately doubled the population since about 1970, and much of the population depends on groundwater for water supply. As part of the National Water-Quality Assessment Program, the U.S. Geological Survey conducted groundwater-quality studies during 2003–5 in the Denver Basin aquifer system to characterize water quality of shallow groundwater at the water table and of the bedrock aquifers, which are important drinking-water resources. For the Denver Basin, water-quality constituents of concern for human health or because they might otherwise limit use of water include total dissolved solids, fluoride, sulfate, nitrate, iron, manganese, selenium, radon, uranium, arsenic, pesticides, and volatile organic compounds. For the water-table studies, two monitoring-well networks were installed and sampled beneath agricultural (31 wells) and urban (29 wells) land uses at or just below the water table in either alluvial material or near-surface bedrock. For the bedrock-aquifer studies, domestic- and municipal-supply wells completed in the bedrock aquifers were sampled. The bedrock aquifers, stratigraphically from youngest (shallowest) to oldest (deepest), are the Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers. The extensive dataset collected from wells completed in the bedrock aquifers (79 samples) provides the opportunity to evaluate factors and processes affecting water quality and to establish a baseline that can be used to characterize future changes in groundwater quality. Groundwater samples were analyzed for inorganic, organic, isotopic, and age-dating constituents and tracers. This report discusses spatial and statistical distributions of chemical constituents

  17. 77 FR 5839 - Notice of Intent To Repatriate a Cultural Item: University of Denver Department of Anthropology...

    Science.gov (United States)

    2012-02-06

    ... Cultural Item: University of Denver Department of Anthropology and Museum of Anthropology, Denver, CO... Anthropology and Museum of Anthropology, in consultation with the appropriate Indian tribes, has determined... of Anthropology and Museum of Anthropology. DATES: Representatives of any Indian tribe that believes...

  18. Geologic strip map along the Hines Creek Fault showing evidence for Cenozoic displacement in the western Mount Hayes and northeastern Healy quadrangles, eastern Alaska Range, Alaska

    Science.gov (United States)

    Nokleberg, Warren J.; Aleinikoff, John N.; Bundtzen, Thomas K.; Hanshaw, Maiana N.

    2013-01-01

    Geologic mapping of the Hines Creek Fault and the adjacent Trident Glacier and McGinnis Glacier Faults to the north in the eastern Alaska Range, Alaska, reveals that these faults were active during the Cenozoic. Previously, the Hines Creek Fault, which is considered to be part of the strike-slip Denali Fault system (Ridgway and others, 2002; Nokleberg and Richter, 2007), was interpreted to have been welded shut during the intrusion of the Upper Cretaceous Buchanan Creek pluton (Wahrhaftig and others, 1975; Gilbert, 1977; Sherwood and Craddock, 1979; Csejtey and others, 1992). Our geologic mapping along the west- to west-northwest-striking Hines Creek Fault in the northeastern Healy quadrangle and central to northwestern Mount Hayes quadrangle reveals that (1) the Buchanan Creek pluton is truncated by the Hines Creek Fault and (2) a tectonic collage of fault-bounded slices of various granitic plutons, metagabbro, metabasalt, and sedimentary rock of the Pingston terrane occurs south of the Hines Creek Fault.

  19. National Uranium Resource Evaluation: Baker Quadrangle, Oregon and Idaho

    International Nuclear Information System (INIS)

    Bernardi, M.L.; Robins, J.W.

    1982-05-01

    The Baker Quadrangle, Oregon, and Idaho, was evaluated to identify areas containing geologic environments favorable for uranium deposits. The criteria used was developed for the National Uranium Resource Evaluation program. Stream-sediment reconnaissance and detailed surface studies were augmented by subsurface-data interpretion and an aerial radiometric survey. Results indicate that lower Pliocene sedimentary rocks in the Lower Powder River Valley-Virtue Flat basin are favorable characteristics, they remain unevaluated because of lack of subsurface data. Tertiary sandstones, possibly present at depth in the Long and Cascade Valleys, also remain unevaluated due to lack of subsurface data. All remaining environments in the Baker Quadrangle are unfavorable for all classes of uranium deposits

  20. Geologic map of the Western Grove quadrangle, northwestern Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.; Repetski, John E.

    2006-01-01

    This map summarizes the geology of the Western Grove 7.5-minute quadrangle in northern Arkansas that is located on the southern flank of the Ozark dome, a late Paleozoic regional uplift. The exposed bedrock of this map area comprises approximately 1,000 ft of Ordovician and Mississippian carbonate and clastic sedimentary rocks that have been mildly folded and broken by faults. A segment of the Buffalo River loops through the southern part of the quadrangle, and the river and adjacent lands form part of Buffalo National River, a park administered by the U.S. National Park Service. This geologic map provides information to better understand the natural resources of the Buffalo River watershed, particularly its karst hydrogeologic framework.

  1. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W., III

    2009-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  2. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    International Nuclear Information System (INIS)

    Campbell, J.A.

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1 0 x 2 0 Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains

  3. Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus

    Science.gov (United States)

    Tandberg, E. R.; Bleamaster, L. F., III

    2010-01-01

    The Devana Chasma quadrangle (V-29; 0-25degN/270-300degE) is situated over the northeastern apex of the Beta-Atla-Themis (BAT) province and includes the southern half of Beta Regio, the northern and transitional segments of the Devana Chasma complex, the northern reaches of Phoebe Regio, Hyndla Regio, and Nedolya Tesserae, and several smaller volcano-tectonic centers and impact craters.

  4. National Uranium Resource Evaluation: Cortez quadrangle, Colorado and Utah

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J A

    1982-09-01

    Six stratigraphic units are recognized as favorable for the occurrence of uranium deposits that meet the minimum size and grade requirements of the U.S. Department of Energy in the Cortez 1/sup 0/ x 2/sup 0/ Quadrangle, Utah and Colorado. These units include the Jurassic Salt Wash, Recapture, and Brushy Basin Members of the Morrison Formation and the Entrada Sandstone, the Late Triassic Chinle Formation, and the Permian Cutler Formation. Four areas are judged favorable for the Morrison members which include the Slick Rock, Montezuma Canyon, Cottonwood Wash and Hatch districts. The criteria used to determine favorability include the presence of the following (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox Basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Two areas of favorability are recognized for the Chinle Formation. These areas include the Abajo Mountain and Aneth-Ute Mountain areas. The criteria used to determine favorability include the sandstone-to-mudstone ratio for the Chinle Formation and the geographic distribution of the Petrified Forest Member of the Chinle Formation. Two favorable areas are recognized for the Cutler Formation. Both of these areas are along the northern border of the quadrangle between the Abajo Mountains and the Dolores River Canyon area. Two areas are judged favorable for the Entrada Sandstone. One area is in the northeast corner of the quadrangle in the Placerville district and the second is along the eastern border of the quadrangle on the southeast flank of the La Plata Mountains.

  5. National Uranium Resource Evaluation: Aztec quadrangle, New Mexico and Colorado

    International Nuclear Information System (INIS)

    Green, M.W.

    1982-09-01

    Areas and formations within the Aztec 1 0 x 2 0 Quadrangle, New Mexico and Colorado considered favorable for uranium endowment of specified minimum grade and tonnage include, in decreasing order of favorability: (1) the Early Cretaceous Burro Canyon Formation in the southeastern part of the Chama Basin; (2) the Tertiary Ojo Alamo Sandstone in the east-central part of the San Juan Basin; and (3) the Jurassic Westwater Canyon and Brushy Basin Members of the Morrison Formation in the southwestern part of the quadrangle. Favorability of the Burro Canyon is based on the presence of favorable host-rock facies, carbonaceous material and pyrite to act as a reductant for uranium, and the presence of mineralized ground in the subsurface of the Chama Basin. The Ojo Alamo Sandstone is considered favorable because of favorable host-rock facies, the presence of carbonaceous material and pyrite to act as a reductant for uranium, and the presence of a relatively large subsurface area in which low-grade mineralization has been encountered in exploration activity. The Morrison Formation, located within the San Juan Basin adjacent to the northern edge of the Grants mineral belt, is considered favorable because of mineralization in several drill holes at depths near 1500 m (5000 ft) and because of favorable facies relationships extending into the Aztec Quadrangle from the Grants mineral belt which lies in the adjacent Albuquerque and Gallup Quadrangles. Formations considered unfavorable for uranium deposits of specified tonnage and grade include the remainder of sedimentary and igneous formations ranging from Precambrian to Quaternary in age. Included under the unfavorable category are the Cutler Formation of Permian age, and Dakota Sandstone of Late Cretaceous age, and the Nacimiento and San Jose Formations of Tertiary age

  6. National Uranium Resource Evaluation: Lovelock Quadrangle, Nevada and California

    International Nuclear Information System (INIS)

    Berry, V.P.; Bradley, M.T.; Nagy, P.A.

    1982-08-01

    Uranium resources of the Lovelock Quadrangle, Nevada and California, were evaluated to a depth of 1500 m using available surface and subsurface geological information. Uranium occurrences reported in the literature and in reports of the Atomic Energy Commission were located, sampled, and described in detail. Areas of anomalous radioactivity, as interpreted from the aerial radiometric reconnaissance survey and from the hydrochemical and stream-sediment reconnaissance survey reports, were also investigated. A general reconnaissance of the geologic environments exposed in surface outcrops was carried out; and over 400 rock, sediment, and water geochemical analyses were made from the samples taken. Additionally, 119 rock samples were petrographically studied. A total of 21 occurrences were located, sampled, and described in detail. Six uranium occurrences, previously unreported in the literature, were located during hydrogeochemical and stream-sediment reconnaissance, aerial radiometric reconnaissance survey followup, or general outcrop reconnaissance. Nine areas of uranium favorability were delineated within the Lovelock Quadrangle. One area, which contains the basal units of the Hartford Hill Rhyolite, is favorable for hydroallogenic uranium deposits. Eight areas are favorable for uranium deposits in playa sediments. These playas are considered favorable for nonmarine carbonaceous sediment deposits and evaporative deposits. The total volume of rock in favorable areas of the Lovelock Quadrangle is estimated to be 190 km 3 . The remaining geologic units are considered to be unfavorable for uranium deposits. These include upper Paleozoic and Mesozoic volcanic, plutonic, sedimentary, and metamorphic rocks. Also unfavorable are Tertiary and Quaternary volcanic flows and intrusive phases, tuffs, and sediments

  7. Geologic map of the Alamosa 30’ × 60’ quadrangle, south-central Colorado

    Science.gov (United States)

    Thompson, Ren A.; Shroba, Ralph R.; Michael N. Machette,; Fridrich, Christopher J.; Brandt, Theodore R.; Cosca, Michael A.

    2015-10-15

    The Alamosa 30'× 60' quadrangle is located in the central San Luis Basin of southern Colorado and is bisected by the Rio Grande. The Rio Grande has headwaters in the San Juan Mountains of Colorado and ultimately discharges into the Gulf of Mexico 3,000 kilometers (km) downstream. Alluvial floodplains and associated deposits of the Rio Grande and east-draining tributaries, La Jara Creek and Conejos River, occupy the north-central and northwestern part of the map area. Alluvial deposits of west-draining Rio Grande tributaries, Culebra and Costilla Creeks, bound the Costilla Plain in the south-central part of the map area. The San Luis Hills, a northeast-trending series of flat-topped mesas and hills, dominate the landscape in the central and southwestern part of the map and preserve fault-bound Neogene basin surfaces and deposits. The Precambrian-cored Sangre de Cristo Mountains rise to an elevation of nearly 4,300 meters (m), almost 2,000 m above the valley floor, in the eastern part of the map area. In total, the map area contains deposits that record surficial, tectonic, sedimentary, volcanic, magmatic, and metamorphic processes over the past 1.7 billion years.

  8. National Uranium Resource Evaluation: Spartanburg Quadrangle, South Carolina and North Carolina

    International Nuclear Information System (INIS)

    Schot, E.H.; Galipeau, J.M.

    1980-11-01

    The Spartanburg Quadrangle, South Carolina and North Carolina, was evaluated for uranium favorability using National Uranium Resource Evaluation criteria. The evaluation included the study and analysis of published and collected geologic, geophysical, and geochemical data from subsurface, surface, and aerial studies. Five environments are favorable for uranium deposits. The Triassic Wadesboro Basin has ground waters with anomalously high uranium concentrations and uranium-to-conductivity ratios. The Upper Cretaceous Tuscaloosa-Middendorf Formation is near a uranium source and has sediments favorable for uranium deposition. The contact-metamorphic aureoles associated with the Liberty Hill-Kershaw and Winnsboro-Rion plutonic complexes are close to uranium sources and contain the reductants (sulfides, graphite) necessary for precipitation. The East Fork area in the Charlotte Belt has ground waters with uranium concentrations 4 to 132 times the mean concentration reported for the surrounding Piedmont area. Unfavorable environments include the Catawba Granite, the area west of the Winnsboro-Rion complex, gold-quartz veins, the vermiculite district, and the Western Monazite Belt

  9. 78 FR 19308 - Notice of Intent To Repatriate Cultural Items: University of Denver Museum of Anthropology...

    Science.gov (United States)

    2013-03-29

    ...-PPWOCRADN0] Notice of Intent To Repatriate Cultural Items: University of Denver Museum of Anthropology... Museum of Anthropology, in consultation with the appropriate Indian tribes, has determined that the... Museum of Anthropology. DATES: Representatives of any Indian tribe that believes it has a cultural...

  10. Outcome for Children Receiving the Early Start Denver Model before and after 48 Months

    Science.gov (United States)

    Vivanti, Giacomo; Dissanayake, Cheryl

    2016-01-01

    The Early Start Denver Model (ESDM) is an intervention program recommended for pre-schoolers with autism ages 12-48 months. The rationale for this recommendation is the potential for intervention to affect developmental trajectories during early sensitive periods. We investigated outcomes of 32 children aged 18-48 months and 28 children aged…

  11. Early Start Denver Model for Young Children with Autism: Promoting Language, Learning, and Engagement

    Science.gov (United States)

    Rogers, Sally J.; Dawson, Geraldine

    2009-01-01

    From leading authorities, this state-of-the-art manual presents the Early Start Denver Model (ESDM), the first comprehensive, empirically tested intervention specifically designed for toddlers and preschoolers with autism. Supported by the principles of developmental psychology and applied behavior analysis, ESDM's intensive teaching interventions…

  12. The Early Start Denver Model: A Case Study of an Innovative Practice

    Science.gov (United States)

    Vismara, Laurie A.; Rogers, Sally J.

    2008-01-01

    Intervention was implemented with an infant identified at 9 months of age with a behavioral profile consistent with autistic spectrum disorder. The intervention approach, the Early Start Denver model, consisted of a 12-week, 1.5-hr-per-week individualized parent-child education program. Results of this case study demonstrated that the parent…

  13. Evaluating the Social Validity of the Early Start Denver Model: A Convergent Mixed Methods Study

    Science.gov (United States)

    Ogilvie, Emily; McCrudden, Matthew T.

    2017-01-01

    An intervention has social validity to the extent that it is socially acceptable to participants and stakeholders. This pilot convergent mixed methods study evaluated parents' perceptions of the social validity of the Early Start Denver Model (ESDM), a naturalistic behavioral intervention for children with autism. It focused on whether the parents…

  14. Brief Report: Predictors of Outcomes in the Early Start Denver Model Delivered in a Group Setting

    Science.gov (United States)

    Vivanti, Giacomo; Dissanayake, Cheryl; Zierhut, Cynthia; Rogers, Sally J.

    2013-01-01

    There is a paucity of studies that have looked at factors associated with responsiveness to interventions in preschoolers with autism spectrum disorder (ASD). We investigated learning profiles associated with response to the Early Start Denver Model delivered in a group setting. Our preliminary results from 21 preschool children with an ASD aged…

  15. Implementation of the Early Start Denver Model in an Italian Community

    Science.gov (United States)

    Colombi, Costanza; Narzisi, Antonio; Ruta, Liliana; Cigala, Virginia; Gagliano, Antonella; Pioggia, Giovanni; Siracusano, Rosamaria; Rogers, Sally J.; Muratori, Filippo

    2018-01-01

    Identifying effective, community-based specialized interventions for young children with autism spectrum disorder is an international clinical and research priority. We evaluated the effectiveness of the Early Start Denver Model intervention in a group of young children with autism spectrum disorder living in an Italian community compared to a…

  16. 77 FR 42510 - Notice of Inventory Completion: History Colorado, Denver, CO

    Science.gov (United States)

    2012-07-19

    ... associated funerary objects may contact History Colorado. Disposition of the human remains and associated... human remains and associated funerary objects under the control of History Colorado, Denver, CO. One set... detailed assessment of the human remains and associated funerary objects was made by History Colorado...

  17. An Evaluation of the Research Evidence on the Early Start Denver Model

    Science.gov (United States)

    Baril, Erika M.; Humphreys, Betsy P.

    2017-01-01

    The Early Start Denver Model (ESDM) has been gaining popularity as a comprehensive treatment model for children ages 12 to 60 months with autism spectrum disorders (ASD). This article evaluates the research on the ESDM through an analysis of study design and purpose; child participants; setting, intervention agents, and context; density and…

  18. Bernie's Odyssey: Denver Nuggets' General Manager Bernie Bickerstaff's Basketball Roots in Harlan County, Ky.

    Science.gov (United States)

    Nelson, Glenn

    1992-01-01

    Bernie Bickerstaff discusses how growing up as an African-American athlete in rural Kentucky prepared him to become the general manager of the Denver Nuggets. Triumphing over the area's racial segregation, poverty, and mining perils gave him a sense of strength that enabled him to overcome barriers in advancing his career. (LP)

  19. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  20. 77 FR 13627 - Notice of Inventory Completion: History Colorado, Denver, CO

    Science.gov (United States)

    2012-03-07

    ... History Colorado by the Denver Medical Examiner's Office. They are identified as OAHP Case Number 128. There is no information available as to where or how the remains were recovered. The medical examiner...); Paiute Indian Tribe of Utah (Cedar Band of Paiutes, Kanosh Band of Paiutes, Koosharem Band of Paiutes...

  1. 78 FR 19296 - Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO

    Science.gov (United States)

    2013-03-29

    ... Reservation, Colorado, New Mexico & Utah agreed to accept disposition of the human remains. In 2006, History....R50000] Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: History Colorado, formerly...

  2. 78 FR 72700 - Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO

    Science.gov (United States)

    2013-12-03

    ... Mexico, were invited to consult but did not participate. History and Description of the Remains In the....R50000] Notice of Inventory Completion: History Colorado, formerly Colorado Historical Society, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: History Colorado has completed...

  3. 77 FR 13629 - Notice of Inventory Completion: History Colorado, Denver, CO

    Science.gov (United States)

    2012-03-07

    ... Fort Hall Reservation of Idaho; and the Zuni Tribe of the Zuni Reservation, New Mexico. History and...: History Colorado, Denver, CO AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: History... human remains may contact History Colorado. Disposition of the human remains to the Indian tribes stated...

  4. Program and Abstracts: DOE Solar Program Review Meeting 2004, 25--28 October 2004, Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    2004-10-01

    This booklet contains the agenda and abstracts for the 2004 U.S. DOE Solar Energy Technologies Program Review Meeting. The meeting was held in Denver, Colorado, October 25-28, 2004. More than 240 abstracts are contained in this publication. Topic areas for the research papers include laboratory research, program management, policy analysis, and deployment of solar technologies.

  5. World Renewable Energy Congress - To Be Held In Denver In 1996

    Science.gov (United States)

    ) announced today that they will host the World Renewable Energy Congress IV in Denver from June 15-21, 1996 to be held outside of the United Kingdom. The World Renewable Energy Congress, which meets every two include world leaders in renewable energy, banking and business. The Congress' objectives are to support

  6. Denver's airport of doom; the story behind the world's possibly most controversial airport

    NARCIS (Netherlands)

    Stolwijk, J.

    2014-01-01

    Big airport projects have often been prone to controversy. Schiphol’s Polderbaan project, Heathrow’s expansion, and the construction of Berlin’s new airport all suffered from political, financial or technical issues. However, Denver International Airport (often referred to as DIA) caused uproar in

  7. West Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    freelance

    considered by many as a successful model of river basin organization. NBA, after years of ... a Regional Water Protocol for West Africa, following the model of the SADC ...... protection of water against pollution of all kinds (urban, industrial,.

  8. Geologic Map of the Tower Peak Quadrangle, Central Sierra Nevada, California

    Science.gov (United States)

    Wahrhaftig, Clyde

    2000-01-01

    Introduction The Tower Peak quadrangle, which includes northernmost Yosemite National Park, is located astride the glaciated crest of the central Sierra Nevada and covers an exceptionally well-exposed part of the Sierra Nevada batholith. Granitic plutonic rocks of the batholith dominate the geology of the Tower Peak quadrangle, and at least 18 separate pre-Tertiary intrusive events have been identified. Pre-Cretaceous metamorphic rocks crop out in the quadrangle in isolated roof pendants and septa. Tertiary volcanic rocks cover granitic rocks in the northern part of the quadrangle, but are not considered in this brief summary. Potassium-argon (K-Ar) age determinations for plutonic rocks in the quadrangle range from 83 to 96 million years (Ma), including one of 86 Ma for the granodiorite of Lake Harriet (Robinson and Kistler, 1986). However, a rubidium-strontium whole-rock isochron age of 129 Ma has been obtained for the Lake Harriet pluton (Robinson and Kistler, 1986), which field evidence indicates is the oldest plutonic body within the quadrangle. This suggests that some of the K-Ar ages record an episode of resetting during later thermal events and are too young. The evidence indicates that all the plutonic rocks are of Cretaceous age, with the youngest being the Cathedral Peak Granodiorite at about 83 Ma. The pre-Tertiary rocks of the Tower Peak quadrangle fall into two groups: (1) an L-shaped area of older plutonic and metamorphic rocks, 3 to 10 km wide, that extends diagonally both northeast and southeast from near the center of the quadrangle; and (2) a younger group of large, probably composite intrusions that cover large areas in adjacent quadrangles and extend into the Tower Peak quadrangle from the east, north, and southwest.

  9. Preliminary geologic map of the Turayf Quadrangle, sheet 31C, and part of the An Nabk quadrangle, sheet 31B, Kingdom of Saudi Arabia

    Science.gov (United States)

    Meissner, C.R.; Riddler, G.P.; Van Eck, Marcel; Aspinall, N.C.; Farasani, A.M.; Dini, S.M.

    1989-01-01

    The An Nabk and Turayf quadrangles lie at the northern border of the Kingdom of Saudi Arabia. Middle and upper Cenozoic sedimentary and volcanic rocks form the surface of the quadrangles, and sedimentary rocks of the Paleozoic, Mesozoic, and lower Cenozoic are found in the subsurface. The Paleozoic and Mesozoic rocks, described from drill hole records, include the Tabuk, Upper Sudair, Lower Jilh and Aruma formations which are mostly of marine origin.

  10. Aerial photographic interpretation of lineaments and faults in late cenozoic deposits in the Eastern part of the Benton Range 1:100,000 quadrangle and the Goldfield, Last Chance Range, Beatty, and Death Valley Junction 1:100,000 quadrangles, Nevada and California

    International Nuclear Information System (INIS)

    Reheis, M.C.; Noller, J.S.

    1991-01-01

    Lineaments and faults in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous with respect to the typical fault patterns in most of the Great Basin. Little work has been done to identify and characterize these faults, with the exception of those in the Death Valley-Furnace Creek (DVFCFZ) fault system and those in and near the Nevada Test Site. Four maps at a scale of 1:100,000 summarize the existing knowledge about these lineaments and faults based on extensive aerial-photo interpretation, limited field investigations, and published geologic maps. The lineaments and faults in all four maps can be divided geographically into two groups. The first group includes west- to north-trending lineaments and faults associated with the DVFCFZ and with the Pahrump fault zone in the Death Valley Junction quadrangle. The second group consists of north- to east-northeast-trending lineaments and faults in a broad area that lies east of the DVFCFZ and north of the Pahrump fault zone. Preliminary observations of the orientations and sense of slip of the lineaments and faults suggest that the least principle stress direction is west-east in the area of the first group and northwest-southeast in the area of the second group. The DVFCFZ appears to be part of a regional right-lateral strike-slip system. The DVFCFZ steps right, accompanied by normal faulting in an extensional zone, to the northern part of the Walker Lane a the northern end of Fish Lake Valley (Goldfield quadrangle), and appears to step left, accompanied by faulting and folding in a compressional zone, to the Pahrump fault zone in the area of Ash Meadows (Death Valley Junction quadrangle). 25 refs

  11. Aerial gamma ray and magnetic survey: Idaho Project, Hailey, Idaho Falls, Elk City quadrangles of Idaho/Montana and Boise quadrangle, Oregon/Idaho. Final report

    International Nuclear Information System (INIS)

    1979-09-01

    During the months of July and August, 1979, geoMetrics, Inc. collected 11561 line mile of high sensitivity airborne radiometric and magnetic data in Idaho and adjoining portions of Oregon and Montana over four 1 0 x 2 0 NTMS quadrangles (Boise, Hailey, Idaho Falls, and Elk City) as part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully corrected and interpreted by geoMetrics and are presented as five volumes (one Volume I and four Volume II's). Approximately 95 percent of the surveyed areas are occupied by exposures of intrusive and extrusive rocks. The Cretaceous-Tertiary Idaho Batholith dominates the Elk City and Hailey quadrangles. The Snake River volcanics of Cenozoic Age dominate the Idaho Falls quadrangle and southeast part of the Hailey sheet. Tertiary Columbia River basalts and Idaho volcanics cover the Boise quadrangle. There are only two uranium deposits within the four quadrangles. The main uranium producing areas of Idaho lie adjacent to the surveyed area in the Challis and Dubois quadrangles

  12. Topographic Map of Quadrangle 3570, Tagab-E-Munjan (505) and Asmar-Kamdesh (506) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  13. Topographic Map of Quadrangles 3062 and 2962, Charburjak (609), Khanneshin (610), Gawdezereh (615), and Galachah (616) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  14. Topographic Map of Quadrangle 3566, Sang-Charak (501) and Sayghan-O-Kamard (502) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  15. Perfect Octagon Quadrangle Systems with an upper C4-system and a large spectrum

    Directory of Open Access Journals (Sweden)

    Luigia Berardi

    2011-02-01

    Full Text Available An octagon quadrangle is the graph consisting of an 8-cycle (x1, x2,..., x8 with two additional chords: the edges {x1, x4} and {x5, x8}. An octagon quadrangle system of order ν and index λ [OQS] is a pair (X,H, where X is a finite set of ν vertices and H is a collection of edge disjoint octagon quadrangles (called blocks which partition the edge set of λKν defined on X. An octagon quadrangle system Σ=(X,H of order ν and index λ is said to be upper C4-perfect if the collection of all of the upper 4-cycles contained in the octagon quadrangles form a μ-fold 4-cycle system of order ν; it is said to be upper strongly perfect, if the collection of all of the upper 4-cycles contained in the octagon quadrangles form a μ-fold 4-cycle system of order ν and also the collection of all of the outside 8-cycles contained in the octagon quadrangles form a ρ-fold 8-cycle system of order ν. In this paper, the authors determine the spectrum for these systems, in the case that it is the largest possible.

  16. Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern parts of the Saline Valley 1:100, 000 quadrangle, Nevada and California, and the Darwin Hills 1:100, 000 quadrangle, California

    International Nuclear Information System (INIS)

    Reheis, M.C.

    1991-01-01

    Faults and fault-related lineaments in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous compared to those in most other areas of the Great Basin. Two maps at a scale of 1:100,000 summarize information about lineaments and faults in the area around and southwest of the Death Valley-Furnace Creek fault system based on extensive aerial-photo interpretation, limited field interpretation, limited field investigations, and published geologic maps. There are three major fault zones and two principal faults in the Saline Valley and Darwin Hills 1:100,000 quadrangles. (1) The Death Valley-Furnace Creek fault system and (2) the Hunter Mountain fault zone are northwest-trending right-lateral strike-slip fault zones. (3) The Panamint Valley fault zone and associated Towne Pass and Emigrant faults are north-trending normal faults. The intersection of the Hunter Mountain and Panamint Valley fault zones is marked by a large complex of faults and lineaments on the floor of Panamint Valley. Additional major faults include (4) the north-northwest-trending Ash Hill fault on the west side of Panamint Valley, and (5) the north-trending range-front Tin Mountain fault on the west side of the northern Cottonwood Mountains. The most active faults at present include those along the Death Valley-Furnace Creek fault system, the Tin Mountain fault, the northwest and southeast ends of the Hunter Mountain fault zone, the Ash Hill fault, and the fault bounding the west side of the Panamint Range south of Hall Canyon. Several large Quaternary landslides on the west sides of the Cottonwood Mountains and the Panamint Range apparently reflect slope instability due chiefly to rapid uplift of these ranges. 16 refs

  17. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    International Nuclear Information System (INIS)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km 2 area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle

  18. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km/sup 2/ area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle.

  19. NURE aerial gamma-ray and magnetic reconnaissance survey: Blue Ridge area, Greensboro NJ 17-12, Winston-Salem NJ 17-11, and Johnson City NJ 17-10 Quadrangles. Volume I. Narrative report

    International Nuclear Information System (INIS)

    1978-12-01

    As part of the Department of Energy (DOE) National Uranium Resource Evaluation (NURE) Program, LKB Resources, Inc. has performed a rotary-wing, reconnaissance high sensitivity radiometric and magnetic survey in the Blue Ridge area of Virginia, North Carolina, South Carolina, Kentucky, and Tennessee. Five (5) 1:250,000 scale NTMS quadrangles (Greensboro, Winston-Salem, Johnson City, Knoxville, and Charlotte) were surveyed. A total of 15,753 line miles (25,347 kilometers) of data were collected utilizing a Sikorsky S58 and S58T helicopter. Traverse lines were flown in an east-west direction at 3.0 mile (4.8 kilometer) spacing, with tie lines flown in a north-south direction at 12 mile (20 kilometer) spacing. The data were digitally recorded at 1.0 second intervals. The NaI terrestrial detectors used in this survey had a total volume of 2,154 cubic inches. The magnetometer employed was a modified ASQ-10 fluxgate system. This report covers the Greensboro, Winston-Salem, and Johnson City NTMS 1:250,000 scale quadrangles. The Knoxville and Charlotte NTMS 1:250,000 scale quadrangles are covered in a separate report. The radiometric data were normalized to 400 feet terrain clearance, and are presented in the form of computer listings on microfiche and as stacked profile plots. Profile plots are contained in Volume II of this report. A geologic interpretation of the radiometric and magnetic data is included as part of this report

  20. Geologic map of the Lakshmi Planum quadrangle (V-7), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2010-01-01

    The Lakshmi Planum quadrangle is in the northern hemisphere of Venus and extends from lat 50 degrees to 75 degrees N., and from long 300 degrees to 360 degrees E. The elevated volcanic plateau of Lakshmi Planum, which represents a very specific and unique class of highlands on Venus, dominates the northern half of the quadrangle. The surface of the planum stands 3-4 km above mean planetary radius and the plateau is surrounded by the highest Venusian mountain ranges, 7-10 km high. Before the Magellan mission, the geology of the Lakshmi Planum quadrangle was known on the basis of topographic data acquired by the Pioneer-Venus and Venera-15/16 altimeter and radar images received by the Arecibo telescope and Venera-15/16 spacecraft. These data showed unique topographic and morphologic structures of the mountain belts, which have no counterparts elsewhere on Venus, and the interior volcanic plateau with two large and low volcanic centers and large blocks of tessera-like terrain. From the outside, Lakshmi Planum is outlined by a zone of complexly deformed terrains that occur on the regional outer slope of Lakshmi. Vast low-lying plains surround this zone. After acquisition of the Venera-15/16 data, two classes of hypotheses were formulated to explain the unique structure of Lakshmi Planum and its surrounding. The first proposed that the western portion of Ishtar Terra, dominated by Lakshmi Planum, was a site of large-scale upwelling while the alternative hypothesis considered this region as a site of large-scale downwelling and underthrusting. Early Magellan results showed important details of the general geology of this area displayed in the Venera-15/16 images. Swarms of extensional structures and massifs of tesserae populate the southern slope of Lakshmi. The zone of fractures and grabens form a giant arc thousands of kilometers long and hundreds of kilometers wide around the southern flank of Lakshmi Planum. From the north, the deformational zones consist mostly of

  1. Geologic map of the Murray Quadrangle, Newton County, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2016-07-06

    This map summarizes the geology of the Murray quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area is on the southern flank of the Ozark dome, an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and Little Buffalo River and their tributaries expose an approximately 1,600-ft-thick (488-meter-thick) sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The Buffalo National River, a park that encompasses the Buffalo River and adjacent land that is administered by the National Park Service is present at the northwestern edge of the quadrangle.Mapping for this study was carried out by field inspection of numerous sites and was compiled as a 1:24,000 geographic information system (GIS) database. Locations and elevation of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope maps derived from a U.S. Geological Survey 10-meter digital elevation model as well as orthophotographs were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours, constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation, were drawn based on the elevations of field sites on these contacts well as other limiting information for their minimum elevations above hilltops or their maximum elevations below valley bottoms.

  2. Mercury: Photomosaic of the Shakespeare Quadrangle (Northern Half) H-3

    Science.gov (United States)

    1974-01-01

    This computer generated photomosaic from Mariner 10 is of the northern half of Mercury's Shakespeare Quadrangle, named for the ancient Shakespeare crater located on the lower edge to the left of center. This portion of the quadrangle covers the geographic region from 45 to 70 degrees north latitude and from 90 to 180 degrees longitude. The photomosaic was produced using computer techniques and software developed in the Image Processing Laboratory of NASA's Jet Propulsion Laboratory. The pictures have been high-pass filtered and contrast enhanced to accentuate surface detail, and geometrically transformed into a Lambert conformal projection.The illuminated surface observed by Mariner 10 as it first approached Mercury is dominated by craters and basins. In marked contrast to this view, the surface photographed after the flyby exhibited features totally different, including large basins and extensive relatively smooth areas with few craters. The most striking feature in this region of the planet is a huge circular basin, 1300 kilometers in diameter, that was undoubtedly produced from a tremendous impact comparable to the event that formed the Imbrium basin on the Moon. This prominent Mercurian structure in the Shakespeare and Tolstoj quadrangles (lower left corner of this image), named Caloris Planitia, is filled with material forming a smooth surface or plain that appears similar in many respects to the lunar maria.The above material was taken from the following publication... Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, Atlas of Mercury, NASA SP-423 (1978).The Mariner 10 mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  3. National Uranium Resource Evaluation: Athens Quadrangle, Georgia and South Carolina

    International Nuclear Information System (INIS)

    Lee, C.H.

    1979-09-01

    Reconnaissance and detailed geologic and radiometric investigations were conducted throughout the Athens Quadrangle, Georgia and South Carolina, to evaluate the uranium favorability using National Uranium Resource Evaluation criteria. Surface and subsurface studies were augmented by aerial radiometric surveys, emanometry studies and hydrogeochemical and stream-sediment reconnaissance studies. The results of the investigations indicate environments favorable for allogenic deposits in metamorphic rocks adjacent to granite plutons, and Texas roll-type sandstone deposits in the Coastal Plain Province. Environments considered unfavorable for uranium deposits are the placers of the Monazite Belt, pegmatites, and base- and precious-metal veins associated with faults and shear zones in metamorphic rocks

  4. Stratigraphy and Observations of Nepthys Mons Quadrangle (V54), Venus

    Science.gov (United States)

    Bridges, N. T.

    2001-01-01

    Initial mapping has begun in Venus' Nepthys Mons Quadrangle (V54, 300-330 deg. E, 25-50 deg. S). Major research areas addressed are how the styles of volcanism and tectonism have changed with time, the evolution of shield volcanoes, the evolution of coronae, the characteristics of plains volcanism, and what these observations tell us about the general geologic history of Venus. Reported here is a preliminary general stratigraphy and several intriguing findings. Additional information is contained in the original extended abstract.

  5. Topographic Map of Quadrangle 3768 and 3668, Imam-Saheb (215), Rustaq (216), Baghlan (221), and Taloqan (222) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the

  6. Community-Based Investigation of Radon and Indoor Air Quality in Northeast Denver Neighborhoods

    Science.gov (United States)

    Pfotenhauer, D.; Iwasaki, P. G.; Ware, G. E.; Collier, A.; Hannigan, M.

    2017-12-01

    In 2015, Taking Neighborhood Health to Heart (TNH2H), a community-based organization based in Northeast Denver, and researchers from the University of Colorado, Boulder jointly piloted a project to investigate indoor air quality within Denver communities. This pilot study was carried out across 2015-2016 and found higher than actionable-levels for radon across a majority of its participants. These results inspired a continued collaboration between the community group and academic researchers from CU Boulder. The partnership went on to conduct a similar project this last year in which the team again employed a community-based participatory research (CBPR) framework to investigate indoor air pollutants across a broader geographical footprint in Denver's Northeast Neighborhoods. The collaboration sampled 30 participant houses across 5 neighborhoods for radon and volatile organic compounds (VOCs). Although VOC levels were found to be well under thresholds for concern, for the second year of this investigation, radon levels were found on average to be significantly above the EPA's threshold for hazardous levels. Additionally, in collecting survey data on the participants' house characteristics, certain identifiable trends emerged that signal which house types have greater risk of radon intrusion. Having found in two consecutive studies that a majority of homes in these neighborhoods are burdened with dangerous levels of radon, the partnership is now moving towards developing educational and political actions to address the results from these projects and disseminate the information regarding radon levels and threats to these neighborhood communities.

  7. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, North Region: Volume 7

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the North Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the North Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  8. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, South East Region: Volume 5

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the South East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the South East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  9. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, East Region: Volume 4

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  10. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Quadrangle Summary Tables, Mid East Region: Volume 6

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across quadrangles located in the Mid East Regional File. The next section briefly outlines the approach used by ISP in preparing these data tables. This is followed by an Alphabetical Index to the quadrangles contained in the Mid East Regional File and a Quadrangle Map; both the Index and Map present a record count for each quadrangle. The last section presents the data summary tables organized by sample type (water or sediments) and displaying elements within quads and quads within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  11. The geology and ore deposits of the Bisbee quadrangle, Arizona

    Science.gov (United States)

    Ransome, Frederick Leslie

    1904-01-01

    The Bisbee quadrangle lies in Cochise County, in the southeastern part of Arizona, within what has been called in a previous paper the mountain region of the Territory. It is inclosed between meridians 109 ° 45' and 110 ° 00' and parallels 31° 30' and 31 ° 20', the latter being locally the Mexican boundary line. The area of the quadrangle is about 170 square miles, and includes the southeastern half of the Mule Mountains, one of the smaller of the isolated ranges so characteristic of the mountain region of Arizona. The Mule Mountains, while less markedly linear than the Dragoon, Huachuca, Chiricahua, and other neighboring ranges, have a general northwest-southeast trend. They may be considered as extending from the old mining town of Tombstone to the Mexican border, a distance of about 30 miles. On the northeast they are separated by the broad fiat floor of Sulphur Spring Valley form the Chiricahua Range, and on the southwest by the similar broad valley of the Rio San Pedro from the Huachuca Range (Pl. V, A). 

  12. Geologic map of the Themis Regio quadrangle (V-53), Venus

    Science.gov (United States)

    Stofan, Ellen R.; Brian, Antony W.

    2012-01-01

    The Themis Regio quadrangle (V-53), Venus, has been geologically mapped at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. The quadrangle extends from lat 25° to 50° S. and from long 270° to 300° E. and encompasses the Themis Regio highland, the surrounding plains, and the southernmost extension of Parga Chasmata. Themis Regio is a broad regional topographic high with a diameter of about 2,000 km and a height of about 0.5 km that has been interpreted previously as a hotspot underlain by a mantle plume. The Themis rise is dominated by coronae and lies at the terminus of the Parga Chasmata corona chain. Themis Regio is the only one of the three corona-dominated rises that contains significant extensional deformation. Fractures and grabens are much less common than along the rest of Parga Chasmata and are embayed by corona-related flows in places. Rift and corona formation has overlapped in time at Themis Regio.

  13. National Uranium Resource Evaluation: Crystal City Quadrangle, Texas

    International Nuclear Information System (INIS)

    Greimel, T.C.

    1982-08-01

    The uranium resources of the Crystal City Quadrangle, Texas, were evaluated to a depth of 1500 m using surface and subsurface geologic information. Uranium occurrences reported in the literature, in reports of the US Atomic Energy Commission and the US Geological Survey Computerized Resources Information Bank, were located, described, and sampled. Geochemical anomalies interpreted from hydrogeochemical and stream-sediment reconnaissance were also investigated and sampled in detail. Areas of uranium favorability in the subsurface were located through interpretation of lithofacies patterns and structure derived from electric-log data. Gamma-ray well logs and results of geochemical sample analyses were used as supportive data in locating these areas. Fifteen surface and subsurface favorable areas were delineated in the quadrangle. Eight are in fluvial and genetically associated facies of the Pliocene Goliad Sandstone, Miocene Oakville Sandstone, Miocene Catahoula Tuff, and Oligocene Frio Clay. One area encompasses strand plain-barrier bar, fluvial-deltaic, and lagoonal-margin facies of the Eocene Jackson Group. Two areas are in strand plain-barrier bar and probable fluvial facies of the Eocene Yegua Formation. Four areas are in fluvial-deltaic, barrier-bar, and lagoonal-margin facies of the Eocene Queen City Formation and stratigraphically equivalent units. Seventeen geologic units are considered unfavorable, and seven are unevaluated due to lack of data

  14. Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-9A Thompson, PJ�and Thompson, TB, 1995, Digital bedrock geologic map of parts of the Huntington, Richmond, Bolton and Waterbury quadrangles,...

  15. Airborne gamma-ray spectrometer and magnetometer survey: New Rockford quadrangle, North Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    Volume II contains the flight path, radiometric multi-parameter stacked profiles, magnetic and ancillary parameter stacked profiles, histograms, and anomaly maps for the New Rockford Quadrangle in North Dakota

  16. Surficial geology of the Cabot 7 1/2 minute quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-3 Springston, G., 2016, Surficial geology of the Cabot 7 1/2 minute quadrangle, Vermont:�Vermont Geological Survey Open File Report...

  17. Digital and preliminary bedrock geologic map of the Wallingford quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-335A Burton, WC, and Ratcliffe, NM, 2000, Digital and preliminary bedrock geologic map of the Wallingford quadrangle, Vermont: USGS Open-File...

  18. Digital and preliminary bedrock geologic map of the Pico Peak quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-226A Walsh, G. J., and Ratcliffe, N.M., 1998,�Digital and preliminary bedrock geologic map of the Pico Peak quadrangle, Vermont: USGS...

  19. Digital and preliminary bedrock geologic map of the Chittenden quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG97-854A Ratcliffe, NM, 1997,�Digital and preliminary bedrock geologic map of the Chittenden quadrangle, Vermont: USGS Open-File Report 97-854, 1...

  20. Digital and preliminary bedrock geologic map of the Mount Carmel quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-330A Ratcliffe, N.M., and Walsh, G. J., 1998,�Digital and preliminary bedrock geologic map of the Mount Carmel quadrangle, Vermont: USGS...

  1. USGS 1:12000 (Quarter 7 1/2 Minute) Quadrangle Index

    Data.gov (United States)

    Minnesota Department of Natural Resources — This is a mathematically generated grid in which each polygon represents one quarter of a standard USGS 7 1/2 minute quadrangle. The result is a 3 3/4 minute...

  2. Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-DM1 Ratcliffe, NM, 1995, Digital bedrock geologic map of the Mount Snow & Readsboro quadrangles, Vermont, scale 1:24000, The bedrock...

  3. Digital bedrock geologic map of the Morrisville quadrangle,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-1 Springston, G., Kim, J., and Applegate, G.S., 1998,�Digital bedrock geologic map of the Morrisville quadrangle,�Vermont: VGS Open-File...

  4. Bedrock geologic map of parts of the Eden, Albany, Lowell, and Irasburg quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG09-4 (Digitized draft of VG97-5): Kim, J., 2009, Bedrock geologic map of parts of the Eden, Albany, Lowell, and Irasburg quadrangles, VGS...

  5. Digital compilation bedrock geologic map of part of the Waitsfield quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG96-03�Digital compilation bedrock geologic map of part of the Waitsfield quadrangle, Vermont: VGS Open-File Report VG96-3A, 2 plates, scale...

  6. Digital data for the Hazens Notch and a portion of the Lowell quadrangles, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG03-3B Digital data for the Hazens Notch and a portion of the Lowell quadrangles, Vermont: Vermont Geological Survey Open File Report VG03-3B, The...

  7. Bedrock Geologic Map of the Mount Mansfield 7.5 Minute Quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG2017-2 Thompson, P. J., and Thompson, T. B., 2017, Bedrock Geologic Map of the Mount Mansfield 7.5 Minute Quadrangle, Vermont: VGS Open-File...

  8. Preliminary geologic map of the Thaniyat Turayf Quadrangle, sheet 29C, Kingdom of Saudi Arabia

    Science.gov (United States)

    Meissner, C.R.; Dini, S.M.; Farasani, A.M.; Riddler, G.P.; Smith, G.H.; Griffin, M.B.; Van Eck, Marcel

    1990-01-01

    The Thaniyat Turayf quadrangle, sheet 29C, lies in the northwestern part of Saudi Arabia near the border with Jordan. The quadrangle is located between lat 29°00'-30°00' N. and long 37°30'-39°00' E. It includes the southwestern rim of the Sirhan-Turayf Basin and is underlain by Silurian to Miocene- Pliocene sedimentary rocks that are partly covered by surficial duricrust, sand, and gravel.

  9. Airborne gamma-ray spectrometer and magnetometer survey: Lund quadrangle, Ely quadrangle, Nevada. Volume I. Final report

    International Nuclear Information System (INIS)

    1980-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Ely and Lund 1:250,000 National Topographic Map Series (NTMS quadrangle maps). The survey was part of DOE's National Uranium Resource Evaluation (NURE) Aerial Radiometric Reconnaissance program. Data were collected by a helicopter equipped with a gamma-ray spectrometer having a large crystal volume, and a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The maps were interpreted and an anomaly interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data processing procedures, the data display format, the interpretation rationale, and interpretation methodology. Volume II contains the data displays for a quadrangle and the interpretation results

  10. Airborne gamma-ray spectrometer and magnetometer survey: Norton Bay Quadrangle (Alaska). Final report

    International Nuclear Information System (INIS)

    1980-01-01

    During the months of July, August, and September 1979, an airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten 3 0 x 1 0 NTMS quadrangles of West-Central Alaska. The results obtained over the Norton Bay Map area are discussed. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps and flight path maps. The histograms and the multiparameter are presented with the anomaly maps and flight path map in a separate volume. A total of twenty (20) uranium anomalies have been indicated on the interpretation map. No thorium anomalies were found. The uranium anomalies are all weak and generally have only U/K or U/T expression. Often the uranium concentration within the zone is low, and generally is less than 2.5 ppM. Only zones 9, with an average of 3.0 ppM eU, and 14, with 2.6 ppm have above average uranium content. Zone 14 is also the only uranium anomaly with combined U/K and U/T ratio anomalies. No single uranium anomaly is believed to represent an economic follow-up target. The most prospective area appears to be the elongate zone of generally high uranium content, formed by the deposits of the Shaktolik group, to the east of the Ungalik conglomerate. This zone flanks an elongate area of relatively strong shallow magnetic sources, interpreted to be related to a monozonitic intrusive of which the Christmas mountain forms part. This intrusive rock contains in other neighboring areas often high thorium and uranium concentrations and may here as well served as a possible source of uranium deposits

  11. Uranium hydrogeochemical and stream sediment reconnaissance of the Bozeman NTMS quadrangle, Montana

    International Nuclear Information System (INIS)

    Bolivar, S.L.

    1978-11-01

    A total of 1251 water and 1536 sediment samples were collected from 1586 locations over a 17 400-km 2 area at a nominal density of one location per 10 km 2 . Samples were collected predominantly from surface streams although 38 ground water locations were also sampled. The uranium concentrations in waters sampled range from below the detection limit of 0.20 ppB to 41.35 ppB, with a mean concentration of 1.17 ppB. Waters with anomalous uranium concentrations as defined were found in tributaries of the Boulder River which drain Precambrian rocks in the Beartooth Mountains and in tributaries of the Three Forks basin which are underlain predominantly by Tertiary-Quaternary sediments. The two areas appearing most favorable for future exploration on the basis of water data are in the Three Forks basin in the vicinity of the Madison plateau and in a district about 20 km due west of Three Forks. Sediment samples from the quadrangle were found to have uranium concentrations that range from 0.90 ppM to 94.30 ppM, with a mean concentration of 3.71 ppM. The majority of anomalous sediment samples were collected from areas underlain by Precambrian rocks. Based on the data from sediments, the areas appearing most favorable for future exploration include the tributaries of the Boulder River in the Beartooth Mountains, the northern part of the Madison Range, and the Tobacco Root Mountains just north of Virginia City. The uranium concentrations in the sediments from these areas are probably associated with uraniferous siliceous veins or pegmatites

  12. Quaternary Geology and Liquefaction Susceptibility, Napa, California 1:100,000 Quadrangle: A Digital Database

    Science.gov (United States)

    Sowers, Janet M.; Noller, Jay S.; Lettis, William R.

    1998-01-01

    Earthquake-induced ground failures such as liquefaction have historically brought loss of life and damage to property and infrastructure. Observations of the effects of historical large-magnitude earthquakes show that the distribution of liquefaction phenomena is not random. Liquefaction is restricted to areas underlain by loose, cohesionless sands and silts that are saturated with water. These areas can be delineated on the basis of thorough geologic, geomorphic, and hydrologic mapping and map analysis (Tinsley and Holzer, 1990; Youd and Perkins, 1987). Once potential liquefaction zones are delineated, appropriate public and private agencies can prepare for and mitigate seismic hazard in these zones. In this study, we create a liquefaction susceptibility map of the Napa 1:100,000 quadrangle using Quaternary geologic mapping, analysis of historical liquefaction information, groundwater data, and data from other studies. The study is atterned after state-of-the-art studies by Youd (1973) Dupre and Tinsley (1980) and Dupre (1990) in the Monterey-Santa Cruz area, Tinsley and others (1985) in the Los Angeles area, and Youd and Perkins (1987) in San Mateo County, California. The study area comprises the northern San Francisco Metropolitan Area, including the cities of Santa Rosa, Vallejo, Napa, Novato, Martinez, and Fairfield (Figure 1). Holocene estuarine deposits, Holocene stream deposits, eolian sands, and artificial fill are widely present in the region (Helley and Lajoie, 1979) and are the geologic materials of greatest concern. Six major faults capable of producing large earthquakes cross the study area, including the San Andreas, Rodgers Creek, Hayward, West Napa, Concord, and Green Valley faults (Figure 1).

  13. Database for the geologic map of the Bend 30- x 60-minute quadrangle, central Oregon

    Science.gov (United States)

    Koch, Richard D.; Ramsey, David W.; Sherrod, David R.; Taylor, Edward M.; Ferns, Mark L.; Scott, William E.; Conrey, Richard M.; Smith, Gary A.

    2010-01-01

    The Bend 30- x 60-minute quadrangle has been the locus of volcanism, faulting, and sedimentation for the past 35 million years. It encompasses parts of the Cascade Range and Blue Mountain geomorphic provinces, stretching from snowclad Quaternary stratovolcanoes on the west to bare rocky hills and sparsely forested juniper plains on the east. The Deschutes River and its large tributaries, the Metolius and Crooked Rivers, drain the area. Topographic relief ranges from 3,157 m (10,358 ft) at the top of South Sister to 590 m (1,940 ft) at the floor of the Deschutes and Crooked Rivers where they exit the area at the north-central edge of the map area. The map encompasses a part of rapidly growing Deschutes County. The city of Bend, which has over 70,000 people living in its urban growth boundary, lies at the south-central edge of the map. Redmond, Sisters, and a few smaller villages lie scattered along the major transportation routes of U.S. Highways 97 and 20. This geologic map depicts the geologic setting as a basis for structural and stratigraphic analysis of the Deschutes basin, a major hydrologic discharge area on the east flank of the Cascade Range. The map also provides a framework for studying potentially active faults of the Sisters fault zone, which trends northwest across the map area from Bend to beyond Sisters. This digital release contains all of the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2683 (Sherrod and others, 2004). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2683.

  14. Guidebook of the Western United States: Part E - The Denver & Rio Grande Western Route

    Science.gov (United States)

    Campbell, Marius R.

    1922-01-01

    correctly the basis of its development, and above all to appreciate keenly the real value of the country he looks out upon, not as so many square miles of territory represented on the map in a railroad folder by meaningless spaces, but rather as land - real estate, if you please - varying widely in present appearance because differing largely in its history, and characterized by even greater variation in values because possessing diversified natural resources. One region may be such as to afford a livelihood for only a pastoral people; another may present opportunity for intensive agriculture; still another may contain hidden stores of mineral wealth that may attract large industrial development; and, taken together, these varied resources afford, the promise of long-continued prosperity for this or that State. Items of interest in civic development or references to significant epochs in the record of discovery and settlement may be interspersed. with explanations of mountain and valley or statements of geologic history. In a broad way the story of the West is a unit, and every chapter should be told in order to meet fully the needs of the tourist who aims to understand all that he sees. To such a traveler-reader this series of guidebooks is addressed. To this interpretation of our own country the United States Geological Survey brings the accumulated data of decades of pioneering investigation, and the present contribution is only one type of return to the public which has supported this scientific work under the Federal Government - a by-product of research. In the preparation of the description of the country traversed by the Denver & Rio Grande Western Route the geographic and geologic information already published as well as unpublished material in the possession of the Geological Survey has been utilized, but to supplement this material Mr. Campbell made a field examination of the entire route in 1915-1916. Information has been furnished by others,

  15. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Inmachuk, Kugruk, Kiwalik, and Koyuk River drainages, Granite Mountain, and the northern Darby Mountains, Bendeleben, Candle, Kotzebue, and Solomon quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 653 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from an area covering portions of the Inmachuk, Kugruk, Kiwalik, and Koyuk river drainages, Granite Mountain, and the northern Darby Mountains, located in the Bendeleben, Candle, Kotzebue, and Solomon quadrangles of eastern Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract

  16. Preliminary isostatic residual gravity map of the Tremonton 30' x 60' quadrangle, Box Elder and Cache Counties, Utah, and Franklin and Oneida Counties, Idaho

    Science.gov (United States)

    Langenheim, Victoria; Oaks, R.Q.; Willis, H.; Hiscock, A.I.; Chuchel, Bruce A.; Rosario, Jose J.; Hardwick, C.L.

    2014-01-01

    A new isostatic residual gravity map of the Tremonton 30' x 60' quadrangle of Utah is based on compilation of preexisting data and new data collected by the Utah and U.S. Geological Surveys. Pronounced gravity lows occur over North Bay, northwest of Brigham City, and Malad and Blue Creek Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Promontory, Clarkston, and Wellsville Mountains. The highest gravity values are located in southern Curlew Valley and may be produced in part by deeper crustal density variations or crustal thinning. Steep, linear gravity gradients coincide with Quaternary faults bounding the Wellsville and Clarkston Mountains. Steep gradients also coincide with the margins of the Promontory Mountains, Little Mountain, West Hills, and the eastern margin of the North Promontory Mountains and may define concealed basin-bounding faults.

  17. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    International Nuclear Information System (INIS)

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.; Wolverson, N.; Antrim, D.; Berg, J.; Witzel, F.

    1982-08-01

    The Wells 2 0 Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins are unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin

  18. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    International Nuclear Information System (INIS)

    Damp, J.N.; Jennings, M.D.

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated

  19. National Uranium Resource Evaluation: Lamar quadrangle, Colorado and Kansas

    International Nuclear Information System (INIS)

    Maarouf, A.M.; Johnson, V.C.

    1982-01-01

    Uranium resources of the Lamar Quadrangle, Colorado and Kansas, were evaluated using National Uranium Resource Evaluation criteria. The environment favorable for uranium is the Lower Cretaceous Dakota Sandstone in the area east of John Martin Reservoir for south Texas roll-type sandstone deposits. Carbonaceous trash and sulfides are abundant in the Dakota Sandstone. The unit underlies a thick Upper Cretaceous section that contains bentonitic beds and uraniferous marine black shale. Water samples from the Dakota Sandstone aquifer contain as much as 122 ppB U 3 O 8 . Geologic units considered unfavorable include most of the Paleozoic rocks, except in the Brandon Fault area; the Upper Cretaceous rocks; and the Ogallala Formation. The Dockum Group, Morrison Formation, and Lytle Member of the Purgatoire Formation are unevaluated because of lack of data

  20. National uranium resource evaluation, Rapid City Quadrangle, South Dakota

    International Nuclear Information System (INIS)

    Nanna, R.F.; Milton, E.J.

    1982-04-01

    The Rapid City (1 0 x 2 0 ) Quadrangle, South Dakota, was evaluated for environments favorble for uranium deposits to a depth of 1500 m. Criteria used were those of the National Uranium Resource Evaluation. Field reconnaissance involved the use of hand-held scintillometers to investigate uranium occurrences reported in the literature and anomalies in aerial radiometric surveys, and geochemical samples of stream sediments and well waters. Gamma-ray logs were used to define the favorable environments in the subsurface. Environments favorable for sandstone-type uranium deposits occur in the Inyan Kara Group, the Fox Hills Sandstone, and the Hell Creek Formation. Environments considered unfavorable for uranium deposits include all Precambrian, Paleozoic, Mesozoic, and Tertiary rocks other than those identified as favorable

  1. Surficial and applied surficial geology of the Belchertown Quadrangle, Massachusetts

    Science.gov (United States)

    Caggiano, Joseph A.

    1977-01-01

    Till and stratified drift overlie maturely dissected topography in the Belchertown quadrangle, an area that straddles the New England Upland and Connecticut Valley Lowland in central Massachusetts. Lower Paleozoic, massive quartzo-feldspathic gneiss, quartzite and schist of the Pelham dome and Devonian granodiorite and quartz diorite of the Belchertown intrusive complex are in contact with Triassic arkosic fanglomerate and basalt along a lengthy normal fault separating the New England Upland from the Connecticut Valley Lowland. The orientation of striae, roches moutonnees, and streamline ridges indicate that the last Wisconsinian glacier advanced generally south 12? east. This glacier removed several meters of rock from the upland and an unknown larger quantity from the preglacial valley of the Connecticut River. Till is thin in the uplands, but several tens of feet of drift overlie bedrock in the lowland. Three lithic facies of sandy, clast-rich, non-compact, subarkosic till derived from the three major source rocks rest on bedrock or on highly weathered, compact, clast-poor, fissile probably older till. The mean for all upper till is 69.6% sand, 21.7% silt, and 8.8% clay; lower till consists of 48% sand, 23% silt and 29% clay. Mud-rich, compact, sparsely stony till in drumlins in and along the flank of the Connecticut Valley Lowland is composed of 51.5% sand, 28% silt, and 20.5% clay. Upper tills are facies equivalent deposits of the youngest Wisconsinian drift. Lower till is compact deeply weathered, jointed and stained suggesting it is correlative with other lower till in New England deposited by an earlier Wisconsinian glacier. Drumlin till may be a facies equivalent of a lower till or a mud-rich upper till derived from earlier glaciolacustrine deposits. Upper and lower till of the Belchertown quadrangle is texturally similar to other New England upper and lower tills to which they are equivalent. Both tills are interpreted as lodgment till derived from

  2. National uranium resource evaluation, Dickinson quadrangle, North Dakota

    International Nuclear Information System (INIS)

    Lee, C.H.; Pack, D.D.; Galipeau, J.M.; Lawton, D.E.

    1982-05-01

    The Dickinson Quadrangle, North Dakota, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for uranium deposits. Criteria used in the evaluation were developed for the National Uranium Resource Evaluation program. The evaluation primarily consisted of a surface study, subsurface investigation, and an in-house ground-water geochemical study. These studies were augumented by aerial radiometric and hydrogeochemical and stream-sediment studies. The evaluation results indicate that the Sentinel Butte and Tongue River Members of the Fort Union Formation have environments favorable for uraniferous lignite deposits. The Sentinel Butte, Tongue River, and Ludlow Members of the Fort Union Formation are favorable for sandstone uranium deposits. Environments unfavorable for uranium deposits are the remaining Cenozoic rocks and all the rocks of the Cretaceous

  3. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    Energy Technology Data Exchange (ETDEWEB)

    Damp, J N; Jennings, M D

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

  4. The Denver Federal Courthouse: Energy-efficiency in a new Federal building

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, P.C.; Holtz, M.J.; Digert, N.; Starkweather, S.; Porter, F.; Clevenger, C.

    1999-07-01

    The US Federal Courthouse Expansion in Denver, Colorado is twelve story, 16,112 m{sup 2} project to be constructed adjacent to several existing Courthouse and Federal buildings in downtown Denver. The project has been designated a sustainable design showcase by the General Services Administration, and additional funds were made available to the project for sustainable design features. The design achieves a high level of energy efficiency through a combination of strategies that seek first to reduce building lighting and HVAC loads as low as possible, and then satisfy the remaining, loads through a combination of state-of-the-art, high-efficiency mechanical, electrical, and renewable energy systems. The unique attributes of the Denver climate--sunny skies and low humidity, are utilized throughout the design to minimize energy consumption. The resulting building provides a visible expression of sustainability through the incorporation of a set of features that are designed to work together in an integrated energy-efficient building system. Careful life-cycle assessment of materials and building practices results in minimized use of natural resources as well as a healthier environment for the occupants. The use of local materials is emphasized and the building is designed to have a 100-year life. Issues addressed in material selection include sustainability, recyclability, toxicity, and maintenance. The criteria used to establish the success of the design are contained in the Leadership in Energy and Environmental Design (LEED) rating system. Although the building is currently entering final design, a LEED gold rating is expected.

  5. The predicted impact of VOCs from Marijuana cultivation operations on ozone concentrations in great Denver, CO.

    Science.gov (United States)

    Wang, C. T.; Vizuete, W.; Wiedinmyer, C.; Ashworth, K.

    2016-12-01

    Colorado is the first the marijuana legal states in the United States since 2014. As a result, thousands of legal Marijuana cultivation operations are at great Denver area now. Those Marijuana cultivation operations could be the potential to release a lot of biogenic VOCs, such as monoterpene(C10H16), alpha-pinene, and D-limonene. Those alkene species could rapidly increase the peroxy radicals and chemical reactions in the atmosphere, especially in the urban area which belong to VOC-limited ozone regime. These emissions will increase the ozone in Denver city, where is ozone non-attainment area. Some previous research explained the marijuana smoke and indoor air quality (Martyny, Serrano, Schaeffer, & Van Dyke, 2013) and the smell of marijuana chemical compounds(Rice & Koziel, 2015). However, there have been no studies discuss on identifying and assessing emission rate from marijuana and how those species impact on atmospheric chemistry and ozone concentration, and the marijuana emissions have been not considered in the national emission inventory, either. This research will use air quality model to identify the possibility of ozone impact by marijuana cultivation emission. The Comprehensive Air Quality Model with Extensions, CAMx, are applied for this research to identify the impact of ozone concentration. This model is government regulatory model based on the Three-State Air Quality Modeling Study (3SAQS), which developed by UNC-Chapel Hill and ENVIRON in 2012. This model is used for evaluation and regulate the ozone impact in ozone non-attainment area, Denver city. The details of the 3SAQS model setup and protocol can be found in the 3SAQS report(UNC-IE, 2013). For the marijuana emission study scenarios, we assumed the monoterpene (C10H16) is the only emission species in air quality model and identify the ozone change in the model by the different quantity of emission rate from marijuana cultivation operations.

  6. National Uranium Resource Evaluation: Albuquerque Quadrangle, New Mexico

    International Nuclear Information System (INIS)

    Green, M.W.

    1982-09-01

    Areas and formations within the Albuquerque 1 0 x 2 0 Quadrangle, New Mexico designated as favorable, in order of decreasing relative favorability, include: (1) the Westwater Canyon and Brushy Basin Members of the Morrison Formation; (2) the Todilto Limestone of Late Jurassic age; (3) the Dakota Sandstone of Early and Late Cretaceous age; (4) the Ojo Alamo Sandstone of Tertiary age on the eastern side of the San Juan Basin; (5) the Galisteo Formation of Tertiary age within the Hagan Basin, in the eastern part of the Albuquerque Quadrangle; and (6) the Menefee Formation of Late Cretaceous age in the eastern part of the San Juan Basin. Favorability of the Westwater Canyon and Brushy Basin is based on the presence of favorable facies and sandstone-to-shale ratios, the presence of large masses of detrital and humic organic matter in sandstone host rocks, low to moderate dip of host beds, high radioactivity of outcropping rocks, numerous uranium occurrences, and the presence of large subsurface uranium deposits. The Todilto Limestone is considered favorable because of the presence of numerous medium to small uranium deposits in association with intraformational folds and with detrital and humic organic matter. The Dakota Sandstone is considered favorable only in areas within the Grants mineral belt where Tertiary faulting has allowed movement of uranium-bearing groundwater from the underlying Morrison Formation into organic-rich sandstone in the basal part of the Dakota. The Menefee Formation is locally favorable in the area of La Ventana Mesa where the control for known uranium deposits is both structural and stratigraphic. The Ojo Alamo Sandstone and the Galisteo Formations are considered favorable because of favorable facies, the presence of organic matter and pyrite; and low- to medium-grade mineral occurrences

  7. National Uranium Resource Evaluation: Moab Quadrangle, Colorado and Utah

    International Nuclear Information System (INIS)

    Campbell, J.A.; Franczyk, K.J.; Lupe, R.D.; Peterson, F.

    1982-09-01

    Portions of the Salt Wash Member of the Morrison, the Chinle, the Rico, the Cutler, and the Entrada Formations are favorable for uranium deposits that meet the minimum size and grade requirements of the US Department of Energy within the Moab 1' x 2' Quadrangle, Utah and Colorado. Nine areas are judged favorable for the Late Jurassic Salt Wash Member. The criteria used to evaluate these areas as favorable include the presence of (1) fluvial sandstone beds deposited by low-energy streams; (2) actively moving major and minor structures such as the Paradox basin and the many folds within it; (3) paleostream transport directions approximately perpendicular to the trend of many of the paleofolds; (4) presence of favorable gray lacustrine mudstone beds; and (5) known uranium occurrences associated with the favorable gray mudstones. Three favorable areas have been outlined for the Late Triassic Chinle Formation. The criteria used to evaluate these areas are the sandstone-to-shale ratios for the Chinle Formation and the distribution of the Petrified Forest Member of the Chinle, which is considered the source for the uranium. Two favorable areas have been delineated for the Permian Cutler Formation, and one for the Permian Rico Formation. The criteria used to outline favorable areas are the distribution of favorable facies within each formation. Favorable facies are those that are a result of deposition in environments that are transitional between fluvial and marine. One favorable area is outlined in the Jurassic Entrada Sandstone in the southeastern corner of the quadrangle in the Placerville district. Boundaries for this area were established by geologic mapping

  8. Map Showing Geologic Terranes of the Hailey 1°x2° Quadrangle and the western part of the Idaho Falls 1°x2° Quadrangle, south-central Idaho

    Data.gov (United States)

    Department of the Interior — The paper version of Map Showing Geologic Terranes of the Hailey 1°x2° Quadrangle and the western part of the Idaho Falls 1°x2° Quadrangle, south-central Idaho was...

  9. 77 FR 16850 - Notice of Reclassification of One Investigative Field Office to Regional Office: Denver, CO

    Science.gov (United States)

    2012-03-22

    ...This notice advises the public that the HUD/OIG Office of Investigation plans to reclassify its Denver, Colorado field office as a regional office. The planned reorganization is intended to: 1. Improve the alignment of limited investigative resources, to promote more efficient responses to HUD or Congressional requests involving critical program issues; 2. Redeploy resources to prevent and detect fraud in new program delivery of CPD, FHA and other HUD programs; and 3. Improve management control and effectiveness, and reduce travel costs of management by reducing region size. 4. Return to the traditional Regional alignment of HUD OIG Regional offices and HUD Regional offices.

  10. Geologic map of the Fraser 7.5-minute quadrangle, Grand County, Colorado

    Science.gov (United States)

    Shroba, Ralph R.; Bryant, Bruce; Kellogg, Karl S.; Theobald, Paul K.; Brandt, Theodore R.

    2010-01-01

    The geologic map of the Fraser quadrangle, Grand County, Colo., portrays the geology along the western boundary of the Front Range and the eastern part of the Fraser basin near the towns of Fraser and Winter Park. The oldest rocks in the quadrangle include gneiss, schist, and plutonic rocks of Paleoproterozoic age that are intruded by younger plutonic rocks of Mesoproterozoic age. These basement rocks are exposed along the southern, eastern, and northern margins of the quadrangle. Fluvial claystone, mudstone, and sandstone of the Upper Jurassic Morrison Formation, and fluvial sandstone and conglomeratic sandstone of the Lower Cretaceous Dakota Group, overlie Proterozoic rocks in a small area near the southwest corner of the quadrangle. Oligocene rhyolite tuff is preserved in deep paleovalleys cut into Proterozoic rocks near the southeast corner of the quadrangle. Generally, weakly consolidated siltstone and minor unconsolidated sediments of the upper Oligocene to upper Miocene Troublesome Formation are preserved in the post-Laramide Fraser basin. Massive bedding and abundant silt suggest that loess or loess-rich alluvium is a major component of the siltstone in the Troublesome Formation. A small unnamed fault about one kilometer northeast of the town of Winter Park has the youngest known displacement in the quadrangle, displacing beds of the Troublesome Formation. Surficial deposits of Pleistocene and Holocene age are widespread in the Fraser quadrangle, particularly in major valleys and on slopes underlain by the Troublesome Formation. Deposits include glacial outwash and alluvium of non-glacial origin; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; pediment deposits; tills deposited during the Pinedale and Bull Lake glaciations; and sparse diamictons that may be pre-Bull Lake till or debris-flow deposits. Some of the oldest surficial deposits may be as old as Pliocene.

  11. Geologic map of the Montauk quadrangle, Dent, Texas, and Shannon Counties, Missouri

    Science.gov (United States)

    Weary, David J.

    2015-04-30

    The Montauk 7.5-minute quadrangle is located in south-central Missouri within the Salem Plateau region of the Ozark Plateaus physiographic province. About 2,000 feet (ft) of flat-lying to gently dipping lower Paleozoic sedimentary rocks, mostly dolomite, chert, sandstone, and orthoquartzite, overlie Mesoproterozoic igneous basement rocks. Unconsolidated residuum, colluvium, terrace deposits, and alluvium overlie the sedimentary rocks. Numerous karst features, such as caves, springs, and sinkholes, have formed in the carbonate rocks. Many streams are spring fed. The topography is a dissected karst plain with elevations ranging from approximately 830 ft where the Current River exits the middle-eastern edge of the quadrangle to about 1,320 ft in sec. 16, T. 31 N., R. 7 W., in the southwestern part of the quadrangle. The most prominent physiographic features within the quadrangle are the deeply incised valleys of the Current River and its major tributaries located in the center of the map area. The Montauk quadrangle is named for Montauk Springs, a cluster of several springs that resurge in sec. 22, T. 32 N., R. 7 W. These springs supply clean, cold water for the Montauk Fish Hatchery, and the addition of their flow to that of Pigeon Creek produces the headwaters of the Current River, the centerpiece of the Ozark National Scenic Riverways park. Most of the land in the quadrangle is privately owned and used primarily for grazing cattle and horses and growing timber. A smaller portion of the land within the quadrangle is publicly owned by either Montauk State Park or the Ozark National Scenic Riverways (National Park Service). Geologic mapping for this investigation was conducted in 2007 and 2009.

  12. NURE aerial gamma ray and magnetic reconnaissance survey, Thorpe area, Scranton NK18-8 Quadrangle. Volume I. Narrative report

    International Nuclear Information System (INIS)

    1978-02-01

    A rotary wing combined airborne high sensitivity gamma-ray and magnetic survey of four 1:250,000 quadrangles covering portions of Pennsylvania, New Jersey, and New York was made. The results are given for the Scranton NK18-8 quadrangle

  13. Evaluation of a marketing program designed to increase consumer consideration of energy-efficient products in Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    A demonstration marketing program to sensitize Denver homeowners to incorporate the energy cost of ownership orientation in their decision process regarding purchase of energy-efficient products is described. Personal interviews with Denver homeowners were conducted. A first survey established a baseline for consumer awareness and acceptance of energy conservation and conservation-related products and provided information which could be utilized in developing marketing strategies related to energy conservation and the concept of energy cost of ownership. A second survey measured shifts in awareness and attitudes which might have occurred as a result of the marketing demonstration program. The methodology and results of the evaluation are discussed in detail. The Denver Test Market Media Campaign conducted through multi-media advertising and public relations campaigns to sensitize the residents to the positive consideraton of energy-efficient products is described. (MCW)

  14. Drainage areas of the Potomac River basin, West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Hunt, Michelle L.; Stewart, Donald K.

    1996-01-01

    This report contains data for 776 drainage-area divisions of the Potomac River Basin, from the headwaters to the confluence of the Potomac River and the Shenandoah River. Data, compiled in downstream order, are listed for streams with a drainage area of approximately 2 square miles or larger within West Virginia and for U.S. Geological Survey streamflow-gaging stations. The data presented are the stream name, the geographical limits in river miles, the latitude and longitude of the point, the name of the county, and the 7 1/2-minute quadrangle in which the point lies, and the drainage area of that site. The total drainage area of the Potomac River Basin downstream of the confluence of the Shenandoah River at the State boundary is 9,367.29 square miles.

  15. Geologic map of the Hasty Quadrangle, Boone and Newton Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2004-01-01

    This digital geologic map compilation presents new polygon (for example, geologic map unit contacts), line (for example, fault, fold axis, and structure contour), and point (for example, structural attitude, contact elevations) vector data for the Hasty 7.5-minute quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Hasty quadrangle is located in northern Newton and southern Boone Counties about 20 km south of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Hasty quadrangle map provides new geologic information for better understanding groundwater flow paths in and adjacent to the Buffalo River watershed.

  16. Aerial gamma ray and magnetic survey: Tarpon Springs and Orlando quadrangles, Florida. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    The Tarpon Springs and Orlando quadrangles cover 7850 square miles of central peninsular Florida. Cretaceous and younger platform deposits overlie a complex core of Precambrian, Paleozoic and early Mesozoic crystalline rocks and sediments. Tertiary and Quaternary platform deposits and alluvium cover the surface. Extensive mining for phosphates is taking place in certain areas of the two quadrangles. No known uranium deposits are present within the quadrangles, but the phosphates are known to contain higher than normal amounts of uranium. Statistical analysis resulted in the selection of 47 anomalies. All appear to be related to culture, but some that are associated with the phosphate region have extremely high apparent uranium values. Detailed resource study should concentrate on the phosphates and on the possibility of uranium recovery as a by-product of phosphate mining

  17. Hydrogeochemical and stream sediment reconnaissance basic data for Dallas NTMS Quadrangle, Texas

    International Nuclear Information System (INIS)

    1981-01-01

    Results of a reconnaissance geochemical survey of the Dallas Quadrangle, Texas are reported. Field and laboratory data are presented for 284 groundwater and 545 stream sediment samples. Statistical and areal distribution plots of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided. Groundwater produced from the Navarro Group, Neylandville Formation, Marlbrook Marl, and the Glen Rose and Twin Mountains Formations exhibit anomalous uranium (> 9.05 ppB) and specific conductance (> 1871 μmhos/cm) values. The anomalies represent a southern extension of a similar trend observed in the Sherman Quadrangle, K/UR-110. Stream sediments representing the Eagle Ford Group and Woodbine Formation exhibit the highest concentrations of total and hot-acid-soluble uranium and thorium of samples collected in the Dallas Quadrangle. The U/TU value indicates that > 80% of this uranium is present in a soluble form

  18. Geologic map of the Hiller Mountain Quadrangle, Clark County, Nevada, and Mohave County, Arizona

    Science.gov (United States)

    Howard, Keith A.; Hook, Simon; Phelps, Geoffrey A.; Block, Debra L.

    2003-01-01

    Map Scale: 1:24,000 Map Type: colored geologic map The Hiller Mountains Quadrangle straddles Virgin Canyon in the eastern part of Lake Mead. Proterozoic gneisses and granitoid rocks underlie much of the quadrangle. They are overlain by upper Miocene basin-filling deposits of arkosic conglomerate, basalt, and the overlying Hualapai Limestone. Inception of the Colorado River followed deposition of the Hualapai Limestone and caused incision of the older rocks. Fluvial gravel deposits indicate various courses of the early river across passes through highlands of the Gold Butte-Hiller Mountains-White Hills structural block. Faults and tilted rocks in the quadrangle record tectonic extension that climaxed in middle Miocene time.

  19. Data release on the Salton Sea Quadrangle, California and Arizona. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Chew, R.T. III; Antrim, D.R.

    1982-10-01

    The purpose of the National Uranium Resource Evaluation (NURE) was to delineate and evaluate all geologic environments favorable for the occurrence of uranium deposits. A favorable environment was defined as having the potential to contain an occurrence of at least 100 tons of U 3 O 8 at an average grade of not less than 0.01% U 3 O 8 . In the Salton Sea Quadrangle, reported uranium occurrences were evaluated, and geologic environments thought to be favorable were examined. This report includes the field data collected during that work and a summary of the quadrangle geology and uranium favorability. This is the final report to be prepared on this quadrangle under the NURE program

  20. Airborne gamma-ray spectrometer and magnetometer survey: Harrison Bay Quadrangle, Alaska. Final report, Volume 1

    International Nuclear Information System (INIS)

    1981-02-01

    During the months of July and August of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 3 0 x 1 0 and one (1) 4 0 x 1 0 NTMS quadrangles of the Alaska North Slope. These include the Barrow, Wainwright, Meade River, Teshekpuk, Harrison Bay, Beechey Point, Point Lay, Utukok River, Lookout Ridge, Ikpikpuk River, Umiat, and Sagavanirktok quadrangles. This report discusses the results obtained over the Harrison Bay map area

  1. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Russellville quadrangle, Arkansas

    International Nuclear Information System (INIS)

    1980-09-01

    The Russellville quadrangle in north central Arkansas overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Eighty-eight groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources

  2. Airborne gamma-ray spectrometer and magnetometer survey: Aberdeen quadrangle, South Dakota. Final report

    International Nuclear Information System (INIS)

    1981-04-01

    During the months of June through October, 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. This report discusses the results obtained over the Aberdeen, South Dakota map area. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps

  3. Aerial gamma ray and magnetic survey: Kansas City Quadrangle of Kansas and Missouri. Final report

    International Nuclear Information System (INIS)

    1980-11-01

    The Kansas City quadrangle covers approximately 7400 square miles in northwestern Missouri and northeastern Kansas. It overlies the southeastern edge of the Forest City Basin, which contains predominantly Paleozoic sediments. Permian and Pennsylvanian formations cover much of the surface, but Quaternary sedimentation dominates certain regions of the quadrangle. A search of available literature revealed no known uranium deposits. A total of 102 uranium anomalies were detected and are discussed briefly. None were considered significant and all appear to be related to cultural features. Magnetic data appears to correlate directly with underlying Precambrian material

  4. Aerial gamma ray and magnetic survey: Mason City quadrangle, Iowa and Minnesota. Final report

    International Nuclear Information System (INIS)

    1981-02-01

    The Mason City quadrangle covers 6900 miles of the northern Midwestern Physiographic Province in northern Iowa and southern Minnesota. The surface is largely covered by Quaternary glacial and related deposits. The subglacial surface is exposed only in the northeast and is composed of thin Mesozoic and Paleozoic sediments overlying Precambrian basement. A search of available literature revealed no known uranium deposits. A total of 89 uranium anomalies were detected and briefly described in this report. None were considered significant, and all appear to be related to cultural features. Concentrations of K, U, and T are extremely low throughout the quadrangle. Magnetic data appear to illustrate complexities in the underlying Precambrian

  5. Aerial gama ray and magnetic survey: Lawrence Quadrangle of Kansas and Missouri. Final report

    International Nuclear Information System (INIS)

    1980-11-01

    The Lawrence quadrangle covers approximately 7500 square miles in Kansas and Missouri over the western edge of the Ozark Uplift. Sediments in this area are mostly Pennsylvanian and Permian sandstone, shale, limestone, and coal. As mapped, these are the dominant units in the quadrangle. A search of available literature revealed no known uranium deposits. A total of 94 uranium anomalies were detected and are discussed briefly. Most appear to be related to cultural features. Those associated with coal mine tailings appear to be most significant. Magnetic data appears to relate to complexities in the Precambrian basement

  6. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Field, M T; Truesdell, D B

    1982-09-01

    The Albany 1/sup 0/ x 2/sup 0/ Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks.

  7. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    International Nuclear Information System (INIS)

    Field, M.T.; Truesdell, D.B.

    1982-09-01

    The Albany 1 0 x 2 0 Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks

  8. Airborne gamma-ray spectrometer and magnetometer survey, Devils Lake quadrangle, North Dakota. Final report

    International Nuclear Information System (INIS)

    1981-05-01

    During the months of June through October, 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over eleven (11) 2 0 x 1 0 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2 0 x 1 0 NTMS quadrangles in North and South Dakota. This report discusses the results obtained over the Devil's Lake map area of North Dakota. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps

  9. Aerial gamma ray and magnetic survey: Minnesota Project, New Ulm quadrangle of Minnesota. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The New Ulm 1:250,000 scale quadrangle of southwestern Minnesota is entirely covered by variable thicknesses of Late Wisconsin age glacial deposits (drift). Precambrian bedrock is primarily exposed within the Minnesota River Valley, but only in very small, scattered outcrops. Approximately 50% of the bedrock is composed of Cretaceous sediments. There are no known uranium deposits (or occurrences) within the quadrangle. One hundred forty-six (146) groups of uranium samples were defined as anomalies and are discussed. None were considered significant

  10. Early Start Denver Model - intervention for de helt små børn med autisme

    DEFF Research Database (Denmark)

    Brynskov, Cecilia

    2015-01-01

    Early Start Denver Model (ESDM) er en autismespecifik interventionsmetode, som er udviklet til helt små børn med autisme (0-4 år). Metoden fokuserer på at styrke den tidlige kontakt og barnets motivation, og den arbejder målrettet med de socio-kommunikative forløbere for sprog og med den tidlige...

  11. Energy resources of the Denver and Cheyenne Basins, Colorado - resource characteristics, development potential, and environmental problems. Environmental Geology 12

    International Nuclear Information System (INIS)

    Kirkham, R.M.; Ladwig, L.R.

    1980-01-01

    The geological characteristics, development potential, and environmental problems related to the exploration for and development of energy resources in the Denver and Cheyenne Basins of Colorado were investigated. Coal, lignite, uranium, oil and natural gas were evaluated. Emphasis is placed on environmental problems that may develop from the exploration for an extraction of these energy resources

  12. IAEA perspectives on geological repositories. Address at the international conference on geological repositories, Denver, 1 November 1999

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1999-01-01

    In his address at the International Conference on Geological Repositories (Denver, 1 November 1999), the Director General of the IAEA gave a general presentation of the problem of disposal of high-level radioactive waste, and described the current situation in the countries using nuclear energy including present and future Agency's activities

  13. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    International Nuclear Information System (INIS)

    Santos, E.S.; Robinson, K.; Geer, K.A.; Blattspieler, J.G.

    1982-09-01

    Uranium resources of the Newcastle 1 0 x2 0 Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group

  14. National Uranium Resource Evaluation: Lawton Quadrangle, Oklahoma and Texas

    International Nuclear Information System (INIS)

    Al-Shaieb, Z.; Thomas, R.G.; Stewart, G.F.

    1982-04-01

    Uranium resources of the Lawton Quadrangle, Oklahoma and Texas, were evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Five areas of uranium favorability were delineated. Diagenetically altered, quartzose and sublithic, eolian and marginal-marine sandstones of the Permian Rush Springs Formation overlying the Cement Anticline are favorable for joint-controlled deposits in sandstone, non-channel-controlled peneconcordant deposits, and Texas roll-front deposits. Three areas contain lithologies favorable for channel-controlled peneconcordant deposits: arkosic sandstones and granule conglomerates of the Permian Post Oak Conglomerate south of the Wichita Mountains; subarkosic and sublithic Lower Permian fluvio-deltaic and coastal-plain sandstones of the eastern Red River Valley; and subsurface arkosic, subarkosic, and sublithic alluvial-fan and fan-delta sandstones of the Upper Pennsylvanian-Lower Permian sequence in the eastern Hollis Basin. The coarse-grained facies of the Cambrian Quanah Granite and genetically related aplite and pegmatite dikes in the Wichita Mountains are favorable for orthomagmatic and autometasomatic deposits, respectively

  15. Geologic Map of the Helen Planitia Quadrangle (V-52), Venus

    Science.gov (United States)

    Lopez, Ivan; Hansen, Vicki L.

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Helen Planitia quadrangle (V-52), located in the southern hemisphere of Venus between lat 25 deg S. and 50 deg S. and between long 240 deg E. and 270 deg E., covers approximately 8,000,000 km2. Regionally, the map area is located at the southern limit of an area of enhanced tectonomagmatic activity and extensional deformation, marked by a triangle that has highland apexes at Beta, Atla, and Themis Regiones (BAT anomaly) and is connected by the large extensional belts of Devana, Hecate, and Parga Chasmata. The BAT anomaly covers approximately 20 percent of the Venusian surface.

  16. Mesa NTMS 10 x 20 quadrangle area. Supplemental data report

    International Nuclear Information System (INIS)

    Koller, G.R.

    1980-01-01

    This data report presents supplemental analytical results for stream sediments and ground water. The samples were collected as part of the SRL-NURE reconnaissance in the National Topographic Map Series (NTMS) Mesa 1 0 x 2 0 quadrangle. Results are reported for 24 elements (Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, Th, W, Y, Zn, and extractable U) in sediments and 31 elements (Ag, Al, As, B, Ba, Be, Ca, Ce, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Sc, Se, Si, Sr, Th, Ti, V, Y, Zn, and Zr) as well as pH, alkalinity, and conductivity in ground water. Field data and NAA data will be open-filed when they are available. Microfiche cards have been placed in a pocket on the last page of this report. These cards contain the following information: Cards marked Pg. 1, Pg. 2, and Pg. 3 contain histograms, cumulative frequency plots, and areal distribution plots for sediment samples. The card marked Plate 1 is a site-code map for sediment samples

  17. National Uranium Resource Evaluation, Tularosa Quadrangle, New Mexico

    International Nuclear Information System (INIS)

    Berry, V.P.; Nagy, P.A.; Spreng, W.C.; Barnes, C.W.; Smouse, D.

    1981-12-01

    Uranium favorability of the Tularosa Quadrangle, New Mexico, was evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Uranium occurrences reported in the literature were located, sampled, and described in detail. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, and geochemical anomalies, interpreted from hydrogeochemical and stream-sediment reconnaissance, were also investigated. Additionally, several hundred rock samples were studied in thin section, and supplemental geochemical analyses of rock and water samples were completed. Fluorometric analyses were completed for samples from the Black Range Primitive Area to augment previously available geochemical data. Subsurface favorability was evaluated using gamma-ray logs and descriptive logs of sample cuttings. One area of uranium favorability was delineated, based on the data made available from this study. This area is the Nogal Canyon cauldron margin zone. Within the zone, characterized by concentric and radial fractures, resurgent doming, ring-dike volcanism, and intracauldron sedimentation, uranium conentration is confined to magmatic-hydrothermal and volcanogenic uranium deposits

  18. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

    1982-09-01

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

  19. Hydro-geological studies at the PINSTECH quadrangle

    International Nuclear Information System (INIS)

    Mehmood, K.; Qureshi, A.A.; Khattak, N.; Akram, M.; Farooq, M.

    2000-05-01

    In order to save the huge amount of water bill and to overcome the shortage of water supply during summer, a resistivity survey was carried out to locate some suitable water bearing horizons within the PINSTECH Quadrangle. Eight shallow bore holes yielding limited amount of water supply were also drilled on trial basis. The work so far done indicates the existence of two water-bearing horizons in this area. a. A shallow water bearing horizon present at the contact of recent alluvium with bedrock at a depth between 7-20 meters. b. A deep water bearing horizon present erratically in the sandstone of Kamlial Formation at a depth between 85-180 meters. On the basis of resistivity measurements, thirteen sites have been earmarked which may contain water bearing zones in the deep horizon. Out of these, nine sites have been classified as the favorable and four as semi-favorable sites. A geological survey of the area was also carried out. The Kamlial sandstone, indicated by the resistivity survey to contain water bearing zones, is less porous with low permeability. Therefore it is not a favorable lithology to contain an aquifer to produce a good water discharge. However, the hole/s penetrating through a faulted/fractured zone being charged through a stream in the vicinity may yield water. (author)

  20. National Uranium Resource Evaluation: Wichita Falls Quadrangle, Texas and Oklahoma

    International Nuclear Information System (INIS)

    Edwards, M.B.; Andersen, R.L.

    1982-08-01

    The uranium favorability of the Wichita Falls Quadrangle, Texas and Oklahoma, was determined by using National Uranium Resource Evaluation criteria; by subsurface studies of structure, facies distribution, and gamma-ray anomalies in well logs to a depth of 1500 m; and by surface studies involving extensive field sampling and radiometric surveying. These were supplemented by both aerial radiometric and hydrogeochemical and stream-sediment reconnaissance studies. Favorable environments were identified in fluviodeltaic to fan-delta sandstones in the upper Strawn, Canyon, and Cisco Groups (Pennsylvania to Lower Permian), which occur exclusively in the subsurface. Evaluation was based on the presence of a good uranium source, abundant feldspar, good hydrogeologic characteristics, association with carbonaceous shales, presence of coal and oil fields, and anomalies in gamma logs. Additional favorable environments include deltaic to alluvial sandstones in the Wichita-Albany Group (Lower Permian), which crops out widely and occurs in the shallow subsurface. Evaluation was based on high uranium values in stream-sediment samples, a small uranium occurrence located during the field survey, anomalous gamma logs, good uranium source, and hydrogeologic characteristics. Unfavorable environments include Cambrian to Permian limestones and shales. Pennsylvanian to Permian fluviodeltaic systems that have poor uranium sources, and Permian, Cretaceous, and Pleistocene formations that lack features characteristic of known uranium occurrences

  1. Journalism and Academic Surgery: The Denver Post and The American Surgeon.

    Science.gov (United States)

    Nakayama, Don K

    2015-07-01

    Publication in professional journals is where advancements in surgery are reported and verified. Thus academic surgery holds common ground with journalism, where the principles of service, communication, and integrity are the basis of their public trust and standing in society. Writing for the Denver Post the author learned lessons that are relevant to academic surgery. Facts have to be solid. There are important issues to be discussed. Articles have to be interesting and not tiresome to read. And if it's something new--the essence of news--get it out there first. The American Surgeon embodies the same principles. The journal is a place where members of the Southeastern Surgical Congress discuss important matters, like surgical education, and share stories of interest, like a Japanese surgeon trying to treat victims of nuclear war. It is accessible yet disciplined, dedicated to advancing our field and fostering fellowship and communication among its members.

  2. Collective efficacy in Denver, Colorado: Strengthening neighborhoods and health through community gardens.

    Science.gov (United States)

    Teig, Ellen; Amulya, Joy; Bardwell, Lisa; Buchenau, Michael; Marshall, Julie A; Litt, Jill S

    2009-12-01

    Community gardens are viewed as a potentially useful environmental change strategy to promote active and healthy lifestyles but the scientific evidence base for gardens is limited. As a step towards understanding whether gardens are a viable health promotion strategy for local communities, we set out to examine the social processes that might explain the connection between gardens, garden participation and health. We analyzed data from semi-structured interviews with community gardeners in Denver. The analysis examined social processes described by community gardeners and how those social processes were cultivated by or supportive of activities in community gardens. After presenting results describing these social processes and the activities supporting them, we discuss the potential for the place-based social processes found in community gardens to support collective efficacy, a powerful mechanism for enhancing the role of gardens in promoting health.

  3. High-Penetration Photovoltaics Standards and Codes Workshop, Denver, Colorado, May 20, 2010: Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Kroposki, B.; Basso, T.; Lynn, K.; Herig, C.; Bower, W.

    2010-09-01

    Effectively interconnecting high-level penetration of photovoltaic (PV) systems requires careful technical attention to ensuring compatibility with electric power systems. Standards, codes, and implementation have been cited as major impediments to widespread use of PV within electric power systems. On May 20, 2010, in Denver, Colorado, the National Renewable Energy Laboratory, in conjunction with the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), held a workshop to examine the key technical issues and barriers associated with high PV penetration levels with an emphasis on codes and standards. This workshop included building upon results of the High Penetration of Photovoltaic (PV) Systems into the Distribution Grid workshop held in Ontario California on February 24-25, 2009, and upon the stimulating presentations of the diverse stakeholder presentations.

  4. 3D Adaptive Virtual Exhibit for the University of Denver Digital Collections

    Directory of Open Access Journals (Sweden)

    Shea-Tinn Yeh

    2015-07-01

    Full Text Available While the gaming industry has taken the world by storm with its three-dimensional (3D user interfaces, current digital collection exhibits presented by museums, historical societies, and libraries are still limited to a two-dimensional (2D interface display. Why can’t digital collections take advantage of this 3D interface advancement? The prototype discussed in this paper presents to the visitor a 3D virtual exhibit containing a set of digital objects from the University of Denver Libraries’ digital image collections, giving visitors an immersive experience when viewing the collections. In particular, the interface is adaptive to the visitor’s browsing behaviors and alters the selection and display of the objects throughout the exhibit to encourage serendipitous discovery. Social media features were also integrated to allow visitors to share items of interest and to create a sense of virtual community.

  5. Evaluation of Fast-Time Wake Models Using Denver 2006 Field Experiment Data

    Science.gov (United States)

    Ahmad, Nash’at N.; Pruis, Matthew J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a series of wake vortex field experiments at Denver in 2003, 2005, and 2006. This paper describes the lidar wake vortex measurements and associated meteorological data collected during the 2006 deployment, and includes results of recent reprocessing of the lidar data using a new wake vortex algorithm and estimates of the atmospheric turbulence using a new algorithm to estimate eddy dissipation rate from the lidar data. The configuration and set-up of the 2006 field experiment allowed out-of-ground effect vortices to be tracked in lateral transport further than any previous campaign and thereby provides an opportunity to study long-lived wake vortices in moderate to low crosswinds. An evaluation of NASA's fast-time wake vortex transport and decay models using the dataset shows similar performance as previous studies using other field data.

  6. The Denver Aerosol Sources and Health (DASH) study: Overview and early findings

    Science.gov (United States)

    Vedal, S.; Hannigan, M. P.; Dutton, S. J.; Miller, S. L.; Milford, J. B.; Rabinovitch, N.; Kim, S.-Y.; Sheppard, L.

    Improved understanding of the sources of air pollution that are most harmful could aid in developing more effective measures for protecting human health. The Denver Aerosol Sources and Health (DASH) study was designed to identify the sources of ambient fine particulate matter (PM 2.5) that are most responsible for the adverse health effects of short-term exposure to PM 2.5. Daily 24-h PM 2.5 sampling began in July 2002 at a residential monitoring site in Denver, Colorado, using both Teflon and quartz filter samplers. Sampling is planned to continue through 2008. Chemical speciation is being carried out for mass, inorganic ionic compounds (sulfate, nitrate and ammonium), and carbonaceous components, including elemental carbon, organic carbon, temperature-resolved organic carbon fractions and a large array of organic compounds. In addition, water-soluble metals were measured daily for 12 months in 2003. A receptor-based source apportionment approach utilizing positive matrix factorization (PMF) will be used to identify PM 2.5 source contributions for each 24-h period. Based on a preliminary assessment using synthetic data, the proposed source apportionment should be able to identify many important sources on a daily basis, including secondary ammonium nitrate and ammonium sulfate, diesel vehicle exhaust, road dust, wood combustion and vegetative debris. Meat cooking, gasoline vehicle exhaust and natural gas combustion were more challenging for PMF to accurately identify due to high detection limits for certain organic molecular marker compounds. Measurements of these compounds are being improved and supplemented with additional organic molecular marker compounds. The health study will investigate associations between daily source contributions and an array of health endpoints, including daily mortality and hospitalizations and measures of asthma control in asthmatic children. Findings from the DASH study, in addition to being of interest to policymakers, by

  7. Shade Sails and Passive Recreation in Public Parks of Melbourne and Denver: A Randomized Intervention

    Science.gov (United States)

    English, Dallas R.; Buller, Mary Klein; Simmons, Jody; Chamberlain, James A.; Wakefield, Melanie; Dobbinson, Suzanne

    2017-01-01

    Objectives. To test whether shade sails will increase the use of passive recreation areas (PRAs). Methods. We conducted a stratified randomized pretest–posttest controlled design study in Melbourne, Australia, and Denver, Colorado, in 2010 to 2014. We randomized a sample of 144 public parks with 2 PRAs in full sun in a 1:3 ratio to treatment or control. Shade sails were built at 1 PRA per treatment park. The outcome was any use of the study PRA (n = 576 pretest and n = 576 posttest observations; 100% follow-up). Results. Compared with control PRAs (adjusted probability of use: pretest = 0.14, posttest = 0.17), use of treatment PRAs (pretest = 0.10, posttest = 0.32) was higher at posttest (odds ratio [OR] = 3.91; 95% confidence interval [CI] = 1.71, 8.94). Shade increased use of PRAs in Denver (control: pretest = 0.18, posttest = 0.19; treatment: pretest = 0.16, posttest = 0.47) more than Melbourne (control: pretest = 0.11, posttest = 0.14; shaded: pretest = 0.06, posttest = 0.19; OR = 2.98; 95% CI = 1.09, 8.14). Conclusions. Public investment in shade is warranted for skin cancer prevention and may be especially useful in the United States. Trial Registration. Clinicaltrials.gov identifier NCT02971709. PMID:29048958

  8. Astronomy in Denver: Probing Interstellar Circular Polarization with Polvis, a Full Stokes Single Shot Polarimeter

    Science.gov (United States)

    Wolfe, Tristan; Stencel, Robert E.

    2018-06-01

    Measurements of optical circular polarization (Stokes V) introduced by dust grains in the ISM are important for two main reasons. First of all, the polarization itself contains information about the metallic versus dielectric composition of the dust grains themselves (H. C. van de Hulst 1957, textbook). Additionally, circular polarization can help constrain the interstellar component of the polarization of any source that may have intrinsic polarization, which needs to be calibrated for astrophysical study. Though interstellar circular polarization has been observed (P. G. Martin 1972, MNRAS 159), most broadband measurements of ISM polarization include linear polarization only (Stokes Q and U), due to the relatively low circular polarization signal and the added instrumentation complexity of including V-measurement capability. Prior circular polarization measurements have also received very little follow-up in the past several decades, even as polarimeters have become more accurate due to advances in technology. The University of Denver is pursuing these studies with POLVIS, a prototype polarimeter that utilizes a stress-engineered optic ("SEO", A. K. Spilman and T. G. Brown 2007, Applied Optics IP 46) to produce polarization-dependent PSFs (A. M. Beckley and T. G. Brown 2010, Proc SPIE 7570). These PSFs are analyzed to provide simultaneous Stokes I, Q, U, and V measurements, in a single beam and single image, along the line-of-sight to point source-like objects. Polvis is the first polarimeter to apply these optics and measurement techniques for astronomical observations. We present the first results of this instrument in B, V, and R wavebands, providing a fresh look at full Stokes interstellar polarization. Importantly, this set of efforts will constrain the ISM contribution to the polarization with respect to intrinsic stellar components. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver

  9. Shade Sails and Passive Recreation in Public Parks of Melbourne and Denver: A Randomized Intervention.

    Science.gov (United States)

    Buller, David B; English, Dallas R; Buller, Mary Klein; Simmons, Jody; Chamberlain, James A; Wakefield, Melanie; Dobbinson, Suzanne

    2017-12-01

    To test whether shade sails will increase the use of passive recreation areas (PRAs). We conducted a stratified randomized pretest-posttest controlled design study in Melbourne, Australia, and Denver, Colorado, in 2010 to 2014. We randomized a sample of 144 public parks with 2 PRAs in full sun in a 1:3 ratio to treatment or control. Shade sails were built at 1 PRA per treatment park. The outcome was any use of the study PRA (n = 576 pretest and n = 576 posttest observations; 100% follow-up). Compared with control PRAs (adjusted probability of use: pretest = 0.14, posttest = 0.17), use of treatment PRAs (pretest = 0.10, posttest = 0.32) was higher at posttest (odds ratio [OR] = 3.91; 95% confidence interval [CI] = 1.71, 8.94). Shade increased use of PRAs in Denver (control: pretest = 0.18, posttest = 0.19; treatment: pretest = 0.16, posttest = 0.47) more than Melbourne (control: pretest = 0.11, posttest = 0.14; shaded: pretest = 0.06, posttest = 0.19; OR = 2.98; 95% CI = 1.09, 8.14). Public investment in shade is warranted for skin cancer prevention and may be especially useful in the United States. Clinicaltrials.gov identifier NCT02971709.

  10. Geologic Map of Northeastern Seattle (Part of the Seattle North 7.5' x 15' Quadrangle), King County, Washington

    Science.gov (United States)

    Booth, Derek B.; Troost, Kathy Goetz; Shimel, Scott A.

    2009-01-01

    This geologic map, approximately coincident with the east half of the Seattle North 7.5 x 15' quadrangle (herein, informally called the 'Seattle NE map'), covers nearly half of the City of Seattle and reaches from Lake Washington across to the Puget Sound shoreline. Land uses are mainly residential, but extensive commercial districts are located in the Northgate neighborhood, adjacent to the University of Washington, and along the corridors of Aurora Avenue North and Lake City Way. Industrial activity is concentrated along the Lake Washington Ship Canal and around Lake Union. One small piece of land outside of the quadrangle boundaries, at the west edge of the Bellevue North quadrangle, is included on this map for geographic continuity. Conversely, a small area in the northeast corner of the Seattle North quadrangle, on the eastside of Lake Washington, is excluded from this map. Within the boundaries of the map area are two large urban lakes, including the most heavily visited park in the State of Washington (Green Lake Park); a stream (Thornton Creek) that still hosts anadromous salmon despite having its headwaters in a golfcourse and a shopping center; parts of three cities, with a combined residential population of about 300,000 people; and the region's premier research institution, the University of Washington. The north boundary of the map is roughly NE 168th Street in the cities of Shoreline and Lake Forest Park, and the south boundary corresponds to Mercer Street in Seattle. The west boundary is 15th Avenue W (and NW), and the east boundary is formed by Lake Washington. Elevations range from sea level to a maximum of 165 m (541 ft), the latter on a broad till-covered knob in the city of Shoreline near the northwest corner of the map. Previous geologic maps of this area include those of Waldron and others (1962), Galster and Laprade (1991), and Yount and others (1993). Seattle lies within the Puget Lowland, an elongate structural and topographic basin between

  11. Hydrogeochemical and stream sediment reconnaissance basic data for Nabesna Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1236 water samples from the Nebesna Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  12. Hydrogeochemical and stream sediment reconnaissance basic data for Preston Quadrangle, Wyoming; Idaho

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 410 water samples and 702 sediment samples from the Preston Quadrangle, Wyoming; Idaho. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-70(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  13. Hydrogeochemical and stream sediment reconnaissance basic data for Aztec Quadrangle, New Mexico

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 331 water samples and 1693 sediment samples from the Aztec Quadrangle, New Mexico. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-129(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  14. Hydrogeochemical and stream sediment reconnaissance basic data for Harrison Bay quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 328 water samples from the Harrison Bay Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  15. Hydrogeochemical and stream sdeiment reconnaissance basic data for Brownfield Quadrangle, New Mexico; Texas

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 452 water samples and 351 sediment samples from the Brownfield Quadrangle, New Mexico; Texas. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-103(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  16. Hydrogeochemical and stream sediment reconnaissance basic data for Meade River quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 515 water samples from the Meade River Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  17. Hydrogeochemical and stream sediment reconnaissance basic data for Iditarod Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1410 water samples from the Iditarod Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  18. Geology of the Delta, Escalante, Price, Richfield, and Salina 10 x 20 quadrangles, Utah

    International Nuclear Information System (INIS)

    Thayer, P.A.

    1981-11-01

    The National Uranium Resource Evaluation (NURE) program was established to evaluate domestic uranium resources in the continental United States and to identify areas favorable for uranium exploration. The Grand Junction Office of the Department of Energy is responsible for administering the program. The Savannah River Laboratory (SRL) is responsible for hydrogeochemical and stream-sediment reconnaissance (HSSR) of 3.9 million km 2 (1,500,000 mi 2 ) in 37 eastern and western states. This document provides geologic and mineral resources reports for the Delta, Escalante, Price, Richfield, and Salina 1 0 x 2 0 National Topographic Map Series quadrangles, Utah. The purpose of these reports is to provide background geologic and mineral resources information to aid in the interpretation of NURE geochemical reconnaissance data. Except for the Escalante Quadrangle, each report is accompanied by a geologic map and a mineral locality map (Plates 1-8, in pocket). The US Geological Survey previously published a 1 0 x 2 0 geologic map of the Escalante Quadrangle and described the uranium deposits in the area (Hackman and Wyant, 1973). NURE hydrogeochemical and stream-sediment reconnaissance data for these quadrangles have been issued previously in some of the reports included in the references

  19. Geologic Map of the Challis 1°x2° Quadrangle, Idaho

    Data.gov (United States)

    Department of the Interior — The paper version of The geology of the Challis 1°x2° quadrangle, was compiled by Fred Fisher, Dave McIntyre and Kate Johnson in 1992. The geology was compiled on a...

  20. Preliminary Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    Science.gov (United States)

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2006-01-01

    This report presents a preliminary map of the bedrock geology of the Old Lyme quadrangle, New London and Middlesex Counties, Connecticut. The map depicts contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The map was published as part of a study of fractured bedrock aquifers and regional tectonics.

  1. Hydrogeochemical and stream sediment reconnaissance basic data for Rawlings quadrangle, Wyoming

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 454 water samples and 1279 sediment samples from the Rawlins Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-81(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  2. Hydrogeochemical and stream sediment reconnaissance basic data for Charley River Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1322 water samples from the Charley River Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  3. Hydrogeochemical and stream sediment reconnaissance basic data for Milbank NTMS Quadrangle, Minnesota; North Dakota; South Dakota

    International Nuclear Information System (INIS)

    1981-01-01

    Results of a reconnaissance geochemical survey are reported for the Milbank Quadrangle, Minnesota; North Dakota; South Dakota. Statistical data and areal distributions for uranium and uranium-related variables are presented for 662 groundwater and 319 stream sediment samples. Also included is a brief discussion on location and geologic setting

  4. Aerial gamma ray and magnetic survey: Idaho Project, Idaho Falls quadrangle, Idaho. Final report

    International Nuclear Information System (INIS)

    1979-10-01

    The Idaho Falls quadrangle in southeastern Idaho lies at the juncture of the Snake River Plain, the Northern Rocky Mountains, and the Basin-Range Province. Quaternary basalts of the Snake River Plain occupy 70% of the quadrangle. The rest of the area is covered by uplifted Paleozoic, Mesozoic, and Cenozoic rocks of the Pre-Late Cenozoic Orogenic Complex. Magnetic data apparently show contributions from both shallow and deep sources. The apparent expression of intrusive and extrusive rocks of late Mesozoic and Cenozoic age tends to mask the underlying structural downtrap thought to exist under the Snake River Plain. The Idaho Falls quadrangle has been unproductive in terms of uranium mining. A single claim exists in the Sawtooth Mountains, but no information was found concerning its present status at the time of this study. A total of 169 anomalies are valid according to the criteria set forth in Volume I of this report. These anomalies are scattered throughout the quadrangle, though one large group appears to relate to unnatural radiation sources in the Reactor Test Site area. The most distinctive anomalies occur in the Permian Phosphoria Formation and the Starlight Volcanics in the Port Neuf Mountains

  5. Hydrogeochemical and stream sediment reconnaissance basic data for St. Michael Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 159 water samples from the St. Michael Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  6. Hydrogeochemical and stream sediment reconnaissance basic data for Ruby Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 693 water samples from the Ruby Quadrangle, Alaska. The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  7. DIGITAL GEOLOGIC MAP OF SHERMAN QUADRANGLE, NORTH CENTRAL TEXAS (CD-ROM)

    Science.gov (United States)

    This compact disc contains digital data sets of the surficial geology and geologic faults for the 1:250,000-scale Sherman quadrangle, North Central Texas, and can be used to make geologic maps, and determine approximate areas and locations of various geologic units. The source d...

  8. Hydrogeochemical and stream sediment reconnaissance basic data for Beaver Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 642 water samples from the Beaver Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were done by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  9. Digital and preliminary bedrock geologic map of the Rutland quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-121A Ratcliffe, N.M., 1998,�Digital and preliminary bedrock geologic map of the Rutland quadrangle, Vermont: USGS Open-File Report 98-121-A, 1...

  10. Digital bedrock geologic map of the Gilson Mountain quadrangle,�Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG95-7A Doolan, B, 1995,�Digital bedrock geologic map of the Gilson Mountain quadrangle,�Vermont: VGS Open-File Report VG95-7A, 2 plates, scale...

  11. Aerial gamma ray and magnetic survey: Idaho Project, Hailey quadrangle of Idaho. Final report

    International Nuclear Information System (INIS)

    1979-12-01

    The Hailey quadrangle in central Idaho lies at the boundary between the Northern Rocky Mountains and the western Cordilleran Physiographic Provinces. The area is dominated by intrusives of the Idaho and Sawtooth Batholiths, but contains considerable exposures of Tertiary and Quaternary volcanics, and Paleozoic sedimentary rocks. Magnetic data apparently show some expression of the intrusives of the Idaho Batholith. Areas of faulted Paleozoic and Tertiary rocks appear to express themselves as roughly defined regions of high frequency/high amplitude wavelengths. The Hailey quadrangle has been unproductive in terms of uranium mining, though some prospects do exist south of the town of Hailey. The quadrangle contains significant exposures of the Tertiary Challis Formation (primarily volcanics) which has been productive in other areas to the north. A total of 161 anomalies are valid according to the criteria set forth in Volume I of this report. These anomalies are scattered throughout the quadrangle. The most distinctive groups of anomalies are associated with Tertiary igneous rocks in the mountainous areas

  12. Hydrogeochemical and stream sediment reconnaissance basic data for Big Delta Quadrangle, Alaska

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 1380 water samples from the Big Delta Quadrangle, Alaska. The samples were collected by Los Alamos Scientific Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  13. Hydrogeochemical and stream sediment reconnaissance basic data for Cheyenne Quadrangle, Wyoming

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 884 water samples and 598 sediment samples from the Cheyenne Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-106(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  14. Hydrogeochemical and stream sediment reconnaissance basic data for Silver City Quadrangle, New Mexico; Arizona

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 405 water samples and 736 sediment samples from the Silver City Quadrangle, New Mexico; Arizona. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-69(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  15. Multisource data set integration and characterization of uranium mineralization for the Montrose Quadrangle, Colorado

    International Nuclear Information System (INIS)

    Bolivar, S.L.; Balog, S.H.; Campbell, K.; Fugelso, L.E.; Weaver, T.A.; Wecksung, G.W.

    1981-04-01

    Several data-classification schemes were developed by the Los Alamos National Laboratory to detect potential uranium mineralization in the Montrose 1 0 x 2 0 quadrangle, Colorado. A first step was to develop and refine the techniques necessary to digitize, integrate, and register various large geological, geochemical, and geophysical data sets, including Landsat 2 imagery, for the Montrose quadrangle, Colorado, using a grid resolution of 1 km. All data sets for the Montrose quadrangle were registered to the Universal Transverse Mercator projection. The data sets include hydrogeochemical and stream sediment analyses for 23 elements, uranium-to-thorium ratios, airborne geophysical survey data, the locations of 90 uranium occurrences, a geologic map and Landsat 2 (bands 4 through 7) imagery. Geochemical samples were collected from 3965 locations in the 19 200 km 2 quadrangle; aerial data were collected on flight lines flown with 3 to 5 km spacings. These data sets were smoothed by universal kriging and interpolated to a 179 x 119 rectangular grid. A mylar transparency of the geologic map was prepared and digitized. Locations for the known uranium occurrences were also digitized. The Landsat 2 imagery was digitally manipulated and rubber-sheet transformed to quadrangle boundaries and bands 4 through 7 were resampled to both a 1-km and 100-m resolution. All possible combinations of three, for all data sets, were examined for general geologic correlations by utilizing a color microfilm output. Subsets of data were further examined for selected test areas. Two classification schemes for uranium mineralization, based on selected test areas in both the Cochetopa and Marshall Pass uranium districts, are presented. Areas favorable for uranium mineralization, based on these schemes, were identified and are discussed

  16. Geologic map of the Orchard 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Slate, Janet L.; Hanson, Paul R.; Brandt, Theodore R.

    2015-01-01

    The Orchard 7.5' quadrangle is located along the South Platte River corridor on the semi-arid plains of eastern Colorado, and contains surficial deposits that record alluvial, eolian, and hillslope processes that have operated through environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Front Range, has played a major role in shaping the geology of the quadrangle, which is situated downstream of where the last of the major headwater tributaries (St. Vrain, Big Thompson, and Cache la Poudre) join the river. Recurrent glaciation (and deglaciation) of basin headwaters affected river discharge and sediment supply far downstream, influencing alluvium deposition and terrace formation in the Orchard quadrangle. Kiowa and Bijou Creeks, unglaciated tributaries originating east of the Front Range also have played a major role by periodically delivering large volumes of sediment to the river during flood events, which may have temporarily dammed the river. Eolian sand deposits of the Greeley (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of drought. With the onset of irrigation during historic times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly seasonal discharge to a much narrower, deeper river with braided-meandering transition morphology and more uniform discharge. Along this reach, the river has incised into Upper Cretaceous Pierre Shale, which, although buried by alluvial deposits in Orchard quadrangle, is locally exposed downstream along the South Platte River bluff near the Bijou Creek confluence, in some of the larger draws, and along Wildcat Creek.

  17. Aerial gamma ray and magnetic survey: Powder River II Project, Gillette Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    The Gillette quadrangle in northeastern Wyoming and western South Dakota contains approximately equal portions of the Powder River Basin and the Black Hills Uplift. In these two structures, a relatively thick sequence of Paleozoic and Mesozoic strata represent nearly continuous deposition over the Precambrian basement complex. The Powder River Basin also contains a thick sequence of early Tertiary rocks which cover about 50% of the surface. A stratigraphic sequence from Upper Cretaceous to Precambrian is exposed in the Black Hills Uplift to the east. Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly define the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the Black Hills Uplift are relatively well expressed. The Gillette quadrangle has been productive in terms of uranium mining, but its current status is uncertain. The producing uranium deposits occur within the Lower Cretaceous Inyan Kara Group and the Jurassic Morrison Formation in the Black Hills Uplift. Other prospects occur within the Tertiary Wasatch and Fort Union Formations in the Pumpkin Buttes - Turnercrest district, where it extends into the quadrangle from the Newcastle quadrangle to the south. These four formations, all predominantly nonmarine, contain all known uranium deposits in the Gillette quadrangle. A total of 108 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. The anomalies are most frequently found in the Inyan Kara-Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features

  18. Surface geology of Williston 7.5-minute quadrangle, Aiken and Barnwell Counties, South Carolina

    International Nuclear Information System (INIS)

    Willoughby, R.H.; Nystrom, P.G. Jr.; Denham, M.E.; Eddy, C.A.; Price, L.K.

    1994-01-01

    Detailed geologic mapping has shown the distribution and lithologic character of stratigraphic units and sedimentary deposits in Williston quadrangle. A middle Eocene stratigraphic unit correlative with the restricted McBean Formation is the oldest unit at the surface. The McBean-equivalent unit occurs at low elevations along drainages in the north of the quadrangle but does not crop out. These beds are typically very fine- to fine-grained quartz sand, locally with abundant black organic matter and less commonly with calcium carbonate. The uppermost middle Eocene Orangeburg District bed, commonly composed of loose, clay-poor, very fine- to fine-grained quartz sand, occurs at the surface in the north and southwest of the quadrangle with sparse exposure. The upper Eocene Dry Branch Formation occurs on valley slopes throughout the quadrangle. The Dry Branch is composed of medium- to very coarse-grained quartz sand with varying amounts on interstitial clay and lesser bedded clay. The upper Eocene Tobacco road Sand occurs on upper valley slopes and some interfluves and consists of very fine-grained quartz sand to quartz granules. The upper Middle Miocene to lower Upper Miocene upland unit caps the interfluves and is dominantly coarse-grained quartz sand to quartz granules, with included granule-size particles of white clay that are weathered feldspars. Loose, incohesive quartzose sands of the eolian Pinehurst Formation, Upper Miocene to Lower Pliocene, occur on the eastern slopes of some interfluves in the north of the quadrangle. Quartz sand with varying included humic matter occurs in Carolina bays, and loose deposits of windblown sand occur on the rims of several Carolina bays. Quaternary alluvium fills the valley floors

  19. Aerial gamma ray and magnetic survey: Idaho Project, Elk City quadrangle of Idaho/Montana. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The Elk City quadrangle in north central Idaho and western Montana lies within the Northern Rocky Mountain province. The area is dominated by instrusives of the Idaho and Sawtooth Batholiths, but contains significant exposures of Precambrian metamorphics and Tertiary volcanics. Magnetic data apparently show some expression of the intrusives of the Idaho Batholith. Areas of faulted Precambrian and Tertiary rocks appear to express themselves as well defined regions of high frequency and high amplitudes wavelengths. The Elk City quadrangle has been unproductive in terms of uranium mining, though it contains significant exposures of the Challis Formation, which has been productive in other areas south of the quadrangle. A total of 238 anomalies are valid according to the criteria set forth in Volume I of this report. These anomalies are scattered throughout the quadrangle. The most distinctive group of anomalies with peak apparent uranium concentrations of 10.0 ppM eU or greater

  20. Surficial Geologic Map of the Southern Two-Thirds of the Woodbury Quadrangle, Vermont, Washington County, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2015-3 Springston, G, Thomas, E, and Kim, J, 2015,�Surficial Geologic Map of the Southern Two-Thirds of the Woodbury Quadrangle, Vermont,...

  1. Digital and preliminary bedrock geologic map of the Townshend 7.5 x 15 minute quadrangle, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-335A Armstrong, T.R., and Ratcliffe, N.M., 1998, Digital and preliminary bedrock geologic map of the Townshend 7.5 x 15 minute quadrangle,...

  2. Digital and preliminary bedrock geologic map of the Vermont part of the Hartland quadrangle, Windsor County, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital Data from VG98-123A Walsh, G. J., 1998,�Digital and preliminary bedrock geologic map of the Vermont part of the Hartland quadrangle, Windsor County, Vermont:...

  3. Quaternary Geologic Map of the Lake Superior 4° x 6° Quadrangle, United States and Canada

    Data.gov (United States)

    Department of the Interior — The Quaternary Geologic Map of the Lake Superior 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as...

  4. Aerial gamma ray and magnetic survey: Nebraska/Texas Project, the Alliance and Scottsbluff quadrangles of Nebraska. Final report

    International Nuclear Information System (INIS)

    1979-12-01

    During the months of September and October 1979, EG and G geoMetrics collected 3156 line miles of high sensitivity airborne radiometric and magnetic data in the state of Nebraska in two 1 by 2 degree NTMS quadrangles. This project is part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully corrected and interpreted by geoMetrics and are presented as three Volumes (one Volume I and two Volume II's). Both quadrangles are dominated by Tertiary nonmarine strata, though the Sand Hills in the eastern central portion of the area is covered by Quaternary dune sand. Some Late Cretaceous marine shales are exposed in the northwest quadrant of Alliance quadrangle. No uranium deposits are known in this area, but outcrops of shales thought to be uraniferous outcrop in the Alliance quadrangle

  5. Topographic Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  6. Topographic Map of Quadrangles 3666 and 3766, Balkh (219), Mazar-I-Sharif (220), Qarqin (213), and Hazara Toghai (214) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  7. Topographic Map of Quadrangle 3470 and the Northern Edge of 3370, Jalal-Abad (511), Chaghasaray (512), and Northernmost Jaji-Maydan (517) Quadrangles, Afg

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  8. Topographic Map of Quadrangles 3764 and 3664, Jalajin (117), Kham-Ab (118), Char Shangho (123), and Sheberghan (124) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  9. Topographic Map of Quadrangles 3168 and 3268, Yahya-Wona (703), Wersek (704), Khayr-Kot (521), and Urgon (522) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  10. Topographic Map of Quadrangles 3770 and 3870, Maymayk (211), Jamarj-I-Bala (212), Faydz-Abad (217), and Parkhaw (218) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  11. Topographic Map of Quadrangles 3560 and 3562, Sir-Band (402), Khawja-Jir (403), and Bala-Murghab (404) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  12. Topographic Map of Quadrangles 3260 and 3160, Dasht-E-Chahe-Mazar (419), Anardara (420), Asparan (601), and Kang (602) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  13. Topographic Map of Quadrangles 3460 and 3360, Kol-I-Namaksar (407), Ghuryan (408), Kawir-I-Naizar (413), and Kohe-Mahmudo-Esmailjan (414) Quadrangles, Afghanistan

    Science.gov (United States)

    Bohannon, Robert G.

    2006-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Minor artifacts resulting from the auto-contouring technique are present. Streams were auto-generated from the SRTM data in TNTmips as flow paths. Flow paths were limited in number by their Horton value on a quadrangle-by-quadrangle basis. Peak elevations were averaged over an area measuring 85 m by 85 m (represented by one pixel), and they are slightly lower than the highest corresponding point on the ground. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Because cultural features were not derived from the SRTM base, they do not match it precisely. Province boundaries are not exactly located. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The open-file report (OFR) numbers for each quadrangle range in sequence from 1092 - 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS

  14. Aerial gamma ray and magnetic survey, Powder River II Project: the Newcastle and Gillette Quadrangles of Wyoming and South Dakota; the Ekalaka Quadrangle of Montana, South and North Dakota. Volume I. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    During the months of August through September 1978, geoMetrics, Inc. flew approximately 9000 line miles of high sensitivity airborne radiometric and magnetic data in eastern Wyoming and southern Montana over three 1 0 x 2 0 NTMS quadrangle (Newcastle, Gillette, and Ekalaka) as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as four volumes (one Volume I and three Volume II's) in this report. The survey area lies entirely within the northern Great Plains Physiographic Province. The deep Powder River Basin and the Black Hills Uplift are the two dominant structures in the area. Both structures strike NNW approximately parallel to each other with the Powder River Basin to the west of the Uplift. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Gold, silver, lead, copper, manganese, rare-earth elements and uranium have been mined in the Uplift. Epigenetic uranium deposits lie primarily in the Monument Hills - Box Creek and Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 368 groups of statistical values in the uranium window meet the criteria for valid anomalies and are discussed in the interpretation sections (83 in Newcastle, 109 in Gillette, and 126 in Ekalaka). Most anomalies lie in the Tertiary sediments of the Powder River Basin, but only a few are clearly related to known uranium mines or prospects. Magnetic data generally delineate the deep Powder River Basin relative to the Black Hills Uplift. Higher frequency anomalies appear related to producing oil fields and mapped sedimentary structures

  15. Aerial gamma ray and magnetic survey, Powder River II Project: the Newcastle and Gillette Quadrangles of Wyoming and South Dakota; the Ekalaka Quadrangle of Montana, South and North Dakota. Volume I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    During the months of August through September 1978, geoMetrics, Inc. flew approximately 9000 line miles of high sensitivity airborne radiometric and magnetic data in eastern Wyoming and southern Montana over three 1/sup 0/ x 2/sup 0/ NTMS quadrangle (Newcastle, Gillette, and Ekalaka) as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as four volumes (one Volume I and three Volume II's) in this report. The survey area lies entirely within the northern Great Plains Physiographic Province. The deep Powder River Basin and the Black Hills Uplift are the two dominant structures in the area. Both structures strike NNW approximately parallel to each other with the Powder River Basin to the west of the Uplift. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Gold, silver, lead, copper, manganese, rare-earth elements and uranium have been mined in the Uplift. Epigenetic uranium deposits lie primarily in the Monument Hills - Box Creek and Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 368 groups of statistical values in the uranium window meet the criteria for valid anomalies and are discussed in the interpretation sections (83 in Newcastle, 109 in Gillette, and 126 in Ekalaka). Most anomalies lie in the Tertiary sediments of the Powder River Basin, but only a few are clearly related to known uranium mines or prospects. Magnetic data generally delineate the deep Powder River Basin relative to the Black Hills Uplift. Higher frequency anomalies appear related to producing oil fields and mapped sedimentary structures.

  16. What's West Nile Virus?

    Science.gov (United States)

    ... for Educators Search English Español What's West Nile Virus? KidsHealth / For Kids / What's West Nile Virus? Print en español ¿Qué es el Virus del Nilo Occidental? What exactly is the West ...

  17. Two-dimensional coherence analysis of magnetic and gravity data from the Casper Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1981-01-01

    Volume II contains the following: gravity station location map; complete Bouguer gravity map; total magnetic map; gravity data copper area detrended continued 1 km; magnetic data Casper Wyoming continued 1 km; upward continued coherent gravity maps; magnetic field reduced to the pole/pseudo gravity map; geology map-Casper Quadrangle; magnetic interpretation map-Casper Quadrangle; gravity interpretation map; magnetic interpretation cross section; magnetic profiles; flight line map and uranium occurrences

  18. Aerial gamma ray and magnetic survey: Minnesota Project, Grand Forks quadrangle of Minnesota/North Dakota. Final report

    International Nuclear Information System (INIS)

    1979-12-01

    The Grand Forks 1:250,000 scale quadrangle of Minnesota and North Dakota is almost everywhere covered with Wisconsin age glacial deposits (drift, lake sediments, etc.) of variable thickness. Where exposed, bedrock is Late Cretaceous age marine deposits. There are no uranium deposits (or occurrences) known within the quadrangle. Seventy-eight (78) groups of uranium samples were defined as anomalies and are discussed briefly in this report. None of them are considered significant

  19. Lidar-revised geologic map of the Poverty Bay 7.5' quadrangle, King and Pierce Counties, Washington

    Science.gov (United States)

    Tabor, Rowland W.; Booth, Derek B.; Troost, Kathy Goetz

    2014-01-01

    For this map, we interpreted a 6-ft-resolution lidar digital elevation model combined with the geology depicted on the Geologic Map of the Poverty Bay 7.5' Quadrangle, King and Pierce Counties, Washington (Booth and others, 2004b). The authors of the 2004 map described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Poverty Bay 7.5' quadrangle.

  20. Aerial gamma ray and magnetic survey: Minnesota Project, Fargo quadrangle of Minnesota/North Dakota. Final report

    International Nuclear Information System (INIS)

    1979-12-01

    The Fargo 1:250,000 scale quadrangle of Minnesota and North Dakota is almost everywhere covered with Wisconsin age glacial deposits (drift, lake sediments, etc.) of variable thickness. Where exposed, bedrock is Late Cretaceous age marine deposits. There are no uranium deposits (or occurrences) known within the quadrangle. Eighty-two (82) groups of uranium samples were defined as anomalies and are discussed briefly in this report. None of them are considered significant

  1. Aerial gamma ray and magnetic survey: Minnesota Project, Thief River Falls quadrangle of Minnesota/North Dakota. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The Thief River Falls 1:250,000 scale quadrangle of Minnesota and North Dakota is almost everywhere covered with Wisconsin age glacial deposits (drift, lake sediments, etc.) of variable thickness. Where exposed, bedrock is Late Cretaceous age marine deposits. There are no uranium deposits (or occurrences) known within the quadrangle. Sixty-six groups of uranium samples were defined as anomalies and are discussed briefly. None of them are considered significant

  2. Aerial gamma ray and magnetic survey: Minnesota Project, Watertown quadrangle of South Dakota/Minnesota. Final report

    International Nuclear Information System (INIS)

    1979-10-01

    The Watertown 1:250,000 scale quadrangle of South Dakota/Minnesota is everywhere covered by variable thicknesses of Wisconsin age glacial deposits (drift). Bedrock is nowhere exposed, but is thought to be composed of primarily Cretaceous sediments. There are no known uranium deposits (or occurrences) within the quadrangle. Sixty-seven (67) groups of uranium samples were defined as anomalies and are discussed in the report. None of them are considered significant

  3. Comparison of facility-level methane emission rates from natural gas production well pads in the Marcellus, Denver-Julesburg, and Uintah Basins

    Science.gov (United States)

    Omara, M.; Li, X.; Sullivan, M.; Subramanian, R.; Robinson, A. L.; Presto, A. A.

    2015-12-01

    The boom in shale natural gas (NG) production, brought about by advances in horizontal drilling and hydraulic fracturing, has yielded both economic benefits and concerns about environmental and climate impacts. In particular, leakages of methane from the NG supply chain could substantially increase the carbon footprint of NG, diminishing its potential role as a transition fuel between carbon intensive fossil fuels and renewable energy systems. Recent research has demonstrated significant variability in measured methane emission rates from NG production facilities within a given shale gas basin. This variability often reflect facility-specific differences in NG production capacity, facility age, utilization of emissions capture and control, and/or the level of facility inspection and maintenance. Across NG production basins, these differences in facility-level methane emission rates are likely amplified, especially if significant variability in NG composition and state emissions regulations are present. In this study, we measured methane emission rates from the NG production sector in the Marcellus Shale Basin (Pennsylvania and West Virginia), currently the largest NG production basin in the U.S., and contrast these results with those of the Denver-Julesburg (Colorado) and Uintah (Utah) shale basins. Facility-level methane emission rates were measured at 106 NG production facilities using the dual tracer flux (nitrous oxide and acetylene), Gaussian dispersion simulations, and the OTM 33A techniques. The distribution of facility-level average methane emission rate for each NG basin will be discussed, with emphasis on how variability in NG composition (i.e., ethane-to-methane ratios) and state emissions regulations impact measured methane leak rates. While the focus of this presentation will be on the comparison of methane leak rates among NG basins, the use of three complimentary top-down methane measurement techniques provides a unique opportunity to explore the

  4. Tertiary-care facility's seniors association attracts its highest number of referrals through word-of-mouth. University Hospital, Denver, CO.

    Science.gov (United States)

    Lewicki, G

    1999-01-01

    University Hospital, Denver, has started its University Seniors Assn. to promote health and wellness to people 50 and older. Within four months the organization had 500 members. Now the association is 3,500 members strong.

  5. Proposed Regulation of Fuels and Fuel Additives: Federal Volatility Control Program in the Denver-Boulder-Greeley-Ft. Collins-Loveland, Colorado, 1997 8-Hour Ozone Nonattainment Area

    Science.gov (United States)

    This notice proposes establishing an applicable standard of 7.8 pounds (psi) Reid vapor pressure under the federal volatility control program, in the Denver-Boulder-Greeley-Ft. Collins-Loveland, Colorado, 1997 8-hour ozone nonattainment area.

  6. The Alaskan mineral resource assessment program; background information to accompany folio of geologic and mineral resource maps of the Ambler River Quadrangle, Alaska

    Science.gov (United States)

    Mayfield, Charles F.; Tailleur, I.L.; Albert, N.R.; Ellersieck, Inyo; Grybeck, Donald; Hackett, S.W.

    1983-01-01

    The Ambler River quadrangle, consisting of 14,290 km2 (5,520 mi2) in northwest Alaska, was investigated by an interdisciplinary research team for the purpose of assessing the mineral resource potential of the quadrangle. This report provides background information for a folio of maps on the geology, reconnaissance geochemistry, aeromagnetics, Landsat imagery, and mineral resource evaluation of the quadrangle. A summary of the geologic history, radiometric dates, and fossil localities and a comprehensive bibliography are also included. The quadrangle contains jade reserves, now being mined, and potentially significant resources of copper, zinc, lead, and silver.

  7. Building America Case Study: New Town Builders' Power of Zero Energy Center, Denver, Colorado (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a 'Power of Zero Energy Center' linked to its model home in the Stapleton community of Denver. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for the homeowner, improved occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. The case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.

  8. Effectiveness and Feasibility of the Early Start Denver Model Implemented in a Group-Based Community Childcare Setting

    Science.gov (United States)

    Vivanti, Giacomo; Paynter, Jessica; Duncan, Ed; Fothergill, Hannah; Dissanayake, Cheryl; Rogers, Sally J.

    2014-01-01

    A recent study documented the efficacy of the Early Start Denver Model (ESDM) delivered in a 1:1 fashion. In the current study we investigated the effectiveness and feasibility of the ESDM in the context of a long-day care community service, with a child-staff ratio of 1:3. Outcomes of 27 preschoolers with ASD undergoing 15-25 h per week of ESDM…

  9. Early Start Denver Model. Un modello Evidence Based per l’intervento educativo precoce nei Disturbi dello Spettro Autistico

    OpenAIRE

    Saverio Fontani

    2016-01-01

    The Autism Spectrum Disorders represents one of the most complex developmental disabilities for the massive deficit of communication competences. The social disability related to disorders is the main objective of the intervention of the Early Start Denver Model – ESDM (Rogers & Dawson, 2010), which can be considered as one of the most advanced models for early educational intervention according the perspective of Evidence Based Education. In this paper the theoretical foundations of the ...

  10. Reducing Maladaptive Behaviors in Preschool-Aged Children with Autism Spectrum Disorder Using the Early Start Denver Model

    OpenAIRE

    Fulton, Elizabeth; Eapen, Valsamma; Črnčec, Rudi; Walter, Amelia; Rogers, Sally

    2014-01-01

    The presence of maladaptive behaviors in young people with autism spectrum disorder (ASD) can significantly limit engagement in treatment programs, as well as compromise future educational and vocational opportunities. This study aimed to explore whether the Early Start Denver Model (ESDM) treatment approach reduced maladaptive behaviors in preschool-aged children with ASD in a community-based long day care setting. The level of maladaptive behavior of 38 children with ASD was rated using an ...

  11. Reducing maladaptive behaviors in preschool-aged children with Autism Spectrum Disorder using the Early Start Denver Model

    OpenAIRE

    Elizabeth eFulton; Elizabeth eFulton; Valsamma eEapen; Valsamma eEapen; Rudi eČrnčec; Amelia eWalter; Amelia eWalter; Sally eRogers

    2014-01-01

    The presence of maladaptive behaviors in young people with Autism Spectrum Disorder (ASD) can significantly limit engagement in treatment programs, as well as compromise future educational and vocational opportunities. This study aimed to explore whether the Early Start Denver Model (ESDM) treatment approach reduced maladaptive behaviors in preschool-aged children with ASD in a community-based long day care setting. The level of maladaptive behavior of 38 children with ASD was rated using an ...

  12. Abstracts for the 4th Annual Congress on Medicine & Science in Ultra-Endurance Sports, May 30, 2017, Denver, Colorado.

    Science.gov (United States)

    2017-04-01

    The 4th Annual Congress on Medicine & Science in Ultra-Endurance Sports will be held on May 30, 2017, in Denver, Colorado. While prior meetings have been multiple-day events, the 2017 Congress will be an intense 1-day preconference to the American College of Sports Medicine annual meeting. Details of this Congress, as well as past and future meetings, can be found at the Ultra Sports Science Foundation Web site: http://ultrasportsscience.us.

  13. Summary and evaluation of the quality of stormwater in Denver, Colorado, 2006-2010

    Science.gov (United States)

    Stevens, Michael R.; Slaughter, Cecil B.

    2012-01-01

    Stormwater in the Denver area was sampled by the U.S. Geological Survey, in cooperation with the Urban Drainage and Flood Control District, in a network of 5 monitoring stations - 3 on the South Platte River and 2 on streams tributary to the South Platte River, Sand Creek, and Toll Gate Creek beginning in January 2006 and continuing through December 2010. Stormwater samples were analyzed at the U.S. Geological Survey National Water Quality Laboratory during 2006-2010 for water-quality properties such as pH, specific conductance, hardness, and residue on evaporation at 105 degrees Celsius; for constituents such as major ions (calcium, magnesium), organic carbon and nutrients, including ammonia plus organic nitrogen, ammonia, dissolved nitrite plus nitrate, total phosphorus, and orthophosphate; and for metals, including total recoverable and dissolved phases of copper, lead, manganese, and zinc. Samples collected during selected storms were also analyzed for bacteriological indicators such as Escherichia coli and fecal coliform at the Metro Wastewater Reclamation Laboratory. About 200 stormwater samples collected during storms characterize the quality of storm runoff during 2006-2010. In general, the quality of stormwater (2006-2010) has improved for many water-quality constituents, many of which had lower values and concentrations than those in stormwater collected in 2002-2005. However, the physical basis, processes, and the role of dilution that account for these changes are complex and beyond the scope of this report. The water-quality sampling results indicate few exceptions to standards except for dissolved manganese, dissolved zinc, and Escherichia coli. Stormwater collected at the South Platte River below Union Avenue station had about 10 percent acute or chronic dissolved manganese exceedances in samples; samples collected at the South Platte River at Denver station had less than 5 percent acute or chronic dissolved manganese exceedances. In contrast

  14. Astronomy in Denver: Effects of a summer camp on girls’ preconceived notions of careers in STEM

    Science.gov (United States)

    Hoffman, Jennifer L.; Fetrow, Kirsten J.; Broder, Dale E.; Murphy, Shannon M.; Tinghitella, Robin; Hart, Quyen N.

    2018-06-01

    Despite gains in recent years, gender disparities persist in fields related to science, technology, engineering, and mathematics (STEM). Although young women can perform as well as their male peers in STEM courses and tests, they are less likely to pursue higher education and careers in STEM. Our study examined the effectiveness of a STEM-focused summer camp at increasing middle-school girls’ career aspirations in STEM and self-confidence with respect to scientific topics. The 15 participants were Denver-area girls ages 10 to 13 years old from groups underrepresented in STEM fields. During the weeklong DU SciTech camp, these girls built telescopes and computers, collected and classified insects, completed inquiry activities, and interacted with female STEM professionals from a variety of scientific fields and racial backgrounds. We hypothesized that camp attendance would expand girls’ perceptions of who does science, increase their awareness of and interest in STEM careers, and increase their scientific self-efficacy, or belief in their ability to succeed at STEM tasks. We found that DU SciTech improved the girls’ scientific self-efficacy and awareness of STEM careers, but it did not increase their (already high) interest in pursuing their own careers in STEM. We will present our results and discuss their implications for future summer camps and efforts to broaden STEM participation by young women from underrepresented groups.

  15. Development of a Statistical Model for Forecasting Episodes of Visibility Degradation in the Denver Metropolitan Area.

    Science.gov (United States)

    Reddy, P. J.; Barbarick, D. E.; Osterburg, R. D.

    1995-03-01

    In 1990, the State of Colorado implemented a visibility standard of 0.076 km1 of beta extinction for the Denver metropolitan area. Meteorologists with Colorado's Air Pollution Control Division forecast high pollution days associated with visibility impairment as well as those due to high levels of the federal criteria pollutants. Visibility forecasts are made from a few hours up to about 26 h in advance of the period of interest. Here we discuss the key microscale, mesoscale, and synoptic-scale features associated with episodes of visibility impairment. Data from special studies, case studies, and the 22 NOAA Program for Regional Observing and Forecasting Services mesonet sites have been invaluable in identifying patterns associated with extremes in visibility conditions. A preliminary statistical forecast model has been developed using variables that represent many of these patterns. Six variables were selected from an initial pool of 27 to be used in a model based on linear logistic regression. These six variables include forecast measures of snow cover, surface pressures and a surface pressure gradient in eastern Colorado, relative humidity, and 500-mb ridge position. The initial testing of the model has been encouraging. The model correctly predicted 76% of the good visibility days and 67% of the poor visibility days for a test set of 171 days.

  16. Geologic map of the Beacon Rock quadrangle, Skamania County, Washington

    Science.gov (United States)

    Evarts, Russell C.; Fleck, Robert J.

    2017-06-06

    The Beacon Rock 7.5′ quadrangle is located approximately 50 km east of Portland, Oregon, on the north side of the Columbia River Gorge, a scenic canyon carved through the axis of the Cascade Range by the Columbia River. Although approximately 75,000 people live within the gorge, much of the region remains little developed and is encompassed by the 292,500-acre Columbia River Gorge National Scenic Area, managed by a consortium of government agencies “to pro­tect and provide for the enhancement of the scenic, cultural, recreational and natural resources of the Gorge and to protect and support the economy of the Columbia River Gorge area.” As the only low-elevation corridor through the Cascade Range, the gorge is a critical regional transportation and utilities corridor (Wang and Chaker, 2004). Major state and national highways and rail lines run along both shores of the Columbia River, which also provides important water access to ports in the agricultural interior of the Pacific Northwest. Transmission lines carry power from hydroelectric facilities in the gorge and farther east to the growing urban areas of western Oregon and Washington, and natural-gas pipelines transect the corridor (Wang and Chaker, 2004). These lifelines are highly vulnerable to disruption by earthquakes, landslides, and floods. A major purpose of the work described here is to identify and map geologic hazards, such as faults and landslide-prone areas, to provide more accurate assessments of the risks associated with these features.The steep canyon walls of the map area reveal exten­sive outcrops of Miocene flood-basalt flows of the Columbia River Basalt Group capped by fluvial deposits of the ances­tral Columbia River, Pliocene lavas erupted from the axis of the Cascade arc to the east, and volcanic rocks erupted from numerous local vents. The Columbia River Basalt Group unconformably rests on a sequence of late Oligocene and early Miocene rocks of the ancestral Cascade volcanic arc

  17. Geology of Tapanti quadrangle (1:50 000), Costa Rica

    International Nuclear Information System (INIS)

    Sojo, Dennis; Denyer, Percy; Gazel, Esteban; Alvarado, Guillermo E.

    2017-01-01

    A geologic map scale 1:50 000, stratigraphic and structural of the 509 km 2 of the Tapanti quadrangle is presented. The Tapanti quadrant is located in the central region of Costa Rica and belongs to the Central Costa Rica Deformed Belt (CCRDB). The CCRDB was a consequence of the interaction of the Cocos Ridge and the Western edge of the Panama microplate. Petrographic, geochemistry and paleontological analyzes were performed by selecting samples collected in the more than 100 field visits, with more than 300 outcrops raised. The geological information was compiled in a Geographical Information System. Lambert North coordinate system was employed. Aerial and topographic photographs from the TERRA Project 1997 and Digital Elevation Model were used. 18 rock samples were analyzed petrographically to discard altered samples. Rock samples were screened. The gravels or grains obtained were washed with deionized water in an ultrasonic stack. Gravel with signs of alteration were discarded by stereoscopic microscope. The powder obtained from the spraying of 25 mg of gravel each sample was melted and combined with Lithium tetraborate (Li2B4O7) and poured into glass discs. The discs were analyzed to determine concentrations of major elements and traced through of X-Ray Fluorescence in a Bruker S4 Pioner, and by a mass spectrometer (LA-ICP-MS) in a Micromass Platform ICP-MS, respectively. The oldest rocks mapped in this work are Miocene in age and they belongs to Pacacua, Pena Negra and Coris formations, than form the western edge of the Candelaria basin. Three igneous events were distinguished. First, the Miocene volcanic arc, which is represented by the rocks of La Cruz Formation and the clasts of Pacacua Formation. Another period of igneous activity was recorded in Grifo Alto and Doan formations and the Tapanti Intrusive, with an age range of 0.6-0.03 Ma. From a geochemical point of view a change in the composition of magmatism was remarkable between 10 to 6 Ma, expressed

  18. Reconnaissance geology of the Thaniyah Quadrangle, sheet 20/42 C, Kingdom of Saudi Arabia

    Science.gov (United States)

    Greene, Robert C.

    1983-01-01

    The Thaniyah quadrangle, sheet 20/42 C, is located in the transition zone between the Hijaz Mountains and the Najd Plateau of southwestern Saudi Arabia between lat 20?00' and 20?30' N., long 42?00' to 42?30' E. The quadrangle is underlain by Precambrian metavolcanic, metasedimentary, plutonic, and dike rocks. Metavolcanic rocks consist of metamorphosed basalt and andesite with minor dacite and rhyolite and underlie three discontinuous northwest-trending belts. Metasedimentary rocks are confined to small areas underlain by quartzite, metasandstone, marble, and calc-silicate rock. Plutonic rocks include an extensive unit of tonalite and quartz diorite and a smaller unit of diorite and quartz diorite, which occupy much of the central part of the quadrangle. A small body of diorite and gabbro and a two-part zone of tonalite gneiss are also present. All of these plutonic rocks are assigned to the An Nimas batholith. Younger plutonic rocks include extensive graphic granite and rhyolite in the northeastern part of the quadrangle and several smaller bodies of granitic rocks and of gabbro. The metavolcanic rocks commonly have strong foliation with northwest strike and steep to vertical dip. Diorite and quartz diorite are sheared and brecciated and apparently syntectonic. Tonalite and quartz diorite are both foliate and nonfoliate and were intruded in episodes both preceding and following shearing. The granitic rocks and gabbro are post-tectonic. Trends of faults and dikes are mostly related to the Najd faulting episode. Radiometric ages, mostly from adjacent quadrangles, suggest that the An Nimas batholith is 835 to 800 Ma, gabbro and granite, except the graphic granite and rhyolite unit, are about 640 to 615 Ma, and the graphic granite and rhyolite 575 to 565 Ma old. Metavolcanic rocks similar to those hosting copper and gold mineralization in the Wadi Shuwas mining district adjacent to the southwestern part of the quadrangle are abundant. An ancient copper mine was

  19. Little Rock and El Dorado 10 x 20 NTMS quadrangles and adjacent areas, Arkansas: data report (abbreviated)

    International Nuclear Information System (INIS)

    Steel, K.F.; Cook, J.R.

    1981-07-01

    This abbreviated data report presents results of ground water and stream sediment reconnaissance in the National Topographic Map Series Little Rock 1 0 x 2 0 quadrangle (Cleveland, Dallas, and Howard Counties do not have stream sediment analyses); the El Dorado 1 0 x 2 0 quadrangle (only Clark County has stream sediment analyses); the western part (Lonoke and Jefferson Counties) of Helena 1 0 x 2 0 quadrangle; the southern part (Franklin, Logan, Yell, Perry, Faulkner, and Lonoke Counties) of Russellville 1 0 x 2 0 quadrangle; and the southwestern corner (Ashley County) of the Greenwood 1 0 x 2 0 quadrangle. Stream samples were collected at 943 sites in the Little Rock quadrangle, 806 sites in the El Dorado quadrangle, 121 sites in the Helena area, 292 sites in the Russellville area, and 77 in the Greenwood area. Ground water samples were collected at 1211 sites in the Little Rock quadrangle, 1369 sites in the El Dorado quadrangle, 186 sites in the Helena area, 470 sites in the Russellville area, and 138 sites in the Greenwood area. Stream sediment and stream water samples were collected from small streams at nominal density of one site per 21 square kilometers in rural areas. Ground water samples were collected at a nominal density of one site per 13 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Field measurements and observations are reported for each site. Uranium concentrations in the sediments ranged from less than 0.1 ppM to 23.5 ppM with a mean of 1.7 ppM. The ground water uranium mean concentration is 0.113 ppB, and the uranium concentrations range from less than 0.002 ppB to 15.875 ppB. High ground water uranium values in the Ouachita Mountain region of the Little Rock quadrangle appear to be associated with Ordovician black shale units

  20. Geologic Map of the San Luis Quadrangle, Costilla County, Colorado

    Science.gov (United States)

    Machette, Michael N.; Thompson, Ren A.; Drenth, Benjamin J.

    2008-01-01

    The map area includes San Luis and the primarily rural surrounding area. San Luis, the county seat of Costilla County, is the oldest surviving settlement in Colorado (1851). West of the town are San Pedro and San Luis mesas (basalt-covered tablelands), which are horsts with the San Luis fault zone to the east and the southern Sangre de Cristo fault zone to the west. The map also includes the Sanchez graben (part of the larger Culebra graben), a deep structural basin that lies between the San Luis fault zone (on the west) and the central Sangre de Cristo fault zone (on the east). The oldest rocks exposed in the map area are the Pliocene to upper Oligocene basin-fill sediments of the Santa Fe Group, and Pliocene Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) forms extensive coalesced alluvial fan and piedmont surfaces, the largest of which is known as the Costilla Plain. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. Machette and Thompson based this geologic map entirely on new mapping, whereas Drenth supplied geophysical data and interpretations.

  1. West and East

    Directory of Open Access Journals (Sweden)

    Alexander Rappaport

    2017-12-01

    Full Text Available The topic “West-East” has a clear cultural and historical meaning. Orthodox temples face East. The way from West to East and from East to West is tens of thousands of kilometers long and has a special meaning. It differs from the way from North to South: the horizontal axes connect regions, while the vertical axis (Earth-Sky connects the worlds. The expansion of Eurasian tribes occurred along the East-West axis – the world horizontal way. Today the cultural memory of people in the East and West finds itself in the theatre of new dramas of existence and new forces. With the advances in electronic technologies, the world movements seem to have sunk in the depth of the chthonian past to come up anew to the surface of fantastic speeds and momentary connections. A new type of planetary landscape-space relation appears, giving no place for West and East.

  2. National uranium resource evaluation, Hot Springs Quadrangle, South Dakota and Nebraska

    International Nuclear Information System (INIS)

    Truesdell, D.B.; Daddazio, P.L.; Martin, T.S.

    1982-06-01

    The Hot Springs Quadrangle, South Dakota and Nebraska, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for the occurrence of uranium deposits. The evaluation used criteria developed by the National Uranium Resource Evaluation program. Surface reconnaissance was conducted using a portable scintillometer and a gamma spectrometer. Geochemical sampling was carried out in all geologic environments accessible within the quadrangle. Additional investigations included the followup of aerial radiometric and hydrogeochemical anomalies and a subsurface study. Environments favorable for sandstone-type deposits occur in the Inyan Kara Group and Chadron Member of the White River Group. Environments favorable for marine black-shale deposits occur in the Hayden Member of the Minnelusa Formation. A small area of the Harney Peak Granite is favorable for authigenic deposits. Environments considered unfavorable for uranium deposits are the Precambrian granitic and metasedimentary rocks and Paleozoic, Mesozoic, and Tertiary sedimentary rocks other than those previously mentioned

  3. National uranium resource evaluation. Raton Quadrangle New Mexico and Colorado. Final report

    International Nuclear Information System (INIS)

    Reid, B.E.; Griswold, G.B.; Jacobsen, L.C.; Lessard, R.H.

    1980-12-01

    Using National Uranium Resource Evaluation criteria, the Raton Quadrangle (New Mexico and Colorado) contains one environment favorable for uranium deposits, the permeable arkosic sandstone members of the Pennsylvanian-Permian Sangre de Cristo Formation for either peneconcordant or roll-type deposits. The favorable parts of the Sangre de Cristo lie mostly in the subsurface in the Raton and Las Vegas Basins in the eastern part of the quadrangle. An area in the Costilla Peak Massif was investigated for uranium by determining geochemical anomalies in stream sediments and spring waters. Further work will be required to determine plutonic environment type. Environments unfavorable for uranium deposits include the Ogallala, Raton, and Vermejo Formations, the Trinidad Sandstone, the Pierre Shale, the Colorado Group, the Dakota Sandstone, the Morrison Formation, the Entrada and Glorieta Sandstones, Mississippian and Pennsylvanian rocks, quartz-pebble conglomerates, pegmatities, and Tertiary granitic stocks

  4. Hydrogeochemical and stream sediment reconnaissance basic data report for Williams NTMS quadrangle, Arizona

    International Nuclear Information System (INIS)

    Wagoner, J.L.

    1979-02-01

    Wet and dry sediments were collected throughout the 18,500-km 2 arid-to-semiarid region and water samples at available streams, springs, and wells. Samples were collected between August 1977 and January 1978. Results of neutron activation analyses of uranium and trace elements and other field and laboratory analyses are presented in tabular hardcopy and microfiche format. The report includes six full-size overlays for use with the Williams NTMS 1:250,000 quadrangle. Sediment samples are divided into five general groups according to the source rock from which the sediment was derived. Background uranium concentrations for the quadrangle are relatively low, ranging from 1.91 to 2.40 ppM, with the highest associated with the Precambrian igneous and metamorphic complexes of the Basin and Range province. Uranium correlates best with the rare-earth elements and iron, scandium, titanium, and manganese. Known uranium occurrences are not readily identified by the stream sediment data

  5. Stratigraphy of the Perrine and Nun Sulci quadrangles (Jg-2 and Jg-5), Ganymede

    Science.gov (United States)

    Mcgill, George E.; Squyres, Steven W.

    1991-01-01

    Dark and light terrain materials in the Perrine and Nun Sulci quadrangles are divided into nine map units, four dark, and five light. These are placed in time-stratigraphic sequence primarily by means of embayment and cross-cutting relationships. Dark terrain is generally more heavily cratered and thus older that light terrain but, at least in these quadrangles, crater densities are not reliable indicators of relative ages among the four dark material units. The four mapped material units within dark terrain are: cratered dark materials (dc), grooved dark materials (dg), transitional dark materials (di), and dark materials, undivided (d). The five mapped units within light terrain are: intermediate light materials (li), grooved light materials (lg), irregularly grooved light materials (lgl), smooth light materials (ls), and light materials, undivided.

  6. National uranium resource evaluation, Las Vegas Quadrangle, Nevada, Arizona, and California

    International Nuclear Information System (INIS)

    Johnson, C.; Glynn, J.

    1982-03-01

    The Las Vegas 1 0 x 2 0 quadrangle, Nevada, Arizona, and California, contains rocks and structures from Precambrian through Holocene in age. It lies within the Basin and Range physiographic province adjacent to the westernmost portion of the Colorado Plateau. Miocene nonmarine sedimentary rocks of the Horse Spring Formation contain in excess of 100 tons U 3 O 8 in deposits at a grade of 0.01% or greater, and therefore meet National Uranium Resource Evaluation base criteria for uranium favorability. One favorable area lies in the South Virgin Mountains at the type locality of the Horse Spring Formation, although the favorable environment extends into the unevaluated Lake Mead National Recreation Area and Desert National Wildlife Range. Environments within the Las Vegas Quadrangle considered unfavorable for uranium include the Shinarump Conglomerate member of the Triassic Chinle Formation, Mesozoic sediments of the Glen Canyon Group, Precambrian pegmatites, Pliocene and Quaternary calcrete, Laramide thrust faults, and a late Precambrian unconformity

  7. RELATIONSHIP BETWEEN METAMORPHISM DEGREE AND LIBERATION SIZE OF COMPACT ITABIRITES FROM THE IRON QUADRANGLE

    Directory of Open Access Journals (Sweden)

    Rodrigo Fina Ferreira

    2015-06-01

    Full Text Available Iron ore exploited in Brazil can be classified into several lithological types which have distinct features. The progress of mining over time leads to scarcity of high grade iron ores, leading to the exploitation of poor, contaminated and compact ores. There is a growing trend of application of process flowsheets involving grinding to promote mineral liberation, essential condition for concentration processes. Several authors have correlated metamorphism processes of banded iron formations to mineralogical features observed on itabirites from the Iron Quadrangle, mainly the crystals size. This paper presents the implications of such variation in defining the mesh of grinding. Mineralogical characterization and grinding, desliming and flotation tests have been carried out with samples from two regions of the Iron Quadrangle subjected to different degrees of metamorphism. It was found a trend of reaching satisfactory liberation degree in coarser size for the itabirite of higher metamorphic degree, which has larger crystals. The flotation tests have confirmed the mineralogical findings.

  8. Lunar Geologic Mapping: A Preliminary Map of a Portion of the LQ-10 ("Marius") Quadrangle

    Science.gov (United States)

    Gregg, T. K. P.; Yingst, R. A.

    2009-01-01

    Since the first lunar mapping program ended in the 1970s, new topographical, multispectral, elemental and albedo imaging datasets have become available (e.g., Clementine, Lunar Prospector, Galileo). Lunar science has also advanced within the intervening time period. A new systematic lunar geologic mapping effort endeavors to build on the success of earlier mapping programs by fully integrating the many disparate datasets using GIS software and bringing to bear the most current understanding of lunar geologic history. As part of this program, we report on a 1:2,500,000-scale preliminary map of a subset of Lunar Quadrangle 10 ("LQ-10" or the "Marius Quadrangle," see Figures 1 and 2), and discuss the first-order science results. By generating a geologic map of this region, we can constrain the stratigraphic and geologic relationships between features, revealing information about the Moon s chemical and thermal evolution.

  9. Aerial gamma ray and magnetic survey: Minnesota Project, Cheboygan and Alpena quadrangles, Michigan. Final report

    International Nuclear Information System (INIS)

    1980-02-01

    The Cheboygan and Alpena 1 0 x 2 0 quadrangles of Michigan are covered almost everywhere (United States only) with Wisconsin age glacial deposits (moraines, outwash, leak deposits, etc.) of variable thickness. Where exposed, bedrock is of Early and Middle Paleozoic age, and consists almost entirely of limestone and dolomite. There are no uranium deposits (or occurrences) known within the study area, though the Elliot Lake quartz pebble conglomerate uranium deposit lies to the north in the Canadian section of the Blind River quadrangle. Magnetic data illustrate relative depth to magnetic basement in the area. Higher frequency/amplitude wavelengths in the eastern and northern sections of the lower peninsula may be a reflection of the lithologic character of the Precambrian bedrock. Twenty-four groups of uranium samples were defined as anomalies and are discussed briefly in this report. None of them are considered significant

  10. Reconnaissance surficial geologic map of the Taylor Mountains quadrangle, southwestern Alaska

    Science.gov (United States)

    Wilson, Frederic H.

    2015-09-28

    This map and accompanying digital files are the result of the interpretation of aerial photographs from the 1950s as well as more modern imagery. The area, long considered a part of Alaska that was largely not glaciated (see Karlstrom, 1964; Coulter and others, 1965; or Péwé, 1975), actually has a long history reflecting local and more distant glaciations. An unpublished photogeologic map of the Taylor Mountains quadrangle from the 1950s by J.N. Platt Jr. was useful in the construction of this map. Limited new field mapping in the area was conducted as part of a mapping project in the Dillingham quadrangle to the south (Wilson and others, 2003); however, extensive aerial photograph interpretation represents the bulk of the mapping effort. The accompanying digital files show the sources for each line and geologic unit shown on the map.

  11. Geological Evolution of the Ganiki Planitia Quadrangle (V14) on Venus

    Science.gov (United States)

    Grosfils, E. B.; Drury, D. E.; Hurwitz, D. M.; Kastl, B.; Long, s. M.; Richards, J. W.; Venechuk, E. M.

    2005-01-01

    The Ganiki Planitia quadrangle (25-50degN, 180-210degE) is located north of Atla Regio, south of Vinmara Planitia, and southeast of Atalanta Planitia. The region contains a diverse array of volcanic-, tectonic- and impact-derived features, and the objectives for the ongoing mapping effort are fivefold: 1) explore the formation and evolution of radiating dike swarms within the region, 2) use the diverse array of volcanic deposits to further test the neutral buoyancy hypothesis proposed to explain the origin of reservoir-derived features, 3&4) unravel the volcanic and tectonic evolution in this area, and 5) explore the implications of 1-4 for resurfacing mechanisms. Here we summarize our onging analysis of the material unit stratigraphy in the quadrangle, data central to meeting the aforementioned objectives successfully.

  12. Geology of the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS Quadrangles, Alabama

    International Nuclear Information System (INIS)

    Copeland, C.W.; Beg, M.A.

    1979-04-01

    This document is a facsimile edition (with accompanying maps) of geologic reports on the Birmingham, Gadsden, and Montgomery 1 0 x 2 0 NTMS quadrangles prepared for SRL by the Geological Survey of Alabama. The purpose of these reports is to provide background geologic information to aid in the interpretation of NURE geochemical reconnaissance data. Each report includes descriptions of economic mineral localities as well as a mineral locality map and a geologic map

  13. Geology of the Birmingham, Gadsden, and Montgomery 10 x 20 NTMS quadrangles, Alabama

    International Nuclear Information System (INIS)

    Copeland, C.W.; Beg, M.A.

    1979-04-01

    This document is a facsimile edition (with accompanying maps) of geologic reports on the Birmingham, Gadsden, and Montgomery 1 0 x 2 0 NTMS quadrangles prepared for SRL by the Geological Survey of Alabama. Purpose of these reports is to provide background geologic information to aid in the interpretation of NURE geochemical reconnaissance data. Each report includes descriptions of economic mineral localities as well as a mineral locality map and a geologic map

  14. HIGH-RESOLUTION TOPOGRAPHY OF MERCURY FROM MESSENGER ORBITAL STEREO IMAGING – THE SOUTHERN HEMISPHERE QUADRANGLES

    Directory of Open Access Journals (Sweden)

    F. Preusker

    2018-04-01

    Full Text Available We produce high-resolution (222 m/grid element Digital Terrain Models (DTMs for Mercury using stereo images from the MESSENGER orbital mission. We have developed a scheme to process large numbers, typically more than 6000, images by photogrammetric techniques, which include, multiple image matching, pyramid strategy, and bundle block adjustments. In this paper, we present models for map quadrangles of the southern hemisphere H11, H12, H13, and H14.

  15. Geologic Mapping of Impact Craters and the Mahuea Tholus Construct: A Year Three Progress Report for the Mahuea Tholus (V-49) Quadrangle, Venus

    Science.gov (United States)

    Lang, N. P.; Covley, M. T.; Beltran, J.; Rogers, K.; Thomson, B. J.

    2018-06-01

    We are reporting on our year three status of mapping the V-49 quadrangle (Mahuea Tholus). Our mapping efforts over this past year emphasized the 13 impact craters in the quadrangle as well as larger-scale mapping of the Mahuea Tholus construct.

  16. Randomized, controlled trial of an intervention for toddlers with autism: the Early Start Denver Model.

    Science.gov (United States)

    Dawson, Geraldine; Rogers, Sally; Munson, Jeffrey; Smith, Milani; Winter, Jamie; Greenson, Jessica; Donaldson, Amy; Varley, Jennifer

    2010-01-01

    To conduct a randomized, controlled trial to evaluate the efficacy of the Early Start Denver Model (ESDM), a comprehensive developmental behavioral intervention, for improving outcomes of toddlers diagnosed with autism spectrum disorder (ASD). Forty-eight children diagnosed with ASD between 18 and 30 months of age were randomly assigned to 1 of 2 groups: (1) ESDM intervention, which is based on developmental and applied behavioral analytic principles and delivered by trained therapists and parents for 2 years; or (2) referral to community providers for intervention commonly available in the community. Compared with children who received community-intervention, children who received ESDM showed significant improvements in IQ, adaptive behavior, and autism diagnosis. Two years after entering intervention, the ESDM group on average improved 17.6 standard score points (1 SD: 15 points) compared with 7.0 points in the comparison group relative to baseline scores. The ESDM group maintained its rate of growth in adaptive behavior compared with a normative sample of typically developing children. In contrast, over the 2-year span, the comparison group showed greater delays in adaptive behavior. Children who received ESDM also were more likely to experience a change in diagnosis from autism to pervasive developmental disorder, not otherwise specified, than the comparison group. This is the first randomized, controlled trial to demonstrate the efficacy of a comprehensive developmental behavioral intervention for toddlers with ASD for improving cognitive and adaptive behavior and reducing severity of ASD diagnosis. Results of this study underscore the importance of early detection of and intervention in autism.

  17. Performance of the University of Denver Low Turbulence, Airborne Aerosol Inlet in ACE-Asia

    Science.gov (United States)

    Lafleur, B.; Wilson, J. C.; Seebaugh, W. R.; Gesler, D.; Hilbert, H.; Mullen, J.; Reeves, J. M.

    2002-12-01

    The University of Denver Low Turbulence Inlet (DULTI) was flown on the NCAR C-130 in ACE-Asia. This inlet delivered large sample flows at velocities of a few meters per second at the exit of the inlet. This flow was slowed from the true air speed of the aircraft (100 to 150 m/s) to a few meters per second in a short diffuser with porous walls. The flow in the diffusing section was laminar. The automatic control system kept the inlet operating at near isokinetic intake velocities and in laminar flow for nearly all the flight time. The DULTI permits super micron particles to be sampled and delivered with high efficiency to the interior of the aircraft where they can be measured or collected. Because most of the air entering the inlet is removed through the porous medium, the sample flow experiences inertial enhancements. Because these enhancements occur in laminar flow, they are calculable using FLUENT. Enhancement factors are defined as the ratio of the number of particles of a given size per unit mass of air in the sample to the number of particles of that size per unit mass of air in the ambient. Experimenters divide measured mixing ratios of the aerosol by the enhancement factor to get the ambient mixing ratio of the particles. The diffuser used in ACE-Asia differed from that used in PELTI (2000), TexAQS2000 (2000) and ITCT (2002). In this poster, the flow parameters measured in the inlet in flight are compared with those calculated from FLUENT. And enhancement factors are presented for flight conditions. The enhancement factors are found to depend upon the Stokes number of particles in the entrance to the inlet and the ratio of the mass flow rate of air removed by suction to the mass flow rate delivered as sample.

  18. Geologic map of the Ponca quadrangle, Newton, Boone, and Carroll Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Murray, Kyle E.

    2003-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, and structure contour), and point (i.e., structural attitude, contact elevations) vector data for the Ponca 7 1/2' quadrangle in northern Arkansas. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic, tectonic, and stratigraphic interest. The Ponca quadrangle is located in Newton, Boone, and Carroll Counties about 20 km southwest of the town of Harrison. The map area is underlain by sedimentary rocks of Ordovician, Mississippian, and Pennsylvanian age that were mildly deformed by a series of normal and strike-slip faults and folds. The area is representative of the stratigraphic and structural setting of the southern Ozark Dome. The Ponca quadrangle map provides new geologic information for better understanding groundwater flow paths and development of karst features in and adjacent to the Buffalo River watershed.

  19. Hydrogeochemical and stream sediment reconnaissance basic data report for Kingman NTMS Quadrangle, Arizona, California, and Nevada

    International Nuclear Information System (INIS)

    Qualheim, B.J.

    1978-07-01

    This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives

  20. Uranium hydrogeochemical and stream sediment reconnaissance of the Atlin NTMS Quadrangle, Alaska

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr.

    1982-01-01

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Altin NTMS Quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Only 6 samples were taken in the Atlin Quadrangle. Appendix A describes the sample media and summarizes the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into stream-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Information on the field and analytical procedures used by the Los Alamos National laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report. Chemical analysis and field data for water samples from this quadrangle were open filed by the DOE Grand Junction Office as GJX-166

  1. Hydrogeochemical and stream sediment reconnaissance basic data for Dickinson NTMS Quadrangle, North Dakota

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Dickinson Quadrangle, North Dakota are reported. Field and laboratory data are presented for 544 groundwater and 554 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Interpretation of the groundwater data indicates that scattered localities in the central portion of the quadrangle appear most promising for uranium mineralization. High values of uranium in this area are usually found in waters of the Sentinel Butte and Tongue River Formations. Uranium is believed to be concentrated in the lignite beds of the Fort Union Group, with concentrations increasing with proximity to the pre-Oligocene unconformity. Stream sediment data indicate high uranium values distributed over the central area of the quadrangle. Uranium in stream sediments does not appear to be associated with any particular geologic unit and is perhaps following a structural trend

  2. Hydrogeochemical and stream sediment reconnaissance basic data report for Kingman NTMS Quadrangle, Arizona, California, and Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Qualheim, B.J.

    1978-07-01

    This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites, and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives.

  3. Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus

    Science.gov (United States)

    Ivanov, M. A.; Head, J. W.

    2009-01-01

    The Fortuna Tessera quadrangle (50-75 N, 0-60 E) is a large region of tessera [1] that includes the major portion of Fortuna and Laima Tesserae [2]. Near the western edge of the map area, Fortuna Tessera is in contact with the highest moun-tain belt on Venus, Maxwell Montes. Deformational belts of Sigrun-Manto Fossae (extensional structures) and Au ra Dorsa (contractional structures) separate the tessera regions. Highly deformed terrains correspond to elevated regions and mildly deformed units are with low-lying areas. The sets of features within the V-2 quadrangle permit us to address the following important questions: (1) the timing and processes of crustal thickening/thinning, (2) the nature and origin of tesserae and deformation belts and their relation to crustal thickening processes, (3) the existence or absence of major evolutionary trends of volcanism and tectonics. The key feature in all of these problems is the regional sequence of events. Here we present description of units that occur in the V-2 quadrangle, their regional correlation chart (Fig. 1), and preliminary geological map of the region (Fig. 2).

  4. Preliminary Image Map of the 2007 Witch Fire Perimeter, Santa Ysabel Quadrangle, San Diego County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  5. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Agua Dulce Quadrangle, Los Angeles County, California

    Science.gov (United States)

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Aerial gamma ray and magnetic survey: Powder River II Project, Newcastle Quadrangle, Wyoming. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    Thick Phanerozoic sediments (greater than 17,000 ft) fill the northwest trending Powder River Basin which is the dominant tectonic structure in the Newcastle quadrangle. Lower Tertiary sediments comprise more than 85% of exposed units at the surface of the Basin. A small portion of the Black Hills Uplift occupies the eastern edge of the quadrangle. Residual magnetics clearly reflect the great depth to crystalline Precambrian basement in the Basin. The Basin/Uplift boundary is not readily observed in the magnetic data. Economic uranium deposits of roll-type configuration are present in the southwest within the Monument Hill-Box Creek District in fluvial sandstones of the Paleocene Fort Union Formation. Numerous small claims and prospects are found in the Pumpkin Buttes-Turnercrest District in the northwest. Interpretation of the radiometric data resulted in 86 statistical uranium anomalies listed for this quadrangle. Most anomalies are in the eastern-central portion of the map within Tertiary Fort Union and Wasatch Formations. However, several lie in the known uranium districts in the southwest and northwest

  7. Lidar-revised geologic map of the Des Moines 7.5' quadrangle, King County, Washington

    Science.gov (United States)

    Tabor, Rowland W.; Booth, Derek B.

    2017-11-06

    This map is an interpretation of a modern lidar digital elevation model combined with the geology depicted on the Geologic Map of the Des Moines 7.5' Quadrangle, King County, Washington (Booth and Waldron, 2004). Booth and Waldron described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Des Moines 7.5' quadrangle. The base map that they used was originally compiled in 1943 and revised using 1990 aerial photographs; it has 25-ft contours, nominal horizontal resolution of about 40 ft (12 m), and nominal mean vertical accuracy of about 10 ft (3 m). Similar to many geologic maps, much of the geology in the Booth and Waldron (2004) map was interpreted from landforms portrayed on the topographic map. In 2001, the Puget Sound Lidar Consortium obtained a lidar-derived digital elevation model (DEM) for much of the Puget Sound area, including the entire Des Moines 7.5' quadrangle. This new DEM has a horizontal resolution of about 6 ft (2 m) and a mean vertical accuracy of about 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM compared to topography constructed from air-photo stereo models have much improved the interpretation of geology, even in this heavily developed area, especially the distribution and relative age of some surficial deposits. For a brief description of the light detection and ranging (lidar) remote sensing method and this data acquisition program, see Haugerud and others (2003). 

  8. Hydrogeochemical and stream sediment reconnaissance basic data for Watertown NTMS Quadrangle, South Dakota; Minnesota

    International Nuclear Information System (INIS)

    1981-01-01

    Results of a reconnaissance geochemical survey of the Watertown Quadrangle are reported. Field and laboratory data are presented for 711 groundwater and 603 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate that high uranium concentrations are derived predominantly from glacial aquifers of variable water composition located on the Coteau des Prairies. Elements associated with high uranium values in these waters include barium, calcium, copper, iron, magnesium, selenium, sulfate, and total alkalinity. Low uranium values were observed in waters originating from the Cretaceous Dakota sandstone whose water chemistry is characterized by high concentrations of boron, sodium, and chloride. Stream sediment data indicate that high uranium concentrations are scattered across the glacial deposits of the Coteau des Prairies. A major clustering of high uranium values occurs in the eastern portion of the glaciated quadrangle and is associated with high concentrations of selenium, lithium, iron, arsenic, chromium, and vanadium. The sediment data suggest that the drift covering the Watertown Quadrangle is compositionally homogeneous, although subtle geochemical differences were observed as a result of localized contrasts in drift source-rock mineralogy and modification of elemental distributions by contemporaneous and postglacial hydrologic processes

  9. Geologic map of the Rifle Falls quadrangle, Garfield County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Shroba, Ralph R.; Egger, Anne

    2001-01-01

    New 1:24,000-scale geologic map of the Rifle Falls 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Upper Cretaceous Iles Formation through Ordovician and Cambrian units. The Iles Formation includes the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale is divided into three members, an upper member, the Niobrara Member, and a lower member. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and the Entrada Sandstone are present. Below the Upper Jurassic Entrada Sandstone, the easternmost limit of the Lower Jurassic and Upper Triassic Glen Canyon Sandstone is recognized. Both the Upper Triassic Chinle Formation and the Lower Triassic(?) and Permian State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is divided into two members, the Schoolhouse Member and a lower member. All the exposures of the Middle Pennsylvanian Eagle Evaporite intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Middle and Lower Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group is divided into the Dyer Dolomite, which is broken into the Coffee Pot Member and the Broken Rib Member, and the Parting Formation. Ordovician through Cambrian units are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two is a large-offset, mid

  10. Aeromagnetic maps of the Colorado River region including the Kingman, Needles, Salton Sea, and El Centro 1 degree by 2 degrees quadrangles, California, Arizona, and Nevada

    Science.gov (United States)

    Mariano, John; Grauch, V.J.

    1988-01-01

    Aeromagnetic data for the Colorado river region have been compiled as part of the Pacific to Arizona Crustal Experiment (PACE) Project. The data are presented here in a series of six compilations for the Kingman, Needles, Salton Sea, and El Centro 1 degree by 2 degree quadrangles, California, Arizona, and Nevada, at scales of 1:250,000 and 1:750,000. The scales and map areas are identical to those used by Mariano and others (1986) to display the Bouguer and isotatic residual gravity for this region. Data were compiled separately for the Kingman quadrangle, the Needles quadrangle, and an area covering the Salton Sea quadrangle and part of the El Centro quadrangle.

  11. Geologic and Mineralogic Mapping of Av-6 (Gegania) and Av-7 (Lucaria) Quadrangles of Asteroid 4 Vesta

    Science.gov (United States)

    Nathues, A.; Le Corre, L.; Reddy, V.; De Sanctis, M. C.; Williams, D. A.; Garry, W. B.; Yingst, R. A.; Jaumann, R.; Ammannito, E.; Capaccioni, F.; Preusker, F.; Palomba, E.; Roatsch, T.; Tosi, F.; Zambon, F.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.

    2012-04-01

    NASA's Dawn spacecraft arrived at the asteroid 4 Vesta in July 2011 and is now collecting imaging and spectroscopic data during its one-year orbital mission. The maps we present are based on information obtained by the Visible and Infrared Mapping Spectrometer VIR-MS and the multi-color Framing Camera FC. VIR covers the wavelength range between 0.25 to 5.1 µm while FC covers the range 0.4 to 1.0 µm. The VIR instrument has a significant higher spectral resolution than FC but the latter achieves higher spatial resolution data. As part of the geological and mineralogical analysis of the surface, a series of 15 quadrangles have been defined covering the entire surface of Vesta. We report about the mapping results of quadrangle Av-6 (Gegania) and Av-7 (Lucaria). The Gegania quadrangle is dominated by old craters showing no ejecta blankets and rays while several small fresh craters do. The most obvious geologic features are a set of equatorial troughs, a group of three ghost craters of similar diameter (~57 km), an ejecta mantling of the Gegania crater and three smaller craters showing bright and dark ejecta rays. The quadrangle contains two main geologic units: 1) the northern cratered trough terrain and 2) the equatorial ridge and trough terrain. The quadrangle shows moderate variation in Band II center wavelength and Band II depth. FC color ratio variations of some recent craters and their ejecta are linked to the bright and dark material. The bright material is possibly excavated eucritic material while the dark material could be remnants of a CM2 impator(s) or an excavated subsurface layer of endogenic origin. The most prominent geologic features in the Lucaria quadrangle are the 40 km long hill Lucaria Tholus, a set of equatorial troughs, some relatively fresh craters with bright and dark material and mass wasting. The quadrangle contains three main geologic units: 1) the northern cratered trough terrain, 2) the equatorial ridge and trough terrain, and 3) the

  12. Mineralogical Mapping of the Av-5 Floronia Quadrangle of Asteroid 4 Vesta

    Science.gov (United States)

    Combe, J.-Ph.; Fulchinioni, M.; McCord, T. B.; Ammannito, E.; De Sanctis, M. C.; Nathues, A.; Capaccioni, F.; Frigeri, A.; Jaumann, R.; Le Corre, L.; Palomba, E.; Preusker, F.; Reddy, V.; Stephan, K.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.

    2012-04-01

    Asteroid 4 Vesta is currently under investigation by NASA's Dawn orbiter. The Dawn Science Team is conducting mineralogical mapping of Vesta's surface in the form of 15 quadrangle maps, and here we report results from the mapping of Floronia quadrangle Av-5. The maps are based on the data acquired by the Visible and Infrared Mapping Spectrometer (VIR-MS) and the Framing Camera (FC) (De Sanctis et al., this meeting). This abstract is focused on the analysis of band ratios, as well as the depth and position of the 2-µm absorption band of pyroxenes, but additional information will be presented. Absorption band depth is sensitive to abundance, texture and multiple scattering effects. Absorption band position is controlled by composition, shorter wavelength positions indicate less Calcium (and more Magnesium) in pyroxenes. The inferred composition is compared with that of Howardite, Eucite and Diogenite meteorites (HEDs). Diogenites are Mg-rich with large orthopyroxene crystals suggesting formation in depth; Eucrites are Ca-poor pyroxene, with smaller crystals. Av-5 Floronia Quadrangle is located between ~20-66˚N and 270˚-360˚E. It covers a portion of the heavily-cratered northern hemisphere of Vesta, and part of it is in permanent night, until August 2012. Long shadows make the visualization of albedo variations difficult, because of limited effectiveness of photometric corrections. Most of the variations of the band depth at 2 µm are partly affected by illumination geometry in this area. Only regional tendencies are meaningful at this time of the analysis. The 2-µm absorption band depth seems to be deeper towards the south of the quadrangle, in particular to the south of Floronia crater. It is not possible to interpret the value of the band depth in the floor the craters because of the absence of direct sunlight. However, the illuminated rims seem to have a deeper 2-µm absorption band, as does the ejecta from an unnamed crater located further south, within

  13. Denver screening protocol for blunt cerebrovascular injury reduces the use of multi-detector computed tomography angiography.

    Science.gov (United States)

    Beliaev, Andrei M; Barber, P Alan; Marshall, Roger J; Civil, Ian

    2014-06-01

    Blunt cerebrovascular injury (BCVI) occurs in 0.2-2.7% of blunt trauma patients and has up to 30% mortality. Conventional screening does not recognize up to 20% of BCVI patients. To improve diagnosis of BCVI, both an expanded battery of screening criteria and a multi-detector computed tomography angiography (CTA) have been suggested. The aim of this study is to investigate whether the use of CTA restricted to the Denver protocol screen-positive patients would reduce the unnecessary use of CTA as a pre-emptive screening tool. This is a registry-based study of blunt trauma patients admitted to Auckland City Hospital from 1998 to 2012. The diagnosis of BCVI was confirmed or excluded with CTA, magnetic resonance angiography and, if these imaging were non-conclusive, four-vessel digital subtraction angiography. Thirty (61%) BCVI and 19 (39%) non-BCVI patients met eligibility criteria. The Denver protocol applied to our cohort of patients had a sensitivity of 97% (95% confidence interval (CI): 83-100%) and a specificity of 42% (95% CI: 20-67%). With a prevalence of BCVI in blunt trauma patients of 0.2% and 2.7%, post-test odds of a screen-positive test were 0.03 (95% CI: 0.002-0.005) and 0.046 (95% CI: 0.314-0.068), respectively. Application of the CTA to the Denver protocol screen-positive trauma patients can decrease the use of CTA as a pre-emptive screening tool by 95-97% and reduces its hazards. © 2013 Royal Australasian College of Surgeons.

  14. Early Start Denver Model. Un modello Evidence Based per l’intervento educativo precoce nei Disturbi dello Spettro Autistico

    Directory of Open Access Journals (Sweden)

    Saverio Fontani

    2016-07-01

    Full Text Available The Autism Spectrum Disorders represents one of the most complex developmental disabilities for the massive deficit of communication competences. The social disability related to disorders is the main objective of the intervention of the Early Start Denver Model – ESDM (Rogers & Dawson, 2010, which can be considered as one of the most advanced models for early educational intervention according the perspective of Evidence Based Education. In this paper the theoretical foundations of the model are presented and its implications for a modern inclusive education are discussed..

  15. Effectiveness and Feasibility of the Early Start Denver Model Implemented in a Group-Based Community Childcare Setting

    OpenAIRE

    Vivanti, G; Paynter, J; Duncan, E; Fothergill, H; Dissanayake, C; Rogers, SJ; the, VASELCCT

    2014-01-01

    © 2014, Springer Science+Business Media New York. A recent study documented the efficacy of the Early Start Denver Model (ESDM) delivered in a 1:1 fashion. In the current study we investigated the effectiveness and feasibility of the ESDM in the context of a long-day care community service, with a child-staff ratio of 1:3. Outcomes of 27 preschoolers with ASD undergoing 15–25 h per week of ESDM over 12 months were compared to those of 30 peers with ASD undergoing a different intervention prog...

  16. Response of hatchling Komodo Dragons (Varanus komodoensis) at Denver Zoo to visual and chemical cues arising from prey.

    Science.gov (United States)

    Chiszar, David; Krauss, Susan; Shipley, Bryon; Trout, Tim; Smith, Hobart M

    2009-01-01

    Five hatchling Komodo Dragons (Varanus komodoensis) at Denver Zoo were observed in two experiments that studied the effects of visual and chemical cues arising from prey. Rate of tongue flicking was recorded in Experiment 1, and amount of time the lizards spent interacting with stimuli was recorded in Experiment 2. Our hypothesis was that young V. komodoensis would be more dependent upon vision than chemoreception, especially when dealing with live, moving, prey. Although visual cues, including prey motion, had a significant effect, chemical cues had a far stronger effect. Implications of this falsification of our initial hypothesis are discussed.

  17. Cost Offset Associated With Early Start Denver Model for Children With Autism.

    Science.gov (United States)

    Cidav, Zuleyha; Munson, Jeff; Estes, Annette; Dawson, Geraldine; Rogers, Sally; Mandell, David

    2017-09-01

    To determine the effect of the Early Start Denver Model (ESDM) for treatment of young children with autism on health care service use and costs. We used data from a randomized trial that tested the efficacy of the ESDM, which is based on developmental and applied behavioral analytic principles and delivered by trained therapists and parents, for 2 years. Parents were interviewed about their children's service use every 6 months from the onset of the intervention to follow-up (age 6 years). The sample for this study consisted of 39 children with autism who participated in the original randomized trial at age 18 to 30 months, and were also assessed at age 6 years. Of this sample, 21 children were in the ESDM group, and 18 children were in the community care (COM) group. Reported services were categorized and costed by applying unit hourly costs. Annualized service use and costs during the intervention and post intervention for the two study arms were compared. During the intervention, children who received the ESDM had average annualized total health-related costs that were higher by about $14,000 than those of children who received community-based treatment. The higher cost of ESDM was partially offset during the intervention period because children in the ESDM group used less applied behavior analysis (ABA)/early intensive behavioral intervention (EIBI) and speech therapy services than children in the comparison group. In the postintervention period, compared with children who had earlier received treatment as usual in community settings, children in the ESDM group used less ABA/EIBI, occupational/physical therapy, and speech therapy services, resulting in significant cost savings in the amount of about $19,000 per year per child. Costs associated with ESDM treatment were fully offset within a few years after the intervention because of reductions in other service use and associated costs. Early Characteristics of Autism; http://clinicaltrials.gov/; NCT0009415

  18. Importancia y utilidad del test de Denver para la valoración del desarrollo de los niños colombianos

    Directory of Open Access Journals (Sweden)

    Rubiano Luz Marina C. de

    1992-06-01

    Full Text Available

    Este artículo se ha escrito teniendo en cuenta la experiencia docente de 17 años en las universidades del Valle, Nacional, Escuela Colombiana de Medicina, y otras universidades de Centroamérica; con estudiantes de enfermería y medicina de pregrado y postgrado, aplicando el  test de Denver para la valoración del niño menor de 6 años. El test de Denver fue elaborado en el año de 1967 por un grupo de investigadores del Centro Médico de la Universidad de Colorado en Denver, Colorado EE.UU., y se basó en la observación de 1.000 niños normales de O a 6 años para ver a qué edades realizaban las actividades correspondientes.

  19. West Greenlandic Eskimo

    DEFF Research Database (Denmark)

    Trondhjem, Naja Blytmann; Fortescue, Michael David

    West Greenlandic Eskimo. The current situation of the West Greenlandic language as principal means of communication among the majority Greenlandic population will be presented with special emphasis on the northwest hunting district of Upernavik, where traditional marine mammal hunting is still...... the principal economic activity. Research projects and language initiatives currently in progress within Greenland will be touched upon, as will the possibilities of communication with North American Inuit. West Greenlandic is unique among the native languages of the North American Arctic and Sub...

  20. Results of wellness examinations of 28 African hunting dog (Lycaon pictus puppies at the Denver Zoological Foundation

    Directory of Open Access Journals (Sweden)

    D.E. Kenny

    2007-05-01

    Full Text Available Since 2002 the Denver Zoological Foundation has produced 28 African hunting dog (Lycaon Pictus puppies in 3 litters (7, 14 and 7 pups from the same dam and sire. Wellness examinations were performed on each puppy. The wellness examinations spanned the range of 6-14 weeks of age. During the wellness examinations, in addition to physical examinations and vaccinations, blood samples for complete blood counts and sera biochemistry were obtained.Weights, morphometric measurements, rectal cultures for enteric pathogens and dental eruption patterns were recorded. Blood samples from each age group were compared with adult values from the Denver Zoo. It was noted that animals from the 14-pup litter were 63.6 % of the mean weight of the two 7-pup litters, but size differences (in, for example, total bodylength were less apparent. Two organisms were recovered from rectal cultures, namely Yersinia enterocolitica (n = 2 and Plesiomonas shigelloides (n = 3. The following deciduous eruption patterns were also noted; at 6 weeks, I1-3, i1-3, C1, c1, P1-2 and p1-2 (n=7 were present, at 9-10 weeks, P3 and p3 (n=21 , and finally at 12-14 weeks, P4 (n = 28.

  1. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Fort Smith quadrangle, Oklahoma, and Arkansas. Final report

    International Nuclear Information System (INIS)

    1980-09-01

    The Fort Smith quadrangle in western Arkansas and eastern Oklahoma overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary Alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Seventy-five groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources

  2. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Nashville quadrangle, Tennessee, and Kentucky. Final report

    International Nuclear Information System (INIS)

    1980-09-01

    The Nashville quadrangle covers a portion of the interior lowland plateau region of the Midwestern Physiographic Province. The quadrangle contains a shallow to moderately thick Paleozoic section that overlies a Precambrian basement complex. Paleozoic carbonates dominate surficial exposures. A search of available literature revealed no known uranium deposits. Fifty-five uranium anomalies were detected and are discussed briefly. Most anomalies appear to relate to cultural features. Some have relatively high uranium concentration levels that may be significant despite their correlation with culture. Magnetic data appear to illustrate complexities in the Precambrian basement

  3. Bedrock geologic map of the Miles Pond and Concord quadrangles, Essex and Caledonia Counties, Vermont, and Grafton County, New Hampshire

    Science.gov (United States)

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Miles Pond and Concord quadrangles covers an area of approximately 107 square miles (276 square kilometers) in east-central Vermont and adjacent New Hampshire, north of and along the Connecticut River. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. The majority of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Silurian sedimentary, volcanic, and plutonic rocks. A major feature on the map is the Monroe fault, interpreted to be a west-directed, steeply dipping Late Devonian (Acadian) thrust fault. To the west of the Monroe fault, rocks of the Connecticut Valley-Gaspé trough dominate and consist primarily of metamorphosed Silurian and Devonian sedimentary rocks. To the north, the Victory pluton intrudes the Bronson Hill anticlinorium. The Bronson Hill anticlinorium consists of the metamorphosed Albee Formation, the Ammonoosuc Volcanics, the Comerford Intrusive Complex, the Highlandcroft Granodiorite, and the Joselin Turn tonalite. The Albee Formation is an interlayered, feldspathic metasandstone and pelite that is locally sulfidic. Much of the deformed metasandstone is tectonically pinstriped. In places, one can see compositional layering that was transposed by a steeply southeast-dipping foliation. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of siltstone, phyllite, graywacke, and grit. The Comerford Intrusive Complex crops out east of the Monroe fault and consists of metamorphosed gabbro, diorite, tonalite, aplitic tonalite, and crosscutting diabase dikes. Abundant mafic dikes from the Comerford Intrusive Complex intruded the Albee Formation and Ammonoosuc Volcanics east of the Monroe fault. The

  4. Color Shaded-Relief and Surface-Classification Maps of the Fish Creek Area, Harrison Bay Quadrangle, Northern Alaska

    Science.gov (United States)

    Mars, John L.; Garrity, Christopher P.; Houseknecht, David W.; Amoroso, Lee; Meares, Donald C.

    2007-01-01

    Introduction The northeastern part of the National Petroleum Reserve in Alaska (NPRA) has become an area of active petroleum exploration during the past five years. Recent leasing and exploration drilling in the NPRA requires the U.S. Bureau of Land Management (BLM) to manage and monitor a variety of surface activities that include seismic surveying, exploration drilling, oil-field development drilling, construction of oil-production facilities, and construction of pipelines and access roads. BLM evaluates a variety of permit applications, environmental impact studies, and other documents that require rapid compilation and analysis of data pertaining to surface and subsurface geology, hydrology, and biology. In addition, BLM must monitor these activities and assess their impacts on the natural environment. Timely and accurate completion of these land-management tasks requires elevation, hydrologic, geologic, petroleum-activity, and cadastral data, all integrated in digital formats at a higher resolution than is currently available in nondigital (paper) formats. To support these land-management tasks, a series of maps was generated from remotely sensed data in an area of high petroleum-industry activity (fig. 1). The maps cover an area from approximately latitude 70?00' N. to 70?30' N. and from longitude 151?00' W. to 153?10' W. The area includes the Alpine oil field in the east, the Husky Inigok exploration well (site of a landing strip) in the west, many of the exploration wells drilled in NPRA since 2000, and the route of a proposed pipeline to carry oil from discovery wells in NPRA to the Alpine oil field. This map area is referred to as the 'Fish Creek area' after a creek that flows through the region. The map series includes (1) a color shaded-relief map based on 5-m-resolution data (sheet 1), (2) a surface-classification map based on 30-m-resolution data (sheet 2), and (3) a 5-m-resolution shaded relief-surface classification map that combines the shaded

  5. US west coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerial surveys are conducted along the US west coast to determine distribution and abundance of endangered leatherback turtles (Dermochelys coriacea), loggerhead...

  6. Uranium hydrogeochemical and stream sediment reconnaissance of the Rawlins NTMS quadrangle, Wyoming

    International Nuclear Information System (INIS)

    Weaver, T.A.; Morris, W.A.; Trexler, P.K.

    1978-04-01

    During the spring and winter of 1976 and January and June of 1977, 570 natural water and 1281 waterborne sediment samples were collected from 1369 locations in the Rawlins, Wyoming, NTMS quadrangle. The samples obtained from this 18 700-km 2 area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 parts per billion (ppB) to 448 ppB, with a mean value of 6 ppB. The concentrations in sediments ranged from 1.2 parts per million (ppM) to 60.4 ppM, with a mean value of 4.1 ppM. Based on simple statistical analyses of these data, arbitrary anomaly thresholds were set at 50 ppB for water samples and 9 ppM for sediment samples. Eleven water and 44 sediment samples were considered anomalous; 1 anomalous water and 25 anomalous sediments could be associated with four of the five major uranium occurrences in the quadrangle. Only the Ketchum Buttes area did not show up in the data. Twelve minor reported occurrences could not be identified by the data. Eleven anomalous samples (8 waters and 3 sediments) and 13 near-anomalous samples (10 waters and 3 sediments) outline a broad area in the northeast corner of the quadrangle (corresponding to the drainage area of the Medicine Bow River) where two airborne radiometric anomalies were discovered in an earlier study. This area, and perhaps others, may warrant further, more detailed geological, geophysical, and geochemical investigations

  7. Geologic Map of the Boxley Quadrangle, Newton and Madison Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2007-01-01

    This map summarizes the geology of the Boxley 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the Boxley quadrangle lies within the Boston Mountains, a high plateau region underlain by Pennsylvanian sandstones and shales. Valleys of the Buffalo River and its tributaries expose an approximately 1,600-ft-(490-m-)thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. Part of Buffalo National River, a park encompassing the Buffalo River and adjacent land that is administered by the National Park Service, extends through the eastern part of the quadrangle. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevation sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as orthophotos were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed ledges. Structure contours were constructed on the top of the Boone Formation and the base of a prominent sandstone unit within the Bloyd Formation based on elevations of control points as well as other limiting information on their maximum or minimum elevations.

  8. Geologic map of the Weldona 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2018-03-21

    The Weldona 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Weldona quadrangle. During the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling deep paleochannels now covered by younger alluvium. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at their confluences, forming a broad, low-gradient fan of sidestream alluvium that could have occasionally dammed the river for short periods of time. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of prolonged drought. With the onset of irrigation and damming during historical times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly

  9. Geologic map of the Weldona 7.5′ quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2018-03-21

    The Weldona 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Weldona quadrangle. During the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling deep paleochannels now covered by younger alluvium. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at their confluences, forming a broad, low-gradient fan of sidestream alluvium that could have occasionally dammed the river for short periods of time. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of prolonged drought. With the onset of irrigation and damming during historical times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly

  10. Preliminary isostatic residual gravity map of the Newfoundland Mountains 30' by 60' quadrangle and east part of the Wells 30' by 60' quadrangle, Box Elder County, Utah

    Science.gov (United States)

    Langenheim, Victoria; Athens, N.D.; Churchel, B.A.; Willis, H.; Knepprath, N.E.; Rosario, Jose J.; Roza, J.; Kraushaar, S.M.; Hardwick, C.L.

    2013-01-01

    A new isostatic residual gravity map of the Newfoundland Mountains and east of the Wells 30×60 quadrangles of Utah is based on compilation of preexisting data and new data collected by the Utah and U.S. Geological Surveys. Pronounced gravity lows occur over Grouse Creek Valley and locally beneath the Great Salt Lake Desert, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Newfoundland, Silver Island, and Little Pigeon Mountains. Gravity values measured on pre-Tertiary basement to the north in the Bovine and Hogup Mountains are as much as 10mGal lower. Steep, linear gravity gradients may define basin-bounding faults concealed along the margins of the Newfoundland, Silver Island, and Little Pigeon Mountains, Lemay Island and the Pilot Range.

  11. False-Color-Image Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  12. Natural-Color-Image Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. Geology of -30247, -35247, and -40247 Quadrangles, Southern Hesperia Planum, Mars

    Science.gov (United States)

    Mest, S. C.; Crown, D. A.

    2010-01-01

    Geologic mapping of MTM -30247, -35247, and -40247 quadrangles is being used to characterize Reull Vallis (RV) and examine the roles and timing of volatile-driven erosional and depositional processes. This study complements earlier investigations of the eastern Hellas region, including regional analyses [1-6], mapping studies of circum-Hellas canyons [7-10], and volcanic studies of Hadriaca and Tyrrhena Paterae [11-13]. Key scientific objectives include 1) characterizing RV in its "fluvial zone," and evaluating its history of formation, 2) analyzing channels in the surrounding plains and potential connections to RV, and 3) examining young, possibly sedimentary plains along RV.

  14. Aerial gamma ray and magnetic survey, Jefferson City Quadrangle, Missouri. Final report

    International Nuclear Information System (INIS)

    1980-11-01

    The Jefferson City quadrangle covers approximately 7500 square miles at the Northwestern end of the Ozark uplift. Lithified material exposed, ranges in age from Cambrian through Pennsylvanian, but Pennsylvanian sediments dominate the surface as mapped. Some alluvium is mapped in river flood plain areas. A search of available literature revealed no known uranium deposits. A total of 95 uranium anomalies were detected and are discussed briefly in this report. All anomalies are related to cultural features, but those associated with coal mine tailings appear to have some significance. Magnetic data appear to relate to complexities in the underlying Precambrian rocks

  15. Geologic map of the Fort Morgan 7.5' quadrangle, Morgan County, Colorado

    Science.gov (United States)

    Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.

    2018-06-08

    The Fort Morgan 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the late Pliocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Fort Morgan quadrangle. Distribution and characteristics of the alluvial deposits indicate that during the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling a deep paleochannel near the south edge of the quadrangle. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at and near their confluences, forming a broad, low-gradient fan composed of sidestream alluvium that could have occasionally dammed the river for short periods of time. Wildcat Creek, also originating on the Colorado Piedmont, and the small drainage of Cris Lee Draw dissect the map area north of the river. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the

  16. Aerial gamma ray and magnetic survey: Green Bay Quadrangle, Wisconsin. Final report

    International Nuclear Information System (INIS)

    1978-04-01

    Data obtained from a high sensitivity airborne radiometric and magnetic survey of Green Bay Quadrangle in Wisconsin are presented. All data are presented as corrected profiles of all radiometric variables, magnetic data, radar and barometric altimeter data, air temperature and airborne Bismuth contributions. Radiometric data presented are corrected for Compton Scatter, altitude dependence and atmospheric Bismuth. These data are also presented on microfiche, and digital magnetic tapes. In addition, anomaly maps and interpretation maps are presented relating known geology or soil distribution to the corrected radiometric/magnetic data

  17. Aerial gamma ray and magnetic survey: Iron Mountain Quadrangle, Wisconsin/Michigan. Final report

    International Nuclear Information System (INIS)

    1978-04-01

    Data obtained from a high sensitivity airborne radiometric and magnetic survey of Iron Mountain Quadrangle in Wisconsin/Michigan are presented. All data are presented as corrected profiles of all radiometric variables, magnetic data, radar and barometric altimeter data, air temperature and airborne Bismuch contributions. Radiometric data presented are corrected for Compton Scatter, altitude dependence and atmospheric Bismuth. These data are also presented on microfiche, and digital magnetic tapes. In addition, anomaly maps and interpretation maps are presented relating known geology or soil distribution to the corrected radiometric/magnetic data

  18. Aerial gamma ray and magnetic survey: Rice Lake Quadrangle, Wisconsin. Final report

    International Nuclear Information System (INIS)

    1978-04-01

    Data obtained from a high sensitivity airborne radiometric and magnetic survey of the Rice Lake Quadrangle in Wisconsin are presented. All data are presented as corrected profiles of all radiometric variables, magnetic data, radar and barometric altimeter data, air temperature and airborne Bismuth contributions. Radiometric data presented are corrected for Compton Scatter, altitude dependence and atmospheric Bismuth. These data are also presented on microfiche, and digital magnetic tapes. In addition, anomaly maps and interpretation maps are presented relating known geology or soil distribution to the corrected radiometric/magnetic data

  19. Airborne gamma-ray spectrometer and magnetometer survey, Point Lay Quadrangle, Alaska. Volume I. Final report

    International Nuclear Information System (INIS)

    1981-02-01

    The results obtained from an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over the Point Lay map area of Alaska are presented. Based on the criteria outlined in the general section on interpretation, a total of six uranium anomalies have been indicated on the interpretation map. All six are only weakly to moderately anomalous in either uranium or the uranium ratios. None of these are thought to be of any economic significance. No follow-up work is recommended for the Point Lay Quadrangle

  20. Aerial gamma ray and magnetic survey: Eau Claire Quadrangle, Wisconsin/Minnesota. Final report

    International Nuclear Information System (INIS)

    1978-04-01

    Data obtained from a high sensitivity airborne radiometric and magnetic survey of the Eau Claire Quadrangle in Wisconsin/Minnesota are presented. All data are presented as corrected profiles of all radiometric variables, magnetic data, radar and barometric altimeter data, air temperature and airborne Bismuth contributions. Radiometric data presented are corrected for Compton Scatter, altitude dependence and atmospheric Bismuth. These data are also presented on microfiche, and digital magnetic tapes. In addition, anomaly maps and interpretation maps are presented relating known geology or soil distribution to the corrected radiometric/magnetic data

  1. Airborne gamma-ray spectrometer and magnetometer survey, Wainwright Quadrangle, Alaska. Final report

    International Nuclear Information System (INIS)

    1981-03-01

    The results obtained from a gamma-ray spectrometer and magnetometer survey over the Wainwright map area of Alaska are presented. Based on the criteria outlined in the general section of interpretation, a total of seven uranium anomalies have been outlined on the interpretation map. With the exception of Anomaly 1, all are located over the higher terrain of the foothills in the southern portion of the quadrangle. All seven anomalies are only weakly to moderately anomalous. There are no indications anywhere within the area of any significant preferential accumulations of uranium. None of the anomalies are thought to be of any economic importance. No follow-up work is recommended

  2. Geologic map of the St. Joe quadrangle, Searcy and Marion Counties, Arkansas

    Science.gov (United States)

    Hudson, Mark R.; Turner, Kenzie J.

    2009-01-01

    This map summarizes the geology of the St. Joe 7.5-minute quadrangle in the Ozark Plateaus region of northern Arkansas. Geologically, the area lies on the southern flank of the Ozark dome, an uplift that exposes oldest rocks at its center in Missouri. Physiographically, the St. Joe quadrangle lies within the Springfield Plateau, a topographic surface generally held up by Mississippian cherty limestone. The quadrangle also contains isolated mountains (for example, Pilot Mountain) capped by Pennsylvanian rocks that are erosional outliers of the higher Boston Mountains plateau to the south. Tomahawk Creek, a tributary of the Buffalo River, flows through the eastern part of the map area, enhancing bedrock erosion. Exposed bedrock of this region comprises an approximately 1,300-ft-thick sequence of Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks that have been mildly deformed by a series of faults and folds. The geology of the St. Joe quadrangle was mapped by McKnight (1935) as part of a larger area at 1:125,000 scale. The current map confirms many features of this previous study, but it also identifies new structures and uses a revised stratigraphy. Mapping for this study was conducted by field inspection of numerous sites and was compiled as a 1:24,000-scale geographic information system (GIS) database. Locations and elevations of sites were determined with the aid of a global positioning satellite receiver and a hand-held barometric altimeter that was frequently recalibrated at points of known elevation. Hill-shade-relief and slope maps derived from a U.S. Geological Survey 10-m digital elevation model as well as U.S. Geological Survey orthophotographs from 2000 were used to help trace ledge-forming units between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic sequence. Strikes and dips of beds were typically measured along stream drainages or at well-exposed ledges. Beds dipping less

  3. Aerial gamma ray and magnetic survey: Centerville quadrangle, Iowa and Missouri. Final Report

    International Nuclear Information System (INIS)

    1980-11-01

    The Centerville quadrangle covers approximately 7250 square miles of the northeastern Forest City Basin adjacent to the Mississippi Arch. Mississippian and Pennsylvanian sediments are mapped exclusively over the entire surface. A search of available literature revealed no known uranium deposits. A total of one hundred ten (110) uranium anomalies were detected and are discussed briefly in this report. None were considered significant and all appear to be related to cultural features. Magnetic data appear to suggest complexities in the Precambrian material underlying the Paleozoic strata

  4. Analysis of the Tectonic Lineaments in the Ganiki Planitia (V14) Quadrangle, Venus

    Science.gov (United States)

    Venechuk, E. M.; Hurwitz, D. M.; Drury, D. E.; Long, S. M.; Grosfils, E. B.

    2005-01-01

    The Ganiki Planitia quadrangle, located between the Atla Regio highland to the south and the Atalanta Planitia lowland to the north, is deformed by many tectonic lineaments which have been mapped previously but have not yet been assessed in detail. As a result, neither the characteristics of these lineaments nor their relationship to material unit stratigraphy is well constrained. In this study we analyze the orientation of extensional and compressional lineaments in all non-tessera areas in order to begin characterizing the dominant tectonic stresses that have affected the region.

  5. Airborne gamma-ray spectrometer and magnetometer survey, Copalis Beach quadrangle (Washington). Final report

    International Nuclear Information System (INIS)

    1981-01-01

    No uranium anomalies meet the minimum statistical requirements as defined. There is no Uranium Anomaly Interpretation Map for the Copalis Beach quadrangle. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (ppM eT), eU/eT, eU/K, eT/K, and magnetic pseudo-contour maps are presented in Appendix E. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation

  6. Transit traverse in Missouri, 1900-1937. Part 8, West-central Missouri, 1906-37

    Science.gov (United States)

    Staack, John G.

    1940-01-01

    This bulletin, which for convenience is to be published in eight parts, contains the results of all transit traverse* done In Missouri through 1937 by the Geological Survey, United States Department of the Interior, including those heretofore published. (See page X.) Each of the parts deals with one of eight sections into which the State has been divided for this purpose and which have been designated northeastern, northwestern, southeastern, southwestern, central, east-central, south-central, and west-central Missouri. In each part descriptions of the points for which geodetic positions have been determined are listed according to the quadrangles in which the points occur. Results of transit traverse other than that done by the Geological Survey have not been included.West-central Missouri, as the term is used in this bulletin and as the subject of part 8 of the bulletin, is that section of the State lying between latitudes 38°00' and 39°30' and west of longitude 93°30'.

  7. An Analysis of the Demographic, Educational, and Employment Characteristics of Participants in the Continuing Education Program of the Medical Library Association, Denver, Colorado, June 1968 *

    Science.gov (United States)

    Rees, Alan M.; Rothenberg, Lesliebeth

    1970-01-01

    A survey was performed to elicit details about attendees of the continuing education program given in Denver at the 1968 MLA Annual Meeting. Factors considered included sex, age, geographic distribution, professional mobility, educational background, current jobs, and interest in further continuing education. PMID:5439905

  8. An analysis of the demographic, educational, and employment characteristics of participants in the continuing education program of the Medical Library Association, Denver, Colorado, June 1968.

    Science.gov (United States)

    Rees, A M; Rothenberg, L

    1970-04-01

    A survey was performed to elicit details about attendees of the continuing education program given in Denver at the 1968 MLA Annual Meeting. Factors considered included sex, age, geographic distribution, professional mobility, educational background, current jobs, and interest in further continuing education.

  9. Archives of Environmental Health, Volume 18 Number 4. Ninth AMA Air Pollution Medical Research Conference, Denver, July 22-24, 1968.

    Science.gov (United States)

    Barton, Frank

    Papers read before the Ninth American Medical Association (AMA) Air Pollution Medical Research Conference, Denver, Colorado, July 22-24, 1968, are presented in this document. Topics deal with the relationship and effects of atmospheric pollution to respiratory diseases, epidemiology, human physiological reactions, urban morbidity, health of school…

  10. Uranium and thorium content of some sedimentary and igneous rocks from the Rolla 10 x 20 quadrangle, Missouri

    International Nuclear Information System (INIS)

    Odland, S.K.; Millard, H.T. Jr.

    1979-01-01

    Uranium and thorium contents of 175 samples of Precambrian and overlying sedimentary rocks from 28 drill holes in the Rolla 1 0 x 2 0 quadrangle, Missouri, were determined in 1978 as part of the National Uranium Resource Evaluation (NURE) effort. The limited number of drill-hole samples analyzed and the great distance between drill holes does not provide sufficient analytical data for an evaluation of the uranium potential in this quadrangle. However, because NURE studies in the quadrangle have been recessed, the data at hand are being made available in this report. The 175 rock samples for uranium and thorium analyses were selected to determine the uranium and thorium content of lower Paleozoic stratigraphic units in the quadrangle, and to test the conceptual model of uranium accumulation in basal sandstones, conglomerates, and arkoses that onlap the Precambrian igneous rocks. The conceptual model of uranium in intragranitic veins was not tested, because not all drill holes penetrate Precambrian rocks and none penetrate them more than a few meters

  11. Geology and mineral resources of the Johnson City, Phenix City, and Rome 10 x 20 NTMS quadrangles

    International Nuclear Information System (INIS)

    Karfunkel, B.S.

    1981-11-01

    This document provides geologic and mineral resources data for the Savannah River Laboratory-National Uranium Resource Evaluation hydrogeochemical and stream-sediment reports for the Johnson City, Phenix City, and Rome 1 0 x 2 0 National Topographic Map Series quadrangles in the southeastern United States

  12. Geologic Map of the Derain (H-10) Quadrangle on Mercury: The Challenges of Consistently Mapping the Intercrater Plains Unit

    Science.gov (United States)

    Whitten, J. L.; Fassett, C. I.; Ostrach, L. R.

    2018-06-01

    We present the initial mapping of the H-10 quadrangle on Mercury, a region that was imaged for the first time by MESSENGER. Geologic map with assist with further characterization of the intercrater plains and their possible formation mechanism(s).

  13. Data on ground-water quality for the Lovelock 1 degree by 2 degree quadrangle, western Nevada

    Science.gov (United States)

    Welch, Alan H.; Williams, Rhea P.

    1987-01-01

    Water quality data for groundwater has been compiled for the Lovelock 1 degree x 2 degree quadrangle which covers a portion of western Nevada. Chemical characteristics of the water are shown on a map (at a scale of 1:250,000) and on trilinear diagrams for the major ions. The data for the area are also presented in a table. (USGS)

  14. Evidence for the Implementation of the Early Start Denver Model for Young Children With Autism Spectrum Disorder.

    Science.gov (United States)

    Ryberg, Kayce H

    2015-01-01

    The Early Start Denver Model (ESDM) is a manualized comprehensive therapy for toddlers with autism spectrum disorder. It emphasizes interpersonal engagement through synchrony, rhythms, and reciprocity to decrease symptom severity and accelerate cognitive, social-emotional, and language development. To systematically review evidence regarding the use of the ESDM as an intervention for young children with autism spectrum disorder. PubMed, Scopus, Web of Science, Embase, and CINAHL were searched from 2010-2015 using predetermined inclusion criteria. Study methodology, participant characteristics, and outcomes were evaluated and quality of evidence was assigned. Eight articles met inclusion criteria and consisted of two randomized controlled trials, four controlled trials, and two observational cohort studies. Evidence quality ranged from low to high. The ESDM is an effective intervention that improves cognition, language, and adaptive behavior. ESDM strategies delivered in community group settings and in the home by parents have potential to be efficacious and feasible. © The Author(s) 2015.

  15. Chemical source characterization of residential wood combustion emissions in Denver, Colorado; Bakersfield, California; and Mammoth Lakes, California

    International Nuclear Information System (INIS)

    Houck, J.E.; Goulet, J.M.; Chow, J.C.; Watson, J.G.

    1989-01-01

    The chemical composition of residential wood combustion particulate emissions was determined for fireplaces and woodstoves. Burn rates, burn patterns, wood burning appliances, and cordwood types characteristic of Denver, Colorado; Bakersfield, California; and Mammoth Lakes, California, were used during sample collection. Samples were collected using a dilution/cooling system to ensure that condensible compounds were captured. Analyses for 44 chemical species were conducted. Source profiles for use in chemical mass balance (CMB) modeling were calculated from the analytical data. The principal chemical species comprising the profiles were organic compounds and elemental carbon. The minor chemical species were sulfur, chlorine, potassium, sodium, calcium, zinc, nitrate, and ammonium. Virtually all potassium was in a water-soluble form, and sulfur emissions between fireplaces and woodstoves were noted. Area-specific source profiles for fireplaces, woodstoves, and overall residential wood combustion are presented

  16. New Whole-House Solutions Case Study: New Town Builders' Power of Zero Energy Center - Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-01

    New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential homebuyers to its energy efficient homes, New Town Builders created a "Power of Zero Energy Center" linked to its model home in the Stapleton community. This case study presents New Town Builders' marketing approach, which is targeted to appeal to homebuyers' emotions rather than overwhelming homebuyers with scientific details about the technology. The exhibits in the Power of Zero Energy Center focus on reduced energy expenses for the homeowner, improved occupant comfort, the reputation of the builder, and the lack of sacrificing the homebuyers' desired design features to achieve zero net energy in the home. This case study also contains customer and realtor testimonials related to the effectiveness of the Center in influencing homebuyers to purchase a zero energy home.

  17. Islam and the West

    Directory of Open Access Journals (Sweden)

    Mohd. Kamal Hassan

    1997-06-01

    Full Text Available The scientific and technological developments during the 18th and' the 19th centuries ensured material progress of the West, as well as emergence of the West as the dominating power which colonized the rest of the world. During the post-colonial phase, Islam emerged as a revitalized sociopolitical force. This has been mistaken as a threat by the West, and Islam has been portrayed as the "new enemy after the demise of communism. This is partly an effort to establish a Western identity, which is disintegrating due to lack of a challenge; and partly a reflection of the failure of Muslims to realize the social and ethical ideals of Islam.

  18. Aerial gamma ray and magnetic survey: Powder River II Project, Ekalaka Quadrangle, Montana. Final report

    International Nuclear Information System (INIS)

    1979-04-01

    The Ekalaka quadrangle in southeastern Montana and western North and South Dakota, lies on the border between the Powder River and Williston Basins. These two basins are divided by the northwest-striking Miles City Arch. Each of the basins contains a thick sequence of Paleozoic and Mesozoic strata, with early to middle Tertiary rocks covering over 70% of the surface. No rocks older than Lower Cretaceous appear to be exposed. Magnetic data illustrate the relative depth to basement Precambrian crystalline rocks and clearly define the position of the Miles City Arch. The Ekalaka quadrangle has apparently been unproductive in terms of uranium mining though some claims (prospects) are present. These claims are located primarily in the Cretaceous Hell Creek Formation, and the Tertiary Fort Union Formation. A total of 176 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. These anomalies are found most frequently in the Fort Union Formation, but several Cretaceous units have a large number of anomalies associated with their mapped locations. Few of these anomalies occur over known uranium claims or areas where material other than uranium is mined. Most of the anomalies probably relate to natural geologic features

  19. Arsenic content in pteridophytes from the Iron Quadrangle, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Uemura, George; Menezes, Maria Angela de Barros C.; Silva, Lucilene Guerra e; Isaias, Rosy Mary dos Santos; Salino, Alexandre

    2005-01-01

    Natural arsenic contamination is a cause for concern in many countries of the world and, in Brazil, specially in the Iron Quadrangle area, where mining activities contributed to aggravate natural contamination of this area. The discovery that a fern, Pteris vitata, hyperaccumulates arsenic led to the search of other pteridophytes species with such capacity, due to their possible use for phytoremediation of contaminated areas. In the literature cited, arsenic amounts were measured by atomic absorption, using leaf and roots samples; and only one species (Pityrogramma calomelanos) had the arsenic content of its spores measured. In a preliminary study, ferns samples from the Iron Quadrangle region were collected, identified and had their leaves processed for measurement of their arsenic content through Neutron Activation Analysis - method k 0 ; also, spores of Pteris vitata had their arsenic content measured. The results showed that: spores of P. vitata present arsenic accumulation and another fern species was found to accumulate arsenic (Adiantum raddianum). Other species that were screened confirm that, among the families of ferns already studied, species from the family Pteridaceae seems the most promising for arsenic phytoremediation purposes. Considering that two species that showed arsenic accumulation in their leaves, also presented high arsenic content in their spores, it might fasten the selection if the spores of different fern species from contaminated sites are screened first, making the process of species selection for phytoremediation faster and more efficient. (author)

  20. Bedrock Geologic Map of the Old Lyme Quadrangle, New London and Middlesex Counties, Connecticut

    Science.gov (United States)

    Walsh, Gregory J.; Scott, Robert B.; Aleinikoff, John N.; Armstrong, Thomas R.

    2009-01-01

    The bedrock geology of the Old Lyme quadrangle consists of Neoproterozoic and Permian gneisses and granites of the Gander and Avalon terranes, Silurian metasedimentary rocks of the Merrimack terrane, and Silurian to Devonian metasedimentary rocks of uncertain origin. The Avalon terrane rocks crop out within the Selden Neck block, and the Gander terrane rocks crop out within the Lyme dome. The Silurian to Devonian rocks crop out between these two massifs. Previous mapping in the Old Lyme quadrangle includes the work by Lawrence Lundgren, Jr. Lundgren's work provides an excellent resource for rock descriptions and detailed modal analyses of rock units that will not be duplicated in this current report. New research that was not covered in detail by Lundgren is the focus of this report and includes (1) evaluation of the rocks in the core of the Lyme dome in an effort to subdivide units in this area; (2) structural analysis of foliations and folds in and around the Lyme dome; (3) geochronology of selected units within the Lyme dome; and (4) analysis of joints and the fracture properties of the rocks.

  1. Hydrogeochemical and stream sediment reconnaissance basic data for Brownsville-McAllen NTMS Quadrangles, Texas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Brownsville-McAllen Quadrangles, Texas are reported. Field and laboratory data are presented for 427 groundwater and 171 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. Pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate the most promising area for potential uranium mineralization occurs in the northwestern section of the quadrangles (Jim Hogg, Starr, and Zapata Counties), where waters are derived from the Catahoula Formation. These groundwaters have high concentrations of uranium, uranium associated elements, and low values for specific conductance. Another area with high uranium concentrations is in the southeastern portion of the survey area (Hidalgo, Cameron, and Willacy Counties). Shallow wells <10 m (30 ft) are numerous in this area and high specific conductance values may indicate contamination from extensive fertilization. Stream sediment data for the survey does not indicate an area favorable for uranium mineralization. Anomalous acid soluble uranium values in the southeastern area (Hidalgo, Cameron, and Willacy Counties) can be attributed to phosphate fertilizer contamination. Four samples in the western part of the area (western Starr County) have anomalously high total uranium values and low acid soluble uranium values, indicating the uranium may be contained in resistate minerals

  2. Mercury: Photomosaic of the Shakespeare Quadrangle of Mercury (Southern Half) H-3

    Science.gov (United States)

    1974-01-01

    This computer generated photomosaic from Mariner 10 is of the southern half of Mercury's Shakespeare Quadrangle, named for the ancient Shakespeare crater located on the upper edge to the left of center. This portion of the quadrangle covers the geographic region from 20 to 45 degrees north latitude and from 90 to 180 degrees longitude. The photomosaic was produced using computer techniques and software developed in the Image Processing Laboratory of NASA's Jet Propulsion Laboratory. The pictures have been high-pass filtered and contrast enhanced to accentuate surface detail, and geometrically transformed into a Lambert conformal projection.Well defined bright streaks or ray systems radiating away from craters constitute another distinctive feature of the Mercurian surface, remarkably similar to the Moon. The rays cut across and are superimposed on all other surface features, indicating that the source craters are the youngest topographic features on the surface of Mercury.The above material was taken from the following publication... Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, Atlas of Mercury,NASA SP-423 (1978).The Mariner 10 mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  3. Uranium hydrogeochemical and stream sediment reconnaissance of the Cheyenne NTMS Quadrangle, Wyoming

    International Nuclear Information System (INIS)

    Trexler, P.K.

    1978-06-01

    Between June 1976 and October 1977, 1138 water and 600 sediment samples were systematically collected from 1498 locations in the Cheyenne NTMS quadrangle of southeast Wyoming. The samples were analyzed for total uranium at the Los Alamos Scientific Laboratory. The uranium concentration in waters ranged from 0.01 to 296.30 parts per billion (ppB), with a median of 3.19 ppB and a mean of 8.34 ppB. The uranium in sediments ranged from 0.8 to 83.0 parts per million (ppM) with a median of 3.4 ppM and a mean of 4.5 ppM. Arbitrary anomaly thresholds were selected to isolate those water and sediment samples containing uranium concentrations above those of 98% of the population sampled. Using this procedure, 23 water samples above 54.50 ppB and 12 sediment samples above 14.0 ppM were considered anomalous. Several areas appear favorable for further investigation for possible uranium mineralization. High uranium concentrations were detected in waters from the northeast corner of the Cheyenne quadrangle. High uranium concentrations were detected in sediments from locations in the southern and central Laramie Mountains and along the southeast and east-central edges of the study area

  4. Hydrogeochemical and stream sediment reconnaissance basic data report for Williams NTMS quadrangle, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.L.

    1979-02-01

    Wet and dry sediments were collected throughout the 18,500-km/sup 2/arid-to-semiarid region and water samples at available streams, springs, and wells. Samples were collected between August 1977 and January 1978. Results of neutron activation analyses of uranium and trace elements and other field and laboratory analyses are presented in tabular hardcopy and microfiche format. The report includes six full-size overlays for use with the Williams NTMS 1:250,000 quadrangle. Sediment samples are divided into five general groups according to the source rock from which the sediment was derived. Background uranium concentrations for the quadrangle are relatively low, ranging from 1.91 to 2.40 ppM, with the highest associated with the Precambrian igneous and metamorphic complexes of the Basin and Range province. Uranium correlates best with the rare-earth elements and iron, scandium, titanium, and manganese. Known uranium occurrences are not readily identified by the stream sediment data.

  5. Airborne gamma-ray spectrometer and magnetometer survey: Peoria, Decater, Belleville Quadrangles, (IL). Final report

    International Nuclear Information System (INIS)

    1981-01-01

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Peoria, Decatur, and Belleville, 1:250,000 National Topographic Map Series (NTMS), quadrangle maps. The survey was part of DOE's National Uranium Resource Evaluation (NURE) program. Data were collected by a helicopter equipped with a gamma-ray spectrometer with a large crystal volume, and with a high sensitivity proton procession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test Range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The anomalies were interpreted and an interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data collection procedures, the data processing procedures, the data presentation, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  6. National Uranium Resource Evaluation: Providence Quadrangle, Connecticut, Rhode Island, and Massachusetts

    International Nuclear Information System (INIS)

    Zollinger, R.C.; Blauvelt, R.P.; Chew, R.T. III.

    1982-09-01

    The Providence Quadrangle, Connecticut, Rhode Island, and Massachusetts, was evaluated to a depth of 1500 m to identify environments and delineate areas favorable for uranium deposits. Criteria for this evaluation were developed by the National Uranium Resource Evaluation program. Environments were recognized after literature research, surface and subsurface geologic reconnaissance, and examination of known uranium occurrences and aeroradioactivity anomalies. Environments favorable for authigenic uranium deposits were found in the Quincy and Cowesett Granites. An environment favorable for contact-metasomatic deposits is in and around the borders of the Narragansett Pier Granite where it intrudes the Pennsylvanian sediments of the Narragansett Basin. An environment favorable for authigenic deposits in metamorphic rocks is in a migmatite on the eastern edge of the Scituate Granite Gneiss batholith. Environments favorable for contact-metasomatic deposits occur at the contacts between many of the granitic rocks and metamorphic rocks of the Blackstone Series. Results of this study also indicate environments favorable for sandstone-type uranium deposits are present in the rocks of the Narragansett Basin. Environments unfavorable for uranium deposits in the quadrangle include all granites not classified as favorable and the metamorphic rocks of eastern Connecticut. Glacial deposits and Cretaceous-Tertiary sediments remain unevaluated

  7. Arsenic content in pteridophytes from the Iron Quadrangle, Minas Gerais, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, George; Menezes, Maria Angela de Barros C.; Silva, Lucilene Guerra e [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: george@cdtn.br; menezes@cdtn.br; leneguerra@bol.com.br; Isaias, Rosy Mary dos Santos; Salino, Alexandre [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Botanica]. E-mail: rosy@icb.ufmg.br; salino@mono.icb.ufmg.br

    2005-07-01

    Natural arsenic contamination is a cause for concern in many countries of the world and, in Brazil, specially in the Iron Quadrangle area, where mining activities contributed to aggravate natural contamination of this area. The discovery that a fern, Pteris vitata, hyperaccumulates arsenic led to the search of other pteridophytes species with such capacity, due to their possible use for phytoremediation of contaminated areas. In the literature cited, arsenic amounts were measured by atomic absorption, using leaf and roots samples; and only one species (Pityrogramma calomelanos) had the arsenic content of its spores measured. In a preliminary study, ferns samples from the Iron Quadrangle region were collected, identified and had their leaves processed for measurement of their arsenic content through Neutron Activation Analysis - method k{sub 0}; also, spores of Pteris vitata had their arsenic content measured. The results showed that: spores of P. vitata present arsenic accumulation and another fern species was found to accumulate arsenic (Adiantum raddianum). Other species that were screened confirm that, among the families of ferns already studied, species from the family Pteridaceae seems the most promising for arsenic phytoremediation purposes. Considering that two species that showed arsenic accumulation in their leaves, also presented high arsenic content in their spores, it might fasten the selection if the spores of different fern species from contaminated sites are screened first, making the process of species selection for phytoremediation faster and more efficient. (author)

  8. Carbonate rocks of Cambrian and Ordovician age in the Lancaster quadrangle, Pennsylvania

    Science.gov (United States)

    Meisler, Harold; Becher, Albert E.

    1968-01-01

    Detailed mapping has shown that the carbonate rocks of Cambrian and Ordovician age in the Lancaster quadrangle, Pennsylvania, can be divided into 14 rock-stratigraphic units. These units are defined primarily by their relative proportions of limestone and dolomite. The oldest units, the Vintage, Kinzers, and Ledger Formations of Cambrian age, and the Conestoga Limestone of Ordovician age are retained in this report. The Zooks Corner Formation, of Cambrian age, a dolomite unit overlying the Ledger Dolomite, is named here for exposures along Conestoga Creek near the village of Zooks Corner. The Conococheague (Cambrian) and Beekmantown (Ordovician) Limestones, as mapped by earlier workers, have been elevated to group rank and subdivided into formations that are correlated with and named for geologic units in Lebanon and Berks Counties, Pa. These formations, from oldest to youngest, are the Buffalo Springs, Snitz Creek, Millbach, and Richland Formations of the Conococheague Group, and the Stonehenge, Bpler, and Ontelaunee Formations of the Beekmantown Group. The Annville and Myerstown Limestones, which are named for lithologically similar units in Dauphin and Lebanon Counties, Pa., overlie the Beekmantown Group in one small area in the quadrangle.

  9. Hydrogeochemical and stream sediment reconnaissance basic data for Lawton NTMS quadrangle, Oklahoma; Texas

    International Nuclear Information System (INIS)

    1978-01-01

    Field and laboratory data are presented for 703 groundwater and 782 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. Groundwater data indicate that the most promising areas for potential uranium mineralization occur in the Lower Permian units surrounding the granite outcrops of the Wichita Mountains. Waters from the Hennessey and Clearfork Groups and the Garber Sandstone contain the highest uranium values. Elements associated with the uranium are arsenic, boron, barium, molybdenum, sodium, selenium, and vandium. Stream sediment data indicate that the promising areas for potential uranium mineralization occur around the Wichita Mountains where stream sediments are derived from the Lower Permian Post Oak Conglomerate, Hennessey Group, and Garber Sandstone and from the Cambrian igneous rocks. Other areas of interest occur (1) in the western part of the quadrangle where the sediments are derived from rocks of the El Reno Group, and (2) along the southern border of the quadrangle where the sediments are derived from the Wichita Group

  10. Case Study for the ARRA-funded Ground Source Heat Pump Demonstration at Denver Museum of Nature & Science

    Energy Technology Data Exchange (ETDEWEB)

    Im, Piljae [ORNL; Liu, Xiaobing [ORNL

    2016-09-01

    High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects were competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This report highlights the findings of a case study of one such GSHP demonstration projects that uses a recycled water heat pump (RWHP) system installed at the Denver Museum of Nature & Science in Denver, Colorado. The RWHP system uses recycled water from the city’s water system as the heat sink and source for a modular water-to-water heat pump (WWHP). This case study was conducted based on the available measured performance data from December 2014 through August 2015, utility bills of the building in 2014 and 2015, construction drawings, maintenance records, personal communications, and construction costs. The annual energy consumption of the RWHP system was calculated based on the available measured data and other related information. It was compared with the performance of a baseline scenario— a conventional VAV system using a water-cooled chiller and a natural gas fired boiler, both of which have the minimum energy efficiencies allowed by ASHRAE 90.1-2010. The comparison was made to determine energy savings, operating cost savings, and CO2 emission reductions achieved by the RWHP system. A cost analysis was performed to evaluate the simple payback of the RWHP system. Summarized below are the results of the performance analysis, the learned lessons, and recommended improvement in the operation of the RWHP system.

  11. Atmospheric benzene observations from oil and gas production in the Denver-Julesburg Basin in July and August 2014

    Science.gov (United States)

    Halliday, Hannah S.; Thompson, Anne M.; Wisthaler, Armin; Blake, Donald R.; Hornbrook, Rebecca S.; Mikoviny, Tomas; Müller, Markus; Eichler, Philipp; Apel, Eric C.; Hills, Alan J.

    2016-09-01

    High time resolution measurements of volatile organic compounds (VOCs) were collected using a proton-transfer-reaction quadrupole mass spectrometry (PTR-QMS) instrument at the Platteville Atmospheric Observatory (PAO) in Colorado to investigate how oil and natural gas (O&NG) development impacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurements were carried out in July and August 2014 as part of NASA's "Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ) field campaign. The PTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontal surveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (mean benzene = 0.53 ppbv, maximum benzene = 29.3 ppbv), primarily at night (mean nighttime benzene = 0.73 ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurements indicate that benzene originated from within the WGF, and typical source signatures detected in the canister samples implicate emissions from O&NG activities rather than urban vehicular emissions as primary benzene source. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerly flow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that traffic emissions were not responsible for the observed high benzene levels. Previous measurements at the Boulder Atmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzene enhancements between the two atmospheric observatories. Fugitive emissions of benzene from O&NG operations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO.

  12. Atmospheric Benzene Observations from an Oil and Gas Field in the Denver Julesburg Basin in July and August 2014

    Science.gov (United States)

    Halliday, Hannah S.; Thompson, Anne M.; Wisthaler, Armin; Blake, Donald; Hornbrook, Rebecca S.; Mikoviny, Tomas; Mueller, Markus; Eichler, Philipp; Apel, Eric C.; Hills, Alan

    2016-01-01

    High time resolution measurements of volatile organic compounds (VOCs) were collectedusing a proton-transfer-reaction quadrupole mass spectrometry (PTR-QMS) instrument at the PlattevilleAtmospheric Observatory (PAO) in Colorado to investigate how oil and natural gas (ONG) developmentimpacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurementswere carried out in July and August 2014 as part of NASAs Deriving Information on Surface Conditions fromColumn and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign. ThePTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontalsurveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (meanbenzene 0.53 ppbv, maximum benzene 29.3 ppbv), primarily at night (mean nighttime benzene 0.73ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurementsindicate that benzene originated from within the WGF, and typical source signatures detected in the canistersamples implicate emissions from ONG activities rather than urban vehicular emissions as primary benzenesource. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerlyflow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that trafficemissions were not responsible for the observed high benzene levels. Previous measurements at the BoulderAtmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzeneenhancements between the two atmospheric observatories. Fugitive emissions of benzene from ONGoperations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO.

  13. Gardening and age-related weight gain: Results from a cross-sectional survey of Denver residents.

    Science.gov (United States)

    Litt, Jill S; Lambert, Jeffrey Richard; Glueck, Deborah H

    2017-12-01

    This study examined whether gardening modifies the association between age and body mass index (BMI). We used data from the Neighborhood Environments and Health Survey, which was conducted in Denver (N = 469) between 2006 and 2007. We fit two general linear mixed models. The base model had BMI in kg/m 2 as the outcome, and age, an indicator variable for non-gardening status and the age-by-non-gardening status interaction as predictors. The adjusted model included as covariates the potential confounders of education, ethnicity and self-reported health. We assessed self-selection bias and confounding. BMI was 27.18 kg/m 2 for non-gardeners, 25.62 kg/m 2 for home gardeners, and 24.17 kg/m 2 for community gardeners. In the base model, a statistically significant association was observed between age and BMI for non-gardeners but not for the combined community and home gardening group (F = 9.27, ndf = 1, ddf = 441, p = 0.0025). In the adjusted model, the association between age and BMI in non-gardeners was not statistically significant (F = 1.72, ndf = 1, ddf = 431, p = 0.1908). Gardeners differed on social and demographic factors when compared to non-gardeners. The results from the base model are consistent with the hypothesis that gardening might offset age-related weight gain. However, the cross-sectional design does not permit differentiation of true causal effects from the possible effects of bias and confounding. As a follow-up study, to remove bias and confounding, we are conducting a randomized clinical trial of community gardening in Denver.

  14. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Butte NTMS Quadrangle, Montana, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Broxton, D.E.; George, W.E.; Montoya, J.V.; Martell, C.J.; Hensley, W.K.; Hanks, D.

    1980-05-01

    This report contains data collected during a geochemical survey for uranium in the Butte National Topographic Map Series (NTMS) quadrangle of west-central Montana. Histograms and statistical data for uranium concentrations in water and sediment samples and thorium concentrations in sediment samples are given. Elemental concentration, field measurement, weather, geologic, and geographic data for each sample location are listed for waters and for sediments. Uranium/thorium ratios for sediment samples are also included. This report contains uranium analyses for water samples and multielement analyses for sediment samples. A supplemental report containing the results of multielement analyses of water samples will be open filed in the near future. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium, rubidium, samarium, scandium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, and zinc. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than 40 ppB uranium were reanalyzed by delayed-neutron counting (DNC). All sediments were analyzed for uranium by DNC. Other elemental concentrations in sediments were determined by neutron activation analysis for 31 elements, by x-ray fluorescence for 9 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million. Descriptions of procedures used for analysis of water and sediment samples as well as analytical precisions and detection limits are given

  15. Desempenho de crianças pré-termo com muito baixo peso e extremo baixo peso segundo o teste Denver-II The performance of pre-term children with very and extreme low weight according to the Denver-II test

    Directory of Open Access Journals (Sweden)

    Lívia de Castro Magalhães

    2011-12-01

    Full Text Available OBJETIVOS: analisar o desempenho de crianças da região metropolitana Belo Horizonte/MG nascidas pré-termo com muito e extremo baixo peso nos itens do teste Denver II. MÉTODOS: as crianças foram selecionadas em um programa de acompanhamento do desenvolvimento de crianças de risco. A amostra incluiu 177 crianças, nas quais o Teste de Denver II foi aplicado nas idades corrigidas de 4, 8, 12, 18 e 24 meses. As respostas foram comparadas (χ2 aos dados da amostra normativa do instrumento. RESULTADOS: crianças pré-termo de muito e extremo baixo peso apresentaram desempenho superior no primeiro ano de vida com desvantagem a partir dos 12 meses em relação à amostra normativa do Denver II. O grupo de extremo baixo peso foi o que apresentou pior desempenho. CONCLUSÕES: houve diferenças no padrão de respostas das crianças examinadas em relação à amostra normativa do Denver II, sendo importante fazer mais estudos acerca da validade do teste para a população brasileira.OBJECTIVES: to evaluate the performance on the Denver II test of preterm children with very and extreme low weight from the Belo Horizonte/MG metropolitan region. METHODS: the children were selected as part of a program to monitor the development of children at risk. The sample included 177 children, to whom the Denver II Test was applied at corrected ages of 4, 8, 12, 18 and 24 months. The responses were compared (χ2 to data from a normative sample. RESULTS: preterm children with very or extremely low weight showed improved performance in the first year of life, although disadvantages began to emerge after twelve months in relation to the normative Denver II sample. The extremely low weight group performed the worst. CONCLUSIONS: there were differences in the pattern of children's responses compared to those of the normative Denver II sample, and it is important to carry out further studies of the validity of this test for the Brazilian population.

  16. Geologic Map of Quadrangles 3060 and 2960, Qala-I-Fath (608), Malek-Sayh-Koh (613), and Gozar-E-Sah (614) Quadrangles, Afghanistan

    Science.gov (United States)

    O'Leary, Dennis W.; Whitney, John W.; Bohannon, Robert G.

    2007-01-01

    This map was produced from several larger digital datasets. Topography was derived from Shuttle Radar Topography Mission (SRTM) 85-meter digital data. Gaps in the original dataset were filled with data digitized from contours on 1:200,000-scale Soviet General Staff Sheets (1978-1997). Contours were generated by cubic convolution averaged over four pixels using TNTmips surface-modeling capabilities. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Geologic data and the international boundary of Afghanistan were taken directly from Abdullah and Chmyriov (1977). It is the primary intent of the U.S. Geological Survey (USGS) to present the geologic data in a useful format while making them publicly available. These data represent the state of geologic mapping in Afghanistan as of 2005, although the original map was released in the late 1970s (Abdullah and Chmyriov, 1977). The USGS has made no attempt to modify original geologic map-unit boundaries and faults; however, modifications to map-unit symbology, and minor modifications to map-unit descriptions, have been made to clarify lithostratigraphy and to modernize terminology. The generation of a Correlation of Map Units (CMU) diagram required interpretation of the original data, because no CMU diagram was presented by Abdullah and Chmyriov (1977). This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (Afghan Geological Survey) quadrangles shown on the index map. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The

  17. Proceedings of the U.S. Geological Survey Eighth Biennial Geographic Information Science Workshop and first The National Map Users Conference, Denver, Colorado, May 10-13, 2011

    Science.gov (United States)

    Sieverling, Jennifer B.; Dietterle, Jeffrey

    2014-01-01

    The U.S. Geological Survey (USGS) is sponsoring the first The National Map Users Conference in conjunction with the eighth biennial Geographic Information Science (GIS) Workshop on May 10-13, 2011, in Lakewood, Colorado. The GIS Workshop will be held at the USGS National Training Center, located on the Denver Federal Center, Lakewood, Colorado, May 10-11. The National Map Users Conference will be held directly after the GIS Workshop at the Denver Marriott West, a convention hotel in the Lakewood, Colorado area, May 12-13. The National Map is designed to serve the Nation by providing geographic data and knowledge for government, industry, and public uses. The goal of The National Map Users Conference is to enhance communications and collaboration among the communities of users of and contributors to The National Map, including USGS, Department of the Interior, and other government GIS specialists and scientists, as well as the broader geospatial community. The USGS National Geospatial Program intends the conference to serve as a forum to engage users and more fully discover and meet their needs for the products and services of The National Map. The goal of the GIS Workshop is to promote advancement of GIS and related technologies and concepts as well as the sharing of GIS knowledge within the USGS GIS community. This collaborative opportunity for multi-disciplinary GIS and associated professionals will allow attendees to present and discuss a wide variety of geospatial-related topics. The Users Conference and Workshop collaboration will bring together scientists, managers, and data users who, through presentations, posters, seminars, workshops, and informal gatherings, will share accomplishments and progress on a variety of geospatial topics. During this joint event, attendees will have the opportunity to present or demonstrate their work; to develop their knowledge by attending hands-on workshops, seminars, and presentations given by professionals from USGS and

  18. Geomorphic domains and linear features on Landsat images, Circle Quadrangle, Alaska

    Science.gov (United States)

    Simpson, S.L.

    1984-01-01

    A remote sensing study using Landsat images was undertaken as part of the Alaska Mineral Resource Assessment Program (AMRAP). Geomorphic domains A and B, identified on enhanced Landsat images, divide Circle quadrangle south of Tintina fault zone into two regional areas having major differences in surface characteristics. Domain A is a roughly rectangular, northeast-trending area of relatively low relief and simple, widely spaced drainages, except where igneous rocks are exposed. In contrast, domain B, which bounds two sides of domain A, is more intricately dissected showing abrupt changes in slope and relatively high relief. The northwestern part of geomorphic domain A includes a previously mapped tectonostratigraphic terrane. The southeastern boundary of domain A occurs entirely within the adjoining tectonostratigraphic terrane. The sharp geomorphic contrast along the southeastern boundary of domain A and the existence of known faults along this boundary suggest that the southeastern part of domain A may be a subdivision of the adjoining terrane. Detailed field studies would be necessary to determine the characteristics of the subdivision. Domain B appears to be divisible into large areas of different geomorphic terrains by east-northeast-trending curvilinear lines drawn on Landsat images. Segments of two of these lines correlate with parts of boundaries of mapped tectonostratigraphic terranes. On Landsat images prominent north-trending lineaments together with the curvilinear lines form a large-scale regional pattern that is transected by mapped north-northeast-trending high-angle faults. The lineaments indicate possible lithlogic variations and/or structural boundaries. A statistical strike-frequency analysis of the linear features data for Circle quadrangle shows that northeast-trending linear features predominate throughout, and that most northwest-trending linear features are found south of Tintina fault zone. A major trend interval of N.64-72E. in the linear

  19. Geologic Map of the MTM -30262 and -30267 Quadrangles, Hadriaca Patera Region of Mars

    Science.gov (United States)

    Crown, David A.; Greeley, Ronald

    2007-01-01

    Introduction Mars Transverse Mercator (MTM) -30262 and -30267 quadrangles cover the summit region and east margin of Hadriaca Patera, one of the Martian volcanoes designated highland paterae. MTM -30262 quadrangle includes volcanic deposits from Hadriaca Patera and Tyrrhena Patera (summit northeast of map area) and floor deposits associated with the Dao and Niger Valles canyon systems (south of map area). MTM -30267 quadrangle is centered on the caldera of Hadriaca Patera. The highland paterae are among the oldest, central-vent volcanoes on Mars and exhibit evidence for explosive eruptions, which make a detailed study of their geology an important component in understanding the evolution of Martian volcanism. Photogeologic mapping at 1:500,000-scale from analysis of Viking Orbiter images complements volcanological studies of Hadriaca Patera, geologic investigations of the other highland paterae, and an analysis of the styles and evolution of volcanic activity east of Hellas Planitia in the ancient, cratered highlands of Mars. This photogeologic study is an extension of regional geologic mapping east of Hellas Planitia. The Martian highland paterae are low-relief, areally extensive volcanoes exhibiting central calderas and radial channels and ridges. Four of these volcanoes, Hadriaca, Tyrrhena, Amphitrites, and Peneus Paterae, are located in the ancient cratered terrains surrounding Hellas Planitia and are thought to be located on inferred impact basin rings or related fractures. Based on analyses of Mariner 9 images, Potter (1976), Peterson (1977), and King (1978) suggested that the highland paterae were shield volcanoes formed by eruptions of fluid lavas. Later studies noted morphologic similarities between the paterae and terrestrial ash shields and the lack of primary lava flow features on the flanks of the volcanoes. The degraded appearances of Hadriaca and Tyrrhena Paterae and the apparently easily eroded materials composing their low, broad shields further

  20. The Geology of the Marcia Quadrangle of Asteroid Vesta: Assessing the Effects of Large, Young Craters

    Science.gov (United States)

    Williams, David A.; Denevi, Brett W.; Mittlefehldt, David W.; Mest, Scott C.; Schenk, Paul M.; Yingst, R. Aileen; Buczowski, Debra L.; Scully, Jennifer E. C.; Garry, W. Brent; McCord, Thomas B.; hide

    2014-01-01

    We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (approximately 63 kilometers diameter) and Calpurnia (approximately 53 kilometers diameter) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between approximately 40 and 60 million years (depending upon choice of chronology system), and Marcia's ejecta blanket ranges in age between approximately 120 and 390 million years (depending upon choice of chronology system). We interpret the geologic units in and around Marcia crater to mark a major Vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative Vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of approximately 280-990 million years based on counts