WorldWideScience

Sample records for dental stem cells

  1. Dental pulp stem cells

    DEFF Research Database (Denmark)

    Ashri, N. Y.; Ajlan, S. A.; Aldahmash, Abdullah M.

    2015-01-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable...... scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from...... an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors....

  2. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    Science.gov (United States)

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  3. Osteogenic Differentiation of Dental Follicle Stem Cells

    Directory of Open Access Journals (Sweden)

    Giorgio Mori, Andrea Ballini, Claudia Carbone, Angela Oranger, Giacomina Brunetti, Adriana Di Benedetto, Biagio Rapone, Stefania Cantore, Mariasevera Di Comite, Silvia Colucci, Maria Grano, Felice R. Grassi

    2012-01-01

    Full Text Available Background: Stem cells are defined as clonogenic cells capable of self-renewal and multi-lineage differentiation. A population of these cells has been identified in human Dental Follicle (DF.Dental Follicle Stem Cells (DFSCs were found in pediatric unerupted wisdom teeth and have been shown to differentiate, under particular conditions, into various cell types of the mesenchymal tissues.Aim: The aim of this study was to investigate if cells isolated from DF show stem features, differentiate toward osteoblastic phenotype and express osteoblastic markers.Methods: We studied the immunophenotype of DFSCs by flow cytometric analysis, the osteoblastic markers of differentiated DFSCs were assayed by histochemical methods and real-time PCR.Results: We demonstrated that DFSCs expressed a heterogeneous assortment of makers associated with stemness. Moreover DFSCs differentiated into osteoblast-like cells, producing mineralized matrix nodules and expressed the typical osteoblastic markers, Alkaline Phosphatase (ALP and Collagen I (Coll I.Conclusion: This study suggests that DFSCs may provide a cell source for tissue engineering of bone.

  4. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Razieh Alipour

    2010-01-01

    Conclusions: Both cell populations derived from adipose tissue and dental pulp showed common phenotypic markers of mesenchymal stem cells. In conclusion, mesenchymal stem cells could be isolated and cultured successfully from dental pulp of human exfo-liated deciduous teeth, they are very good candidates for treatment and prevention of human diseases.

  5. Composition of Mineral Produced by Dental Mesenchymal Stem Cells.

    Science.gov (United States)

    Volponi, A A; Gentleman, E; Fatscher, R; Pang, Y W Y; Gentleman, M M; Sharpe, P T

    2015-11-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications.

  6. Spontaneous Differentiation of Dental Pulp stem cells on Dental polymers

    Science.gov (United States)

    Bherwani, Aneel; Suarato, Giulia; Qin, Sisi; Chang, Chung-Cheh; Akhavan, Aaron; Spiegel, Joseph; Jurukovski, Vladimir; Rafailovich, Miriam; Simon, Marcia

    2012-02-01

    Dental pulp stem cells were plated on two dentally relevant materials i.e. PMMA commonly used for denture and Titanium used for implants. In both cases, we probed for the role of surface interaction and substrate morphology. Different films of PMMA were spun cast directly onto Si wafers; PMMA fibers of different diameters were electro spun onto some of these substrates. Titanium metal was evaporated onto Si surfaces using an electron beam evaporator. In addition, on some surfaces, P4VP nanofibers were spun cast. DPSC were grown in alpha-MEM supplemented with 10% fetal bovine serum, 0.2mM L-ascorbic acid 2-phosphate, 2mm glutamine and 10mM beta-glycerol phosphate either with or without 10nM dexamethasone. After 21 days samples were examined using confocal microscopy of cells and by scanning electron microscopy (SEM) and Energy dispersive X-ray Analysis (EDAX). In the case of Titanium biomineralization was observed independent of dexamethasone, where the deposits were templated along the fibers. Minimal biomineralization was observed on flat Titanium and PMMA samples. Markers of osteogenesis and specific signaling pathways are being evaluated by RT-PCR, which are up regulated on each surface, to understand the fundamental manner in which surfaces interact with cell differentiation.

  7. Allogenic banking of dental pulp stem cells for innovative therapeutics.

    Science.gov (United States)

    Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J

    2015-08-26

    Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat.

  8. Allogenic banking of dental pulp stem cells for innovative therapeutics

    Institute of Scientific and Technical Information of China (English)

    Pierre-Yves; Collart-Dutilleul; Franck; Chaubron; John; De; Vos; Frédéric; J; Cuisinier

    2015-01-01

    Medical research in regenerative medicine and cellbased therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells(DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products(ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen(HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues(dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice(GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat.

  9. Regenerative medicine in dental and oral tissues: Dental pulp mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Janti Sudiono

    2017-08-01

    Full Text Available Background. Regenerative medicine is a new therapeutic modality using cell, stem cell and tissue engineering technologies. Purpose. To describe the regenerative capacity of dental pulp mesenchymal stem cell. Review. In dentistry, stem cell and tissue engineering technologies develop incredibly and attract great interest, due to the capacity to facilitate innovation in dental material and regeneration of dental and oral tissues. Mesenchymal stem cells derived from dental pulp, periodontal ligament and dental follicle, can be isolated, cultured and differentiated into various cells, so that can be useful for regeneration of dental, nerves, periodontal and bone tissues. Tissue engineering is a technology in reconstructive biology, which utilizes mechanical, cellular, or biological mediators to facilitate regeneration or reconstruction of a particular tissue. The multipotency, high proliferation rates and accessibility, make dental pulp as an attractive source of mesenchymal stem cells for tissue regeneration. Revitalized dental pulp and continued root development is the focus of regenerative endodontic while biological techniques that can restore lost alveolar bone, periodontal ligament, and root cementum is the focus of regenerative periodontic. Conclucion. Dentin-derived morphogens such as BMP are known to be involved in the regulation of odontogenesis. The multipotency and angiogenic capacity of DPSCs as the regenerative capacity of human dentin / pulp complex indicated that dental pulp may contain progenitors that are responsible for dentin repair. The human periodontal ligament is a viable alternative source for possible primitive precursors to be used in stem cell therapy.

  10. Dental stem cells: a future asset of ocular cell therapy.

    Science.gov (United States)

    Yam, Gary Hin-Fai; Peh, Gary Swee-Lim; Singhal, Shweta; Goh, Bee-Tin; Mehta, Jodhbir S

    2015-11-10

    Regenerative medicine using patient's own stem cells (SCs) to repair dysfunctional tissues is an attractive approach to complement surgical and pharmacological treatments for aging and degenerative disorders. Recently, dental SCs have drawn much attention owing to their accessibility, plasticity and applicability for regenerative use not only for dental, but also other body tissues. In ophthalmology, there has been increasing interest to differentiate dental pulp SC and periodontal ligament SC (PDLSC) towards ocular lineage. Both can commit to retinal fate expressing eye field transcription factors and generate rhodopsin-positive photoreceptor-like cells. This proposes a novel therapeutic alternative for retinal degeneration diseases. Moreover, as PDLSC shares similar cranial neural crest origin and proteoglycan secretion with corneal stromal keratoctyes and corneal endothelial cells, this offers the possibility of differentiating PDLSC to these corneal cell types. The advance could lead to a shift in the medical management of corneal opacities and endothelial disorders from highly invasive corneal transplantation using limited donor tissue to cell therapy utilizing autologous cells. This article provides an overview of dental SC research and the perspective of utilizing dental SCs for ocular regenerative medicine.

  11. Human dental pulp stem cells: Applications in future regenerative medicine.

    Science.gov (United States)

    Potdar, Pravin D; Jethmalani, Yogita D

    2015-06-26

    Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine.

  12. Stem Cell-Based Dental Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Petar Zivkovic

    2010-01-01

    Full Text Available The development of biological and biomaterial sciences profiled tissue engineering as a new and powerful tool for biological replacement of organs. The combination of stem cells and suitable scaffolds is widely used in experiments today, in order to achieve partial or whole organ regeneration. This review focuses on the use of tissue engineering strategies in tooth regeneration, using stem cells and stem cells/scaffold constructs. Although whole tooth regeneration is still not possible, there are promising results. However, to achieve this goal, it is important to understand and further explore the mechanisms underlying tooth development. Only then will we be able to mimic the natural processes with the use of stem cells and tissue engineering techniques.

  13. Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions.

    Science.gov (United States)

    Gosau, Martin; Viale-Bouroncle, Sandra; Eickhoff, Hannah; Prateeptongkum, Esthera; Reck, Anja; Götz, W; Klingelhöffer, Christoph; Müller, Steffen; Morsczeck, Christian

    2015-12-01

    Dental stem cells in combination with implant materials may become an alternative to autologous bone transplants. For tissue engineering different types of soft and rigid implant materials are available, but little is known about the viability and the osteogenic differentiation of dental stem cells on these different types of materials. According to previous studies we proposed that rigid bone substitute materials are superior to soft materials for dental tissue engineering. We evaluated the proliferation, the induction of apoptosis and the osteogenic differentiation of dental stem/progenitor cells on a synthetic bone-like material and on an allograft product. The soft materials silicone and polyacrylamide (PA) were used for comparison. Precursor cells from the dental follicle (DFCs) and progenitor cells from the dental apical papilla of retained third molar tooth (dNC-PCs) were applied as dental stem cells in our study. Both dental cell types attached and grew on rigid bone substitute materials, but they did not grow on soft materials. Moreover, rigid bone substitute materials only sustained the osteogenic differentiation of dental stem cells, although the allograft product induced apoptosis in both dental cell types. Remarkably, PA, silicone and the synthetic bone substitute material did not induce the apoptosis in dental cells. Our work supports the hypothesis that bone substitute materials are suitable for dental stem cell tissue engineering. Furthermore, we also suggest that the induction of apoptosis by bone substitute materials may not impair the proliferation and the differentiation of dental stem cells.

  14. Dental stem cells for tooth regeneration and repair.

    Science.gov (United States)

    Mantesso, Andrea; Sharpe, Paul

    2009-09-01

    Mesenchymal stem cells (MSCs) resident in bone marrow are one of the most studied and clinically important populations of adult stem cells. Cells with, similar properties to these MSCs have been described in several different tooth tissues and the potential ease with which these dental MSCs could be obtained from patients has prompted great interest in these cells as a source of MSCs for cell-based therapeutics. In this review we address the current state of knowledge regarding these cells, their properties, origins, locations, functions and potential uses in tooth tissue engineering and repair. We discuss some of the key controversies and outstanding issues, not least of which whether dental stem cells actually exist.

  15. A novel method for banking dental pulp stem cells.

    Science.gov (United States)

    Gioventù, Silvia; Andriolo, Gabriella; Bonino, Ferruccio; Frasca, Stefania; Lazzari, Lorenza; Montelatici, Elisa; Santoro, Franco; Rebulla, Paolo

    2012-10-01

    Dental pulp stem cells (DPSC), a cell type of mesenchymal origin showing high proliferation and plasticity, are an emerging source of adult stem cells offering interesting features in view of potential applications in regenerative medicine. These features prompted us to develop a new method to cryopreserve DPSC inside a whole tooth, thus avoiding the need to purify the cells before cryopreservation and reducing the initial costs and workload of tooth banking. In this study we cryopreserved 4 human deciduous whole teeth after digging micro-channels into the tooth with an Nd:YAG laser beam (laser piercing) to allow the cryopreservative to reach the dental pulp and preserve the cells at -80°C. Then, we isolated, expanded and characterized in vitro the stem cells after tooth thawing and mechanical fracture. In parallel, we characterized cells extracted from 2 teeth cryopreserved without laser piercing and from 4 non cryopreserved, non laser pierced, freshly fractured teeth. Our data demonstrate that DPSC isolated from laser pierced cryopreserved teeth show mesenchymal stem cells morphology, immunophenotype, viability and proliferation rate similar to those of cells isolated from fresh, non cryopreserved teeth, whereas significant loss of cell viability and proliferation rate was shown by cells isolated from teeth cryopreserved without laser piercing. These data support the use of this method for prospective whole tooth banking.

  16. Regenerative medicine using dental pulp stem cells for liver diseases

    Science.gov (United States)

    Ohkoshi, Shogo; Hara, Hajime; Hirono, Haruka; Watanabe, Kazuhiko; Hasegawa, Katsuhiko

    2017-01-01

    Acute liver failure is a refractory disease and its prognosis, if not treated using liver transplantation, is extremely poor. It is a good candidate for regenerative medicine, where stem cell-based therapies play a central role. Mesenchymal stem cells (MSCs) are known to differentiate into multiple cell lineages including hepatocytes. Autologous cell transplant without any foreign gene induction is feasible using MSCs, thereby avoiding possible risks of tumorigenesis and immune rejection. Dental pulp also contains an MSC population that differentiates into hepatocytes. A point worthy of special mention is that dental pulp can be obtained from deciduous teeth during childhood and can be subsequently harvested when necessary after deposition in a tooth bank. MSCs have not only a regenerative capacity but also act in an anti-inflammatory manner via paracrine mechanisms. Promising efficacies and difficulties with the use of MSC derived from teeth are summarized in this review. PMID:28217369

  17. Evaluation of implant-materials as cell carriers for dental stem cells under in vitro conditions

    OpenAIRE

    Gosau, Martin; Viale-Bouroncle, Sandra; Eickhoff, Hannah; Prateeptongkum, Esthera; Reck, Anja; Götz, W.; Klingelhöffer, Christoph; Müller, Steffen; Morsczeck, Christian

    2015-01-01

    Background Dental stem cells in combination with implant materials may become an alternative to autologous bone transplants. For tissue engineering different types of soft and rigid implant materials are available, but little is known about the viability and the osteogenic differentiation of dental stem cells on these different types of materials. According to previous studies we proposed that rigid bone substitute materials are superior to soft materials for dental tissue engineering. Method...

  18. Neural Crest Stem Cells from Dental Tissues: A New Hope for Dental and Neural Regeneration

    Directory of Open Access Journals (Sweden)

    Gaskon Ibarretxe

    2012-01-01

    Full Text Available Several stem cell sources persist in the adult human body, which opens the doors to both allogeneic and autologous cell therapies. Tooth tissues have proven to be a surprisingly rich and accessible source of neural crest-derived ectomesenchymal stem cells (EMSCs, which may be employed to repair disease-affected oral tissues in advanced regenerative dentistry. Additionally, one area of medicine that demands intensive research on new sources of stem cells is nervous system regeneration, since this constitutes a therapeutic hope for patients affected by highly invalidating conditions such as spinal cord injury, stroke, or neurodegenerative diseases. However, endogenous adult sources of neural stem cells present major drawbacks, such as their scarcity and complicated obtention. In this context, EMSCs from dental tissues emerge as good alternative candidates, since they are preserved in adult human individuals, and retain both high proliferation ability and a neural-like phenotype in vitro. In this paper, we discuss some important aspects of tissue regeneration by cell therapy and point out some advantages that EMSCs provide for dental and neural regeneration. We will finally review some of the latest research featuring experimental approaches and benefits of dental stem cell therapy.

  19. Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration.

    Science.gov (United States)

    Estrela, Carlos; Alencar, Ana Helena Gonçalves de; Kitten, Gregory Thomas; Vencio, Eneida Franco; Gava, Elisandra

    2011-01-01

    In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that range from Alzheimer's disease to cardiac ischemia and regenerative medicine, like bone or tooth loss. Based on their ability to rescue and/or repair injured tissue and partially restore organ function, multiple types of stem/progenitor cells have been speculated. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental tissues are considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that these stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. In dentistry, stem cell biology and tissue engineering are of great interest since may provide an innovative for generation of clinical material and/or tissue regeneration. Mesenchymal stem cells were demonstrated in dental tissues, including dental pulp, periodontal ligament, dental papilla, and dental follicle. These stem cells can be isolated and grown under defined tissue culture conditions, and are potential cells for use in tissue engineering, including, dental tissue, nerves and bone regeneration. More recently, another source of stem cell has been successfully generated from human somatic cells into a pluripotent stage, the induced pluripotent stem cells (iPS cells), allowing creation of patient- and disease-specific stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental stem cell an attractive source of mesenchymal stem cells for tissue regeneration. This review describes new findings in the field of dental stem cell research and on their potential use in the tissue regeneration.

  20. Angiogenic properties of human dental pulp stem cells.

    Directory of Open Access Journals (Sweden)

    Annelies Bronckaers

    Full Text Available Angiogenesis, the formation of capillaries from pre-existing blood vessels, is a key process in tissue engineering. If blood supply cannot be established rapidly, there is insufficient oxygen and nutrient transport and necrosis of the implanted tissue will occur. Recent studies indicate that the human dental pulp contains precursor cells, named dental pulp stem cells (hDPSC that show self-renewal and multilineage differentiation capacity. Since these cells can be easily isolated, cultured and cryopreserved, they represent an attractive stem cell source for tissue engineering. Until now, only little is known about the angiogenic abilities and mechanisms of the hDPSC. In this study, the angiogenic profile of both cell lysates and conditioned medium of hDPSC was determined by means of an antibody array. Numerous pro-and anti-angiogenic factors such as vascular endothelial growth factor (VEGF, monocyte chemotactic protein-1 (MCP-1, plasminogen activator inhibitor-1 (PAI-1 and endostatin were found both at the mRNA and protein level. hDPSC had no influence on the proliferation of the human microvascular endothelial cells (HMEC-1, but were able to significantly induce HMEC-1 migration in vitro. Addition of the PI3K-inhibitor LY294002 and the MEK-inhibitor U0126 to the HMEC-1 inhibited this effect, suggesting that both Akt and ERK pathways are involved in hDPSC-mediated HMEC-1 migration. Antibodies against VEGF also abolished the chemotactic actions of hDPSC. Furthermore, in the chicken chorioallantoic membrane (CAM assay, hDPSC were able to significantly induce blood vessel formation. In conclusion, hDPSC have the ability to induce angiogenesis, meaning that this stem cell population has a great clinical potential, not only for tissue engineering but also for the treatment of chronic wounds, stroke and myocardial infarctions.

  1. Differentiation of Dental Pulp Stem Cells into Neuron-Like Cells in Serum-Free Medium

    Directory of Open Access Journals (Sweden)

    Shahrul Hisham Zainal Ariffin

    2013-01-01

    Full Text Available Dental pulp tissue contains dental pulp stem cells (DPSCs. Dental pulp cells (also known as dental pulp-derived mesenchymal stem cells are capable of differentiating into multilineage cells including neuron-like cells. The aim of this study was to examine the capability of DPSCs to differentiate into neuron-like cells without using any reagents or growth factors. DPSCs were isolated from teeth extracted from 6- to 8-week-old mice and maintained in complete medium. The cells from the fourth passage were induced to differentiate by culturing in medium without serum or growth factors. RT-PCR molecular analysis showed characteristics of Cd146+, Cd166+, and Cd31− in DPSCs, indicating that these cells are mesenchymal stem cells rather than hematopoietic stem cells. After 5 days of neuronal differentiation, the cells showed neuron-like morphological changes and expressed MAP2 protein. The activation of Nestin was observed at low level prior to differentiation and increased after 5 days of culture in differentiation medium, whereas Tub3 was activated only after 5 days of neuronal differentiation. The proliferation of the differentiated cells decreased in comparison to that of the control cells. Dental pulp stem cells are induced to differentiate into neuron-like cells when cultured in serum- and growth factor-free medium.

  2. Mesenchymal Stem Cells Derived from Dental Pulp: A Review

    Directory of Open Access Journals (Sweden)

    Edgar Ledesma-Martínez

    2016-01-01

    Full Text Available The mesenchymal stem cells of dental pulp (DPSCs were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology.

  3. Potential of human dental stem cells in repairing the complete transection of rat spinal cord

    Science.gov (United States)

    Yang, Chao; Li, Xinghan; Sun, Liang; Guo, Weihua; Tian, Weidong

    2017-04-01

    Objective. The adult spinal cord of mammals contains a certain amount of neural precursor cells, but these endogenous cells have a limited capacity for replacement of lost cells after spinal cord injury. The exogenous stem cells transplantation has become a therapeutic strategy for spinal cord repairing because of their immunomodulatory and differentiation capacity. In addition, dental stem cells originating from the cranial neural crest might be candidate cell sources for neural engineering. Approach. Human dental follicle stem cells (DFSCs), stem cells from apical papilla (SCAPs) and dental pulp stem cells (DPSCs) were isolated and identified in vitro, then green GFP-labeled stem cells with pellets were transplanted into completely transected spinal cord. The functional recovery of rats and multiple neuro-regenerative mechanisms were explored. Main results. The dental stem cells, especially DFSCs, demonstrated the potential in repairing the completely transected spinal cord and promote functional recovery after injury. The major involved mechanisms were speculated below: First, dental stem cells inhibited the expression of interleukin-1β to reduce the inflammatory response; second, they inhibited the expression of ras homolog gene family member A (RhoA) to promote neurite regeneration; third, they inhibited the sulfonylurea receptor1 (SUR-1) expression to reduce progressive hemorrhagic necrosis; lastly, parts of the transplanted cells survived and differentiated into mature neurons and oligodendrocytes but not astrocyte, which is beneficial for promoting axons growth. Significance. Dental stem cells presented remarkable tissue regenerative capability after spinal cord injury through immunomodulatory, differentiation and protection capacity.

  4. Redefining the potential applications of dental stem cells: An asset for future

    Directory of Open Access Journals (Sweden)

    Shalu Rai

    2012-01-01

    Full Text Available Recent exciting discoveries isolated dental stem cells from the pulp of the primary and permanent teeth, from the periodontal ligament, and from associated healthy tissues. Dental pulp stem cells (DPSCs represent a kind of adult cell colony which has the potent capacity of self-renewing and multilineage differentiation. Stem cell-based tooth engineering is deemed as a promising approach to the making of a biological tooth (bio-tooth or engineering of functional tooth structures. Dental professionals have the opportunity to make their patients aware of these new sources of stem cells that can be stored for future use as new therapies are developed for a range of diseases and injuries. The aim of this article is to review and understand how dental stem cells are being used for regeneration of oral and conversely nonoral tissues. A brief review on banking is also done for storing of these valuable stem cells for future use.

  5. Dental-derived Stem Cells and whole Tooth Regeneration: an Overview

    OpenAIRE

    2009-01-01

    The need for new dental tissue-replacement therapies is evident in recent reports which reveal startling statistics regarding the high incidence of tooth decay and tooth loss. Recent advances in the identification and characterization of dental stem cells, and in dental tissue-engineering strategies, suggest that bioengineering approaches may successfully be used to regenerate dental tissues and whole teeth. Interest in dental tissue-regeneration applications continues to increase as clinical...

  6. Human dental pulp stem cells express many pluripotency regulators and differentiate into neuronal cells

    Institute of Scientific and Technical Information of China (English)

    Behnam Ebrahimi; Mohammad Mehdi Yaghoobi; Ali Mohammadi Kamal-abadi; Maryam Raoof

    2011-01-01

    Stem cells were isolated from human dental pulp using an optimized method, in which pulp pieces were digested by enzymes and immobilized to enhance cell outgrowth. Stem cell marker expression was detected by reverse transcription-PCR (RT-PCR), and differentiation markers were detected by real-time quantitative RT-PCR and immunocytochemistry. Results showed that dental pulp stem cells actively expressed nanog, oct4, nucleostemin slain-1, jmjd1a, jmjd2c, and cyclin D1. When stem cells were induced to differentiate into neurons, nucleostemin, nanog, and cyclin D1 expres-sion significantly decreased, whereas expression of neuronal markers, such as microtubule asso-ciated protein-2 and neurofilament-heavy, significantly increased. These results suggested that stem cells exited a pluripotent state and entered a neuronal differentiation pathway. In addition, results demonstrated that human dental pulp serves as a reservoir of stem cells that express defined stem cell markers; these cells were easily isolated and were induced to differentiate towards a desired cell lineage.

  7. Dental pulp-derived stem cells (DPSC) differentiation in vitro into ...

    African Journals Online (AJOL)

    McRoy

    into odontoblast and neuronal progenitors during cell passaging is ... of the dental-pulp stem cells (DPSC) obtained from differing sources, such .... randomly generated unique number to avoid .... PCR was performed on equal concentrations.

  8. Bone regeneration at dental implant sites with suspended stem cells.

    Science.gov (United States)

    Zheng, R C; Park, Y K; Cho, J J; Kim, S K; Heo, S J; Koak, J Y; Lee, J H

    2014-10-01

    During the maintenance of bone marrow-derived mesenchymal stem cells (BMMSCs), suspended cells are discarded normally. We noted the osteogenic potential of these cells to be like that of anchorage-dependent BMMSCs. Therefore, we characterized suspended BMMSCs from rabbit bone marrow by bioengineering and applied the suspended BMMSCs to double-canaled dental implants inserted into rabbits. After primary isolation of BMMSCs, we collected the suspended cells during primary culture on the third day. The cells were transferred and maintained on an extracellular-matrix-coated culture plate. The cells were characterized and compared with BMMSCs by colony-forming-unit fibroblast (CFU-f) and cell proliferation assay, fluorescence-activated cell sorter (FACS), in vitro multipotency, and reverse transcription polymerase chain reaction (RT-PCR). We also analyzed the osteogenic potential of cells mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) and transplanted into immunocompromised mice. We compared the viability and proliferation of the suspended BMMSCs and BMMSCs on the titanium implant surface and observed cell morphology. Then, the cells mixed with HA/TCP were applied to the double-canaled implants during installation into rabbit tibia. Four weeks later, we analyzed bone formation inside the canal by histomorphometry. The suspended cells showed higher CFU-f on the extracellular matrix (ECM)-coated culture plate and similar results of proliferation capacity compared with BMMSCs. The cells also showed osteogenic, adipogenic, and chondrogenic ability. The suspended cells showed levels of attachment survival and proliferation on the surfaces of titanium implant discs to be higher than or similar to those of BMMSCs. The suspended cells as well as BMMSCs showed stronger bone formation ability in both upper and lower canals of the implants compared with controls on double-canaled implants inserted into rabbit tibia. In this study, we showed that suspended cells after

  9. miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells.

    Directory of Open Access Journals (Sweden)

    Emilio Satoshi Hara

    Full Text Available Dental pulp cells (DPCs are known to be enriched in stem/progenitor cells but not well characterized yet. Small non-coding microRNAs (miRNAs have been identified to control protein translation, mRNA stability and transcription, and have been reported to play important roles in stem cell biology, related to cell reprogramming, maintenance of stemness and regulation of cell differentiation. In order to characterize dental pulp stem/progenitor cells and its mechanism of differentiation, we herein sorted stem-cell-enriched side population (SP cells from human DPCs and periodontal ligament cells (PDLCs, and performed a locked nucleic acid (LNA-based miRNA array. As a result, miR-720 was highly expressed in the differentiated main population (MP cells compared to that in SP cells. In silico analysis and a reporter assay showed that miR-720 targets the stem cell marker NANOG, indicating that miR-720 could promote differentiation of dental pulp stem/progenitor cells by repressing NANOG. Indeed, gain-and loss-of-function analyses showed that miR-720 controls NANOG transcript and protein levels. Moreover, transfection of miR-720 significantly decreased the number of cells positive for the early stem cell marker SSEA-4. Concomitantly, mRNA levels of DNA methyltransferases (DNMTs, which are known to play crucial factors during stem cell differentiation, were also increased by miR-720 through unknown mechanism. Finally, miR-720 decreased DPC proliferation as determined by immunocytochemical analysis against ki-67, and promoted odontogenic differentiation as demonstrated by alizarin red staining, as well as alkaline phosphatase and osteopontin mRNA levels. Our findings identify miR-720 as a novel miRNA regulating the differentiation of DPCs.

  10. Comparative In Vitro Evaluation of Human Dental Pulp and Follicle Stem Cell Commitment

    Directory of Open Access Journals (Sweden)

    Razieh Karamzadeh

    2016-10-01

    Full Text Available Objective: Pulp and periodontal tissues are well-known sources of mesenchymal stem cells (MSCs that provide a promising place in tissue engineering and regenerative medicine. The molecular mechanisms underlying commitment and differentiation of dental stem cells that originate from different dental tissues are not fully understood. In this study, we have compared the expression levels of pluripotency factors along with immunological and developmentally-related markers in the culture of human dental pulp stem cells (hDPSCs, human dental follicle stem cells (hDFSCs, and human embryonic stem cells (hESCs. Materials and Methods: In this experimental study, isolated human dental stem cells were investigated using quantitative polymerase chain reaction (qPCR, immunostaining, and fluorescence-activated cell sorting (FACS. Additionally, we conducted gene ontology (GO analysis of differentially expressed genes and compared them between dental stem cells and pluripotent stem cells. Results: The results demonstrated that pluripotency (OCT4 and SOX2 and immunological (IL-6 and TLR4 factors had higher expressions in hDFSCs, with the exception of the JAGGED- 1/NOTCH1 ratio, c-MYC and NESTIN which expressed more in hDPSCs. Immunostaining of OCT4, SOX2 and c-MYC showed cytoplasmic and nucleus localization in both groups at similar passages. GO analysis showed that the majority of hDFSCs and hDPSCs populations were in the synthesis (S and mitosis (M phases of the cell cycle, respectively. Conclusion: This study showed different status of heterogeneous hDPSCs and hDFSCs in terms of stemness, differentiation fate, and cell cycle phases. Therefore, the different behaviors of dental stem cells should be considered based on clinical treatment variations.

  11. Isolation and morphology of Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC)

    Science.gov (United States)

    Ariffin, Shahrul Hisham Zainal; Manogaran, Thanaletchumi; Abidin, Intan Zarina Zainol; Senafi, Sahidan; Wahab, Rohaya Megat Abdul

    2016-11-01

    Dental pulp is a tissue obtained from pulp chamber of deciduous and permanent tooth which contain stem cells. Stem cell isolation procedure is performed to obtain cells from tissue using enzymatic digestion. The aim of this study is to isolate and observe the morphology of stem cells during passage 0 and passage 3. Dental pulp from deciduous and permanent tooth was enzymatically digested using collagenase Type I and cells obtained were cultured in DMEM-KO that contains 10% fetal bovine serum, 1% antibiotic-antimycotic solution and 0.001× GlutaMax®. During culture, cell morphology was observed under the microscope on day 3, 16 and 33 and captured using cellB software. Giemsa staining was conducted on cells at passage 3. Cells attached at the bottom of the flask on day 3 and started forming small colonies. Cells became confluent after approximately 4 weeks. Both Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC) exhibited fibroblast-like morphology during passage 0 and passage 3. Meanwhile, Giemsa staining at passage 3 revealed single intact nucleus surrounded by fibroblastic cytoplasm structure. It can be concluded that SHED and hDPSC showed consistent fibroblast-like morphology throughout culture period.

  12. Imperative role of dental pulp stem cells in regenerative therapies: a systematic review.

    Science.gov (United States)

    Kabir, Ramchandra; Gupta, Manish; Aggarwal, Avanti; Sharma, Deepak; Sarin, Anurag; Kola, Mohammed Zaheer

    2014-01-01

    Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs) are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase) using keywords like "dental pulp stem cells", "regeneration", "medical applications", "tissue engineering". DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective.

  13. Imperative role of dental pulp stem cells in regenerative therapies: A systematic review

    Directory of Open Access Journals (Sweden)

    Ramchandra Kabir

    2014-01-01

    Full Text Available Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase using keywords like "dental pulp stem cells", "regeneration", "medical applications", "tissue engineering". DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective.

  14. Imperative Role of Dental Pulp Stem Cells in Regenerative Therapies: A Systematic Review

    Science.gov (United States)

    Kabir, Ramchandra; Gupta, Manish; Aggarwal, Avanti; Sharma, Deepak; Sarin, Anurag; Kola, Mohammed Zaheer

    2014-01-01

    Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs) are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase) using keywords like “dental pulp stem cells”, “regeneration”, “medical applications”, “tissue engineering”. DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective. PMID:24665194

  15. Human dental pulp mesenchymal stem cells isolation and osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Moustafa Alkhalil

    2015-02-01

    Full Text Available Aim This study was focused on the isolation and characterization of mesenchymal stem cells (MSCs from human dental pulp (DPSC. Methods The study was performed in the Department for Oral and Cranio-Maxillo- Facial Surgey Hamad Medical Corporation, Doha, Qatar and Weill Cornell Medical Colleague Doha, Qatar, in period 2010-2011. Dental pulp was extracted from premolars and third molars of 19 healthy patients. The pulp was digested in a solution of 3 mg/mL collagenase type I and 4 mg/mL dispase for 1 hour at 37C. After filtration, cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM Low Glucoses with 20% Fetal Bovine Serum (FBS, 2mM L-glutamine and antibiotics (100 U/mL penicillin, 100 ug/mL streptomycin at 37 °C under 5% CO2. Cultures were treated with osteoinductive medium for differentiation MSC in to the osteoblast cell line. Staining with Alizarin red were used for the detection of the osteoblast production and calcification new formed tissue. Results On the total of three out of 19 patients it was possible to isolate DPMSCs after 2 to 3 weeks: in one patient it was not possible to expand MSCs because of infection, and in other two patients positive Alizarin red staining reaction showed osteogenic differentiation capability and strong mineralization in vitro. Conclusion The main advantage of using DPSC is absence of morbidity. MSCs could be isolated noninvasively from teeth, routinely extracted in the clinic and discarded as medical waste. Standardization of clinical and laboratory protocols for DPMSCs isolation and team work coordination could lead to significantly improved result.

  16. Osteogenic differentiation of dental pulp stem cells under the influence of three different materials

    DEFF Research Database (Denmark)

    Ajlan, S. A.; Ashri, N. Y.; Aldahmash, Abdullah M.;

    2015-01-01

    Background: Regeneration of periodontal tissues is a major goal of periodontal therapy. Dental pulp stem cells (DPSCs) show mesenchymal cell properties with the potential for dental tissue engineering. Enamel matrix derivative (EMD) and platelet-derived growth factor (PDGF) are examples...

  17. Inkjet printing of viable human dental follicle stem cells

    Directory of Open Access Journals (Sweden)

    Mau Robert

    2015-09-01

    Full Text Available Inkjet printing technology has the potential to be used for seeding of viable cells for tissue engineering approaches. For this reason, a piezoelectrically actuated, drop-on-demand inkjet printing system was applied to deliver viable human dental follicle stem cells (hDFSC of sizes of about 15 μm up to 20 μm in diameter. The purpose of these investigations was to verify the stability of the printing process and to evaluate cell viability post printing. Using a Nanoplotter 2.1 (Gesim, Germany equipped with the piezoelectric printhead NanoTip HV (Gesim, Germany, a concentration of 6.6 ×106 cells ml−1 in DMEM with 10% fetal calf serum (FCS could be dispensed. The piezoelectric printhead has a nominal droplet volume of ~ 400 pl and was set to a voltage of 75 V and a pulse of 50 μs while dosing 50 000 droplets over a time of 100 seconds. The volume and trajectory of the droplet were checked by a stroboscope test right before and after the printing process. It was found that the droplet volume decreases significantly by 35% during printing process, while the trajectory of the droplets remains stable with only an insignificant number of degrees deviation from the vertical line. It is highly probable that some cell sedimentations or agglomerations affect the printing performance. The cell viability post printing was assessed by using the Trypan Blue dye exclusion test. The printing process was found to have no significant influence on cell survival. In conclusion, drop-on-demand inkjet printing can be a potent tool for the seeding of viable cells.

  18. Comparative In Vitro Evaluation of Human Dental Pulp and Follicle Stem Cell Commitment

    National Research Council Canada - National Science Library

    Razieh Karamzadeh; Mohamadreza Baghaban Eslaminejad; Ali Sharifi-Zarchi

    2017-01-01

    .... In this study, we have compared the expression levels of pluripotency factors along with immunological and developmentally-related markers in the culture of human dental pulp stem cells (hDPSCs...

  19. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration.

    Science.gov (United States)

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues.

  20. Biomimetic Extracellular Matrix Mediated Somatic Stem Cell Differentiation: Applications in Dental Pulp Tissue Regeneration.

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2015-04-01

    Full Text Available Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world’s population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues.

  1. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration

    Science.gov (United States)

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205

  2. Imperative Role of Dental Pulp Stem Cells in Regenerative Therapies

    African Journals Online (AJOL)

    to differentiate to a limited number of cell fates or into closely related family of cells. Recent ... several cell types including odontoblasts, neural progenitors, chondrocytes .... Not subjected to the same ethical concerns as embryonic stem cells.

  3. Biomaterials coated by dental pulp cells as substrate for neural stem cell differentiation.

    Science.gov (United States)

    Soria, Jose Miguel; Sancho-Tello, María; Esparza, M Angeles Garcia; Mirabet, Vicente; Bagan, Jose Vicente; Monleón, Manuel; Carda, Carmen

    2011-04-01

    This study is focused on the development of an in vitro hybrid system, consisting in a polymeric biomaterial covered by a dental pulp cellular stroma that acts as a scaffold offering a neurotrophic support for the subsequent survival and differentiation of neural stem cells. In the first place, the behavior of dental pulp stroma on the polymeric biomaterial based on ethyl acrylate and hydroxy ethyl acrylate copolymer was studied. For this purpose, cells from normal human third molars were grown onto 0.5-mm-diameter biomaterial discs. After cell culture, quantification of neurotrophic factors generated by the stromal cells was performed by means of an ELISA assay. In the second place, survival and differentiation of adult murine neural stem cells on the polymeric biomaterials covered by dental pulp stromal cells was studied. The results show the capacity of dental pulp cells to uniformly coat the majority of the material's surface and to secrete neurotrophic factors that become crucial for a subsequent differentiation of neural stem cells. The use of stromal cells cultured on scaffolding biomaterials provides neurotrophic pumps that may suggest new criteria for the design of cell therapy experiments in animal models to assist the repair of lesions in Central Nervous System.

  4. Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Beucken, J.J.J.P. van den; Bian, Z.; Fan, M.; Jansen, J.A.

    2009-01-01

    The objective of this study was to examine hard tissue formation of STRO-1-selected rat dental pulp-derived stem cells, seeded into a calcium phosphate ceramic scaffold, and implanted subcutaneously in mice. Previously, STRO-1 selection was used to obtain a mesenchymal stem cell progenitor subpopula

  5. Plasticity of Ectomesenchymal Stem Cells and its Ability of Producing Tissue Engineering Tooth by Recombining with Dental Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionRecently, it has been found that human dental pulp stem cells could generate dentin-pulp complex-like structures in nude mice, but studies on tissue engineering tooth-like structures by cultured human dental epithelial and mesenchymal stem cells are still reported rarely. Ectomesenchyme is an unique structure of vertebrates embryo compose of postmigratory cephalic neural crest cells (NCC) and its derivatives. The aim of the present study was to identify and isolate the ectomesenchymal stem cel...

  6. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  7. Genome-wide transcriptomic alterations induced by ethanol treatment in human dental pulp stem cells (DPSCs

    Directory of Open Access Journals (Sweden)

    Omar Khalid

    2014-12-01

    Full Text Available Human dental pulp stem cells (DPSCs isolated from adult dental pulp are multipotent mesenchymal stem cells that can be directed to differentiate into osteogenic/odontogenic cells and also trans-differentiate into neuronal cells. The utility of DPSC has been explored in odontogenic differentiation for tooth regeneration. Alcohol abuse appears to lead to periodontal disease, tooth decay and mouth sores that are potentially precancerous. Persons who abuse alcohol are at high risk of having seriously deteriorated teeth, gums and compromised oral health in general. It is currently unknown if alcohol exposure has any impact on adult stem cell maintenance, stem cell fate determination and plasticity, and stem cell niche environment. Here we provide detailed experimental methods, analysis and information associated with our data deposited into Gene Expression Omnibus (GEO under GSE57255. Our data provide transcriptomic changes that are occurring by EtOH treatment of DPSCs at 24-hour and 48-hour time point.

  8. Telomere Attrition Occurs during Ex Vivo Expansion of Human Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Jaroslav Mokry

    2010-01-01

    Full Text Available We provide a detailed characteristic of stem cells isolated and expanded from the human dental pulp. Dental pulp stem cells express mesenchymal cell markers STRO-1, vimentin, CD29, CD44, CD73, CD90, CD166, and stem cell markers Sox2, nestin, and nucleostemin. They are multipotent as shown by their osteogenic and chondrogenic potential. We measured relative telomere length in 11 dental pulp stem cell lines at different passages by quantitative real-time PCR. Despite their large proliferative capacity, stable viability, phenotype, and genotype over prolonged cultivation, human dental pulp stem cells suffer from progressive telomere shortening over time they replicate in vitro. Relative telomere length (T/S was inversely correlated with cumulative doubling time. Our findings indicate that excessive ex vivo expansion of adult stem cells should be reduced at minimum to avoid detrimental effects on telomere maintenance and measurement of telomere length should become a standard when certificating the status and replicative age of stem cells prior therapeutic applications.

  9. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine.

    Science.gov (United States)

    Kim, Byung-Chul; Bae, Hojae; Kwon, Il-Keun; Lee, Eun-Jun; Park, Jae-Hong; Khademhosseini, Ali; Hwang, Yu-Shik

    2012-06-01

    Recently, dental stem and progenitor cells have been harvested from periodontal tissues such as dental pulp, periodontal ligament, follicle, and papilla. These cells have received extensive attention in the field of tissue engineering and regenerative medicine due to their accessibility and multilineage differentiation capacity. These dental stem and progenitor cells are known to be derived from ectomesenchymal origin formed during tooth development. A great deal of research has been accomplished for directing osteoblastic/cementoblastic differentiation and neural differentiation from dental stem cells. To differentiate dental stem cells for use in tissue engineering and regenerative medicine, there needs to be efficient in vitro differentiation toward the osteoblastic/cementoblastic and neural lineage with well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source. This review focuses on the multilineage differentiation capacity, especially into osteoblastic/cementoblastic lineage and neural lineages, of dental stem cells such as dental pulp stem cells (DPSC), dental follicle stem cells (DFSC), periodontal ligament stem cells (PDLSC), and dental papilla stem cells (DPPSC). It also covers various experimental strategies that could be used to direct lineage-specific differentiation, and their potential applications in tissue engineering and regenerative medicine.

  10. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2010-09-01

    Full Text Available Introduction: Dentin sialoprotein (DSP is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models.The hypothesis: DSP as a nature therapeutic agent stimulates dental tissue repair by inducing endogenous dental pulp mesenchymal stem/progenitor cells into odontoblast-like cells to synthesize and to secrete dentin extracellular matrix forming new tertiary dentin as well as to regenerate a functional dentin-pulp complex. As DSP is a nature protein, and clinical procedure for DSP therapy is easy and simple, application of DSP may provide a new avenue for dentists with additional option for the treatment of substantially damaged vital teeth.Evaluation of the hypothesis: Dental caries is the most common dental disease. Deep caries and pulp exposure have been treated by various restorative materials with limited success. One promising approach is dental pulp stem/progenitor-based therapies to regenerate dentin-pulp complex and restore its functions by DSP induction in vivo.

  11. Generation of Spheres from Dental Epithelial Stem Cells

    Science.gov (United States)

    Natsiou, Despoina; Granchi, Zoraide; Mitsiadis, Thimios A.; Jimenez-Rojo, Lucia

    2017-01-01

    The in vitro three-dimensional sphere model has already been established as an important tool in fundamental sciences. This model facilitates the study of a variety of biological processes including stem cell/niche functions and tissue responses to injury and drugs. Here we describe the complete protocol for the in vitro formation of spheres originated from the epithelium of rodent incisors. In addition, we show that in these spheres cell proliferation is maintained, as well as the expression of several key molecules characterizing stem cells such as Sox2 and p63. These epithelial dentospheres could be used as an in vitro model system for stem cell research purposes. PMID:28154538

  12. Application of Induced Pluripotent Stem Cells Reprogrammed from Dental Pulp Cells: a Novel Approach for Tooth Regeneration

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhou

    2011-03-01

    Full Text Available Introduction: Candidate human dental stem/progenitor cells have been isolated and charac-terized from dental tissues and shown to hold the capability to differentiate into tooth-generating cells. However, ad-vances in engineering a whole tooth by these stem cells are hindered by various factors, such as the poor availability of human primitive tooth bud stem cells, difficulties in isolating and purifying dental mesenchymal stem cells and ethical controversies when using embryonic oral epithelium. As a result it is meaningful to find other autologous dental cells for the purpose of reconstructing a tooth.The hypothesis: Previous studies demonstrated that somatic cells can be reprogrammed into induced pluripotent stem cells by ex-ogenous expression Oct-4 and Sox-2. On the basis of these findings we can reasonably hypothesize that when transfected with specific transcription factors Oct-4 and Sox-2, dental pulp cells, the main cell in pulp, could also be reprogrammed into induced pluripotent stem cells, which are considered to be of best potential to regenerate a whole tooth. Evaluation of the hypothesis: After transfection with Oct-4 and Sox-2 into human dental pulp cells, the positive colonies are isolated and then identified according to the characteristics of iPS cells. These cells are further investigated the capability in differentiating into ameloblasts and odontoblasts and finally seeded onto the sur-face of a tooth-shaped biodegradable polymer scaffold to detect the ability of constructing a bioengineered tooth.

  13. Effects of hTERT immortalization on osteogenic and adipogenic differentiation of dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    Ikbale El-Ayachi

    2016-03-01

    Full Text Available These data relate to the differentiation of human dental pulp stem cells (DPSC and DPSC immortalized by constitutively expressing human telomerase reverse transcriptase (hTERT through both osteogenic and adipogenic lineages (i.e. to make bone producing and fat producing cells from these dental pulp stem cells. The data augment another study to characterize immortalized DPSC for the study of neurogenetic “Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders” [1]. Two copies of one typical control cell line (technical replicates were used in this study. The data represent the differentiation of primary DPSC into osteoblast cells approximately 60% more effectively than hTERT immortalized DPSC. Conversely, both primary and immortalized DPSC are poorly differentiated into adipocytes. The mRNA expression levels for both early and late adipogenic and osteogenic gene markers are shown.

  14. Dental pulp stem cells and their potential roles in central nervous system regeneration and repair.

    Science.gov (United States)

    Young, Fraser; Sloan, Alastair; Song, Bing

    2013-11-01

    Functional recovery from injuries to the brain or spinal cord represents a major clinical challenge. The transplantation of stem cells, traditionally isolated from embryonic tissue, may help to reduce damage following such events and promote regeneration and repair through both direct cell replacement and neurotrophic mechanisms. However, the therapeutic potential of using embryonic stem/progenitor cells is significantly restricted by the availability of embryonic tissues and associated ethical issues. Populations of stem cells reside within the dental pulp, representing an alternative source of cells that can be isolated with minimal invasiveness, and thus should illicit fewer moral objections, as a replacement for embryonic/fetal-derived stem cells. Here we discuss the similarities between dental pulp stem cells (DPSCs) and the endogenous stem cells of the central nervous system (CNS) and their ability to differentiate into neuronal cell types. We also consider in vitro and in vivo studies demonstrating the ability of DPSCs to help protect against and repair neuronal damage, suggesting that dental pulp may provide a viable alternative source of stem cells for replacement therapy following CNS damage.

  15. Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics.

    Directory of Open Access Journals (Sweden)

    Federico Ferro

    Full Text Available Although the role played by the core transcription factor network, which includes c-Myc, Klf4, Nanog, and Oct4, in the maintenance of embryonic stem cell (ES pluripotency and in the reprogramming of adult cells is well established, its persistence and function in adult stem cells are still debated. To verify its persistence and clarify the role played by these molecules in adult stem cell function, we investigated the expression pattern of embryonic and adult stem cell markers in undifferentiated and fully differentiated dental pulp stem cells (DPSC. A particular attention was devoted to the expression pattern and intracellular localization of the stemness-associated isoform A of Oct4 (Oct4A. Our data demonstrate that: Oct4, Nanog, Klf4 and c-Myc are expressed in adult stem cells and, with the exception of c-Myc, they are significantly down-regulated following differentiation. Cell differentiation was also associated with a significant reduction in the fraction of DPSC expressing the stem cell markers CD10, CD29 and CD117. Moreover, a nuclear to cytoplasm shuttling of Oct4A was identified in differentiated cells, which was associated with Oct4A phosphorylation. The present study would highlight the importance of the post-translational modifications in DPSC stemness maintenance, by which stem cells balance self-renewal versus differentiation. Understanding and controlling these mechanisms may be of great importance for stemness maintenance and stem cells clinical use, as well as for cancer research.

  16. Innovative Dental Stem Cell-Based Research Approaches: The Future of Dentistry

    Directory of Open Access Journals (Sweden)

    Shayee Miran

    2016-01-01

    Full Text Available Over the past decade, the dental field has benefited from recent findings in stem cell biology and tissue engineering that led to the elaboration of novel ideas and concepts for the regeneration of dental tissues or entire new teeth. In particular, stem cell-based regenerative approaches are extremely promising since they aim at the full restoration of lost or damaged tissues, ensuring thus their functionality. These therapeutic approaches are already applied with success in clinics for the regeneration of other organs and consist of manipulation of stem cells and their administration to patients. Stem cells have the potential to self-renew and to give rise to a variety of cell types that ensure tissue repair and regeneration throughout life. During the last decades, several adult stem cell populations have been isolated from dental and periodontal tissues, characterized, and tested for their potential applications in regenerative dentistry. Here we briefly present the various stem cell-based treatment approaches and strategies that could be translated in dental practice and revolutionize dentistry.

  17. Therapeutic potential of dental pulp stem cells in regenerative medicine: An overview

    Directory of Open Access Journals (Sweden)

    Kavita Verma

    2014-01-01

    Full Text Available The purpose of this review is to gain an overview of the applications of the dental pulp stem cells (DPSCs in the treatment of various medical diseases. Stem cells have the capacity to differentiate and regenerate into various tissues. DPSCs are the adult stem cells that reside in the cell rich zone of the dental pulp. These are the multipotent cells that can be explained by their embryonic origin from the neural crest. Owing to this multipotency, these DPSCs can be used in both dental and medical applications. A review of literature has been performed using electronic and hand-searching methods for the medical applications of DPSCs. On the basis of the available information, DPSCs appear to be a promising alternative for the regeneration of tissues and treatment of various diseases, although, long-term clinical trials and studies are needed to confirm their efficacy.

  18. Stem cells:Sources, and regenerative therapies in dental research and practice

    Institute of Scientific and Technical Information of China (English)

    Lobna; Abdel; Aziz; Aly

    2015-01-01

    Stem cells are considered to be among the principle scientific breakthroughs of the twentieth century for the future of medicine, and considered to be an important weapon to fight against diseases, particularly those that have resisted the efforts of science for a long time. Human dental tissues have limited potentials to regenerate but the discovery of dental stem cells have developed new and surprising scenario in regenerative dentistry. Stem cell treatments are one example of thepossibility using adult cells sourced from patients’ own bodies’ means that it can be expected that in the near future such treatments may become routine at dental practices. The hope is that it will become possible to regenerate bone and dental tissues including the periodontal ligament, dental pulp and enamel, and that the creation of new teeth may also become feasible. In view of this possibility of achieving restoration with regenerative medicine, it can be considered that a new era of dentistry is beginning. Thus the aim of this review is to give dental professionals a brief overview of different stem cells sources and the latest findings and their implications for improving oral health and treating certain conditions of the human mouth and face.

  19. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease?

    Science.gov (United States)

    Yoon, Hyung Ho; Min, Joongkee; Shin, Nari; Kim, Yong Hwan; Kim, Jin-Mo; Hwang, Yu-Shik; Suh, Jun-Kyo Francis; Hwang, Onyou; Jeon, Sang Ryong

    2013-05-05

    Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-derived stem cells, or human brain-derived neural stem cells into the ipsilateral striatum. All of the rats in the human dental papilla-derived stem cell group died from tumor formation at around 2 weeks following cell transplantation. Postmortem examinations revealed homogeneous malignant tumors in the striatum of the human dental papilla-derived stem cell group. Stepping tests revealed that human brain-derived neural stem cell transplantation did not improve motor dysfunction. In apomorphine-induced rotation tests, neither the human brain-derived neural stem cell group nor the control groups (PBS injection) demonstrated significant changes. Glucose metabolism in the lesioned side of striatum was reduced by human brain-derived neural stem cell transplantation. [(18)F]-FP-CIT PET scans in the striatum did not demonstrate a significant increase in the human brain-derived neural stem cell group. Tyrosine hydroxylase (dopaminergic neuronal marker) staining and G protein-activated inward rectifier potassium channel 2 (A9 dopaminergic neuronal marker) were positive in the lesioned side of striatum in the human brain-derived neural stem cell group. The use of early-stage human dental papilla-derived stem cells confirmed its tendency to form tumors. Human brain-derived neural stem cells could be partially differentiated into dopaminergic neurons, but they did not secrete dopamine.

  20. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease?

    Institute of Scientific and Technical Information of China (English)

    Hyung Ho Yoon; Joongkee Min; Nari Shin; Yong Hwan Kim; Jin-Mo Kim; Yu-Shik Hwang; Jun-Kyo Francis Suh; Onyou Hwang; Sang Ryong Jeon

    2013-01-01

    Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-derived stem cells, or human brain-derived neural stem cells into the ipsilateral striatum. All of the rats in the human dental papilla-derived stem cell group died from tumor formation at around 2 weeks following cell transplantation. Postmortem examinations revealed homogeneous malignant tumors in the striatum of the human dental papilla-derived stem cell group. Stepping tests revealed that human brain-derived neural stem cell transplantation did not improve motor dysfunction. In apomorphine-induced rotation tests, neither the human brain-derived neural stem cell group nor the control groups (PBS injection) demonstrated significant changes. Glucose metabolism in the lesioned side of striatum was reduced by human brain-derived neural stem cell transplantation. [18 F]-FP-CIT PET scans in the striatum did not demonstrate a significant increase in the human brain-derived neural stem cell group. Tyrosine hydroxylase (dopaminergic neuronal marker) staining and G protein-activated inward rectifier potassium channel 2 (A9 dopaminergic neuronal marker) were positive in the lesioned side of striatum in the human brain-derived neural stem cell group. The use of early-stage human dental papilla-derived stem cells confirmed its tendency to form tumors. Human brain-derived neural stem cells could be partially differentiated into dopaminergic neurons, but they did not secrete dopamine.

  1. Dental pulp stem cells (DPSCs) differentiation study by confocal Raman microscopy

    Science.gov (United States)

    Salehi, H.; Collart-Dutilleul, P.-Y.; Gergely, C.; Cuisinier, F. J. G.

    2014-03-01

    Regenerative medicine brings a huge application for Mesenchymal stem cells such as Dental Pulp Stem Cells (DPSCs). Confocal Raman microscopy, a non-invasive, label free , real time and high spatial resolution imaging technique is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800-3000 cm-1 region (C-H stretching) and 960 cm-1 peak (phosphate PO4 3-) were collected. In Dental Pulp Stem Cells 21st day differentiated in buffer solution, phosphate peaks ν1 PO4 3- (first vibrational mode) at 960cm-1 and ν2 PO4 3- at 430cm-1 and ν4 PO4 3- at 585cm-1 are obviously present. Confocal Raman microscopy enables the detection of cell differentiation and it can be used to investigate clinical stem cell research.

  2. Identification and Isolation of Human Dental Pulp Stem Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionDentinal repair in the postnatal organism occurs through the activity of specialized cells, odontoblasts, that are thought to be maintained by an as yet undefined precursor population associated with pulp tissue. Adult pulp stem cells was found in 2000. Now, it become a critical research in the world and a new stem-cells resourse for potential clinical applications. But, specific marker of DPSCs is not clear. STRO-1 was the marker that used universally. But, the expression rate was very low in...

  3. Dental Stem Cells in Pulp Regeneration: Near Future or Long Road Ahead?

    Science.gov (United States)

    Hilkens, Petra; Meschi, Nastaran; Lambrechts, Paul; Bronckaers, Annelies; Lambrichts, Ivo

    2015-07-15

    Although regenerative endodontic procedures have yielded an impressive body of favorable outcomes, the treatment of necrotic immature permanent teeth in particular remains to be a challenge. Recent advances in dental stem cell (DSC) research have gained increasing insight in their regenerative potential and prospective use in the formation of viable dental tissues. Numerous studies have already reported successful dental pulp regeneration following application of dental pulp stem cells, stem cells from the apical papilla, or dental follicle precursor cells in different in vivo models. Next to responsive cells, dental tissue engineering also requires the support of an appropriate scaffold material, ranging from naturally occurring polymers to treated dentin matrix components. However, the routine use and banking of DSCs still holds some major challenges, such as culture-associated differences, patient-related variability, and the effects of culture medium additives. Only in-depth evaluation of these problems and the implementation of standardized models and protocols will effectively lead to better alternatives for patients who no longer benefit from current treatment protocols.

  4. CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche.

    Science.gov (United States)

    Yokohama-Tamaki, Tamaki; Otsu, Keishi; Harada, Hidemitsu; Shibata, Shunichi; Obara, Nobuko; Irie, Kazuharu; Taniguchi, Akiyoshi; Nagasawa, Takashi; Aoki, Kazunari; Caliari, Steven R; Weisgerber, Daniel W; Harley, Brendan A C

    2015-12-01

    Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche.

  5. CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche

    Science.gov (United States)

    Otsu, Keishi; Harada, Hidemitsu; Shibata, Shunichi; Obara, Nobuko; Irie, Kazuharu; Taniguchi, Akiyoshi; Nagasawa, Takashi; Aoki, Kazunari; Caliari, Steven R.; Weisgerber, Daniel W.

    2015-01-01

    Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche. PMID:26246398

  6. Stem cell and biomaterials research in dental tissue engineering and regeneration.

    Science.gov (United States)

    Horst, Orapin V; Chavez, Miquella G; Jheon, Andrew H; Desai, Tejal; Klein, Ophir D

    2012-07-01

    This review summarizes approaches used in tissue engineering and regenerative medicine, with a focus on dental applications. Dental caries and periodontal disease are the most common diseases resulting in tissue loss. To replace or regenerate new tissues, various sources of stem cells have been identified such as somatic stem cells from teeth and peridontium. Advances in biomaterial sciences including microfabrication, self-assembled biomimetic peptides, and 3-dimensional printing hold great promise for whole-organ or partial tissue regeneration to replace teeth and periodontium.

  7. Transient Receptor Potential Melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation

    OpenAIRE

    2013-01-01

    Elevations in the intracellular Ca2+ concentration are a phenomena commonly observed during stem cell differentiation but cease after the process is complete. The Transient Receptor Potential Melastatin 4 (TRPM4) is an ion channel that controls Ca2+ signals in excitable and non-excitable cells. However, its role in stem cells remains unknown. The aim of this study was to characterize TRPM4 in rat dental follicle stem cells (DFSCs) and to determine its impact on Ca2+ signaling and the differen...

  8. Mechanical Changes in Human Dental Pulp Stem Cells during Early Odontogenic Differentiation

    OpenAIRE

    Jones, Taneka D.; Naimipour, Hamed; Sun, Shan; Cho, Michael; Alapati, Satish B.

    2014-01-01

    Cell adhesion and migration in bioactive scaffolds require actin cytoskeleton remodeling and focal adhesion formation. Additionally, human dental pulp stem cells (hDPSCs) undergo several changes in their mechanical properties during odontogenic differentiation. The effect of factors essential for odontogenesis on the actin stress fiber elasticity and focal adhesion formation is not known.

  9. The potential of dental stem cells differentiating into neurogenic cell lineage after cultivation in different modes in vitro.

    Science.gov (United States)

    Yang, Chao; Sun, Liang; Li, Xinghan; Xie, Li; Yu, Mei; Feng, Lian; Jiang, Zongting; Guo, Weihua; Tian, Weidong

    2014-10-01

    Trauma or degenerative diseases of the central nervous system (CNS) cause the loss of neurons or glial cells. Stem cell transplantation has become a vital strategy for CNS regeneration. It is necessary to effectively induce nonneurogenic stem cells to differentiate into neurogenic cell lineages because of the limited source of neurogenic stem cells, relatively difficult cultivation, and ethical issues. Previous studies have found that dental stem cells can be used for transplantation therapy. The aim of this study was to explore a better inductive mode and time point for dental stem cells to differentiate into neural-like cells and evaluate a better candidate cell. In this study, dental follicle stem cells (DFSCs), dental papilla stem cells (DPSCs), and stem cells from apical papilla (SCAPs) were cultivated in five different modes. The proliferation ability, morphology, and expression of neural marker genes were analyzed. Results showed that DFSCs showed a higher proliferation potential. The proliferation was decreased after cultivation in chemical inductive medium as cultivation modes 3 and 5. The cells could present neural-like cell morphology after cultivation with human epidermal growth factor (EGF) and fibroblast growth factor-basic (bFGF) as cultivation modes 4 and 5. The vast majority of DFSCs gene expression levels in mode 4 on the third day was upregulated significantly. In conclusion, our data suggested that different dental stem cells exhibited different neural differentiation potentials. DFSCs might be the better candidate cell type. Furthermore, cultivation mode 4 and timing of the third day may promote differentiation into neurogenic cell lineages more effectively before transplantation to treat neurological diseases.

  10. Osteogenic potential of platelet-rich plasma in dental stem-cell cultures.

    Science.gov (United States)

    Otero, L; Carrillo, N; Calvo-Guirado, J L; Villamil, J; Delgado-Ruíz, R A

    2017-09-01

    The purpose of this study was to analyse the potential of platelet-rich plasma (PRP) culture media to induce osteogenic differentiation of periodontal ligament stem cells and dental pulp stem cells compared with four other methods of culture. Both types of cell were collected from 35 healthy patients and cultured in five different media (Dulbecco's modified eagle's medium (DMEM); DMEM and melatonin; DMEM and PRP; DMEM and ascorbic acid 200μmol; DMEM and l-ascorbate 2-phosphate 50μmol). Cells were characterised by flow cytometry. Alizarin Red stain, alkaline phosphatase stain, and the expression of collagen type 1 (Col-1), runt-related transcription factor (RUNX2), osteoprotegerin, and osteopontin (quantified by qRT-PCR) were used to detect the osteogenic profile in each culture. Flow cytometry showed that both types of stem cell were a homogeneous mixture of CD90(+), CD105(+), STRO-1(+), CD34 (-), and CD45 (-) cells. Dental pulp stem cells that were cultured with PRP showed the best osteogenic profile (RUNX2 p=0.0002; osteoprotegerin p=0.001). The group of these stem cells that showed the best osteogenic profile was also cultured with PRP (osteoprotegerin p=0.001). Medium five (with l-ascorbate 2-phosphate 50μmol added) showed an increase in all osteogenic markers for periodontal ligament stem cells after PRP, while the best culture conditions for osteogenic expression of dental pulp stem cells after PRP was in medium four (ascorbic acid 200μmol added). These results suggested that culture in PRP induces osteogenic differentiation of both types of stem cell, modulating molecular pathways to promote bony formation. Copyright © 2017 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair

    OpenAIRE

    Zhi Chen; Shuo Chen; Li-An Wu; Guo-Hua Yuan; Guo-Bin Yang

    2010-01-01

    Introduction: Dentin sialoprotein (DSP) is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models.The hypothesis: DSP as a nature therapeutic agent stimu...

  12. Adult human dental pulp stem cells promote blood-brain barrier permeability through vascular endothelial growth factor-a expression.

    Science.gov (United States)

    Winderlich, Joshua N; Kremer, Karlea L; Koblar, Simon A

    2016-06-01

    Stem cell therapy is a promising new treatment option for stroke. Intravascular administration of stem cells is a valid approach as stem cells have been shown to transmigrate the blood-brain barrier. The mechanism that causes this effect has not yet been elucidated. We hypothesized that stem cells would mediate localized discontinuities in the blood-brain barrier, which would allow passage into the brain parenchyma. Here, we demonstrate that adult human dental pulp stem cells express a soluble factor that increases permeability across an in vitro model of the blood-brain barrier. This effect was shown to be the result of vascular endothelial growth factor-a. The effect could be amplified by exposing dental pulp stem cell to stromal-derived factor 1, which stimulates vascular endothelial growth factor-a expression. These findings support the use of dental pulp stem cell in therapy for stroke. © The Author(s) 2015.

  13. Effects of Growth Factors on Dental Stem/ProgenitorCells

    Science.gov (United States)

    Kim, Sahng G.; Solomon, Charles; Zheng, Ying; Suzuki, Takahiro; Mo, Chen; Song, Songhee; Jiang, Nan; Cho, Shoko; Zhou, Jian; Mao, Jeremy J.

    2014-01-01

    Synopsis The primary goal of regenerative endodontics is to restore the vitality and functions of the dentin-pulp complex, as opposed to filing of the root canal with bioinert materials. Structural restoration is also important but is likely secondary to vitality and functions. Myriads growth factors regulate multiple cellular functions including migration, proliferation, differentiation and apoptosis of several cell types that are intimately involved in dentin-pulp regeneration: odontoblasts, interstitial fibroblasts, vascular-endothelial cells and sprouting nerve fibers. Recent work showing that growth factor delivery, without cell transplantation, can yield pulp-dentin like tissues in vivo provides one of the tangible pathways for regenerative endodontics. This review synthesizes our knowledge on a multitude of growth factors that are known or anticipated to be efficacious in dental pulp-dentin regeneration. PMID:22835538

  14. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds.

    NARCIS (Netherlands)

    Yang, X.; Yang, F.; Walboomers, X.F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2010-01-01

    The aim of current study is to investigate the in vitro and in vivo behavior of dental pulp stem cells (DPSCs) seeded on electrospun poly(epsilon-caprolactone) (PCL)/gelatin scaffolds with or without the addition of nano-hydroxyapatite (nHA). For the in vitro evaluation, DNA content, alkaline phosph

  15. Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application

    Science.gov (United States)

    About, Imad

    2016-01-01

    Dental Mesenchymal Stem Cells (MSCs), including Dental Pulp Stem Cells (DPSCs), Stem Cells from Human Exfoliated Deciduous teeth (SHED), and Stem Cells From Apical Papilla (SCAP), have been extensively studied using highly sophisticated in vitro and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.” Thus, the essential next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review paper presents a concise overview of the major biological properties of the human dental MSCs, critical for the translational pathway “from bench to clinic.”

  16. Retracted: Effects of pro-inflammatory cytokines on mineralization potential of rat dental pulp stem cells

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Bian, Z.; Jansen, J.A.; Fan, M.

    2011-01-01

    The following article from the Journal of Tissue Engineering and Regenerative Medicine, 'Effects of Pro-inflammatory Cytokines on Mineralization Potential of Rat Dental Pulp Stem Cells' by Yang X, Walboomers XF, Bian Z, Jansen JA, Fan M, published online on 11 July 2011 in Wiley Online Library (onli

  17. Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application

    Directory of Open Access Journals (Sweden)

    Athina Bakopoulou

    2016-01-01

    Full Text Available Dental Mesenchymal Stem Cells (MSCs, including Dental Pulp Stem Cells (DPSCs, Stem Cells from Human Exfoliated Deciduous teeth (SHED, and Stem Cells From Apical Papilla (SCAP, have been extensively studied using highly sophisticated in vitro and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.” Thus, the essential next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review paper presents a concise overview of the major biological properties of the human dental MSCs, critical for the translational pathway “from bench to clinic.”

  18. The performance of human dental pulp stem cells on different three-dimensional scaffold materials.

    NARCIS (Netherlands)

    Zhang, W.; Walboomers, X.F.; Kuppevelt, A.H.M.S.M. van; Daamen, W.F.; Bian, Z.; Jansen, J.A.

    2006-01-01

    The aim of this study was to investigate the in vitro and in vivo behavior of human dental pulp stem cells (DPSCs) isolated from impacted third molars, when seeded onto different 3-dimensional (3-D) scaffold materials: i.e. a spongeous collagen, a porous ceramic, and a fibrous titanium mesh. Scaffol

  19. Retracted: Effects of pro-inflammatory cytokines on mineralization potential of rat dental pulp stem cells

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Bian, Z.; Jansen, J.A.; Fan, M.

    2011-01-01

    The following article from the Journal of Tissue Engineering and Regenerative Medicine, 'Effects of Pro-inflammatory Cytokines on Mineralization Potential of Rat Dental Pulp Stem Cells' by Yang X, Walboomers XF, Bian Z, Jansen JA, Fan M, published online on 11 July 2011 in Wiley Online Library

  20. Influence of different types of pulp treatment during isolation in the obtention of human dental pulp stem cells.

    Science.gov (United States)

    Viña-Almunia, J; Borras, C; Gambini, J; El Alamy, M; Peñarrocha, M; Viña, J

    2016-05-01

    Different methods have been used in order to isolate dental pulp stem cells. The aim of this study was to study the effect of different types of pulp treatment during isolation, under 3% O2 conditions, in the time needed and the efficacy for obtaining dental pulp stem cells. One hundred and twenty dental pulps were used to isolate dental pulp stem cells treating the pulp tissue during isolation using 9 different methods, using digestive, disgregation, or mechanical agents, or combining them. The cells were positive for CD133, Oct4, Nestin, Stro-1, CD34 markers, and negative for the hematopoietic cell marker CD-45, thus confirming the presence of mesenchymal stem cells. The efficacy of dental pulp stem cells obtention and the minimum time needed to obtain such cells comparing the 9 different methods was analyzed. Dental pulp stem cells were obtained from 97 of the 120 pulps used in the study, i.e. 80.8% of the cases. They were obtained with all the methods used except with mechanical fragmentation of the pulp, where no enzymatic digestion was performed. The minimum time needed to isolate dental pulp stem cells was 8 hours, digesting with 2mg/ml EDTA for 10 minutes, 4mg/ml of type I collagenase, 4mg/ml of type II dispase for 40 minutes, 13ng/ml of thermolysine for 40 minutes and sonicating the culture for one minute. Dental pulp stem cells were obtained in 97 cases from a series of 120 pulps. The time for obtaining dental pulp stem cells was reduced maximally, without compromising the obtention of the cells, by combining digestive, disgregation, and mechanical agents.

  1. Successful isolation, in vitro expansion and characterization of stem cells from Human Dental Pulp

    Directory of Open Access Journals (Sweden)

    Preethy SP

    2010-01-01

    Full Text Available BACKGROUND: Recent studies have shown that mesenchymal stem cells isolated from post natal human dental pulp, (Dental pulp stem cells-DPSCs which is from permanent teeth and SHED (stem cells from human exfoliated deciduous teeth,the Periodontal ligament stem cells (PDLSC and Stem cells from root Apical papilla(SCAPhave the potential to differentiate into cells of a variety of tissues including heart, muscle, cartilage, bone, nerve, salivary glands, teeth etc(1,2,3,4.This multipotential ability of DPSCs is being researched for clinical application for treating a variety of diseases like myocardial infarction, muscular dystrophy, neuro-degenerative disorders, cartilage replacement, tooth regeneration and for repair of bone defects to mention a few. Moreover, the isolation of stem cells from teeth is minimally invasive, readily accessible and the non immunogenic characteristic of dental stem cells has paved the way for efforts to store the exfoliated deciduous teeth or milk teeth which is usually discarded, for use in the future. In this study we have isolated and expanded in vitro, the cells obtained from human dental pulp. MATERIALS AND METHODS: After obtaining written informed consent, 24 teeth that were extracted for therapeutic or cosmetic reasons from 16 patients were used in this study. The specimens were transported from the clinic to NCRM lab taking 6 to 48 Hrs. For removal of the pulp tissue, the teeth were split obliquely at the Cementoenamel junction and the pulp tissue was isolated using brooches. The extracted pulp tissues were subjected to digestion using Collagenase type-I and type II at 37˚C for 15- 30 minutes. The digested cells were filtered with 70µm filter and centrifuged at 1800 rpm for 10 minutes. The pellet was then suspended in Dulbecco’s modified Eagle’s medium (DMEM/Ham’s F12 supplemented with 15% fetal bovine serum , 100 U/ml penicillin, 100 µg/ml streptomycin,2 m M L -glutamine, and 2 m M nonessential amino

  2. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation.

    Science.gov (United States)

    Xavier, Guilherme M; Patist, Amanda L; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T; Martinez-Barbera, Juan Pedro; Thavaraj, Selvam; Cobourne, Martyn T; Andoniadou, Cynthia L

    2015-09-28

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma.

  3. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation

    Science.gov (United States)

    Xavier, Guilherme M.; Patist, Amanda L.; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T.; Pedro Martinez-Barbera, Juan; Thavaraj, Selvam; Cobourne, Martyn T.; Andoniadou, Cynthia L.

    2015-01-01

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma. PMID:26411543

  4. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp

    DEFF Research Database (Denmark)

    Pierdomenico, Laura; Bonsi, Laura; Calvitti, Mario

    2005-01-01

    BACKGROUND: Bone marrow mesenchymal stem cells (MSCs) are currently being investigated in preclinical and clinical settings because of their multipotent differentiative capacity or, alternatively, their immunosuppressive function. The aim of this study was to evaluate dental pulp (DP) as a potent...... characteristics of DP-MSCs may prompt future studies aimed at using these cells in the treatment or prevention of T-cell alloreactivity in hematopoietic or solid organ allogeneic transplantation....

  5. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.

    Science.gov (United States)

    Chun, So Young; Soker, Shay; Jang, Yu-Jin; Kwon, Tae Gyun; Yoo, Eun Sang

    2016-02-01

    We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.

  6. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae; Jeon, Ryoung-Hoon; Jang, Si-Jung; Lee, Yeon-Mi [Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Park, Bong-Wook; Byun, June-Ho [Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju 660-702 (Korea, Republic of); Ahn, Chun-Seob; Kim, Jae-Won [Department of Microbiology, Division of Life Sciences, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Rho, Gyu-Jin, E-mail: jinrho@gnu.ac.kr [Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2014-01-01

    Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression of surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.

  7. Effect of Biodentine™ on the proliferation, migration and adhesion of human dental pulp stem cells.

    Science.gov (United States)

    Luo, Zhirong; Li, Dongmei; Kohli, Meetu R; Yu, Qing; Kim, Syngcuk; He, Wen-Xi

    2014-04-01

    To investigate the proliferative, migratory and adhesion effect of Biodentine™, a new tricalcium silicate cement formulation, on the human dental pulp stem cells (hDPSCs). The cell cultures of hDPSCs obtained from impacted third molars were treated with Biodentine™ extract at four different concentrations: Biodentine™ 0.02mg/ml (BD 0.02), Biodentine™ 0.2mg/ml (BD 0.2), Biodentine™ 2mg/ml (BD 2) and Biodentine™ 20mg/ml (BD 20). Human dental pulp stem cells proliferation was evaluated by MTT (3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) viability analysis at different times. Migration was investigated by microphotographs of wound healing and transwell migration assays. Adhesion assay was performed as well in presence of BD 0.2, BD 2 and blank control, while qRT-PCR (quantitative real-time reverse-transcriptase polymerase chain) was used for further analysis of the mRNA expression of chemokine and adhesion molecules in hDPSCs. Biodentine™ significantly increased proliferation of stem cells at BD 0.2 and BD 2 concentrations while decreased significantly at higher concentration of BD 20. BD 0.2 concentration had a statistically significant increased migration and adhesion abilities. In addition, qRT-PCR results showed that BD 0.2 could have effect on the mRNA expression of chemokines and adhesion molecules in human dental pulp stem cells. The data imply that Biodentine™ is a bioactive and biocompatible material capable of enhancing hDPSCs proliferation, migration and adhesion abilities. Biodentine™ when placed in direct contact with the pulp during pulp exposure can positively influence healing by enhancing the proliferation, migration and adhesion of human dental pulp stem cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Human dental pulp stem cell behavior using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine.

    Science.gov (United States)

    Olyveira, Gabriel Molina; Acasigua, Gerson Arisoly Xavier; Costa, Ligia Maria Manzine; Scher, Cristiane Regina; Xavier Filho, Lauro; Pranke, Patricia Helena Lucas; Basmaji, Pierre

    2013-08-01

    Adhesion and Viability study with human dental pulp stem cell using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine are presented at first time in this work. Nanotolith, are osteoinductors, i.e., they stimulate bone regeneration, enabling higher cells migration for bone tissue regeneration formation. This is mainly because nanotoliths are rich minerals present in the internal ear of bony fish. In addition, are part of a system which acts as a depth sensor and balance, acting as a sound vibrations detector and considered essential for the bone mineralization process, as in hydroxiapatites. Nanotoliths influence in bacterial cellulose was analyzed using transmission infrared spectroscopy (FTIR). Results shows that fermentation process and nanotoliths agglomeration decrease initial human dental pulp stem cell adhesion however tested bionanocomposite behavior has cell viability increase over time.

  9. TWIST1 Promotes the Odontoblast-like Differentiation of Dental Stem Cells

    OpenAIRE

    Li, Y.; Lu, Y.; Maciejewska, I.; Galler, Kerstin M.; Cavender, A.; D’Souza, R. N.

    2011-01-01

    Stem cells derived from the dental pulp of extracted human third molars (DPSCs) have the potential to differentiate into odontoblasts, osteoblasts, adipocytes, and neural cells when provided with the appropriate conditions. To advance the use of DPSCs for dentin regeneration, it is important to replicate the permissive signals that drive terminal events in odontoblast differentiation during tooth development. Such a strategy is likely to restore a dentin matrix that more resembles the tubular...

  10. Epigenetic modulation of dental pulp stem cells: implications for regenerative endodontics.

    Science.gov (United States)

    Duncan, H F; Smith, A J; Fleming, G J P; Cooper, P R

    2016-05-01

    Dental pulp stem cells (DPSCs) offer significant potential for use in regenerative endodontics, and therefore, identifying cellular regulators that control stem cell fate is critical to devising novel treatment strategies. Stem cell lineage commitment and differentiation are regulated by an intricate range of host and environmental factors of which epigenetic influence is considered vital. Epigenetic modification of DNA and DNA-associated histone proteins has been demonstrated to control cell phenotype and regulate the renewal and pluripotency of stem cell populations. The activities of the nuclear enzymes, histone deacetylases, are increasingly being recognized as potential targets for pharmacologically inducing stem cell differentiation and dedifferentiation. Depending on cell maturity and niche in vitro, low concentration histone deacetylase inhibitor (HDACi) application can promote dedifferentiation of several post-natal and mouse embryonic stem cell populations and conversely increase differentiation and accelerate mineralization in DPSC populations, whilst animal studies have shown an HDACi-induced increase in stem cell marker expression during organ regeneration. Notably, both HDAC and DNA methyltransferase inhibitors have also been demonstrated to dramatically increase the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) for use in regenerative therapeutic procedures. As the regulation of cell fate will likely remain the subject of intense future research activity, this review aims to describe the current knowledge relating to stem cell epigenetic modification, focusing on the role of HDACi on alteration of DPSC phenotype, whilst presenting the potential for therapeutic application as part of regenerative endodontic regimens. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. Derivation and growth characteristics of dental pulp stem cells from patients of different ages.

    Science.gov (United States)

    Wu, Wei; Zhou, Jian; Xu, Chong-Tao; Zhang, Jie; Jin, Yan-Jiao; Sun, Geng-Lin

    2015-10-01

    The dental pulp contains a relatively low number of stem cells; however, it is considered to be a promising source of stem cells for use in regenerative therapy. To date, it has remained elusive whether there are certain differences in the dental pulp stem cells (DPSCs) from donors of different ages. In the present study, DPSC lines were derived using teeth from children, adolescents, adults and aged donors. The derivation efficiency, the proliferative and apoptotic rate, cell marker expression and the differentiation capacity were investigated and compared among these DPSC lines. The derivation efficacy was decreased with increasing donor age. Although a large part of cell surface markers was expressed in all DPSC lines, the expression of CD29 was downregulated in the DPSCs from aged teeth. In addition, the doubling time of DPSCs from aged teeth was prolonged and the number of apoptotic cells was increased with the propagation. These DPSCs were able to differentiate into a neuronal linage, which positively expressed the neuron-specific class III beta-tubulin and microtubule‑associated protein 2, as well as into an osteogenic lineage, which positively expressed CD45; however, these DPSCs from aged teeth were completely or partially deprived of differentiation capacity. By contrast, DPSCs from younger teeth displayed significantly higher vitality and a higher potential for use in dental regenerative medicine.

  12. In vivo administration of dental epithelial stem cells at the apical end of the mouse incisor

    Directory of Open Access Journals (Sweden)

    Giovanna eOrsini

    2015-04-01

    Full Text Available Cell-based tissue regeneration is an attractive approach that complements traditional surgical techniques for replacement of injured and lost tissues. The continuously growing rodent incisor provides an excellent model system for investigating cellular and molecular mechanisms that underlie tooth renewal and regeneration. An active population of dental epithelial progenitor/stem cells located at the posterior part of the incisor, commonly called cervical loop area, ensures the continuous supply of cells that are responsible for the secretion of enamel matrix. To explore the potential of these epithelial cells in therapeutic approaches dealing with enamel defects, we have developed a new method for their in vivo administration in the posterior part of the incisor. Here we provide the step-by-step protocol for the isolation of dental epithelial stem cells and their delivery at targeted areas of the jaw. This simple and yet powerful protocol, consisting in drilling a hole in the mandibular bone, in close proximity to the cervical loop area of the incisor, followed up by injection of stem cells, is feasible, reliable, and effective. This in vivo approach opens new horizons and possibilities for cellular therapies involving pathological and injured dental tissues.

  13. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Bing Song

    2016-01-01

    Full Text Available Dental pulp stem cells (DPSCs are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1. After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering.

  14. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells.

    Science.gov (United States)

    Galler, K M; Widbiller, M; Buchalla, W; Eidt, A; Hiller, K-A; Hoffer, P C; Schmalz, G

    2016-06-01

    To evaluate the effect of dentine conditioning on migration, adhesion and differentiation of dental pulp stem cells. Dentine discs prepared from extracted human molars were pre-treated with EDTA (10%), NaOCl (5.25%) or H2 O. Migration of dental pulp stem cells towards pre-treated dentine after 24 and 48 h was assessed in a modified Boyden chamber assay. Cell adhesion was evaluated indirectly by measuring cell viability. Expression of mineralization-associated genes (COL1A1, ALP, BSP, DSPP, RUNX2) in cells cultured on pre-treated dentine for 7 days was determined by RT-qPCR. Nonparametric statistical analysis was performed for cell migration and cell viability data to compare different groups and time-points (Mann-Whitney U-test, α = 0.05). Treatment of dentine with H2 O or EDTA allowed for cell attachment, which was prohibited by NaOCl with statistical significance (P = 0.000). Furthermore, EDTA conditioning induced cell migration towards dentine. The expression of mineralization-associated genes was increased in dental pulp cells cultured on dentine after EDTA conditioning compared to H2 O-pre-treated dentine discs. EDTA conditioning of dentine promoted the adhesion, migration and differentiation of dental pulp stem cells towards or onto dentine. A pre-treatment with EDTA as the final step of an irrigation protocol for regenerative endodontic procedures has the potential to act favourably on new tissue formation within the root canal. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Laser Phototherapy Enhances Mesenchymal Stem Cells Survival in Response to the Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Ivana Márcia Alves Diniz

    2015-01-01

    Full Text Available Background. We investigated the influence of laser phototherapy (LPT on the survival of human mesenchymal stem cells (MSCs submitted to substances leached from dental adhesives. Method. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs, 780 nm, 0.04 cm2, 40 mW, 1 W/cm2, 0.4 J, 10 seconds, 1 point, 10 J/cm2. After 24 h, cell viability was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction assay. Data were statistically compared by ANOVA followed by Tukey’s test (P<0.05. Results. Different cell types showed different viabilities in response to the same materials. Substances leached from adhesives were less cytotoxic to MSCs than to other cell types. Substances leached from Clearfil SE Bond were highly cytotoxic to all cell types tested, except to the MSCs when applied polymerized and in association with LPT. LPT was unable to significantly increase the cell viability of fibroblasts and osteoblast-like cells submitted to the dental adhesives. Conclusion. LPT enhances mesenchymal stem cells survival in response to substances leached from dental adhesives.

  16. Human dental pulp stem cell is a promising autologous seed cell for bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    LI Jing-hui; LIU Da-yong; ZHANG Fang-ming; WANG Fan; ZHANG Wen-kui; ZHANG Zhen-ting

    2011-01-01

    Background The seed cell is a core problem in bone tissue engineering research.Recent research indicates that human dental pulp stem cells (hDPSCs) can differentiate into osteoblasts in vitro,which suggests that they may become a new kind of seed cells for bone tissue engineering.The aim of this study was to evaluate the osteogenic differentiation of hDPSCs in vitro and bone-like tissue formation when transplanted with three-dimensional gelatin scaffolds in vivo,and hDPSCs may become appropriate seed cells for bone tissue engineering.Methods We have utilized enzymatic digestion to obtain hDPSCs from dental pulp tissue extracted during orthodontic treatment.After culturing and expansion to three passages,the cells were seeded in 6-well plates or on three-dimensional gelatin scaffolds and cultured in osteogenic medium.After 14 days in culture,the three-dimensional gelatin scaffolds were implanted subcutaneously in nude mice for 4 weeks.In 6-well plate culture,osteogenesis was assessed by alkaline phosphatase staining,Von Kossa staining,and reverse transcription-polymerase chain reaction (RT-PCR) analysis of the osteogenesis-specific genes type I collagen (COL l),bone sialoprotein (BSP),osteocalcin (OCN),RUNX2,and osterix (OSX).In three-dimensional gelatin scaffold culture,X-rays,hematoxylin/eosin staining,and immunohistochemical staining were used to examine bone formation.Results In vitro studies revealed that hDPSCs do possess osteogenic differentiation potential.In vivo studies revealed that hDPSCs seeded on gelatin scaffolds can form bone structures in heterotopic sites of nude mice.Conclusions These findings suggested that hDPSCs may be valuable as seed cells for bone tissue engineering.As a special stem cell source,hDPSCs may blaze a new path for bone tissue engineering.

  17. Survival of Dental Pulp Stem Cells: The effect of Soymilk and Milk

    Directory of Open Access Journals (Sweden)

    Fatemeh Sholehvar

    2015-11-01

    Full Text Available Background & Objectives: Dental pulp stem cells (DPSCs are alternate source of mesenchymal stem cells. Subsequent to tooth avulsion and fracture, DPSCs can play a prominent role in tissue regeneration. This study was conducted to evaluate the effect of soymilk and milk on survival of dental pulp stem cells. Materials & Methods: DPSCs were isolated from 16 freshly extracted incisors of 5 rabbits. The 3rd passage was seeded in 24 well plates, and after 3 days, soymilk, cow milk, HBSS, and distilled water were replaced with culture media. After 45 minutes, 1.5, 3, and 6 hours, the viability of DPSCs were investigated. Mesenchymal nature of stem cells was investigated by RT-PCR. The cell viability was determined by Trypan blue exclusion. Karyotyping was done to evaluate the cytogenetic stability of cells.  Results: The viability of DPSCs in all media were significantly more than distilled water at all intervals. After 6 h, the viability of DPSCs in soymilk, cow milk, and HBSS were 100,000±0.00, 100,000±0.00, and 74.74±5.70, respectively. After 6 h, both soymilk and cow milk maintained cells significantly better than HBSS. Conclusion: Like cow milk, soymilk is a suitable alternative transfer media for avulsed and broken teeth that can increase the survival of DPSCs.   

  18. Deciphering the Epigenetic Code in Embryonic and Dental Pulp Stem Cells.

    Science.gov (United States)

    Bayarsaihan, Dashzeveg

    2016-12-01

    A close cooperation between chromatin states, transcriptional modulation, and epigenetic modifications is required for establishing appropriate regulatory circuits underlying self-renewal and differentiation of adult and embryonic stem cells. A growing body of research has established that the epigenome topology provides a structural framework for engaging genes in the non-random chromosomal interactions to orchestrate complex processes such as cell-matrix interactions, cell adhesion and cell migration during lineage commitment. Over the past few years, the functional dissection of the epigenetic landscape has become increasingly important for understanding gene expression dynamics in stem cells naturally found in most tissues. Adult stem cells of the human dental pulp hold great promise for tissue engineering, particularly in the skeletal and tooth regenerative medicine. It is therefore likely that progress towards pulp regeneration will have a substantial impact on the clinical research. This review summarizes the current state of knowledge regarding epigenetic cues that have evolved to regulate the pluripotent differentiation potential of embryonic stem cells and the lineage determination of developing dental pulp progenitors.

  19. Deciphering the Epigenetic Code in Embryonic and Dental Pulp Stem Cells

    Science.gov (United States)

    Bayarsaihan, Dashzeveg

    2016-01-01

    A close cooperation between chromatin states, transcriptional modulation, and epigenetic modifications is required for establishing appropriate regulatory circuits underlying self-renewal and differentiation of adult and embryonic stem cells. A growing body of research has established that the epigenome topology provides a structural framework for engaging genes in the non-random chromosomal interactions to orchestrate complex processes such as cell-matrix interactions, cell adhesion and cell migration during lineage commitment. Over the past few years, the functional dissection of the epigenetic landscape has become increasingly important for understanding gene expression dynamics in stem cells naturally found in most tissues. Adult stem cells of the human dental pulp hold great promise for tissue engineering, particularly in the skeletal and tooth regenerative medicine. It is therefore likely that progress towards pulp regeneration will have a substantial impact on the clinical research. This review summarizes the current state of knowledge regarding epigenetic cues that have evolved to regulate the pluripotent differentiation potential of embryonic stem cells and the lineage determination of developing dental pulp progenitors. PMID:28018144

  20. Oral features and dental health in Hurler Syndrome following hematopoietic stem cell transplantation.

    LENUS (Irish Health Repository)

    McGovern, Eleanor

    2012-02-01

    BACKGROUND: Hurler Syndrome is associated with a deficiency of a specific lysosomal enzyme involved in the degradation of glycosaminoglycans. Hematopoietic stem cell transplantation (HSCT) in early infancy is undertaken to help prevent the accumulation of glycosaminoglycans and improve organ function. AIM: To investigate the oral features and dental health of patients with Hurler Syndrome who have undergone successful HSCT. MATERIALS AND METHODS: Twenty-five patients (median age 8.6 years) post-HSCT (mean age 9.4 months) underwent oral assessment (mean of 7.5 years post-HSCT). RESULTS: Dental development was delayed. Numerous occlusal anomalies were noted including: open-bite, class III skeletal base, dental spacing, primary molar infra-occlusion and ectopic tooth eruption. Dental anomalies included hypodontia, microdontia, enamel defects, thin tapering canine crowns, pointed molar cusps, bulbous molar crowns and molar taurodontism. Tooth roots were usually short\\/blunted\\/spindle-like in permanent molars. The prevalence of dental caries was low in the permanent dentition (mean DMFT 0.7) but high in the primary dentition (mean dmft 2.4). Oral hygiene instruction with plaque and or calculus removal was indicated in 71% of those that were dentate. CONCLUSION: Patients with Hurler Syndrome post-HSCT are likely to have delayed dental development, a malocclusion, and dental anomalies, particularly hypodontia and microdontia.

  1. Laser phototherapy enhances mesenchymal stem cells survival in response to the dental adhesives.

    Science.gov (United States)

    Diniz, Ivana Márcia Alves; Matos, Adriana Bona; Marques, Márcia Martins

    2015-01-01

    We investigated the influence of laser phototherapy (LPT) on the survival of human mesenchymal stem cells (MSCs) submitted to substances leached from dental adhesives. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs, 780 nm, 0.04 cm(2), 40 mW, 1 W/cm(2), 0.4 J, 10 seconds, 1 point, 10 J/cm(2)). After 24 h, cell viability was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction assay. Data were statistically compared by ANOVA followed by Tukey's test (P adhesives were less cytotoxic to MSCs than to other cell types. Substances leached from Clearfil SE Bond were highly cytotoxic to all cell types tested, except to the MSCs when applied polymerized and in association with LPT. LPT was unable to significantly increase the cell viability of fibroblasts and osteoblast-like cells submitted to the dental adhesives. LPT enhances mesenchymal stem cells survival in response to substances leached from dental adhesives.

  2. Role of angiogenesis in endodontics: contributions of stem cells and proangiogenic and antiangiogenic factors to dental pulp regeneration.

    Science.gov (United States)

    Saghiri, Mohammad Ali; Asatourian, Armen; Sorenson, Christine M; Sheibani, Nader

    2015-06-01

    Dental pulp regeneration is a part of regenerative endodontics, which includes isolation, propagation, and re-transplantation of stem cells inside the prepared root canal space. The formation of new blood vessels through angiogenesis is mandatory to increase the survival rate of re-transplanted tissues. Angiogenesis is defined as the formation of new blood vessels from preexisting capillaries, which has great importance in pulp regeneration and homeostasis. Here the contribution of human dental pulp stem cells and proangiogenic and antiangiogenic factors to angiogenesis process and regeneration of dental pulp is reviewed. A search was performed on the role of angiogenesis in dental pulp regeneration from January 2005 through April 2014. The recent aspects of the relationship between angiogenesis, human dental pulp stem cells, and proangiogenic and antiangiogenic factors in regeneration of dental pulp were assessed. Many studies have indicated an intimate relationship between angiogenesis and dental pulp regeneration. The contribution of stem cells and mechanical and chemical factors to dental pulp regeneration has been previously discussed. Angiogenesis is an indispensable process during dental pulp regeneration. The survival of inflamed vital pulp and engineered transplanted pulp tissue are closely linked to the process of angiogenesis at sites of application. However, the detailed regulatory mechanisms involved in initiation and progression of angiogenesis in pulp tissue require investigation. Published by Elsevier Inc.

  3. Bioactive injectable aggregates with nanofibrous microspheres and human dental pulp stem cells: A translational strategy in dental endodontics.

    Science.gov (United States)

    Garzón, I; Martin-Piedra, M A; Carriel, V; Alaminos, M; Liu, X; D'Souza, R N

    2017-01-12

    Regeneration of the pulp-dentin complex with stem cells is a potential alternative to conventional root canal treatments. Human dental pulp stem cells (hDPSCs) have been extensively studied because of their ability to proliferate and differentiate into mineralized dental and non-dental tissues. Here we combined hDPSCs with two types of injectable poly-l-lactic acid (PLLA) microsphere with a nanofibrous or smooth surface to form bioactive injectable aggregates, and examined their ability to promote pulp regeneration in the root canal in an in vivo model. We investigated the biocompatibility, biosafety and odontogenic potential of fibrous (F-BIM) and smooth bioactive injectable microspheres (S-BIM) in vitro and in vivo. Our results demonstrated that PLLA microspheres and hDPSCs were able to form bioactive injectable aggregates that promoted dentin regeneration in both in vitro and in vivo models. Our results suggest that F-BIM and S-BIM may induce dentinogenesis upon in vivo grafting, and propose that the potential usefulness of the microsphere-hDPSC aggregates described here should be evaluated in clinical settings. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Properties of Dental Pulp-derived Mesenchymal Stem Cells and the Effects of Culture Conditions.

    Science.gov (United States)

    Kawashima, Nobuyuki; Noda, Sonoko; Yamamoto, Mioko; Okiji, Takashi

    2017-09-01

    Dental pulp mesenchymal stem cells (DPMSCs) highly express mesenchymal stem cell markers and possess the potential to differentiate into neural cells, osteoblasts, adipocytes, and chondrocytes. Thus, DPMSCs are considered suitable for tissue regeneration. The colony isolation method has commonly been used to collect relatively large amounts of heterogeneous DPMSCs. Homogenous DPMSCs can be isolated by fluorescence-activated cell sorting using antibodies against mesenchymal stem cell markers, although this method yields a limited number of cells. Both quality and quantity of DPMSCs are critical to regenerative therapy, and cell culture methods need to be improved. We thus investigated the properties of DPMSCs cultured with different methods. DPMSCs in a three-dimensional spheroid culture system, which is similar to the hanging drop culture for differentiation of embryonic stem cells, showed upregulation of odonto-/osteoblastic markers and mineralized nodule formation. This suggests that this three-dimensional spheroid culturing system for DPMSCs may be suitable for inducing hard tissues. We further examined the effect of cell culture density on the properties of DPMSCs because the properties of stem cells can be altered depending on the cell density. DPMSCs cultured under the confluent cell density condition showed slight downregulation of some mesenchymal stem cell markers compared with those under the sparse condition. The ability of DPMSCs to differentiate into hard tissue-forming cells was found to be enhanced in the confluent condition, suggesting that the confluent culture condition may not be suitable for maintaining the stemness of DPMSCs. When DPMSCs are to be used for hard tissue regeneration, dense followed by sparse cell culture conditions may be a better alternative strategy. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Differentiation of Dental Pulp Stem Cells on Gutta-Percha Scaffolds

    OpenAIRE

    Liudi Zhang; Yingjie Yu; Christopher Joubert; George Bruder; Ying Liu; Chung-Chueh Chang; Marcia Simon; Walker, Stephen G.; Miriam Rafailovich

    2016-01-01

    Advances in treatment of tooth injury have shown that tooth regeneration from the pulp was a viable alternative of root canal therapy. In this study, we demonstrated that Gutta-percha, nanocomposites primarily used for obturation of the canal, are not cytotoxic and can induce differentiation of dental pulp stem cells (DPSC) in the absence of soluble mediators. Flat scaffolds were obtained by spin coating Si wafers with three Gutta-percha compounds: GuttaCore™, ProTaper™, and Lexicon™. The ima...

  6. Mobilized dental pulp stem cells for pulp regeneration: initiation of clinical trial.

    Science.gov (United States)

    Nakashima, Misako; Iohara, Koichiro

    2014-04-01

    Stem cell therapy is a potential strategy to regenerate the dentin-pulp complex, enabling the conservation and restoration of functional teeth. We assessed the efficacy and safety of pulp stem cell transplantation as a prelude before the initiation of clinical trials. Granulocyte-colony stimulating factor (G-CSF) induces subsets of dental pulp stem cells to form mobilized dental pulp stem cells (MDPSCs). Good manufacturing practice is a prerequisite for the isolation and expansion of MDPSCs that are enriched in stem cells, expressing a high level of trophic factors with properties of high proliferation, migration, and antiapoptotic effects and endowed with regenerative potential. The quality of clinical-grade MDPSCs was assured by the absence of abnormalities/aberrations in karyotype and the lack of tumor formation after transplantation in immunodeficient mice. Autologous transplantation of MDPSCs with G-CSF in pulpectomized teeth in dogs augmented the regeneration of pulp tissue. The combinatorial trophic effects of MDPSCs and G-CSF on cell migration, antiapoptosis, immunosuppression, and neurite outgrowth were also confirmed in vitro. Furthermore, MDPSCs from the aged donors were as potent as the young donors. It is noteworthy that there were no significant age-related changes in biological properties such as stability, regenerative potential, and expression of the senescence markers in MDPSCs. On the other hand, autologous transplantation of MDPSCs with G-CSF induced less regenerated pulp tissue in the aged dogs compared with the young dogs. In conclusion, the preclinical safety, feasibility, and efficacy of pulp regeneration by MDPSCs and G-CSF were established. Therefore, the standardization and establishment of regulatory guidelines for stem cell therapy in clinical endodontics is now a reality. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp- and umbilical cord-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Struys, T.; Moreels, M.; Martens, W.; Donders, R.; Wolfs, E.; Lambrichts, I.

    2011-01-01

    Mesenchymal stem cells (MSCs) are one of the most promising stem cell types due to their availability and relatively simple requirements for in vitro expansion and genetic manipulation. Besides the well-characterized MSCs derived from bone marrow, there is growing evidence suggesting that dental pul

  8. Carious deciduous teeth are a potential source for dental pulp stem cells.

    Science.gov (United States)

    Werle, Stefanie Bressan; Lindemann, Daniele; Steffens, Daniela; Demarco, Flávio Fernando; de Araujo, Fernando Borba; Pranke, Patrícia; Casagrande, Luciano

    2016-01-01

    The objectives of this study are to isolate, cultivate, and characterize stem cells from the pulp of carious deciduous teeth (SCCD) and compare them to those retrieved from sound deciduous teeth (SHED--stem cells from human exfoliated deciduous teeth). Cells were obtained of dental pulp collected from sound (n = 10) and carious (n = 10) deciduous human teeth. Rate of isolation, proliferation assay (0, 1, 3, 5, and 7 days), STRO-1, mesenchymal (CD29, CD73, and CD90) and hematopoietic surface marker expression (CD14, CD34, CD45, HLA-DR), and differentiation capacity were evaluated. Isolation success rates were 70 and 80 % from the carious and sound groups, respectively. SCCD and SHED presented similar proliferation rate. There were no statistical differences between the groups for the tested surface markers. The cells from sound and carious deciduous teeth were positive for CD29, CD73, and CD90 and negative for CD14, CD34, CD45, and HLA-DR and were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages. SCCD demonstrated a similar pattern of proliferation, immunophenotypical characteristics, and differentiation ability as those obtained from sound deciduous teeth. These SCCD represent a feasible source of stem cells. Decayed deciduous teeth have been usually discarded once the pulp tissue could be damaged and the activity of stem cells compromised. These findings show that stem cells from carious deciduous teeth can be applicable source for cell-based therapies in tissue regeneration.

  9. Plasticity of Ectomesenchymal Stem Cells and its Ability of Producing Tissue Engineering Tooth by Recombining with Dental Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Yan JIN; Liu-Yu BAO; Yi-Jing WANG; Hui-Xia HE

    2005-01-01

    @@ 1 Introduction Recently, it has been found that human dental pulp stem cells could generate dentin-pulp complex-like structures in nude mice, but studies on tissue engineering tooth-like structures by cultured human dental epithelial and mesenchymal stem cells are still reported rarely. Ectomesenchyme is an unique structure of vertebrates embryo compose of postmigratory cephalic neural crest cells(NCC) and its derivatives. The aim of the present study was to identify and isolate the ectomesenchymal stem cells(EMSC) and to demonstrate that EMSCs have the ability of plasticity both in vivo and in vitro. The further interesting was to evaluate the role of EMSC in producing of a tissue engineering tooth together with odontogenic epithelium.

  10. Comparison of osteo/odontogenic differentiation of human adult dental pulp stem cells and stem cells from apical papilla in the presence of platelet lysate.

    Science.gov (United States)

    Abuarqoub, Duaa; Awidi, Abdalla; Abuharfeil, Nizar

    2015-10-01

    Human dental pulp cells (DPSCs) and stem cells from apical papilla have been used for the repair of damaged tooth tissues. Human platelet lysate (PL) has been suggested as a substitute for fetal bovine serum (FBS) for large scale expansion of dental stem cells. However, biological effects and optimal concentrations of PL for proliferation and differentiation of human dental stem cells remain to be elucidated. DPSCs and SCAP cells were isolated from impacted third molars of young healthy donors, at the stage of root development and identified by markers using flow cytometry. For comparison the cells were cultured in media containing PL (1%, 5% and 10%) and FBS, with subsequent induction for osteogenic/odontogenic differentiation. The cultures were analyzed for; morphology, growth characteristics, mineralization potential (Alizarin Red method) and differentiation markers using ELISA and real time -polymerase chain reaction (qPCR). The proliferation rates of DPSCs and SCAP significantly increased when cells were treated with 5% PL (7X doubling time) as compared to FBS. 5% PL also enhanced mineralized differentiation of DPSCs and SCAP, as indicated by the measurement of alkaline phosphatase activity, osteocalcin and osteopontin, calcium deposition and q-PCR. Our findings suggest that using 5% platelet lysate, proliferation and osteo/odontogenesis of DPSCs and SCAP for a short period of time (15 days), was significantly improved. This may imply its use as an optimum concentration for expansion of dental stem cells in bone regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging

    Directory of Open Access Journals (Sweden)

    Wang Ruoning

    2010-05-01

    Full Text Available Abstract Background Dental pulp stem cells (DPSCs can be driven into odontoblast, osteoblast, and chondrocyte lineages in different inductive media. However, the differentiation potential of naive DPSCs after serial passaging in the routine culture system has not been fully elucidated. Results DPSCs were isolated from human/rat dental pulps by the magnetic activated cell sorting based on STRO-1 expression, cultured and passaged in the conventional culture media. The biological features of STRO-1+ DPSCs at the 1st and 9th passages were investigated. During the long-term passage, the proliferation ability of human STRO-1+ DPSCs was downregulated as indicated by the growth kinetics. When compared with STRO-1+ DPSCs at the 1st passage (DPSC-P1, the expression of mature osteoblast-specific genes/proteins (alkaline phosphatase, bone sialoprotein, osterix, and osteopontin, odontoblast-specific gene/protein (dentin sialophosphoprotein and dentin sialoprotein, and chondrocyte-specific gene/protein (type II collagen was significantly upregulated in human STRO-1+ DPSCs at the 9th passage (DPSC-P9. Furthermore, human DPSC-P9 cells in the mineralization-inducing media presented higher levels of alkaline phosphatase at day 3 and day 7 respectively, and produced more mineralized matrix than DPSC-P9 cells at day 14. In vivo transplantation results showed that rat DPSC-P1 cell pellets developed into dentin, bone and cartilage structures respectively, while DPSC-P9 cells can only generate bone tissues. Conclusions These findings suggest that STRO-1+ DPSCs consist of several interrelated subpopulations which can spontaneously differentiate into odontoblasts, osteoblasts, and chondrocytes. The differentiation capacity of these DPSCs changes during cell passaging, and DPSCs at the 9th passage restrict their differentiation potential to the osteoblast lineage in vivo.

  12. Osteogenic differentiation of mesenchymal stem cells from dental bud: Role of integrins and cadherins

    Directory of Open Access Journals (Sweden)

    Adriana Di Benedetto

    2015-11-01

    Full Text Available Several studies have reported the beneficial effects of mesenchymal stem cells (MSCs in tissue repair and regeneration. New sources of stem cells in adult organisms are continuously emerging; dental tissues have been identified as a source of postnatal MSCs. Dental bud is the immature precursor of the tooth, is easy to access and we show in this study that it can yield a high number of cells with ≥95% expression of mesenchymal stemness makers and osteogenic capacity. Thus, these cells can be defined as Dental Bud Stem Cells (DBSCs representing a promising source for bone regeneration of stomatognathic as well as other systems. Cell interactions with the extracellular matrix (ECM and neighboring cells are critical for tissue morphogenesis and architecture; such interactions are mediated by integrins and cadherins respectively. We characterized DBSCs for the expression of these adhesion receptors and examined their pattern during osteogenic differentiation. Our data indicate that N-cadherin and cadherin-11 were expressed in undifferentiated DBSCs and their expression underwent changes during the osteogenic process (decreasing and increasing respectively, while expression of E-cadherin and P-cadherin was very low in DBSCs and did not change during the differentiation steps. Such expression pattern reflected the mesenchymal origin of DBSCs and confirmed their osteoblast-like features. On the other hand, osteogenic stimulation induced the upregulation of single subunits, αV, β3, α5, and the formation of integrin receptors α5β1 and αVβ3. DBSCs differentiation toward osteoblastic lineage was enhanced when cells were grown on fibronectin (FN, vitronectin (VTN, and osteopontin (OPN, ECM glycoproteins which contain an integrin-binding sequence, the RGD motif. In addition we established that integrin αVβ3 plays a crucial role during the commitment of MSCs to osteoblast lineage, whereas integrin α5β1 seems to be dispensable. These data suggest

  13. Expression of the stem cell marker, SOX2, in ameloblastoma and dental epithelium.

    Science.gov (United States)

    Juuri, Emma; Isaksson, Sanna; Jussila, Maria; Heikinheimo, Kristiina; Thesleff, Irma

    2013-12-01

    Ameloblastomas are locally invasive odontogenic tumors that exhibit a high rate of recurrence and often associate with the third molars. They are suggested to originate from dental epithelium because the tumor cells resemble epithelial cells of developing teeth. Expression of the transcription factor SOX2 has been previously localized in epithelial stem and progenitor cells in developing teeth as well as in various tumors. Here, we show that SOX2 is expressed in the epithelial cells of follicular and plexiform ameloblastomas. SOX2 was localized in the dental lamina of developing human primary molars. It was also expressed in the fragmented dental lamina associated with the third molars and in the epithelium budding from its posterior aspect in mice. However, no SOX2 expression was detected in either Hertwig's epithelial root sheath directing the formation of roots or in the epithelial cell rests of Malassez covering the completed roots. SOX2 was associated with supernumerary tooth formation in odontoma-like tumors induced by Wnt signal activation in mice. We propose that SOX2 functions in maintaining the progenitor state of epithelium in ameloblastomas and that ameloblastomas may originate from SOX2-expressing dental lamina epithelium.

  14. Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells.

    Science.gov (United States)

    Kumar, Ajay; Bhattacharyya, Shalmoli; Rattan, Vidya

    2015-12-01

    Human dental pulp stem cells (hDPSCs) hold great promise as a source of adult stem cells for utilization in regenerative medicine. Successful storage and post thaw recovery of DPSCs without loss of function is a key issue for future clinical application. Most of the cryopreservation methods use controlled rate freezing and vapor phase nitrogen to store stem cells. But these methods are both expensive and laborious. In this study, we isolated DPSCs from a patient undergoing impacted mandibular third molar extraction. We adopted eight different methods of cryopreservation at -80 °C for long term storage of the DPSC aliquots. Various parameters like proliferation, cell death, cell cycle, retention of stemness markers and differentiation potential were studied post cryopreservation period of 1 year. We observed successful recovery of stem cells in every method and a significant difference in proliferation potential and cell death between samples stored by different methods. However, post thaw, all cells retained their stemness markers. All DPSCs stored by different methods were able to differentiate into osteoblast like cells, adipocytes and neural cells. Based on these parameters we concluded that uncontrolled freezing at a temperature of -80 °C is as effective as controlled freezing using ethanol vessels and other cryopreservation methods. To the best of our knowledge, our study provides the first proof of concept that long term storage in uncontrolled freezing of cells at -80 °C in 10 % DMSO does not affect the revival capacity of hDPSCs. This implies that DPSCs may be used successfully for tissue engineering and cell based therapeutics even after long term, uncontrolled cryopreservation.

  15. The effects of hypoxia on the stemness properties of human dental pulp stem cells (DPSCs)

    Science.gov (United States)

    Ahmed, Nermeen El-Moataz Bellah; Murakami, Masashi; Kaneko, Satoru; Nakashima, Misako

    2016-01-01

    Recent studies have demonstrated that culture under hypoxia has beneficial effects on mesenchymal stem cells (MSCs). However, there are limitations to achieving a stable condition in conventional hypoxic CO2 incubators. DPSCs are a unique type of MSCs which are promising in many regenerative therapies. In this study, we investigated the ideal hypoxic culture environment for DPSCs using a new system that can provide controlled O2 environment. The effects of hypoxia (3%, 5%) on the stemness properties of DPSCs. Their morphology, proliferation rate, expression of stem cell markers, migration ability, mRNA expression of angiogenic/neurotrophic factors and immunomodulatory genes were evaluated and compared. Additionally, the effect of the discrete secretome on proliferation, migration, and neurogenic induction was assessed. Hypoxic DPSCs were found to be smaller in size and exhibited larger nuclei. 5% O2 significantly increased the proliferation rate, migration ability, expression of stem cell markers (CXCR4 and G-CSFR), and expression of SOX2, VEGF, NGF, and BDNF genes of DPSCs. Moreover, secretome collected from 5%O2 cultures displayed higher stimulatory effects on proliferation and migration of NIH3T3 cells and on neuronal differentiation of SH-SY5Y cells. These results demonstrate that 5%O2 may be ideal for enhancing DPSCs growth, stem cell properties, and secretome trophic effect. PMID:27739509

  16. Vitamin D Effects on Osteoblastic Differentiation of Mesenchymal Stem Cells from Dental Tissues

    Science.gov (United States)

    Di Benedetto, Adriana; Cavalcanti-Adam, Elisabetta A.; Porro, Chiara; Trotta, Teresa; Grano, Maria

    2016-01-01

    1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the active metabolite of vitamin D (Vit D), increases intestinal absorption of calcium and phosphate, maintaining a correct balance of bone remodeling. Vit D has an anabolic effect on the skeletal system and is key in promoting osteoblastic differentiation of human Mesenchymal Stem Cells (hMSCs) from bone marrow. MSCs can be also isolated from the immature form of the tooth, the dental bud: Dental Bud Stem Cells (DBSCs) are adult stem cells that can effectively undergo osteoblastic differentiation. In this work we investigated the effect of Vit D on DBSCs differentiation into osteoblasts. Our data demonstrate that DBSCs, cultured in an opportune osteogenic medium, differentiate into osteoblast-like cells; Vit D treatment stimulates their osteoblastic features, increasing the expression of typical markers of osteoblastogenesis like RUNX2 and Collagen I (Coll I) and, in a more important way, determining a higher production of mineralized matrix nodules. PMID:27956902

  17. Adhesion and proliferation of human mesenchymal stem cells from dental pulp on porous silicon scaffolds.

    Science.gov (United States)

    Collart-Dutilleul, Pierre-Yves; Secret, Emilie; Panayotov, Ivan; Deville de Périère, Dominique; Martín-Palma, Raúl J; Torres-Costa, Vicente; Martin, Marta; Gergely, Csilla; Durand, Jean-Olivier; Cunin, Frédérique; Cuisinier, Frédéric J

    2014-02-12

    In regenerative medicine, stem-cell-based therapy often requires a scaffold to deliver cells and/or growth factors to the injured site. Porous silicon (pSi) is a promising biomaterial for tissue engineering as it is both nontoxic and bioresorbable. Moreover, surface modification can offer control over the degradation rate of pSi and can also promote cell adhesion. Dental pulp stem cells (DPSC) are pluripotent mesenchymal stem cells found within the teeth and constitute a readily source of stem cells. Thus, coupling the good proliferation and differentiation capacities of DPSC with the textural and chemical properties of the pSi substrates provides an interesting approach for therapeutic use. In this study, the behavior of human DPSC is analyzed on pSi substrates presenting pores of various sizes, 10 ± 2 nm, 36 ± 4 nm, and 1.0 ± 0.1 μm, and undergoing different chemical treatments, thermal oxidation, silanization with aminopropyltriethoxysilane (APTES), and hydrosilylation with undecenoic acid or semicarbazide. DPSC adhesion and proliferation were followed for up to 72 h by fluorescence microscopy, scanning electron microscopy (SEM), enzymatic activity assay, and BrdU assay for mitotic activity. Porous silicon with 36 nm pore size was found to offer the best adhesion and the fastest growth rate for DPSC compared to pSi comporting smaller pore size (10 nm) or larger pore size (1 μm), especially after silanization with APTES. Hydrosilylation with semicarbazide favored cell adhesion and proliferation, especially mitosis after cell adhesion, but such chemical modification has been found to led to a scaffold that is stable for only 24-48 h in culture medium. Thus, semicarbazide-treated pSi appeared to be an appropriate scaffold for stem cell adhesion and immediate in vivo transplantation, whereas APTES-treated pSi was found to be more suitable for long-term in vitro culture, for stem cell proliferation and differentiation.

  18. A Hydrogel Scaffold That Maintains Viability and Supports Differentiation of Dental Pulp Stem Cells

    Science.gov (United States)

    Cavalcanti, Bruno N.; Zeitlin, Benjamin D.; Nör, Jacques E.

    2012-01-01

    Objectives The clinical translation of stem cell-based Regenerative Endodontics demands further development of suitable injectable scaffolds. Puramatrix™ is a defined, self-assembling peptide hydrogel which instantaneously polymerizes under normal physiological conditions. Here, we assessed the compatibility of Puramatrix™ with dental pulp stem cell (DPSC) growth and differentiation. Methods DPSC cells were grown in 0.05 to 0.25% Puramatrix™. Cell viability was measured colorimetrically using the WST-1 assay. Cell morphology was observed in 3-D modeling using confocal microscopy. In addition, we used the human tooth slice model with Puramatrix™ to verify DPSC differentiation into odontoblast-like cells, as measured by expression of DSPP and DMP-1. Results DPSC survived and proliferated in Puramatrix™ for at least three weeks in culture. Confocal microscopy revealed that cells seeded in Puramatrix™ presented morphological features of healthy cells, and some cells exhibited cytoplasmic elongations. Notably, after 21 days in tooth slices containing Puramatrix™, DPSC cells expressed DMP-1 and DSPP, putative markers of odontoblastic differentiation. Significance Collectively, these data suggest that self-assembling peptide hydrogels might be useful injectable scaffolds for stem cell-based Regenerative Endodontics. PMID:22901827

  19. KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Juan Xu; Bo Yu; Christine Hong; Cun-Yu Wang

    2013-01-01

    Mesenchymal stem cells (MSCs) have been identified and isolated from dental tissues, including stem cells from apical papilla, which demonstrated the ability to differentiate into dentin-forming odontoblasts. The histone demethylase KDM6B (also known as JMJD3) was shown to play a key role in promoting osteogenic commitment by removing epigenetic marks H3K27me3 from the promoters of osteogenic genes. Whether KDM6B is involved in odontogenic differentiation of dental MSCs, however, is not known. Here, we explored the role of KDM6B in dental MSC fate determination into the odontogenic lineage. Using shRNA-expressing lentivirus, we performed KDM6B knockdown in dental MSCs and observed that KDM6B depletion leads to a significant reduction in alkaline phosphate (ALP) activity and in formation of mineralized nodules assessed by Alizarin Red staining. Additionally, mRNA expression of odontogenic marker gene SP7 (osterix, OSX), as well as extracellular matrix genes BGLAP (osteoclacin, OCN) and SPP1 (osteopontin, OPN), was suppressed by KDM6B depletion. When KDM6B was overexpressed in KDM6B-knockdown MSCs, odontogenic differentiation was restored, further confirming the facilitating role of KDM6B in odontogenic commitment. Mechanistically, KDM6B was recruited to bone morphogenic protein 2 (BMP2) promoters and the subsequent removal of silencing H3K27me3 marks led to the activation of this odontogenic master transcription gene. Taken together, our results demonstrated the critical role of a histone demethylase in the epigenetic regulation of odontogenic differentiation of dental MSCs. KDM6B may present as a potential therapeutic target in the regeneration of tooth structures and the repair of craniofacial defects.

  20. BMP7 transfection induces in-vitro osteogenic differentiation of dental pulp mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ka Po John Yau

    2013-01-01

    Full Text Available Objective: To assess whether in-vitro osteogenic differentiation of human dental pulp mesenchymal stem cells can be induced by transient transfection with the gene encoding human bone morphogenic protein 7 (BMP7. Materials and Methods: A mesenchymal stem cell population was isolated from the dental pulp of two extracted permanent premolars, expanded and characterized. The human BMP7 gene, as a recombinant pcDNA3.1/V5-His-TOPO-BMP7 plasmid, was transfected into the cells. Three negative controls were used: No plasmid, empty vector, and an unrelated vector encoding green fluorescent protein. After the interval of 24 and 48 h, mRNA levels of alkaline phosphatase and osteocalcin as markers of in-vitro osteogenic differentiation were measured by real-time polymerase chain reaction and standardized against β-actin mRNA levels. Results: The level of alkaline phosphatase mRNA was significantly higher for the BMP7 group than for all three negative controls 48 h after transfection (706.9 vs. 11.24 for untransfected cells, 78.05 for empty vector, and 73.10 for green fluorescent protein vector. The level of osteocalcin mRNA was significantly higher for the BMP7 group than for all three negative controls 24 h after transfection (1.0, however, decreased after another 24 h. Conclusions: In-vitro osteoblastic differentiation of human dental pulp mesenchymal stem cells, as indicated by expression of alkaline phosphatase and osteocalcin, can be induced by transient transfection with the BMP7 gene.

  1. Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells.

    Science.gov (United States)

    Olteanu, Diana; Filip, Adriana; Socaci, Crina; Biris, Alexandru Radu; Filip, Xenia; Coros, Maria; Rosu, Marcela Corina; Pogacean, Florina; Alb, Camelia; Baldea, Ioana; Bolfa, Pompei; Pruneanu, Stela

    2015-12-01

    Graphene-oxide (GO) and its most encountered derivatives, thermally reduced graphene oxide (TRGO) and nitrogen-doped graphene (N-Gr), were synthesized and structurally characterized by spectroscopic techniques, like Raman and (13)C MAS solid state NMR. Several biological effects (cytotoxicity, oxidative stress induction, and cellular and mithocondrial membrane alterations) induced by such graphene-based materials on human dental follicle stem cells were investigated. Graphene oxide shows the lowest cytotoxic effect, followed by the nitrogen-doped graphene, while thermally reduced graphene oxide exhibits high cytotoxic effects. Graphene oxide induces oxidative stress without causing cell membrane damage. Nitrogen-doped graphene shows a slight antioxidant activity; however, at high doses (20 and 40 μg/ml) it causes membrane damage. Both graphene oxide and nitrogen-doped graphene seem to be valuable candidates for usage in dental nanocomposites.

  2. TOOTH (The Open study Of dental pulp stem cell Therapy in Humans): Study protocol for evaluating safety and feasibility of autologous human adult dental pulp stem cell therapy in patients with chronic disability after stroke.

    Science.gov (United States)

    Nagpal, Anjali; Kremer, Karlea L; Hamilton-Bruce, Monica A; Kaidonis, Xenia; Milton, Austin G; Levi, Christopher; Shi, Songtao; Carey, Leeanne; Hillier, Susan; Rose, Miranda; Zacest, Andrew; Takhar, Parabjit; Koblar, Simon A

    2016-07-01

    Stroke represents a significant global disease burden. As of 2015, there is no chemical or biological therapy proven to actively enhance neurological recovery during the chronic phase post-stroke. Globally, cell-based therapy in stroke is at the stage of clinical translation and may improve neurological function through various mechanisms such as neural replacement, neuroprotection, angiogenesis, immuno-modulation, and neuroplasticity. Preclinical evidence in a rodent model of middle cerebral artery ischemic stroke as reported in four independent studies indicates improvement in neurobehavioral function with adult human dental pulp stem cell therapy. Human adult dental pulp stem cells present an exciting potential therapeutic option for improving post-stroke disability. TOOTH (The Open study Of dental pulp stem cell Therapy in Humans) will investigate the use of autologous stem cell therapy for stroke survivors with chronic disability, with the following objectives: (a) determine the maximum tolerable dose of autologous dental pulp stem cell therapy; (b) define that dental pulp stem cell therapy at the maximum tolerable dose is safe and feasible in chronic stroke; and (c) estimate the parameters of efficacy required to design a future Phase 2/3 clinical trial. TOOTH is a Phase 1, open-label, single-blinded clinical trial with a pragmatic design that comprises three stages: Stage 1 will involve the selection of 27 participants with middle cerebral artery ischemic stroke and the commencement of autologous dental pulp stem cell isolation, growth, and testing in sequential cohorts (n = 3). Stage 2 will involve the transplantation of dental pulp stem cell in each cohort of participants with an ascending dose and subsequent observation for a 6-month period for any dental pulp stem cell-related adverse events. Stage 3 will investigate the neurosurgical intervention of the maximum tolerable dose of autologous dental pulp stem cell followed by 9 weeks of intensive task

  3. Three-dimensional culture of dental pulp stem cells in direct contact to tricalcium silicate cements.

    Science.gov (United States)

    Widbiller, M; Lindner, S R; Buchalla, W; Eidt, A; Hiller, K-A; Schmalz, G; Galler, K M

    2016-03-01

    Calcium silicate cements are biocompatible dental materials applicable in contact with vital tissue. The novel tricalcium silicate cement Biodentine™ offers properties superior to commonly used mineral trioxide aggregate (MTA). Objective of this study was to evaluate its cytocompatibility and ability to induce differentiation and mineralization in three-dimensional cultures of dental pulp stem cells after direct contact with the material. Test materials included a new tricalcium silicate (Biodentine™, Septodont, Saint-Maur-des-Fossés, France), MTA (ProRoot® MTA, DENSPLY Tulsa Dental Specialities, Johnson City, TN, USA), glass ionomer (Ketac™ Molar Aplicap™, 3M ESPE, Seefeld, Germany), human dentin disks and polystyrene. Magnetic activated cell sorting for to the surface antigen STRO-1 was performed to gain a fraction enriched with mesenchymal stem cells. Samples were allowed to set and dental pulp stem cells in collagen carriers were placed on top. Scanning electron microscopy of tricalcium silicate cement surfaces with and without cells was conducted. Cell viability was measured for 14 days by MTT assay. Alkaline phosphatase activity was evaluated (days 3, 7, and 14) and expression of mineralization-associated genes (COL1A1, ALP, DSPP, and RUNX2) was quantified by real-time quantitative PCR. Nonparametric statistical analysis for cell viability and alkaline phosphatase data was performed to compare different materials as well as time points (Mann-Whitney U test, α = 0.05). Cell viability was highest on tricalcium silicate cement, followed by MTA. Viability on glass ionomer cement and dentin disks was significantly lower. Alkaline phosphatase activity was lower in cells on new tricalcium silicate cement compared to MTA, whereas expression patterns of marker genes were alike. Increased cell viability and similar levels of mineralization-associated gene expression in three-dimensional cell cultures on the novel tricalcium silicate cement and mineral

  4. Biological Characteristics of Fluorescent Superparamagnetic Iron Oxide Labeled Human Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Liang Ma

    2017-01-01

    Full Text Available Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we investigate the effects of fluorescent superparamagnetic iron oxide particles (SPIO (Molday ION Rhodamine-B™, MIRB on biological properties of human dental pulp stem cells (hDPSCs and monitor hDPSCs in vitro and in vivo using magnetic resonance imaging (MRI. Morphological analysis showed that intracellular MIRB particles were distributed in the cytoplasm surrounding the nuclei of hDPSCs. 12.5–100 μg/mL MIRB all resulted in 100% labeling efficiency. MTT showed that 12.5–50 μg/mL MIRB could promote cell proliferation and MIRB over 100 μg/mL exhibited toxic effect on hDPSCs. In vitro MRI showed that 1 × 106 cells labeled with various concentrations of MIRB (12.5–100 μg/mL could be visualized. In vivo MRI showed that transplanted cells could be clearly visualized up to 60 days after transplantation. These results suggest that 12.5–50 μg/mL MIRB is a safe range for labeling hDPSCs. MIRB labeled hDPSCs cell can be visualized by MRI in vitro and in vivo. These data demonstrate that MIRB is a promising candidate for hDPSCs tracking in hDPSCs based dental pulp regeneration therapy.

  5. Biological Characteristics of Fluorescent Superparamagnetic Iron Oxide Labeled Human Dental Pulp Stem Cells

    Science.gov (United States)

    Li, Ming-wei; Bai, Yu; Guo, Hui-hui

    2017-01-01

    Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we investigate the effects of fluorescent superparamagnetic iron oxide particles (SPIO) (Molday ION Rhodamine-B™, MIRB) on biological properties of human dental pulp stem cells (hDPSCs) and monitor hDPSCs in vitro and in vivo using magnetic resonance imaging (MRI). Morphological analysis showed that intracellular MIRB particles were distributed in the cytoplasm surrounding the nuclei of hDPSCs. 12.5–100 μg/mL MIRB all resulted in 100% labeling efficiency. MTT showed that 12.5–50 μg/mL MIRB could promote cell proliferation and MIRB over 100 μg/mL exhibited toxic effect on hDPSCs. In vitro MRI showed that 1 × 106 cells labeled with various concentrations of MIRB (12.5–100 μg/mL) could be visualized. In vivo MRI showed that transplanted cells could be clearly visualized up to 60 days after transplantation. These results suggest that 12.5–50 μg/mL MIRB is a safe range for labeling hDPSCs. MIRB labeled hDPSCs cell can be visualized by MRI in vitro and in vivo. These data demonstrate that MIRB is a promising candidate for hDPSCs tracking in hDPSCs based dental pulp regeneration therapy. PMID:28298928

  6. Role of MSX1 in Osteogenic Differentiation of Human Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Noriko Goto

    2016-01-01

    Full Text Available Msh homeobox 1 (MSX1 encodes a transcription factor implicated in embryonic development of limbs and craniofacial tissues including bone and teeth. Although MSX1 regulates osteoblast differentiation in the cranial bone of young animal, little is known about the contribution of MSX1 to the osteogenic potential of human cells. In the present study, we investigate the role of MSX1 in osteogenic differentiation of human dental pulp stem cells isolated from deciduous teeth. When these cells were exposed to osteogenesis-induction medium, runt-related transcription factor-2 (RUNX2, bone morphogenetic protein-2 (BMP2, alkaline phosphatase (ALPL, and osteocalcin (OCN mRNA levels, as well as alkaline phosphatase activity, increased on days 4–12, and thereafter the matrix was calcified on day 14. However, knockdown of MSX1 with small interfering RNA abolished the induction of the osteoblast-related gene expression, alkaline phosphatase activity, and calcification. Interestingly, DNA microarray and PCR analyses revealed that MSX1 knockdown induced the sterol regulatory element-binding protein 2 (SREBP2 transcriptional factor and its downstream target genes in the cholesterol synthesis pathway. Inhibition of cholesterol synthesis enhances osteoblast differentiation of various mesenchymal cells. Thus, MSX1 may downregulate the cholesterol synthesis-related genes to ensure osteoblast differentiation of human dental pulp stem cells.

  7. Cytotoxic effects of glass ionomer cements on human dental pulp stem cells correlate with fluoride release.

    Science.gov (United States)

    Kanjevac, Tatjana; Milovanovic, Marija; Volarevic, Vladislav; Lukic, Miodrag L; Arsenijevic, Nebojsa; Markovic, Dejan; Zdravkovic, Nebojsa; Tesic, Zivoslav; Lukic, Aleksandra

    2012-01-01

    Glass ionomer cements (GICs) are commonly used as restorative materials. Responses to GICs differ among cell types and it is therefore of importance to thoroughly investigate the influence of these restorative materials on pulp stem cells that are potential source for dental tissue regeneration. Eight biomaterials were tested: Fuji I, Fuji II, Fuji VIII, Fuji IX, Fuji Plus, Fuji Triage, Vitrebond and Composit. We compared their cytotoxic activity on human dental pulp stem cells (DPSC) and correlated this activity with the content of Fluoride, Aluminium and Strontium ions in their eluates. Elution samples of biomaterials were prepared in sterile tissue culture medium and the medium was tested for toxicity by an assay of cell survival/proliferation (MTT test) and apoptosis (Annexin V FITC Detection Kit). Concentrations of Fluoride, Aluminium and Strontium ions were tested by appropriate methods in the same eluates. Cell survival ranged between 79.62% (Fuji Triage) to 1.5% (Fuji Plus) and most dead DPSCs were in the stage of late apoptosis. Fluoride release correlated with cytotoxicity of GICs, while Aluminium and Strontium ions, present in significant amount in eluates of tested GICs did not. Fuji Plus, Vitrebond and Fuji VIII, which released fluoride in higher quantities than other GICs, were highly toxic to human DPSCs. Opposite, low levels of released fluoride correlated to low cytotoxic effect of Composit, Fuji I and Fuji Triage.

  8. Exosomes from Human Dental Pulp Stem Cells Suppress Carrageenan-Induced Acute Inflammation in Mice.

    Science.gov (United States)

    Pivoraitė, Ugnė; Jarmalavičiūtė, Akvilė; Tunaitis, Virginijus; Ramanauskaitė, Giedrė; Vaitkuvienė, Aida; Kašėta, Vytautas; Biziulevičienė, Genė; Venalis, Algirdas; Pivoriūnas, Augustas

    2015-10-01

    The primary goal of this study was to examine the effects of human dental pulp stem cell-derived exosomes on the carrageenan-induced acute inflammation in mice. Exosomes were purified by differential ultracentrifugation from the supernatants of stem cells derived from the dental pulp of human exfoliated deciduous teeth (SHEDs) cultivated in serum-free medium. At 1 h post-carrageenan injection, exosomes derived from supernatants of 2 × 10(6) SHEDs were administered by intraplantar injection to BALB/c mice; 30 mg/kg of prednisolone and phosphate-buffered saline (PBS) were used as positive and negative controls, respectively. Edema was measured at 6, 24, and 48 h after carrageenan injection. For the in vivo imaging experiments, AngioSPARK750, Cat B 750 FAST, and MMPSense 750 FAST were administered into the mouse tail vein 2 h post-carrageenan injection. Fluorescence images were acquired at 6, 24, and 48 h after edema induction by IVIS Spectrum in vivo imaging system. Exosomes significantly reduced the carrageenan-induced edema at all the time points studied (by 39.5, 41.6, and 25.6% at 6, 24, and 48 h after injection, respectively), to similar levels seen with the positive control (prednisolone). In vivo imaging experiments revealed that, both exosomes and prednisolone suppress activities of cathepsin B and matrix metalloproteinases (MMPs) at the site of carrageenan-induced acute inflammation, showing more prominent effects of prednisolone at the early stages, while exosomes exerted their suppressive effects gradually and at later time points. Our study demonstrates for the first time that exosomes derived from human dental pulp stem cells suppress carrageenan-induced acute inflammation in mice.

  9. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  10. Fighting for territories: time-lapse analysis of dental pulp and dental follicle stem cells in co-culture reveals specific migratory capabilities

    Directory of Open Access Journals (Sweden)

    C Schiraldi

    2012-11-01

    Full Text Available Stem cell migration is a critical step during the repair of damaged tissues. In order to achieve appropriate cell-based therapies for tooth and periodontal ligament repair it is necessary first to understand the dynamics of tissue-specific stem cell populations such as dental pulp stem cells (DPSC and dental follicle stem cells (DFSC. Using time-lapse imaging, we analysed migratory and proliferative capabilities of these two human stem cell lines in vitro. When cultured alone, both DPSC and DFSC exhibited low and irregular migration profiles. In co-cultures, DFSC, but not DPSC, spectacularly increased their migration activity and velocity. DFSC rapidly surrounded the DPSC, thus resembling the in vivo developmental process, where follicle cells encircle both dental epithelium and pulp. Cell morphology was dependent on the culture conditions (mono-culture or co-culture and changed over time. Regulatory genes involved in dental cell migration and differentiation such as TWIST1, MSX1, RUNX2, SFRP1 and ADAM28, were also evaluated in co-cultures. MSX1 up-regulation indicates that DPSC and DFSC retain their odontogenic potential. However, DPSC lose their capacity to differentiate into odontoblasts in the presence of DFSC, as suggested by RUNX2 up-regulation and TWIST1 down-regulation. In contrast, the unchanged levels of SFRP1 expression suggest that DFSC retain their potential to form periodontal tissues even in the presence of DPSC. These findings demonstrate that stem cells behave differently according to their environment, retain their genetic memory, and compete with each other to acquire the appropriate territory. Understanding the mechanisms involved in stem cell migration may lead to new therapeutic approaches for tooth repair.

  11. Retracted: Effects of pro-inflammatory cytokines on mineralization potential of rat dental pulp stem cells.

    Science.gov (United States)

    2011-10-01

    The following article from the Journal of Tissue Engineering and Regenerative Medicine, 'Effects of Pro-inflammatory Cytokines on Mineralization Potential of Rat Dental Pulp Stem Cells' by Yang X, Walboomers XF, Bian Z, Jansen JA, Fan M, published online on 11 July 2011 in Wiley Online Library (onlinelibrary.wiley.com), has been retracted by agreement between the authors, the journal Editor-in-Chief, and John Wiley & Sons, Ltd. The retraction has been agreed due to two authors (Walboomers XF, and Jansen JA) not having been involved in the research described, nor made aware of their names being listed on the manuscript, nor told of its submission to the journal.

  12. In vitro embryotoxicity testing of metals for dental use by differentiation of embryonic stem cell test.

    Science.gov (United States)

    Imai, Koichi; Nakamura, Masaaki

    2006-03-01

    We examined embryotoxicity using the embryonic stem cell test (EST) protocol. Tests were conducted using standard reagents for the atomic absorption measurement of 11 metal ions, silver, cobalt, chromium, copper, mercury, nickel, palladium, antimony, tin, vanadium, and zinc from among metals comprising dental alloys. In addition, for four metals like silver, cobalt, chromium, and nickel, the tests were also conducted using a test solution extracted from powder in the cell culture medium. The embryotoxic potential was obtained from a biostatistics-based prediction model, which was calculated from three endpoints, the ID50, IC50ES and IC(50)3T3. Data with the standard reagents showed that chromium and mercury ions corresponded to class 3, that is, having a strong embryotoxicity, while antimony, tin, and vanadium ions exhibited a weak embryotoxicity. The other metal ions demonstrated no embryotoxicity. On the other hand, when extracts of metal powder in cell culture solutions were used, silver exhibited a weak embryotoxicity while all other metals exhibited no embryotoxicity. In the future, it will be important to clarify the embryotoxicity of the many dental materials that are in use today. In addition, it is necessary to develop substances to ensure they have no toxicity before use in dental applications.

  13. Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System.

    Science.gov (United States)

    Lu, Qiqi; Pandya, Mirali; Rufaihah, Abdul Jalil; Rosa, Vinicius; Tong, Huei Jinn; Seliktar, Dror; Toh, Wei Seong

    2015-01-01

    Injectable hydrogels have the great potential for clinical translation of dental pulp regeneration. A recently developed PEG-fibrinogen (PF) hydrogel, which comprises a bioactive fibrinogen backbone conjugated to polyethylene glycol (PEG) side chains, can be cross-linked after injection by photopolymerization. The objective of this study was to investigate the use of this hydrogel, which allows tuning of its mechanical properties, as a scaffold for dental pulp tissue engineering. The cross-linking degree of PF hydrogels could be controlled by varying the amounts of PEG-diacrylate (PEG-DA) cross-linker. PF hydrogels are generally cytocompatible with the encapsulated dental pulp stem cells (DPSCs), yielding >85% cell viability in all hydrogels. It was found that the cell morphology of encapsulated DPSCs, odontogenic gene expression, and mineralization were strongly modulated by the hydrogel cross-linking degree and matrix stiffness. Notably, DPSCs cultured within the highest cross-linked hydrogel remained mostly rounded in aggregates and demonstrated the greatest enhancement in odontogenic gene expression. Consistently, the highest degree of mineralization was observed in the highest cross-linked hydrogel. Collectively, our results indicate that PF hydrogels can be used as a scaffold for DPSCs and offers the possibility of influencing DPSCs in ways that may be beneficial for applications in regenerative endodontics.

  14. Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System

    Directory of Open Access Journals (Sweden)

    Qiqi Lu

    2015-01-01

    Full Text Available Injectable hydrogels have the great potential for clinical translation of dental pulp regeneration. A recently developed PEG-fibrinogen (PF hydrogel, which comprises a bioactive fibrinogen backbone conjugated to polyethylene glycol (PEG side chains, can be cross-linked after injection by photopolymerization. The objective of this study was to investigate the use of this hydrogel, which allows tuning of its mechanical properties, as a scaffold for dental pulp tissue engineering. The cross-linking degree of PF hydrogels could be controlled by varying the amounts of PEG-diacrylate (PEG-DA cross-linker. PF hydrogels are generally cytocompatible with the encapsulated dental pulp stem cells (DPSCs, yielding >85% cell viability in all hydrogels. It was found that the cell morphology of encapsulated DPSCs, odontogenic gene expression, and mineralization were strongly modulated by the hydrogel cross-linking degree and matrix stiffness. Notably, DPSCs cultured within the highest cross-linked hydrogel remained mostly rounded in aggregates and demonstrated the greatest enhancement in odontogenic gene expression. Consistently, the highest degree of mineralization was observed in the highest cross-linked hydrogel. Collectively, our results indicate that PF hydrogels can be used as a scaffold for DPSCs and offers the possibility of influencing DPSCs in ways that may be beneficial for applications in regenerative endodontics.

  15. Stem cell regulatory gene expression in human adult dental pulp and periodontal ligament cells undergoing odontogenic/osteogenic differentiation.

    Science.gov (United States)

    Liu, Lu; Ling, Junqi; Wei, Xi; Wu, Liping; Xiao, Yin

    2009-10-01

    During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. In this study, we investigated the differential expression of 84 stem cell-related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor beta (TGF-beta)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. This study has generated an overview of stem cell-related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-beta/BMP, and cadherin signaling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration.

  16. Dental Pulp Stem Cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues

    Directory of Open Access Journals (Sweden)

    Maitane eAurrekoetxea

    2015-10-01

    Full Text Available Dental pulp stem cells, or DPSC, are neural crest-derived cells with an outstanding capacity to differentiate along multiple cell lineages of interest for cell therapy. In particular, highly efficient osteo/dentinogenic differentiation of DPSC can be achieved using simple in vitro protocols, making these cells a very attractive and promising tool for the future treatment of dental and periodontal diseases. Among craniomaxillofacial organs, the tooth and salivary gland are two such cases in which complete regeneration by tissue engineering using DPSC appears to be possible, as research over the last decade has made substantial progress in experimental models of partial or total regeneration of both organs, by cell recombination technology. Moreover, DPSC seem to be a particularly good choice for the regeneration of nerve tissues, including injured or transected cranial nerves. In this context, the oral cavity appears to be an excellent testing ground for new regenerative therapies using DPSC. However, many issues and challenges need yet to be addressed before these cells can be employed in clinical therapy. In this review, we point out some important aspects on the biology of DPSC with regard to their use for the reconstruction of different craniomaxillofacial tissues and organs, with special emphasis on cranial bones, nerves, teeth, and salivary glands. We suggest new ideas and strategies to fully exploit the capacities of DPSC for bioengineering of the aforementioned tissues.

  17. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis.

    Science.gov (United States)

    Sun, Hai-Hua; Chen, Bo; Zhu, Qing-Lin; Kong, Hui; Li, Qi-Hong; Gao, Li-Na; Xiao, Min; Chen, Fa-Ming; Yu, Qing

    2014-11-01

    Recently, human dental pulp stem cells (DPSCs) isolated from inflamed dental pulp tissue have been demonstrated to retain some of their pluripotency and regenerative potential. However, the effects of periodontal inflammation due to periodontitis and its progression on the properties of DPSCs within periodontally compromised teeth remain unknown. In this study, DPSCs were isolated from discarded human teeth that were extracted due to aggressive periodontitis (AgP) and divided into three experimental groups (Groups A, B and C) based on the degree of inflammation-induced bone resorption approaching the apex of the tooth root before tooth extraction. DPSCs derived from impacted or non-functional third molars of matched patients were used as a control. Mesenchymal stem cell (MSC)-like characteristics, including colony-forming ability, proliferation, cell cycle, cell surface antigens, multi-lineage differentiation capability and in vivo tissue regeneration potential, were all evaluated in a patient-matched comparison. It was found that STRO-1- and CD146-positive DPSCs can be isolated from human teeth, even in very severe cases of AgP. Periodontal inflammation and its progression had an obvious impact on the characteristics of DPSCs isolated from periodontally affected teeth. Although all the isolated DPSCs in Groups A, B and C showed decreased colony-forming ability and proliferation rate (P biomaterials were transplanted directly into an ectopic transplantation model. However, when cell-seeded scaffolds were placed in the root fragments of human teeth, all the cells formed significant dentin- and pulp-like tissues. The ability of DPSCs to generate dental tissues decreased when the cells were isolated from periodontally compromised teeth (P < 0.05). Again, increased periodontal destruction was not necessarily followed by a decrease in the amount of dentin- and pulp-like tissue formed. These findings provide preliminary evidence that periodontally compromised teeth might

  18. Dental pulp stem cells: function, isolation and applications in regenerative medicine.

    Science.gov (United States)

    Tatullo, Marco; Marrelli, Massimo; Shakesheff, Kevin M; White, Lisa J

    2015-11-01

    Dental pulp stem cells (DPSCs) are a promising source of cells for numerous and varied regenerative medicine applications. Their natural function in the production of odontoblasts to create reparative dentin support applications in dentistry in the regeneration of tooth structures. However, they are also being investigated for the repair of tissues outside of the tooth. The ease of isolation of DPSCs from discarded or removed teeth offers a promising source of autologous cells, and their similarities with bone marrow stromal cells (BMSCs) suggest applications in musculoskeletal regenerative medicine. DPSCs are derived from the neural crest and, therefore, have a different developmental origin to BMSCs. These differences from BMSCs in origin and phenotype are being exploited in neurological and other applications. This review briefly highlights the source and functions of DPSCs and then focuses on in vivo applications across the breadth of regenerative medicine.

  19. Cytotoxic effects of bulk fill composite resins on human dental pulp stem cells.

    Science.gov (United States)

    Şişman, Reyhan; Aksoy, Ayça; Yalçın, Muhammet; Karaöz, Erdal

    2016-01-01

    Five bulk fill composite resins, including SDR, Tetric EvoCeram Bulk Fill (TEC), X-trafil (XTF), Sonic Fill (SF), Filtek Bulk Fill (FBF), were used in this study. Human dental pulp stem cells were cultured in 12-well culture dishes (3 × 104 cells per cm(2)) and stored in an incubator at 37°C and 5% CO2 for 1 day. On days 1, 7, 14, and 21 of co-culture, viable cells were measured using a WST-1 assay. Lower cell viability was observed with XTF and SDR bulk fill composite resins compared to the control group during the WST-1 assay. Although bulk fill composite resins provide advantages in practical applications, they are limited by their cytotoxic properties. (J Oral Sci 58, 299-305, 2016).

  20. Tooth tissue engineering: optimal dental stem cell harvest based on tooth development.

    Science.gov (United States)

    Duailibi, Monica Talarico; Duailibi, Silvio Eduardo; Duailibi Neto, Eduardo Felippe; Negreiros, Renata Matalon; Jorge, Waldyr Antonio; Ferreira, Lydia Masako; Vacanti, Joseph Phillip; Yelick, Pamela Crotty

    2011-07-01

    Our long-term objective is to devise reliable methods to generate biological replacement teeth exhibiting the physical properties and functions of naturally formed human teeth. Previously, we demonstrated the successful use of tissue engineering approaches to generate small, bioengineered tooth crowns from harvested pig and rat postnatal dental stem cells (DSCs). To facilitate characterizations of human DSCs, we have developed a novel radiographic staging system to accurately correlate human third molar tooth developmental stage with anticipated harvested DSC yield. Our results demonstrated that DSC yields were higher in less developed teeth (Stages 1 and 2), and lower in more developed teeth (Stages 3, 4, and 5). The greatest cell yields and colony-forming units (CFUs) capability was obtained from Stages 1 and 2 tooth dental pulp. We conclude that radiographic developmental staging can be used to accurately assess the utility of harvested human teeth for future dental tissue engineering applications. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation

    Institute of Scientific and Technical Information of China (English)

    Arash; Khojasteh; Saeed; Reza; Motamedian; Maryam; Rezai; Rad; Mehrnoosh; Hasan; Shahriari; Nasser; Nadjmi

    2015-01-01

    AIM: To evaluate adhesion, proliferation and differentiation of human dental pulp stem cells(h DPSCs) on four commercially available scaffold biomaterials. METHODS: hD PSCs were isolated from human dental pulp tissues of extracted wisdom teeth and established in stem cell growth medium. h DPSCs at passage 3-5 were seeded on four commercially available scaffold biomaterials, SureO ss(Allograft), Cerabone(Xenograft), PLLA(Synthetic), and OSTEON Ⅱ Collagen(Composite), for 7 and 14 d in osteogenic medium. Cell adhesion and morphology to the scaffolds were evaluated by scanning electron microscopy(SEM). Cell proliferation and differentiation into osteogenic lineage were evaluated using DNA counting and alkaline phosphatase(ALP) activity assay, respectively. RESULTS: All scaffold biomaterials except Sure Oss(Allograft) supported h DPSC adhesion, proliferation and differentiation. hD PSCs seeded on PLLA(Synthetic) scaffold showed the highest cell proliferation and attachment as indicated with both SEM and DNA counting assay. Evaluating the osteogenic differentiation capability of hD PSCs on different scaffold biomaterials with ALP activity assay showed high level of ALP activity on cells cultured on PLLA(Synthetic) and OSTEON ⅡCollagen(Composite) scaffolds. SEM micrographs also showed that in the presence of Cerabone(Xenograft) and OSTEON Ⅱ Collagen(Composite) scaffolds, the h DPSCs demonstrated the fibroblastic phenotype with several cytoplasmic extension, while the cells on PLLA scaffold showed the osteoblastic-like morphology, round-like shape. CONCLUSION: PLLA scaffold supports adhesion, proliferation and osteogenic differentiation of hD PSCs. Hence, it may be useful in combination with hD PSCs for cell-based reconstructive therapy.

  2. In vitro characterization of human dental pulp stem cells isolated by three different methods

    Directory of Open Access Journals (Sweden)

    Ji-Hyun Jang

    2016-11-01

    Full Text Available Objectives In this study, we characterized human dental pulp cells (HDPCs obtained by different culture methods to establish the most suitable methodology for dental tissue engineering and regenerative endodontic applications. Materials and Methods HDPCs were isolated by the outgrowth method (HDPCs-OG, the enzymatic digestion method (collagenase/dispase/trypsin, HDPCs-ED, or the combination of both methods (HDPCs-Combined. The expression of mesenchymal stem cell markers (CD105, CD90, and CD73 was investigated. In vitro differentiation capacities of HDPCs into adipogenic, osteogenic, and chondrogenic lineages were compared. Differentiation markers were analyzed by quantitative reverse-transcription polymerase chain reaction (RT-PCR and western blotting. Results Our data indicated that whole HDPCs-ED, HPDCs-OG, and HDPCs-Combined could be differentiated into adipogenic, chrondrogenic, and osteogenic cell types. However, we found that the methods for isolating and culturing HDPCs influence the differentiation capacities of cells. HDPCs-OG and HDPCs-ED were preferably differentiated into adipogenic and osteogenic cells, respectively. Differentiation markers shown by RT-PCR and western blotting analysis were mostly upregulated in the treated groups compared with the control groups. Conclusions Our findings confirmed that cell populations formed by two different culture methods and the combined culture method exhibited different properties. The results of this study could provide an insight into regenerative endodontic treatment using HDPCs.

  3. Transient receptor potential melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation.

    Science.gov (United States)

    Nelson, Piper; Ngoc Tran, Tran Doan; Zhang, Hanjie; Zolochevska, Olga; Figueiredo, Marxa; Feng, Ji-Ming; Gutierrez, Dina L; Xiao, Rui; Yao, Shaomian; Penn, Arthur; Yang, Li-Jun; Cheng, Henrique

    2013-01-01

    Elevations in the intracellular Ca(2+) concentration are a phenomena commonly observed during stem cell differentiation but cease after the process is complete. The transient receptor potential melastatin 4 (TRPM4) is an ion channel that controls Ca(2+) signals in excitable and nonexcitable cells. However, its role in stem cells remains unknown. The aim of this study was to characterize TRPM4 in rat dental follicle stem cells (DFSCs) and to determine its impact on Ca(2+) signaling and the differentiation process. We identified TRPM4 gene expression in DFSCs, but not TRPM5, a closely related channel with similar function. Perfusion of cells with increasing buffered Ca(2+) resulted in a concentration-dependent activation of currents typical for TRPM4, which were also voltage-dependent and had Na(+) conductivity. Molecular suppression with shRNA decreased channel activity and cell proliferation during osteogenesis but not adipogenesis. As a result, enhanced mineralization and phosphatase enzyme activity were observed during osteoblast formation, although DFSCs failed to differentiate into adipocytes. Furthermore, the normal agonist-induced first and secondary phases of Ca(2+) signals were transformed into a gradual and sustained increase which confirmed the channels' ability to control Ca(2+) signaling. Using whole genome microarray analysis, we identified several genes impacted by TRPM4 during DFSC differentiation. These findings suggest an inhibitory role for TRPM4 on osteogenesis while it appears to be required for adipogenesis. The data also provide a potential link between the Ca(2+) signaling pattern and gene expression during stem cell differentiation.

  4. Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity

    DEFF Research Database (Denmark)

    Kraft, David C E; Bindslev, Dorthe A; Melsen, Birte

    2010-01-01

    For engineering bone tissue, mechanosensitive cells are needed for bone (re)modelling. Local bone mass and architecture are affected by mechanical loading, which provokes a cellular response via loading-induced interstitial fluid flow. We studied whether human dental pulp-derived mesenchymal stem...... cells (PDSCs) portraying mature (PDSC-mature) or immature (PDSC-immature) bone cell characteristics are responsive to pulsating fluid flow (PFF) in vitro. We also assessed bone formation by PDSCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Cultured PDSC...... expression was higher than in PDSC-immature. Implantation of PDSC-mature resulted in more osteoid deposition and lamellar bone formation than PDSC-immature. We conclude that PDSCs with a mature osteogenic phenotype are more responsive to pulsating fluid shear stress than osteogenically immature PDSCs...

  5. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration.

    Science.gov (United States)

    Nakashima, Misako; Iohara, Koichiro; Sugiyama, Masahiko

    2009-01-01

    Dental caries is a common public health problem, causing early loss of dental pulp and resultant tooth loss. Dental pulp has important functions to sustain teeth providing nutrient and oxygen supply, innervation, reactionary/reparative dentin formation and immune response. Regeneration of pulp is an unmet need in endodontic therapy, and angiogenesis/vasculogenesis and neurogenesis are critical for pulp regeneration. Permanent and deciduous pulp tissue is easily available from teeth after extraction without ethical issues and has potential for clinical use. In this review, we introduce some stem cell subfractions, CD31(-)/CD146(-) SP cells and CD105(+) cells with high angiogenic and neurogenic potential, derived from human adult dental pulp tissue. Potential utility of these cells is addressed as a source of cells for treatment of cerebral and limb ischemia and pulp inflammation complete with angiogenesis and vasculogenesis.

  6. Cellular Responses in Human Dental Pulp Stem Cells Treated with Three Endodontic Materials

    Directory of Open Access Journals (Sweden)

    Alejandro Victoria-Escandell

    2017-01-01

    Full Text Available Human dental pulp stem cells (HDPSCs are of special relevance in future regenerative dental therapies. Characterizing cytotoxicity and genotoxicity produced by endodontic materials is required to evaluate the potential for regeneration of injured tissues in future strategies combining regenerative and root canal therapies. This study explores the cytotoxicity and genotoxicity mediated by oxidative stress of three endodontic materials that are widely used on HDPSCs: a mineral trioxide aggregate (MTA-Angelus white, an epoxy resin sealant (AH-Plus cement, and an MTA-based cement sealer (MTA-Fillapex. Cell viability and cell death rate were assessed by flow cytometry. Oxidative stress was measured by OxyBlot. Levels of antioxidant enzymes were evaluated by Western blot. Genotoxicity was studied by quantifying the expression levels of DNA damage sensors such as ATM and RAD53 genes and DNA damage repair sensors such as RAD51 and PARP-1. Results indicate that AH-Plus increased apoptosis, oxidative stress, and genotoxicity markers in HDPSCs. MTA-Fillapex was the most cytotoxic oxidative stress inductor and genotoxic material for HDPSCs at longer times in preincubated cell culture medium, and MTA-Angelus was less cytotoxic and genotoxic than AH-Plus and MTA-Fillapex at all times assayed.

  7. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice.

    Directory of Open Access Journals (Sweden)

    Kajohnkiart Janebodin

    Full Text Available Dental pulp stem cells (DPSCs are shown to reside within the tooth and play an important role in dentin regeneration. DPSCs were first isolated and characterized from human teeth and most studies have focused on using this adult stem cell for clinical applications. However, mouse DPSCs have not been well characterized and their origin(s have not yet been elucidated. Herein we examined if murine DPSCs are neural crest derived and determined their in vitro and in vivo capacity. DPSCs from neonatal murine tooth pulp expressed embryonic stem cell and neural crest related genes, but lacked expression of mesodermal genes. Cells isolated from the Wnt1-Cre/R26R-LacZ model, a reporter of neural crest-derived tissues, indicated that DPSCs were Wnt1-marked and therefore of neural crest origin. Clonal DPSCs showed multi-differentiation in neural crest lineage for odontoblasts, chondrocytes, adipocytes, neurons, and smooth muscles. Following in vivo subcutaneous transplantation with hydroxyapatite/tricalcium phosphate, based on tissue/cell morphology and specific antibody staining, the clones differentiated into odontoblast-like cells and produced dentin-like structure. Conversely, bone marrow stromal cells (BMSCs gave rise to osteoblast-like cells and generated bone-like structure. Interestingly, the capillary distribution in the DPSC transplants showed close proximity to odontoblasts whereas in the BMSC transplants bone condensations were distant to capillaries resembling dentinogenesis in the former vs. osteogenesis in the latter. Thus we demonstrate the existence of neural crest-derived DPSCs with differentiation capacity into cranial mesenchymal tissues and other neural crest-derived tissues. In turn, DPSCs hold promise as a source for regenerating cranial mesenchyme and other neural crest derived tissues.

  8. Transplantation of Human Dental Pulp-Derived Stem Cells or Differentiated Neuronal Cells from Human Dental Pulp-Derived Stem Cells Identically Enhances Regeneration of the Injured Peripheral Nerve.

    Science.gov (United States)

    Ullah, Imran; Park, Ju-Mi; Kang, Young-Hoon; Byun, June-Ho; Kim, Dae-Geon; Kim, Joo-Heon; Kang, Dong-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-09-01

    Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 10(6) hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.

  9. Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Liu, Pengfei; Cai, Jinglei; Dong, Delu; Chen, Yaoyu; Liu, Xiaobo; Wang, Yi; Zhou, Yulai

    2015-01-01

    As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists' attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs) are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2) were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.

  10. Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells.

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    Full Text Available As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists' attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2 were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.

  11. Disturbances in dental development and craniofacial growth in children treated with hematopoietic stem cell transplantation.

    Science.gov (United States)

    Vesterbacka, M; Ringdén, O; Remberger, M; Huggare, J; Dahllöf, G

    2012-02-01

    To investigate the correlation between age, degree of disturbances in dental development, and vertical growth of the face in children treated with hematopoietic stem cell transplantation (HSCT). 39 long-term survivors of HSCT performed in childhood and transplanted before the age of 12, at a mean age of 6.8±3.3 years. Panoramic and cephalometric radiographs were taken at a mean age of 16.2 years. For each patient two age- and sex-matched healthy controls were included. The area of three mandibular teeth was measured and a cephalometric analysis was performed. The mean area of the mandibular central incisor, first and second molar was significantly smaller in the HSCT group, and the vertical growth of the face was significantly reduced, especially in the lower third, compared to healthy controls. A statistically significant correlation between age at HSCT, degree of disturbances in dental development, and vertical growth of the face was found. Children subjected to pre-HSCT chemotherapy protocols had significantly more growth reduction in vertical craniofacial variables compared to children without pre-HSCT chemotherapy. Conditioning regimens including busulfan or total body irradiation had similar deleterious effects on tooth area reduction and craniofacial parameters. The younger the child is at HSCT, the greater the impairment in dental and vertical facial development. This supports the suggestion that the reduction in lower facial height found in SCT children mainly is a result of impaired dental development and that young age is a risk factor for more severe disturbances. © 2012 John Wiley & Sons A/S.

  12. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Dolder, J. van den; Yang, F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and

  13. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers.

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Dolder, J. van den; Yang, F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2008-01-01

    Calcium phosphate nanoparticles have shown potential as non-viral vectors for gene delivery. The aim of this study was to induce bone morphogenetic protein (Bmp)2 transfection in rat dental pulp stem cells using calcium phosphate nanoparticles as a gene vector and then to evaluate the efficiency and

  14. Role of lipid rafts in neuronal differentiation of dental pulp-derived stem cells.

    Science.gov (United States)

    Mattei, Vincenzo; Santacroce, Costantino; Tasciotti, Vincenzo; Martellucci, Stefano; Santilli, Francesca; Manganelli, Valeria; Piccoli, Luca; Misasi, Roberta; Sorice, Maurizio; Garofalo, Tina

    2015-12-10

    Human dental pulp-derived stem cells (hDPSCs) are characterized by a typical fibroblast-like morphology. They express specific markers for mesenchymal stem cells and are capable of differentiation into osteoblasts, adipoblasts and neurons in vitro. Previous studies showed that gangliosides are involved in the induction of early neuronal differentiation of hDPSCs. This study was undertaken to investigate the role of lipid rafts in this process. Lipid rafts are signaling microdomains enriched in glycosphingolipids, cholesterol, tyrosine kinase receptors, mono- or heterotrimeric G proteins and GPI-anchored proteins. We preliminary showed that established cells expressed multipotent mesenchymal stromal-specific surface antigens. Then, we analyzed the distribution of lipid rafts, revealing plasma membrane microdomains with GM2 and EGF-R enrichment. Following stimulation with EGF/bFGF, neuronal differentiation was observed. To analyze the functional role of lipid rafts in EGF/bFGF-induced hDPSCs differentiation, cells were preincubated with lipid raft affecting agents, i.e. [D]-PDMP or methyl-β-cyclodextrin. These compounds significantly prevented neuronal-specific antigen expression, as well as Akt and ERK 1/2 phosphorylation, induced by EGF/bFGF, indicating that lipid raft integrity is essential for EGF/bFGF-induced hDPSCs differentiation. These results suggest that lipid rafts may represent specific chambers, where multimolecular signaling complexes, including lipids (gangliosides, cholesterol) and proteins (EGF-R), play a role in hDPSCs differentiation.

  15. A short-term treatment with tumor necrosis factor-alpha enhances stem cell phenotype of human dental pulp cells.

    Science.gov (United States)

    Ueda, Mayu; Fujisawa, Takuo; Ono, Mitsuaki; Hara, Emilio Satoshi; Pham, Hai Thanh; Nakajima, Ryu; Sonoyama, Wataru; Kuboki, Takuo

    2014-02-28

    During normal pulp tissue healing, inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) or interleukins, act in the initial 48 hours (inflammatory phase) and play important roles not only as chemo-attractants of inflammatory cells and stem/progenitor cells but also in inducing a cascade of reactions toward tissue regeneration or reparative dentin formation or both. Previous reports have shown that inflammatory cytokines regulate the differentiation capacity of dental pulp stem/progenitor cells (DPCs), but none has interrogated the impact of these cytokines on the stem cell phenotype of stem/progenitor cells. This study investigated the effects of a short-term treatment with TNF-α on the stem cell phenotype and differentiation ability of human DPCs. An in vivo mouse model of pulp exposure was performed for analysis of expression of the mesenchymal stem cell marker CD146 in DPCs during the initial stage of inflammatory response. For in vitro studies, human DPCs were isolated and incubated with TNF-α for 2 days and passaged to eliminate TNF-α completely. Analysis of stem cell phenotype was performed by quantification of cells positive for mesenchymal stem cell markers SSEA-4 (stage-specific embryonic antigen 4) and CD146 by flow cytometry as well as by quantitative analysis of telomerase activity and mRNA levels of OCT-4 and NANOG. Cell migration, colony-forming ability, and differentiation toward odontogenesis and adipogenesis were also investigated. The pulp exposure model revealed a strong staining for CD146 during the initial inflammatory response, at 2 days after pulp exposure. In vitro experiments demonstrated that a short-term (2-day) treatment of TNF-α increased by twofold the percentage of SSEA-4+ cells. Accordingly, STRO-1, CD146, and SSEA-4 protein levels as well as OCT-4 and NANOG mRNA levels were also significantly upregulated upon TNF-α treatment. A short-term TNF-α treatment also enhanced DPC function, including the ability to

  16. Immunophenotypic and molecular analysis of human dental pulp stem cells potential for neurogenic differentiation

    Directory of Open Access Journals (Sweden)

    Nikhat Fatima

    2017-01-01

    Full Text Available Background: Growing evidence shows that dental pulp (DP tissues could be a potential source of adult stem cells for the treatment of devastating neurological diseases and several other conditions. Aims: Exploration of the expression profile of several key molecular markers to evaluate the molecular dynamics in undifferentiated and differentiated DP-derived stem cells (DPSCs in vitro. Settings and Design: The characteristics and multilineage differentiation ability of DPSCs were determined by cellular and molecular kinetics. DPSCs were further induced to form adherent (ADH and non-ADH (NADH neurospheres under serum-free condition which was further induced into neurogenic lineage cells and characterized for their molecular and cellular diversity at each stage. Statistical Analysis Used: Statistical analysis used one-way analysis of variance, Student's t-test, Livak method for relative quantification, and R programming. Results: Immunophenotypic analysis of DPSCs revealed> 80% cells positive for mesenchymal markers CD90 and CD105, >70% positive for transferring receptor (CD71, and> 30% for chemotactic factor (CXCR3. These cells showed mesodermal differentiation also and confirmed by specific staining and molecular analysis. Activation of neuronal lineage markers and neurogenic growth factors was observed during lineage differentiation of cells derived from NADH and ADH spheroids. Greater than 80% of cells were found to express β-tubulin III in both differentiation conditions. Conclusions: The present study reported a cascade of immunophenotypic and molecular markers to characterize neurogenic differentiation of DPSCs under serum-free condition. These findings trigger the future analyses for clinical applicability of DP-derived cells in regenerative applications.

  17. Human dental pulp stem cells cultured in serum-free supplemented medium

    Directory of Open Access Journals (Sweden)

    Virginie eBonnamain

    2013-12-01

    Full Text Available Growing evidence show that human dental pulp stem cells (DPSCs could provide a source of adult stem cells for the treatment of neurodegenerative pathologies. In this study, DPSCs were expanded and cultured with a protocol generally used for the culture of neural stem/progenitor cells.Methodology: DPSC cultures were established from third molars. The pulp tissue was enzymatically digested and cultured in serum-supplemented basal medium for 12 hours. Adherent (ADH and non-adherent (non-ADH cell populations were separated according to their differential adhesion to plastic and then cultured in serum-free defined N2 medium with epidermal growth factor (EGF and basic fibroblast growth factor (bFGF. Both ADH and non-ADH populations were analyzed by FACS and/or PCR.Results: FACS analysis of ADH-DPSCs revealed the expression of the mesenchymal cell marker CD90, the neuronal marker CD56, the transferrin receptor CD71, and the chemokine receptor CXCR3, whereas hematopoietic stem cells markers CD45, CD133 and CD34 were not expressed. ADH-DPSCs expressed transcripts coding for the Nestin gene, whereas expression levels of genes coding for the neuronal markers β-III tubulin and NF-M, and the oligodendrocyte marker PLP-1 were donor dependent. ADH-DPSCs did not express the transcripts for GFAP, an astrocyte marker. Cells of the non-ADH population that grew as spheroids expressed Nestin, β-III tubulin, NF-M and PLP-1 transcripts. DPSCs migrated out of the spheroids exhibited an odontoblast-like morphology and expressed a higher level of DSPP and osteocalcin transcripts than ADH-DPSCs. Conclusion: Collectively, these data indicate that human DPSCs can be expended and cultured in serum-free supplemented medium with EGF and bFGF. ADH-DPSCs and non-ADH populations contained neuronal and/or oligodendrocyte precursors at different stages of commitment and interestingly, cells from spheroid structures seem to be more engaged into the odontoblastic lineage than the

  18. An Optimized Injectable Hydrogel Scaffold Supports Human Dental Pulp Stem Cell Viability and Spreading

    Directory of Open Access Journals (Sweden)

    T. D. Jones

    2016-01-01

    Full Text Available Introduction. HyStem-C™ is a commercially available injectable hydrogel composed of polyethylene glycol diacrylate (PEGDA, hyaluronan (HA, and gelatin (Gn. These components can be mechanically tuned to enhance cell viability and spreading. Methods. The concentration of PEGDA with an added disulfide bond (PEGSSDA was varied from 0.5 to 8.0% (w/v to determine the optimal concentration for injectable clinical application. We evaluated the cell viability of human dental pulp stem cells (hDPSCs embedded in 2% (w/v PEGSSDA-HA-Gn hydrogels. Volume ratios of HA : Gn from 100 : 0 to 25 : 75 were varied to encourage hDPSC spreading. Fibronectin (Fn was added to our model to determine the effect of extracellular matrix protein concentration on hDPSC behavior. Results. Our preliminary data suggests that the hydrogel gelation time decreased as the PEGSSDA cross-linker concentration increased. The PEGSSDA-HA-Gn was biocompatible with hDPSCs, and increased ratios of HA : Gn enhanced cell viability for 14 days. Additionally, cell proliferation with added fibronectin increased significantly over time at concentrations of 1.0 and 10.0 μg/mL in PEGDA-HA-Gn hydrogels, while cell spreading significantly increased at Fn concentrations of 0.1 μg/mL. Conclusions. This study demonstrates that PEG-based injectable hydrogels maintain hDPSC viability and facilitate cell spreading, mainly in the presence of extracellular matrix (ECM proteins.

  19. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    Science.gov (United States)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  20. Effect of Aminated Mesoporous Bioactive Glass Nanoparticles on the Differentiation of Dental Pulp Stem Cells.

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    Full Text Available Mesoporous bioactive nanoparticles (MBNs have been developed as promising additives to various types of bone or dentin regenerative material. However, biofunctionality of MBNs as dentin regenerative additive to dental materials have rarely been studied. We investigated the uptake efficiency of MBNs-NH2 with their endocytosis pathway and the role of MBNs-NH2 in odontogenic differentiation to clarify inherent biofunctionality. MBNs were fabricated by sol-gel synthesis, and 3% APTES was used to aminate these nanoparticles (MBNs-NH2 to reverse their charge from negative to positive. To characterize the MBNs-NH2, TEM, XRD, FTIR, zeta(ξ-potential measurements, and Brunauer-Emmett-Teller analysis were performed. After primary cultured rat dental pulp stem cells (rDPSCs were incubated with various concentrations of MBNs-NH2, stem cell viability (24 hours with or without differentiated media, internalization of MBNs-NH2 in rDPSCs (~4 hours via specific endocytosis pathway, intra or extracellular ion concentration and odontoblastic differentiation (~28 days were investigated. Incubation with up to 50 μg/mL of MBNs-NH2 had no effect on rDPSCs viability with differentiated media (p>0.05. The internalization of MBNs-NH2 in rDPSCs was determined about 92% after 4 hours of incubation. Uptake was significantly decreased with ATP depletion and after 1 hour of pre-treatment with the inhibitor of macropinocytosis (p<0.05. There was significant increase of intracellular Ca and Si ion concentration in MBNs-NH2 treated cells compared to no-treated counterpart (p<0.05. The expression of odontogenic-related genes (BSP, COL1A, DMP-1, DSPP, and OCN and the capacity for biomineralization (based on alkaline phosphatase activity and alizarin red staining were significantly upregulated with MBNs-NH2. These results indicate that MBNs-NH2 induce odontogenic differentiation of rDPSCs and may serve as a potential dentin regenerative additive to dental material for promoting

  1. Effects of equiaxial strain on the differentiation of dental pulp stem cells without using biochemical reagents.

    Science.gov (United States)

    Tabatabaei, F S; Jazayeri, M; Ghahari, P; Haghighipour, N

    2014-09-01

    During orthodontic treatments, applied mechanical forces create strain and result in tooth movement through the alveolar bone. This response to mechanical strain is a fundamental biological reaction. The present study evaluated the effect of equiaxial strain within the range of orthodontic forces on the osteogenic differentiation of human dental pulp stem cells (hDPSCs). Following isolation and culture of hDPSCs, 3rd passage cells were transferred on a silicone membrane covered with collagen. Cell adhesion to the membrane was evaluated under scanning electron microscope (SEM). Cells were divided into three groups: the first group was placed in a conventional culture medium, transferred to an equiaxial stretching device (3% strain for 2 weeks). The positive control was placed in an osteogenic medium with no mechanical strain. The negative control group was placed in the conventional culture medium with no mechanical strain either. Study groups were evaluated for expression ofosteogenic markers (Alkaline phosphatase and Osteopontin) with immunofluorescence and real time PCR. SEM images revealed optimal adhesion of cells to the silicone membrane. Immunofluorescence study demonstrated that osteocalcin expression occurred after 2 weeks in the two groups under mechanical and chemical signals. After application of equiaxial strain, level of expression of osteogenic markers was significantly higher than in the negative and positive control groups. Based on the study results, static equiaxial strain which mimics the types of orthodontic forces can result in differentiation of hDPSCs to osteoblasts. The results obtained may be used in cell therapy and tissue engineering.

  2. Characterization of neurons from immortalized dental pulp stem cells for the study of neurogenetic disorders

    Directory of Open Access Journals (Sweden)

    Nora Urraca

    2015-11-01

    Full Text Available A major challenge to the study and treatment of neurogenetic syndromes is accessing live neurons for study from affected individuals. Although several sources of stem cells are currently available, acquiring these involve invasive procedures, may be difficult or expensive to generate and are limited in number. Dental pulp stem cells (DPSCs are multipotent stem cells that reside deep the pulp of shed teeth. To investigate the characteristics of DPSCs that make them a valuable resource for translational research, we performed a set of viability, senescence, immortalization and gene expression studies on control DPSC and derived neurons. We investigated the basic transport conditions and maximum passage number for primary DPSCs. We immortalized control DPSCs using human telomerase reverse transcriptase (hTERT and evaluated neuronal differentiation potential and global gene expression changes by RNA-seq. We show that neurons from immortalized DPSCs share morphological and electrophysiological properties with non-immortalized DPSCs. We also show that differentiation of DPSCs into neurons significantly alters gene expression for 1305 transcripts. Here we show that these changes in gene expression are concurrent with changes in protein levels of the transcriptional repressor REST/NRSF, which is known to be involved in neuronal differentiation. Immortalization significantly altered the expression of 183 genes after neuronal differentiation, 94 of which also changed during differentiation. Our studies indicate that viable DPSCs can be obtained from teeth stored for ≥72 h, these can then be immortalized and still produce functional neurons for in vitro studies, but that constitutive hTERT immortalization is not be the best approach for long term use of patient derived DPSCs for the study of disease.

  3. Hypoxia-mimicking bioactive glass regenerative effects on dental stem cells

    Science.gov (United States)

    Noor, Siti Noor Fazliah Mohd; Azevedo, Maria; Mohamad, Hasmaliza; Autefage, Hélène

    2016-12-01

    Vascularization is an important aspect of tissue regeneration. Hypoxia, low oxygen concentration, is a known stimulus for the release of vascular endothelial growth factors (VEGF) which play important roles in vascularization. The current study aimed to assess the effect of a cobalt-containing bioactive glass (BG) in stimulating hypoxia and promoting vascularization. To incorporate cobalt into BG, 1 mol% of calcium was substituting with cobalt, and this formulation was compared to the one without cobalt. Both BGs were processed via melt-derived method. The BG powders with particle size less than 38 µm were incubated with cell culture medium for 4 hours at 37°C on continuous rolling, and then the medium was filtered using 0.22 µm syringe filters. Prior to use, the BG-conditioned media were supplemented with 10% (v/v) fetal bovine serum and 1% (v/v) antibiotic-antimycotic, and were allowed to equilibrate overnight inside a CO2 incubator. The conditioned media were used on human dental stem cells (stem cells from permanent (DPSC) and deciduous (SHED) teeth) and assessed for their capacity to stimulate the release of angiogenic factors from the cells. The results showed that cobalt ions were released from the cobalt-containing BG, following partial dissolution of the glasses in cell culture medium, and promoted VEGF release from the cells. In conclusion, the incorporation of cobalt in BG may have potential to be used for tissue regeneration by promoting vascularization through the activation of hypoxia pathway and the release of VEGF.

  4. 牙源干细胞在再生医学中的应用%Application of dental stem cells in tissue regeneration

    Institute of Scientific and Technical Information of China (English)

    宋芳; 邹慧儒

    2013-01-01

      干细胞可修复受损组织并保存组织功能。牙源干细胞是间充质干细胞,更适用于组织工程,其多向分化潜能不仅可分化为成牙细胞,而且还可分化为神经细胞、成骨细胞、软骨细胞和脂肪细胞。牙源干细胞主要有牙髓干细胞、牙周膜干细胞、根尖乳头干细胞和脱落乳牙牙髓干细胞等。在再生医学中,利用牙源干细胞再生牙组织,将会是一种新的医疗模式。%Stem cells research has grown exponentially owing to their ability to rescue and repair injured tissue and partially restore organ function. The dental stem cells are considered rich sources of mesenchymal stem cells that are suitable for tissue engineering applications. These stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes and adipocytes. The dental stem cells exist widely in dental tissues, including dental pulp, periodontal ligament, dental papilla, and dental follicle. Technologies using dental stem cells might be a new model of renewal medicine.

  5. The effects of LPS on adhesion and migration of human dental pulp stem cells in vitro.

    Science.gov (United States)

    Li, Dongmei; Fu, Lei; Zhang, Yaqing; Yu, Qing; Ma, Fengle; Wang, Zhihua; Luo, Zhirong; Zhou, Zeyuan; Cooper, Paul R; He, Wenxi

    2014-10-01

    The aim of the present study was to investigate the effects of lipopolysaccharide (LPS) on the migration and adhesion of human dental pulp stem cells (hDPSCs) and the associated intracellular signalling pathways. hDPSCs obtained from impacted third molars were exposed to LPS and in vitro cell adhesion and migration were evaluated. The effects of LPS on gene expression of adhesion molecules and chemotactic factors were investigated using quantitative real-time reverse-transcriptase polymerase chain (qRT-PCR). The potential involvement of nuclear factor NF-kappa-B (NF-κB) or mitogen-activated protein kinase (MAPK) signalling pathways in the migration and adhesion of hDPSCs induced by LPS was assessed using a transwell cell migration assay and qRT-PCR. LPS promoted the adhesion of hDPSCs at 1μg/mL and 10μg/mL concentrations, 1μg/mL LPS showing the greater effect. Transwell cell migration assay demonstrated that LPS increased migration of hDPSCs at 1μg/mL concentration while decreasing it significantly at 10μg/mL. The mRNA expressions of adhesion molecules and chemotactic factors were enhanced significantly after stimulation with 1μg/mL LPS. Specific inhibitors for NF-κB and extracellular signal regulated kinases (ERK), c-Jun N-terminal kinase (JNK), and P38, markedly antagonised LPS-induced adhesion and migration of hDPSCs and also significantly abrogated LPS-induced up-regulation of adhesion molecules and chemotactic factors. In addition, specific inhibitors of SDF-1/CXCR4, AMD3100 significantly diminished LPS-induced migration of hDPSCs. LPS at specific concentrations can promote cell adhesion and migration in hDPSCs via the NF-κB and MAPK pathways by up-regulating the expression of adhesion molecules and chemotactic factors. LPS may influence pulp healing through enhancing the adhesion and migration of human dental pulp stem cells when it enters into pulp during pulp exposure or deep caries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp.

    Science.gov (United States)

    Iohara, Koichiro; Zheng, Li; Wake, Hiroaki; Ito, Masataka; Nabekura, Junichi; Wakita, Hideaki; Nakamura, Hiroshi; Into, Takeshi; Matsushita, Kenji; Nakashima, Misako

    2008-09-01

    Cell therapy with stem cells and endothelial progenitor cells (EPCs) to stimulate vasculogenesis as a potential treatment for ischemic disease is an exciting area of research in regenerative medicine. EPCs are present in bone marrow, peripheral blood, and adipose tissue. Autologous EPCs, however, are obtained by invasive biopsy, a potentially painful procedure. An alternative approach is proposed in this investigation. Permanent and deciduous pulp tissue is easily available from teeth after extraction without ethical issues and has potential for clinical use. We isolated a highly vasculogenic subfraction of side population (SP) cells based on CD31 and CD146, from dental pulp. The CD31(-);CD146(-) SP cells, demonstrating CD34+ and vascular endothelial growth factor-2 (VEGFR2)/Flk1+, were similar to EPCs. These cells were distinct from the hematopoietic lineage as CD11b, CD14, and CD45 mRNA were not expressed. They showed high proliferation and migration activities and multilineage differentiation potential including vasculogenic potential. In models of mouse hind limb ischemia, local transplantation of this subfraction of SP cells resulted in successful engraftment and an increase in the blood flow including high density of capillary formation. The transplanted cells were in proximity of the newly formed vasculature and expressed several proangiogenic factors, such as VEGF-A, G-CSF, GM-CSF, and MMP3. Conditioned medium from this subfraction showed the mitogenic and antiapoptotic activity on human umbilical vein endothelial cells. In conclusion, subfraction of SP cells from dental pulp is a new stem cell source for cell-based therapy to stimulate angiogenesis/vasculogenesis during tissue regeneration.

  7. Differentiation Capacity of Mouse Dental Pulp Stem Cells into Osteoblasts and Osteoclasts

    Directory of Open Access Journals (Sweden)

    Shabnam Kermani

    2014-03-01

    Full Text Available Objective: Our research attempted to show that mouse dental pulp stem cells (DPSCs with characters such as accessibility, propagation and higher proliferation rate can provide an improved approach for generate bone tissues. With the aim of finding and comparing the differentiation ability of mesenchymal stem cells derived from DPSCs into osteoblast and osteoclast cells; morphological, molecular and biochemical analyses were conducted. Materials and Methods: In this experimental study, osteoblast and osteoclast differentiation was induced by specific differentiation medium. In order to induce osteoblast differentiation, 50 μg mL-1 ascorbic acid and 10 mM β-glycerophosphate as growth factors were added to the complete medium consisting alpha-modified Eagle’s medium (α-MEM, 15% fetal bovine serum (FBS and penicillin/streptomycin, while in order to induce the osteoclast differentiation, 10 ng/mL receptor activator of nuclear factor kappa-B ligand (RANKL and 5 ng/mL macrophage-colony stimulating factor (M-CSF were added to complete medium. Statistical comparison between the osteoblast and osteoclast differentiated groups and control were carried out using t test. Results: Proliferation activity of cells was estimated by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT assay. Statistical results demonstrated significant difference (p0.05. Morphological characterization of osteoblast and osteoclast was evaluated using von Kossa staining and May-Grunwald-Giemsa technique, respectively. Reverse transcription-polymerase chain reaction (RT-PCR molecular analysis demonstrated that mouse DPSCs expressed Cd146 and Cd166 markers, but did not express Cd31, indicating that these cells belong to mesenchymal stem cells. Osteoblast cells with positive osteopontin (Opn marker were found after 21 days, whereas this marker was negative for DPSCs. CatK, as an osteoclast marker, was negative in both osteoclast differentiation medium and control

  8. Dental pulp stem cell responses to novel antibiotic-containing scaffolds for regenerative endodontics.

    Science.gov (United States)

    Kamocki, K; Nör, J E; Bottino, M C

    2015-12-01

    To evaluate both the drug-release profile and the effects on human dental pulp stem cells' (hDPSC) proliferation and viability of novel bi-mix antibiotic-containing scaffolds intended for use as a drug delivery system for root canal disinfection prior to regenerative endodontics. Polydioxanone (PDS)-based fibrous scaffolds containing both metronidazole (MET) and ciprofloxacin (CIP) at selected ratios were synthesized via electrospinning. Fibre diameter was evaluated based on scanning electron microscopy (SEM) images. Pure PDS scaffolds and a saturated CIP/MET solution (i.e. 50 mg of each antibiotic in 1 mL) (hereafter referred to as DAP) served as both negative (nontoxic) and positive (toxic) controls, respectively. High-performance liquid chromatography (HPLC) was performed to investigate the amount of drug(s) released from the scaffolds. WST-1(®) proliferation assay was used to evaluate the effect of the scaffolds on cell proliferation. LIVE/DEAD(®) assay was used to qualitatively assess cell viability. Data obtained from drug release and proliferation assays were statistically analysed at the 5% significance level. A burst release of CIP and MET was noted within the first 24 h, followed by a sustained maintenance of the drug(s) concentration for 14 days. A concentration-dependent trend was noticed upon hDPSCs' exposure to all CIP-containing scaffolds, where increasing the CIP concentration resulted in reduced cell proliferation (P Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. Interaction of dental pulp stem cells with Biodentine and MTA after exposure to different environments.

    Science.gov (United States)

    Agrafioti, Anastasia; Taraslia, Vasiliki; Chrepa, Vanessa; Lymperi, Stefania; Panopoulos, Panos; Anastasiadou, Ema; Kontakiotis, Evangelos G

    2016-01-01

    The aim of the present study was to evaluate and compare the cytotoxic effects of Biodentine and MTA on dental pulp stem cells (DPSCs) and to assess cell viability and adherence after material exposure to an acidic environment. DPSCs were cultured either alone or in contact with either: Biodentine; MTA set for 1 hour; or MTA set for 24 hours. After 4 and 7 days, cell viability was measured using the MTT assay. Biodentine and MTA were also prepared and packed into standardized bovine dentin disks and divided into three groups according to the storage media (n=6/group): freshly mixed materials without storage medium (Group A); materials stored in saline (Group B); materials stored in citric acid buffered at pH 5.4 (Group C). After 24 hours, DPSCs were introduced in the wells and cell adherence, viability, and cellular morphology were observed via confocal microscopy after three days of culture. Cell viability was analyzed using repeated-measures analysis of variance test with Tukey's post hoc tests (α=0.05). Biodentine expressed significantly higher cell viability compared with all other groups after 4 days, with no differences after 7 days. Notably, cell viability was significantly greater in 24-hour set MTA compared with 1-hour set MTA and control groups after 7 days. Material exposure to an acidic environment showed an increase in cell adherence and viability in both groups. Biodentine induced a significantly accelerated cell proliferation compared with MTA. Setting of these materials in the presence of citric acid enhanced DPSC viability and adherence.

  10. Interaction of dental pulp stem cells with Biodentine and MTA after exposure to different environments

    Directory of Open Access Journals (Sweden)

    Anastasia Agrafioti

    Full Text Available ABSTRACT Objective: The aim of the present study was to evaluate and compare the cytotoxic effects of Biodentine and MTA on dental pulp stem cells (DPSCs and to assess cell viability and adherence after material exposure to an acidic environment. Material and Methods: DPSCs were cultured either alone or in contact with either: Biodentine; MTA set for 1 hour; or MTA set for 24 hours. After 4 and 7 days, cell viability was measured using the MTT assay. Biodentine and MTA were also prepared and packed into standardized bovine dentin disks and divided into three groups according to the storage media (n=6/group: freshly mixed materials without storage medium (Group A; materials stored in saline (Group B; materials stored in citric acid buffered at pH 5.4 (Group C. After 24 hours, DPSCs were introduced in the wells and cell adherence, viability, and cellular morphology were observed via confocal microscopy after three days of culture. Cell viability was analyzed using repeated-measures analysis of variance test with Tukey's post hoc tests (α=0.05. Results: Biodentine expressed significantly higher cell viability compared with all other groups after 4 days, with no differences after 7 days. Notably, cell viability was significantly greater in 24-hour set MTA compared with 1-hour set MTA and control groups after 7 days. Material exposure to an acidic environment showed an increase in cell adherence and viability in both groups. Conclusions: Biodentine induced a significantly accelerated cell proliferation compared with MTA. Setting of these materials in the presence of citric acid enhanced DPSC viability and adherence.

  11. Mechanical changes in human dental pulp stem cells during early odontogenic differentiation.

    Science.gov (United States)

    Jones, Taneka D; Naimipour, Hamed; Sun, Shan; Cho, Michael; Alapati, Satish B

    2015-01-01

    Cell adhesion and migration in bioactive scaffolds require actin cytoskeleton remodeling and focal adhesion formation. Additionally, human dental pulp stem cells (hDPSCs) undergo several changes in their mechanical properties during odontogenic differentiation. The effect of factors essential for odontogenesis on actin stress fiber elasticity and focal adhesion formation is not known. Live hDPSCs cultured in odontogenic media were imaged for cytoskeleton changes using an atomic force microscope. The Young's modulus (kPa) of the cytoskeleton was recorded as a function of culture medium for 10 days. Focal adhesion formation was assessed using immunofluorescence. Cultured hDPSCs were incubated with a monoclonal vinculin antibody, and filamentous actins were visualized using 0.5 μmol/L phalloidin. Cytoskeletal elasticity significantly increased in response to odontogenic media. Both the number and physical size of focal adhesions in hDPSCs also increased. Up-regulation of vinculin expression was evident. The increase in the formation of focal adhesions was consistent with actin remodeling to stress fibers. Our findings suggest that hDPSCs firmly attach to the glass substrate in response to odontogenic media. Successful regeneration of pulp-dentin tissue using biomimetic scaffolds will likely require cell-extracellular matrix interactions influenced by biochemical induction factors. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Preliminary study on dental pulp stem cell-mediated pulp regeneration in canine immature permanent teeth.

    Science.gov (United States)

    Wang, Yuanyuan; Zhao, Yuming; Jia, Weiqian; Yang, Jie; Ge, Lihong

    2013-02-01

    The health of human teeth depends on the integrity of the hard tissue and the activity of the pulp and periodontal tissues, which are responsible for nutritional supply. Without the nourishing of the pulp tissue, the possibility of tooth fracture can increase. In immature permanent teeth, root development may be influenced as well. This study explored the potential of using autologous dental pulp stem cells (DPSCs) to achieve pulp regeneration in a canine pulpless model. The establishment of the pulpless animal model involved pulp extirpation and root canal preparation of young permanent incisor teeth in beagles. Autologous DPSCs were obtained from extracted first molars and expanded ex vivo to obtain a larger number of cells. The biological characteristics of canine DPSCs (cDPSCs) were analyzed both in vitro and in vivo by using the same method as used in human DPSCs. cDPSCs were transplanted into the pulpless root canal with Gelfoam as the scaffold, and root development was evaluated by radiographic and histologic analyses. cDPSCs with rapid proliferation, multiple differentiation capacity, and development potential were successfully isolated and identified both in vitro and in vivo. After they were transplanted into the pulpless root canal with Gelfoam as the scaffold, DPSCs were capable of generating pulp-like tissues containing blood vessels and dentin-like tissue. Thickening of the root canal wall was also observed. This study demonstrates the feasibility of using stem cell-mediated tissue engineering to realize pulp regeneration in immature teeth. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice

    OpenAIRE

    2016-01-01

    Background Periodontitis, one of the most prevalent infectious diseases in humans, results in the destruction of tooth-supporting tissues. The purpose of the present study is to evaluate the effect of cell injection and cell sheet transplantation on periodontal regeneration in a swine model. Methods In the present study, human dental pulp stem cells (hDPSCs) were transplanted into a swine model for periodontal regeneration. Twelve miniature pigs were used to generate periodontitis with bone d...

  14. The effects of human platelet lysate on dental pulp stem cells derived from impacted human third molars.

    Science.gov (United States)

    Chen, Bo; Sun, Hai-Hua; Wang, Han-Guo; Kong, Hui; Chen, Fa-Ming; Yu, Qing

    2012-07-01

    Human platelet lysate (PL) has been suggested as a substitute for fetal bovine serum (FBS) in the large-scale expansion of dental pulp stem cells (DPSCs). However, the biological effects and the optimal concentrations of PL for the proliferation and differentiation of human DPSCs remain unexplored. We isolated and expanded stem cells from the dental pulp of extracted third molars and evaluated the effects of PL on the cells' proliferative capacity and differentiation potential in vitro and in vivo. Before testing, immunocytochemical staining and flow cytometry-based cell sorting showed that the cells derived from human dental pulp contained mesenchymal stem cell populations. Cells were grown on tissue culture plastic or on hydroxyapatite-tricalcium phosphate (HA/TCP) biomaterials and were incubated with either normal or odontogenic/osteogenic media in the presence or absence of various concentrations of human PL for further investigation. The proliferation of DPSCs was significantly increased when the cells were cultured in 5% PL under all testing conditions (P biomaterials and had fully covered the surface of the scaffold with an extensive sheet-like structure 14 d after seeding. In addition, 5% PL showed significantly positive effects on tissue regeneration in two in vivo transplantation models. We conclude that the appropriate concentration of PL enhances the proliferation and mineralized differentiation of human DPSCs both in vitro and in vivo, which supports the use of PL as an alternative to FBS or a nonzoonotic adjuvant for cell culture in future clinical trials. However, the elucidation of the molecular complexity of PL products and the identification of both the essential growth factors that determine the fate of a specific stem cell and the criteria to establish dosing require further investigation.

  15. In Vivo Experiments with Dental Pulp Stem Cells for Pulp-Dentin Complex Regeneration

    Directory of Open Access Journals (Sweden)

    Sunil Kim

    2015-01-01

    Full Text Available In recent years, many studies have examined the pulp-dentin complex regeneration with DPSCs. While it is important to perform research on cells, scaffolds, and growth factors, it is also critical to develop animal models for preclinical trials. The development of a reproducible animal model of transplantation is essential for obtaining precise and accurate data in vivo. The efficacy of pulp regeneration should be assessed qualitatively and quantitatively using animal models. This review article sought to introduce in vivo experiments that have evaluated the potential of dental pulp stem cells for pulp-dentin complex regeneration. According to a review of various researches about DPSCs, the majority of studies have used subcutaneous mouse and dog teeth for animal models. There is no way to know which animal model will reproduce the clinical environment. If an animal model is developed which is easier to use and is useful in more situations than the currently popular models, it will be a substantial aid to studies examining pulp-dentin complex regeneration.

  16. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental rheumatoid arthritis.

    Science.gov (United States)

    Ishikawa, Jun; Takahashi, Nobunori; Matsumoto, Takuya; Yoshioka, Yutaka; Yamamoto, Noriyuki; Nishikawa, Masaya; Hibi, Hideharu; Ishigro, Naoki; Ueda, Minoru; Furukawa, Koichi; Yamamoto, Akihito

    2016-02-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and chronic inflammation, which lead to the progressive destruction of cartilage and bone in the joints. Numerous studies have reported that administrations of various types of MSCs improve arthritis symptoms in animal models, by paracrine mechanisms. However, the therapeutic effects of the secreted factors alone, without the cell graft, have been uncertain. Here, we show that a single intravenous administration of serum-free conditioned medium (CM) from human deciduous dental pulp stem cells (SHED-CM) into anti-collagen type II antibody-induced arthritis (CAIA), a mouse model of rheumatoid arthritis (RA), markedly improved the arthritis symptoms and joint destruction. The therapeutic efficacy of SHED-CM was associated with an induction of anti-inflammatory M2 macrophages in the CAIA joints and the abrogation of RANKL expression. SHED-CM specifically depleted of an M2 macrophage inducer, the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (ED-Siglec-9), exhibited a reduced ability to induce M2-related gene expression and attenuate CAIA. SHED-CM also inhibited the RANKL-induced osteoclastogenesis in vitro. Collectively, our findings suggest that SHED-CM provides multifaceted therapeutic effects for treating CAIA, including the ED-Siglec-9-dependent induction of M2 macrophage polarization and inhibition of osteoclastogenesis. Thus, SHED-CM may represent a novel anti-inflammatory and reparative therapy for RA.

  17. Modulation of the Differentiation of Dental Pulp Stem Cells by Different Concentrations of β-Glycerophosphate

    Directory of Open Access Journals (Sweden)

    Weiping Hu

    2012-01-01

    Full Text Available Dentinogenesis is a necessary prerequisite for dental tissue engineering. One of the steps for dentinogenesis is to obtain large quantities of highly purified odontoblasts. Therefore, we have undertaken an experiment applying different concentrations of β-glycerophosphate (β-GP to induce the differentiation of dental pulp stem cells (DPSCs in a long-term 28-day culture. In the meanwhile, we have studied the time- and maturation-dependent expression of matrix extracellular phosphoglycoprotein (MEPE and that of the odontoblast-like marker-dentin sialoprotein (DSP, in order to investigate an optimized mineralized condition. Western blot results revealed that the expression of DSP became lower when accompanied by the increase of the β-GP concentration, and there was also an influence on MEPE expression when different concentrations of β-GP were applied. Meanwhile, the mineralized groups had an inhibitory function on the expression of MEPE as compared with the control group. Above all, all experimental groups successfully generated mineralized nodules by Alizarin Red S and the 5 mM β-GP group formed more mineralized nodules quantitated using the CPC extraction method. In conclusion, there is a significant modulation of the β-GP during the differentiation of the DPSCs. The degree of odontoblast differentiation is β-glycerophosphate concentration dependent. A low concentration of β-GP (5 mM has been shown to be the optimal concentration for stimulating the maturation of the DPSCs. Moreover, MEPE accompanied with DSP clearly demonstrates the degree of the differentiation.

  18. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells

    OpenAIRE

    Soo-Kyung Jun; Jung-Hwan Lee; Hae-Hyoung Lee

    2017-01-01

    The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs). The product (Bioactive® [BA]) was compared with a conventional calcium hydroxide-incorporated (Dycal [DC]) and a light-curable (Theracal® [TC]) counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP) a...

  19. Distal C terminus of CaV1.2 channels plays a crucial role in the neural differentiation of dental pulp stem cells.

    Directory of Open Access Journals (Sweden)

    Jianping Ge

    Full Text Available L-type voltage-dependent CaV1.2 channels play an important role in the maintenance of intracellular calcium homeostasis, and influence multiple cellular processes. C-terminal cleavage of CaV1.2 channels was reported in several types of excitable cells, but its expression and possible roles in non-excitable cells is still not clear. The aim of this study was to determine whether distal C-terminal fragment of CaV1.2 channels is present in rat dental pulp stem cells and its possible role in the neural differentiation of rat dental pulp stem cells. We generated stable CaV1.2 knockdown cells via short hairpin RNA (shRNA. Rat dental pulp stem cells with deleted distal C-terminal of CaV1.2 channels lost the potential of differentiation to neural cells. Re-expression of distal C-terminal of CaV1.2 rescued the effect of knocking down the endogenous CaV1.2 on the neural differentiation of rat dental pulp stem cells, indicating that the distal C-terminal of CaV1.2 is required for neural differentiation of rat dental pulp stem cells. These results provide new insights into the role of voltage-gated Ca(2+ channels in stem cells during differentiation.

  20. p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury%p75 neurotrophin receptor positive dental pulp stem cells:new hope for patients with neurodegenerative disease and neural injury

    Institute of Scientific and Technical Information of China (English)

    DAI Jie-wen; YUAN Hao; SHEN Shun-yao; LU Jing-ting; ZHU Xiao-fang; YANG Tong; ZHANG Jiang-fei

    2013-01-01

    Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation.Cell based treatment for these diseases had gained special interest in recent years.Previous studies showed that dental pulp stem cells (DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo,and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities.Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells.However,DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells,and most were fibroblast cells while just contain a small portion of DPSCs.Thus,there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells.p75 neurotrophin receptor (p75NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs,which had capacity of differentiation into neurons and repairing neural system.In this article,we hypothesize that p75NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast,and in vivo transptantation of autologous p75NTR positive DPSCs is a novel method for neuranagenesis.This will bring great hope to patients with neurodegenerative disease and neural injury.

  1. Human dental pulp stem cells hook into biocoral scaffold forming an engineered biocomplex.

    Science.gov (United States)

    Mangano, Carlo; Paino, Francesca; d'Aquino, Riccardo; De Rosa, Alfredo; Iezzi, Giovanna; Piattelli, Adriano; Laino, Luigi; Mitsiadis, Thimios; Desiderio, Vincenzo; Mangano, Francesco; Papaccio, Gianpaolo; Tirino, Virginia

    2011-04-11

    The aim of this study was to evaluate the behavior of human Dental Pulp Stem Cells (DPSCs), as well as human osteoblasts, when challenged on a Biocoral scaffold, which is a porous natural hydroxyapatite. For this purpose, human DPSCs were seeded onto a three-dimensional (3D) Biocoral scaffold or on flask surface (control). Either normal or rotative (3D) cultures were performed. Scanning electron microscopic analyses, at 8, 24 and 48 h of culture showed that cells did not adhere on the external surface, but moved into the cavities inside the Biocoral structure. After 7, 15 and 30 days of culture, morphological and molecular analyses suggested that the Biocoral scaffold leads DPSCs to hook into the cavities where these cells quickly start to secrete the extra cellular matrix (ECM) and differentiate into osteoblasts. Control human osteoblasts also moved into the internal cavities where they secreted the ECM. Histological sections revealed a diffuse bone formation inside the Biocoral samples seeded with DPSCs or human osteoblasts, where the original scaffold and the new secreted biomaterial were completely integrated and cells were found within the remaining cavities. In addition, RT-PCR analyses showed a significant increase of osteoblast-related gene expression and, above all, of those genes highly expressed in mineralized tissues, including osteocalcin, OPN and BSP. Furthermore, the effects on the interaction between osteogenesis and angiogenesis were observed and substantiated by ELISA assays. Taken together, our results provide clear evidence that DPSCs differentiated into osteoblasts, forming a biocomplex made of Biocoral, ECM and differentiated cells.

  2. Human Dental Pulp Stem Cells via the NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Shensheng Gu

    2015-07-01

    Full Text Available Background/Aims: Odontogenic differentiation of human dental pulp stem cells (HDPSCs is regulated by multiple factors and signaling molecules. However, their regulatory mechanisms are not completely understood. In this study, we investigated the role of Zinc finger and BTB domain-containing 20 (ZBTB20 in odontoblastic differentiation of HDPSCs. Methods: HDPSCs were obtained from human third molars and ZBTB20 expression was examined by qRT-PCR and western blot. Their osteo/odontogenic differentiation and the involvement of NF-κB pathway were subsequently investigated. Results: The expression of ZBTB20 is upregulated in a time-dependent manner during odontogenic differentiation of hDPSCs. Inhibition of ZBTB20 reduced osteogenic medium (OM-induced odontogenic differentiation, reflected in decreased alkaline phosphatase (ALP activity, mineralized nodule formation and mRNA expression of odonto/osteogenic marker genes. In contrast, overexpression of ZBTB20 enhanced ALP activity, mineralization and the expression of differentiation marker genes. Furthermore, the expression of IκBa was increased by ZBTB20 silencing in HDPSCs, whereas ZBTB20 overexpression decreased IκBa and enhanced nuclear NF-κB p65. Inhibition of the NF-κB pathway significantly suppressed the odontogenic differentiation of HDPSCs induced by ZBTB20. Conclusion: This study shows for the first time that ZBTB20 plays an important role during odontoblastic differentiation of HDPSCs and may have clinical implications for regenerative endodontics.

  3. Differentiation of Dental Pulp Stem Cells on Gutta-Percha Scaffolds

    Directory of Open Access Journals (Sweden)

    Liudi Zhang

    2016-05-01

    Full Text Available Advances in treatment of tooth injury have shown that tooth regeneration from the pulp was a viable alternative of root canal therapy. In this study, we demonstrated that Gutta-percha, nanocomposites primarily used for obturation of the canal, are not cytotoxic and can induce differentiation of dental pulp stem cells (DPSC in the absence of soluble mediators. Flat scaffolds were obtained by spin coating Si wafers with three Gutta-percha compounds: GuttaCore™, ProTaper™, and Lexicon™. The images of annealed surfaces showed that the nanoparticles were encapsulated, forming surfaces with root mean square (RMS roughness of 136–211 nm. Then, by culturing DPSC on these substrates we found that after some initial difficulty in adhesion, confluent tissues were formed after 21 days. Imaging of the polyisoprene (PI surfaces showed that biomineral deposition only occurred when dexamethasone was present in the media. Spectra obtained from the minerals was consistent with that of hydroxyapatite (HA. In contrast, HA deposition was observed on all Gutta-percha scaffolds regardless of the presence or absence of dexamethasone, implying that surface roughness may be an enabling factor in the differentiation process. These results indicate that Gutta-percha nanocomposites may be good candidates for pulp regeneration therapy.

  4. Zinc chloride for odontogenesis of dental pulp stem cells via metallothionein up-regulation.

    Science.gov (United States)

    Lin, Chia-Yung; Lin, Hsin-Hua; Tsai, Mong-Hsun; Lin, Shau-Ping; Chen, Min-Huey

    2011-02-01

    Previous studies have shown that zinc chloride (ZnCl(2)) can induce metallthionein (MT) in the liver and kidney to protect tissues against toxicants and shows a better corneal wound healing than conventional drugs do. We hypothesized that ZnCl(2) can promote odontogenesis of dental pulp stem cells (DPSCs) via MT. The purpose of this study was to investigate the effects of ZnCl(2) on human DPSCs and the expression of MT. DPSCs were isolated by flow cytometry with selective surface marker CD146 and STRO-1. After they grew into confluence, DPSCs were induced into odontoblasts with or without ZnCl(2) supplemented in the culture medium for 21 days. The effect of ZnCl(2) on DPSCs differentiation was examined followed by alkaline phosphatase staining/activity and quantitative real-time polymerase chain reaction analysis. By treating DPSCs with ZnCl(2), the duration of mineralization was shortened and expressions of differentiation markers into odontoblasts were more significant than those without ZnCl(2) stimulation. Besides, the MT gene expression was increased with the increasing expressions of odontoblasts' markers after treated with ZnCl(2). This was the first report that ZnCl(2) could promote odontoblastic differentiation of DPSCs through the up-regulation of gene MT. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Study of the Major Components of the PluriNet Network Expression in Dental Pulp Stem Cells Isolated from Human Third Molar Teeth

    Directory of Open Access Journals (Sweden)

    Behnam Ebrahimi

    2010-01-01

    Full Text Available Objective: The objective of this study was to isolate and culture human dental pulp stemcells to study important stem cell markers in them.Materials and Methods: Dental stem cells were isolated from human pulp and culturedin alpha-modified eagle’s medium (α-MEM supplemented with 20% fetal bovine serum(FBS in a 37°C incubator with 5% CO2 and photographed under inverted microscope.The expressions of the important stem cell markers were analyzed by reverse transcriptionpolymerase chain reaction (RT-PCR and agarose gel electrophoresis in the cells atdifferent passages.Results: Cells isolated from dental pulp showed a high rate of proliferation and werecultured to more than 15 passages in vitro. The study of gene expression by RT-PCRshowed that these cells expressed nucleostemin, cyclin D1, Oct-4 and nanog (major componentsof the PluriNet in different passages as well as under serum-free conditions.Conclusion: Cells isolated from dental pulp are genuine pluripotent stem cells with highpotential for self-renewal. The expression of the stem cell markers in human dental pulpstem cells indicate that they have a great potential for cell therapy and regenerative medicine,even they were isolated from adult teeth.

  6. p75 neurotrophin receptor positive dental pulp stem cells: new hope for patients with neurodegenerative disease and neural injury.

    Science.gov (United States)

    Dai, Jie-wen; Yuan, Hao; Shen, Shun-yao; Lu, Jing-ting; Zhu, Xiao-fang; Yang, Tong; Zhang, Jiang-fei; Shen, Guo-fang

    2013-08-01

    Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation. Cell based treatment for these diseases had gained special interest in recent years. Previous studies showed that dental pulp stem cells (DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo, and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities. Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells. However, DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells, and most were fibroblast cells while just contain a small portion of DPSCs. Thus, there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells. p75 neurotrophin receptor (p75NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs, which had capacity of differentiation into neurons and repairing neural system. In this article, we hypothesize that p75NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast, and in vivo transptantation of autologous p75NTR positive DPSCs is a novel method for neuranagenesis. This will bring great hope to patients with neurodegenerative disease and neural injury.

  7. Effects of decellularized matrices derived from periodontal ligament stem cells and SHED on the adhesion, proliferation and osteogenic differentiation of human dental pulp stem cells in vitro.

    Science.gov (United States)

    Heng, Boon Chin; Zhu, Shaoyue; Xu, Jianguang; Yuan, Changyong; Gong, Ting; Zhang, Chengfei

    2016-04-01

    A major bottleneck to the therapeutic applications of dental pulp stem cells (DPSC) are their limited proliferative capacity ex vivo and tendency to undergo senescence. This may be partly due to the sub-optimal in vitro culture milieu, which could be improved by an appropriate extracellular matrix substratum. This study therefore examined decellularized matrix (DECM) from stem cells derived from human exfoliated deciduous teeth (SHED) and periodontal ligament stem cells (PDLSC), as potential substrata for DPSC culture. Both SHED-DECM and PDLSC-DECM promoted rapid adhesion and spreading of newly-seeded DPSC compared to bare polystyrene (TCPS), with vinculin immunocytochemistry showing expression of more focal adhesions by newly-adherent DPSC cultured on DECM versus TCPS. Culture of DPSC on SHED-DECM and PDLSC-DECM yielded higher proliferation of cell numbers compared to TCPS. The qRT-PCR data showed significantly higher expression of nestin by DPSC cultured on DECM versus the TCPS control. Osteogenic differentiation of DPSC was enhanced by culturing on PDLSC-DECM and SHED-DECM versus TCPS, as demonstrated by alizarin red S staining for mineralized calcium deposition, alkaline phosphatase assay and qRT-PCR analysis of key osteogenic marker expression. Hence, both SHED-DECM and PDLSC-DECM could enhance the ex vivo culture of DPSC under both non-inducing and osteogenic-inducing conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Dental pulp stem cell responses to novel antibiotic-containing scaffolds for regenerative endodontics

    Science.gov (United States)

    Kamocki, K.; Nör, J. E.; Bottino, M. C.

    2014-01-01

    Aim To evaluate both the drug release profile and the effects on human dental pulp stem cells’ (hDPSC) proliferation and viability of novel bi-mix antibiotic-containing scaffolds intended for use as a drug-delivery system for root canal disinfection prior to regenerative endodontics. Methodology Polydioxanone (PDS)-based fibrous scaffolds containing both metronidazole (MET) and ciprofloxacin (CIP) at selected ratios were synthesized via electrospinning. Fibre diameter was evaluated based on scanning electron microscopy (SEM) images. Pure PDS scaffolds and a saturated CIP/MET solution (i.e. 50 mg of each antibiotic in 1 mL) (hereafter referred to as DAP) served as both negative (non-toxic) and positive (toxic) controls, respectively. High performance liquid chromatography (HPLC) was done to investigate the amount of drug(s) released from the scaffolds. WST-1® proliferation assay was used to evaluate the effect of the scaffolds on cell proliferation. LIVE/DEAD® assay was used to qualitatively assess cell viability. Data obtained from drug release and proliferation assays were statistically analysed at the 5% significance level. Results A burst release of CIP and MET was noted within the first 24 h, followed by a sustained maintenance of the drug(s) concentration for 14 days. A concentration-dependent trend was noticed upon hDPSCs’ exposure to all CIP-containing scaffolds, where increasing the CIP concentration resulted in reduced cell proliferation (P<0.05) and viability. In groups exposed to pure MET or pure PDS scaffolds, no changes in proliferation were observed. Conclusions Synthesized antibiotic-containing scaffolds had significantly lower effects on hDPSCs proliferation when compared to the saturated CIP/MET solution (DAP). PMID:25425048

  9. The effect of Aloe vera gel on viability of dental pulp stem cells.

    Science.gov (United States)

    Sholehvar, Fatemeh; Mehrabani, Davood; Yaghmaei, Parichehr; Vahdati, Akbar

    2016-10-01

    Dental pulp stem cells (DPSCs) can play a prominent role in tissue regeneration. Aloe vera L. (Liliaceae) contains the polysaccharide of acemannan that was shown to be a trigger factor for cell proliferation, differentiation, mineralization, and dentin formation. This study sought to determine the viability of DPSCs in Aloe vera in comparison with Hank's balanced salt solution (HBSS). Twelve rabbits underwent anesthesia, and their incisor teeth were extracted; the pulp tissue was removed, chopped, treated with collagenase and plated in culture flasks. DPSCs from passage 3 were cultured in 24-well plates, and after 3 days, the culture media changed to 10, 25, 50, and 100% concentrations of Aloe vera at intervals of 45 and 90 min and 3 and 6 h. Distilled water was used as negative and HBSS as positive control for comparison. The cell morphology, viability, population doubling time (PDT), and growth kinetics were evaluated. RT-PCR was carried out for characterization and karyotyping for chromosomal stability. Aloe vera showed a significant higher viability than HBSS (74.74%). The 50% Aloe vera showed higher viability (97.73%) than other concentrations. PDT in 50% concentration was 35.1 h and for HBSS was 49.5 h. DPSCs were spindle shaped and were positive for CD73 and negative for CD34 and CD45. Karyotyping was normal. Aloe vera as an inexpensive and available herb can improve survival of avulsed or broken teeth in emergency cases as a transfer media. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Dental pulp stem cells express tendon markers under mechanical loading and are a potential cell source for tissue engineering of tendon-like tissue

    Institute of Scientific and Technical Information of China (English)

    Yu-Ying Chen; Sheng-Teng He; Fu-Hua Yan; Peng-Fei Zhou; Kai Luo; Yan-Ding Zhang; Yin Xiao; Min-Kui Lin

    2016-01-01

    Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon-related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a potential stem cell source for tissue engineering of tendon-like tissue.

  11. Dental pulp stem cells express tendon markers under mechanical loading and are a potential cell source for tissue engineering of tendon-like tissue.

    Science.gov (United States)

    Chen, Yu-Ying; He, Sheng-Teng; Yan, Fu-Hua; Zhou, Peng-Fei; Luo, Kai; Zhang, Yan-Ding; Xiao, Yin; Lin, Min-Kui

    2016-12-16

    Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon-related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a potential stem cell source for tissue engineering of tendon-like tissue.

  12. Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels

    Directory of Open Access Journals (Sweden)

    Anna eWoloszyk

    2016-04-01

    Full Text Available Neovascularization is one of the most important processes during tissue repair and regeneration. Current healing approaches based on the use of biomaterials combined with stem cells in critical-size bone defects fail due to the insufficient implant vascularization and integration into the host tissues. Therefore, here we studied the attraction, ingrowth, and distribution of blood vessels from the chicken embryo chorioallantoic membrane into implanted silk fibroin scaffolds seeded with either human dental pulp stem cells or human gingival fibroblasts. Perfusion capacity was evaluated by non-invasive in vivo Magnetic Resonance Imaging while the number and density of blood vessels were measured by histomorphometry. Our results demonstrate that human dental pulp stem cells and gingival fibroblasts possess equal abilities in attracting vessels within silk fibroin scaffolds. Additionally, the prolonged in vitro pre-incubation period of these two cell populations favors the homogeneous distribution of vessels within silk fibroin scaffolds, which further improves implant survival and guarantees successful healing and regeneration.

  13. Dental Stem Cell Migration on Pulp Ceiling Cavities Filled with MTA, Dentin Chips, or Bio-Oss

    Directory of Open Access Journals (Sweden)

    Stefania Lymperi

    2015-01-01

    Full Text Available MTA, Bio-Oss, and dentin chips have been successfully used in endodontics. The aim of this study was to assess the adhesion and migration of dental stem cells on human pulp ceiling cavities filled with these endodontic materials in an experimental model, which mimics the clinical conditions of regenerative endodontics. Cavities were formed, by a homemade mold, on untouched third molars, filled with endodontic materials, and observed with electron microscopy. Cells were seeded on cavities’ surface and their morphology and number were analysed. The phenomenon of tropism was assessed in a migration assay. All three materials demonstrated appropriate microstructures for cell attachment. Cells grew on all reagents, but they showed a differential morphology. Moreover, variations were observed when comparing cells numbers on cavity’s filling versus the surrounding dentine disc. The highest number of cells was recorded on dentin chips whereas the opposite was true for Bio-Oss. This was confirmed in the migration assay where a statistically significant lower number of cells migrated towards Bio-Oss as compared to MTA and dentin chips. This study highlights that MTA and dentin chips have a greater potential compared to Bio-Oss regarding the attraction of dental stem cells and are good candidates for bioengineered pulp regeneration.

  14. Dental Stem Cell Migration on Pulp Ceiling Cavities Filled with MTA, Dentin Chips, or Bio-Oss

    Science.gov (United States)

    Lymperi, Stefania; Taraslia, Vasiliki; Tsatsoulis, Ioannis N.; Samara, Athina; Agrafioti, Anastasia; Anastasiadou, Ema; Kontakiotis, Evangelos

    2015-01-01

    MTA, Bio-Oss, and dentin chips have been successfully used in endodontics. The aim of this study was to assess the adhesion and migration of dental stem cells on human pulp ceiling cavities filled with these endodontic materials in an experimental model, which mimics the clinical conditions of regenerative endodontics. Cavities were formed, by a homemade mold, on untouched third molars, filled with endodontic materials, and observed with electron microscopy. Cells were seeded on cavities' surface and their morphology and number were analysed. The phenomenon of tropism was assessed in a migration assay. All three materials demonstrated appropriate microstructures for cell attachment. Cells grew on all reagents, but they showed a differential morphology. Moreover, variations were observed when comparing cells numbers on cavity's filling versus the surrounding dentine disc. The highest number of cells was recorded on dentin chips whereas the opposite was true for Bio-Oss. This was confirmed in the migration assay where a statistically significant lower number of cells migrated towards Bio-Oss as compared to MTA and dentin chips. This study highlights that MTA and dentin chips have a greater potential compared to Bio-Oss regarding the attraction of dental stem cells and are good candidates for bioengineered pulp regeneration. PMID:26146613

  15. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75{sup +} stem cells with dental follicle cell conditioned medium

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Liu, Rui; Zhang, Li; Nie, Xin, E-mail: dr.xinnie@gmail.com

    2015-09-10

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75{sup +}) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75{sup +} CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75{sup +} cells, suggesting their differentiation along cementoblast-like lineage. p75{sup +} stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75{sup +}) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75{sup +} CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75{sup +} cells express cementoblast specific mineralization

  16. Characterization of Neurogenic Potential of Dental Pulp Stem Cells Cultured in Xeno/Serum-Free Condition: In Vitro and In Vivo Assessment

    Directory of Open Access Journals (Sweden)

    Jieun Jung

    2016-01-01

    Full Text Available Neural stem cells (NSCs have a high potency for differentiation to neurons and glial cells for replacement of damaged cells and paracrine effects for the regeneration and remyelination of host axons. Dental pulp is known to have a potential to differentiate into neural-like cells; therefore, dental pulp may be used as an autologous cell source for neural repair. In this study, we selectively expanded stem cells from human dental pulp in an initial culture using NSC media under xeno- and serum-free conditions. At the initial step of primary culture, human dental pulp was divided into two groups according to the culture media: 10% fetal bovine serum medium group (FBS group and NSC culture medium group (NSC group. In the NSC group relative to the FBS group, the expression of NSC markers and the concentrations of leukemia inhibitory factor, nerve growth factor, and stem cell factor were higher, although their expression levels were lower than those of human fetal NSCs. The transplanted cells of the NSC group survived well within the normal brain and injured spinal cord of rats and expressed nestin and Sox2. Under the xeno- and serum-free conditions, autologous human dental pulp-derived stem cells might prove useful for clinical cell-based therapies to repair damaged neural tissues.

  17. Comparative Analysis of Human Mesenchymal Stem Cells from Umbilical Cord, Dental Pulp, and Menstrual Blood as Sources for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Huaijuan Ren

    2016-01-01

    Full Text Available Although mesenchymal stem cells (MSCs based therapy has been considered as a promising tool for tissue repair and regeneration, the optimal cell source remains unknown. Umbilical cord (UC, dental pulp (DP, and menstrual blood (MB are easily accessible sources, which make them attractive candidates for MSCs. The goal of this study was to compare the biological characteristics, including morphology, proliferation, antiapoptosis, multilineage differentiation capacity, and immunophenotype of UC-, DP-, and MB-MSCs in order to provide a theoretical basis for clinical selection and application of these cells. As a result, all UC-, DP-, and MB-MSCs have self-renewal capacity and multipotentiality. However, the UC-MSCs seemed to have higher cell proliferation ability, while DP-MSCs may have significant advantages for osteogenic differentiation, lower cell apoptosis, and senescence. These differences may be associated with the different expression level of cytokines, including vascular endothelial growth factor, fibroblast growth factor, keratinocyte growth factor, and hepatocyte growth factor in each of the MSCs. Comprehensively, our results suggest DP-MSCs may be a desired source for clinical applications of cell therapy.

  18. Effect of dental stem cells involved in tissue regeneration repair%牙源干细胞参与组织再生修复的作用

    Institute of Scientific and Technical Information of China (English)

    李颖; 谷子芽

    2011-01-01

    BACKGROUND: With the development of stem cell technology, researches on dental stem cells have also come into sight. Dental stem cells are ideal resources of seed cells, which have the incomparable advantages on the application of tooth tissue engineering.OBJECTIVE: To summarize relative research progress on dental stem cells.METHODS: PubMed database, Highwire database and CNKI database was retrieved by the first author, with the key words of “dental stem cells, tissue engineering, application” in English and Chinese, respectively. Totally 156 literatures were initially selected, from which studies about the application of dental stem cells, including dental pulp stem cells and periodontal ligament stem cells on tissue engineering, while outdated and duplicated literatures were excluded. Finally 30 literatures were included.RESULTS AND CONCLUSION: Various dental stem cells have the capability of self-renew and multipotential differentiation. They share many similarities with bone marrow derived mesenchymal stem cells, which are better understood currently. Therefore, dental stem cells have a promised future in tissue engineering, especially dental tissue engineering. However, there are only a few reports about application of dental stem cells on tissue regeneration, and the studies only stuck at a stage of animal models. With the development of science and technology, various dental stem cells are hopefully coming into clinical application, providing possibility to cure oral diseases of human beings.%背景:随着干细胞技术的不断发展,牙源性干细胞的研究也不断深入.它们是十分理想的种子细胞来源,在牙组织工程的应用上具有无可比拟的优势.目的:综述牙源干细胞的相关研究进展.方法:由第一作者检索PubMed数据库、Highwire数据库及中国知网(CNKI)数据库.英文检索词为"dental stem cells,tissue engineering,application",中文检索词为"牙源干细胞,组织工程,应

  19. Oral features and dental health in Hurler Syndrome following hematopoietic stem cell transplantation.

    LENUS (Irish Health Repository)

    McGovern, Eleanor

    2010-09-01

    Hurler Syndrome is associated with a deficiency of a specific lysosomal enzyme involved in the degradation of glycosaminoglycans. Hematopoietic stem cell transplantation (HSCT) in early infancy is undertaken to help prevent the accumulation of glycosaminoglycans and improve organ function.

  20. Engineering three dimensional micro nerve tissue using postnatal stem cells from human dental apical papilla.

    Science.gov (United States)

    Kim, Byung-Chul; Jun, Sung-Min; Kim, So Yeon; Kwon, Yong-Dae; Choe, Sung Chul; Kim, Eun-Chul; Lee, Jae-Hyung; Kim, Jinseok; Suh, Jun-Kyo Francis; Hwang, Yu-Shik

    2017-04-01

    The in vitro generation of cell-based three dimensional (3D) nerve tissue is an attractive subject to improve graft survival and integration into host tissue for neural tissue regeneration or to model biological events in stem cell differentiation. Although 3D organotypic culture strategies are well established for 3D nerve tissue formation of pluripotent stem cells to study underlying biology in nerve development, cell-based nerve tissues have not been developed using human postnatal stem cells with therapeutic potential. Here, we established a culture strategy for the generation of in vitro cell-based 3D nerve tissue from postnatal stem cells from apical papilla (SCAPs) of teeth, which originate from neural crest-derived ectomesenchyme cells. A stem cell population capable of differentiating into neural cell lineages was generated during the ex vivo expansion of SCAPs in the presence of EGF and bFGF, and SCAPs differentiated into neural cells, showing neural cell lineage-related molecular and gene expression profiles, morphological changes and electrophysical property under neural-inductive culture conditions. Moreover, we showed the first evidence that 3D cell-based nerve-like tissue with axons and myelin structures could be generated from SCAPs via 3D organotypic culture using an integrated bioprocess composed of polyethylene glycol (PEG) microwell-mediated cell spheroid formation and subsequent dynamic culture in a high aspect ratio vessel (HARV) bioreactor. In conclusion, the culture strategy in our study provides a novel approach to develop in vitro engineered nerve tissue using SCAPs and a foundation to study biological events in the neural differentiation of postnatal stem cells. Biotechnol. Bioeng. 2017;114: 903-914. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Types of Stem Cells

    Science.gov (United States)

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  2. Effects of Ciprofloxacin-Containing Antimicrobial Scaffolds on Dental Pulp Stem Cell Viability — In Vitro Studies

    Science.gov (United States)

    Kamocki, Krzysztof; Nör, Jacques E.; Bottino, Marco C.

    2017-01-01

    Objective A combination of antibiotics, including but not limited to metronidazole (MET) and ciprofloxacin (CIP), has been indicated to eradicate bacteria in necrotic immature permanent teeth prior to regenerative procedures. It has been shown clinically that antibiotic pastes may lead to substantial stem cell death. The aim of this study was to synthesize scaffolds containing various concentrations of CIP to enhance cell viability while preserving antimicrobial properties. Design Polydioxanone (PDS)-based electrospun scaffolds were processed with decreasing CIP concentrations (25 – 1 wt.%) and morphologically evaluated using scanning electron microscopy (SEM). Cytotoxicity assays were performed to determine whether the amount of CIP released from the scaffolds would lead to human dental pulp stem cell (hDPSC) toxicity. Similarly, WST-1 assays were performed to evaluate the impact of CIP release on hDPSC proliferation. Pure PDS scaffolds and saturated double antibiotic solution MET/CIP (DAP) served as both positive and negative controls, respectively. Antibacterial efficacy against E. faecalis (Ef) was tested. Results A significant decrease in hDPSC’ viability at concentrations 5–25 wt.% was observed. However, concentrations below 5 wt.% did not impair cell viability. Data from the WST-1 assays indicated no detrimental impact on cell proliferation for scaffolds containing 2.5 wt.% CIP or less. Significant antimicrobial properties were seen for CIP-scaffolds at lower concentrations (i.e., 1 and 2.5 wt.%). Conclusion The obtained data demonstrated that a reduced concentration of CIP incorporated into PDS-based scaffolds maintains its antimicrobial properties while enhancing viability and proliferation of dental pulp stem cells. PMID:26042622

  3. Highly Efficient In Vitro Reparative Behaviour of Dental Pulp Stem Cells Cultured with Standardised Platelet Lysate Supplementation

    Science.gov (United States)

    Palmieri, Francesca; Marrelli, Massimo

    2016-01-01

    Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs). The perspective role of dental pulp stem cells (DPSCs) in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL) contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS) in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1%) was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H2O2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use. PMID:27774106

  4. A review on recent developments in dental tissue-derived stem cells%牙源性干细胞的研究进展

    Institute of Scientific and Technical Information of China (English)

    李琨; 安莹

    2012-01-01

    Recent evidence has shown that a variety of mesenchymal stem cells ( MSC) located in multiple dental - derived tissues such as the periodontal ligament, dental pulp, apical papilla and dental follicle. Based on their ability to rescue and/or repair injured tissue and partially restore organ function, multiple types of stem/progenitor cells have been speculated. It is known that these stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes and adipocytes. These stem cells can be isolated and grown under defined tissue culture conditions, and are potential cells for use in tissue engineering, including dental tissues , nerves and bone regeneration. This review describes new findings in the field of dental stem cell research and on their potential use in tissue regeneration.%目前已证实,牙周膜、牙髓、根尖乳头和牙囊等牙源性组织中存在间充质干细胞(mesenchymal stem cells,MSC),即牙源性干细胞;而且能在一定条件下被成功分离、培养和扩增;并证实其具有多向分化的潜能,且可在体内实现包括牙齿、神经和骨等多种组织的再生.另外,该细胞来源广泛、容易获得,日益成为组织工程学中最具有潜质的间充质干细胞.本文就牙源性干细胞的研究进展及其在组织工程学中的应用等作一综述.

  5. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75(+) stem cells with dental follicle cell conditioned medium.

    Science.gov (United States)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Liu, Rui; Zhang, Li; Nie, Xin

    2015-09-10

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial-mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75(+)) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75(+) CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features to cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75(+) cells, suggesting their differentiation along cementoblast-like lineage. p75(+) stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial-mesenchymal interactions in tooth morphogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Stem Cells

    Directory of Open Access Journals (Sweden)

    Madhukar Thakur

    2015-02-01

    Full Text Available Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in the body. Often called as Magic Seeds, stem cells are produced in bone marrow and circulate in blood, albeit at a relatively low concentration. These virtues together with the ability of stem cells to grow in tissue culture have paved the way for their applications to generate new and healthy tissues and to replace diseased or injured human organs. Although possibilities of stem cell applications are many, much remains yet to be understood of these remarkable magic seeds. Conclusion: This presentation shall briefly cover the origin of stem cells, the pros and cons of their growth and division, their potential application, and shall outline some examples of the contributions of radiolabeled stem cells, in this rapidly growing branch of biomedical science

  7. Immature Dental Pulp Stem Cells Showed Renotropic and Pericyte-Like Properties in Acute Renal Failure in Rats

    Science.gov (United States)

    Barros, Michele A.; Martins, João Flávio Panattoni; Maria, Durvanei Augusto; Wenceslau, Crisitiane Valverde; De Souza, Dener Madeiro; Kerkis, Alexandre; Câmara, Niels Olsen S.; Balieiro, Julio Cesar C.; Kerkis, Irina

    2015-01-01

    Acute renal failure (ARF) is a common renal disease that can lead to high mortality. Recovery from ARF occurs with the replacement of necrotic tubular cells by functional tubular epithelial cells and the normalization of microvascular endothelial cell function in the peritubular capillaries. Conventional therapeutic techniques are often ineffective against ARF. Hence, stem cell therapies, which act through multiple trophic and regenerative mechanisms, are encouraging. We investigated the homing of human immature dental pulp stem cells (IDPSCs) after endovenous (EV) or intraperitoneal (IP) injection, in immunocompetent Wistar rats with ARF induced by intramuscular injection of glycerol, without the use of immunosuppression. The cells, which had been cryopreserved for 6 years, were CD105+, CD73+, CD44+, and partly, STRO-1+ and CD146+, and presented unaltered mesoderm differentiation potential. The presence of these cells in the tubular region of the kidney and in the peritubular capillaries was demonstrated. These cells accelerate tubular epithelial cell regeneration through significant increase of Ki-67-immunoreactive cells in damaged kidney. Flow cytometry analysis confirmed that IDPSCs home to the kidneys (EV 34.10% and IP 33.25%); a lower percentage of cells was found in the liver (EV 19.05% and IP 9.10%), in the muscles (EV 6.30% and IP 1.35%), and in the lungs (EV 2.0% and IP 1.85%). After infusion into rat, these cells express pericyte markers, such as CD146+, STRO-1+, and vascular endothelial growth factor (VEGF+). We found that IDPSCs demonstrate renotropic and pericyte-like properties and contributed to restore renal tubule structure in an experimental rat ARF model. PMID:26858898

  8. STRO-1 selected rat dental pulp stem cells transfected with adenoviral-mediated human bone morphogenetic protein 2 gene show enhanced odontogenic differentiation.

    NARCIS (Netherlands)

    Yang, X.; Kraan, P.M. van der; Dolder, J. van den; Walboomers, X.F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2007-01-01

    Dental pulp stem cells harbor great potential for tissue-engineering purposes. However, previous studies have shown variable results, and some have reported only limited osteogenic and odontogenic potential.Because bone morphogenetic proteins (BMPs) are well-established agents to induce bone and

  9. Mesenchymal Stem Cells and Tooth Engineering

    Institute of Scientific and Technical Information of China (English)

    Li Peng; Ling Ye; Xue-dong Zhou

    2009-01-01

    Tooth loss compromises human oral health. Although several prosthetic methods, such as artificial denture and dental implants, are clinical therapies to tooth loss problems, they are thought to have safety and usage time issues. Recently, tooth tissue engineering has attracted more and more attention. Stem cell based tissue engineering is thought to be a promising way to replace the missing tooth. Mesenchymal stem cells (MSCs) are multipotent stem cells which can differentiate into a variety of cell types. The potential MSCs for tooth regeneration mainly include stem cells from human exfoliated deciduous teeth (SHEDs), adult dental pulp stem cells (DPSCs), stem cells from the apical part of the papilla (SCAPs), stem cells from the dental follicle (DFSCs), periodontal ligament stem cells (PDLSCs) and bone marrow derived mesenchymal stem cells (BMSCs). This review outlines the recent progress in the mesenchymal stem cells used in tooth regeneration.

  10. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells.

    Science.gov (United States)

    Sonoda, Soichiro; Yamaza, Haruyoshi; Ma, Lan; Tanaka, Yosuke; Tomoda, Erika; Aijima, Reona; Nonaka, Kazuaki; Kukita, Toshio; Shi, Songtao; Nishimura, Fusanori; Yamaza, Takayoshi

    2016-01-18

    Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment.

  11. Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia.

    Science.gov (United States)

    Hieke, Cathleen; Kriebel, Katja; Engelmann, Robby; Müller-Hilke, Brigitte; Lang, Hermann; Kreikemeyer, Bernd

    2016-12-15

    Periodontitis is characterized by inflammation associated with the colonization of different oral pathogens. We here aimed to investigate how bacteria and host cells shape their environment in order to limit inflammation and tissue damage in the presence of the pathogen. Human dental follicle stem cells (hDFSCs) were co-cultured with gram-negative P. intermedia and T. forsythia and were quantified for adherence and internalization as well as migration and interleukin secretion. To delineate hDFSC-specific effects, gingival epithelial cells (Ca9-22) were used as controls. Direct effects of hDFSCs on neutrophils (PMN) after interaction with bacteria were analyzed via chemotactic attraction, phagocytic activity and NET formation. We show that P. intermedia and T. forsythia adhere to and internalize into hDFSCs. This infection decreased the migratory capacity of the hDFSCs by 50%, did not disturb hDFSC differentiation potential and provoked an increase in IL-6 and IL-8 secretion while leaving IL-10 levels unaltered. These environmental modulations correlated with reduced PMN chemotaxis, phagocytic activity and NET formation. Our results suggest that P. intermedia and T. forsythia infected hDFSCs maintain their stem cell functionality, reduce PMN-induced tissue and bone degradation via suppression of PMN-activity, and at the same time allow for the survival of the oral pathogens.

  12. Potential dental pulp revascularization and odonto-/osteogenic capacity of a novel transplant combined with dental pulp stem cells and platelet-rich fibrin.

    Science.gov (United States)

    Chen, Yong-Jin; Zhao, Yin-Hua; Zhao, Ya-Juan; Liu, Nan-Xia; Lv, Xin; Li, Qiang; Chen, Fa-Ming; Zhang, Min

    2015-08-01

    Our aim is to investigate the cytobiological effects of autologous platelet-rich fibrin (PRF) on dental pulp stem cells (DPSCs) and to explore the ectopic and orthotopic possibilities of dental pulp revascularization and pulp-dentin complex regeneration along the root canal cavities of the tooth by using a novel tissue-engineered transplant composed of cell-sheet fragments of DPSCs and PRF granules. Canine DPSCs were isolated and characterized by assaying their colony-forming ability and by determining their cell surface markers and osteogenic/adipogenic differentiation potential. The biological effects of autologous PRF on DPSCs, including cell proliferation, alkaline phosphatase (ALP) activity and odonto-/osteogenic gene expression, were then investigated and quantified. A novel transplant consisting of cell-sheet fragments of DPSCs and PRF granules was adopted to regenerate pulp-dentin-like tissues in the root canal, both subcutaneously in nude mice and in the roots of canines. PRF promoted the proliferation of DPSCs in a dose- and time-dependent manner and induced the differentiation of DPSCs to odonto-/osteoblastic fates by increasing the expression of the Alp, Dspp, Dmp1 and Bsp genes. Transplantation of the DPSC/PRF construct led both to a favorable regeneration of homogeneous and compact pulp-like tissues with abundantly distributed blood capillaries and to the deposition of regenerated dentin along the intracanal walls at 8 weeks post-operation. Thus, the application of DPSC/PRF tissue constructs might serve as a potential therapy in regenerative endodontics for pulp revitalization or revascularization.

  13. Evaluating adhesion and alignment of dental pulp stem cells to a spider silk substrate for tissue engineering applications.

    Science.gov (United States)

    Hafner, Katherine; Montag, Dallas; Maeser, Hannah; Peng, Congyue; Marcotte, William R; Dean, Delphine; Kennedy, Marian S

    2017-12-01

    A proposed source of stem cells for nerve regeneration are dental pulp stem cells (DPSCs), based on their close embryonic origin to neurons and the ease with which DPSCs can be obtained from a donor. This study evaluated the response of human DPSCs to spider dragline silk fibers, a potential substrate material for tissue regeneration. The DPSCs' morphology and spread pattern were characterized after these cells were plated onto Nephila clavipes dragline fibers in media. In addition, the responses of two other well established cell lines, osteoblasts (7F2s), and fibroblasts (3T3s), were also studied under identical conditions. The inclusion of 3T3s and 7F2s in this study allowed for both direct comparisons to prior published work and a qualitative comparison to the morphology of the DPSCs. After twelve days, the DPSCs exhibited greater relative alignment and adherence to the spider dragline fibers than the 3T3s and 7F2s. The impact of a common sterilization method (ultraviolet light) on the spider dragline fiber surface and subsequent cell response to this modified surface was also characterized. Exposure of the silk to ultraviolet light did not have a measureable effect on cell alignment, but it did eliminate bacterial growth and changed fiber surface roughness. Spiders' exposure to stressful environments did not have an effect on silk to impair cell alignment or adhesion. Synthetic recombinant protein silk did not act as a substrate for cell adhesion or alignment but hydrogels with similar composition supported cell attachment, growth and proliferation. In all cases, natural drawn spider silk acted as an effective substrate for cellular adhesion and alignment of DPSCs and could be used in neural differentiation applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Adult stem cells properties in terms of commitment, aging and biological safety of grit-blasted and Acid-etched ti dental implants surfaces.

    Science.gov (United States)

    Gardin, Chiara; Ferroni, Letizia; Bressan, Eriberto; Calvo-Guirado, José L; Degidi, Marco; Piattelli, Adriano; Zavan, Barbara

    2014-01-01

    Titanium (Ti) is one of the most widely used biomaterials for manufacturing dental implants. The implant surface properties strongly influence osseointegration. The aim of the present study was to in vitro investigate the characteristics of Ti dental implants in terms of mutagenicity, hemocompatibility, biocompatibility, osteoinductivity and biological safety. The Ames test was used to test the mutagenicity of the Ti dental implants, and the hemolysis assay for evaluating their hemocompatibility. Human adipose - derived stem cells (ADSCs) were then seeded onto these implants in order to evaluate their cytotoxicity. Gene expression analyzing with real-time PCR was carried out to investigate the osteoinductivity of the biomaterials. Finally, the genetic stability of the cells cultured onto dental implants was determined by karyotyping. Our results demonstrated that Ti dental implants are not mutagenic, do not cause hemolysis, and are biocompatible. The MTT assay revealed that ADSCs, seeded on Ti dental implants, proliferate up to 30 days in culture. Moreover, ADSCs loaded on Ti dental implants show a substantial expression of some osteoblast specific markers, such as COL1A1, OPN, ALPL, and RUNX2, as well as chromosomal stability after 30 days of culture in a medium without osteogenic factors. In conclusion, the grit-blasted and acid-etched treatment seems to favor the adhesion and proliferation of ADSCs and improve the osteoinductivity of Ti dental implant surfaces.

  15. Alcohol-induced suppression of KDM6B dysregulates the mineralization potential in dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    Michael Hoang

    2016-07-01

    Full Text Available Epigenetic changes, such as alteration of DNA methylation patterns, have been proposed as a molecular mechanism underlying the effect of alcohol on the maintenance of adult stem cells. We have performed genome-wide gene expression microarray and DNA methylome analysis to identify molecular alterations via DNA methylation changes associated with exposure of human dental pulp stem cells (DPSCs to ethanol (EtOH. By combined analysis of the gene expression and DNA methylation, we have found a significant number of genes that are potentially regulated by EtOH-induced DNA methylation. As a focused approach, we have also performed a pathway-focused RT-PCR array analysis to examine potential molecular effects of EtOH on genes involved in epigenetic chromatin modification enzymes, fibroblastic markers, and stress and toxicity pathways in DPSCs. We have identified and verified that lysine specific demethylase 6B (KDM6B was significantly dysregulated in DPSCs upon EtOH exposure. EtOH treatment during odontogenic/osteogenic differentiation of DPSCs suppressed the induction of KDM6B with alterations in the expression of differentiation markers. Knockdown of KDM6B resulted in a marked decrease in mineralization from implanted DPSCs in vivo. Furthermore, an ectopic expression of KDM6B in EtOH-treated DPSCs restored the expression of differentiation-related genes. Our study has demonstrated that EtOH-induced inhibition of KDM6B plays a role in the dysregulation of odontogenic/osteogenic differentiation in the DPSC model. This suggests a potential molecular mechanism for cellular insults of heavy alcohol consumption that can lead to decreased mineral deposition potentially associated with abnormalities in dental development and also osteopenia/osteoporosis, hallmark features of fetal alcohol spectrum disorders.

  16. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    '. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...... and tantalizing than stem cells, in research, in medicine, or as products....

  17. In vitro analysis with human bone marrow stem cells on Ti-15Mo alloy for dental and orthopedic implants application

    Directory of Open Access Journals (Sweden)

    N.T.C. Oliveira

    2011-03-01

    Full Text Available Aim: Nowadays, research on orthopedic and dental implants is focused on titanium alloys for their mechanical properties and corrosion resistance in the human body environment. Another important aspect to be investigated is their surface topography, which is very important to osseointegration. With laser beam irradiation for roughening the implants surface an easier control of the microtopography is achieved, and surface contamination is avoided. The aim of this study was to assess human bone marrow stem cells response to a newly developed titanium alloy, Ti-15Mo, with surface topography modified by laser beam irradiation. Materials and methods: A total of 10 Ti machined disks (control, 10 Ti-15Mo machined disks and 10 Ti-15Mo disks treated by laser beam-irradiation were prepared. To study how Ti-15Mo surface topografy can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were analyzed, using real time Reverse Transcription-Polymerase Chain Reaction. Results: In Test 1 (comparison between Ti-15Mo machined disks and Ti-machined disks quantitative real-time RT–PCR showed a significant induction of ALPL, FOSL1 and SPP1, which increase 20% or more. In Test 2 (comparison between Ti-15Mo laser treated disks and Ti-machined disks all investigated genes were up-regulated. By comparing Test 1 and Test 2 it was detected that COL1A1, COL3A1, FOSL1 and ENG sensibly increased their expression whereas RUNX2, ALPL and SPP1 expression remained substantially unchanged. Conclusion: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for implants application.

  18. IFN-γ regulates human dental pulp stem cells behavior via NF-κB and MAPK signaling

    Science.gov (United States)

    He, Xinyao; Jiang, Wenkai; Luo, Zhirong; Qu, Tiejun; Wang, Zhihua; Liu, Ningning; Zhang, Yaqing; Cooper, Paul R.; He, Wenxi

    2017-01-01

    During caries, dental pulp expresses a range of pro-inflammatory cytokines in response to the infectious challenge. Interferon gamma (IFN-γ) is a dimerized soluble cytokine, which is critical for immune responses. Previous study has demonstrated that IFN-γ at relative high concentration (100 ng/mL) treatment improved the impaired dentinogenic and immunosuppressive regulatory functions of disease-derived dental pulp stem cells (DPSCs). However, little is known about the regulatory effects of IFN-γ at relative low concentration on healthy DPSC behavior (including proliferation, migration, and multiple-potential differentiation). Here we demonstrate that IFN-γ at relatively low concentrations (0.5 ng/mL) promoted the proliferation and migration of DPSCs, but abrogated odonto/osteogenic differentiation. Additionally, we identified that NF-κB and MAPK signaling pathways are both involved in the process of IFN-γ-regulated odonto/osteogenic differentiation of DPSCs. DPSCs treated with IFN-γ and supplemented with pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) or SB203580 (a MAPK inhibitor) showed significantly improved potential for odonto/osteogenic differentiation of DPSCs both in vivo and in vitro. These data provide important insight into the regulatory effects of IFN-γ on the biological behavior of DPSCs and indicate a promising therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment. PMID:28098169

  19. Learn About Stem Cells

    Science.gov (United States)

    ... Patient Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... original cell’s DNA, cytoplasm and cell membrane. About stem cells Stem cells are the foundation of development in ...

  20. Increased proliferation and adhesion properties of human dental pulp stem cells in PLGA scaffolds via simulated microgravity.

    Science.gov (United States)

    He, L; Pan, S; Li, Y; Zhang, L; Zhang, W; Yi, H; Song, C; Niu, Y

    2016-02-01

    To explore the possibility of utilizing a rotary cell culture system (RCCS) to model simulated microgravity and investigate its effects on the proliferation, adhesion, migration and cytoskeletal organization of human dental pulp stem cells (hDPSCs) on poly (lactic-co-glycolic acid) (PLGA) scaffolds. Isolated and identified hDPSCs grown on PLGA scaffolds were exposed to simulated microgravity (SMG) or normal gravity (NG) conditions for 3 days. MTT cell proliferation assays, BrdU incorporation assays, flow cytometry analysis and Western blotting were undertaken to identify the proliferation ability of hDPSCs under SMG conditions. Additionally, immunofluorescence detection, SEM observations and cell migration and adhesion assays were performed to compare adhesion, migration and cytoskeletal changes in hDPCSs subjected to SMG conditions. To further investigate the mechanisms, human pathway-focused matrix and adhesion PCR array analyses were performed. The Student's t-test was used for statistical analyses. SMG promoted proliferation and adhesion, decreased migration and reorganized the cytoskeletal organization of hDPSCs compared with the NG group. PCR array analyses revealed that following SMG treatment, ITGA6 (integrin alpha-6), ITGAV (integrin alpha-V), ITGB1 (integrin beta-1), LAMB1 (laminin beta-1) and TNC (tenascin-C) were significantly upregulated (P adhesion. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  1. Regeneration of dental pulp/dentine complex with a three-dimensional and scaffold-free stem-cell sheet-derived pellet.

    Science.gov (United States)

    Na, Sijia; Zhang, Hao; Huang, Fang; Wang, Weiqi; Ding, Yin; Li, Dechao; Jin, Yan

    2016-03-01

    Dental pulp/dentine complex regeneration is indispensable to the construction of biotissue-engineered tooth roots and represents a promising approach to therapy for irreversible pulpitis. We used a tissue-engineering method based on odontogenic stem cells to design a three-dimensional (3D) and scaffold-free stem-cell sheet-derived pellet (CSDP) with the necessary physical and biological properties. Stem cells were isolated and identified and stem cells from root apical papilla (SCAPs)-based CSDPs were then fabricated and examined. Compact cell aggregates containing a high proportion of extracellular matrix (ECM) components were observed, and the CSDP culture time was prolonged. The expression of alkaline phosphatase (ALP), dentine sialoprotein (DSPP), bone sialoprotein (BSP) and runt-related gene 2 (RUNX2) mRNA was higher in CSDPs than in cell sheets (CSs), indicating that CSDPs have greater odonto/osteogenic potential. To further investigate this hypothesis, CSDPs and CSs were inserted into human treated dentine matrix fragments (hTDMFs) and transplanted into the subcutaneous space in the backs of immunodeficient mice, where they were cultured in vivo for 6 weeks. The root space with CSDPs was filled entirely with a dental pulp-like tissue with well-established vascularity, and a continuous layer of dentine-like tissue was deposited onto the existing dentine. A layer of odontoblast-like cells was found to express DSPP, ALP and BSP, and human mitochondria lined the surface of the newly formed dentine-like tissue. These results clearly indicate that SCAP-CSDPs with a mount of endogenous ECM have a strong capacity to form a heterotopic dental pulp/dentine complex in empty root canals; this method can be used in the fabrication of bioengineered dental roots and also provides an alternative treatment approach for pulp disease. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Transcriptome comparison of human neurons generated using induced pluripotent stem cells derived from dental pulp and skin fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jian Chen

    Full Text Available Induced pluripotent stem cell (iPSC technology is providing an opportunity to study neuropsychiatric disorders through the capacity to grow patient-specific neurons in vitro. Skin fibroblasts obtained by biopsy have been the most reliable source of cells for reprogramming. However, using other somatic cells obtained by less invasive means would be ideal, especially in children with autism spectrum disorders (ASD and other neurodevelopmental conditions. In addition to fibroblasts, iPSCs have been developed from cord blood, lymphocytes, hair keratinocytes, and dental pulp from deciduous teeth. Of these, dental pulp would be a good source for neurodevelopmental disorders in children because obtaining material is non-invasive. We investigated its suitability for disease modeling by carrying out gene expression profiling, using RNA-seq, on differentiated neurons derived from iPSCs made from dental pulp extracted from deciduous teeth (T-iPSCs and fibroblasts (F-iPSCs. This is the first RNA-seq analysis comparing gene expression profiles in neurons derived from iPSCs made from different somatic cells. For the most part, gene expression profiles were quite similar with only 329 genes showing differential expression at a nominally significant p-value (p<0.05, of which 63 remained significant after correcting for genome-wide analysis (FDR <0.05. The most striking difference was the lower level of expression detected for numerous members of the all four HOX gene families in neurons derived from T-iPSCs. In addition, an increased level of expression was seen for several transcription factors expressed in the developing forebrain (FOXP2, OTX1, and LHX2, for example. Overall, pathway analysis revealed that differentially expressed genes that showed higher levels of expression in neurons derived from T-iPSCs were enriched for genes implicated in schizophrenia (SZ. The findings suggest that neurons derived from T-iPSCs are suitable for disease

  3. Organ or Stem Cell Transplant and Your Mouth

    Science.gov (United States)

    ... Stem Cell Transplant and Your Mouth Organ or Stem Cell Transplant and Your Mouth Main Content Key Points​ ... Your Dentist Before Transplant Before an organ or stem cell transplant, have a dental checkup. Your mouth should ...

  4. Tooth Tissue Engineering: The Importance of Blood Products as a Supplement in Tissue Culture Medium for Human Pulp Dental Stem Cells.

    Science.gov (United States)

    Pisciolaro, Ricardo Luiz; Duailibi, Monica Talarico; Novo, Neil Ferreira; Juliano, Yara; Pallos, Debora; Yelick, Pamela Crotty; Vacanti, Joseph Phillip; Ferreira, Lydia Masako; Duailibi, Silvio Eduardo

    2015-11-01

    One of the goals in using cells for tissue engineering (TE) and cell therapy consists of optimizing the medium for cell culture. The present study compares three different blood product supplements for improved cell proliferation and protection against DNA damage in cultured human dental pulp stem cells for tooth TE applications. Human cells from dental pulp were first characterized as adult stem cells (ectomesenchymal mixed origin) by flow cytometry. Next, four different cell culture conditions were tested: I, supplement-free; II, supplemented with fetal bovine serum; III, allogeneic human serum; and IV, autologous human serum. Cultured cells were then characterized for cell proliferation, mineralized nodule formation, and colony-forming units (CFU) capability. After 28 days in culture, the comet assay was performed to assess possible damage in cellular DNA. Our results revealed that Protocol IV achieved higher cell proliferation than Protocol I (p = 0.0112). Protocols II and III resulted in higher cell proliferation than Protocol I, but no statistical differences were found relative to Protocol IV. The comet assay revealed less cell damage in cells cultured using Protocol IV as compared to Protocols II and III. The damage percentage observed on Protocol II was significantly higher than all other protocols. CFUs capability was highest using Protocol IV (p = 0.0018) and III, respectively, and the highest degree of mineralization was observed using Protocol IV as compared to Protocols II and III. Protocol IV resulted in significantly improved cell proliferation, and no cell damage was observed. These results demonstrate that human blood product supplements can be used as feasible supplements for culturing adult human dental stem cells.

  5. Chronic Inflammation and Angiogenic Signaling Axis Impairs Differentiation of Dental-Pulp Stem Cells: e113419

    National Research Council Canada - National Science Library

    Michael Boyle; Crystal Chun; Chelsee Strojny; Raghuvaran Narayanan; Amelia Bartholomew; Premanand Sundivakkam; Satish Alapati

    2014-01-01

      Dental-pulp tissue is often exposed to inflammatory injury. Sequested growth factors or angiogenic signaling proteins that are released following inflammatory injury play a pivotal role in the formation of reparative dentin...

  6. Synergistic Effects of a Calcium Phosphate/Fibronectin Coating on the Adhesion of Periodontal Ligament Stem Cells Onto Decellularized Dental Root Surfaces.

    Science.gov (United States)

    Lee, Jung-Seok; Kim, Hyun-Suk; Park, So-Yon; Kim, Tae-Wan; Jung, Jae-Suk; Lee, Jong-Bin; Kim, Chang-Sung

    2015-01-01

    This study aimed to enhance the attachment of periodontal ligament stem cells (PDLSCs) onto the decellularized dental root surface using surface coating with fibronectin and/or calcium phosphate (CaP) and to evaluate the activity of PDLSCs attached to a coated dental root surface following tooth replantation. PDLSCs were isolated from five dogs, and the other dental roots were used as a scaffold for carrying PDLSCs and then assigned to one of four groups according to whether their surface was coated with CaP, fibronectin, CaP/fibronectin, or left uncoated (control). Fibronectin increased the adhesion of PDLSCs onto dental root surfaces compared to both the control and CaP-coated groups, and simultaneous surface coating with CaP and fibronectin significantly accelerated and increased PDLSC adhesion compared to the fibronectin-only group. On in vivo tooth replantation, functionally oriented periodontal new attachment was observed on the CaP/fibronectin-coated dental roots to which autologous PDLSCs had adhered, while in the control condition, dental root replantation was associated only with root resorption and ankylosis along the entire root length. CaP and fibronectin synergistically enhanced the attachment of PDLSCs onto dental root surfaces, and autologous PDLSCs could produce de novo periodontal new attachment in an experimental in vivo model.

  7. Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System

    OpenAIRE

    Qiqi Lu; Mirali Pandya; Abdul Jalil Rufaihah; Vinicius Rosa; Huei Jinn Tong; Dror Seliktar; Wei Seong Toh

    2015-01-01

    Injectable hydrogels have the great potential for clinical translation of dental pulp regeneration. A recently developed PEG-fibrinogen (PF) hydrogel, which comprises a bioactive fibrinogen backbone conjugated to polyethylene glycol (PEG) side chains, can be cross-linked after injection by photopolymerization. The objective of this study was to investigate the use of this hydrogel, which allows tuning of its mechanical properties, as a scaffold for dental pulp tissue engineering. The cross-li...

  8. 牙髓干细胞分化的研究进展%Research progress on dental pulp stem cells differentiation

    Institute of Scientific and Technical Information of China (English)

    苟文亭

    2012-01-01

    牙髓干细胞(DPSC)是一种具有高度增生、自我更新能力和多相分化潜能的成体干细胞,在一定条件下可向特定的细胞类型分化,在牙髓修复和牙齿再生中发挥着重要的作用.本文主要就DPSC 成骨向分化、成牙本质向分化的研究进展作一综述.%Dental pulp stem cell (DPS? Is a kind of adult stem cells with high proliferative capacity, self-renewal property and multilineage differentiation potential, which are capable to differentiate into several lineages under specific stimuli and play an important role in dental pulp repair and tooth regeneration. This article will review the research progress of DPSC differentiation.

  9. Isolation of a stable subpopulation of mobilized dental pulp stem cells (MDPSCs with high proliferation, migration, and regeneration potential is independent of age.

    Directory of Open Access Journals (Sweden)

    Hiroshi Horibe

    Full Text Available Insights into the understanding of the influence of the age of MSCs on their cellular responses and regenerative potential are critical for stem cell therapy in the clinic. We have isolated dental pulp stem cells (DPSCs subsets based on their migratory response to granulocyte-colony stimulating factor (G-CSF (MDPSCs from young and aged donors. The aged MDPSCs were efficiently enriched in stem cells, expressing high levels of trophic factors with high proliferation, migration and anti-apoptotic effects compared to young MDPSCs. In contrast, significant differences in those properties were detected between aged and young colony-derived DPSCs. Unlike DPSCs, MDPSCs showed a small age-dependent increase in senescence-associated β-galactosidase (SA-β-gal production and senescence markers including p16, p21, Interleukin (IL-1β, -6, -8, and Groα in long-term culture. There was no difference between aged and young MDPSCs in telomerase activity. The regenerative potential of aged MDPSCs was similar to that of young MDPSCs in an ischemic hindlimb model and an ectopic tooth root model. These results demonstrated that the stem cell properties and the high regenerative potential of MDPSCs are independent of age, demonstrating an immense utility for clinical applications by autologous cell transplantation in dental pulp regeneration and ischemic diseases.

  10. The role of integrin-α5 in the proliferation and odontogenic differentiation of human dental pulp stem cells.

    Science.gov (United States)

    Cui, Li; Xu, Shuaimei; Ma, Dandan; Gao, Jie; Liu, Ying; Yue, Jing; Wu, Buling

    2014-02-01

    It has been reported that integrin-α5 (ITGA5) activity is related to cell proliferation, differentiation, migration, and organ development. However, the involvement of ITGA5 in the biological functions of human dental pulp stem cells (hDPSCs) has not been explored. The aim of this study was to investigate the role of ITGA5 in the proliferation and odontogenic differentiation of hDPSCs. We knocked down ITGA5 in hDPSCs using lentivirus-mediated ITGA5 short hairpin RNA (shRNA). Changes in the proliferation in hDPSCs infected with lentiviruses expressing ITGA5-specific shRNA or negative control shRNA were examined using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 5-ethynyl-2'-deoxyuridine labeling. Both ITGA5 knockdown cells and shMock cells were cultured in mineralization medium for 3 weeks, and the differentiation of cells was detected with alizarin red S staining. The expression of odontogenic differentiation-related molecular markers was assessed using real-time polymerase chain reaction and Western blot assays. The knockdown of ITGA5 decreased the proliferation capacity of hDPSCs. ITGA5 shRNA promoted odontogenic differentiation of hDPSCs with the enhanced formation of mineralized nodules. It also up-regulated the messenger RNA expression of multiple markers of odontogenesis and the expression of dentin sialophosphoprotein protein. These findings suggest that ITGA5 plays an important role in maintaining hDPSCs in a proliferative state. The inhibition of ITGA5 signaling promotes the odontogenic differentiation of hDPSCs. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. TNF-alpha stimulation increases dental pulp stem cell migration in vitro through integrin alpha-6 subunit upregulation.

    Science.gov (United States)

    Shi, Lei; Fu, Shanqi; Fahim, Sidra; Pan, Shuang; Lina, He; Mu, Xiaodan; Niu, Yumei

    2017-03-01

    The dissemination of stem cells into tissues requiring inflammatory and reparative response is fundamentally dependent upon their chemotactic migration. Expression of TNF-α is up regulated in inflamed pulps. Dental pulp cells are also known to express integrin α6 subunit. Expression of integrin subunit α6 has been linked to the acquisition of migratory potential in a wide variety of cell types in both pathological and physiological capacities. Therefore, in this study we examined the effects of a pleiotropic cytokine TNF-α on the migration of hDPSCs and investigated its relationship with expression of integrin α6 in hDPSCs during chemotactic migration. hDPSC cultures were established. Protein expression profile of α6 integrin subunit was determined. Effect of exogenous TNF-α (50ng/mL) on hDPSCs' migration potential was evaluated by transwell inserts and in vitro scratch assay. Upregulation/downregulation of TNF-α mediated migration was assayed in presence/absence of integrin α6 respectively. To suppress integrin α6 expression, cells were transfected with integrin α6 siRNA and then cell migration and cytoskeletal changes were evaluated. Our results showed significant increase of hDPSCs' migration after stimulation with TNF-α. By knockdown of integrin α6, which is upregulated by TNF-α, we observed a decrease in the TNF-α directed chemotaxis of hDPSCs. In this study, we show that activation of integrin α6 brought about by TNF-α led to an increase in migratory activity in DPSCs in vitro thus describing a novel association between a cytokine TNF-α and α6 chain of an adhesion receptor integrin in regulating migration of hDPSCs. Copyright © 2016. Published by Elsevier Ltd.

  12. The Effect of 1α,25(OH2D3 on Osteogenic Differentiation of Stem Cells from Dental Pulp of Exfoliated Deciduous Teeth

    Directory of Open Access Journals (Sweden)

    Farzad Mojarad

    2016-12-01

    Full Text Available Statement of the Problem: Stem cells from human exfoliated deciduous teeth (SHEDs are a population of highly proliferative cells, being capable of differentiating into osteogenic, odontogenic, adipocytes, and neural cells. Vitamin D3 metabolites such as 1α, 25-dihydroxyvitamin D3 are key factors in the regulation of bone metabolism. Purpose: The aim of this study was to investigate the effect of 1α, 25-dihydroxyvitamin D3 on osteogenic differentiation (alkaline phosphatase activity and alizarin red staining of stem cells of exfoliated deciduous teeth. Materials and Method: Dental pulp was removed from freshly extracted primary teeth and immersed in a digestive solution. Then, the dental pulp cells were immersed in α-MEM (minimum essential medium to which 10% fetal bovine serum was added. After the third passage, the cells were isolated from the culture plate and were used for osteogenic differentiation. As a control group, the cells were cultured in osteogenic cell culture medium. As the case group, the cells were cultured in osteogenic culture medium supplemented with 100 nM 1α,25 (OH2D3. The alkaline phosphatase (ALP activity and alizarin red staining were analyzed to evaluate the osteogenic differentiation at day 21. The results were analyzed by using t-test. Results: Compared with the control group, significant increase was observed in ALP activity of SHEDs after being treated with 1α,25(OH2D3 (p= 0.002. Alizarin red staining demonstrated that the cells exposed to 1α,25(OH2D3 induced higher mineralized nodules (p< 0.001. Conclusion: Osteoblast differentiation in SHEDs was stimulated by 1α,25(OH 2D3. It can be concluded that 1α,25(OH2D3 can improve osteoblastic differentiation. Keywords ● Stem CellsDental Pulp ● Deciduous Tooth ● 1α,25-dihydroxyvitamin D3

  13. Stem cells.

    Science.gov (United States)

    Redi, Carlo Alberto; Monti, Manuela; Merico, Valeria; Neri, Tui; Zanoni, Mario; Zuccotti, Maurizio; Garagna, Silvia

    2007-01-01

    The application of stem cells to regenerative medicine is one of the actual hot topics in biomedicine. This research could help the cure of a number of diseases that are affecting a large share of the population. Some good results in cell replacement have already been obtained (infarcted heart, diabetes, Parkinson disease), apart from those of more traditional applications like severe burns and blood tumors. We are now facing crucial questions in stem cell biology. One of the key questions is how a cell begins to proliferate or differentiate. Genome reprogramming, both following nuclear transfer and cytoplast action, will likely highlight some of the molecular mechanisms of cell differentiation and dedifferentiation. In turn, these clues should be useful to the production of populations of reprogrammed cells that could develop into tissues or, in the future, into proper organs. We will overview what stem cells are, what roles they play in normal developmental processes and how stem cells could have the potential to treat diseases.

  14. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells

    Science.gov (United States)

    Jun, Soo-Kyung; Lee, Hae-Hyoung

    2017-01-01

    The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs). The product (Bioactive® [BA]) was compared with a conventional calcium hydroxide-incorporated (Dycal [DC]) and a light-curable (Theracal® [TC]) counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP) activity and alizarin red staining (ARS). Cations and hydroxide ions in the extracts were measured. An hDPSC viability of less than 70% was observed with 50% diluted extract in all groups and with 25% diluted extract in the DC. Culturing with 12.5% diluted BA extract statistically lowered ALP activity and biomineralization compared to DC (p 0.05). Ca (~110 ppm) and hydroxide ions (pH 11) were only detected in DC and TC. Ionic supplement-added BA, which contained similar ion concentrations as TC, showed similar ARS mineralization compared to TC. In conclusion, the BA was similar to, yet more cytotoxic to hDPSCs than, its DC and TC. The BA was considered to stimulate biomineralization similar to DC and TC only when it released a similar amount of Ca and hydroxide ions. PMID:28232937

  15. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Soo-Kyung Jun

    2017-01-01

    Full Text Available The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs. The product (Bioactive® [BA] was compared with a conventional calcium hydroxide-incorporated (Dycal [DC] and a light-curable (Theracal® [TC] counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP activity and alizarin red staining (ARS. Cations and hydroxide ions in the extracts were measured. An hDPSC viability of less than 70% was observed with 50% diluted extract in all groups and with 25% diluted extract in the DC. Culturing with 12.5% diluted BA extract statistically lowered ALP activity and biomineralization compared to DC (p0.05. Ca (~110 ppm and hydroxide ions (pH 11 were only detected in DC and TC. Ionic supplement-added BA, which contained similar ion concentrations as TC, showed similar ARS mineralization compared to TC. In conclusion, the BA was similar to, yet more cytotoxic to hDPSCs than, its DC and TC. The BA was considered to stimulate biomineralization similar to DC and TC only when it released a similar amount of Ca and hydroxide ions.

  16. MMP2-cleavage of DMP1 generates a bioactive peptide promoting differentiation of dental pulp stem/progenitor cell

    Directory of Open Access Journals (Sweden)

    C Chaussain

    2009-11-01

    Full Text Available Dentin Matrix Protein 1 (DMP1 plays a regulatory role in dentin mineralization and can also function as a signaling molecule. MMP-2 (matrix metalloproteinase-2 is a predominant protease in the dentin matrix that plays a prominent role in tooth formation and a potential role during the carious process. The possibility that MMP-2 can cleave DMP1 to release biologically active peptides was investigated in this study. DMP1, both in the recombinant form and in its native state within the dentin matrix, was shown to be a substrate for MMP-2. Proteolytic processing of DMP1 by MMP-2 produced two major peptides, one that contains the C-terminal region of the protein known to carry both the ASARM (aspartic acid and serine rich domain domain involved in biomineralization and the DNA binding site of DMP1. In vitro experiments with recombinant N- and C-terminal polypeptides mimicking the MMP-2 cleavage products of DMP1 demonstrated an effect of the C-polypeptide on the differentiation of dental pulp stem/progenitor cells to a putative odontoblast phenotype. In vivo implantation of this peptide in a rat injured pulp model induced a rapid formation of a homogeneous dentin bridge covered by a palisade of orientated cells expressing dentin sialoprotein (DSP and DMP1, attesting an efficient repair process. These data suggest that a peptide generated through the proteolytic processing of DMP1 by MMP-2 can regulate the differentiation of mesenchymal cells during dentinogenesis and thus sustain reparative dentin formation in pathological situations such as carious decay. In addition, these data open a new therapeutic possibility of using this peptide to regenerate dentin after an injury.

  17. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes

    Directory of Open Access Journals (Sweden)

    R d’Aquino

    2009-11-01

    Full Text Available In this study we used a biocomplex constructed from dental pulp stem/progenitor cells (DPCs and a collagen sponge scaffold for oro-maxillo-facial (OMF bone tissue repair in patients requiring extraction of their third molars. The experiments were carried out according to our Internal Ethical Committee Guidelines and written informed consent was obtained from the patients. The patients presented with bilateral bone reabsorption of the alveolar ridge distal to the second molar secondary to impaction of the third molar on the cortical alveolar lamina, producing a defect without walls, of at least 1.5 cm in height. This clinical condition does not permit spontaneous bone repair after extraction of the third molar, and eventually leads to loss also of the adjacent second molar. Maxillary third molars were extracted first for DPC isolation and expansion. The cells were then seeded onto a collagen sponge scaffold and the obtained biocomplex was used to fill in the injury site left by extraction of the mandibular third molars. Three months after autologous DPC grafting, alveolar bone of patients had optimal vertical repair and complete restoration of periodontal tissue back to the second molars, as assessed by clinical probing and X-rays. Histological observations clearly demonstrated the complete regeneration of bone at the injury site. Optimal bone regeneration was evident one year after grafting. This clinical study demonstrates that a DPC/collagen sponge biocomplex can completely restore human mandible bone defects and indicates that this cell population could be used for the repair and/or regeneration of tissues and organs.

  18. SDF-1/CXCR4 axis induces human dental pulp stem cell migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways.

    Science.gov (United States)

    Li, Mingwei; Sun, Xuefei; Ma, Liang; Jin, Lu; Zhang, Wenfei; Xiao, Min; Yu, Qing

    2017-01-09

    SDF-1 (stromal cell derived factor-1) has been found to be widely expressed during dental pulp inflammation, while hDPSCs (human dental pulp stem cells) contribute to the repair of dental pulp. We showed that the migration of hDPSCs was induced by SDF-1 in a concentration-dependent manner and could be inhibited with siCXCR4 (C-X-C chemokine receptor type 4) and siCDC42 (cell division control protein 42), as well as drug inhibitors such as AMD3100 (antagonist of CXCR4), LY294002 (inhibitor of PI3K) and PF573228 (inhibitor of FAK). It was also confirmed that SDF-1 regulated the phosphorylation of FAK (focal adhesion kinases) on cell membranes and the translocation of β-catenin into the cell nucleus. Subsequent experiments confirmed that the expression of CXCR4 and β-catenin and the phosphorylation of FAK, PI3K (phosphoinositide 3-kinase), Akt and GSK3β (glycogen synthase kinase-3β) were altered significantly with SDF-1 stimulation. FAK and PI3K worked in coordination during this process. Our findings provide direct evidence that SDF-1/CXCR4 axis induces hDPSCs migration through FAK/PI3K/Akt and GSK3β/β-catenin pathways, implicating a novel mechanism of dental pulp repair and a possible application of SDF-1 for the treatment of pulpitis.

  19. Healing of large periapical lesions following delivery of dental stem cells with an injectable scaffold: New method and three case reports

    Directory of Open Access Journals (Sweden)

    Vahab Shiehzadeh

    2014-01-01

    Full Text Available Regenerative endodontics is the creation and delivery of tissues to replace diseased, missing, and traumatized pulp. A call for a paradigm shift and new protocol for the clinical management of these cases has been brought to attention. These regenerative endodontic techniques will possibly involve some combination of disinfection or debridement of infected root canal systems with apical enlargement to permit revascularization and use of stem cells, scaffolds, and growth factors. Mesenchymal stem cells (MSCs have been isolated from the pulp tissue of permanent teeth (dental pulp stem cells (DPSCs and deciduous teeth (stem cells from human exfoliated deciduous teeth. Stem cells are characterized as multipotent cells for regeneration.These three case reports describe the treatment of necrotic or immature teeth with periradicular periodontitis, which was not treated with conventional apexification techniques. All cases presented here developed mature apices and bone healing after 3 to 4 months after the initial treatment without complications, and faster than traditional treatments. Our clinical observations support a shifting paradigm toward a biologic approach by providing a favorable environment for tissue regeneration. The mechanism of this continued development and formation of the root end and faster tissue healing is discussed.

  20. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiujie; Nie, Xin; Zhang, Li [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042 (China); Liu, Luchuan, E-mail: liuluchuan1957@126.com [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042 (China); Deng, Manjing, E-mail: iradeng@163.com [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042 (China)

    2011-06-10

    Highlights: {yields} In this study we examine the effects of dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs) on differentiation of ADSCs. {yields} We examined that ADSCs treated with dNCPs/DFCCM underwent morphological changes and significantly lost their proliferative capacity. {yields} dNCPs/DFCCM enhanced the mineralization behaviour and mineralization-related marker expression of ADSCs. {yields} ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment. -- Abstract: Adipose tissue-derived stem cells (ADSCs), which are easily harvested and show excellent pluripotency potential, have generated considerable interest in regenerative medicine. In this study, the differentiation of ADSCs was assessed after treatment with dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs). ADSCs exhibited a fibroblast-like morphology and high proliferative capacity. However, after treatment with dNCPs/DFCCM, ADSCs changed from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and in vitro mineralization behaviour of ADSCs were significantly enhanced. Mineralization-related markers including cementum attachment protein, bone sialoprotein, osteocalcin, osteopontin and osteonectin were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype. These results demonstrate that ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment and could be a potential source of cementogenic cells for periodontal regeneration.

  1. The potential application of stem cell in dentistry

    Directory of Open Access Journals (Sweden)

    Ketut Suardita

    2006-12-01

    Full Text Available Stem cells are generally defined as cells that have the capacity to self-renewal and differentiate to specialize cell. There are two kinds of stem cell, embryonic stem cell and adult stem cells. Stem cell therapy has been used to treat diseases including Parkinson’s and Alzheimer’s diseases, spinal cord injury, stroke, burns, heart diseases, diabetes, osteoarthritis, and rheumatoid arthritis. Stem cells were found in dental pulp, periodontal ligament, and alveolar bone marrow. Because of their potential in medical therapy, stem cells were used to regenerate lost or damage teeth and periodontal structures. This article discusses the potential application of stem cells for dental field.

  2. Differentiation ability of rat postnatal dental pulp cells in vitro.

    NARCIS (Netherlands)

    Zhang, W.; Walboomers, X.F.; Wolke, J.G.C.; Bian, Z.; Fan, M.W.; Jansen, J.A.

    2005-01-01

    The current rapid progression in stem cell research has enhanced our knowledge of dental tissue regeneration. In this study, rat dental pulp cells were isolated and their differentiation ability was evaluated. First, dental pulp cells were obtained from maxillary incisors of male Wistar rats. Immuno

  3. Stem cell-based approaches in dentistry

    OpenAIRE

    Mitsiadis, T A; Orsini, G.; Jimenez-Rojo, L

    2015-01-01

    Repair of dental pulp and periodontal lesions remains a major clinical challenge. Classical dental treatments require the use of specialised tissue-adapted materials with still questionable efficacy and durability. Stem cell-based therapeutic approaches could offer an attractive alternative in dentistry since they can promise physiologically improved structural and functional outcomes. These therapies necessitate a sufficient number of specific stem cell populations for implantation. Dental m...

  4. Effects of Nerve Growth Factor and Basic Fibroblast Growth Factor Promote Human Dental Pulp Stem Cells to Neural Differentiation.

    Science.gov (United States)

    Zhang, Jinlong; Lian, Min; Cao, Peipei; Bao, Guofeng; Xu, Guanhua; Sun, Yuyu; Wang, Lingling; Chen, Jiajia; Wang, Yi; Feng, Guijuan; Cui, Zhiming

    2017-04-01

    Dental pulp stem cells (DPSCs) were the most widely used seed cells in the field of neural regeneration and bone tissue engineering, due to their easily isolation, lack of ethical controversy, low immunogenicity and low rates of transplantation rejection. The purpose of this study was to investigate the role of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) on neural differentiation of DPSCs in vitro. DPSCs were cultured in neural differentiation medium containing NGF and bFGF alone or combination for 7 days. Then neural genes and protein markers were analyzed using western blot and RT-PCR. Our study revealed that bFGF and NGF increased neural differentiation of DPSCs synergistically, compared with bFGF and NGF alone. The levels of Nestin, MAP-2, βIII-tubulin and GFAP were the most highest in the DPSCs + bFGF + NGF group. Our results suggested that bFGF and NGF signifiantly up-regulated the levels of Sirt1. After treatment with Sirt1 inhibitor, western blot, RT-PCR and immunofluorescence staining showed that neural genes and protein markers had markedly decreased. Additionally, the ERK and AKT signaling pathway played a key role in the neural differentiation of DPSCs stimulated with bFGF + NGF. These results suggested that manipulation of the ERK and AKT signaling pathway may be associated with the differentiation of bFGF and NGF treated DPSCs. Our date provided theoretical basis for DPSCs to treat neurological diseases and repair neuronal damage.

  5. Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ajita, J.; Saravanan, S.; Selvamurugan, N., E-mail: selvamurugan.n@ktr.srmuniv.ac.in

    2015-08-01

    Bioactive glass nanoparticles (nanostructured bioglass ceramics or nBGs) have been widely employed as a filler material for bone tissue regeneration. The physical properties of nBG particles govern their biological actions. In this study, the impact of the size of nBG particles on mouse mesenchymal stem cell (mMSC) proliferation was investigated. Three different sizes of nBG particles were prepared via the sol–gel method with varying concentrations of the surfactant and polyethylene glycol (PEG), and the particles were characterized. Increased concentrations of PEG decreased the size of nBG particles (nBG-1: 74.7 ± 0.62 nm, nBG-2: 43.25 ± 1.5 nm, and nBG-3: 37.6 ± 0.81 nm). All three nBGs were non-toxic at a concentration of 20 mg/mL. Increased proliferation was observed in mMSCs treated with smaller nBG particles. Differential mRNA expression of cyclin A2, B2, D1, and E1 genes induced by nBG particles was noticed in the mMSCs. nBG-1 and nBG-3 particles promoted cells in the G0/G1 phase to enter the S and G2/M phases. nBG particles activated ERK, but prolonged activation was achieved with nBG-3 particles. Among the prepared nBG particles, nBG-3 particles showed enhanced mMSC proliferation via the sustained activation of ERKs, upregulation of cyclin gene(s) expression, and promotion of cell transition from the G0/G1 phase to the S and G2/M phases. Thus, this study indicates that small nBG particles have clinical applications in dental and bone treatments as fillers or bone-tissue bond forming materials. - Highlights: • Three different sizes of bioactive glass nanoparticles (nBGs) were prepared via the sol–gel method. • Increased concentrations of polyethylene glycol decreased the size of nBG particles. • All three nBGs were non-toxic at a concentration of 20 mg/mL. • Cell number, cell cycle phase analysis, cyclin gene expression and ERK activation were studied. • Increased proliferation was observed in mMSCs treated with smaller nBG particles.

  6. Activation of p38, p21, and NRF-2 Mediates Decreased Proliferation of Human Dental Pulp Stem Cells Cultured under 21% O2

    Directory of Open Access Journals (Sweden)

    Marya El Alami

    2014-10-01

    Full Text Available High rates of stem cell proliferation are important in regenerative medicine and in stem cell banking for clinical use. Ambient oxygen tensions (21% O2 are normally used for in vitro culture, but physiological levels in vivo range between 3% and 6% O2. We compared proliferation of human dental pulp stem cells (hDPSCs cultured under 21% versus 3% O2. The rate of hDPSC proliferation is significantly lower at 21% O2 compared to physiological oxygen levels due to enhanced oxidative stress. Under 21% O2, increased p38 phosphorylation led to activation of p21. Increased generation of reactive oxygen species and p21 led to activation of the NRF-2 signaling pathway. The upregulation of NRF-2 antioxidant defense genes under 21% O2 may interact with cell-cycle-related proteins involved in regulating cell proliferation. Activation of p38/p21/NRF-2 in hDPSCs cultured under ambient oxygen tension inhibits stem cell proliferation and upregulates NRF-2 antioxidant defenses.

  7. Activation of p38, p21, and NRF-2 mediates decreased proliferation of human dental pulp stem cells cultured under 21% O2.

    Science.gov (United States)

    El Alami, Marya; Viña-Almunia, Jose; Gambini, Juan; Mas-Bargues, Cristina; Siow, Richard C M; Peñarrocha, Miguel; Mann, Giovanni E; Borrás, Consuelo; Viña, Jose

    2014-10-14

    High rates of stem cell proliferation are important in regenerative medicine and in stem cell banking for clinical use. Ambient oxygen tensions (21% O2) are normally used for in vitro culture, but physiological levels in vivo range between 3% and 6% O2. We compared proliferation of human dental pulp stem cells (hDPSCs) cultured under 21% versus 3% O2. The rate of hDPSC proliferation is significantly lower at 21% O2 compared to physiological oxygen levels due to enhanced oxidative stress. Under 21% O2, increased p38 phosphorylation led to activation of p21. Increased generation of reactive oxygen species and p21 led to activation of the NRF-2 signaling pathway. The upregulation of NRF-2 antioxidant defense genes under 21% O2 may interact with cell-cycle-related proteins involved in regulating cell proliferation. Activation of p38/p21/NRF-2 in hDPSCs cultured under ambient oxygen tension inhibits stem cell proliferation and upregulates NRF-2 antioxidant defenses.

  8. Stem cells in endodontic therapy

    Directory of Open Access Journals (Sweden)

    Sita Rama Kumar M, Madhu Varma K, Kalyan Satish R, Manikya kumar Nanduri.R, Murali Krishnam Raju S, Mohan rao

    2014-11-01

    Full Text Available Stem cells have the remarkable potential to develop into many different cell types in the body. Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish other cells as long as the person or animal is still alive. However, progress in stem cell biology and tissue engineering may present new options for replacing heavily damaged or lost teeth, or even individual tooth structures. The goal of this review is to discuss the potential impact of dental pulp stem cells on regenerative endodontics.

  9. Insulin-like growth factor 1 promotes the proliferation and committed differentiation of human dental pulp stem cells through MAPK pathways.

    Science.gov (United States)

    Lv, Taohong; Wu, Yongzheng; Mu, Chao; Liu, Genxia; Yan, Ming; Xu, Xiangqin; Wu, Huayin; Du, Jinyin; Yu, Jinhua; Mu, Jinquan

    2016-12-01

    Insulin-like growth factor 1 (IGF-1) is a broad-spectrum growth-promoting factor that plays a key role in natural tooth development. Human dental pulp stem cells (hDPSCs) are multipotent and can influence the reparative regeneration of dental pulp and dentin. This study was designed to evaluate the effects of IGF-1 on the proliferation and differentiation of human dental pulp stem cells. HDPSCs were isolated and purified from human dental pulps. The proliferation and osteo/odontogenic differentiation of hDPSCs treated with 100ng/ml exogenous IGF-1 were subsequently investigated. MTT assays revealed that IGF-1 enhanced the proliferation of hDPSCs. ALP activity in IGF-1-treated group was obviously enhanced compared to the control group from days 3 to 9. Alizarin red staining revealed that the IGF-1-treated cells contained a greater number of mineralization nodules and had higher calcium concentrations. Moreover, western blot and qRT-PCR analyses demonstrated that the expression levels of several osteogenic genes (e.g., RUNX2, OSX, and OCN) and an odontoblast-specific marker (DSPP) were significantly up-regulated in IGF-1-treated hDPSCs as compared with untreated cells (P<0.01). Interestingly, the expression of phospho-ERK and phospho-p38 were also up-regulated, indicating that the MAPK signaling pathway is activated during the differentiation of hDPSCs. IGF-1 can promote the proliferation and osteo/odontogenic differentiation of hDPSCs by activating MAPK pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Adhesion and growth of dental pulp stem cells on enamel-like fluorapatite surfaces.

    Science.gov (United States)

    Liu, J; Jin, T C; Chang, S; Czajka-Jakubowska, A; Clarkson, B H

    2011-03-01

    To study how apatite crystal alignment of an enamel-like substrate affects DPSC cellular adhesion and growth as a precursor to produce an in vitro enamel/dentin superstructure for future studies. The cells were subcultured in 10% FBS DMEM up to seven weeks on the two surfaces. Specimens were observed under SEM, counted, and analyzed using the human pathway-focused matrix and adhesion PCR array. After three days, the cell number on ordered FA surface was significantly higher than on the disordered surface. Of the 84 focused pathway genes, a total of 20 genes were either up or down regulated in the cells on ordered FA surface compared to the disordered surface. More interestingly, of the cell-matrix adhesion molecules, integrin alpha 7 and 8 (ITGA 7 and 8), integrin beta 3 and 4 (ITGB3 and 4), and the vitronectin receptor-integrin alpha V (ITGAV) and the key adhesion protein-fibronectin1 (FN1) were up-regulated. In SEM, both surfaces showed good biocompatibility and supported long term growth of DPSC cells but with functional cell-matrix interaction on the ordered FA surfaces. The enhanced cellular response of DPSC cell to the ordered FA crystal surface involves a set of delicately regulated matrix and adhesion molecules which could be manipulated by treating the cells with a dentin extract, to produce a dentin/enamel superstructure. Copyright © 2010 Wiley Periodicals, Inc.

  11. Development of A Three-Dimensional Tissue Construct from Dental Human Ectomesenchymal Stem Cells: In Vitro and In Vivo Study

    Science.gov (United States)

    Guzmán-Uribe, Daniela; Estrada, Keila Neri Alvarado; Guillén, Amaury de Jesús Pozos; Pérez, Silvia Martín; Ibáñez, Raúl Rosales

    2012-01-01

    Application of regenerative medicine technology provides treatment for patients with several clinical problems, like loss of tissue and its function. The investigation of biological tooth replacement, dental tissue engineering and cell culture, scaffolds and growth factors are considered essential. Currently, studies reported on the making of threedimensional tissue constructs focused on the use of animal cells in the early stages of embryogenesis applied to young biomodels. The purpose of this study was the development and characterization of a three-dimensional tissue construct from human dental cells. The construct was detached, cultured and characterized in mesenchymal and epithelial cells of a human tooth germ of a 12 year old patient. The cells were characterized by specific membrane markers (STRO1, CD44), making a biocomplex using Pura Matrix as a scaffold, and it was incubated for four days and transplanted into 30 adult immunosuppressed male Wistar rats. They were evaluated at 6 days, 10 days and 2 months, obtaining histological sections stained with hematoxylin and eosin. Cell cultures were positive for specific membrane markers, showing evident deviations in morphology under phase contrast microscope. Differentiation and organization were noted at 10 days, while the constructs at 2 months showed a clear difference in morphology, organization and cell type. It was possible to obtain a three-dimensional tissue construct from human dental ectomesenchymal cells achieving a degree of tissue organization that corresponds to the presence of cellular stratification and extracellular matrix. PMID:23308086

  12. Effects of Non-Collagenous Proteins, TGF-β1, and PDGF-BB on Viability and Proliferation of Dental Pulp Stem Cells

    Science.gov (United States)

    Tabatabaei, Fahimeh Sadat

    2016-01-01

    ABSTRACT Objectives The dentin matrix servers as a reservoir of growth factors, sequestered during dentinogenesis. The aim of this study was to assess the viability and proliferation of dental pulp stem cells in the presence of dentin matrix-derived non-collagenous proteins and two growth factors; platelet-derived growth factor BB and transforming growth factor beta 1. Material and Methods The dental pulp cells were isolated and cultured. The dentin proteins were extracted and purified. The MTT assay was performed for assessment of cell viability and proliferation in the presence of different concentrations of dentin proteins and growth factors during 24 - 72 h post-treatment. Results The cells treated with 250 ng/mL dentin proteins had the best viability and proliferation ability in comparison with other concentrations (P < 0.05). The MTT assay demonstrated that cells cultured with 5 ng/mL platelet-derived growth factor BB had the highest viability at each time point as compared to other groups (P < 0.05). However, in presence of platelet-derived growth factor BB alone and in combination with transforming growth factor beta 1 and dentin proteins (10 ng/mL), significant higher viability was seen at all time points (P < 0.05). The least viability and proliferation at each growth factor concentration was seen in cells treated with combination of transforming growth factor beta 1 and dentin proteins at 72 h (P < 0.05). Conclusions The results indicated that the triple combination of growth factors and matrix-derived non-collagenous proteins (especially at 10 ng/mL concentration) has mitogenic effect on dental pulp stem cells. PMID:27099698

  13. Effects of Non-Collagenous Proteins, TGF-β1, and PDGF-BB on Viability and Proliferation of Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Fahimeh Sadat Tabatabaei

    2016-03-01

    Full Text Available Objectives: The dentin matrix servers as a reservoir of growth factors, sequestered during dentinogenesis. The aim of this study was to assess the viability and proliferation of dental pulp stem cells in the presence of dentin matrix-derived non-collagenous proteins and two growth factors; platelet-derived growth factor BB and transforming growth factor beta 1. Material and Methods: The dental pulp cells were isolated and cultured. The dentin proteins were extracted and purified. The MTT assay was performed for assessment of cell viability and proliferation in the presence of different concentrations of dentin proteins and growth factors during 24 - 72 h post-treatment. Results: The cells treated with 250 ng/mL dentin proteins had the best viability and proliferation ability in comparison with other concentrations (P < 0.05. The MTT assay demonstrated that cells cultured with 5 ng/mL platelet-derived growth factor BB had the highest viability at each time point as compared to other groups (P < 0.05. However, in presence of platelet-derived growth factor BB alone and in combination with transforming growth factor beta 1 and dentin proteins (10 ng/mL, significant higher viability was seen at all time points (P < 0.05. The least viability and proliferation at each growth factor concentration was seen in cells treated with combination of transforming growth factor beta 1 and dentin proteins at 72 h (P < 0.05. Conclusions: The results indicated that the triple combination of growth factors and matrix-derived non-collagenous proteins (especially at 10 ng/mL concentration has mitogenic effect on dental pulp stem cells.

  14. Growth factors in promoting the mineralization of dental pulp stem cells%生长因子对牙髓干细胞的矿化作用

    Institute of Scientific and Technical Information of China (English)

    吕陶红

    2011-01-01

    健康牙髓中含有的具有多向分化、高效增殖和自我更新潜能的牙髓干细胞,在牙髓损伤后牙本质修复再生和牙/骨组织工程中具有至关重要的作用.本文就牙髓干细胞的矿化潜能、生长因子及其在促牙髓干细胞矿化和作用机制方面的研究进展作一综述.%Stem cells in the healthy dental pulp possess multi-lineage differentiation capability, high proliferation rate and self-renewal capability, which are recognized being vital to the dentin regeneration after injuries and tooth/bone tissue engineering. Growth factors are a kind of cell factors that stimulate the growth activities of cells. This review is aimed at elaborating the role and mechanism of growth factors in promoting the mineralization of dental pulp stem cells.

  15. Mesenchymal and embryonic characteristics of stem cells obtained from mouse dental pulp

    DEFF Research Database (Denmark)

    Guimarães, Elisalva Teixeira; Cruz, Gabriela Silva; de Jesus, Alan Araújo

    2011-01-01

    positive for alkaline phosphatase. The karyotype was normal until the 5th passage. The Pou5f1/Oct-4 and ZFP42/Rex-1, but not Nanog transcripts were detected in mDPSC. Flow cytometry and fluorescence analyses revealed the presence of a heterogeneous population positive for embryonic and mesenchymal cell...

  16. The Effect of 1α,25(OH)2D3 on Osteogenic Differentiation of Stem Cells from Dental Pulp of Exfoliated Deciduous Teeth

    Science.gov (United States)

    Mojarad, Farzad; Amiri, Iraj; Rafatjou, Rezvan; Janeshin, Atousa; Farhadian, Maryam

    2016-01-01

    Statement of the Problem: Stem cells from human exfoliated deciduous teeth (SHEDs) are a population of highly proliferative cells, being capable of differentiating into osteogenic, odontogenic, adipocytes, and neural cells. Vitamin D3 metabolites such as 1α, 25-dihydroxyvitamin D3 are key factors in the regulation of bone metabolism. Purpose: The aim of this study was to investigate the effect of 1α, 25-dihydroxyvitamin D3 on osteogenic differentiation (alkaline phosphatase activity and alizarin red staining) of stem cells of exfoliated deciduous teeth. Materials and Method: Dental pulp was removed from freshly extracted primary teeth and immersed in a digestive solution. Then, the dental pulp cells were immersed in α-MEM (minimum essential medium) to which 10% fetal bovine serum was added. After the third passage, the cells were isolated from the culture plate and were used for osteogenic differentiation. As a control group, the cells were cultured in osteogenic cell culture medium. As the case group, the cells were cultured in osteogenic culture medium supplemented with 100 nM 1α,25 (OH)2D3. The alkaline phosphatase (ALP) activity and alizarin red staining were analyzed to evaluate the osteogenic differentiation at day 21. The results were analyzed by using t-test. Results: Compared with the control group, significant increase was observed in ALP activity of SHEDs after being treated with 1α,25(OH)2D3 (p= 0.002). Alizarin red staining demonstrated that the cells exposed to 1α,25(OH)2D3 induced higher mineralized nodules (p2D3. It can be concluded that 1α,25(OH)2D3 can improve osteoblastic differentiation. PMID:27942551

  17. Human dental pulp stem cells: Applications in futureregenerative medicine

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Stem cells are pluripotent cells, having a property ofdifferentiating into various types of cells of humanbody. Several studies have developed mesenchymalstem cells (MSCs) from various human tissues,peripheral blood and body fluids. These cells are thencharacterized by cellular and molecular markers tounderstand their specific phenotypes. Dental pulpstem cells (DPSCs) are having a MSCs phenotype andthey are differentiated into neuron, cardiomyocytes,chondrocytes, osteoblasts, liver cells and β cells of isletof pancreas. Thus, DPSCs have shown great potentialityto use in regenerative medicine for treatment of varioushuman diseases including dental related problems.These cells can also be developed into induced pluripotentstem cells by incorporation of pluripotencymarkers and use for regenerative therapies of variousdiseases. The DPSCs are derived from various dentaltissues such as human exfoliated deciduous teeth,apical papilla, periodontal ligament and dental follicletissue. This review will overview the information aboutisolation, cellular and molecular characterization anddifferentiation of DPSCs into various types of humancells and thus these cells have important applications inregenerative therapies for various diseases. This reviewwill be most useful for postgraduate dental students aswell as scientists working in the field of oral pathologyand oral medicine.

  18. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    Science.gov (United States)

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF.

  19. A comparative morphometric analysis of biodegradable scaffolds as carriers for dental pulp and periosteal stem cells in a model of bone regeneration.

    Science.gov (United States)

    Annibali, Susanna; Cicconetti, Andrea; Cristalli, Maria Paola; Giordano, Guido; Trisi, Paolo; Pilloni, Andrea; Ottolenghi, Livia

    2013-05-01

    Bone regeneration and bone fixation strategies in dentistry utilize scaffolds containing regenerating-competent cells as a replacement of the missing bone portions and gradually replaced by autologous tissues. Mesenchymal stem cells represent an ideal cell population for scaffold-based tissue engineering. Among them, dental pulp stem cells (DPSCs) and periosteal stem cells (PeSCs) have the potential to differentiate into a variety of cell types including osteocytes, suggesting that they can be used with this purpose. However, data on bone regeneration properties of these types of cells in scaffold-based tissue engineering are yet insufficient.In this study, we evaluated temporal dynamic bone regeneration (measured as a percentage of bone volume on the total area of the defect) induced by DPSCs or PeSCs when seeded with different scaffolds to fill critical calvarial defects in SCID Beige nude mice. Two commercially available scaffolds (granular deproteinized bovine bone with 10% porcine collagen and granular β;-tricalcium phosphate) and one not yet introduced on the market (a sponge of agarose and nanohydroxyapatite) were used. The results showed that tissue-engineered constructs did not significantly improve bone-induced regeneration process when compared with the effect of scaffolds alone. In addition, the data also showed that the regeneration induced by β;-tricalcium phosphate alone was higher after 8 weeks than that of scaffold seeded with the 2 stem cell lines. Altogether these findings suggest that further studies are needed to evaluate the potential of DPSCs and PeSCs in tissue construct and identify the appropriate conditions to generate bone tissue in critical-size defects.

  20. Improvement of In Vitro Osteogenic Potential through Differentiation of Induced Pluripotent Stem Cells from Human Exfoliated Dental Tissue towards Mesenchymal-Like Stem Cells

    Directory of Open Access Journals (Sweden)

    Felipe Augusto Andre Ishiy

    2015-01-01

    Full Text Available Constraints for the application of MSCs for bone reconstruction include restricted self-renewal and limited cell amounts. iPSC technology presents advantages over MSCs, providing homogeneous cellular populations with prolonged self-renewal and higher plasticity. However, it is unknown if the osteogenic potential of iPSCs differs from that of MSCs and if it depends on the iPSCs originating cellular source. Here, we compared the in vitro osteogenesis between stem cells from human deciduous teeth (SHED and MSC-like cells from iPSCs from SHED (iPS-SHED and from human dermal fibroblasts (iPS-FIB. MSC-like cells from iPS-SHED and iPS-FIB displayed fibroblast-like morphology, downregulation of pluripotency markers and upregulation of mesenchymal markers. Comparative in vitro osteogenesis analysis showed higher osteogenic potential in MSC-like cells from iPS-SHED followed by MSC-like cells from iPS-FIB and SHED. CD105 expression, reported to be inversely correlated with osteogenic potential in MSCs, did not display this pattern, considering that SHED presented lower CD105 expression. Higher osteogenic potential of MSC-like cells from iPS-SHED may be due to cellular homogeneity and/or to donor tissue epigenetic memory. Our findings strengthen the rationale for the use of iPSCs in bone bioengineering. Unveiling the molecular basis behind these differences is important for a thorough use of iPSCs in clinical scenarios.

  1. Dynamic expression of Six family genes in the dental mesenchyme and the epithelial ameloblast stem/progenitor cells during murine tooth development.

    Science.gov (United States)

    Nonomura, Koji; Takahashi, Masanori; Wakamatsu, Yoshio; Takano-Yamamoto, Teruko; Osumi, Noriko

    2010-01-01

    Six family transcription factor genes play multiple and crucial roles in the development of the vertebrate sensory system including the eye, olfactory epithelium and otic vesicle, and these genes are highly expressed in the neural crest-derived cranial mesenchymal cells in the mouse embryo. However, expression patterns have yet to be determined for the Six family genes in the developing tooth germ. In this study, we examined expression of six members of the Six family genes in the dental mesenchyme and the dental epithelium of the developing tooth germs in mice by in situ hybridization. We found dynamic expression patterns for Six1, Six2, Six4 and Six5 in the oral epithelium and mesenchymal cells with distinct expression patterns at the early stage before invagination of the dental epithelium. In addition, expression of Six1 and Six4 was observed in the inner enamel epithelium of the incisor and molar tooth germs at the cap stage. Expression of Six5 was maintained in the bell stage tooth germs, and intense expression of Six1 and Six4 was detected not only in the mesenchyme-derived dental follicle but also in the proliferating inner enamel epithelium of the labial cervical loop of the incisor tooth germ. Taken together, our results suggest that dynamic expression of Six family genes represents specific stages of the developing tooth germ. This dynamic expression is embodied in changes in both space and over time, and these changes in expression suggest that Six family genes may participate in tooth germ morphogenesis and the proliferation and/or differentiation of the incisor ameloblast stem/progenitor cells.

  2. Inflamed dental pulp stem cells:initial research and future development%炎症牙髓干细胞:起步研究与未来发展

    Institute of Scientific and Technical Information of China (English)

    赵华翔; 赵珊梅; 辛欣; 张博; 马宁虎; 李沐嘉; 张梦琦; 李昂

    2014-01-01

    BACKGROUND:Inflamed dental pulp stem cells are a new kind of dental pulp stem cells, and there is no systematic review on the cells by now. OBJECTIVE:To systematical y review the research progress in inflamed dental pulp stem cells. METHODS:A computer-based online search in PubMed, Web of Science, CNKI, WanFang and VIP databases was performed for related articles published from the establishment of the databases to February 2014. The keywords were“(pulptis or inflam*dental pulp*or human dental pulp with irreversible pulpitis) and stem cel*”in English and Chinese, respectively. Hand searching was also done to obtain further information or papers about the studies. The results were qualitatively analyzed to comprehensively summarize the progress in the research of inflamed dental pulp stem cells. RESULTS AND CONCLUSION:Total y 11 papers were involved in result analysis that comprehensively review the research progress in inflamed dental pulp stem cells at the fol owing aspects:the research of history, material origin, cellculture, cel-surface markers, proliferation ability, multi-directional differentiation potential, animal models and clinical use. Researches of inflamed dental pulp stem cells are stil in the initial stage, and cultivating conditions and the establishment of animal models are stil in the exploratory phase. Controversies stil exist in the capacity of proliferation and multi-directional differentiation of the inflamed dental pulp stem cells. And fewer studies have been done in the characteristics of immunity, subpopulation and clinical use of the inflamed dental pulp stem cells.%背景:炎症牙髓干细胞是近年来新发现的一类牙髓干细胞,目前尚无对其研究进展的系统评价。目的:系统评价炎症牙髓干细胞的研究进展。方法:以“(Pulptis OR Inflam* Dental Pulp* OR Human Dental Pulp with Irreversible Pulpitis)AND Stem Cel*/(牙髓炎OR炎症牙髓OR不可逆性牙髓炎)AND干细胞

  3. Stem cell therapy in oral and maxillofacial region: An overview

    Directory of Open Access Journals (Sweden)

    P M Sunil

    2012-01-01

    Full Text Available Cells with unique capacity for self-renewal and potency are called stem cells. With appropriate biochemical signals stem cells can be transformed into desirable cells. The idea behind this article is to shortly review the obtained literature on stem cell with respect to their properties, types and advantages of dental stem cells. Emphasis has been given to the possibilities of stem cell therapy in the oral and maxillofacial region including regeneration of tooth and craniofacial defects.

  4. Biological characteristic effects of human dental pulp stem cells on poly-ε-caprolactone-biphasic calcium phosphate fabricated scaffolds using modified melt stretching and multilayer deposition.

    Science.gov (United States)

    Wongsupa, Natkrita; Nuntanaranont, Thongchai; Kamolmattayakul, Suttatip; Thuaksuban, Nuttawut

    2017-02-01

    Craniofacial bone defects such as alveolar cleft affect the esthetics and functions that need bone reconstruction. The advanced techniques of biomaterials combined with stem cells have been a challenging role for maxillofacial surgeons and scientists. PCL-coated biphasic calcium phosphate (PCL-BCP) scaffolds were created with the modified melt stretching and multilayer deposition (mMSMD) technique and merged with human dental pulp stem cells (hDPSCs) to fulfill the component of tissue engineering for bone substitution. In the present study, the objective was to test the biocompatibility and biofunctionalities that included cell proliferation, cell viability, alkaline phosphatase activity, osteocalcin, alizarin red staining for mineralization, and histological analysis. The results showed that mMSMD PCL-BCP scaffolds were suitable for hDPSCs viability since the cells attached and spread onto the scaffold. Furthermore, the constructs of induced hDPSCs and scaffolds performed ALP activity and produced osteocalcin and mineralized nodules. The results indicated that mMSMD PCL-BCP scaffolds with hDPSCs showed promise in bone regeneration for treatment of osseous defects.

  5. Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin.

    Science.gov (United States)

    Bray, A F; Cevallos, R R; Gazarian, K; Lamas, M

    2014-11-07

    Human adult dental pulp stem cells (DPSCs) are self-renewing stem cells that originate from the neural crest during development and remain within the dental pulp niche through adulthood. Due to their multi-lineage differentiation potential and their relative ease of access they represent an exciting alternative for autologous stem cell-based therapies in neurodegenerative diseases. In animal models, DPSCs transplanted into the brain differentiate into functional neurons or astrocytes in response to local environmental cues that appear to influence the fate of the surviving cells. Here we tested the hypothesis that DPSCs might be able to respond to factors present in the retina enabling the regenerative potential of these cells. We evaluated the response of DPSCs to conditioned media from organotypic explants from control and chemically damaged rat retinas. To evaluate cell differentiation, we analyzed the expression of glial fibrillary acidic protein (GFAP), early neuronal and retinal markers (polysialic acid-neural cell adhesion molecule (PSA-NCAM); Pax6; Ascl1; NeuroD1) and the late photoreceptor marker rhodopsin, by immunofluorescence and reverse transcription polymerase chain reaction (RT-PCR). Exposure of DPSC cultures to conditioned media from control retinas induced a 39% reduction on the number of DPSCs that expressed GFAP; the expression of Pax6, Ascl1, PSA-NCAM or NeuroD1 was undetectable or did not change significantly. Expression of rhodopsin was not detectable in control or after exposure of the cultures with retinal conditioned media. By contrast, 44% of DPSCs exposed to conditioned media from damaged retinas were immunopositive to this protein. This response could not be reproduced when conditioned media from Müller-enriched primary cultures was used. Finally, quantitative RT-PCR was performed to compare the relative expression of glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and brain

  6. EDTA soluble chemical components and the conditioned medium from mobilized dental pulp stem cells contain an inductive microenvironment, promoting cell proliferation, migration, and odontoblastic differentiation.

    Science.gov (United States)

    Kawamura, Rei; Hayashi, Yuki; Murakami, Hiroshi; Nakashima, Misako

    2016-05-25

    The critical challenge in tissue engineering is to establish an optimal combination of stem cells, signaling morphogenetic molecules, and extracellular matrix scaffold/microenvironment. The extracellular matrix components of teeth may be reconstituted as an inductive microenvironment in an ectopic tooth transplantation bioassay. Thus, the isolation and identification of the chemical components of the inductive microenvironment in pulp/dentin regeneration will accelerate progress towards the goal of tissue engineering of the tooth. The teeth demineralized in 0.6 M hydrochloric acid were sequentially extracted by 4.0 M guanidine hydrochloride (GdnHCl), pH 7.4, and 0.5 M ethylenediaminetetraacetic acid (EDTA), pH 7.4. The extracted teeth were transplanted into an ectopic site in severe combined immunodeficiency (SCID) mice with mobilized dental pulp stem cells (MDPSCs). The unextracted tooth served as a positive control. Furthermore, the soluble components for the inductive microenvironment, the GdnHCl extracts, or the EDTA extracts together with or without MDPSC conditioned medium (CM) were reconstituted systematically with autoclaved teeth in which the chemical components were completely inactivated and only the physical microenvironment was preserved. Their pulp/dentin regenerative potential and angiogenic potential were compared 28 days after ectopic tooth transplantation by histomorphometry and real-time RT-PCR analysis. Expression of an odontoblastic marker, enamelysin, and a pulp marker, thyrotropin-releasing hormone degrading enzyme (TRH-DE), was lower, and expression of a periodontal cell marker, anti-asporin/periodontal ligament-associated protein 1 (PLAP-1), was higher in the transplant of the EDTA-extracted teeth compared with the GdnHCl-extracted teeth. The autoclaved teeth reconstituted with the GdnHCl extracts or the EDTA extracts have weak regenerative potential and minimal angiogenic potential, and the CM significantly increased this potential

  7. Effects of total flavonoids from Drynaria fortunei on the proliferation and osteogenic differentiation of rat dental pulp stem cells.

    Science.gov (United States)

    Huang, Xiao-Fei; Yuan, Su-Jian; Yang, Cheng

    2012-09-01

    Dental pulp stem cells (DPSCs) have the potential to form bone, nerve and fat, and are a candidate for use in regenerative medicine. Previous studies indicated that total flavonoids from Drynaria fortunei show a stimulative effect on the proliferation and osteogenic differentiation of osteoblastic MC3T3-E1 cells in vitro. This study aimed to investigate the effect of total flavonoids from Drynaria fortunei on the proliferation and osteogenic differentiation of rat DPSCs, and to further clarify the mechanisms involved. DPSCs were isolated by enzymatic digestion and identified using the CD44, CD29 and CD34 markers by immunohistochemistry, and exposed to 0.01, 0.05 and 0.1 g/l total flavonoids from Drynaria fortunei media. Total flavonoids from Drynaria fortunei promoted the proliferation of DPSCs in a dose-dependent manner and this effect may depend on the shortening of the G0/G1 phase and promotion of the S phase. Compared with the control group, the levels of alkaline phosphatase (ALP) and the expression of osteogenic genes increased with the concentrations of total flavonoids from Drynaria fortunei, and the volume and number of calcified nodules in the Drynaria groups was bigger compared to the control group. These results suggest that total flavonoid from Drynaria fortunei directly stimulates DPSC proliferation and osteogenic differentiation, and may serve as a new promising candidate drug for dental tissue engineering and bone regeneration.

  8. Odontoblastic differentiation of dental pulp stem cells from healthy and carious teeth on an original PCL-based 3D scaffold.

    Science.gov (United States)

    Louvrier, A; Euvrard, E; Nicod, L; Rolin, G; Gindraux, F; Pazart, L; Houdayer, C; Risold, P Y; Meyer, F; Meyer, C

    2017-01-21

    To isolate and characterize dental pulp stem cells (DPSCs) obtained from carious and healthy mature teeth extracted when conservative treatment was not possible or for orthodontic reasons; to evaluate the ability of DPSCs to colonize, proliferate and differentiate into functional odontoblast-like cells when cultured onto a polycaprolactone cone made by jet-spraying and prototyped into a design similar to a gutta-percha cone. DPSCs were obtained from nine carious and 12 healthy mature teeth. Then cells were characterized by flow cytometry and submitted to multidifferentiation to confirm their multipotency. These DPSCs were then cultured on a polycaprolactone cone in an odontoblastic differentiation medium. Cell proliferation, colonization of the biomaterial and functional differentiation of cells were histologically assessed. For the characterization, a t-Student test was used to compare the two groups. In all cell cultures, characterization highlighted a mesenchymal stem cell phenotype (CD105+, CD90+, CD73+, CD11b-, CD34-, CD45-, HLA-DR-). No significant differences were found between cultures obtained from carious and healthy mature teeth. DPSCs from both origins were able to differentiate into osteocytes, adipocytes and chondrocytes. Cell colonization was observed both on the surface and in the thickness of polycaprolactone cones as well as a mineralized pericellular matrix deposit composed of type I collagen, alkaline phosphatase, osteocalcin and dentin sialophosphoprotein. DPSCs were isolated from both carious and healthy mature teeth. They were able to colonize and proliferate within a polycaprolactone cone and could be differentiated into functional odontoblast-like cells. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21Cip1 pathway and restores osteoblastic differentiation in human dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    Park YJ

    2012-09-01

    Full Text Available Yoon Jung Choi,1,* Jue Yeon Lee,2,* Chong Pyoung Chung,2 Yoon Jeong Park,1,21Craniomaxillofacial Reconstructive Sciences, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea; 2Research Institute, Nano Intelligent Biomedical Engineering, Seoul, Republic of Korea*These authors contributed equally to this workBackground: Human dental pulp stem cells (DPSCs have potential applications in tissue regeneration because of their convenient cell harvesting procedures and multipotent capacity. However, the tissue regenerative potential of DPSCs is known to be negatively regulated by aging in long-term culture and under oxidative stress. With an aim of reducing cellular senescence and oxidative stress in DPSCs, an intracellular delivery system for superoxide dismutase 1 (SOD1 was developed. We conjugated SOD1 with a cell-penetrating peptide known as low-molecular weight protamine (LMWP, and investigated the effect of LMWP-SOD1 conjugates on hydrogen peroxide-induced cellular senescence and osteoblastic differentiation.Results: LMWP-SOD1 significantly attenuated enlarged and flattened cell morphology and increased senescence-associated β-galactosidase activity. Under the same conditions, LMWP-SOD1 abolished activation of the cell cycle regulator proteins, p53 and p21Cip1, induced by hydrogen peroxide. In addition, LMWP-SOD1 reversed the inhibition of osteoblastic differentiation and downregulation of osteogenic gene markers induced by hydrogen peroxide. However, LMWP-SOD1 could not reverse the decrease in odontogenesis caused by hydrogen peroxide.Conclusion: Overall, cell-penetrating LMWP-SOD1 conjugates are effective for attenuation of cellular senescence and reversal of osteoblastic differentiation of DPSCs caused by oxidative stress inhibition. This result suggests potential application in the field of antiaging and tissue engineering to overcome the limitations of senescent stem cells.Keywords: superoxide

  10. In-vivo Generation of Dental Pulp-Like Tissue Using Human Pulpal Stem Cells, a Collagen Scaffold and Dentin Matrix Protein 1 Following Subcutaneous Transplantation in Mice

    Science.gov (United States)

    Prescott, Rebecca S.; Alsanea, Rajaa; Fayad, Mohamed I.; Johnson, Bradford R.; Wenckus, Christopher S.; Hao, Jianjun; John, Asha S.; George, Anne

    2008-01-01

    The presence of a perforation is known to significantly compromise the outcome of endodontic treatment. One potential use of regenerative endodontic therapy may be the repair of root canal perforations. In addition to nutrients and systemic in-situ interactions, the three main components believed to be essential for tissue regeneration are: stem cells, scaffold, and growth factors. This study investigated the role of each component of the tissue engineering triad in the organization and differentiation of Dental Pulp Stem Cells (DPSCs) in a simulated furcal perforation site using a mouse model. Collagen served as the scaffold and dentin matrix protein 1 (DMP1) was the growth factor. Materials were placed in simulated perforation sites in dentin slices. MTA was the control repair material. At six weeks, the animals were sacrificed and the perforation sites were evaluated by light microscopy and histological staining. Organization of newly derived pulp tissue was seen in the group containing the triad of DPSCs, a collagen scaffold, and DMP1. The other four groups did not demonstrate any apparent tissue organization. Under the conditions of the present study, it may be concluded that the triad of DPSCs, a collagen scaffold, and DMP1 can induce an organized matrix formation similar to that of pulpal tissue, which may lead to hard tissue formation. PMID:18358888

  11. Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma.

    Science.gov (United States)

    Ito, Kenji; Yamada, Yoichi; Naiki, Takahito; Ueda, Minoru

    2006-10-01

    This study was undertaken to evaluate the use of tissue-engineered bone as grafting material for alveolar augmentation with simultaneous implant placement. Twelve adult hybrid dogs were used in this study. One month after the extraction of teeth in the mandible region, bone defects on both sides of the mandible were induced using a trephine bar with a diameter of 10 mm. Dog mesenchymal stem cells (dMSCs) were obtained via iliac bone biopsy and cultured for 4 weeks before implantation. After installing the dental implants, the defects were simultaneously implanted with the following graft materials: (i) fibrin, (ii) dMSCs and fibrin (dMSCs/fibrin), (iii) dMSCs, platelet-rich plasma (PRP) and fibrin (dMSCs/PRP/fibrin) and (iv) control (defect only). The implants were assessed by histological and histomorphometric analysis, 2, 4 and 8 weeks after implantation. The implants exhibited varying degrees of bone-implant contact (BIC). The BIC was 17%, 19% and 29% (control), 20%, 22% and 25% (fibrin), 22%, 32% and 42% (dMSCs/fibrin) and 25%, 49% and 53% (dMSCs/PRP/fibrin) after 2, 4 and 8 weeks, respectively. This study suggests that tissue-engineered bone may be of sufficient quality for predictable enhancement of bone regeneration around dental implants when used simultaneous by with implant placement.

  12. Stem Cell Information: Glossary

    Science.gov (United States)

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... here Home » Glossary Back to top Glossary Adult stem cell Astrocyte Blastocoel Blastocyst Bone marrow stromal cells Bone ...

  13. Transplantation of stem cells obtained from murine dental pulp improves pancreatic damage, renal function, and painful diabetic neuropathy in diabetic type 1 mouse model.

    Science.gov (United States)

    Guimarães, Elisalva Teixeira; Cruz, Gabriela da Silva; Almeida, Tiago Farias de; Souza, Bruno Solano de Freitas; Kaneto, Carla Martins; Vasconcelos, Juliana Fraga; Santos, Washington Luis Conrado dos; Santos, Ricardo Ribeiro-dos; Villarreal, Cristiane Flora; Soares, Milena Botelho Pereira

    2013-01-01

    Diabetes mellitus (DM) is one of the most common and serious chronic diseases in the world. Here, we investigated the effects of mouse dental pulp stem cell (mDPSC) transplantation in a streptozotocin (STZ)-induced diabetes type 1 model. C57BL/6 mice were treated intraperitoneally with 80 mg/kg of STZ and transplanted with 1 × 10(6) mDPSCs or injected with saline, by an endovenous route, after diabetes onset. Blood and urine glucose levels were reduced in hyperglycemic mice treated with mDPSCs when compared to saline-treated controls. This correlated with an increase in pancreatic islets and insulin production 30 days after mDPSC therapy. Moreover, urea and proteinuria levels normalized after mDPSC transplantation in diabetic mice, indicating an improvement of renal function. This was confirmed by a histopathological analysis of kidney sections. We observed the loss of the epithelial brush border and proximal tubule dilatation only in saline-treated diabetic mice, which is indicative of acute renal lesion. STZ-induced thermal hyperalgesia was also reduced after cell therapy. Three days after transplantation, mDPSC-treated diabetic mice exhibited nociceptive thresholds similar to that of nondiabetic mice, an effect maintained throughout the 90-day evaluation period. Immunofluorescence analyses of the pancreas revealed the presence of GFP(+) cells in, or surrounding, pancreatic islets. Our results demonstrate that mDPSCs may contribute to pancreatic β-cell renewal, prevent renal damage in diabetic animals, and produce a powerful and long-lasting antinociceptive effect on behavioral neuropathic pain. Our results suggest stem cell therapy as an option for the control of diabetes complications such as intractable diabetic neuropathic pain.

  14. Tracking adult stem cells

    NARCIS (Netherlands)

    Snippert, H.J.G.; Clevers, H.

    2011-01-01

    The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context,

  15. Tracking adult stem cells.

    Science.gov (United States)

    Snippert, Hugo J; Clevers, Hans

    2011-02-01

    The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context, rather than outside their natural environment. The mouse is an attractive model in which to study adult mammalian stem cells, as numerous experimental systems and genetic tools are available. In this review, we describe strategies commonly used to identify and functionally characterize adult stem cells in mice and discuss their potential, limitations and interpretations, as well as how they have informed our understanding of adult stem-cell biology. An accurate interpretation of physiologically relevant stem-cell assays is crucial to identify adult stem cells and elucidate how they self-renew and give rise to differentiated progeny.

  16. Isolation and Culture of Postnatal Stem Cells from Deciduous Teeth

    OpenAIRE

    Olávez, Daniela; Facultad de Odontología Universidad de Los Andes; Salmen, Siham; Instituto de Inmunología Clínica, Universidad de Los Andes.; Padrón, Karla; Facultad de Odontología. Univerisdad de Los Andes.; Lobo, Carmine; Facultad de Odontología. Univerisdad de Los Andes.; Díaz, Nancy; Facultad de Odontología, Universidad de Los Andes.; Berrueta, Lisbeth; Doctora en Inmunología por Instituto Venezolano de Investigaciones Científicas (IVIC). Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Venezuela.; Solorzanio, Eduvigis; Facultad de Odontología, Universidad de Los Andes.

    2014-01-01

    Background: Currently, degenerative diseases represent a public health problem; therefore, the development and implementation of strategies to fully or partially recover of damaged tissues has a special interest in the biomedical field. Therapeutic strategies based on mesenchymal stem cells transplantation from dental pulp have been proposed as an alternative. Purpose: To develop a mesenchymal stem cells culture isolated from dental pulp of deciduous teeth. Methods: The mesenchymal stem cells...

  17. Isolation and Culture of Postnatal Stem Cells from Deciduous Teeth

    OpenAIRE

    Olávez, Daniela; Facultad de Odontología Universidad de Los Andes; Salmen, Siham; Instituto de Inmunología Clínica, Universidad de Los Andes.; Padrón, Karla; Facultad de Odontología. Univerisdad de Los Andes.; Lobo, Carmine; Facultad de Odontología. Univerisdad de Los Andes.; Díaz, Nancy; Facultad de Odontología, Universidad de Los Andes.; Berrueta, Lisbeth; Doctora en Inmunología por Instituto Venezolano de Investigaciones Científicas (IVIC). Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Venezuela.; Solorzanio, Eduvigis; Facultad de Odontología, Universidad de Los Andes.

    2014-01-01

    Background: Currently, degenerative diseases represent a public health problem; therefore, the development and implementation of strategies to fully or partially recover of damaged tissues has a special interest in the biomedical field. Therapeutic strategies based on mesenchymal stem cells transplantation from dental pulp have been proposed as an alternative. Purpose: To develop a mesenchymal stem cells culture isolated from dental pulp of deciduous teeth. Methods: The mesenchymal stem cells...

  18. Reforming craniofacial orthodontics via stem cells

    Science.gov (United States)

    Mohanty, Pritam; Prasad, N.K.K.; Sahoo, Nivedita; Kumar, Gunjan; Mohanty, Debapreeti; Sah, Sushila

    2015-01-01

    Stem cells are the most interesting cells in cell biology. They have the potential to evolve as one of the most powerful technologies in the future. The future refers to an age where it will be used extensively in various fields of medical and dental sciences. Researchers have discovered a number of sources from which stem cells can be derived. Craniofacial problems are very common and occur at all ages. Stem cells can be used therapeutically in almost every field of health science. In fact, many procedures will be reformed after stem cells come into play. This article is an insight into the review of the current researches being carried out on stem cells and its use in the field of orthodontics, which is a specialized branch of dentistry. Although the future is uncertain, there is a great possibility that stem cells will be used extensively in almost all major procedures of orthodontics. PMID:25767761

  19. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD dogs: Local or systemic?

    Directory of Open Access Journals (Sweden)

    Brolio Marina P

    2008-07-01

    Full Text Available Abstract Background The golden retriever muscular dystrophy (GRMD dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD. We have obtained a rare litter of six GRMD dogs (3 males and 3 females born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression. Methods Human Immature Dental Pulp Stem Cells (hIDPSC were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers and FISH for human probes. Results and Discussion We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent in situ hybridisation (FISH using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age. Conclusion Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important

  20. Stem Cell Transplant

    Science.gov (United States)

    ... transplant is a procedure that infuses healthy blood stem cells into your body to replace your damaged or ... A bone marrow transplant is also called a stem cell transplant. A bone marrow transplant may be necessary ...

  1. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds.

    Science.gov (United States)

    Woloszyk, Anna; Holsten Dircksen, Sabrina; Bostanci, Nagihan; Müller, Ralph; Hofmann, Sandra; Mitsiadis, Thimios A

    2014-01-01

    Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs) that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%), while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV%) significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL). Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x) and Collagen type I (1.7x) was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and rapid bone

  2. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds.

    Directory of Open Access Journals (Sweden)

    Anna Woloszyk

    Full Text Available Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%, while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV% significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL. Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x and Collagen type I (1.7x was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and

  3. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells.

    Science.gov (United States)

    Tomás-Catalá, C J; Collado-González, M; García-Bernal, D; Oñate-Sánchez, R E; Forner, L; Llena, C; Lozano, A; Castelo-Baz, P; Moraleda, J M; Rodríguez-Lozano, F J

    2017-09-11

    To evaluate the biological effects in vitro of MTA-Angelus (MTA-Ang; Angelus, Londrina, PR, Brazil), MTA Repair HP (MTA-HP; Angelus) and NeoMTA Plus (NeoMTA-P; Avalon Biomed Inc, Bradenton, FL, USA) on human dental pulp stem cells (hDPSCs). Cell viability and cell migration assays were performed using eluates of each material. To evaluate cell morphology and cell attachment to the different materials, hDPSCs were directly seeded onto the material surfaces and analysed by immunocytofluorescence and scanning electron microscopy, respectively. The chemical composition of the materials was determined by energy-dispersive X-ray (EDX), and eluates were analysed by inductively coupled plasma-mass spectrometry (ICP-MS). Statistical analysis was performed with the analysis of variance and Bonferroni or Tukey post-test (α MTA-Ang, MTA-HP and NeoMTA-P displayed a significant increase in cell viability greater than that obtained using complete medium alone (control) (*P MTA-Ang, MTA-HP and NeoMTA-P that were similar to levels obtained in the control group. In addition, stretched cytoskeletal F-actin fibres were detected in the cells treated with the three material extracts. SEM studies revealed a high degree of cell proliferation and attachment on all three materials. EDX analysis demonstrated similar weight percentages of C, O and Ca in all three materials, whilst other elements such as Al, Si and S were also found. MTA-Ang, MTA-HP and NeoMTA-P were associated with biological effects on hDPSCs in terms of cell proliferation, morphology, migration and attachment. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury

    Directory of Open Access Journals (Sweden)

    F.C. Nicola

    2016-01-01

    Full Text Available Spinal cord injury (SCI is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10; SCI (laminectomy followed by SCI, n=12; SHEDs (SCI treated with SHEDs, n=11; TT (SCI treated with treadmill training, n=11; SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10. Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action.

  5. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury.

    Science.gov (United States)

    Nicola, F C; Rodrigues, L P; Crestani, T; Quintiliano, K; Sanches, E F; Willborn, S; Aristimunha, D; Boisserand, L; Pranke, P; Netto, C A

    2016-08-08

    Spinal cord injury (SCI) is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs) transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10); SCI (laminectomy followed by SCI, n=12); SHEDs (SCI treated with SHEDs, n=11); TT (SCI treated with treadmill training, n=11); SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10). Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action.

  6. Differential Neuronal Plasticity of Dental Pulp Stem Cells From Exfoliated Deciduous and Permanent Teeth Towards Dopaminergic Neurons.

    Science.gov (United States)

    Majumdar, Debanjana; Kanafi, Mohammad; Bhonde, Ramesh; Gupta, Pawan; Datta, Indrani

    2016-09-01

    Based on early occurrence in chronological age, stem-cells from human exfoliated deciduous teeth (SHED) has been reported to possess better differentiation-potential toward certain cell-lineage in comparison to stem-cells from adult teeth (DPSCs). Whether this same property between them extends for the yield of functional central nervous system neurons is still not evaluated. Hence, we aim to assess the neuronal plasticity of SHED in comparison to DPSCs toward dopaminergic-neurons and further, if the difference is reflected in a differential expression of sonic-hedgehog (SHH)-receptors and basal-expressions of tyrosine-hydroxylase [TH; through cAMP levels]. Human SHED and DPSCs were exposed to midbrain-cues [SHH, fibroblast growth-factor8, and basic fibroblast growth-factor], and their molecular, immunophenotypical, and functional characterization was performed at different time-points of induction. Though SHED and DPSCs spontaneously expressed early-neuronal and neural-crest marker in their naïve state, only SHED expressed a high basal-expression of TH. The upregulation of dopaminergic transcription-factors Nurr1, Engrailed1, and Pitx3 was more pronounced in DPSCs. The yield of TH-expressing cells decreased from 49.8% to 32.16% in SHED while it increased from 8.09% to 77.47% in DPSCs. Dopamine release and intracellular-Ca(2+) influx upon stimulation (KCl and ATP) was higher in induced DPSCs. Significantly lower-expression of SHH-receptors was noted in naïve SHED than DPSCs, which may explain the differential neuronal plasticity. In addition, unlike DPSCs, SHED showed a down-regulation of cyclic adenosine-monophosphate (cAMP) upon exposure to SHH; possibly another contributor to the lesser differentiation-potential. Our data clearly demonstrates for the first time that DPSCs possess superior neuronal plasticity toward dopaminergic-neurons than SHED; influenced by higher SHH-receptor and lower basal TH expression. J. Cell. Physiol. 231: 2048-2063, 2016. © 2016

  7. Effect of an Experimental Direct Pulp-capping Material on the Properties and Osteogenic Differentiation of Human Dental Pulp Stem Cells

    Science.gov (United States)

    Yu, Fan; Dong, Yan; Yang, Yan-Wei; Lin, Ping-Ting; Yu, Hao-Han; Sun, Xiang; Sun, Xue-Fei; Zhou, Huan; Huang, Li; Chen, Ji-Hua

    2016-10-01

    Effective pulp-capping materials must have antibacterial properties and induce dentin bridge formation; however, many current materials do not satisfy clinical requirements. Accordingly, the effects of an experiment pulp-capping material (Exp) composed of an antibacterial resin monomer (MAE-DB) and Portland cement (PC) on the viability, adhesion, migration, and differentiation of human dental pulp stem cells (hDPSCs) were examined. Based on a Cell Counting Kit-8 assay, hDPSCs exposed to Exp extracts showed limited viability at 24 and 48 h, but displayed comparable viability to the control at 72 h. hDPSC treatment with Exp extracts enhanced cellular adhesion and migration according to in vitro scratch wound healing and Transwell migration assays. Exp significantly upregulated the expression of osteogenesis-related genes. The hDPSCs cultured with Exp exhibited higher ALP activity and calcium deposition in vitro compared with the control group. The novel material showed comparable cytocompatibility to control cells and promoted the adhesion, migration, and osteogenic differentiation of hDPSCs, indicating excellent biocompatibility. This new direct pulp-capping material containing MAE-DB and PC shows promise as a potential alternative to conventional materials for direct pulp capping.

  8. Effect of an Experimental Direct Pulp-capping Material on the Properties and Osteogenic Differentiation of Human Dental Pulp Stem Cells

    Science.gov (United States)

    Yu, Fan; Dong, Yan; Yang, Yan-wei; Lin, Ping-ting; Yu, Hao-han; Sun, Xiang; Sun, Xue-fei; Zhou, Huan; Huang, Li; Chen, Ji-hua

    2016-01-01

    Effective pulp-capping materials must have antibacterial properties and induce dentin bridge formation; however, many current materials do not satisfy clinical requirements. Accordingly, the effects of an experiment pulp-capping material (Exp) composed of an antibacterial resin monomer (MAE-DB) and Portland cement (PC) on the viability, adhesion, migration, and differentiation of human dental pulp stem cells (hDPSCs) were examined. Based on a Cell Counting Kit-8 assay, hDPSCs exposed to Exp extracts showed limited viability at 24 and 48 h, but displayed comparable viability to the control at 72 h. hDPSC treatment with Exp extracts enhanced cellular adhesion and migration according to in vitro scratch wound healing and Transwell migration assays. Exp significantly upregulated the expression of osteogenesis-related genes. The hDPSCs cultured with Exp exhibited higher ALP activity and calcium deposition in vitro compared with the control group. The novel material showed comparable cytocompatibility to control cells and promoted the adhesion, migration, and osteogenic differentiation of hDPSCs, indicating excellent biocompatibility. This new direct pulp-capping material containing MAE-DB and PC shows promise as a potential alternative to conventional materials for direct pulp capping. PMID:27698421

  9. Differentiation of dental pulp stem cells into chondrocytes upon culture on porous chitosan-xanthan scaffolds in the presence of kartogenin.

    Science.gov (United States)

    Westin, Cecília B; Trinca, Rafael B; Zuliani, Carolina; Coimbra, Ibsen B; Moraes, Ângela M

    2017-11-01

    Adhesion, proliferation and differentiation of dental pulp stem cells (DPSCs) into chondrocytes were investigated in this work with the purpose of broadening the array of cell alternatives to the therapy of cartilage lesions related to tissue engineering approaches. A porous chitosan-xanthan (C-X) matrix was used as scaffold and kartogenin was used as a selective chondrogenic differentiation promoter. The scaffold was characterized regarding aspect and surface morphology, absorption and stability in culture medium, thickness, porosity, thermogravimetric behavior, X-ray diffraction, mechanical properties and indirect cytocompatibility. The behavior of DPSCs cultured on the scaffold was evaluated by scanning electron microscopy and cell differentiation, by histological analysis. A sufficiently stable amorphous scaffold with mean thickness of 0.89±0.01mm and high culture medium absorption capacity (13.20±1.88g/g) was obtained, and kartogenin concentrations as low as 100nmol/L were sufficient to efficiently induce DPSCs differentiation into chondrocytes, showing that the strategy proposed may be a straightforward and effective approach for tissue engineering aiming at the therapy of cartilage lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Use Electrospinning to Introduce Graphene into Poly(4-Vinylpridine) (P4VP) Polymer Fibers and Their Biocompatibility with Dental Pulp Stem Cells (DPSCs)

    Science.gov (United States)

    Zhang, Linxi; Chang, Chung-Chueh; Rafailovich, Miriam

    Graphene-polymer composite materials have been popularized in tissue engineering due to the outstanding thermal, electrical and mechanical properties of graphene. Most of the current studies, however, focus on 2-D structured films which hardly represent the real conditions of scaffolds in vivo environment and dispersion of graphene in polymer matrix has always been challenging since the graphene tends to aggregate. In our study, we have successfully introduced graphene nanoplatelets (GNPs) into poly(4-vinphylpridine) (P4VP) matrix and fabricated nano- and micro-scale size fibers by using electrospinning technique. SEM and TEM reveal uniform defect-free fiber structures and good dispersion of graphene; DSC and AFM indicate the enhancement of physical properties. The biocompatibility of the electrospun 3-D scaffolds with dental pulp stem cells (DPSCs) has been examined. Our results show that the cells can accelerate proliferation to respond to the existence of GNPs. SEM with EDAX reveals a deposition of mineralized calcium matrix on the fibers after 35-day incubation, which has possibly been caused by cell differentiation induced by fibrous scaffolds. Electrospinning Nano- and Mirco-scale size Poly(4-vinphylpridine) Fibers Loaded with Graphene Nano Platelets (GNPs).

  11. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  12. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  13. Two-photon imaging of stem cells

    Science.gov (United States)

    Uchugonova, A.; Gorjup, E.; Riemann, I.; Sauer, D.; König, K.

    2008-02-01

    A variety of human and animal stem cells (rat and human adult pancreatic stem cells, salivary gland stem cells, dental pulpa stem cells) have been investigated by femtosecond laser 5D two-photon microscopy. Autofluorescence and second harmonic generation have been imaged with submicron spatial resolution, 270 ps temporal resolution, and 10 nm spectral resolution. In particular, NADH and flavoprotein fluorescence was detected in stem cells. Major emission peaks at 460nm and 530nm with typical mean fluorescence lifetimes of 1.8 ns and 2.0 ns, respectively, were measured using time-correlated single photon counting and spectral imaging. Differentiated stem cells produced the extracellular matrix protein collagen which was detected by SHG signals at 435 nm.

  14. Stem cell-based biological tooth repair and regeneration.

    Science.gov (United States)

    Volponi, Ana Angelova; Pang, Yvonne; Sharpe, Paul T

    2010-12-01

    Teeth exhibit limited repair in response to damage, and dental pulp stem cells probably provide a source of cells to replace those damaged and to facilitate repair. Stem cells in other parts of the tooth, such as the periodontal ligament and growing roots, play more dynamic roles in tooth function and development. Dental stem cells can be obtained with ease, making them an attractive source of autologous stem cells for use in restoring vital pulp tissue removed because of infection, in regeneration of periodontal ligament lost in periodontal disease, and for generation of complete or partial tooth structures to form biological implants. As dental stem cells share properties with mesenchymal stem cells, there is also considerable interest in their wider potential to treat disorders involving mesenchymal (or indeed non-mesenchymal) cell derivatives, such as in Parkinson's disease.

  15. Isolation and characterization of lymphoid enhancer factor-1-positive deciduous dental pulp stem-like cells after transfection with a piggyBac vector containing LEF1 promoter-driven selection markers.

    Science.gov (United States)

    Murakami, Tomoya; Saitoh, Issei; Sato, Masahiro; Inada, Emi; Soda, Miki; Oda, Masataka; Domon, Hisanori; Iwase, Yoko; Sawami, Tadashi; Matsueda, Kazunari; Terao, Yutaka; Ohshima, Hayato; Noguchi, Hirofumi; Hayasaki, Haruaki

    2017-09-01

    Lymphoid enhancer-binding factor-1 (LEF1) is a 48-kD nuclear protein that is expressed in pre-B and T cells. LEF1 is also an important member of the Wnt/β-catenin signaling pathway that plays important roles in the self-renewal and differentiation of embryonic stem cells. We speculated that LEF1 might function in the stem cells from human exfoliated deciduous teeth (SHED). In this study, we attempted to isolate such LEF1-positive cells from human deciduous dental pulp cells (HDDPCs) by genetic engineering technology, using the human LEF1 promoter. A piggyBac transposon plasmid (pTA-LEN) was introduced into HDDPCs, using the Neon(®) transfection system. After G418 selection, the emerging colonies were assessed for EGFP-derived fluorescence by fluorescence microscopy. Reverse transcription polymerase chain reaction (RT-PCR) analysis was performed using RNA isolated from these colonies to examine stem cell-specific transcript expression. Osteoblastic or neuronal differentiation was induced by cultivating the LEF1-positive cells with differentiation-inducing medium. RT-PCR analysis confirmed the expression of several stem cell markers, including OCT3/4, SOX2, REX1, and NANOG, in LEF1-positive HDDPCs, which could be differentiated into osteoblasts and neuronal cells. The isolated LEF1-positive HDDPCs exhibited the properties of stem cells, suggesting that LEF1 might serve as a marker for SHED. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells

    Science.gov (United States)

    Niu, Li-na; Watson, Devon; Thames, Kyle; Primus, Carolyn M.; Bergeron, Brian E.; Jiao, Kai; Bortoluzzi, Eduardo A.; Cutler, Christopher W.; Chen, Ji-hua; Pashley, David H.; Tay, Franklin R.

    2015-01-01

    Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA) after different aging periods. Cell viability and proliferation were examined using assays that examined plasma membrane integrity, leakage of cytosolic enzyme, caspase-3 activity for early apoptosis, oxidative stress, mitochondrial metabolic activity and intracellular DNA content. Results of the six assays indicated that both Quick-Set2 and WMTA were initially cytotoxic to hDPSCs after setting for 24 h, with Quick-Set2 being comparatively less cytotoxic than WMTA at this stage. After two aging cycles, the cytotoxicity profiles of the two hydraulic cements were not significantly different and were much less cytotoxic than the positive control (zinc oxide–eugenol cement). Based on these results, it is envisaged that any potential beneficial effect of the discoloration-resistant calcium aluminosilicate cement on osteogenesis by differentiated hDPSCs is more likely to be revealed after outward diffusion and removal of its cytotoxic components. PMID:26617338

  17. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells.

    Science.gov (United States)

    Niu, Li-na; Watson, Devon; Thames, Kyle; Primus, Carolyn M; Bergeron, Brian E; Jiao, Kai; Bortoluzzi, Eduardo A; Cutler, Christopher W; Chen, Ji-hua; Pashley, David H; Tay, Franklin R

    2015-11-30

    Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA) after different aging periods. Cell viability and proliferation were examined using assays that examined plasma membrane integrity, leakage of cytosolic enzyme, caspase-3 activity for early apoptosis, oxidative stress, mitochondrial metabolic activity and intracellular DNA content. Results of the six assays indicated that both Quick-Set2 and WMTA were initially cytotoxic to hDPSCs after setting for 24 h, with Quick-Set2 being comparatively less cytotoxic than WMTA at this stage. After two aging cycles, the cytotoxicity profiles of the two hydraulic cements were not significantly different and were much less cytotoxic than the positive control (zinc oxide-eugenol cement). Based on these results, it is envisaged that any potential beneficial effect of the discoloration-resistant calcium aluminosilicate cement on osteogenesis by differentiated hDPSCs is more likely to be revealed after outward diffusion and removal of its cytotoxic components.

  18. Influence of Partial O₂ Pressure on the Adhesion, Proliferation, and Osteogenic Differentiation of Human Dental Pulp Stem Cells on β-Tricalcium Phosphate Scaffold.

    Science.gov (United States)

    Viña-Almunia, Jose; Mas-Bargues, Cristina; Borras, Consuelo; Gambini, Juan; El Alami, Marya; Sanz-Ros, Jorge; Peñarrocha, Miguel; Vina, Jose

    2017-09-22

    To analyze, in vitro, the influence of O₂ pressure on the adhesion, proliferation, and osteogenic differentiation of human dental pulp stem cells (DPSC) on β-tricalcium phosphate (β-TCP) scaffold. DPSC, positive for the molecular markers CD133, Oct4, Nestin, Stro-1, and CD34, and negative for CD45, were isolated from extracted third molars. Experiments were started by seeding 200,000 cells on β-TCP cultured under 3% or 21% O₂ pressure. No osteogenic medium was used. Eight different cultures were performed at each time point under each O₂ pressure condition. Cell adhesion, proliferation, and differentiation over the biomaterial were evaluated at 7, 13, 18, and 23 days of culture. Cell adhesion was determined by light microscopy, proliferation by DNA quantification, and osteogenic differentiation by alkaline phosphatase (ALP) activity analysis. DPSC adhered to β-TCP with both O₂ conditions. Cell proliferation was found from day 7 of culture. Higher values were recorded at 3% O₂ in each time point. Statistically significant differences were recorded at 23 days of culture (P = .033). ALP activity was not detectable at 7 days. There was, however, an increase in ALP activity over time in both groups. At 13, 18, and 23 days of culture, higher ALP activity was recorded under 3% O₂ pressure. Statistical differences were found at day 23 (P = .014). DPSC display capacity of adhering to β-TCP under 3% or 21% O₂ pressure conditions. Cell proliferation on β-TCP phosphate is significantly higher at 3% than at 21% O₂ pressure, the most frequently used O₂ tension. β-TCP can itself promote osteogenic differentiation of DPSC and is enhanced under 3% O₂ compared with 21%.

  19. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Mita, Tsuneyuki; Furukawa-Hibi, Yoko; Takeuchi, Hideyuki; Hattori, Hisashi; Yamada, Kiyofumi; Hibi, Hideharu; Ueda, Minoru; Yamamoto, Akihito

    2015-10-15

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by a decline in cognitive abilities and the appearance of β-amyloid plaques in the brain. Although the pathogenic mechanisms associated with AD are not fully understood, activated microglia releasing various neurotoxic factors, including pro-inflammatory cytokines and oxidative stress mediators, appear to play major roles. Here, we investigated the therapeutic benefits of a serum-free conditioned medium (CM) derived from the stem cells of human exfoliated deciduous teeth (SHEDs) in a mouse model of AD. The intranasal administration of SHEDs in these mice resulted in substantially improved cognitive function. SHED-CM contained factors involved in multiple neuroregenerative mechanisms, such as neuroprotection, axonal elongation, neurotransmission, the suppression of inflammation, and microglial regulation. Notably, SHED-CM attenuated the pro-inflammatory responses induced by β-amyloid plaques, and generated an anti-inflammatory/tissue-regenerating environment, which was accompanied by the induction of anti-inflammatory M2-like microglia. Our data suggest that SHED-CM may provide significant therapeutic benefits for AD. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Maternal diabetes modulates dental epithelial stem cells proliferation and self-renewal in offspring through apurinic/apyrimidinicendonuclease 1-mediated DNA methylation

    Science.gov (United States)

    Chen, Guoqing; Chen, Jie; Yan, Zhiling; Li, Ziyue; Yu, Mei; Guo, Weihua; Tian, Weidong

    2017-01-01

    Maternal gestational diabetes mellitus (GDM) has many adverse effects on the development of offspring. Aberrant DNA methylation is a potential mechanism associated with these effects. However, the effects of GDM on tooth development and the underlying mechanisms have not been thoroughly investigated. In the present study, a GDM rat model was established and incisor labial cervical loop tissue and dental epithelial stem cells (DESCs) were harvested from neonates of diabetic and control dams. GDM significantly suppressed incisor enamel formation and DESCs proliferation and self-renewal in offspring. Gene expression profiles showed that Apex1 was significantly downregulated in the offspring of diabetic dams. In vitro, gain and loss of function analyses showed that APEX1 was critical for DESCs proliferation and self-renewal and Oct4 and Nanog regulation via promoter methylation. In vivo, we confirmed that GDM resulted in significant downregulation of Oct4 and Nanog and hypermethylation of their promoters. Moreover, we found that APEX1 modulated DNA methylation by regulating DNMT1 expression through ERK and JNK signalling. In summary, our data suggest that GDM-induced APEX1 downregulation increased DNMT1 expression, thereby inhibiting Oct4 and Nanog expression, through promoter hypermethylation, resulting in suppression of DESCs proliferation and self-renewal, as well as enamel formation. PMID:28094306

  1. Pro-Inflammatory Cytokine TNF-α Attenuates BMP9-Induced Osteo/ Odontoblastic Differentiation of the Stem Cells of Dental Apical Papilla (SCAPs

    Directory of Open Access Journals (Sweden)

    Feilong Wang

    2017-03-01

    Full Text Available Background/Aims: Periapical periodontitis is a common oral disease caused by bacterial invasion of the tooth pulp, which usually leads to local release of pro-inflammatory cytokines and osteolytic lesion. This study is intended to examine the effect of TNF-α on BMP9-induced osteogenic differentiation of the stem cells of dental apical papilla (SCAPs. Methods: Rat model of periapical periodontitis was established. TNF-α expression was assessed. Osteogenic markers and ectopic bone formation in iSCAPs were analyzed upon BMP9 and TNF-α treatment. Results: Periapical periodontitis was successfully established in rat immature permanent teeth with periapical lesions, in which TNF-α was shown to release during the inflammatory phase. BMP9-induced alkaline phosphatase activity, the expression of osteocalcin and osteopontin, and matrix mineralization in iSCAPs were inhibited by TNF-α in a dose-dependent fashion, although increased AdBMP9 partially overcame TNF-α inhibition. Furthermore, high concentration of TNF-α effectively inhibited BMP9-induced ectopic bone formation in vivo. Conclusion: TNF-α plays an important role in periapical bone defect during the inflammatory phase and inhibits BMP9-induced osteoblastic differentiation of iSCAPs, which can be partially reversed by high levels of BMP9. Therefore, BMP9 may be further explored as a potent osteogenic factor to improve osteo/odontogenic differentiation in tooth regeneration in chronic inflammation conditions.

  2. Purmorphamine increased adhesion, proliferation and expression of osteoblast phenotype markers of human dental pulp stem cells cultured on beta-tricalcium phosphate.

    Science.gov (United States)

    Rezia Rad, Maryam; Khojaste, Moein; Hasan Shahriari, Mehrnoosh; Asgary, Saeed; Khojasteh, Arash

    2016-08-01

    Growth factors play a significant role in cell proliferation and differentiation during different stages of the bone repair. However, several limitations have been brought researchers attention to an osteoinductive small molecule including Purmorphamine. In this study, we aimed to evaluate the effect of Purmorphamine on adhesion, proliferation and differentiation of human dental pulp stem cells (hDPSCs) seaded on beta-tricalcium phosphate (β-TCP) granules. hDPSCs were established from extracted wisdom teeth of healthy volenteers. Cells at passage 3 were seeded on β-TCP in the presence or absence of Purmorphamine. Cell adhesion and proliferation were assessed using scanning electeron microscopy (SEM) and DNA counting assay, respectively, after 1, 3 and 5days. Then, hDPSCs seeded on β-TCP were subjected to osteogenic medium with or without Purmorphamine. After 7 and 14days osteogenic diffrentiation capability of hDPSCs were determined using real-time RT-PCR and alkaline phosphatase (ALP) activity assay. The significant increase in amount of DNA was observed at day 3 and 5 in the presence of Purmorphamine. SEM imaging also was confirmed the DNA counting assay; in all given time points, hDPSC attachment and growth was significantly higher in the presence of Purmorphamine. ALP activity was increased by Purmorphamine at both 7 and 14days of induction. Purmorphamine showed to effect on osteopontin expression at earlier stage of osteogenic differentiation, whereas for osteocalcin expression, this effect was more evident at later stage of differentiation. Purmorphamine had a promotive effect on adhesion, proliferation and osteogenic differentiation of hDPSCs cultured on β-TCP. The outcome of the current study would help in development of in vitro culture conditions for better osteogenic differentiation of hDPSCs prior to transplantation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Low Power Laser Therapy: A Strategy to Promote the Osteogenic Differentiation of Deciduous Dental Pulp Stem Cells from Cleft Lip and Palate Patients.

    Science.gov (United States)

    Pinheiro, Carla C G; de Pinho, Milena C; Aranha, Ana Cecilia; Fregnani, Eduardo; Bueno, Daniela F

    2017-08-18

    Dental pulp stem cells (DPSCs) can undergo several types of differentiation, including osteogenic differentiation. One osteogenesis-inducing factor that has been previously described is in vitro low-power laser irradiation of cells. Laser irradiation promotes the acceleration of bone matrix mineralization of the cell strain. However, no consensus exists regarding the dose and treatment time. We used DPSC strains from cleft lip and palate patients because new bone tissue engineering strategies have used DPSCs in preclinical and clinical trials for the rehabilitation of alveolar bone clefts. Optimizing bone tissue engineering techniques for cleft and lip palate patients by applying low-power laser therapy (LPLT) to DPSCs obtained from these patients can help improve current strategies to quickly close large alveolar clefts. The aim of this study was to investigate the effects of LPLT at different energy densities in DPSC strains obtained from cleft lip and palate patients during in vitro osteogenic differentiation. Ten DPSC strains were obtained from cleft lip and palate patients and then used in the following study groups: group 1: control, the strains underwent osteogenic differentiation for 21 days; and groups 2, 3, and 4: the strains were irradiated each day with a low-power red laser (660 nm) (5, 10, and 20 J) during 21 days of osteogenic differentiation. Using Bonferroni's test, a statistically significant difference in the mean values was found between the irradiated groups (2, 3, and 4) and the control group (p laser irradiation at 5, 10, and 20 J, and this treatment could be considered a new approach for preconditioning these cells to be used in bone tissue engineering.

  4. STEM CELLS AND PROTEOMICS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-ming; GUO Tian-nan; HUANG Shi-ang

    2006-01-01

    The distinctive features of proteomics are large-scale and high throughput. The key techniques of proteomics are two-dimensional gel electrophoresis, mass spectrometry and bioinformatics. Stem cell can differentiate into all kinds of cells, tissues and organs. There are many proteins and cytokines involved in the process of differentiation. Applying proteomics techniques to the research of the complex process of stem cell differentiation is of great importance to study the mechanism and applications of stem cell differentiation.

  5. Stem cells in urology.

    Science.gov (United States)

    Aboushwareb, Tamer; Atala, Anthony

    2008-11-01

    The shortage of donors for organ transplantation has stimulated research on stem cells as a potential resource for cell-based therapy in all human tissues. Stem cells have been used for regenerative medicine applications in many organ systems, including the genitourinary system. The potential applications for stem cell therapy have, however, been restricted by the ethical issues associated with embryonic stem cell research. Instead, scientists have explored other cell sources, including progenitor and stem cells derived from adult tissues and stem cells derived from the amniotic fluid and placenta. In addition, novel techniques for generating stem cells in the laboratory are being developed. These techniques include somatic cell nuclear transfer, in which the nucleus of an adult somatic cell is placed into an oocyte, and reprogramming of adult cells to induce stem-cell-like behavior. Such techniques are now being used in tissue engineering applications, and some of the most successful experiments have been in the field of urology. Techniques to regenerate bladder tissue have reached the clinic, and exciting progress is being made in other areas, such as regeneration of the kidney and urethra. Cell therapy as a treatment for incontinence and infertility might soon become a reality. Physicians should be optimistic that regenerative medicine and tissue engineering will one day provide mainstream treatment options for urologic disorders.

  6. Odontogenic differentiation and biomineralization potential of dental pulp stem cells inside Mg-based bioceramic scaffolds under low-level laser treatment.

    Science.gov (United States)

    Theocharidou, Anna; Bakopoulou, Athina; Kontonasaki, Eleana; Papachristou, Eleni; Hadjichristou, Christina; Bousnaki, Maria; Theodorou, George; Papadopoulou, Lambrini; Kantiranis, Nikolaos; Paraskevopoulos, Konstantinos; Koidis, Petros

    2017-01-01

    This study aimed to investigate the potential of low-level laser irradiation (LLLI) to promote odontogenic differentiation and biomineralization by dental pulp stem cells (DPSCs) seeded inside bioceramic scaffolds. Mg-based, Zn-doped bioceramic scaffolds, synthesized by the sol-gel technique, were spotted with DPSCs and exposed to LLLI at 660 nm with maximum output power of 140 mw at fluencies (a) 2 and 4 J/cm(2) to evaluate cell viability/proliferation by the MTT assay and (b) 4 J/cm(2) to evaluate cell differentiation, using real-time PCR (expression of odontogenic markers) and a p-nitrophenylphosphate (pNPP)-based assay for alkaline phosphatase (ALP) activity measurement. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were used for structural/chemical characterization of the regenerated tissues. Exposure of the DPSCs/scaffold complexes to the proposed LLLI scheme was associated with statistically significant increase of odontogenesis-related markers (bone morphogenetic protein 2 (BMP-2): 22.4-fold, dentin sialophosphoprotein (DSPP): 28.4-fold, Osterix: 18.5-fold, and Runt-related transcription factor 2 (Runx2): 3.4-fold). ALP activity was significantly increased at 3 and 7 days inside the irradiated compared to that in the non-irradiated SC/DPSC complexes, but gradually decreased until 14 days. Newly formed Ca-P tissue was formed on the SC/DPSC complexes after 28 days of culture that attained the characteristics of bioapatite. Overall, LLLI treatment proved to be beneficial for odontogenic differentiation and biomineralization of DPSCs inside the bioceramic scaffolds, making this therapeutic modality promising for targeted dentin engineering.

  7. Hexosamine-Induced TGF-β Signaling and Osteogenic Differentiation of Dental Pulp Stem Cells Are Dependent on N-Acetylglucosaminyltransferase V

    Directory of Open Access Journals (Sweden)

    Yi-Jane Chen

    2015-01-01

    Full Text Available Glycans of cell surface glycoproteins are involved in the regulation of cell migration, growth, and differentiation. N-acetyl-glucosaminyltransferase V (GnT-V transfers N-acetyl-d-glucosamine to form β1,6-branched N-glycans, thus playing a crucial role in the biosynthesis of glycoproteins. This study reveals the distinct expression of GnT-V in STRO-1 and CD-146 double-positive dental pulp stem cells (DPSCs. Furthermore, we investigated three types of hexosamines and their N-acetyl derivatives for possible effects on the osteogenic differentiation potential of DPSCs. Our results showed that exogenous d-glucosamine (GlcN, N-acetyl-d-glucosamine (GlcNAc, d-mannosamine (ManN, and acetyl-d-mannosamine (ManNAc promoted DPSCs’ early osteogenic differentiation in the absence of osteogenic supplements, but d-galactosamine (GalN or N-acetyl-galactosamine (GalNAc did not. Effects include the increased level of TGF-β receptor type I, activation of TGF-β signaling, and increased mRNA expression of osteogenic differentiation marker genes. The hexosamine-treated DPSCs showed an increased mineralized matrix deposition in the presence of osteogenic supplements. Moreover, the level of TGF-β receptor type I and early osteogenic differentiation were abolished in the DPSCs transfected with siRNA for GnT-V knockdown. These results suggest that GnT-V plays a critical role in the hexosamine-induced activation of TGF-β signaling and subsequent osteogenic differentiation of DPSCs.

  8. Dazlin' pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.A.

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) can be isolated from the inner cell mass (ICM) of blastocyst embryos and differentiate into all three germ layers in vitro. However, despite their similar origin, mouse embryonic stem cells represent a more naïve ICM-like pluripotent state whereas human embryo

  9. Aneuploidy in stem cells

    NARCIS (Netherlands)

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to real

  10. Cancer stem cell metabolism

    National Research Council Canada - National Science Library

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    .... Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes...

  11. Stem cells in cell transplantation.

    Science.gov (United States)

    Sanmartin, Agneta; English, Denis; Sanberg, Paul R

    2006-12-01

    This commentary documents the increased number of stem cell-related research reports recently published in the cell transplantation field in the journal Cell Transplantation. The journal covers a wide range of issues in cell-based therapy and regenerative medicine and is attracting clinical and preclinical articles from around the world. It thereby complements and extends the basic coverage of stem cell physiology reported in Stem Cells and Development. Sections in Cell Transplantation cover neuroscience, diabetes, hepatocytes, bone, muscle, cartilage, skin, vessels, and other tissues, as well as tissue engineering that employs novel methods with stem cells. Clearly, the continued use of biomedical engineering will depend heavily on stem cells, and these two journals are well positioned to provide comprehensive coverage of these developments.

  12. Many facets of stem cells

    Institute of Scientific and Technical Information of China (English)

    Jiarui Wu

    2011-01-01

    @@ Research area on stem cells is one of frontiers in biology.The collection of five research articles in this issue aims to cover timely developments in stem cell biology, ranging from generating and identifying stem cell line to manipulating stem cells, and from basic mechanism analysis to applied medical potential.These papers reflect the various research tasks in stem cell biology.

  13. Effect of EDTA on TGF-β1 released from the dentin matrix and its influence on dental pulp stem cell migration.

    Science.gov (United States)

    Gonçalves, Lidiany Freitas; Fernandes, Ana Paula; Cosme-Silva, Leopoldo; Colombo, Fabio Antonio; Martins, Natália Silva; Oliveira, Thais Marchini; Araujo, Tomaz Henrique; Sakai, Vivien Thiemy

    2016-12-22

    Bioactive molecules stored in dentin, such as transforming growth factor beta1 (TGF-b1), may be involved in the signaling events related to dental tissue repair. The authors conducted an in vitro evaluation of the amount of TGF-b1 released from dentin slices after treatment with 10% ethylenediaminetetraacetic acid (EDTA), 2.5% sodium hypochlorite (NaOCl) or phosphate-buffered saline (PBS), and the effect of this growth factor on stem cell migration from human exfoliated deciduous teeth (SHED). Sixty 1-mm-thick tooth slices were prepared with or without the predentin layer, and treated with either 10% EDTA for 1 minute, 2.5% NaOCl for 5 days or kept in PBS. Tooth slice conditioned media were prepared and used for TGF-b1 ELISA and migration assays. Culture medium with different concentrations of recombinant human TGF-b1 (0.5, 1.0, 5.0 or 10.0 ng/mL) was also tested by migration assay. The data were evaluated by ANOVA and Tukey's test. Optical density values corresponding to media conditioned by tooth slices either containing or not containing the predentin layer and treated with 10% EDTA were statistically greater than the other groups and close to 1 ng/mL. Increased rates of migration toward media conditioned by tooth slices containing the predentin layer and treated with PBS, 10% EDTA or 2.5% NaOCl were observed. Recombinant human TGF-b1 also stimulated migration of SHED, irrespective of the concentration used. EDTA may be considered an effective extractant of TGF-b1 from the dentin matrix. However, it does not impact SHED migration, suggesting that other components may account for the cell migration.

  14. Fish stem cell cultures.

    Science.gov (United States)

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  15. Fish Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Full Text Available Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  16. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  17. What are Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ahmadshah Farhat

    2014-05-01

    Full Text Available   Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem cells are those that can only form specific cells in the body such as blood cells based. Based on the sources of stem cells we have three types of these cells: Autologous: Sources of the patient own cells are (Autologous either the cells from patient own body or his or her cord blood. For this type of transplant the physician now usually collects the periphery rather than morrow because the procedure is easier on like a bane morrow harvest it take place outside of an operating room, and the patient does not to be under general unsetting . Allogenic: Sources of stem cells from another donore are primarily relatives (familial allogenic or completely unrelated donors. Xenogenic: In these stem cells from different species are transplanted e .g striatal porcine fetal mesan cephalic (FVM xenotransplants for Parkinson’s disease. On sites of isolation such as embryo, umbilical cord and other body tissues stem cells are named embnyonic, cord blood, and adult stem cells. The scope of results and clinical application of stem cells are such as: Neurodegenerative conditions (MS,ALS, Parkinson’s, Stroke, Ocular disorders- Glaucoma, retinitis Pigmentosa (RP, Auto Immune Conditions (Lupus, MS,R. arthritis, Diabetes, etc, Viral Conditions (Hepatitis C and AIDS, Heart Disease, Adrenal Disorders, Injury(Nerve, Brain, etc, Anti aging (hair, skin, weight control, overall well being/preventive, Emotional disorders, Organ / Tissue Cancers, Blood cancers, Blood diseases

  18. Stem cells in dermatology.

    Science.gov (United States)

    Ogliari, Karolyn Sassi; Marinowic, Daniel; Brum, Dario Eduardo; Loth, Fabrizio

    2014-01-01

    Preclinical and clinical research have shown that stem cell therapy could be a promising therapeutic option for many diseases in which current medical treatments do not achieve satisfying results or cure. This article describes stem cells sources and their therapeutic applications in dermatology today.

  19. Stem Cell Transplants (For Teens)

    Science.gov (United States)

    ... Can I Help Someone Who's Being Bullied? Volunteering Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants Print ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  20. Notch信号通路在牙髓干细胞增殖和分化中的调控作用%The regulation of Notch signaling pathway in the proliferation and differentiation of dental pulp stem cells

    Institute of Scientific and Technical Information of China (English)

    武曦

    2011-01-01

    The Notch signaling pathway is an evolutionarily conserved signal transductional mechanism,controlling the fate of the cells through the interaction among cells.Dental pulp stem ceU is a kind of somatic stem cell with high proliferation and multiple differentiation potentials and plays a vitat role in tissue regeneration.This review describes the composition of the Notch signaling pathway and the molecular mechanism of Notch signaling on dental pujp stem ce11s regulation.%Notch信号通路是进化过程中高度保守的信号转导机制,通过细胞与细胞间的相互作用控制细胞的命运.牙髓干细胞是一种具有高度增殖和多向分化潜能的成体干细胞,在组织再生中发挥重要作用.该文就该信号通路的组成及其对牙髓+细胞调控的分子机制作一综述.

  1. MEPE-derived ASARM peptide inhibits odontogenic differentiation of dental pulp stem cells and impairs mineralization in tooth models of X-linked hypophosphatemia.

    Directory of Open Access Journals (Sweden)

    Benjamin Salmon

    Full Text Available Mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X-chromosome cause X-linked familial hypophosphatemic rickets (XLH, a disorder having severe bone and tooth dentin mineralization defects. The absence of functional PHEX leads to abnormal accumulation of ASARM (acidic serine- and aspartate-rich motif peptide - a substrate for PHEX and a strong inhibitor of mineralization - derived from MEPE (matrix extracellular phosphoglycoprotein and other matrix proteins. MEPE-derived ASARM peptide accumulates in tooth dentin of XLH patients where it may impair dentinogenesis. Here, we investigated the effects of ASARM peptides in vitro and in vivo on odontoblast differentiation and matrix mineralization. Dental pulp stem cells from human exfoliated deciduous teeth (SHEDs were seeded into a 3D collagen scaffold, and induced towards odontogenic differentiation. Cultures were treated with synthetic ASARM peptides (phosphorylated and nonphosphorylated derived from the human MEPE sequence. Phosphorylated ASARM peptide inhibited SHED differentiation in vitro, with no mineralized nodule formation, decreased odontoblast marker expression, and upregulated MEPE expression. Phosphorylated ASARM peptide implanted in a rat molar pulp injury model impaired reparative dentin formation and mineralization, with increased MEPE immunohistochemical staining. In conclusion, using complementary models to study tooth dentin defects observed in XLH, we demonstrate that the MEPE-derived ASARM peptide inhibits both odontogenic differentiation and matrix mineralization, while increasing MEPE expression. These results contribute to a partial mechanistic explanation of XLH pathogenesis: direct inhibition of mineralization by ASARM peptide leads to the mineralization defects in XLH teeth. This process appears to be positively reinforced by the increased MEPE expression induced by ASARM. The MEPE-ASARM system can therefore be considered as a potential

  2. MEPE-Derived ASARM Peptide Inhibits Odontogenic Differentiation of Dental Pulp Stem Cells and Impairs Mineralization in Tooth Models of X-Linked Hypophosphatemia

    Science.gov (United States)

    Khaddam, Mayssam; Naji, Jiar; Coyac, Benjamin R.; Baroukh, Brigitte; Letourneur, Franck; Lesieur, Julie; Decup, Franck; Le Denmat, Dominique; Nicoletti, Antonino; Poliard, Anne; Rowe, Peter S.; Huet, Eric; Vital, Sibylle Opsahl; Linglart, Agnès; McKee, Marc D.; Chaussain, Catherine

    2013-01-01

    Mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X-chromosome) cause X-linked familial hypophosphatemic rickets (XLH), a disorder having severe bone and tooth dentin mineralization defects. The absence of functional PHEX leads to abnormal accumulation of ASARM (acidic serine- and aspartate-rich motif) peptide − a substrate for PHEX and a strong inhibitor of mineralization − derived from MEPE (matrix extracellular phosphoglycoprotein) and other matrix proteins. MEPE-derived ASARM peptide accumulates in tooth dentin of XLH patients where it may impair dentinogenesis. Here, we investigated the effects of ASARM peptides in vitro and in vivo on odontoblast differentiation and matrix mineralization. Dental pulp stem cells from human exfoliated deciduous teeth (SHEDs) were seeded into a 3D collagen scaffold, and induced towards odontogenic differentiation. Cultures were treated with synthetic ASARM peptides (phosphorylated and nonphosphorylated) derived from the human MEPE sequence. Phosphorylated ASARM peptide inhibited SHED differentiation in vitro, with no mineralized nodule formation, decreased odontoblast marker expression, and upregulated MEPE expression. Phosphorylated ASARM peptide implanted in a rat molar pulp injury model impaired reparative dentin formation and mineralization, with increased MEPE immunohistochemical staining. In conclusion, using complementary models to study tooth dentin defects observed in XLH, we demonstrate that the MEPE-derived ASARM peptide inhibits both odontogenic differentiation and matrix mineralization, while increasing MEPE expression. These results contribute to a partial mechanistic explanation of XLH pathogenesis: direct inhibition of mineralization by ASARM peptide leads to the mineralization defects in XLH teeth. This process appears to be positively reinforced by the increased MEPE expression induced by ASARM. The MEPE-ASARM system can therefore be considered as a potential therapeutic

  3. Immunology of Stem Cells and Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yang

    2007-01-01

    The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However,numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and inflammation. Therefore, an important question to be answered is how the host immune system responds to engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2)strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4)mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for regenerative purposes.

  4. Stem Cell Basics

    Science.gov (United States)

    ... why are they important? Stem cells have the remarkable potential to develop into many different cell types ... of Health, U.S. Department of Health and Human Services, 2016 [cited October 9, 2017 ] Available at < //stemcells. ...

  5. Engineering Stem Cell Organoids

    National Research Council Canada - National Science Library

    Yin, Xiaolei; Mead, Benjamin E; Safaee, Helia; Langer, Robert; Karp, Jeffrey M; Levy, Oren

    2016-01-01

    .... Herein, we discuss basic approaches to generate stem cell-based organoids, their advantages and limitations, and how bioengineering strategies can be used to steer the cell composition and their 3D...

  6. Induced Pluripotent Stem Cells: A New Frontier for Stem Cells in Dentistry.

    Science.gov (United States)

    Hynes, K; Menichanin, D; Bright, R; Ivanovski, S; Hutmacher, D W; Gronthos, S; Bartold, P M

    2015-11-01

    Induced pluripotent stem cells (iPSCs) are the newest member of a growing list of stem cell populations that hold great potential for use in cell-based treatment approaches in the dental field. This review summarizes the dental tissues that have successfully been utilized to generate iPSC lines, as well as the potential uses of iPSCs for tissue regeneration in different dental applications. While iPSCs display great promise in a number of dental applications, there are safety concerns with these cells that need to be addressed before they can be used in clinical settings. This review outlines some of the apprehensions to the use of iPSCs clinically, and it details approaches that are being employed to ensure the safety and efficacy of these cells. One of the major approaches being investigated is the differentiation of iPSCs prior to use in patients. iPSCs have successfully been differentiated into a wide range of cells and tissue types. This review focuses on 2 differentiation approaches-the differentiation of iPSCs into mesenchymal stem cells and the differentiation of iPSCs into osteoprogenitor cells. Both these resulting populations of cells are particularly relevant to the dental field.

  7. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  8. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine

    OpenAIRE

    2015-01-01

    Introduction Periodontitis is one of the most widespread infectious diseases in humans. We previously promoted significant periodontal tissue regeneration in swine models with the transplantation of autologous periodontal ligament stem cells (PDLSCs) and PDLSC sheet. We also promoted periodontal tissue regeneration in a rat model with a local injection of allogeneic bone marrow mesenchymal stem cells. The purpose of the present study is to investigate the roles of the hepatocyte growth factor...

  9. Induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Siddhartha Bhowmik; LI Yong

    2011-01-01

    Induced pluripotent stem (iPS) cells are a recent development which has brought a promise of great therapeutic values. The previous technique of somatic cell nuclear transfer (SCNT) has been ineffective in humans. Recent discoveries show that human fibroblasts can be reprogrammed by a transient over expression of a small number of genes; they can undergo induced pluripotency. iPS were first produced in 2006. By 2008, work was underway to remove the potential oncogenes from their structure. In 2009, protein iPS (piPS) cells were discovered. Surface markers and reporter genes play an important role in stem cell research. Clinical applications include generation of self renewing stem cells, tissue replacement and many more. Stem cell therapy has the ability to dramatically change the treatment of human diseases.

  10. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation.

    Science.gov (United States)

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre; Polakowska, Renata

    2014-04-15

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Y(low) stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration.

  11. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Directory of Open Access Journals (Sweden)

    Wataru Sonoyama

    Full Text Available Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla. Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  12. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Science.gov (United States)

    Sonoyama, Wataru; Liu, Yi; Fang, Dianji; Yamaza, Takayoshi; Seo, Byoung-Moo; Zhang, Chunmei; Liu, He; Gronthos, Stan; Wang, Cun-Yu; Wang, Songlin; Shi, Songtao

    2006-12-20

    Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla). Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs) to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  13. Effects of perivitelline fluid obtained from Horseshoe crab on the proliferation and genotoxicity of dental pulp stem cells

    Digital Repository Service at National Institute of Oceanography (India)

    Musa, M.; Ali, K.M.; Kannan, T.P.; Azlina, A.; Omar, N.S.; Chatterji, A.; Mokhtar, K.I.

    Perivitelline fluid (PVF) of the horseshoe crab embryo has been reported to possess an important role during embryogenesis by promoting cell proliferation. This study aims to evaluate the effect of PVF on the proliferation, chromosome aberration (CA...

  14. Stem Cell Organoid Engineering

    Science.gov (United States)

    Yin, Xiaolei; Mead, Benjamin E.; Safaee, Helia; Langer, Robert; Karp, Jeffrey M.; Levy, Oren

    2016-01-01

    Organoid systems leverage the self-organizing properties of stem cells to create diverse multi-cellular tissue proxies. Most organoid models only represent single or partial components of a tissue, and it is often difficult to control the cell type, organization, and cell-cell/cell-matrix interactions within these systems. Herein, we discuss basic approaches to generate stem cell-based organoids, their advantages and limitations, and how bioengineering strategies can be used to steer the cell composition and their 3D organization within organoids to further enhance their utility in research and therapies. PMID:26748754

  15. Cardiac stem cell niches

    Directory of Open Access Journals (Sweden)

    Annarosa Leri

    2014-11-01

    Full Text Available The critical role that stem cell niches have in cardiac homeostasis and myocardial repair following injury is the focus of this review. Cardiac niches represent specialized microdomains where the quiescent and activated state of resident stem cells is regulated. Alterations in niche function with aging and cardiac diseases result in abnormal sites of cardiomyogenesis and inadequate myocyte formation. The relevance of Notch1 signaling, gap-junction formation, HIF-1α and metabolic state in the regulation of stem cell growth and differentiation within the cardiac niches are discussed.

  16. [On plant stem cells and animal stem cells].

    Science.gov (United States)

    You, Yun; Jiang, Chao; Huang, Lu-Qi

    2014-01-01

    A comparison of plant and animal stem cells can highlight core aspects of stem-cell biology. In both kingdoms, stem cells are defined by their clonogenic properties and are maintained by intercellular signals. The signaling molecules are different in plants and animals stem cell niches, but the roles of argonaute and polycomb group proteins suggest that there are some molecular similarities.

  17. Biodentine induces human dental pulp stem cell differentiation through mitogen-activated protein kinase and calcium-/calmodulin-dependent protein kinase II pathways.

    Science.gov (United States)

    Luo, Zhirong; Kohli, Meetu R; Yu, Qing; Kim, Syngcuk; Qu, Tiejun; He, Wen-xi

    2014-07-01

    Biodentine (Septodont, Saint-Maur-des-Fossès, France), a new tricalcium silicate cement formulation, has been introduced as a bioactive dentine substitute to be used in direct contact with pulp tissue. The aim of this study was to investigate the response of human dental pulp stem cells (hDPSCs) to the material and whether mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and calcium-/calmodulin-dependent protein kinase II (CaMKII) signal pathways played a regulatory role in Biodentine-induced odontoblast differentiation. hDPCs obtained from impacted third molars were incubated with Biodentine. Odontoblastic differentiation was evaluated by alkaline phosphatase activity, alizarin red staining, and quantitative real-time reverse-transcriptase polymerase chain reaction for the analysis of messenger RNA expression of the following differentiation gene markers: osteocalcin (OCN), dentin sialophosprotein (DSPP), dentin matrix protein 1 (DMP1), and bone sialoprotein (BSP). Cell cultures in the presence of Biodentine were exposed to specific inhibitors of MAPK (U0126, SB203580, and SP600125), NF-κB (pyrrolidine dithiocarbamate), and CaMKII (KN-93) pathways to evaluate the regulatory effect on the expression of these markers and mineralization assay. Biodentine significantly increased alkaline phosphatase activity and mineralized nodule formation and the expression of OCN, DSPP, DMP1, and BSP. The MAPK inhibitor for extracellular signal-regulated kinase 1/2 (U0126) and Jun N-terminal kinase (SP600125) significantly decreased the Biodentine-induced mineralized differentiation of hDPSCs and OCN, DSPP, DMP1, and BSP messenger RNA expression, whereas p38 MAPK inhibitors (SB203580) had no effect. The CaMKII inhibitor KN-93 significantly attenuated and the NF-κB inhibitor pyrrolidine dithiocarbamate further enhanced the up-regulation of Biodentine-induced gene expression and mineralization. Biodentine is a bioactive and biocompatible material capable

  18. Regenerative endodontics in light of the stem cell paradigm.

    Science.gov (United States)

    Rosa, Vinicius; Botero, Tatiana M; Nör, Jacques E

    2011-08-01

    Stem cells play a critical role in development and in tissue regeneration. The dental pulp contains a small sub-population of stem cells that are involved in the response of the pulp to caries progression. Specifically, stem cells replace odontoblasts that have undergone cell death as a consequence of the cariogenic challenge. Stem cells also secrete factors that have the potential to enhance pulp vascularisation and provide the oxygen and nutrients required for the dentinogenic response that is typically observed in teeth with deep caries. However, the same angiogenic factors that are required for dentine regeneration may ultimately contribute to the demise of the pulp by enhancing vascular permeability and interstitial pressure. Recent studies focused on the biology of dental pulp stem cells revealed that the multipotency and angiogenic capacity of these cells could be exploited therapeutically in dental pulp tissue engineering. Collectively, these findings suggest new treatment paradigms in the field of endodontics. The goal of this review is to discuss the potential impact of dental pulp stem cells to regenerative endodontics. © 2011 FDI World Dental Federation.

  19. Plant Stem Cells

    National Research Council Canada - National Science Library

    Greb, Thomas; Lohmann, Jan U

    2016-01-01

    .... While the promise of organ regeneration and the end of cancer have captured our imagination, it has gone almost unnoticed that plant stem cells represent the ultimate origin of much of the food we...

  20. Human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem; Kassem, Moustapha

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being...... introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  1. Melanoma stem cells.

    Science.gov (United States)

    Roesch, Alexander

    2015-02-01

    The cancer stem cell concept significantly broadens our understanding of melanoma biology. However, this concept should be regarded as an integral part of a holistic cancer model that also includes the genetic evolution of tumor cells and the variability of cell phenotypes within a dynamic tumor microenvironment. The biologic complexity and methodological difficulties in identifying cancer stem cells and their biomarkers are currently impeding the direct translation of experimental findings into clinical practice. Nevertheless, it is these methodological shortcomings that provide a new perspective on the phenotypic heterogeneity and plasticity of melanoma with important consequences for future therapies. The development of new combination treatment strategies, particularly with regard to overcoming treatment resistance, could significantly benefit from targeted elimination of cell subpopulations with cancer stem cell properties. © 2015 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  2. Aneuploidy in stem cells

    Institute of Scientific and Technical Information of China (English)

    Jorge; Garcia-Martinez; Bjorn; Bakker; Klaske; M; Schukken; Judith; E; Simon; Floris; Foijer

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells(IPSCs) from somatic cells has brought this promise steps closer to reality. However,as somatic cells might have accumulated various chromosomal abnormalities,including aneuploidies throughout their lives,the resulting IPSCs might no longer carry the perfect blueprint for the tissue to be generated,or worse,become at risk of adopting a malignant fate. In this review,we discuss the contribution of aneuploidy to healthy tissues and how aneuploidy can lead to disease. Furthermore,we review the differences between how somatic cells and stem cells respond to aneuploidy.

  3. Stem cell heterogeneity revealed

    DEFF Research Database (Denmark)

    Andersen, Marianne S; Jensen, Kim B

    2016-01-01

    The skin forms a protective, water-impermeable barrier consisting of heavily crosslinked epithelial cells. However, the specific role of stem cells in sustaining this barrier remains a contentious issue. A detailed analysis of the interfollicular epidermis now proposes a model for how a composite...... of cells with different properties are involved in its maintenance....

  4. Immunological characteristics of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cíntia de Vasconcellos Machado

    2013-01-01

    Full Text Available Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, such as the liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation, with appropriate stimuli, into various cell types. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules, required for complete T cell activation, on their surface. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity systems. Mesenchymal stem cells can regulate the immune response in vitro by inhibiting the maturation of dendritic cells, as well as by suppressing the proliferation and function of T and B lymphocytes and natural killer cells. These special properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, such as graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safe application in different areas of medicine.

  5. Applicability of tooth derived stem cells in neural regeneration

    Institute of Scientific and Technical Information of China (English)

    Ludovica Parisi; Edoardo Manfredi

    2016-01-01

    Within the nervous system, regeneration is limited, and this is due to the small amount of neural stem cells, the inhibitory origin of the stem cell niche and otfen to the development of a scar which constitutes a mechanical barrier for the regeneration. Regarding these aspects, many efforts have been done in the re-search of a cell component that combined with scaffolds and growth factors could be suitable for nervous regeneration in regenerative medicine approaches. Autologous mesenchymal stem cells represent nowa-days the ideal candidate for this aim, thank to their multipotency and to their amount inside adult tissues. However, issues in their harvesting, through the use of invasive techniques, and problems involved in their ageing, require the research of new autologous sources. To this purpose, the recent discovery of a stem cells component in teeth, and which derive from neural crest cells, has came to the light the possibility of using dental stem cells in nervous system regeneration. In this work, in order to give guidelines on the use of dental stem cells for neural regeneration, we brielfy introduce the concepts of regeneration and regenerative medicine, we then focus the attention on odontogenesis, which involves the formation and the presence of a stem component in different parts of teeth, and ifnally we describe some experimental approaches which are exploiting dental stem cells for neural studies.

  6. Applicability of tooth derived stem cells in neural regeneration

    Directory of Open Access Journals (Sweden)

    Ludovica Parisi

    2016-01-01

    Full Text Available Within the nervous system, regeneration is limited, and this is due to the small amount of neural stem cells, the inhibitory origin of the stem cell niche and often to the development of a scar which constitutes a mechanical barrier for the regeneration. Regarding these aspects, many efforts have been done in the research of a cell component that combined with scaffolds and growth factors could be suitable for nervous regeneration in regenerative medicine approaches. Autologous mesenchymal stem cells represent nowadays the ideal candidate for this aim, thank to their multipotency and to their amount inside adult tissues. However, issues in their harvesting, through the use of invasive techniques, and problems involved in their ageing, require the research of new autologous sources. To this purpose, the recent discovery of a stem cells component in teeth, and which derive from neural crest cells, has came to the light the possibility of using dental stem cells in nervous system regeneration. In this work, in order to give guidelines on the use of dental stem cells for neural regeneration, we briefly introduce the concepts of regeneration and regenerative medicine, we then focus the attention on odontogenesis, which involves the formation and the presence of a stem component in different parts of teeth, and finally we describe some experimental approaches which are exploiting dental stem cells for neural studies.

  7. Regenerative Endodontics in light of the stem cell paradigm

    Science.gov (United States)

    Rosa, Vinicius; Botero, Tatiana M.; Nör, Jacques E.

    2013-01-01

    Stem cells play a critical role in development and in tissue regeneration. The dental pulp contains a small sub-population of stem cells that are involved in the response of the pulp to caries progression. Specifically, stem cells replace odontoblasts that have undergone cell death as a consequence of the cariogenic challenge. Stem cells also secrete factors that have the potential to enhance pulp vascularization and provide the oxygen and nutrients required for the dentinogenic response that is typically observed in teeth with deep caries. However, the same angiogenic factors that are required for dentin regeneration may ultimately contribute to the demise of the pulp by enhancing vascular permeability and interstitial pressure. Recent studies focused on the biology of dental pulp stem cells revealed that the multipotency and angiogenic capacity of these cells could be exploited therapeutically in dental pulp tissue engineering. Collectively, these findings suggest new treatment paradigms in the field of Endodontics. The goal of this review is to discuss the potential impact of dental pulp stem cells to Regenerative Endodontics. PMID:21726222

  8. Stem cells in dentistry--Part II: Clinical applications.

    Science.gov (United States)

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-10-01

    New technologies that facilitate solid alveolar ridge augmentation are receiving considerable attention in the field of prosthodontics because of the growing requirement for esthetic and functional reconstruction by dental implant treatments. Recently, several studies have demonstrated potential advantages for stem-cell-based therapies in regenerative treatments. Mesenchymal stem/stromal cells (MSCs) are now an excellent candidate for tissue replacement therapies, and tissue engineering approaches and chair-side cellular grafting approaches using autologous MSCs represent the clinical state of the art for stem-cell-based alveolar bone regeneration. Basic studies have revealed that crosstalk between implanted donor cells and recipient immune cells plays a key role in determining clinical success that may involve the recently observed immunomodulatory properties of MSCs. Part II of this review first overviews progress in regenerative dentistry to consider the implications of the stem cell technology in dentistry and then highlights cutting-edge stem-cell-based alveolar bone regenerative therapies. Factors that affect stem-cell-based bone regeneration as related to the local immune response are then discussed. Additionally, pre-clinical stem cell studies for the regeneration of teeth and other oral organs as well as possible applications of MSC-based immunotherapy in dentistry are outlined. Finally, the marketing of stem cell technology in dental stem cell banks with a view toward future regenerative therapies is introduced. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  9. The Stem Cell Conundrum

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ At the beginning of this year, Kelly Reynolds,a US-national diagnosed with amyotrophic lateral sclerosis (ALS), became the one of the latest overseas patient to undergo stem cell treatment at the Nanshan Hospital in Shenzhen.Confined to a wheelchair and with limited use of his hands,the 39-year old received four fetal stem cell injections over a three-week period. So far,the results have been positive and Reynolds, acording to his personal blog page, is upbeat about the long-term benefits.

  10. Origins of pluripotent stem cells.

    Science.gov (United States)

    Roelen, B A J; Chuva De Sousa Lopes, S M

    2011-08-01

    Different types of pluripotent stem cells can be identified and cultured in vitro. Here an overview is presented of the various pluripotent stem cells types. Embryonal carcinoma (EC) cells that have been cultured in vitro provided the groundwork for future pluripotent cell cultures. Conditions established for these cells such as culture on a feeder layer of mouse embryonic fibroblasts and the importance of fetal calf serum were initially also used for the culture of mouse embryonic stem (ES) cells derived from the inner cell masses of blastocysts. Embryonic stem cells derived from human blastocysts were found to require different conditions and are cultured in the presence of activin and basic fibroblast growth factor. Recently pluripotent stem cells have also been derived from mouse peri-implantation epiblasts. Since these epiblast stem cells (EpiSCs) require the same conditions as the human ES cells it has been suggested that human ES cells are more similar to mouse EpiSCs than to mouse ES cells. Pluripotent cell lines have also been derived from migratory primordial germ cells and spermatogonial stem cells. The creation of pluripotent stem cells from adult cells by the introduction of reprogramming transcription factors, so-called induced pluripotent stem (iPS) cells allowed the derivation of patient-specific pluripotent stem cells without the need of creation of a human blastocyst after cloning by somatic cells nuclear transfer. Recently it has become clear however that iPS cells may be quite different to ES cells in terms of epigenetics.

  11. Stem cell organization in Arabidopsis

    NARCIS (Netherlands)

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or mer

  12. Stem Cell Transplants (For Parents)

    Science.gov (United States)

    ... Teaching Kids to Be Smart About Social Media Stem Cell Transplants KidsHealth > For Parents > Stem Cell Transplants Print A A A What's in this ... Recovery Coping en español Trasplantes de células madre Stem cells are cells in the body that have the ...

  13. Stem cells and transplant arteriosclerosis.

    Science.gov (United States)

    Xu, Qingbo

    2008-05-09

    Stem cells can differentiate into a variety of cells to replace dead cells or to repair damaged tissues. Recent evidence indicates that stem cells are involved in the pathogenesis of transplant arteriosclerosis, an alloimmune initiated vascular stenosis that often results in transplant organ failure. Although the pathogenesis of transplant arteriosclerosis is not yet fully understood, recent developments in stem cell research have suggested novel mechanisms of vascular remodeling in allografts. For example, stem cells derived from the recipient may repair damaged endothelial cells of arteries in transplant organs. Further evidence suggests that stem cells or endothelial progenitor cells may be released from both bone marrow and non-bone marrow tissues. Vascular stem cells appear to replenish cells that died in donor vessels. Concomitantly, stem/progenitor cells may also accumulate in the intima, where they differentiate into smooth muscle cells. However, several issues concerning the contribution of stem cells to the pathogenesis of transplant arteriosclerosis are controversial, eg, whether bone marrow-derived stem cells can differentiate into smooth muscle cells that form neointimal lesions of the vessel wall. This review summarizes recent research on the role of stem cells in transplant arteriosclerosis, discusses the mechanisms of stem cell homing and differentiation into mature endothelial and smooth muscle cells, and highlights the controversial issues in the field.

  14. Ablation of coactivator Med1 switches the cell fate of dental epithelia to that generating hair.

    Directory of Open Access Journals (Sweden)

    Keigo Yoshizaki

    Full Text Available Cell fates are determined by specific transcriptional programs. Here we provide evidence that the transcriptional coactivator, Mediator 1 (Med1, is essential for the cell fate determination of ectodermal epithelia. Conditional deletion of Med1 in vivo converted dental epithelia into epidermal epithelia, causing defects in enamel organ development while promoting hair formation in the incisors. We identified multiple processes by which hairs are generated in Med1 deficient incisors: 1 dental epithelial stem cells lacking Med 1 fail to commit to the dental lineage, 2 Sox2-expressing stem cells extend into the differentiation zone and remain multi-potent due to reduced Notch1 signaling, and 3 epidermal fate is induced by calcium as demonstrated in dental epithelial cell cultures. These results demonstrate that Med1 is a master regulator in adult stem cells to govern epithelial cell fate.

  15. Regenerative Endodontic Procedures: A Perspective from Stem Cell Niche Biology.

    Science.gov (United States)

    Marí-Beffa, Manuel; Segura-Egea, Juan José; Díaz-Cuenca, Aránzazu

    2017-01-01

    Endodontics uses cell therapy strategies to treat pulpal and periapical diseases. During these therapies, surgeons aim to reconstruct the natural microenvironments that regulate the activity of dental stem cells. We searched for more than 400 articles in PubMed using key words from regenerative endodontics and dental stem cell biology. In 268 articles, we reviewed what factors may influence histologic results after preclinical dental treatments that use regenerative endodontic procedures after pulpectomy. Several factors, such as the origin of stem cells, the biomimicry of scaffolds used, and the size of lesions, are considered to influence the histologic appearance of the regenerated pulp-dentin complex after treatments. Information is accumulating on transcription factors that generate the pulp-dentin complex and survival/trophic factors that would benefit niche recovery and histologic results. In this article, we discuss the noninterchangeability of stem cells, the influence of dentin-entrapped molecule release on pulp regeneration and survival of stem cells, and the need of positional markers to assess treatments histologically. The ex vivo amplification of appropriate dental stem cells, the search for scaffolds storing the molecular diversity entrapped in the dentin, and the use of positional transcription factors as histologic markers are necessary to improve future preclinical experiments. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Stem cell therapy for diabetes

    Directory of Open Access Journals (Sweden)

    K O Lee

    2012-01-01

    Full Text Available Stem cell therapy holds immense promise for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells, umbilical cord stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Recent advances in stem cell therapy may turn this into a realistic treatment for diabetes in the near future.

  17. Laser biomodulation on stem cells

    Science.gov (United States)

    Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao

    2001-08-01

    Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.

  18. Stem cells and healthy aging.

    Science.gov (United States)

    Goodell, Margaret A; Rando, Thomas A

    2015-12-04

    Research into stem cells and aging aims to understand how stem cells maintain tissue health, what mechanisms ultimately lead to decline in stem cell function with age, and how the regenerative capacity of somatic stem cells can be enhanced to promote healthy aging. Here, we explore the effects of aging on stem cells in different tissues. Recent research has focused on the ways that genetic mutations, epigenetic changes, and the extrinsic environmental milieu influence stem cell functionality over time. We describe each of these three factors, the ways in which they interact, and how these interactions decrease stem cell health over time. We are optimistic that a better understanding of these changes will uncover potential strategies to enhance stem cell function and increase tissue resiliency into old age.

  19. Inflammation and cancer stem cells.

    Science.gov (United States)

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche.

  20. Stem cells and scaffolds in dental pulp regeneration and revascularization%干细胞和支架与牙髓再生及其血运重建

    Institute of Scientific and Technical Information of China (English)

    李州; 许庆安

    2016-01-01

    在牙髓再生中,获取干细胞的方法包括干细胞移植、细胞归巢和诱导出血。干细胞移植可产生异位的牙髓样组织,可控制移植细胞的数量并选择对牙髓再生潜在效能最佳的细胞亚种。细胞归巢是指利用信号分子招募宿主内源性干细胞至需治疗的牙体根管中增殖和分化,形成牙髓-牙本质样组织。诱导根尖出血进入根管为年轻恒牙牙髓再生的一个重要步骤。支架是细胞在合成组织时的支撑结构,可促进细胞黏附,为牙髓再生提供有利的环境。牙髓再生离不开血运重建或者血管再生,感染控制、根管预处理、冠方封闭等操作,可为牙髓再生包括其血运重建提供适宜的环境。总之,组织工程技术在牙髓领域的应用发展为牙髓再生带来了新的希望。%Regenerative endodontics is defined as biologically based procedures designed to replace damaged structures, including dentin and root structures, as well as cells of the pulp–dentin complex. The methods of acquiring stem cells include stem-cell transplantation, cell homing, and induced bleeding. Stem-cell transplantation can yield ectopic dental pulp-like tissues, with the advantages of easily controlling the number of cells transplanted and selecting the optimal subpopulation of stem/progenitor cells. Meanwhile, cell homing is defined as the migration of endogenous host stem cells to the root canal of the offending teeth using signaling molecules. The process is also characterized by the subsequent proliferation and differentiation of the endogenous host stem cells into pulp–dentin-like tissues. Inducing pulp bleeding into the root canals of immature permanent teeth is an important step in regenerative endodontics. Scaffold refers to the structural support for the cells that synthesize tissues. This component promotes cell attachment and provides a specific environment conducive to pulp or dentin regeneration. Pulp

  1. Porcine embryonic stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2008-01-01

    The development of porcine embryonic stem cell lines (pESC) has received renewed interest given the advances being made in the production of immunocompatible transgenic pigs. However, difficulties are evident in the production of pESCs in-vitro. This may largely be attributable to differences...

  2. Effects of bone marrow-derived mesenchymal stem cells and platelet-rich plasma on bone regeneration for osseointegration of dental implants: preliminary study in canine three-wall intrabony defects.

    Science.gov (United States)

    Yun, Jeong-Ho; Han, Sang-Hyun; Choi, Seong-Ho; Lee, Myung-Hyun; Lee, Sang-Jin; Song, Sun U; Oh, Namsik

    2014-07-01

    Tissue engineering has been applied to overcome the obstacles encountered with bone regeneration for the placement of dental implants. The purpose of this study was to determine the bone formation ability of human bone marrow-derived mesenchymal stem cells (BMMSCs) and platelet-rich plasma (PRP) when applied separately or together to the intrabony defect around dental implants with a porous hydroxyapatite (HA) scaffold. Standardized three-wall intrabony defects (4 × 4 × 4 mm) were created at the mesial of each dental implant site in four mongrel dogs. Defects were then grafted with the following materials: HA + BMMSCs (HS group), HA + PRP (HP group), HA + BMMSCs + PRP (HSP group), and HA scaffold alone (HA group). The level of bone formation (bone density) and osseointegration (bone-to-implant contact [BIC]) in bone defects around the implants were evaluated by histological and histometric analysis at 6 and 12 weeks after the placement of implants. HA, HS, HP, and HSP groups generally showed an increase in bone density and BIC between 6 and 12 weeks, except BIC in the HS group. Although no statistically significant differences were found among HA, HS, HP, and HSP groups (p > 0.05), the highest level of bone density and BIC were observed in the HSP group after the 12-week healing period. Furthermore, the level of bone maturation was higher in the HSP group than in the other groups as determined histologically. The findings of this preliminary study suggest that BMMSCs and PRP combined with HA scaffold may provide additional therapeutic effects on bone regeneration and improve osseointegration in bone defects around dental implants.

  3. Healing of large periapical lesions following delivery of dental stem cells with an injectable scaffold: New method and three case reports

    OpenAIRE

    Vahab Shiehzadeh; Farhad Aghmasheh; Farideh Shiehzadeh; Mohammad Joulae; Emad Kosarieh; Farid Shiehzadeh

    2014-01-01

    Regenerative endodontics is the creation and delivery of tissues to replace diseased, missing, and traumatized pulp. A call for a paradigm shift and new protocol for the clinical management of these cases has been brought to attention. These regenerative endodontic techniques will possibly involve some combination of disinfection or debridement of infected root canal systems with apical enlargement to permit revascularization and use of stem cells, scaffolds, and growth factors. Mesenchymal s...

  4. Embryonic Stem Cell Markers

    Directory of Open Access Journals (Sweden)

    Lan Ma

    2012-05-01

    Full Text Available Embryonic stem cell (ESC markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM technique and magnetic cell sorting (MACS are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs, which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.

  5. Materials as stem cell regulators

    Science.gov (United States)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-06-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.

  6. PTEN, Stem Cells, and Cancer Stem Cells*S⃞

    OpenAIRE

    Hill, Reginald; Wu, Hong

    2009-01-01

    Like normal stem cells, “cancer stem cells” have the capacity for indefinite proliferation and generation of new cancerous tissues through self-renewal and differentiation. Among the major intracellular signaling pathways, WNT, SHH, and NOTCH are known to be important in regulating normal stem cell activities, and their alterations are associated with tumorigenesis. It has become clear recently that PTEN (phosphatase and tensin homologue) is also critical for stem cell...

  7. Stem cells and genetic diseases

    Directory of Open Access Journals (Sweden)

    Irshad S.

    2012-09-01

    Full Text Available In this review, we have discussed a role of stem cells in the treatment of genetic diseases including cochlear and retinal regeneration. The most perceptive use of stem cells at the genetic diseases is cellular repair of tissues affected by a genetic mutation when stem cells without such mutation are transplanted to restore normal tissue function.

  8. Information on Stem Cell Research

    Science.gov (United States)

    ... Home » Current Research » Focus on Research Focus on Stem Cell Research Stem cells possess the unique ability to differentiate into many ... they also retain the ability to produce more stem cells, a process termed self-renewal. There are multiple ...

  9. Advances in stem cell research

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@In 1998, biologists Thomson and Gearhart successfully derived stem cells from human embryos. One year later, several researchers discovered that adult stem cells still retain the ability to be differentiated into unrelated types of cells. Advances in stem cell research open a promising direction for applied medical science. Moreover, it may also force scientists to reconsider the fundamental theory about how cells grow up. Stem cell research was considered by Science as the top of the ten breakthroughs of science of the year[1]. This paper gives a survey of recent advances in stem cell research. 1 Overview In the 1980s, embryonic stem cell and/or embryonic germ cell line (ES cell line, EG cell line) of multifarious mammalian animals, especially those of non-human pri-mates, had been established. In 1998, Thomson and Shamblott obtained ES, EG cell lines from human blasto-cysts and gonad ridges of early human embryos, respec-tively. Their research brought up an ethical debate about whether human embryos can be used as experimental materials. It was not appeased until 1999 when research-ers discovered that stem cells from adults still retain the ability to become different kinds of tissue cells. For in-stance, brain cells can become blood cells[2], and cells from bone marrow can become cells in liver. Scientists believe, for a long time, that cells can only be developed from early pluripotent embryo cells; the differentiation potential of stem cells from mature tissues is restricted to only one of the cell types of the tissue where stem cells are obtained. Recent stem cell researches, however, sub-verted the traditional view of stem cells. These discoveries made scientists speed ahead with the work on adult stem cells, hoping to discover whether their promise will rival that of ES cells.

  10. Stem Cells in Tooth Development, Growth, Repair, and Regeneration.

    Science.gov (United States)

    Yu, Tian; Volponi, Ana Angelova; Babb, Rebecca; An, Zhengwen; Sharpe, Paul T

    2015-01-01

    Human teeth contain stem cells in all their mesenchymal-derived tissues, which include the pulp, periodontal ligament, and developing roots, in addition to the support tissues such as the alveolar bone. The precise roles of these cells remain poorly understood and most likely involve tissue repair mechanisms but their relative ease of harvesting makes teeth a valuable potential source of mesenchymal stem cells (MSCs) for therapeutic use. These dental MSC populations all appear to have the same developmental origins, being derived from cranial neural crest cells, a population of embryonic stem cells with multipotential properties. In rodents, the incisor teeth grow continuously throughout life, a feature that requires populations of continuously active mesenchymal and epithelial stem cells. The discrete locations of these stem cells in the incisor have rendered them amenable for study and much is being learnt about the general properties of these stem cells for the incisor as a model system. The incisor MSCs appear to be a heterogeneous population consisting of cells from different neural crest-derived tissues. The epithelial stem cells can be traced directly back in development to a Sox10(+) population present at the time of tooth initiation. In this review, we describe the basic biology of dental stem cells, their functions, and potential clinical uses.

  11. Dental-derived mesenchymal stem cells and their potential value in periodontal regeneration%牙源性间充质干细胞及其在牙周组织再生治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    刘开蕾; 刘学恒

    2015-01-01

    牙周病是以牙周支持组织的炎症和破坏为特征的感染性疾病。牙周病基础治疗是通过去除牙菌斑以达到控制炎症的目的。但是,牙周治疗的最终目的在于修复并重建牙周组织的结构和功能,包括牙槽骨、牙周韧带、牙骨质等牙周支持组织的再生。组织工程技术的出现为牙周组织再生治疗提供了新的思路和方法,其中具有增殖分化潜能的种子细胞是目前研究热点之一。间充质干细胞属于成体干细胞,是来源于发育早期中胚层的具有高度自我更新能力和多向分化潜能的干细胞,是理想的种子细胞之一。牙源性间充质干细胞具有再生和分化潜力好、免疫原性低的特点,因而成为牙周组织再生的种子细胞。本文将针对目前研究发现的牙源性间充质干细胞的特性及在牙周组织再生中的应用作一综述。%Periodontitis is a chronic infective disease , which characterized as inflammation and destruction of the supporting tissues of the teeth . Traditional treatment strategies focus on the removal of dental plaque and the long-term control of dental plaque accumulation . However, the ultimate object of periodontal therapy is to restore the structure and function of the periodontium , which means regeneration of the supporting tissues, including alveolar bone, periodontal ligament and cementum, over a previously diseased root surface . The development of tissue engineering provides a new thought to periodontal regeneration therapy. Mesemchymal stem cells, with highly proliferation and differentiation potential, are ideal adult stem cells developed from mesoderm. With the identification of mesenchymal stem cells in oral cavity, tissue engineering using mesenchymal stem cells has become a most interesting therapeutic option. The aim of this article was to describe the main sources of dental-derived mesenchymal stem cells and their potential in regenerative therapy .

  12. Stem cells: A potential regenerative future in dentistry

    Directory of Open Access Journals (Sweden)

    Sumit Narang

    2012-01-01

    Full Text Available In recent years, the field of dentistry has embossed its presence by taking major leaps in research and further bringing it into practice. The most valuable ongoing research in regenerative dentistry is the study on stem cells. It was instituted that stem cells grow rapidly and have the potential to form specialized dentin, bone, and neuronal cells. These neuronal cells can be used for dental therapies and can provide better treatment options for patients. The stem cells based therapies could help in new advances in treating damaged teeth, inducing bone regeneration and treating neural injury as well.

  13. Cytotoxicity of two dental materials on fibroblasts derived from human embryonic stem cells%两种牙科材料对人胚胎干细胞来源成纤维细胞的细胞毒性研究

    Institute of Scientific and Technical Information of China (English)

    战园; 王晓颖; 李盛林; 傅歆; 俞光岩; 曹彤; 刘鹤

    2012-01-01

    目的:观察口腔常用材料氢氧化钙( calcium hydroxide,CH)和复合树脂对人胚胎干细胞来源成纤维细胞(embryo body fibroblasts-H9,EBf-H9)、原代培养人牙髓细胞(human dental pulp cells,hDPCs)及小鼠成纤维细胞L929的细胞毒性,探讨使用EBf-H9评价牙科材料生物安全性的可行性.方法:诱导人胚胎干细胞(H9)分化为EBf-H9,原代培养hDPCs,并经免疫细胞化学染色鉴定.用细胞计试剂盒-8(cell counting kit-8,CCK-8)检测比较梯度浓度CH和复合树脂浸提液对EBf-H9、hDPCs和L929细胞的细胞毒性.结果:CH或复合树脂分别作用24h和48 h(或72 h)之后,L929细胞的存活率显著低于EBf-H9和hDPCs(P<0.05),但EBf-H9和hDPCs的细胞存活率没有统计学差异(P>0.05).结论:对于CH和复合树脂的毒性反应,L929细胞与hDPCs有较大差异,EBf-H9比L929细胞更接近hDPCs的反应,提示在牙科材料生物安全性评价中,人胚胎干细胞来源成纤维细胞具有替代现有细胞检测模型的潜力.%Objective: To investigate the cytotoxicity of calcium hydroxide ( CH) and composite resin on fibroblasts derived from human embryo body fibroblasts-H9 ( Ebf-H9 ) , human dental pulp cells ( hDPCs) and immortalized fibroblasts L929; and to evaluate the use of Ebf-H9 as a cellular model for cytotoxicity screening of dental materials. Methods: The Ebf-H9 cells were derived from human embryonic stem cells ( H9) via outgrowth of embryonic body ( EB ) ; hDPCs were isolated from healthy dental pulp, and identified by immunochemical staining. Cell Counting Kit-8 ( CCK-8) assay was applied to analyze the cytotoxicity of CH and composite resin with serial concentrations on the 3 kinds of cells. Results: Following 24 h and 48 h ( or 72 h) post-treatment of CH and composite resin, the viability of L929 cells was significantly lower than that of Ebf-H9 and hDPCs (P 0.05). Conclusion: Immortalized fibroblasts L929 cells exhibited different response to CH and composite resin

  14. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    Distinct subsets of cells, including cells with stem cell-like properties, have been proposed to exist in normal human breast epithelium and breast carcinomas. The cellular origins of epithelial cells contributing to gland development, tissue homeostasis and cancer are, however, still poorly...... understood. The mouse is a widely used model of mammary gland development, both directly by studying the mouse mammary epithelial cells themselves and indirectly, by studying development, morphogenesis, differentiation and carcinogenesis of xenotransplanted human breast epithelium in vivo. While in early...... studies, human or mouse epithelium was implanted as fragments into the mouse gland, more recent technical progress has allowed the self-renewal capacity and differentiation potential of distinct cell populations or even individual cells to be interrogated. Here, we review and discuss similarities...

  15. Stem cells-the hidden treasure: A strategic review

    Directory of Open Access Journals (Sweden)

    Hitesh Chopra

    2013-01-01

    Full Text Available In today′s scenario, medical and dental professionals face a mammoth task while treating perplexing medical situations like organ failure or tissue loss. Though, different strategies exist to replace them, but ideal one is the same natural tissue or organ. In this aspect, stem cells have emerged in a promising way to provide an ideal replacement. There are different types of stem cells starting from the embryonic stage referred to as human embryonic stem cells to adult stem cells. Though in dentistry stem cell research is lagging as compared to the medical field but still a lot progress has been achieved in recent years. The stem cells have been isolated from dental pulp, human exfoliated deciduous teeth, and apical papilla and so on. These stem cells have provided exciting results like dentin-pulp regeneration, periodontal regeneration but ambiguity still prevails. As a result, much has to be further researched before its clinical application becomes a reality. Hence, these stem cells opened a new avenue in the field of regenerative dentistry.

  16. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells

    OpenAIRE

    Xiao L; Nasu M

    2014-01-01

    Li Xiao,1 Masanori Nasu2 1Department of Pharmacology, 2Research Center, The Nippon Dental University, Tokyo, Japan Abstract: Adult mesenchymal stem cells (MSCs) and epithelial stem cells play essential roles in tissue repair and self-healing. Oral MSCs and epithelial stem cells can be isolated from adult human oral tissues, for example, teeth, periodontal ligament, and gingiva. Cocultivated adult oral epithelial stem cells and MSCs could represent some developmental events, such as epithelial...

  17. Stem cells in dentistry--part I: stem cell sources.

    Science.gov (United States)

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties.

  18. Stem Cell Tracking by Nanotechnologies

    OpenAIRE

    Marzia Belicchi; Yvan Torrente; Franco Rustichelli; Fabrizio Fiori; Paola Razini; Silvia Erratico; Chiara Villa

    2010-01-01

    Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission ...

  19. Characteristics of adult stem cells.

    Science.gov (United States)

    Gonzalez, Manuel A; Bernad, Antonio

    2012-01-01

    Stem cells are characterized by their unlimited ability to divide specifically; a stem cell is capable of making an immense number of copies of itself, maintaining the same characteristics. Moreover, these cells are able to generate several of the cell lineages which make up the body, including cells from the heart, liver, kidney, neurons, and muscles. Investigation of the mechanisms through which this differentiation occurs, the genes involved and the possibility of increasing the efficiency with which stem cells can be isolated and/or characterized are currently among the most important fields in biology and biomedicine.To date, stems cells have been identified from four different sources: Embryonic stem cells (ESC), germinal stem cells, and those derived from embryonic carcinomas (teratocarcinomas) and from somatic tissues (somatic stem cells). The latter are called adult stem cells (ASC) when they are found in postnatal tissues. We now know that there is a great diversity among ASC, with some tissues, such as the bone marrow, containing more than one type of ASC. Adult stem cells have several characteristics that make them to be the main players in current regenerative medicine and are being investigated as potential therapeutic agents for a wide variety of diseases. Specifically, HSC and MSC are being assessed in increasing numbers of clinical trials.

  20. 牙髓干细胞MHC分子表达与体外混合淋巴细胞的增殖%MHC molecule expression in dental pulp stem cells and mixed lymphocyte proliferation in vitro

    Institute of Scientific and Technical Information of China (English)

    聂姗姗; 刘佳; 张瑞涵; 王璇; 李伯琦; 孙大磊; 热甫卡提; 刘奕杉

    2014-01-01

    背景:若牙髓干细胞诱导分化后仍然具有与未分化时相似的免疫调节能力,则有可能为组织工程提供同种异体种子细胞来源。  目的:观察牙髓干细胞表面免疫分子的表达以及体外调节淋巴细胞反应的功能。  方法:从C57BL/6小鼠牙髓组织中分离获取牙髓干细胞,体外培养至第2代,流式细胞仪检测免疫分子MHC-Ⅰ、MHC-Ⅱ的表达。以1×105/孔牙髓干细胞刺激异体淋巴细胞,观察细胞增殖情况。以1×105/孔数量的牙髓干细胞或经γ-干扰素作用后的牙髓干细胞加入混合双向淋巴细胞反应体系中,观察淋巴细胞增殖情况。  结果与结论:牙髓干细胞表达MHC-Ⅰ类分子,但未检测到MHC-Ⅱ类分子阳性表达。γ-干扰素刺激48 h后, MHC-Ⅰ表达未见明显增高,MHC-Ⅱ类分子表达明显增高。异体或经γ-干扰素作用的牙髓干细胞均未能刺激淋巴细胞体外增殖。说明牙髓干细胞可在体外调节淋巴细胞增殖反应,有可能成为组织工程或细胞治疗中同种异体细胞来源。%BACKGROUND:If differentiated dental pulp stem cels have immune adjustment ability similar to undifferentiated ones, they could become a new source of alogeneic seed cels in tissue engineering. OBJECTIVE:To study the immunological properties of dental pulp stem cels and their immunomodulatory effects on lymphocytes in vitro. METHODS:Dental pulp stem cels were isolated from mouse dental pulp tissue. Cels at passage 2 were detected using flow cytometry for the expression of MHC-I, MHC-II. Inguinal lymphcels were cultured with alogeneic dental pulp stem cels at a density of 1×105 cels per wel. Dental pulp stem cels at 1×105 cels per wel or interferon-γ-treated dental pulp stem cels were added into the mixed lymphocyte reaction system to observe lymphocyte proliferation. RESULTS AND CONCLUSION: Flow cytometry showed that undifferentiated dental pulp stem cels

  1. Stem cell tracking by nanotechnologies.

    Science.gov (United States)

    Villa, Chiara; Erratico, Silvia; Razini, Paola; Fiori, Fabrizio; Rustichelli, Franco; Torrente, Yvan; Belicchi, Marzia

    2010-03-12

    Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET), single-photon emission tomography (SPECT), magnetic resonance (MR) imaging, and X-Ray computed microtomography (microCT). This review examines the use of nanotechnologies for stem cell tracking.

  2. Stem Cell Tracking by Nanotechnologies

    Directory of Open Access Journals (Sweden)

    Marzia Belicchi

    2010-03-01

    Full Text Available Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET, single-photon emission tomography (SPECT, magnetic resonance (MR imaging, and X-Ray computed microtomography (microCT. This review examines the use of nanotechnologies for stem cell tracking.

  3. Stem cells and neurodegenerative diseases.

    Science.gov (United States)

    Hou, LingLing; Hong, Tao

    2008-04-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the development of old-aging society, the incidence of neurodegenerative diseases is on the increase. However, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegenerative diseases of animal model. Here we review the progress and prospects of various stem cells, including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, Huntington' disease and Amyotrophic lateral sclerosis/Lou Gehrig's disease.

  4. Stem cells and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the de-velopment of old-aging society, the incidence of neurodegenerative diseases is on the increase. How-ever, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegen-erative diseases of animal model. Here we review the progress and prospects of various stem cells, including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, Hunt-ington’s disease and Amyotrophic lateral sclerosis/Lou Gehrig’s disease.

  5. Stem cells and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    HOU LingLing; HONG Tao

    2008-01-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the development of old-aging society, the incidence of neurodegenerative diseases is on the increase. However, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegenerative diseases of animal model. Here we review the progress and prospects of various stem cells,including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, Huntington's disease and Amyotrophic lateral sclerosis/Lou Gehrig's disease.

  6. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self-renewal and......Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self...... of clinical applications, e.g., non-healing bone fractures and defects and also non-skeletal degenerative diseases like heart failure. Currently, the numbers of clinical trials that employ MSC are increasing. However, several biological and biotechnological challenges need to be overcome to benefit from...

  7. Definitive differentiation from human dental pulp stem cells to osteoblast in vitro%人恒牙牙髓干细胞体外定向诱导分化为成骨细胞的研究

    Institute of Scientific and Technical Information of China (English)

    李景辉; 张方明; 张振庭

    2011-01-01

    目的:研究人恒牙牙髓组织来源的牙髓干细胞在体外分化为成骨细胞的能力,探讨其作为骨组织工程种子细胞的可行性.方法:从正畸治疗减数拔除的恒前磨牙中分离牙髓组织,应用酶消化法获得牙髓细胞.单抗Stro-1标记、免疫磁珠阳性分选系统分选获得牙髓干细胞,第3代牙髓干细胞用成骨向诱导培养基向成骨细胞诱导分化.用碱性磷酸酶染色和Von Kossa染色鉴定成骨向分化,RT-PCR检测成骨细胞的特异相关或标志基因.结果:人恒牙牙髓干细胞经成骨向培养基诱导后表现出成骨细胞特性,碱性磷酸酶和Von Kossa染色结果均为阳性,RT-PCR检测成骨向分化相关基因I型胶原、骨涎蛋白、骨钙素、Runx2和Osterix均有阳性表达.结论:恒牙牙髓干细胞具有向成骨细胞分化的潜能,有望成为骨组织工程的种子细胞.%Objective To investigate the feasibility of directionally induced differentiation of human dental pulp stem cells (HDPSCs) toward osteoblasts in vitro. Methods Human dental pulp cells (HDPCs) were separated and cultured from dental pulp of healthy premolars extracted for orthodontic purpose. HDPSCs were isolated from cultured HDPCs by magnetic-activated cell sorting's (MACS) indirect magnetic cell labeling and positive selection strategy with antibody Stro-1, and then they were induced to differentiation by osteogenic medium. Osteogenic differentiation was assessed by Von Kossa and alkaline phosphatase staining, and expressions of osteoblast specific genes were examined by RTPCR Results DPSCs ould differentiate into osteoblasts. ALP was expressed and mineralized nodules were observed after induction of HDPSCs. The genes related to osteogenic differentiation were expressed including COL Ⅰ ,BSP,OC,Runx2 and Osterix. Conclusion DPSCs are promising seed cells for bone tissue engineering.

  8. Regenerative Applications Using Tooth Derived Stem Cells in Other Than Tooth Regeneration: A Literature Review

    OpenAIRE

    2016-01-01

    Tooth derived stem cells or dental stem cells are categorized according to the location from which they are isolated and represent a promising source of cells for regenerative medicine. Originally, as one kind of mesenchymal stem cells, they are considered an alternative of bone marrow stromal cells. They share many commonalties but maintain differences. Considering their original function in development and the homeostasis of tooth structures, many applications of these cells in dentistry ha...

  9. 三维培养的牙髓干细胞参与牙髓损伤修复能力的实验研究%Effect of dental pulp stem cell cultured by three dimensions on reparation of dental injury

    Institute of Scientific and Technical Information of China (English)

    王亦菁; 张晓东; 李里; 金岩; 史俊南

    2011-01-01

    目的:将体外建立的细胞因子BMP-2作用下牙髓干细胞(DPSC)三维培养体系应用于大鼠牙髓损伤模型中,观察DPSC对牙髓组织损伤修复的能力.方法:已构建的三维培养DPSC的细胞团添加BMP-2体外持续培养7 d,BrdU标记及检测鉴定后,将其置于建立的大鼠牙髓损伤模型洞内,移植4周后HE染色,改良Mallory三色法染色观察,免疫组化检测BrdU标记的细胞分布.结果:移植后4周,DPSC三维细胞培养的牙髓盖髓实验中有骨样牙本质基质形成,没有观察到组织的炎症和坏死.在基质中可以看到骨性成牙本质样细胞,带有长的突起的成牙本质样细胞在骨性牙本质中形成管状牙本质.结论:损伤的牙髓表面植入添加BMP处理的DPSC细胞团能够产生修复性牙本质.%Objectine: In the rat dental injury model, 3-dimension culture system of dental pulp stem cell(DPSC) affected by BMP-2 was used. The ability of DPSC to the dental injury was observed. Method: The DPSC mass in the 3-dimension culture system was cultured for 7 days after added with BMP-2. The cell mass was marked and identified by Brdu, then was put in the holes of rat dental injury model. Result: Osteoid dentin substance was found in the 3-dimension culture system of DPSC after 4 weeks. No tissue inflammation and necrosis was found.. Osteoid dentium cell could be seen in the substance. Dentium cell with high apophysis was developed to the tubiform dentium in the osteoid dentin substance. Conclusion: Injured dental surface implanted by the DPSC mass added with BMP can bring about the reparative dentin.

  10. LITERATURE REVIEW ON STEM CELL TREATMENT & ORAL SUBMUCOUS FIBROSIS (OSMF

    Directory of Open Access Journals (Sweden)

    Prathipaty James

    2015-08-01

    Full Text Available Stem cell therapy is a part of regenerative medicine that involves the use of undifferentiated cells in order to cure the disease. Stem cell - based therapies are being investigated for the treatment of many conditions, including neurodegenerative conditions such as Parkinson's disease, cardiovascular disease, liver disease, diabetes, autoimmune diseases and for nerve regeneration. (1 In orofacial region these therapies are being used for tooth and periodontal regeneration, temporomandibular joint reconstruction, alve olar bone regeneration. Craniofacial stem cells including dental pulp derived stem cells have the potential to cure a number of diseases. Present day treatment modalities for oral mucosal lesions like ulcerative lesions, premalignancies and malignancies mainly consist of steroids and antioxidants (which provide only a short term and symptomatic relief and surgery with or without chemo/radiotherapy (which leave the patient with certain amount of morbidity. Advances in stem cell technology have opened new vistas for treatment of these lesions. Various studies have shown the successful role of stem cell therapies in the treatment of precancerous conditions, oral ulcers, wounds and mucositis. (2 The recent concept of cancer stem cells (CSCs has directed sci entific communities toward a new area of research and possible potential treatment modalities for oral cancer. (3 The present article will discuss the role of stem cell applications in oral mucosal lesions. KEYWORDS: R eview - stem cells - properties - types - appl ications - role in osmf - results

  11. Stem cell ageing and apoptosis.

    Science.gov (United States)

    Fulle, Stefania; Centurione, Lucia; Mancinelli, Rosa; Sancilio, Silvia; Manzoli, Francesco Antonio; Di Pietro, Roberta

    2012-01-01

    Ageing has been defined as the process of deterioration of many body functions over the lifespan of an individual. In spite of the number of different theories about ageing, there is a general consensus in identifying ageing effects in a reduced capacity to regenerate injured tissues or organs and an increased propensity to infections and cancer. In recent years the stem cell theory of ageing has gained much attention. Adult stem cells residing in mammalian tissues are essential for tissue homeostasis and repair throughout adult life. With advancing age, the highly regulated molecular signalling necessary to ensure proper cellular, tissue, and organ homeostasis loses coordination and leads, as a consequence, to a compromised potential of regeneration and repair of damaged cells and tissues. Although a complete comprehension of the molecular mechanisms involved in stem cell ageing and apoptosis is far to be reached, recent studies are beginning to unravel the processes involved in stem cell ageing, particularly in adult skeletal muscle stem cells, namely satellite cells. Thus, the focus of this review is to analyse the relationship between stem cell ageing and apoptosis with a peculiar attention to human satellite cells as compared to haematopoietic stem cells. Undoubtedly, the knowledge of age-related changes of stem cells will help in understanding the ageing process itself and will provide novel therapeutic challenges for improved tissue regeneration.

  12. [Stem cells and cardiac regeneration].

    Science.gov (United States)

    Perez Millan, Maria Ines; Lorenti, Alicia

    2006-01-01

    Stem cells are defined by virtue of their functional attributes: absence of tissue specific differentitated markers, capable of proliferation, able to self-maintain the population, able to produce a large number of differentiated, functional progeny, able to regenerate the tissue after injury. Cell therapy is an alternative for the treatment of several diseases, like cardiac diseases (cell cardiomyoplasty). A variety of stem cells could be used for cardiac repair: from cardiac and extracardiac sources. Each cell type has its own profile of advantages, limitations, and practicability issues in specific clinical settings. Differentiation of bone marrow stem cells to cardiomyocyte-like cells have been observed under different culture conditions. The presence of resident cardiac stem cell population capable of differentiation into cardiomyocyte or vascular lineage suggests that these cells could be used for cardiac tissue repair, and represent a great promise for clinical application. Stem cells mobilization by cytokines may also offer a strategy for cardiac regeneration. The use of stem cells (embryonic and adult) may hold the key to replacing cells lost in many devastating diseases. This potential benefit is a major focus for stem cell research.

  13. Cell Reprogramming, IPS Limitations, and Overcoming Strategies in Dental Bioengineering

    Directory of Open Access Journals (Sweden)

    Gaskon Ibarretxe

    2012-01-01

    Full Text Available The procurement of induced pluripotent stem cells, or IPS cells, from adult differentiated animal cells has the potential to revolutionize future medicine, where reprogrammed IPS cells may be used to repair disease-affected tissues on demand. The potential of IPS cell technology is tremendous, but it will be essential to improve the methodologies for IPS cell generation and to precisely evaluate each clone and subclone of IPS cells for their safety and efficacy. Additionally, the current state of knowledge on IPS cells advises that research on their regenerative properties is carried out in appropriate tissue and organ systems that permit a safe assessment of the long-term behavior of these reprogrammed cells. In the present paper, we discuss the mechanisms of cell reprogramming, current technical limitations of IPS cells for their use in human tissue engineering, and possibilities to overcome them in the particular case of dental regeneration.

  14. Involvement of plant stem cells or stem cell-like cells in dedifferentiation

    Directory of Open Access Journals (Sweden)

    Fangwei eJiang

    2015-11-01

    Full Text Available Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation.

  15. Bioprinting for stem cell research.

    Science.gov (United States)

    Tasoglu, Savas; Demirci, Utkan

    2013-01-01

    Recently, there has been growing interest in applying bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized biomolecules can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cells of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics.

  16. Stem cells for spine surgery

    Institute of Scientific and Technical Information of China (English)

    Joshua Schroeder; Janina Kueper; Kaplan Leon; Meir Liebergall

    2015-01-01

    In the past few years, stem cells have become the focusof research by regenerative medicine professionals andtissue engineers. Embryonic stem cells, although capableof differentiating into cell lineages of all three germlayers, are limited in their utilization due to ethical issues.In contrast, the autologous harvest and subsequenttransplantation of adult stem cells from bone marrow,adipose tissue or blood have been experimentally utilizedin the treatment of a wide variety of diseases rangingfrom myocardial infarction to Alzheimer's disease. Thephysiologic consequences of stem cell transplantationand its impact on functional recovery have been studiedin countless animal models and select clinical trials.Unfortunately, the bench to bedside translation of thisresearch has been slow. Nonetheless, stem cell therapyhas received the attention of spinal surgeons due to itspotential benefits in the treatment of neural damage,muscle trauma, disk degeneration and its potentialcontribution to bone fusion.

  17. Stem Cells and Tissue Engineering

    CERN Document Server

    Pavlovic, Mirjana

    2013-01-01

    Stem cells are the building blocks for all other cells in an organism. The human body has about 200 different types of cells and any of those cells can be produced by a stem cell. This fact emphasizes the significance of stem cells in transplantational medicine, regenerative therapy and bioengineering. Whether embryonic or adult, these cells can be used for the successful treatment of a wide range of diseases that were not treatable before, such as osteogenesis imperfecta in children, different forms of leukemias, acute myocardial infarction, some neural damages and diseases, etc. Bioengineering, e.g. successful manipulation of these cells with multipotential capacity of differentiation toward appropriate patterns and precise quantity, are the prerequisites for successful outcome and treatment. By combining in vivo and in vitro techniques, it is now possible to manage the wide spectrum of tissue damages and organ diseases. Although the stem-cell therapy is not a response to all the questions, it provides more...

  18. Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms.

    Science.gov (United States)

    Stonesifer, Connor; Corey, Sydney; Ghanekar, Shaila; Diamandis, Zachary; Acosta, Sandra A; Borlongan, Cesar V

    2017-07-23

    Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Stem cell therapies: California dreamin'?

    Science.gov (United States)

    Novak, Kris

    2010-01-08

    Ready or not, stem cells are a step closer to the clinic, thanks to approximately $230 million awarded by CIRM to 14 California-based research groups to develop stem cell-based therapies within 4 years. But, as Kris Novak reports, some of these projects are closer to therapeutic reality than others.

  20. Stem cell mitochondria during aging.

    Science.gov (United States)

    Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Shyh-Chang, Ng

    2016-04-01

    Mitochondria are the central hubs of cellular metabolism, equipped with their own mitochondrial DNA (mtDNA) blueprints to direct part of the programming of mitochondrial oxidative metabolism and thus reactive oxygen species (ROS) levels. In stem cells, many stem cell factors governing the intricate balance between self-renewal and differentiation have been found to directly regulate mitochondrial processes to control stem cell behaviors during tissue regeneration and aging. Moreover, numerous nutrient-sensitive signaling pathways controlling organismal longevity in an evolutionarily conserved fashion also influence stem cell-mediated tissue homeostasis during aging via regulation of stem cell mitochondria. At the genomic level, it has been demonstrated that heritable mtDNA mutations and variants affect mammalian stem cell homeostasis and influence the risk for human degenerative diseases during aging. Because such a multitude of stem cell factors and signaling pathways ultimately converge on the mitochondria as the primary mechanism to modulate cellular and organismal longevity, it would be most efficacious to develop technologies to therapeutically target and direct mitochondrial repair in stem cells, as a unified strategy to combat aging-related degenerative diseases in the future.

  1. Skin Stem Cells in Skin Cell Therapy

    Directory of Open Access Journals (Sweden)

    Mollapour Sisakht

    2015-12-01

    Full Text Available Context Preclinical and clinical research has shown that stem cell therapy is a promising therapeutic option for many diseases. This article describes skin stem cells sources and their therapeutic applications. Evidence Acquisition Compared with conventional methods, cell therapy reduces the surgical burden for patients because it is simple and less time-consuming. Skin cell therapy has been developed for variety of diseases. By isolation of the skin stem cell from the niche, in vitro expansion and transplantation of cells offers a surprising healing capacity profile. Results Stem cells located in skin cells have shown interesting properties such as plasticity, transdifferentiation, and specificity. Mesenchymal cells of the dermis, hypodermis, and other sources are currently being investigated to promote regeneration. Conclusions Because skin stem cells are highly accessible from autologous sources and their immunological profile is unique, they are ideal for therapeutic approaches. Optimization of administrative routes requires more investigation own to the lack of a standard protocol.

  2. International Society for Stem Cell Research

    Science.gov (United States)

    ... and regenerative medicine community in the world. More stem cell research Take a closer look Recent Blogs View ... story independent nonprofit organization & the voice of the stem cell research community The International Society for Stem Cell ...

  3. FDA Warns About Stem Cell Claims

    Science.gov (United States)

    ... Home For Consumers Consumer Updates FDA Warns About Stem Cell Claims Share Tweet Linkedin Pin it More sharing ... blood-forming system. back to top Regulation of Stem Cells FDA regulates stem cells in the U.S. to ...

  4. Stem cell therapy - Hype or hope? A review

    Directory of Open Access Journals (Sweden)

    Nadig Roopa

    2009-01-01

    Full Text Available While the regeneration of a lost tissue is known to mankind for several years, it is only in the recent past that research on regenerative medicine/dentistry has gained momentum and eluded the dramatic yet scientific advancements in the field of molecular biology. The growing understanding of biological concepts in the regeneration of oral/dental tissues coupled with experiments on stem cells is likely to result in a paradigm shift in the therapeutic armamentarium of dental and oral diseases culminating in an intense search for "biological solutions to biological problems." Stem cells have been successfully isolated from variety of human tissues including orofacial tissues. Initial evidence from pioneering studies has documented the likely breakthrough that stem cells offer for various life-threatening diseases that have so far defeated modern medical care. The evidence gathered so far has propelled many elegant studies exploring the role of stem cells and their manifold dental applications. This review takes you on a sojourn of the origin of stem cells, their properties, characteristics, current research, and their potential applications. It also focuses on the various challenges and barriers that we have to surmount before translating laboratory results to successful clinical applications heralding the dawn of regenerative dentistry.

  5. Stem cells and respiratory diseases

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Soraia Carvalho; Maron-Gutierrez, Tatiana; Garcia, Cristiane Sousa Nascimento Baez; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho. Lab. de Investigacao]. E-mail: prmrocco@biof.ufrj.br

    2008-12-15

    Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases. (author)

  6. Experimental Study on Dental Pulp Tissue Proportion and Stem Cell Distribution of Dental Pulp Tissue in Different Age Groups%不同年龄段牙髓组织比例及牙髓干细胞分布的实验研究

    Institute of Scientific and Technical Information of China (English)

    邹慧儒; YANGXuebin; Steven Brookes; 秦宗长; 杨敏; 何淑萍; 辛宇; 张兰成

    2011-01-01

    目的 通过观察不同年龄段前磨牙及第三磨牙牙髓占牙齿的比例,及干细胞分布情况,评估牙齿组织工程临床适宜的选材标本.方法 临床收集不同年龄段因正畸或其他原因拔除的无龋坏、无牙周疾病等的健康前磨牙及第三磨牙,分别称重牙齿及牙髓并计算比例.扫描电镜观察牙髓表面形态.脱钙后病理切片观察,牙髓组织内成牙本质细胞层完整与否,观察细胞与纤维成分比例;阿尔新蓝-希尔红染色,偏振光显微镜观察有无双折射现象;免疫组化染色观察,间充质干细胞特异性标记物STRO-1以及成牙本质相关蛋白牙本质涎蛋白DSP的表达情况,评估牙髓干细胞在牙髓组织中的分布情况.结果 随着年龄的增长,前磨牙及第三磨牙牙髓占牙齿比例逐渐缩小,11~20岁年龄段与31~40岁、41~50岁,以及50岁以上年龄段比较,有统计学差异.扫描电镜下可见摘除的牙髓组织类似树桩,有些区域比较平滑,有些区域表面有不规则突起.牙髓组织内存在双折射.STRO-1阳性表达细胞在牙髓组织中散在分布,在血管周围较密集.DSP表达则主要集中在牙本质区域及成牙本质细胞内,牙髓内仅有少量表达.结论 随着年龄的增长,牙髓逐渐萎缩,牙髓干细胞的分布集中于血管周围,在牙髓组织内散在分布,未分化的牙髓干细胞不表达成牙本质相关蛋白DSP.%Objective To investigate the pulp/tooth ratio and distribution of stem cells of dental pulp tissue in premolars and third molars from different age groups and assess the selection of clinical specimens for dental tissue engineering. Methods Healthy premolars and third molars of different ages were collected during removal due to orthodontic or other reasons. Both the teeth and pulp tissues were weighed and dental pulp/tooth ratio were calculated. The surface morphology of the extracted dental pulp tissue was observed under SEM. After fixed and

  7. Dental pulp stem cells repair the immediate implantation for peri-implant bone defects%牙髓干细胞修复即刻种植周围骨缺损

    Institute of Scientific and Technical Information of China (English)

    白慧子; 木合塔尔·霍加; 王腾; 庄友梅

    2016-01-01

    Objective:To establish an animal experimental model of the immediate implantation for peri-implant bone defects of the rabbit mandibular anterior teeth,and observe dental pulp stem cells to repair peri-implant bone defects.Meth-ods:The rabbits that the bilateral mandibular anterior teeth were extracted respectively were divided into 2 groups.Establis-hing bone defect of 2 mm ×3 mm area on the buccal side of tooth extraction socket,and the implant was implanted immedi-ately,that the control group was implanted with Bio-oss and the experimental group with Bio-oss and dental pulp stem cells ( DPSCs) .The implant-osseointegration condition could be evaluated by scanning electron microscope,HE staining.Results:Through scanning electron microscope,the formation of visible woven bone and trabecular bone on implant osseointegration interface of the experimental group could be observed,and the gap between implant and alveolar fossa basically disappeared and between the implant and gingival side decreased,the density of cancellous bone around the implant increased as well.HE staining showed that the cytoplasmic portion of alveolar bone around the implant was vacuole,and the osteoblasts and osteo-clasts were distributed on the trabecular bone,the trabecular bone was compact and regularly arranged.Conclusion:The es-tablishment of an animal experimental model of the immediate implantation for peri-implant bone defects of the rabbit man-dibular anterior teeth can provide an important reference for the relevant research about the immediate implantation direction.%目的:建立兔下颌骨前牙区即刻种植种植体周围骨缺损的动物实验模型,并观察牙髓干细胞在种植体周围骨缺损中骨再生能力。方法:将实验兔分为2组,分别拔除兔双侧下颌前牙,并在拔牙窝颊侧建立2 mm ×3 mm大小骨缺损区,即刻植入种植体。对照组植入Bio-oss骨粉,实验组植入Bio-oss骨粉与牙髓干细胞( Dental Pulp Stem

  8. Gastrointestinal stem cell up-to-date.

    Science.gov (United States)

    Pirvulet, V

    2015-01-01

    Cellular and tissue regeneration in the gastrointestinal tract depends on stem cells with properties of self-renewal, clonogenicity, and multipotency. Progress in stem cell research and the identification of potential gastric, intestinal, colonic stem cells new markers and the signaling pathways provide hope for the use of stem cells in regenerative medicine and treatments for disease. This review provides an overview of the different types of stem cells, focusing on tissue-restricted adult stem cells.

  9. Pulp tissue from primary teeth: new source of stem cells

    Directory of Open Access Journals (Sweden)

    Paloma Dias Telles

    2011-06-01

    Full Text Available SHED (stem cells from human exfoliated deciduous teeth represent a population of postnatal stem cells capable of extensive proliferation and multipotential differentiation. Primary teeth may be an ideal source of postnatal stem cells to regenerate tooth structures and bone, and possibly to treat neural tissue injury or degenerative diseases. SHED are highly proliferative cells derived from an accessible tissue source, and therefore hold potential for providing enough cells for clinical applications. In this review, we describe the current knowledge about dental pulp stem cells and discuss tissue engineering approaches that use SHED to replace irreversibly inflamed or necrotic pulps with a healthy and functionally competent tissue that is capable of forming new dentin.

  10. Laryngeal cancer stem cells

    Directory of Open Access Journals (Sweden)

    Antonio Greco

    2016-03-01

    Full Text Available Laryngeal squamous cell carcinoma (LSCC is one of the most commonly diagnosed malignancies in the head and neck region with an increased incidence rate worldwide. Cancer stem cells (CSCs are a group of cells with eternal life or infinite self-renewal ability, which have high migrating, infiltrative, and metastatic abilities. Though CSCs only account for a small proportion in tumors, the high resistance to traditional therapy exempts them from therapy killing and thus they can reconstruct tumors. Our current knowledge, about CSCs in the LSCC, largely depends on head and neck studies with a lack of systematic data about the evidences of CSCs in tumorigenesis of LSCC. Certainly, the combination of therapies aimed at debulking the tumour (e.g. surgery, conventional chemotherapy, radiotherapy together with targeted therapies aimed at the elimination of the CSCs might have a positive impact on the long-term outcome of patients with laryngeal cancer (LC in the future and may cast a new light on the cancer treatment.

  11. Bone repair and stem cells.

    Science.gov (United States)

    Ono, Noriaki; Kronenberg, Henry M

    2016-10-01

    Bones are an important component of vertebrates; they grow explosively in early life and maintain their strength throughout life. Bones also possess amazing capabilities to repair-the bone is like new without a scar after complete repair. In recent years, a substantial progress has been made in our understanding on mammalian bone stem cells. Mouse genetic models are powerful tools to understand the cell lineage, giving us better insights into stem cells that regulate bone growth, maintenance and repair. Recent findings about these stem cells raise new questions that require further investigations.

  12. Expression of high mobility group box 1 in inflamed dental pulp and its chemotactic effect on dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xufang, E-mail: xufang.zhang@student.qut.edu.au [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Jiang, Hongwei, E-mail: jianghw@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Gong, Qimei, E-mail: gongqmei@gmail.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fan, Chen, E-mail: c3.fan@student.qut.edu.au [Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059 (Australia); Huang, Yihua, E-mail: enu0701@163.com [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Ling, Junqi, E-mail: lingjq@mail.sysu.edu.cn [Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2014-08-08

    Highlights: • HMGB1 translocated from nucleus to cytoplasm during dental pulp inflammation. • HMGB1and its receptor RAGE were up-regulated in hDPCs under LPS stimulation. • HMGB1 enhanced hDPCs migration and induces cytoskeleton reorganization. • HMGB1 may play a critical role in dental pulp repair during inflamed state. - Abstract: High mobility group box 1 protein (HMGB1) is a chromatin protein which can be released extracellularly, eliciting a pro-inflammatory response and promoting tissue repair process. This study aimed to examine the expression and distribution of HMGB1 and its receptor RAGE in inflamed dental pulp tissues, and to assess its effects on proliferation, migration and cytoskeleton of cultured human dental pulp cells (DPCs). Our data demonstrated that cytoplasmic expression of HMGB1 was observed in inflamed pulp tissues, while HMGB1 expression was confined in the nuclei in healthy dental pulp. The mRNA expression of HMGB1 and RAGE were significantly increased in inflamed pulps. In in vitro cultured DPCs, expression of HMGB1 in both protein and mRNA level was up-regulated after treated with lipopolysaccharide (LPS). Exogenous HMGB1 enhanced DPCs migration in a dose-dependent manner and induced the reorganization of f-actin in DPCs. Our results suggests that HMGB1 are not only involved in the process of dental pulp inflammation, but also play an important role in the recruitment of dental pulp stem cells, promoting pulp repair and regeneration.

  13. Stem cells and combinatorial science.

    Science.gov (United States)

    Fang, Yue Qin; Wong, Wan Qing; Yap, Yan Wen; Orner, Brendan P

    2007-09-01

    Stem cell-based technologies have the potential to help cure a number of cell degenerative diseases. Combinatorial and high throughput screening techniques could provide tools to control and manipulate the self-renewal and differentiation of stem cells. This review chronicles historic and recent progress in the stem cell field involving both pluripotent and multipotent cells, and it highlights relevant cellular signal transduction pathways. This review further describes screens using libraries of soluble, small-molecule ligands, and arrays of molecules immobilized onto surfaces while proposing future trends in similar studies. It is hoped that by reviewing both the stem cell and the relevant high throughput screening literature, this paper can act as a resource to the combinatorial science community.

  14. Nanotechniques Inactivate Cancer Stem Cells

    Science.gov (United States)

    Goltsev, Anatoliy N.; Babenko, Natalya N.; Gaevskaya, Yulia A.; Bondarovich, Nikolay A.; Dubrava, Tatiana G.; Ostankov, Maksim V.; Chelombitko, Olga V.; Malyukin, Yuriy V.; Klochkov, Vladimir K.; Kavok, Nataliya S.

    2017-06-01

    One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44+ and CD44- subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44+ cells if compared to CD44- cells was proven. In this pair of comparison, the CD44+ cells had a higher potential of generating in peritoneal cavity of CD44high, CD44+CD24-, CD44+CD24+ cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44+ cells.

  15. p53 in stem cells

    Institute of Scientific and Technical Information of China (English)

    Valeriya; Solozobova; Christine; Blattner

    2011-01-01

    p53 is well known as a "guardian of the genome" for differentiated cells,in which it induces cell cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability.In addition to this tumor suppressor function for differentiated cells,p53 also plays an important role in stem cells.In this cell type,p53 not only ensures genomic integrity after genotoxic insults but also controls their proliferation and differentiation.Additionally,p53 provides an effective barrier for the generation of pluripotent stem celllike cells from terminally differentiated cells.In this review,we summarize our current knowledge about p53 activities in embryonic,adult and induced pluripotent stem cells.

  16. Stem cells: Biology and clinical potential

    African Journals Online (AJOL)

    ajl yemi

    2011-12-30

    Dec 30, 2011 ... divisions to self renew or undergo terminal differentiation, or they may ... cells, hematopoietic stem cells and cancer cells conti- ..... as vascular endothelial cells, neurocytes, lung cells and ..... Patient-specific embryonic stem.

  17. Odontogenic differentiation of adipose-derived stem cells for tooth regeneration: necessity, possibility, and strategy.

    Science.gov (United States)

    Jing, Wei; Wu, Ling; Lin, Yunfeng; Liu, Lei; Tang, Wei; Tian, Weidong

    2008-01-01

    Tooth regeneration using tissue engineering concepts is a promising biological approach to solving problems of tooth loss in elderly patients. The seeding cells, however, for tooth regeneration such as odontoblasts from dental germ, stem cells from dental pulp and deciduous teeth, and ectomesenchymal cells from the first branchial arch are difficult, even impossible to harvest in clinic. Bone marrow mesenchymal stem cells have odontogenic capacity, but their differentiation abilities significantly decrease with the increasing age of the donors. Therefore, the cells mentioned above are not practical in the clinical application of tooth regeneration in the old. Adipose derived stem cells have many clinical advantages over bone marrow mesenchymal stem cells, and their differentiation potential can be maintained with aging. Here we propose the hypothesis that adipose derived stem cells could be induced into odontogenic lineage and might be used as suitable seeding cells for tooth regeneration to replace the lost tooth of elderly patients.

  18. From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells

    Directory of Open Access Journals (Sweden)

    Xiao L

    2014-12-01

    Full Text Available Li Xiao,1 Masanori Nasu2 1Department of Pharmacology, 2Research Center, The Nippon Dental University, Tokyo, Japan Abstract: Adult mesenchymal stem cells (MSCs and epithelial stem cells play essential roles in tissue repair and self-healing. Oral MSCs and epithelial stem cells can be isolated from adult human oral tissues, for example, teeth, periodontal ligament, and gingiva. Cocultivated adult oral epithelial stem cells and MSCs could represent some developmental events, such as epithelial invagination and tubular structure formation, signifying their potentials for tissue regeneration. Oral epithelial stem cells have been used in regenerative medicine over 1 decade. They are able to form a stratified cell sheet under three-dimensional culture conditions. Both experimental and clinical data indicate that the cell sheets can not only safely and effectively reconstruct the damaged cornea in humans, but also repair esophageal ulcer in animal models. Oral MSCs include dental pulp stem cells (DPSCs, stem cells from exfoliated deciduous teeth (SHED, stem cells from apical papilla (SCAP, periodontal ligament stem cells (PDLSCs, and mesenchymal stem cells from gingiva (GMSCs. They are widely applied in both regenerative dentistry and medicine. DPSCs, SHED, and SCAP are able to form dentin–pulp complex when being transplanted into immunodeficient animals. They have been experimentally used for the regeneration of dental pulp, neuron, bone muscle and blood vessels in animal models and have shown promising results. PDLSCs and GMSCs are demonstrated to be ideal cell sources for repairing the damaged tissues of periodontal, muscle, and tendon. Despite the abovementioned applications of oral stem cells, only a few human clinical trials are now underway to use them for the treatment of certain diseases. Since clinical use is the end goal, their true regenerative power and safety need to be further examined.Keywords: oral mesenchymal stem cells, oral

  19. [Therapeutic use of stem cells. II. Adult stem cells].

    Science.gov (United States)

    Uzan, Georges

    2004-09-30

    Many degenerative diseases are not curable by means of classical medicine. The long term objective of cell therapy is to treat the patients with their own stem cells that could be either purified from the diseased organ or from "reservoirs" of stem cells such as that constituted by the bone marrow. The existence of stem cells in the organs or reservoirs is now established in vitro and in some cases, in animal models. Numbers of technical problems linked to the scarcity of these cells still delay the clinical use of purified stem cells. However, clinical protocols using heterogeneous cell populations have already started to treat a growing number of diseases. In some case, autologous cells can be used, as it is the case for bone marrow transplantation in blood diseases. Mesenchymal cells, also purified from the bone marrow are currently used in orthopaedic diseases. Because these cells reveal a broad differentiation potential, active research programs explore their possible use for treatment of other diseases. Bone marrow also contains vascular stem cells that could be active in reappearing defective vessels responsible for ischaemic diseases. Indeed, clinical trials in which bone marrow cells are injected in the cardiac muscle of patients with myocardial infarction or in the leg muscle (gastrocnemius) of patients with hind limb ischaemia have already started. Artificial skin prepared from skin biopsies is used for the reconstitution of the derma of severely burned patients. Clinical trials have also started, using allogenic cells. The patients must be treated by immunosuppressive drugs. Neurodegenerative diseases such as Parkinson have been successfully treated by intra-cerebral injection of foetal neurones. Pancreatic islets implanted in the liver have shown to re-establish a normal glycaemia in diabetic patients. However, all these clinical trials use differentiated cells or at least progenitors which display differentiation potential and lifetime much more

  20. Comparison of stem-cell-mediated osteogenesis and dentinogenesis.

    Science.gov (United States)

    Batouli, S; Miura, M; Brahim, J; Tsutsui, T W; Fisher, L W; Gronthos, S; Robey, P Gehron; Shi, S

    2003-12-01

    The difference between stem-cell-mediated bone and dentin regeneration is not yet well-understood. Here we use an in vivo stem cell transplantation system to investigate differential regulation mechanisms of bone marrow stromal stem cells (BMSSCs) and dental pulp stem cells (DPSCs). Elevated expression of basic fibroblast growth factor (bFGF) and matrix metalloproteinase 9 (MMP-9, gelatinase B) was found to be associated with the formation of hematopoietic marrow in BMSSC transplants, but not in the connective tissue of DPSC transplants. The expression of dentin sialoprotein (DSP) specifically marked dentin synthesis in DPSC transplants. Moreover, DPSCs were found to be able to generate reparative dentin-like tissue on the surface of human dentin in vivo. This study provided direct evidence to suggest that osteogenesis and dentinogenesis mediated by BMSSCs and DPSCs, respectively, may be regulated by distinct mechanisms, leading to the different organization of the mineralized and non-mineralized tissues.

  1. [Progress in stem cells and regenerative medicine].

    Science.gov (United States)

    Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi

    2015-06-01

    Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.

  2. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment

    Directory of Open Access Journals (Sweden)

    Pedro M. Aponte

    2017-01-01

    Full Text Available Stemness combines the ability of a cell to perpetuate its lineage, to give rise to differentiated cells, and to interact with its environment to maintain a balance between quiescence, proliferation, and regeneration. While adult Stem Cells display these properties when participating in tissue homeostasis, Cancer Stem Cells (CSCs behave as their malignant equivalents. CSCs display stemness in various circumstances, including the sustaining of cancer progression, and the interaction with their environment in search for key survival factors. As a result, CSCs can recurrently persist after therapy. In order to understand how the concept of stemness applies to cancer, this review will explore properties shared between normal and malignant Stem Cells. First, we provide an overview of properties of normal adult Stem Cells. We thereafter elaborate on how these features operate in CSCs. We then review the organization of microenvironment components, which enables CSCs hosting. We subsequently discuss Mesenchymal Stem/Stromal Cells (MSCs, which, although their stemness properties are limited, represent essential components of the Stem Cell niche and tumor microenvironment. We next provide insights of the therapeutic strategies targeting Stem Cell properties in tumors and the use of state-of-the-art techniques in future research. Increasing our knowledge of the CSCs microenvironment is key to identifying new therapeutic solutions.

  3. 犬牙囊干细胞膜片的构建及生物学特性的研究%Construction of Dental Follicle Stem Cell Sheet and its Biological Characteristics in Beagle Dogs

    Institute of Scientific and Technical Information of China (English)

    黄闯; 宋镜明; 宋扬; 刘佳; 王丽颖; 金作林

    2012-01-01

    Objective: To study the construction of dental follicle stem cell sheet and its biological characteristics in Beagle dogs. Methods: After identification.DFSCs were sub-cultured to construct DFSCs sheet. Cell sheet was investaged by inverted microscope, HE staining and scanning electron microscope (SEM). DFSCs sheets were induced by adipogenesis inducing medium and osteogenic medium for 14 days separately. Oil red staining and Alizarin red staining was applied to examine adipogenic induction and osteogenic induction. Results: DFSCs showed typical spindle shape.. Colony-forming assay results showed about 5.1% DFSCs colony formation. DFSCs were positive for CD29 and CD44, but negative for CD34. MTT manifested the growth and proliferation was good. Cell cycle testing showed: G1=87.1%,G2=5.54%. DFSCs sheets were constructed successfully and its growth in multilayer. It found that DFSCs expanded adequately and extracellular matrix(ECM) was clear and numerous in scanning electron micrescopy.Oil red staining and alizarin red staining both demonstrated positive reactions in DFSCs sheet after induction. Conclusion: It suggested that DFSCs cell sheet may be constructed and has a strong bone-forming ability.%目的:利用犬牙囊干细胞(Dental Follicle Stem Cells,DFSCs)构建细胞膜片并研究其生物学特性.方法:取4至6月龄犬尖牙牙胚,分离培养DFSCs,鉴定.用含抗坏血酸的培养基诱导2周构建细胞膜片,并通过倒置显微镜、HE染色、茜素红染色、油红染色、扫描电镜(SEM)对膜片进行形态学检测,检测成骨、成脂能力.结果:DFSCs于体外被成功分离、纯化、培养,细胞克隆形成率约为5.1%.流式鉴定为CD29+CD44+CD34-,增殖能力及克隆形成能力较强,并能成功构建成细胞膜片.光镜和电镜显示膜片细胞排列紧密,细胞基质分泌多,油红O染色后可见细胞内有大量脂滴形成.(B)茜素红染色后可见大量清晰的钙结节形成.结论:成功构建犬DFSCs膜

  4. Where will the stem cells lead us? Prospects for dentistry in the 21 st century

    Directory of Open Access Journals (Sweden)

    S Durga Sreenivas

    2011-01-01

    Full Text Available It is dentists′ dream to achieve bone repair with predictability, but without donor site morbidity as well as reconstruction of injured or pathologically damaged complex dental structures, however, this will no longer be a dream as these are being made into a reality using stem cell science. Stem cell science is clearly an intriguing and promising area of science. Stem cells have been isolated from a variety of embryonic and adult tissues. Dental stem cells are multipotent mesenchymal stem cells (MSCs brought new enthusiasm among the researchers because of their easy accessibility, high quality and they don′t pose the same ethical concerns and controversy in comparison with embryonic stem cells. This review article provides brief insights about stem cell basics, the state of art in human dental stem cell research and its possible impact on future dentistry. Even though most of these modalities are still in infancy, it is evident that the 21 st century dentist is going to play a critical role in the field of medicine. The aim of this article is to bring awareness among the dentists about the huge potential associated with the use of stem cells in a clinical setting, as well as proper understanding of related problems.

  5. Stem cell research in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Chengyi SUN; Shi ZUO

    2008-01-01

    The traditional view that adult human liver tumors, mainly hepatocellular carcinoma (HCC), arise from mature cell types has been challenged in recent dec-ades. The results of several studies suggest that HCC can be derived from liver stem cells. There are four levels of cells in the liver stem cell lineage: hepatocytes, hepatic stem cells/oval cells, bone marrow stem cells and hepato-pancreas stem cells. However, whether HCC is resulted from the differentiation block of stem cells and, moreover, which liver stem cell lineage is the source cell of hepatocarcinogenesis remain controversial. In this review, we focus on the current status of liver stem cell research and their roles in carcinogenesis of HCC, in order to explore new approaches for stem cell therapy of HCC.

  6. Human embryonic stem cells handbook

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-03-01

    Full Text Available After the Nobel prize in physiology or medicine was awarded jointly to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent it became imperative to write down the review for a book entirely devoted to human embryonic stem cells (hES, those cells that are a urgent need for researchers, those cells that rekindle the ethical debates and finally, last but not least, those cells whose study paved the way to obtain induced pluripotent stem cells by the OSKC’s Yamanaka method (the OSKC acronim refers, for those not familiar with the topic, to the four stemness genes used to transfect somatic fibroblasts: Oct4, Sox2, Klf4 and c-Myc....

  7. Bone regeneration and stem cells

    DEFF Research Database (Denmark)

    Arvidson, K; Abdallah, B M; Applegate, L A

    2011-01-01

    cells, use of platelet rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed....

  8. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics...... in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-renewal potential of stem cells. Recent evidence on the possible identification of cancer stem cells may...... offer an opportunity to use these cells as future therapeutic targets. Therefore, model systems in this field have become very important and useful. This review will focus on the state of knowledge on cancer stem cell research, including cell line models for cancer stem cells. The latter will, as models...

  9. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    Science.gov (United States)

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-07

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Optimal concentration of modified platelet-rich plasma to promote the proliferation of dental pulp stem cells from deciduous teeth%改良富血小板血浆促进乳牙牙髓干细胞增殖的最佳浓度

    Institute of Scientific and Technical Information of China (English)

    文军; 吴补领; 段建民; 李洪涛; 李斯翰; 李鑫

    2014-01-01

    背景:课题组前期实验发现用液氮冻融激活的改良富血小板血浆可以促进骨髓间充质干细胞和牙髓干细胞的增殖,且这种促增殖作用具有浓度特异性。目的:体外研究不同浓度的改良富血小板血浆对人乳牙牙髓干细胞增殖的影响。方法:利用全自动血细胞分离机制备血小板浓缩物,反复冻融法激活,获得改良富血小板血浆;以α-MEM作为基础培养基,分别加入体积分数为2%,5%,10%,20%4种不同浓度改良富血小板血浆或者体积分数10%胎牛血清进行培养,观察细胞增殖差异。结果与结论:不同浓度的改良富血小板血浆均能够促进乳牙牙髓干细胞增殖,体积分数2%改良富血小板血浆与体积分数10%胎牛血清促进乳牙牙髓干细胞增殖作用接近。提示体积分数2%改良富血小板血浆可以促进乳牙牙髓干细胞的增殖,有可能代替胎牛血清用于乳牙牙髓干细胞的体外扩增。%BACKGROUND:Previous experiments have shown that modified platelet-rich plasma activated by liquid nitrogen freezing and thawing can promote the proliferation of human bone marrow mesenchymal stem cells and dental pulp stem cells in a concentration-dependent manner. OBJECTIVE:To investigate the effect of modified platelet-rich plasma at different concentrations on the proliferation of dental pulp stem cells from human exfoliated deciduous teeth. METHODS:Platelets were selected and harvested by automatic blood cellanalyzer, and then activated by liquid nitrogen freezing and thawing.α-MEM served as basal medium. Different concentrations of modified platelet-rich plasma (2%, 5%, 10%, 20%) or 10%fetal bovine serum were added, respectively. The difference in cellproliferation was observed. RESULTS AND CONCLUSION:Modified platelet-rich plasma at different concentrations could promote the proliferation of dental pulp stem cells from deciduous teeth. The effects of 2%modified platelet

  11. Development and application of stem cells

    Institute of Scientific and Technical Information of China (English)

    HUI Guo-zhen; SHAN Li-dong

    2005-01-01

    @@ Stem cells are defined by two important characteristics: the ability to proliferate by a process of self-renewal and the potential to form at least one specialized cell type. Transient population of pluripotent or multipotent stem cells first appear during the development at the first days post coitum. The cells of the inner cell mass (ICM) of the blastocyst, of which embryonic stem cells (ES) are the in vitro counterpart, can give rise to any differentiated cell type in the three primary germ layers of the embryo (endoderm, mesoderm and ectoderm).1-3 These cells gradually mature into committed, organ- and tissue-specific stem cells or adult stem cells, such as neural stem cells, mesenchymal stem cells, hematopoietic stem cells, etc. Over the past years, studies have focused on two aspects: molecular level and application, and some new methods and technology have been used.

  12. Pluripotent stem cells for Schwann cell engineering.

    Science.gov (United States)

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    2015-04-01

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by recapitulating the various stages of in vivo neural crest formation and SC differentiation. In this review, we survey the cellular and molecular mechanisms underlying these in vivo processes. We then focus on the current in vitro strategies for generating SCs from two sources of pluripotent stem cells, namely embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Different methods for SC engineering from ESCs and iPSCs are reviewed and suggestions are proposed for optimizing the existing protocols. Potential safety issues regarding the clinical application of iPSC-derived SCs are discussed as well. Lastly, we will address future aspects of SC engineering.

  13. Making a tooth: growth factors, transcription factors, and stem cells

    Institute of Scientific and Technical Information of China (English)

    Yah Ding ZHANG; Zhi CHEN; Yi Qiang SONG; Chao LIU; Yi Ping CHEN

    2005-01-01

    Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions.These processes involve a series of inductive and permissive interactions that result in the determination, differentiation,and organization of odontogenic tissues. Multiple signaling molecules, including BMPs, FGFs, Shh, and Wnt proteins,have been implicated in mediating these tissue interactions. Transcription factors participate in epithelial-mesenchymal interactions via linking the signaling loops between tissue layers by responding to inductive signals and regulating the expression of other signaling molecules. Adult stem cells are highly plastic and multipotent. These cells including dental pulp stem cells and bone marrow stromal cells could be reprogrammed into odontogenic fate and participated in tooth formation. Recent progress in the studies of molecular basis of tooth development, adult stem cell biology, and regeneration will provide fundamental knowledge for the realization of human tooth regeneration in the near future.

  14. [Therapeutic use of stem cells].

    Science.gov (United States)

    Uzan, Georges

    2004-09-15

    Stem cells display important capacities of self renewing, proliferation and differentiation. Because those present in the embryo have the more remarkable properties, their potential use in the therapy of until now incurable degenerative diseases have been envisioned. Embryonic stem (ES) cells are located in the inner mass of the balstocyst at early stages of the development. Even in long-term cultures they still retain their undifferentiated features. Under specific culture conditions, ES cells can be committed into a variety of differentiation pathways, giving rise to large amounts of cells corresponding to different tissues (neurones, cardiomyocytes, skeletal muscle, etc.). However, producing these tissues from already established ES cell lines would lead to immune rejection when transplanted to patients. To prevent this pitfall and using the expertise accumulated by animal cloning by nucleus transfer, it has been proposed to adapt this technique to human ES cells. The therapeutic cloning consists in transferring the nucleus of somatic stem cells isolated from the patient into an enucleated oocyte, to allow blastocyst development from which ES cells will be derived. From these stem cells, compatible tissues will be then produced. The problem is that it is in theoretically possible to reimplant the cloned blastocyst into a surrogate mother for obtaining a baby genetically identical to the donor. This is called reproductive cloning. This worrying risk raises important ethic and legal questions.

  15. Flexibility of neural stem cells

    Directory of Open Access Journals (Sweden)

    Eumorphia eRemboutsika

    2011-04-01

    Full Text Available Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions, embryonic cortical neur